Science.gov

Sample records for active tubular secretion

  1. Tubular Secretion in CKD.

    PubMed

    Suchy-Dicey, Astrid M; Laha, Thomas; Hoofnagle, Andrew; Newitt, Rick; Sirich, Tammy L; Meyer, Timothy W; Thummel, Ken E; Yanez, N David; Himmelfarb, Jonathan; Weiss, Noel S; Kestenbaum, Bryan R

    2016-07-01

    Renal function generally is assessed by measurement of GFR and urinary albumin excretion. Other intrinsic kidney functions, such as proximal tubular secretion, typically are not quantified. Tubular secretion of solutes is more efficient than glomerular filtration and a major mechanism for renal drug elimination, suggesting important clinical consequences of secretion dysfunction. Measuring tubular secretion as an independent marker of kidney function may provide insight into kidney disease etiology and improve prediction of adverse outcomes. We estimated secretion function by measuring secreted solute (hippurate, cinnamoylglycine, p-cresol sulfate, and indoxyl sulfate) clearance using liquid chromatography-tandem mass spectrometric assays of serum and timed urine samples in a prospective cohort study of 298 patients with kidney disease. We estimated GFR by mean clearance of creatinine and urea from the same samples and evaluated associations of renal secretion with participant characteristics, mortality, and CKD progression to dialysis. Tubular secretion rate modestly correlated with eGFR and associated with some participant characteristics, notably fractional excretion of electrolytes. Low clearance of hippurate or p-cresol sulfate associated with greater risk of death independent of eGFR (hazard ratio, 2.3; 95% confidence interval, 1.1 to 4.7; hazard ratio, 2.5; 95% confidence interval, 1.0 to 6.1, respectively). Hazards models also suggested an association between low cinnamoylglycine clearance and risk of dialysis, but statistical analyses did not exclude the null hypothesis. Therefore, estimates of proximal tubular secretion function correlate with glomerular filtration, but substantial variability in net secretion remains. The observed associations of net secretion with mortality and progression of CKD require confirmation. PMID:26614381

  2. Renal tubular secretion of pramipexole.

    PubMed

    Knop, Jana; Hoier, Eva; Ebner, Thomas; Fromm, Martin F; Müller, Fabian

    2015-11-15

    The dopamine agonist pramipexole is cleared predominantly by the kidney with a major contribution of active renal secretion. Previously the organic cation transporter 2 (OCT2) was shown to be involved in the uptake of pramipexole by renal tubular cells, while the mechanism underlying efflux into tubular lumen remains unclear. Cimetidine, a potent inhibitor of multidrug and toxin extrusion proteins 1 (MATE1) and 2-K (MATE2-K), decreases renal pramipexole clearance in humans. We hypothesized that, in addition to OCT2, pramipexole may be a substrate of MATE-mediated transport. Pramipexole uptake was investigated using MDCK or HEK cells overexpressing OCT2, MATE1 or MATE2-K and the respective vector controls (Co). Transcellular pramipexole transport was investigated in MDCK cells single- or double-transfected with OCT2 and/or MATE1 and in Co cells, separating a basal from an apical compartment in a model for renal tubular secretion. Pramipexole uptake was 1.6-, 1.1-, or 1.6-folds in cells overexpressing OCT2, MATE1 or MATE2-K, respectively as compared to Co cells (p<0.05). In transcellular transport experiments, intracellular pramipexole accumulation was 1.7-folds in MDCK-OCT2 (p<0.001), and transcellular pramipexole transport was 2.2- and 4.0-folds in MDCK-MATE1 and MDCK-OCT2-MATE1 cells as compared to Co cells (p<0.001). Transcellular pramipexole transport was pH dependent and inhibited by cimetidine with IC50 values of 12μM and 5.5μM in MATE1 and OCT2-MATE1 cells, respectively. Taken together, coordinate activity of OCT2-mediated uptake and MATE-mediated efflux determines pramipexole renal secretion. Reduced OCT2 or MATE transport activity due to genetic variation or drug-drug interactions may affect pramipexole renal secretion. PMID:26360835

  3. Renal tubular secretion of glutathione (GSH)

    SciTech Connect

    Scott, R.D.; Curthoys, N.P.

    1986-05-01

    The rapid turnover of renal GSH may require its secretion into the tubular lumen. Renal clearance of plasma GSH was measured in rats anesthetized with Inactin and infused with (/sup 3/H)inulin. Renal ..gamma..-glutamyltranspeptidase (..gamma..GT) was then inactivated (> 97%) by infusion of acivicin and samples were collected for 6-7 h. By 4.5 h arterial and urinary GSH increased from 5..mu..M and 1.3 n mol/h to 23 ..mu..M and 2400-7000 nmol/h, respectively. The ratio of urinary GSH to filtered load increased from < 0.01 to 0.7-2.6. When renal GSH was decreased to 30% of normal by pretreating rats with buthionine sulfoximine (BSO), the subsequent inactivation of ..gamma..GT caused only a slight increase in arterial GSH and urinary GSH increased to only 400-600 nmol/h (60-70% of filtered load). The amount of GSH filtered by the kidney was reduced by initially treating a rat with acivicin and 3 h later infusing purified ..gamma..GT (0.2 mg/h) to degrade plasma GSH. Just before infusion of ..gamma..GT, arterial GSH was 23 ..mu..M and urinary GSH was equal to 90% of the filtered load. At 1 h after infusion of ..gamma..GT, arterial GSH decreased to 0.3 ..mu..M, whereas urinary GSH remained elevated (1200-1800 nmol/h) and now equalled 10-20 times the filtered load. When similar experiments were carried out in BSO treated rats, maximal urinary GSH was reduced to 200 nmol/h, a value that was still 10 times the filtered load. Therefore, secreted GSH constitutes a significant portion of the GSH that is normally catabolized within the tubular lumen.

  4. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat

    PubMed Central

    Lepist, Eve-Irene; Zhang, Xuexiang; Hao, Jia; Huang, Jane; Kosaka, Alan; Birkus, Gabriel; Murray, Bernard P; Bannister, Roy; Cihlar, Tomas; Huang, Yong; Ray, Adrian S

    2014-01-01

    Many xenobiotics including the pharmacoenhancer cobicistat increase serum creatinine by inhibiting its renal active tubular secretion without affecting the glomerular filtration rate. This study aimed to define the transporters involved in creatinine secretion, applying that knowledge to establish the mechanism for xenobiotic-induced effects. The basolateral uptake transporters organic anion transporter OAT2 and organic cation transporters OCT2 and OCT3 were found to transport creatinine. At physiologic creatinine concentrations, the specific activity of OAT2 transport was over twofold higher than OCT2 or OCT3, establishing OAT2 as a likely relevant creatinine transporter and further challenging the traditional view that creatinine is solely transported by a cationic pathway. The apical multidrug and toxin extrusion transporters MATE1 and MATE2-K demonstrated low-affinity and high-capacity transport. All drugs known to affect creatinine inhibited OCT2 and MATE1. Similar to cimetidine and ritonavir, cobicistat had the greatest effect on MATE1 with a 50% inhibition constant of 0.99 μM for creatinine transport. Trimethoprim potently inhibited MATE2-K, whereas dolutegravir preferentially inhibited OCT2. Cimetidine was unique, inhibiting all transporters that interact with creatinine. Thus, the clinical observation of elevated serum creatinine in patients taking cobicistat is likely a result of OCT2 transport, facilitating intracellular accumulation, and MATE1 inhibition. PMID:24646860

  5. Glomerular filtration and tubular secretion of MAG-3 in the rat kidney

    SciTech Connect

    Mueller-Suur, R.M.; Mueller-Suur, C. )

    1989-12-01

    Technetium-99m mercaptoacetyltriglycine (MAG-3) has recently been introduced as a new radiopharmaceutical for dynamic renal scintigraphy. To elucidate the mechanism of renal excretion, micropuncture experiments were performed in rat kidneys for direct measurements of glomerular filtration and tubular secretory capacity. Fluid of Bowman space was collected from superficial glomeruli and analyzed for its contents of (99mTc)MAG-3, (125I)hippurate and (3H)inulin during constant infusion of these compounds. The ratio of activity of ultrafiltrate to that of arterial plasma was 0.23 for MAG-3, 0.68 for hippurate and 1.04 for inulin which demonstrates that the filtrated amount of MAG-3 is only 23% of that of inulin, presumably because of higher plasma protein binding which was also measured in vitro and found to be 80 +/- 1.5% for MAG-3 and 32 +/- 2% for (125I)hippurate. Proximal and distal tubules were also micropunctured and their tubular fluid as well as the final urine analyzed for the activity of hippurate and MAG-3. The tubular fluid to plasma ratio values along the nephron and in the final urine were all lower for MAG-3 than for hippurate, indicating a lower secretory capacity. From measurements of whole renal clearance, GFR and plasma protein binding the filtered amount of MAG-3 was 0.26 and of hippurate 0.87 ml/min.g kidney weight (p less than 0.001) and the secreted amount 2.01 and 2.38 ml/min.g kidney weight (p less than 0.05), respectively. We conclude that MAG-3 is predominantly excreted by tubular secretion and that the lower renal clearance of MAG-3 as compared with that of hippurate is a result both of a substantially decreased glomerular filtration and of a lower tubular secretion.

  6. Molecular Mechanism of Renal Tubular Secretion of the Antimalarial Drug Chloroquine ▿

    PubMed Central

    Müller, Fabian; König, Jörg; Glaeser, Hartmut; Schmidt, Ingrid; Zolk, Oliver; Fromm, Martin F.; Maas, Renke

    2011-01-01

    The antimalarial drug chloroquine is eliminated to a significant extent by renal tubular secretion. The molecular mechanism of renal chloroquine secretion remains unknown. We hypothesized that organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1), localized in the basolateral and luminal membranes of proximal tubule cells, respectively, are involved in chloroquine transport. The interaction of chloroquine with both transporters was investigated using single-transfected human embryonic kidney 293 (HEK293)-MATE1 cells in uptake experiments and single-transfected Madin-Darby canine kidney II (MDCK)-OCT2 and MDCK-MATE1 cells as well as double-transfected MDCK-OCT2-MATE1 cells grown as polarized monolayers on transwell filters. In HEK293-MATE1 cells, chloroquine competitively inhibited MATE1-mediated metformin uptake (Ki = 2.8 μM). Cellular accumulation of chloroquine was significantly lower (P < 0.001) and transcellular chloroquine transport was significantly increased (P < 0.001) in MDCK-MATE1 and MDCK-OCT2-MATE1 cells compared to vector control cells after basal addition of chloroquine (0.1 to 10 μM). In contrast, no difference in cellular accumulation or transcellular transport of chloroquine was observed between MDCK-OCT2 and vector control cells. In line with an oppositely directed proton gradient acting as a driving force for MATE1, basal-to-apical transport of chloroquine by MDCK-OCT2-MATE1 cells increased with decreasing apical pH from 7.8 to 6.0. Transcellular transport of chloroquine by MDCK-OCT2-MATE1 cells was inhibited by cimetidine, trimethoprim, and amitriptyline. Our data demonstrate that chloroquine is a substrate and potent competitive inhibitor of MATE1, whereas OCT2 seems to play no role in chloroquine uptake. Concomitantly administered MATE1 inhibitors are likely to modify the renal secretion of chloroquine. PMID:21518836

  7. Bidirectional signalling between EphA2 and ephrinA1 increases tubular cell attachment, laminin secretion and modulates erythropoietin expression after renal hypoxic injury.

    PubMed

    Rodriguez, Stéphane; Rudloff, Stefan; Koenig, Katrin Franziska; Karthik, Swapna; Hoogewijs, David; Huynh-Do, Uyen

    2016-08-01

    Acute kidney injury (AKI) is common in hospitalized patients and has a poor prognosis, the severity of AKI being linked to progression to chronic kidney disease. This stresses the need to search for protective mechanisms during the acute phase. We investigated kidney repair after hypoxic injury using a rat model of renal artery branch ligation, which led to an oxygen gradient vertical to the corticomedullary axis. Three distinct zones were observed: tubular necrosis, infarction border zone and preserved normal tissue. EphA2 is a receptor tyrosine kinase with pivotal roles in cell architecture, migration and survival, upon juxtacrine contact with its membrane-bound ligand EphrinA1. Following hypoxia, EphA2 was up-regulated in cortical and medullary tubular cells, while EphrinA1 was up-regulated in interstitial cells adjacent to peritubular capillaries. Moreover, erythropoietin (EPO) messenger RNA (mRNA) was strongly expressed in the border zone of infarcted kidney within the first 6 h. To gain more insight into the biological impact of EphA2 and EphrinA1 up-regulation, we activated the signalling pathways in vitro using recombinant EphrinA1/Fc or EphA2/Fc proteins. Stimulation of EphA2 forward signalling in the proximal tubular cell line HK2 increased cell attachment and laminin secretion at the baso-lateral side. Conversely, activation of reverse signalling through EphrinA1 expressed by Hep3B cells promoted EPO production at both the transcriptional and protein level. Strikingly, in co-culture experiments, juxtacrine contact between EphA2 expressing MDCK and EphrinA1 expressing Hep3B was sufficient to induce a significant up-regulation of EPO mRNA production in the latter cells, even in the absence of hypoxic conditions. The synergistic effects of EphA2 and hypoxia led to a 15-20-fold increase of EPO expression. Collectively, our results suggest an important role of EphA2/EphrinA1 signalling in kidney repair after hypoxic injury through stimulation of (i) tubular

  8. Tubular dielectric elastomer actuator for active fluidic control

    NASA Astrophysics Data System (ADS)

    McCoul, David; Pei, Qibing

    2015-10-01

    We report a novel low-profile, biomimetic dielectric elastomer tubular actuator capable of actively controlling hydraulic flow. The tubular actuator has been established as a reliable tunable valve, pinching a secondary silicone tube completely shut in the absence of a fluidic pressure bias or voltage, offering a high degree of resistance against fluidic flow, and able to open and completely remove this resistance to flow with an applied low power actuation voltage. The system demonstrates a rise in pressure of ∼3.0 kPa when the dielectric elastomer valve is in the passive, unactuated state, and there is a quadratic fall in this pressure with increasing actuation voltage, until ∼0 kPa is reached at 2.4 kV. The device is reliable for at least 2000 actuation cycles for voltages at or below 2.2 kV. Furthermore, modeling of the actuator and fluidic system yields results consistent with the observed experimental dependence of intrasystem pressure on input flow rate, actuator prestretch, and actuation voltage. To our knowledge, this is the first actuator of its type that can control fluid flow by directly actuating the walls of a tube. Potential applications may include an implantable artificial sphincter, part of a peristaltic pump, or a computerized valve for fluidic or pneumatic control.

  9. The role played by endocytosis in albumin-induced secretion of TGF-beta1 by proximal tubular epithelial cells.

    PubMed

    Diwakar, Ramaswamy; Pearson, Alex L; Colville-Nash, Paul; Brunskill, Nigel J; Dockrell, Mark E C

    2007-05-01

    Proteinuria predicts the decline of renal function in chronic kidney disease. Reducing albuminuria has been shown to be associated with a reduction in this rate of decline. Proximal tubular epithelial cells (PTECs), when exposed to albumin produce matrix proteins, proinflammatory and profibrotic cytokines like TGF-beta(1). Some of these effects are dependent on endocytosis of albumin by PTECs. However, conditions like diabetic nephropathy, believed to be associated with reduced albumin endocytosis, are associated with interstitial fibrosis. Moreover, megalin, the putative albumin binding receptor in PTECs, has potential signaling motifs in its cytoplasmic domain, suggesting its ability to signal in response to ligand binding from the apical surface of PTECs. Hence, we looked to see whether albumin-induced secretion of TGF-beta(1) by PTECs is dependent on albumin endocytosis or whether it could occur in the absence of albumin endocytosis. We studied the production of TGF-beta(1) in two accepted models of PTECs, opossum kidney cells and human kidney cell clone-8 cells, with widely varying degrees of endocytosis. We then studied the effect of inhibiting albumin endocytosis with various inhibitors on albumin-induced TGF-beta(1) secretion. Our results indicate that albumin-induced TGF-beta(1) secretion by PTECs does not require albumin endocytosis and therefore the mechanism for the induction of some profibrotic responses by albumin may differ from those required for some of the inflammatory responses. Moreover, we found that albumin-induced TGF-beta(1) secretion by PTECs is not dependent on its interaction with megalin. PMID:17213467

  10. Calcium oxalate crystals increased enolase-1 secretion from renal tubular cells that subsequently enhanced crystal and monocyte invasion through renal interstitium.

    PubMed

    Chiangjong, Wararat; Thongboonkerd, Visith

    2016-01-01

    Calcium oxalate monohydrate (COM) crystals cause kidney stone disease by still unclear mechanisms. The present study aimed to characterize changes in secretion of proteins from basolateral compartment of renal tubular epithelial cells after exposure to COM crystals and then correlated them with the stone pathogenesis. Polarized MDCK cells were cultivated in serum-free medium with or without 100 μg/ml COM crystals for 20 h. Secreted proteins collected from the lower chamber (basolateral compartment) were then resolved in 2-D gels and visualized by Deep Purple stain (n = 5 gels/group). Spot matching and intensity analysis revealed six protein spots with significantly altered levels in COM-treated samples. These proteins were then identified by tandem mass spectrometry (Q-TOF MS/MS), including enolase-1, phosphoglycerate mutase-1, actinin, 14-3-3 protein epsilon, alpha-tubulin 2, and ubiquitin-activating enzyme E1. The increased enolase-1 level was confirmed by Western blot analysis. Functional analysis revealed that enolase-1 dramatically induced COM crystal invasion through ECM migrating chamber in a dose-dependent manner. Moreover, enolase-1 bound onto U937 monocytic cell surface markedly enhanced cell migration through the ECM migrating chamber. In summary, our data indicated that the increased secretory enolase-1 induced by COM crystals played an important role in crystal invasion and inflammatory process in renal interstitium. PMID:27045290

  11. Calcium oxalate crystals increased enolase-1 secretion from renal tubular cells that subsequently enhanced crystal and monocyte invasion through renal interstitium

    PubMed Central

    Chiangjong, Wararat; Thongboonkerd, Visith

    2016-01-01

    Calcium oxalate monohydrate (COM) crystals cause kidney stone disease by still unclear mechanisms. The present study aimed to characterize changes in secretion of proteins from basolateral compartment of renal tubular epithelial cells after exposure to COM crystals and then correlated them with the stone pathogenesis. Polarized MDCK cells were cultivated in serum-free medium with or without 100 μg/ml COM crystals for 20 h. Secreted proteins collected from the lower chamber (basolateral compartment) were then resolved in 2-D gels and visualized by Deep Purple stain (n = 5 gels/group). Spot matching and intensity analysis revealed six protein spots with significantly altered levels in COM-treated samples. These proteins were then identified by tandem mass spectrometry (Q-TOF MS/MS), including enolase-1, phosphoglycerate mutase-1, actinin, 14-3-3 protein epsilon, alpha-tubulin 2, and ubiquitin-activating enzyme E1. The increased enolase-1 level was confirmed by Western blot analysis. Functional analysis revealed that enolase-1 dramatically induced COM crystal invasion through ECM migrating chamber in a dose-dependent manner. Moreover, enolase-1 bound onto U937 monocytic cell surface markedly enhanced cell migration through the ECM migrating chamber. In summary, our data indicated that the increased secretory enolase-1 induced by COM crystals played an important role in crystal invasion and inflammatory process in renal interstitium. PMID:27045290

  12. Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities.

    PubMed

    Si, Wen; Xin, Pengyang; Li, Zhan-Ting; Hou, Jun-Li

    2015-06-16

    Lipid bilayer membranes separate living cells from their environment. Membrane proteins are responsible for the processing of ion and molecular inputs and exports, sensing stimuli and signals across the bilayers, which may operate in a channel or carrier mechanism. Inspired by these wide-ranging functions of membrane proteins, chemists have made great efforts in constructing synthetic mimics in order to understand the transport mechanisms, create materials for separation, and develop therapeutic agents. Since the report of an alkylated cyclodextrin for transporting Cu(2+) and Co(2+) by Tabushi and co-workers in 1982, chemists have constructed a variety of artificial transmembrane channels by making use of either the multimolecular self-assembly or unimolecular strategy. In the context of the design of unimolecular channels, important advances have been made, including, among others, the tethering of natural gramicidin A or alamethicin and the modification of various macrocycles such as crown ethers, cyclodextrins, calixarenes, and cucurbiturils. Many of these unimolecular channels exhibit high transport ability for metal ions, particularly K(+) and Na(+). Concerning the development of artificial channels based on macrocyclic frameworks, one straightforward and efficient approach is to introduce discrete chains to reinforce their capability to insert into bilayers. Currently, this approach has found the widest applications in the systems of crown ethers and calixarenes. We envisioned that for macrocycle-based unimolecular channels, control of the arrangement of the appended chains in the upward and/or downward direction would favor the insertion of the molecular systems into bilayers, while the introduction of additional interactions among the chains would further stabilize a tubular conformation. Both factors should be helpful for the formation of new efficient channels. In this Account, we discuss our efforts in designing new unimolecular artificial channels from

  13. Secreted and transmembrane wnt inhibitors and activators.

    PubMed

    Cruciat, Cristina-Maria; Niehrs, Christof

    2013-03-01

    Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand-receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease. PMID:23085770

  14. Loss of activator of G-protein signaling 3 impairs renal tubular regeneration following acute kidney injury in rodents

    PubMed Central

    Regner, Kevin R.; Nozu, Kandai; Lanier, Stephen M.; Blumer, Joe B.; Avner, Ellis D.; Sweeney, William E.; Park, Frank

    2011-01-01

    The intracellular mechanisms underlying renal tubular epithelial cell proliferation and tubular repair following ischemia-reperfusion injury (IRI) remain poorly understood. In this report, we demonstrate that activator of G-protein signaling 3 (AGS3), an unconventional receptor-independent regulator of heterotrimeric G-protein function, influences renal tubular regeneration following IRI. In rat kidneys exposed to IRI, there was a temporal induction in renal AGS3 protein expression that peaked 72 h after reperfusion and corresponded to the repair and recovery phase following ischemic injury. Renal AGS3 expression was localized predominantly to the recovering outer medullary proximal tubular cells and was highly coexpressed with Ki-67, a marker of cell proliferation. Kidneys from mice deficient in the expression of AGS3 exhibited impaired renal tubular recovery 7 d following IRI compared to wild-type AGS3-expressing mice. Mechanistically, genetic knockdown of endogenous AGS3 mRNA and protein in renal tubular epithelial cells reduced cell proliferation in vitro. Similar reductions in renal tubular epithelial cell proliferation were observed following incubation with gallein, a selective inhibitor of Gβγ subunit activity, and lentiviral overexpression of the carboxyl-terminus of G-protein-coupled receptor kinase 2 (GRK2ct), a scavenger of Gβγ subunits. In summary, these data suggest that AGS3 acts through a novel receptor-independent mechanism to facilitate renal tubular epithelial cell proliferation and renal tubular regeneration.—Regner, K. R., Nozu, K., Lanier, S. M., Blumer, J. B., Avner, E. D., Sweeney, Jr., W. E., Park, F. Loss of activator of G-protein signaling 3 impairs renal tubular regeneration following acute kidney injury in rodents. PMID:21343176

  15. Persistent activation of autophagy in kidney tubular cells promotes renal interstitial fibrosis during unilateral ureteral obstruction.

    PubMed

    Livingston, Man J; Ding, Han-Fei; Huang, Shuang; Hill, Joseph A; Yin, Xiao-Ming; Dong, Zheng

    2016-06-01

    Renal fibrosis is the final, common pathway of end-stage renal disease. Whether and how autophagy contributes to renal fibrosis remains unclear. Here we first detected persistent autophagy in kidney proximal tubules in the renal fibrosis model of unilateral ureteral obstruction (UUO) in mice. UUO-associated fibrosis was suppressed by pharmacological inhibitors of autophagy and also by kidney proximal tubule-specific knockout of autophagy-related 7 (PT-Atg7 KO). Consistently, proliferation and activation of fibroblasts, as indicated by the expression of ACTA2/α-smooth muscle actin and VIM (vimentin), was inhibited in PT-Atg7 KO mice, so was the accumulation of extracellular matrix components including FN1 (fibronectin 1) and collagen fibrils. Tubular atrophy, apoptosis, nephron loss, and interstitial macrophage infiltration were all inhibited in these mice. Moreover, these mice showed a specific suppression of the expression of a profibrotic factor FGF2 (fibroblast growth factor 2). In vitro, TGFB1 (transforming growth factor β 1) induced autophagy, apoptosis, and FN1 accumulation in primary proximal tubular cells. Inhibition of autophagy suppressed FN1 accumulation and apoptosis, while enhancement of autophagy increased TGFB1-induced-cell death. These results suggest that persistent activation of autophagy in kidney proximal tubules promotes renal interstitial fibrosis during UUO. The profibrotic function of autophagy is related to the regulation on tubular cell death, interstitial inflammation, and the production of profibrotic factors. PMID:27123926

  16. Genome-wide profiling to analyze the effects of FXR activation on mouse renal proximal tubular cells

    PubMed Central

    Gui, Ting; Gai, Zhibo

    2015-01-01

    To assess the effect of farnesoid X receptor (FXR), a bile acid nuclear receptor, on renal proximal tubular cells, primary cultured mouse kidney proximal tubular cells were treated with GW4064 (a FXR agonist) or DMSO (as controls) overnight. Analysis of gene expression in the proximal tubular cells by whole genome microarrays indicated that FXR activation induced genes involved in fatty acid degradation and oxidation reduction. Among them, genes involved in glutathione metabolism were mostly induced. Here we describe in details the contents and quality controls for the gene expression and related results associated with the data uploaded to Gene Expression Omnibus (accession number GSE70296). PMID:26697325

  17. Genome-wide profiling to analyze the effects of FXR activation on mouse renal proximal tubular cells.

    PubMed

    Gui, Ting; Gai, Zhibo

    2015-12-01

    To assess the effect of farnesoid X receptor (FXR), a bile acid nuclear receptor, on renal proximal tubular cells, primary cultured mouse kidney proximal tubular cells were treated with GW4064 (a FXR agonist) or DMSO (as controls) overnight. Analysis of gene expression in the proximal tubular cells by whole genome microarrays indicated that FXR activation induced genes involved in fatty acid degradation and oxidation reduction. Among them, genes involved in glutathione metabolism were mostly induced. Here we describe in details the contents and quality controls for the gene expression and related results associated with the data uploaded to Gene Expression Omnibus (accession number GSE70296). PMID:26697325

  18. Analysis of an active tubular liquid-feed direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Faghri, Amir

    2011-08-01

    A two-dimensional, two-phase, non-isothermal model was developed for an active, tubular, liquid-feed direct methanol fuel cell (DMFC). The liquid-gas, two-phase mass transport in the porous anode and cathode was formulated based on the multi-fluid approach in the porous media. The two-phase mass transport in the anode and cathode channels was modeled using the drift-flux and the homogeneous mist-flow models, respectively. Water and methanol crossovers through the membrane were considered due to the effects of diffusion, electro-osmotic drag, and convection. The model enabled a numerical investigation of the effects of various operating parameters, such as current density, methanol flow rate, and oxygen flow rate, on the mass and heat transport characteristics in the tubular DMFC. It was shown that by choosing a proper tube radius and distance between the adjacent cells, a tubular DMFC stack can achieve a much higher energy density compared to its planar counterpart. The results also showed that a large anode flow rate is needed in order to avoid severe blockage of liquid methanol to the anode electrode due to the gas accumulation in the channel. Besides, lowering the flow rate of either the methanol solution or air can lead to a temperature increase along the flow channel. The methanol and water crossovers are nearly independent of the methanol flow rate and the air flow rate.

  19. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy

    PubMed Central

    Liu, Hong; Gu, Liu-bao; Tu, Yue; Hu, Hao; Huang, Yan-ru; Sun, Wei

    2016-01-01

    Aim: A previous report shows that emodin extracted from the Chinese herbs rhubarb and giant knotweed rhizome can ameliorate the anticancer drug cisplatin-induced injury of HEK293 cells. In this study, we investigated whether and how emodin could protect renal tubular epithelial cells against cisplatin-induced nephrotoxicity in vitro. Methods: The viability and apoptosis of normal rat renal tubular epithelial cells (NRK-52E) were detected using formazan assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, autophagy maker LC3 I/II, and AMPK/mTOR signaling pathway-related proteins were measured with Western blot analysis. The changes of morphology and RFP-LC3 fluorescence were observed under microscopy. Results: Cisplatin (10-50 μmol/L) dose-dependently induced cell damage and apoptosis in NRK-52E cells, whereas emodin (10 and 100 μmol/L) significantly ameliorated cisplatin-induced cell damage, apoptosis and caspase-3 cleavage. Emodin dose-dependently increased LC3-II levels and induced RFP-LC3-containing punctate structures in NRK-52E cells. Furthermore, the protective effects of emodin were abolished by bafilomycin A1 (10 nmol/L), and mimicked by rapamycin (100 nmol/L). Moreover, emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C (10 μmol/L) not only abolished emodin-induced autophagy activation, but also emodin-induced anti-apoptotic effects. Conclusion: Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro through modulating the AMPK/mTOR signaling pathways and activating autophagy. Emodin may have therapeutic potential for the prevention of cisplatin-induced nephrotoxicity. PMID:26775661

  20. IGF-1 protects tubular epithelial cells during injury via activation of ERK/MAPK signaling pathway

    PubMed Central

    Wu, Zengbin; Yu, Yang; Niu, Lei; Fei, Aihua; Pan, Shuming

    2016-01-01

    Injury of renal tubular epithelial cells can induce acute renal failure and obstructive nephropathy. Previous studies have shown that administration of insulin-like growth factor-1 (IGF-1) ameliorates the renal injury in a mouse unilateral ureteral obstruction (UUO) model, whereas the underlying mechanisms are not completely understood. Here, we addressed this question. We found that the administration of IGF-1 significantly reduced the severity of the renal fibrosis in UUO. By analyzing purified renal epithelial cells, we found that IGF-1 significantly reduced the apoptotic cell death of renal epithelial cells, seemingly through upregulation of anti-apoptotic protein Bcl-2, at protein but not mRNA level. Bioinformatics analyses and luciferase-reporter assay showed that miR-429 targeted the 3′-UTR of Bcl-2 mRNA to inhibit its protein translation in renal epithelial cells. Moreover, IGF-1 suppressed miR-429 to increase Bcl-2 in renal epithelial cells to improve survival after UUO. Furthermore, inhibition of ERK/MAPK signaling pathway in renal epithelial cells abolished the suppressive effects of IGF-1 on miR-429 activation, and then the enhanced effects on Bcl-2 in UUO. Thus, our data suggest that IGF-1 may protect renal tubular epithelial cells via activation of ERK/MAPK signaling pathway during renal injury. PMID:27301852

  1. Tubular Enhanced Geodesic Active Contours for Continuum Robot Detection using 3D Ultrasound

    PubMed Central

    Ren, Hongliang; Dupont, Pierre E.

    2013-01-01

    Three dimensional ultrasound is a promising imaging modality for minimally invasive robotic surgery. As the robots are typically metallic, they interact strongly with the sound waves in ways that are not modeled by the ultrasound system’s signal processing algorithms. Consequently, they produce substantial imaging artifacts that can make image guidance difficult, even for experienced surgeons. This paper introduces a new approach for detecting curved continuum robots in 3D ultrasound images. The proposed approach combines geodesic active contours with a speed function that is based on enhancing the “tubularity” of the continuum robot. In particular, it takes advantage of the known robot diameter along its length. It also takes advantage of the fact that the robot surface facing the ultrasound probe provides the most accurate image. This method, termed Tubular Enhanced Geodesic Active Contours (TEGAC), is demonstrated through ex vivo intracardiac experiments to offer superior performance compared to conventional active contours. PMID:24231880

  2. Effects of cytokines on potassium channels in renal tubular epithelia.

    PubMed

    Nakamura, Kazuyoshi; Komagiri, You; Kubokawa, Manabu

    2012-02-01

    Renal tubular potassium (K(+)) channels play important roles in the formation of cell-negative potential, K(+) recycling, K(+) secretion, and cell volume regulation. In addition to these physiological roles, it was reported that changes in the activity of renal tubular K(+) channels were involved in exacerbation of renal cell injury during ischemia and endotoxemia. Because ischemia and endotoxemia stimulate production of cytokines in immune cells and renal tubular cells, it is possible that cytokines would affect K(+) channel activity. Although the regulatory mechanisms of renal tubular K(+) channels have extensively been studied, little information is available about the effects of cytokines on these K(+) channels. The first report was that tumor necrosis factor acutely stimulated the single channel activity of the 70 pS K(+) channel in the rat thick ascending limb through activation of tyrosine phosphatase. Recently, it was also reported that interferon-γ (IFN-γ) and interleukin-1β (IL-1β) modulated the activity of the 40 pS K(+) channel in cultured human proximal tubule cells. IFN-γ exhibited a delayed suppression and an acute stimulation of K(+) channel activity, whereas IL-1β acutely suppressed the channel activity. Furthermore, these cytokines suppressed gene expression of the renal outer medullary potassium channel. The renal tubular K(+) channels are functionally coupled to the coexisting transporters. Therefore, the effects of cytokines on renal tubular transporter activity should also be taken into account, when interpreting their effects on K(+) channel activity. PMID:22042037

  3. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    SciTech Connect

    Matsui, Takanori; Yamagishi, Sho-ichi; Takeuchi, Masayoshi; Ueda, Seiji; Fukami, Kei; Okuda, Seiya

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression

  4. The molecular interactions between filtered proteins and proximal tubular cells in proteinuria.

    PubMed

    Baines, Richard J; Brunskill, Nigel J

    2008-01-01

    Proteinuria is associated with progressive chronic kidney disease and poor cardiovascular outcomes. Exposure of proximal tubular epithelial cells to excess proteins leads to the development of proteinuric nephropathy with tubular atrophy, interstitial inflammation and scarring. Numerous signalling pathways are activated in proximal tubular epithelial cells under proteinuric conditions resulting in gene transcription, altered growth and the secretion of inflammatory and profibrotic mediators. Megalin, the proximal tubular scavenger receptor for filtered macromolecules, has intrinsic signalling functions and may also link albumin to growth factor receptor signalling via regulated intramembrane proteolysis. It now seems that endocytosis is not always a prerequisite for albumin-evoked alterations in proximal tubular cell phenotype. Recent evidence shows the presence of other potential receptors for proteins, such as the neonatal Fc receptor and CD36, in the proximal tubular epithelium. PMID:18849618

  5. Urinary cholinesterase activity is increased in insulin-dependent diabetics: further evidence of diabetic tubular dysfunction.

    PubMed

    Matteucci, E; Pellegrini, L; Uncini-Manganelli, C; Cecere, M; Saviozzi, M; Giampietro, O

    1992-01-01

    We measured the cholinesterase activity in morning urines from 63 insulin-dependent diabetics and 27 controls. The total esterase (TotE) activity (Ellman's method) has been divided into aliesterase (AliE), pseudocholinesterase and acetylcholinesterase by means of two inhibitors, eserine and quinidine. Diabetics were divided in 2 groups according to the urinary albumin/creatinine ratio (mg/mmol, < 2 in group 1, > 2 in group 2). The urinary cholinesterase behavior was correlated with that of a known tubular lysosomal hydrolase, N-acetyl-beta-D-glucosaminidase (NAG). Compared to normals, in addition to a significant increase in urinary NAG in diabetes (in group 2 more than in group 1), TotE and AliE were also significantly raised (+36% and 109% of the controls, in group 1 as much as in group 2). PMID:1308857

  6. Cadmium activates extracellular signal-regulated kinase 5 in HK-2 human renal proximal tubular cells

    SciTech Connect

    Kondo, Mio; Inamura, Hisako; Matsumura, Ken-ichi; Matsuoka, Masato

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cadmium exposure induces ERK5 phosphorylation in HK-2 renal proximal tubular cells. Black-Right-Pointing-Pointer BIX02189 treatment suppresses cadmium-induced ERK5 but not ERK1/2 phosphorylation. Black-Right-Pointing-Pointer BIX02189 treatment suppresses cadmium-induced CREB and c-Fos phosphorylation. Black-Right-Pointing-Pointer ERK5 activation by cadmium exposure may play an anti-apoptotic role in HK-2 cells. -- Abstract: We examined the effects of cadmium chloride (CdCl{sub 2}) exposure on the phosphorylation and functionality of extracellular signal-regulated kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, in HK-2 human renal proximal tubular cells. Following exposure to CdCl{sub 2}, ERK5 phosphorylation increased markedly, but the level of total ERK5 was unchanged. ERK5 phosphorylation following CdCl{sub 2} exposure was rapid and transient, similar to the time course of ERK1/2 phosphorylation. Treatment of HK-2 cells with the MAPK/ERK kinase 5 inhibitor, BIX02189, suppressed CdCl{sub 2}-induced ERK5 but not ERK1/2 phosphorylation. The CdCl{sub 2}-induced increase of phosphorylated cAMP response element-binding protein (CREB) and activating transcription factor-1 (ATF-1), as well as the accumulation of mobility-shifted c-Fos protein, were suppressed by BIX02189 treatment. Furthermore, BIX02189 treatment enhanced cleavage of poly(ADP-ribose) polymerase and increased the level of cytoplasmic nucleosomes in HK-2 cells exposed to CdCl{sub 2}. These findings suggest that ERK5 pathway activation by CdCl{sub 2} exposure might induce the phosphorylation of cell survival-transcription factors, such as CREB, ATF-1, and c-Fos, and may exert a partial anti-apoptotic role in HK-2 cells.

  7. Secretion of macrophage urokinase plasminogen activator is dependent on proteoglycans.

    PubMed

    Pejler, Gunnar; Winberg, Jan-Olof; Vuong, Tram T; Henningsson, Frida; Uhlin-Hansen, Lars; Kimata, Koji; Kolset, Svein O

    2003-10-01

    The importance of proteoglycans for secretion of proteolytic enzymes was studied in the murine macrophage cell line J774. Untreated or 4beta-phorbol 12-myristate 13-acetate (PMA)-stimulated macrophages were treated with hexyl-beta-d-thioxyloside to interfere with the attachment of glycosaminoglycan chains to their respective protein cores. Activation of the J774 macrophages with PMA resulted in increased secretion of trypsin-like serine proteinase activity. This activity was completely inhibited by plasminogen activator inhibitor 1 and by amiloride, identifying the activity as urokinase plasminogen activator (uPA). Treatment of both the unstimulated or PMA-stimulated macrophages with xyloside resulted in decreased uPA activity and Western blotting analysis revealed an almost complete absence of secreted uPA protein after xyloside treatment of either control- or PMA-treated cells. Zymography analyses with gels containing both gelatin and plasminogen confirmed these findings. The xyloside treatment did not reduce the mRNA levels for uPA, indicating that the effect was at the post-translational level. Treatment of the macrophages with xylosides did also reduce the levels of secreted matrix metalloproteinase 9. Taken together, these findings indicate a role for proteoglycans in the secretion of uPA and MMP-9. PMID:14511379

  8. Secretion of monocyte chemotactic activity by alveolar macrophages.

    PubMed Central

    Denholm, E. M.; Wolber, F. M.; Phan, S. H.

    1989-01-01

    The purpose of this study was to determine if alveolar macrophages (AMs) are a source of monocyte chemoattractants and the role bleomycin interaction with AMs may play in the recruitment of monocytes to the lung in a rodent model of bleomycin-induced pulmonary fibrosis. AMs isolated from rats with bleomycin-induced fibrosis secreted significantly greater amounts of monocyte chemoattractants than those isolated from normal rats. When AMs from normal rats were stimulated with bleomycin in vitro, monocyte chemotactic activity was secreted into the medium. Chemotactic activity secretion by AM stimulated with 0.01 to 0.1 micrograms/ml bleomycin was significantly higher than that of cells incubated in medium alone. This activity was truly chemotactic for monocytes, but caused only minimal migration of normal AMs. Bleomycin itself at concentrations of 1 pg/ml to 10 micrograms/ml had no monocyte chemoattractant activity. Characterization of the chemotactic activity in conditioned media (CM) from bleomycin-stimulated AM demonstrated that the major portion of the activity bound to gelatin, was heterogeneous, with estimated molecular weights of 20 to 60 kd, and was inactivated by specific antifibronectin antibody. These findings suggest that fibronectin fragments are primarily responsible for the monocyte chemotactic activity secreted by AMs. Through increased secretion of such chemotactic substances, AMs could play a key role in the recruitment of peripheral blood monocytes into the lung in inflammatory lung disease and fibrosis. PMID:2476935

  9. Mitochondrial reactive oxygen species-mediated NLRP3 inflammasome activation contributes to aldosterone-induced renal tubular cells injury.

    PubMed

    Ding, Wei; Guo, Honglei; Xu, Chengyan; Wang, Bin; Zhang, Minmin; Ding, Feng

    2016-04-01

    Aldosterone (Aldo) is an independent risk factor for chronic kidney disease (CKD), and although Aldo directly induces renal tubular cell injury, the underlying mechanisms remain unclear. NLRP3 inflammasome and mitochondrial reactive oxygen species (ROS) have recently been implicated in various kinds of CKD. The present study hypothesized that mitochondrial ROS and NLRP3 inflammasome mediated Aldo-induced tubular cell injury. The NLRP3 inflammasome is induced by Aldo in a dose- and time-dependent manner, as evidenced by increased NLRP3, ASC, caspase-1, and downstream cytokines, such as interleukin (IL)-1β and IL-18. The activation of the NLRP3 inflammasome was significantly prevented by the selective mineralocorticoid receptor (MR) antagonist eplerenone (EPL) (P < 0.01). Mice harboring genetic knock-out of NLRP3 (NLRP3(-/-)) showed decreased maturation of renal IL-1β and IL-18, reduced renal tubular apoptosis, and improved renal epithelial cell phenotypic alternation, and attenuated renal function in response to Aldo-infusion. In addition, mitochondrial ROS was also increased in Aldo-stimulated HK-2 cells, as assessed by MitoSOXTM red reagent. Mito-Tempo, the mitochondria-targeted antioxidant, significantly decreased HK-2 cell apoptosis, oxidative stress, and the activation of NLRP3 inflammasome. We conclude that Aldo induces renal tubular cell injury via MR dependent, mitochondrial ROS-mediated NLRP3 inflammasome activation. PMID:27014913

  10. Mitochondrial reactive oxygen species-mediated NLRP3 inflammasome activation contributes to aldosterone-induced renal tubular cells injury

    PubMed Central

    Ding, Wei; Guo, Honglei; Xu, Chengyan; Wang, Bin; Zhang, Minmin; Ding, Feng

    2016-01-01

    Aldosterone (Aldo) is an independent risk factor for chronic kidney disease (CKD), and although Aldo directly induces renal tubular cell injury, the underlying mechanisms remain unclear. NLRP3 inflammasome and mitochondrial reactive oxygen species (ROS) have recently been implicated in various kinds of CKD. The present study hypothesized that mitochondrial ROS and NLRP3 inflammasome mediated Aldo–induced tubular cell injury. The NLRP3 inflammasome is induced by Aldo in a dose- and time-dependent manner, as evidenced by increased NLRP3, ASC, caspase-1, and downstream cytokines, such as interleukin (IL)-1β and IL-18. The activation of the NLRP3 inflammasome was significantly prevented by the selective mineralocorticoid receptor (MR) antagonist eplerenone (EPL) (P < 0.01). Mice harboring genetic knock-out of NLRP3 (NLRP3−/−) showed decreased maturation of renal IL-1β and IL-18, reduced renal tubular apoptosis, and improved renal epithelial cell phenotypic alternation, and attenuated renal function in response to Aldo-infusion. In addition, mitochondrial ROS was also increased in Aldo-stimulated HK-2 cells, as assessed by MitoSOXTM red reagent. Mito-Tempo, the mitochondria-targeted antioxidant, significantly decreased HK-2 cell apoptosis, oxidative stress, and the activation of NLRP3 inflammasome. We conclude that Aldo induces renal tubular cell injury via MR dependent, mitochondrial ROS-mediated NLRP3 inflammasome activation. PMID:27014913

  11. Synthesis and characterization of a SIRT6 open tubular column: predicting deacetylation activity using frontal chromatography.

    PubMed

    Singh, Nagendra; Ravichandran, Sarangan; Norton, Darrell D; Fugmann, Sebastian D; Moaddel, Ruin

    2013-05-15

    SIRT6 is a histone deacetylase that has been proposed as a potential therapeutic target for metabolic disorders and the prevention of age-associated diseases. Thus the identification of compounds that modulate SIRT6 activity could be of great therapeutic importance. We have previously reported on the identification of quercetin and vitexin as SIRT6 inhibitors, using SIRT6-coated magnetic beads. In this study, we have immobilized SIRT6 onto the surface of an open tubular capillary and characterized the quercetin binding site using frontal displacement chromatography. Structurally related flavonoids were tested for their activity on SIRT6, including apigenin, naringenin, luteolin, and kaempferol. In addition to obtaining their binding activity using frontal affinity chromatographic techniques, we also ranked the compounds based on their ability to displace quercetin. The data suggest that a single displacement curve is representative of the enzymatic activity of the tested ligand. In addition, using the inhibition data obtained in this study, we developed a preliminary pharmacophore model that confirmed the experimental data. PMID:23376017

  12. Synthesis and Characterization of a SIRT6 Open Tubular Column: Predicting Deacetylation Activity using Frontal Chromatography

    PubMed Central

    Singh, Nagendra; Ravichandran, Sarangan; Norton, Darrell D.; Fugmann, Sebastian D.; Moaddel, Ruin

    2014-01-01

    SIRT6 is a histone deacetylase that has been proposed as a potential therapeutic target for metabolic disorders and the prevention of age-associated diseases. Thus the identification of compounds that modulate SIRT6 activity could be of great therapeutic importance. We have previously reported on the identification of quercetin and vitexin as SIRT6 inhibitors, using SIRT6-coated magnetic beads. In this study, we have immobilized SIRT6 onto the surface of an open tubular capillary and characterized the quercetin binding site using frontal displacement chromatography. Structurally related flavonoids were tested for their activity on SIRT6, including apigenin, naringenin, luteolin and kaempferol. In addition to obtaining their binding activity using frontal affinity chromatographic techniques, we also ranked the compounds based on their ability to displace quercetin. The data suggest that a single displacement curve is representative of the enzymatic activity of the tested ligand. In addition, using the inhibition data obtained in this study, we developed a preliminary pharmacophore model that confirmed the experimental data. PMID:23376017

  13. Characterization of biotransformation enzyme activities in primary rat proximal tubular cells.

    PubMed

    Schaaf, G J; de Groene, E M; Maas, R F; Commandeur, J N; Fink-Gremmels, J

    2001-04-16

    The proximal tubule is a frequent target for nephrotoxic compounds due to it's ability to transport and accumulate xenobiotics and their metabolites, as well as by the presence of an organ-selective set of biotransformation enzymes. The aim of the present study was to characterize the activities of different biotransformation enzymes during primary culturing of rat proximal tubular cells (PT cells). Specific marker substrates for determining cytochrome P450 (CYP450) activity of primary cultured PT cells include 7-ethoxyresorufin (CYP1A1), caffeine (CYP1A), testosterone (CY2B/C, CYP3A), tolbutamide (CYP2C) and dextromethorphan (CYP2D1). Activities of the CYP450 isoenzymes decreased considerably during culture with the greatest loss in activity within 24 h of culture. In addition, expression of CYP450 apoprotein, including CYP1A, CYP2C, CYP2D, CYP2E and CYP4A, was detected in microsomes from freshly isolated PT cells by immunoblotting using specific antibodies. CYP2B and CYP3A apoprotein could not be detected. Activity of the phase II biotransformation enzymes GST, GGT, beta-lyase and UGT was determined with 1-chloro-2,4-dinitrobenzene, L-glutamic acid gamma-(7-amido-4-methyl-coumarin), S-(1,1,2,2-tetrafluoroethyl)-L-cysteine and 1-naphthol, respectively, as marker substrates. Activity of the phase II enzymes remained more stable and, in contrast to CYP450 activity, significant activity was still expressed after 1 week of PT cell culture. Thus, despite the obvious advantages of PT cells as an in-vitro model for studies of biotransformation mediated toxicity, the strong time dependency of especially phase I and, to a lesser extent, phase II biotransformation activities confers limitations to their application. PMID:11311212

  14. Functional integrity of the t-tubular system in cardiomyocytes depends on p21-activated kinase 1

    PubMed Central

    DeSantiago, Jaime; Bare, Dan J; Ke, Yunbo; Sheehan, Katherine A.; Solaro, R. John; Banach, Kathrin

    2013-01-01

    p21-activated kinase (Pak1), a serine-threonine protein kinase, regulates cytoskeletal dynamics and cell motility. Recent experiments further demonstrate that loss of Pak1 results in exaggerated hypertrophic growth in response to pathophysiological stimuli. Calcium (Ca) signaling plays an important role in the regulation of transcription factors involved in hypertrophic remodeling. Here we aimed to determine the role of Pak1 in cardiac excitation-contraction coupling (ECC). Ca transients were recorded in isolated, ventricular myocytes (VMs) from WT and Pak1−/− mice. Pak1−/− Ca transients had a decreased amplitude, prolonged rise time and delayed recovery time. Di-8-ANNEPS staining revealed a decreased t-tubular density in Pak1−/− VMs that coincided with decreased cell capacitance and increased dis-synchrony of Ca induced Ca release (CICR) at individual release units. These changes were not observed in atrial myocytes of Pak1−/− mice where the t-tubular system is only sparsely developed. Experiments in cultured rabbit VMs supported a role of Pak1 in the maintenance of the t-tubular structure. T-tubular density in rabbit VMs significantly decreased within 24h of culture. This was accompanied by a decrease of the Ca transient amplitude and a prolongation of its rise time. However, overexpression of constitutively active Pak1 in VMs attenuated the structural remodeling as well as changes in ECC. The results provide significant support for a prominent role of Pak1 activity not only in the functional regulation of ECC but for the structural maintenance of the t-tubular system whose remodeling is an integral feature of hypertrophic remodeling. PMID:23612118

  15. Secrets of Lost Empires: Family Activity Book.

    ERIC Educational Resources Information Center

    Whitman, John D.; Gaffney, Dennis

    This family activity book features information on the background and filming of five stories. "Pharaoh's Obelisk" questions how ancient Egyptians transported and raised stone obelisks. "Roman Bath" studies how Romans built bathhouses and attempts to build a working Roman bath. "China Bridge" investigates the structure of the China Bridge and…

  16. Macrophage matrix metalloproteinase-9 mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells.

    PubMed

    Tan, Thian Kui; Zheng, Guoping; Hsu, Tzu-Ting; Wang, Ying; Lee, Vincent W S; Tian, Xinrui; Wang, Yiping; Cao, Qi; Wang, Ya; Harris, David C H

    2010-03-01

    As a rich source of pro-fibrogenic growth factors and matrix metalloproteinases (MMPs), macrophages are well-placed to play an important role in renal fibrosis. However, the exact underlying mechanisms and the extent of macrophage involvement are unclear. Tubular cell epithelial-mesenchymal transition (EMT) is an important contributor to renal fibrosis and MMPs to induction of tubular cell EMT. The aim of this study was to investigate the contribution of macrophages and MMPs to induction of tubular cell EMT. The murine C1.1 tubular epithelial cell line and primary tubular epithelial cells were cultured in activated macrophage-conditioned medium (AMCM) derived from lipopolysaccharide-activated J774 macrophages. MMP-9, but not MMP-2 activity was detected in AMCM. AMCM-induced tubular cell EMT in C1.1 cells was inhibited by broad-spectrum MMP inhibitor (GM6001), MMP-2/9 inhibitor, and in AMCM after MMP-9 removal by monoclonal Ab against MMP-9. AMCM-induced EMT in primary tubular epithelial cells was inhibited by MMP-2/9 inhibitor. MMP-9 induced tubular cell EMT in both C1.1 cells and primary tubular epithelial cells. Furthermore, MMP-9 induced tubular cell EMT in C1.1 cells to an extent similar to transforming growth factor-beta. Transforming growth factor-beta-induced tubular cell EMT in C1.1 cells was inhibited by MMP-2/9 inhibitor. Our in vitro study provides evidence that MMPs, specifically MMP-9, secreted by effector macrophages can induce tubular cell EMT and thereby contribute to renal fibrosis. PMID:20075196

  17. Secretion of platelet-activating factor by periovulatory ovine follicles

    SciTech Connect

    Alexander, B.M.; Van Kirk, E.A.; Murdoch, W.J. )

    1990-01-01

    Secretion of platelet-activating factor (PAF) in vitro by ovine follicles and ovarian interstitium obtained at various times before, during and after the endogenous preovulatory surge of luteinizing hormone (LH) and ovulation was quantified by radioimmunoassay. Release of PAF by the preovulatory follicle increased within 2 h after initiation of the surge of LH. Capacity for secretion of PAF was greatest at the time of ovulation, then declined thereafter. Production of PAF by ovarian interstitium throughout the periovulatory period was relatively low and did not change with time. It appears that PAF could act as an intrafollicular mediator in the mechanisms of ovulation and(or) luteinization.

  18. A supramolecular tubular nanoreactor.

    PubMed

    Li, Zhi-Qiang; Zhang, Ying-Ming; Chen, Yong; Liu, Yu

    2014-07-01

    The extremely strong noncovalent complexation between the rigid host of phthalocyanine-bridged β-cyclodextrins and the amphiphilic guest carboxylated porphyrin is employed to construct a hollow tubular structure as a supramolecular nanoreactor. A representative coupling reaction occurs in the hydrophobic interlayers of the tubular walls in pure water at room temperature, leading to an enhancement of ten times higher reaction rate without any adverse effect on catalytic activity and conversion. PMID:24890802

  19. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2013-10-01

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  20. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-05-27

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  1. Methods of increasing secretion of polypeptides having biological activity

    SciTech Connect

    Merino, Sandra

    2014-10-28

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  2. Methods of increasing secretion of polypeptides having biological activity

    SciTech Connect

    Merino, Sandra

    2015-04-14

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  3. Thrombin stimulates insulin secretion via protease-activated receptor-3

    PubMed Central

    Hänzelmann, Sonja; Wang, Jinling; Güney, Emre; Tang, Yunzhao; Zhang, Enming; Axelsson, Annika S; Nenonen, Hannah; Salehi, Albert S; Wollheim, Claes B; Zetterberg, Eva; Berntorp, Erik; Costa, Ivan G; Castelo, Robert; Rosengren, Anders H

    2015-01-01

    The disease mechanisms underlying type 2 diabetes (T2D) remain poorly defined. Here we aimed to explore the pathophysiology of T2D by analyzing gene co-expression networks in human islets. Using partial correlation networks we identified a group of co-expressed genes (‘module’) including F2RL2 that was associated with glycated hemoglobin. F2Rl2 is a G-protein-coupled receptor (GPCR) that encodes protease-activated receptor-3 (PAR3). PAR3 is cleaved by thrombin, which exposes a 6-amino acid sequence that acts as a ‘tethered ligand’ to regulate cellular signaling. We have characterized the effect of PAR3 activation on insulin secretion by static insulin secretion measurements, capacitance measurements, studies of diabetic animal models and patient samples. We demonstrate that thrombin stimulates insulin secretion, an effect that was prevented by an antibody that blocks the thrombin cleavage site of PAR3. Treatment with a peptide corresponding to the PAR3 tethered ligand stimulated islet insulin secretion and single β-cell exocytosis by a mechanism that involves activation of phospholipase C and Ca2+ release from intracellular stores. Moreover, we observed that the expression of tissue factor, which regulates thrombin generation, was increased in human islets from T2D donors and associated with enhanced β-cell exocytosis. Finally, we demonstrate that thrombin generation potential in patients with T2D was associated with increased fasting insulin and insulinogenic index. The findings provide a previously unrecognized link between hypercoagulability and hyperinsulinemia and suggest that reducing thrombin activity or blocking PAR3 cleavage could potentially counteract the exaggerated insulin secretion that drives insulin resistance and β-cell exhaustion in T2D. PMID:26742564

  4. Drug Metabolism Enzyme Expression and Activity in Primary Cultures of Human Proximal Tubular Cells

    PubMed Central

    Lash, Lawrence H.; Putt, David A.; Cai, Hongliang

    2008-01-01

    We previously catalogued expression and activity of organic anion and cation, amino acid, and peptide transporters in primary cultures of human proximal tubular (hPT) cells to establish them as a cellular model to study drug transport in the human kidney [Toxicology 228, 200–218 (2006)]. Here, we extend our analysis to drug metabolism enzymes. Expression of 11 cytochrome P450 (CYP) enzymes was determined with specific antibodies. CYP1B1, CYP3A4, and CYP4A11 were the only CYP enzymes readily detected in total cell extracts. These same CYP enzymes, as well as CYP3A5 and possibly CYP2D6, were detected in microsomes from confluent hPT cells, although expression levels varied among kidney samples. In agreement with Western blot data, only activity of CYP3A4/5 was detected among the enzyme activities measured. Expression of all three glutathione S-transferases (GSTs) known to be found in hPT cells, GSTA, GSTP, and GSTT, was readily detected. Variable expression of three sulfotransferases (SULTs), SULT1A3, SULT1E, and SULT2A1, and three UDP-glucuronosyltransferases (UGTs), UGT1A1, UGT1A6, and UGT2B7, was also detected. When examined over the course of cell growth to confluence, expression of all enzymes was generally maintained at readily measurable levels, although they were often lower than in fresh tissue. These results indicate that primary cultures of hPT cells possess significant capacity to metabolize many classes of drugs, and can be used as an effective model to study drug metabolism. PMID:18055091

  5. Acquired distal renal tubular acidosis in man.

    PubMed

    Better, O S

    1982-10-01

    Distal renal tubular acidosis (dRTA) may complicate renal transplantation, liver cirrhosis, and obstructive uropathy. Indeed, its occurrence may be an early clue to an episode of rejection of the graft or to obstructive uropathy. The mechanism in most patients with dRTA is impaired distal secretion of protons. In some patients, however, back leak of protons from tubular lumen to blood may abolish distal tubular ability to maintain urine to blood proton gradients. In patients with obstructive uropathy the spectrum of tubular acidosis is widened by the occurrence of additional defects in tubular secretion of potassium and impairment of hydrogen ion secretion secondary to hypoaldosteronism. Hyperkalemia is also seen in "voltage dependent" states such as following the administration of lithium and amiloride. Hyperkalemia per se is conducive to acidosis by a combination of extrarenal and several intrarenal mechanisms. PMID:6755051

  6. Triptolide inhibits B7-H1 expression on proinflammatory factor activated renal tubular epithelial cells by decreasing NF-kappaB transcription.

    PubMed

    Chen, Yongwen; Zhang, Jingbo; Li, Jingyi; Zhao, Tingting; Zou, Liyun; Tang, Yan; Zhang, Xiaoping; Wu, Yuzhang

    2006-03-01

    Triptolide has been used extensively in China for the treatment of autoimmune diseases and tumor for many centuries. Nevertheless, little is known about its exact immunosuppressive and anti-inflammatory properties. Increasing recognition of the importance of renal tubular epithelial cells (TECs) in renal diseases raises the question whether triptolide can regulate TEC activity. In this study, various cultured human and murine TECs were exposed to tumor necrotic factor-alpha (TNF-alpha) and triptolide, followed to examine the expression of B7-H1 and B7-DC. Flow cytometric analysis revealed that B7-H1 but not B7-DC constitutively expresses on TECs, and the B7-H1 protein expression was profoundly up-regulated by the stimulation of TNF-alpha with a dose-dependent manner. However, triptolide under non-cytotoxic concentration could down-regulate B7-H1 expression on activated TECs at both mRNA and protein level. This effect was transcription factor NF-kappaB dependent. Interestingly, the significant damping effect of triptolide on B7-H1 signal could promote interleukin-2 production by T cell hybridoma (C10) after antigen presentation and enhance cytokine (IFN-gamma and IL-2) secretion by anti-CD3 activated T cells. Our results indicated that triptolide could regulate TEC activity via B7-H1, in addition to previously reported it directly affects the production of some inflammatory factors by T cells, tumor cells and peripheral blood mononuclear cells. PMID:16129490

  7. Antifungal activity of lectins against yeast of vaginal secretion

    PubMed Central

    Gomes, Bruno Severo; Siqueira, Ana Beatriz Sotero; de Cássia Carvalho Maia, Rita; Giampaoli, Viviana; Teixeira, Edson Holanda; Arruda, Francisco Vassiliepe Sousa; do Nascimento, Kyria Santiago; de Lima, Adriana Nunes; Souza-Motta, Cristina Maria; Cavada, Benildo Sousa; Porto, Ana Lúcia Figueiredo

    2012-01-01

    Lectins are carbohydrate-binding proteins of non-imune origin. This group of proteins is distributed widely in nature and they have been found in viruses, microorganisms, plants and animals. Lectins of plants have been isolated and characterized according to their chemical, physical-chemical, structural and biological properties. Among their biological activities, we can stress its fungicidal action. It has been previously described the effect of the lectins Dviol, DRL, ConBr and LSL obtained from the seeds of leguminous plants on the growth of yeasts isolated from vaginal secretions. In the present work the experiments were carried out in microtiter plates and the results interpreted by both methods: visual observations and a microplate reader at 530nm. The lectin concentrations varied from 0.5 to 256μg/mL, and the inoculum was established between 65-70% of trammitance. All yeast samples isolated from vaginal secretion were evaluated taxonomically, where were observed macroscopic and microscopic characteristics to each species. The LSL lectin did not demonstrate any antifungal activity to any isolate studied. The other lectins DRL, ConBr and DvioL, showed antifungal potential against yeast isolated from vaginal secretion. These findings offering offer a promising field of investigation to develop new therapeutic strategies against vaginal yeast infections, collaborating to improve women's health. PMID:24031889

  8. Poly(ADP-ribose) polymerase activation induces high mobility group box 1 release from proximal tubular cells during cisplatin nephrotoxicity.

    PubMed

    Kim, J

    2016-06-20

    Cisplatin is one of the most potent chemotherapy drugs against cancer, but its major side effect such as nephrotoxicity limits its use. Inhibition of poly(ADP-ribose) polymerase (PARP) protects against various renal diseases via gene transactivation and/or ADP-ribosylation. However, the role of PARP in necrotic cell death during cisplatin nephrotoxicity remains an open question. Here we demonstrated that pharmacological inhibition of PARP by postconditioning dose-dependently prevented tubular injury and renal dysfunction following cisplatin administration in mice. PARP inhibition by postconditioning also attenuated ATP depletion during cisplatin nephrotoxicity. Systemic release of high mobility group box 1 (HMGB1) protein in plasma induced by cisplatin administration was significantly diminished by PARP inhibition by postconditioning. In in vitro kidney proximal tubular cell lines, PARP inhibition by postconditioning also diminished HMGB1 release from cells. These data demonstrate that cisplatin-induced PARP1 activation contributes to HMGB1 release from kidney proximal tubular cells, resulting in the promotion of inflammation during cisplatin nephrotoxicity. PMID:26447520

  9. Functional Activation of the Flagellar Type III Secretion Export Apparatus

    PubMed Central

    Phillips, Andrew M.; Calvo, Rebecca A.; Kearns, Daniel B.

    2015-01-01

    Flagella are assembled sequentially from the inside-out with morphogenetic checkpoints that enforce the temporal order of subunit addition. Here we show that flagellar basal bodies fail to proceed to hook assembly at high frequency in the absence of the monotopic protein SwrB of Bacillus subtilis. Genetic suppressor analysis indicates that SwrB activates the flagellar type III secretion export apparatus by the membrane protein FliP. Furthermore, mutants defective in the flagellar C-ring phenocopy the absence of SwrB for reduced hook frequency and C-ring defects may be bypassed either by SwrB overexpression or by a gain-of-function allele in the polymerization domain of FliG. We conclude that SwrB enhances the probability that the flagellar basal body adopts a conformation proficient for secretion to ensure that rod and hook subunits are not secreted in the absence of a suitable platform on which to polymerize. PMID:26244495

  10. Expression, secretion and bactericidal activity of type VI secretion system in Vibrio anguillarum.

    PubMed

    Tang, Lei; Yue, Shu; Li, Gui-Yang; Li, Jie; Wang, Xiao-Ran; Li, Shu-Fang; Mo, Zhao-Lan

    2016-10-01

    The type VI secretion system (T6SS) was recently shown to modulate quorum sensing and the stress response in Vibrio anguillarum serotype O1 strain NB10. It is not known whether there is a functionally active T6SS in other serotypes of V. anguillarum. Here, homologues to T6SS cluster VtsEFGH and hemolysin-coregulated protein (Hcp)-encoding genes were found to be prevalent and conserved in clinical isolates of V. anguillarum from fish, including four O1 and five non-O1 serotype strains. Unexpectedly, only the non-O1 serotype strains expressed VtsEFGH and Hcp under laboratory and marine-like conditions, in contrast to the serotype O1 strains. This suggested that the V. anguillarum non-O1 serotype strains tested have constitutive expression of T6SS. Examination of a representative non-O1 strain, MHK3, showed that Hcp production was growth phase dependent and that maximum Hcp production was observed in the exponential growth phase. Moreover, Hcp production by MHK3 was most active under warm marine-like conditions. Further examination revealed a correlation of the constitutive expression of T6SS with bactericidal activity against Escherichia coli and Edwardsiella tarda. The work presented here suggests that the constitutive expression of T6SS provides V. anguillarum with advantage in microbial competition in marine environments. PMID:27172981

  11. Oxidative Stress-Activated NHE1 Is Involved in High Glucose-Induced Apoptosis in Renal Tubular Epithelial Cells

    PubMed Central

    Wu, Yiqing; Zhang, Min; Liu, Rui

    2016-01-01

    Purpose Diabetic nephropathy (DN) is a prevalent chronic microvascular complication of diabetes mellitus involving disturbances in electrolytes and the acid-base balance caused by a disorder of glucose metabolism. NHE1 is a Na+/H+ exchanger responsible for keeping intracellular pH (pHi) balance and cell growth. Our study aimed to investigate roles of NHE1 in high glucose (HG)-induced apoptosis in renal tubular epithelial cells. Materials and Methods Renal epithelial tubular cell line HK-2 was cultured in medium containing 5 mM or 30 mM glucose. Then, cell apoptosis, oxidative stress, NHE1 expression, and pHi were evaluated. NHE1 siRNA and inhibitor were used to evaluate its role in cell apoptosis. Results HG significantly increased cell apoptosis and the production of reactive oxygen species (ROS) and 8-OHdG (p<0.05). Meanwhile, we found that HG induced the expression of NHE1 and increased the pHi from 7.0 to 7.6 after 48 h of incubation. However, inhibiting NHE1 using its specific siRNA or antagonist DMA markedly reduced cell apoptosis stimulated by HG. In addition, suppressing cellular oxidative stress using antioxidants, such as glutathione and N-acetyl cysteine, significantly reduced the production of ROS, accompanied by a decrease in NHE1. We also found that activated cyclic GMP-Dependent Protein Kinase Type I (PKG) signaling promoted the production of ROS, which contributed to the regulation of NHE1 functions. Conclusion Our study indicated that HG activates PKG signaling and elevates the production of ROS, which was responsible for the induction of NHE1 expression and dysfunction, as well as subsequent cell apoptosis, in renal tubular epithelial cells. PMID:27401659

  12. Simultaneous recording of t-tubular electrical activity and Ca2+-release in heart failure

    NASA Astrophysics Data System (ADS)

    Crocini, C.; Coppini, R.; Ferrantini, C.; Yan, P.; Loew, L.; Tesi, C.; Poggesi, C.; Cerbai, E.; Pavone, F. S.; Sacconi, L.

    2014-05-01

    T-tubules (TT) are invaginations of the surface sarcolemma (SS) that mediate the rapid propagation of the action potential (AP) to the cardiomyocyte core. We employed the advantages of an ultrafast random access multi-photon (RAMP) microscope (Sacconi et al., PNAS 2012) with a double staining approach to optically record t-tubular AP and, simultaneously, the corresponding local Ca2+-release in different positions across the cardiomyocytes. Despite a uniform AP between SS and TT at steady-state stimulation, in control cardiomyocytes we observed a non-negligible be variability of local Ca2+-transient amplitude and kinetics. This variability was significantly reduced by applying 0.1μM Isoproterenol, which increases the opening probability of Ca2+-release units. In the rat heart failure model (HF), we previously demonstrated that some tubular elements fail to propagate AP. We found that the tubules unable to propagate AP, displayed a reduced correspondent Ca2+-transient amplitude as well as a slower Ca2+ rise compared to electrically coupled tubules. Moreover variability of Ca2+-transient kinetics were increased in HF. Finally, TT that did not show AP, occasionally exhibited spontaneous depolarizations that were never accompanied by local Ca2+-release in the absence of any pro-arrhythmogenic stimulation. Simultaneous recording of AP and Ca2+-transient allows us to probe the spatio-temporal variability of Ca2+-release, whereas the investigation of Ca2+-transient in HF discloses an unexpected uncoupling between t-tubular depolarization and Ca2+-release in remodeled tubules. This work was funded by the European Union 7th Framework Program (FP7/2007- 2013) under grant agreement n° 284464, 241526, by the Italian Ministry of University and Research (NANOMAX), and by Telethon-Italy (GGP13162).

  13. Megalin/Cubulin-Lysosome-mediated Albumin Reabsorption Is Involved in the Tubular Cell Activation of NLRP3 Inflammasome and Tubulointerstitial Inflammation*

    PubMed Central

    Liu, Dan; Wen, Yi; Tang, Tao-Tao; Lv, Lin-Li; Tang, Ri-Ning; Liu, Hong; Ma, Kun-Ling; Crowley, Steve D.; Liu, Bi-Cheng

    2015-01-01

    Albuminuria contributes to the development and progression of chronic kidney disease by inducing tubulointerstitial inflammation (TI) and fibrosis. However, the exact mechanisms of TI in response to albuminuria are unresolved. We previously demonstrated that NLRP3 and inflammasomes mediate albumin-induced lesions in tubular cells. Here, we further investigated the role of endocytic receptors and lysosome rupture in NLRP3 inflammasome activation. A murine proteinuric nephropathy model was induced by albumin overload as described previously. The priming and activation signals for inflammasome complex formation were evoked simultaneously by albumin excess in tubular epithelial cells. The former signal was dependent on a albumin-triggered NF-κB pathway activation. This process is mediated by the endocytic receptor, megalin and cubilin. However, the silencing of megalin or cubilin inhibited the albumin-induced NLRP3 signal. Notably, subsequent lysosome rupture and the corresponding release of lysosomal hydrolases, especially cathepsin B, were observed in tubular epithelial cells exposed to albumin. Cathepsin B release and distribution are essential for NLRP3 signal activation, and inhibitors of cathepsin B suppressed the NLRP3 signal in tubular epithelial cells. Taken together, our findings suggest that megalin/cubilin and lysosome rupture are involved in albumin-triggered tubular injury and TI. This study provides novel insights into albuminuria-induced TI and implicates the active control of albuminuria as a critical strategy to halt the progression of chronic kidney disease. PMID:26025362

  14. 77 FR 34037 - Agency Information Collection Activities; Proposed Collection; Comment Request; Trade Secret...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... AGENCY Agency Information Collection Activities; Proposed Collection; Comment Request; Trade Secret... Secret Claims for Emergency Planning and Community Right-to-Know Information. ICR number: EPA ICR No.... Frequency of response: Trade secret claims are submitted by facilities either annually with...

  15. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells

    SciTech Connect

    González-Guerrero, Cristian; Ocaña-Salceda, Carlos; Berzal, Sergio; Carrasco, Susana; Fernández-Fernández, Beatriz; and others

    2013-11-01

    The calcineurin inhibitors (CNIs) cyclosporine (CsA) and tacrolimus are key drugs in current immunosuppressive regimes for solid organ transplantation. However, they are nephrotoxic and promote death and profibrotic responses in tubular cells. Moreover, renal inflammation is observed in CNI nephrotoxicity but the mechanisms are poorly understood. We have now studied molecular pathways leading to inflammation elicited by the CNIs in cultured and kidney tubular cells. Both CsA and tacrolimus elicited a proinflammatory response in tubular cells as evidenced by a transcriptomics approach. Transcriptomics also suggested several potential pathways leading to expression of proinflammatory genes. Validation and functional studies disclosed that in tubular cells, CNIs activated protein kinases such as the JAK2/STAT3 and TAK1/JNK/AP-1 pathways, TLR4/Myd88/IRAK signaling and the Unfolded Protein Response (UPR) to promote NF-κB activation and proinflammatory gene expression. CNIs also activated an Nrf2/HO-1-dependent compensatory response and the Nrf2 activator sulforaphane inhibited JAK2 and JNK activation and inflammation. A murine model of CsA nephrotoxicity corroborated activation of the proinflammatory pathways identified in cell cultures. Human CNIs nephrotoxicity was also associated with NF-κB, STAT3 and IRE1α activation. In conclusion, CNIs recruit several intracellular pathways leading to previously non-described proinflammatory actions in renal tubular cells. Identification of these pathways provides novel clues for therapeutic intervention to limit CNIs nephrotoxicity. - Highlights: • Molecular mechanisms modulating CNI renal inflammation were investigated. • Kinases, immune receptors and ER stress mediate the inflammatory response to CNIs. • Several intracellular pathways activate NF-κB in CNIs-treated tubular cells. • A NF-κB-dependent cytokine profile characterizes CNIs-induced inflammation. • CNI nephrotoxicity was associated to inflammatory

  16. Pathogen-Secreted Proteases Activate a Novel Plant Immune Pathway

    PubMed Central

    Cheng, Zhenyu; Li, Jian-Feng; Niu, Yajie; Zhang, Xue-Cheng; Woody, Owen Z.; Xiong, Yan; Djonović, Slavica; Millet, Yves; Bush, Jenifer; McConkey, Brendan J.; Sheen, Jen; Ausubel, Frederick M.

    2015-01-01

    Mitogen-Activated Protein Kinase (MAPK) cascades play central roles in innate immune signaling networks in plants and animals1,2. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive1. We report that pathogen-secreted proteases activate a previously unknown signaling pathway in Arabidopsis thaliana involving the Gα, Gβ and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of a MAPK cascade. In this pathway, Receptor for Activated C Kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G protein signaling to downstream activation of a MAPK cascade. The protease-G protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signaling pathways such as the one elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to a MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the novel protease-mediated immune signaling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel types of immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems. PMID:25731164

  17. Mesenchymal stem cells inhibit complement activation by secreting factor H.

    PubMed

    Tu, Zhidan; Li, Qing; Bu, Hong; Lin, Feng

    2010-11-01

    Mesenchymal stem cells (MSCs) possess potent and broad immunosuppressive capabilities, and have shown promise in clinical trials treating many inflammatory diseases. Previous studies have found that MSCs inhibit dendritic cell, T-cell, and B-cell activities in the adaptive immunity; however, whether MSCs inhibit complement in the innate immunity, and if so, by which mechanism, have not been established. In this report, we found that MSCs constitutively secrete factor H, which potently inhibits complement activation. Depletion of factor H in the MSC-conditioned serum-free media abolishes their complement inhibitory activities. In addition, production of factor H by MSCs is augmented by inflammatory cytokines TNF-α and interferon-γ (IFN-γ) in dose- and time-dependent manners, while IL-6 does not have a significant effect. Furthermore, the factor H production from MSCs is significantly suppressed by the prostaglandin E2 (PGE2) synthesis inhibitor indomethacin and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1-methyl-d-tryptophan (1-MT), both of which inhibitors are known to efficiently dampen MSCs immunosuppressive activity. These results indicate that MSCs inhibit complement activation by producing factor H, which could be another mechanism underlying MSCs broad immunosuppressive capabilities. PMID:20163251

  18. Activation of human inflammatory cells by secreted phospholipases A2.

    PubMed

    Triggiani, Massimo; Granata, Francescopaolo; Frattini, Annunziata; Marone, Gianni

    2006-11-01

    Secreted phospholipases A(2) (sPLA(2)s) are enzymes detected in serum and biological fluids of patients with various inflammatory, autoimmune and allergic disorders. Different isoforms of sPLA(2)s are expressed and released by human inflammatory cells, such as neutrophils, eosinophils, T cells, monocytes, macrophages and mast cells. sPLA(2)s generate arachidonic acid and lysophospholipids thus contributing to the production of bioactive lipid mediators in inflammatory cells. However, sPLA(2)s also activate human inflammatory cells by mechanisms unrelated to their enzymatic activity. Several human and non-human sPLA(2)s induce degranulation of mast cells, neutrophils and eosinophils and activate exocytosis in macrophages. In addition some, but not all, sPLA(2) isoforms promote cytokine and chemokine production from macrophages, neutrophils, eosinophils, monocytes and endothelial cells. These effects are primarily mediated by binding of sPLA(2)s to specific membrane targets (heparan sulfate proteoglycans, M-type, N-type or mannose receptors) expressed on effector cells. Thus, sPLA(2)s may play an important role in the initiation and amplification of inflammatory reactions by at least two mechanisms: production of lipid mediators and direct activation of inflammatory cells. Selective inhibitors of sPLA(2)-enzymatic activity and specific antagonists of sPLA(2) receptors are current being tested for pharmacological treatment of inflammatory and autoimmune diseases. PMID:16952481

  19. Proximal renal tubular acidosis

    MedlinePlus

    Renal tubular acidosis - proximal; Type II RTA; RTA - proximal; Renal tubular acidosis type II ... by alkaline substances, mainly bicarbonate. Proximal renal tubular acidosis (Type II RTA) occurs when bicarbonate is not ...

  20. Calpain secreted by activated human lymphoid cells degrades myelin.

    PubMed

    Deshpande, R V; Goust, J M; Hogan, E L; Banik, N L

    1995-10-01

    Calpain secreted by lymphoid (MOLT-3, M.R.) or monocytic (U-937, THP-1) cell lines activated with PMA and A23187 degraded myelin antigens. The degradative effect of enzymes released in the extracellular medium was tested on purified myelin basic protein and rat central nervous system myelin in vitro. The extent of protein degradation was determined by SDS-PAGE and densitometric analysis. Various proteinase inhibitors were used to determine to what extent protein degradation was mediated by calpain and/or other enzymes. Lysosomal and serine proteinase inhibitors inhibited 20-40% of the myelin-degradative activity found in the incubation media of cell lines, whereas the calcium chelator (EGTA), the calpain-specific inhibitor (calpastatin), and a monoclonal antibody to m calpain blocked myelin degradation by 60-80%. Since breakdown products of MBP generated by calpain may include fragments with antigenic epitopes, this enzyme may play an important role in the initiation of immune-mediated demyelination. PMID:8568927

  1. Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-gamma.

    PubMed

    Arici, Mustafa; Chana, Ravinder; Lewington, Andrew; Brown, Jez; Brunskill, Nigel John

    2003-01-01

    In nephrotic syndrome, large quantities of albumin enter the kidney tubule. This albumin carries with it a heavy load of fatty acids to which the proximal tubule cells are exposed at high concentration. It is postulated that exposure to fatty acids in this way is injurious to proximal tubule cells. This study has examined the ability of fatty acids to interact with peroxisome proliferator-activated receptors (PPAR) in primary cultures of human proximal tubule cells. Luciferase reporter assays in transiently transfected human proximal tubule cells were used to show that albumin bound fatty acids and other agonists activate PPARgamma in a dose-dependent manner. One of the consequences of this activation is apoptosis of the cells as determined by changes in cell morphology, evidence of PARP cleavage, and appearance of DNA laddering. Overexpression of PPARgamma in these cells also results in enhanced apoptosis. Both fatty acid-induced PPAR activation and apoptosis in these cells can be blocked by PPAR response element decoy oligonucleotides. Activation of PPARgamma by the specific agonist PGJ(2) is associated with inhibition of cell proliferation, whereas activation by albumin bound fatty acids is accompanied by increased proliferation. However, the net balance of apoptosis/proliferation favors deletion of cells. These results implicate albumin-bound fatty acids as important mediators of tubular injury in nephrosis and provide fresh impetus for pursuit of lipid-lowering strategies in proteinuric renal disease. PMID:12506134

  2. Tubular toxicity of proteinuria.

    PubMed

    Baines, Richard J; Brunskill, Nigel J

    2011-03-01

    Proteinuria is a prognostic indicator of progressive kidney disease and poor cardiovascular outcomes. Abnormally filtered bioactive macromolecules interact with proximal tubular epithelial cells (PTECs), which results in the development of proteinuric nephropathy. This condition is characterized by alterations in PTEC growth, apoptosis, gene transcription and inflammatory cytokine production as a consequence of dysregulated signaling pathways that are stimulated by proteinuric tubular fluid. The megalin-cubilin complex mediates the uptake of several proteins, including albumin, into PTECs. Megalin might also possess intrinsic signaling properties and the ability to regulate cell signaling pathways and gene transcription after processing regulated intramembrane proteolysis. Megalin could, therefore, link abnormal PTEC albumin exposure with altered growth factor receptor activation, proinflammatory and profibrotic signaling, and gene transcription. Evidence now suggests that other PTEC pathways for protein reabsorption of (patho)physiological importance might be mediated by the neonatal Fc receptor and CD36. PMID:21151210

  3. The protease-activated receptor-2 agonist induces gastric mucus secretion and mucosal cytoprotection

    PubMed Central

    Kawabata, Atsufumi; Kinoshita, Mitsuhiro; Nishikawa, Hiroyuki; Kuroda, Ryotaro; Nishida, Minoru; Araki, Hiromasa; Arizono, Naoki; Oda, Yasuo; Kakehi, Kazuaki

    2001-01-01

    Protease-activated receptor-2 (PAR-2), a receptor activated by trypsin/tryptase, modulates smooth muscle tone and exocrine secretion in the salivary glands and pancreas. Given that PAR-2 is expressed throughout the gastrointestinal tract, we investigated effects of PAR-2 agonists on mucus secretion and gastric mucosal injury in the rat. PAR-2–activating peptides triggered secretion of mucus in the stomach, but not in the duodenum. This mucus secretion was abolished by pretreatment with capsaicin, which stimulates and ablates specific sensory neurons, but it was resistant to cyclo-oxygenase inhibition. In contrast, capsaicin treatment failed to block PAR-2–mediated secretion from the salivary glands. Intravenous calcitonin gene–related peptide (CGRP) and neurokinin A markedly elicited gastric mucus secretion, as did substance P to a lesser extent. Specific antagonists of the CGRP1 and NK2, but not the NK1, receptors inhibited PAR-2–mediated mucus secretion. Pretreatment with the PAR-2 agonist strongly prevented gastric injury caused by HCl-ethanol or indomethacin. Thus, PAR-2 activation triggers the cytoprotective secretion of gastric mucus by stimulating the release of CGRP and tachykinins from sensory neurons. In contrast, the PAR-2–mediated salivary exocrine secretion appears to be independent of capsaicin-sensitive sensory neurons. PMID:11390426

  4. Tubular Coupling

    NASA Technical Reports Server (NTRS)

    Rosenbaum, Bernard J. (Inventor)

    2000-01-01

    A system for coupling a vascular overflow graft or cannula to a heart pump. A pump pipe outlet is provided with an external tapered surface which receives the end of a compressible connula. An annular compression ring with a tapered internal bore surface is arranged about the cannula with the tapered internal surface in a facing relationship to the external tapered surface. The angle of inclination of the tapered surfaces is converging such that the spacing between the tapered surfaces decreases from one end of the external tapered surface to the other end thereby providing a clamping action of the tapered surface on a cannula which increases as a function of the length of cannula segment between the tapered surfaces. The annular compression ring is disposed within a tubular locking nut which threadedly couples to the pump and provides a compression force for urging the annular ring onto the cannula between the tapered surfaces. The nut has a threaded connection to the pump body. The threaded coupling to the pump body provides a compression force for the annular ring. The annular ring has an annular enclosure space in which excess cannula material from the compression between the tapered surfaces to "bunch up" in the space and serve as an enlarged annular ring segment to assist holding the cannula in place. The clamped cannula provides a seamless joint connection to the pump pipe outlet where the clamping force is uniformly applied to the cannula because of self alignment of the tapered surfaces. The nut can be easily disconnected to replace the pump if necessary.

  5. Differential Activity-Dependent Secretion of Brain-Derived Neurotrophic Factor from Axon and Dendrite

    PubMed Central

    Matsuda, Naoto; Lu, Hui; Fukata, Yuko; Noritake, Jun; Gao, Hongfeng; Mukherjee, Sujay; Nemoto, Tomomi; Fukata, Masaki

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) is essential for neuronal survival and differentiation during development and for synaptic function and plasticity in the mature brain. BDNF-containing vesicles are widely distributed and bidirectionally transported in neurons, and secreted BDNF can act on both presynaptic and postsynaptic cells. Activity-dependent BDNF secretion from neuronal cultures has been reported, but it remains unknown where the primary site of BDNF secretion is and whether neuronal activity can trigger BDNF secretion from axons and dendrites with equal efficacy. Using BDNF fused with pH-sensitive green fluorescent protein to visualize BDNF secretion, we found that BDNF-containing vesicles exhibited markedly different properties of activity-dependent exocytic fusion at the axon and dendrite of cultured hippocampal neurons. Brief spiking activity triggered a transient fusion pore opening, followed by immediate retrieval of vesicles without dilation of the fusion pore, resulting in very little BDNF secretion at the axon. On the contrary, the same brief spiking activity induced “full-collapse” vesicle fusion and substantial BDNF secretion at the dendrite. However, full vesicular fusion with BDNF secretion could occur at the axon when the neuron was stimulated by prolonged high-frequency activity, a condition neurons may encounter during epileptic discharge. Thus, activity-dependent axonal secretion of BDNF is highly restricted as a result of incomplete fusion of BDNF-containing vesicles, and normal neural activity induces BDNF secretion from dendrites, consistent with the BDNF function as a retrograde factor. Our study also revealed a novel mechanism by which differential exocytosis of BDNF-containing vesicles may regulate BDNF–TrkB signaling between connected neurons. PMID:19906967

  6. Aluminum regulates oxalate secretion and plasma membrane H+-ATPase activity independently in tomato roots.

    PubMed

    Yang, Jian Li; Zhu, Xiao Fang; Peng, You Xiang; Zheng, Cheng; Ming, Feng; Zheng, Shao Jian

    2011-08-01

    We demonstrated that aluminum (Al)-induced oxalate secretion and plasma membrane (PM) H(+)-ATPase activity in tomato (Lycopersicon esculentum 'Hezuo903') roots were poorly correlated. In addition, vanadate, an inhibitor of PM H(+)-ATPase, had no effect on Al-induced oxalate secretion, but significantly inhibited enzyme activity. An anion channel inhibitor phenylglyoxal inhibited oxalate secretion, but not PM H(+)-ATPase activity. Exposure of tomato roots to 10 μM LaCl(3) also stimulated PM H(+)-ATPase activity; however, La failed to induce oxalate secretion. Furthermore, Al-induced changes of PM H(+)-ATPase activity were not associated with oxalate secretion in two tomato cultivars differing in the ability to secrete oxalate under Al stress. These results indicate that Al independently regulates oxalate secretion and PM H(+)-ATPase activity in tomato roots. Analysis of expression levels of PM H(+)-ATPase genes by real-time reverse transcription-PCR and protein by Western blot and immunodetection revealed that the regulation of PM H(+)-ATPase in response to Al was subjected to transcriptional and posttranscriptional control. However, since neither transcriptional level of genes nor translational level of proteins directly relate to the enzyme activity, posttranslational modification of PM H(+)-ATPase under Al stress likely contributes to changes in activity of this protein. PMID:21424534

  7. Production, secretion and biological activity of Bacillus cereus enterotoxins.

    PubMed

    Senesi, Sonia; Ghelardi, Emilia

    2010-07-01

    Bacillus cereus behaves as an opportunistic pathogen frequently causing gastrointestinal diseases, and it is increasingly recognized to be responsible for severe local or systemic infections. Pathogenicity of B. cereus mainly relies on the secretion of a wide array of toxins and enzymes and also on the ability to undergo swarming differentiation in response to surface-sensing. In this report, the pathogenicity exerted by B. cereus toxins is described with particular attention to the regulatory mechanisms of production and secretion of HBL, Nhe and CytK enterotoxins. PMID:22069656

  8. Acidification Activates Toxoplasma gondii Motility and Egress by Enhancing Protein Secretion and Cytolytic Activity

    PubMed Central

    Roiko, Marijo S.; Svezhova, Nadezhda; Carruthers, Vern B.

    2014-01-01

    Pathogenic microbes rely on environmental cues to initiate key events during infection such as differentiation, motility, egress and invasion of cells or tissues. Earlier investigations showed that an acidic environment activates motility of the protozoan parasite T. gondii. Conversely, potassium ions, which are abundant in the intracellular milieu that bathes immotile replicating parasites, suppress motility. Since motility is required for efficient parasite cell invasion and egress we sought to better understand its regulation by environmental cues. We found that low pH stimulates motility by triggering Ca2+-dependent secretion of apical micronemes, and that this cue is sufficient to overcome suppression by potassium ions and drive parasite motility, cell invasion and egress. We also discovered that acidification promotes membrane binding and cytolytic activity of perforin-like protein 1 (PLP1), a pore-forming protein required for efficient egress. Agents that neutralize pH reduce the efficiency of PLP1-dependent perforation of host membranes and compromise egress. Finally, although low pH stimulation of microneme secretion promotes cell invasion, it also causes PLP1-dependent damage to host cells, suggesting a mechanism by which neutral extracellular pH subdues PLP1 activity to allow cell invasion without overt damage to the target cell. These findings implicate acidification as a signal to activate microneme secretion and confine cytolytic activity to egress without compromising the viability of the next cell infected. PMID:25375818

  9. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism.

    PubMed

    Zhang, Xiuli; Liang, Dan; Lian, Xu; Jiang, Yan; He, Hui; Liang, Wei; Zhao, Yue; Chi, Zhi-Hong

    2016-06-01

    Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis. PMID:26979714

  10. Human Mammospheres Secrete Hormone-Regulated Active Extracellular Vesicles

    PubMed Central

    Rodriguez-Suarez, Eva; Gil, David; Royo, Felix; Elortza, Felix; Falcon-Perez, Juan M.; Vivanco, Maria dM.

    2014-01-01

    Breast cancer is a leading cause of cancer-associated death worldwide. One of the most important prognostic factors for survival is the early detection of the disease. Recent studies indicate that extracellular vesicles may provide diagnostic information for cancer management. We demonstrate the secretion of extracellular vesicles by primary breast epithelial cells enriched for stem/progenitor cells cultured as mammospheres, in non-adherent conditions. Using a proteomic approach we identified proteins contained in these vesicles whose expression is affected by hormonal changes in the cellular environment. In addition, we showed that these vesicles are capable of promoting changes in expression levels of genes involved in epithelial-mesenchymal transition and stem cell markers. Our findings suggest that secreted extracellular vesicles could represent potential diagnostic and/or prognostic markers for breast cancer and support a role for extracellular vesicles in cancer progression. PMID:24404144

  11. Enhancing activity of N-glycosylation for constitutive proteins secretions in non-polarized cells

    SciTech Connect

    Akiyama, Nobutake; Ohno, Yuji; Fukuda, Takahiro; Manome, Yosinobu; Saito, Saburo

    2009-04-17

    Several fusion proteins of mouse Interleukins (mILs) and the enhanced green fluorescent protein (EGFP) were expressed in fibroblast and epithelial cells. Among these proteins, the mIL-31 derivative was the most efficiently secreted into the medium in a N-glycosylation-dependent manner. From the analysis of deletion mutants, the minimal structure for constitutive secretions consisted of a signal peptide and N-glycosylation. Introduction of the signal sequence from mIL-31 to human p53 protein failed to secrete the products, but further addition of the N-glycosylation site resulted in constitutive secretion of biologically active p53 protein into the medium in the N-glycosylated form. In this report, we showed the importance of N-glycosylation for constitutive protein secretions, especially using non-polarized cells.

  12. IGF-1 drives chromogranin A secretion via activation of Arf1 in human neuroendocrine tumour cells

    PubMed Central

    Münzberg, Christin; Höhn, Katharina; Krndija, Denis; Maaß, Ulrike; Bartsch, Detlef K; Slater, Emily P; Oswald, Franz; Walther, Paul; Seufferlein, Thomas; von Wichert, Götz

    2015-01-01

    Hypersecretion is the major symptom of functional neuroendocrine tumours. The mechanisms that contribute to this excessive secretion of hormones are still elusive. A key event in secretion is the exit of secretory products from the Golgi apparatus. ADP-ribosylation factor (Arf) GTPases are known to control vesicle budding and trafficking, and have a leading function in the regulation of formation of secretory granula at the Golgi. Here, we show that Arf1 is the predominant Arf protein family member expressed in the neuroendocrine pancreatic tumour cell lines BON and QGP-1. In BON cells Arf1 colocalizes with Golgi markers as well as chromogranin A, and shows significant basal activity. The inhibition of Arf1 activity or expression significantly impaired secretion of chromogranin A. Furthermore, we show that the insulin-like growth factor 1 (IGF-1), a major regulator of growth and secretion in BON cells, induces Arf1 activity. We found that activation of Arf1 upon IGF-1 receptor stimulation is mediated by MEK/ERK signalling pathway in BON and QGP-1 cells. Moreover, the activity of Arf1 in BON cells is mediated by autocrinely secreted IGF-1, and concomitantly, autocrine IGF1 secretion is maintained by Arf1 activity. In summary, our data indicate an important regulatory role for Arf1 at the Golgi in hypersecretion in neuroendocrine cancer cells. PMID:25754106

  13. Active endocannabinoids are secreted on extracellular membrane vesicles.

    PubMed

    Gabrielli, Martina; Battista, Natalia; Riganti, Loredana; Prada, Ilaria; Antonucci, Flavia; Cantone, Laura; Matteoli, Michela; Maccarrone, Mauro; Verderio, Claudia

    2015-02-01

    Endocannabinoids primarily influence neuronal synaptic communication within the nervous system. To exert their function, endocannabinoids need to travel across the intercellular space. However, how hydrophobic endocannabinoids cross cell membranes and move extracellularly remains an unresolved problem. Here, we show that endocannabinoids are secreted through extracellular membrane vesicles produced by microglial cells. We demonstrate that microglial extracellular vesicles carry on their surface N-arachidonoylethanolamine (AEA), which is able to stimulate type-1 cannabinoid receptors (CB1), and inhibit presynaptic transmission, in target GABAergic neurons. This is the first demonstration of a functional role of extracellular vesicular transport of endocannabinoids. PMID:25568329

  14. Contribution of a Nuclear Factor-κB Binding Site to Human Angiotensinogen Promoter Activity in Renal Proximal Tubular Cells

    PubMed Central

    Acres, Omar W.; Satou, Ryousuke; Navar, L. Gabriel; Kobori, Hiroyuki

    2011-01-01

    Intrarenal angiotensinogen (AGT) is expressed highly in renal proximal tubular cells (RPTCs) and contributes to the regulation of intrarenal angiotensin II levels. Inhibition of nuclear factor (NF)-κB suppressed human (h)AGT expression in human RPTCs. However, the presence and localization of an NF-κB binding site in the hAGT promoter region have not been determined. Therefore, this study was performed to demonstrate that an NF-κB binding site in the hAGT promoter region contributes to hAGT promoter activity in human RPTCs. The hAGT promoter region was cloned from −4358 to +122 and deletion analysis was performed. A possible NF-κB binding site was removed from the hAGT promoter region (M1) and mutated (M2). Human RPTCs were transfected, and hAGT promoter activity was determined by luciferase assay. The identity of DNA binding proteins from binding assays were determined by Western blot. Progressive 5′-end deletions demonstrated removal of a distal promoter element in hAGT_−2414/+122 reduced promoter activity (0.61±0.12, ratio to hAGT_−4358/+122). Inhibition of NF-κB suppressed promoter activity in hAGT_−4358/+122 (0.51±0.14, ratio to control) and hAGT_−3681/+122 (0.48±0.06, ratio to control) but not in the construct without the NF-κB binding site. Promoter activity was reduced in the domain mutants M1 (0.57±0.08, ratio to hAGT_−4358/+122) and M2 (0.61±0.16, ratio to hAGT_−4358/+122). DNA binding levels of NF-κB protein were reduced in M1. These data demonstrate the functional importance of an NF-κB binding site in the hAGT promoter region, which contributes to hAGT promoter activity in human RPTCs. PMID:21282554

  15. VEGF secretion during hypoxia depends on free radicals-induced Fyn kinase activity in mast cells

    SciTech Connect

    Garcia-Roman, Jonathan; Ibarra-Sanchez, Alfredo; Lamas, Monica; Gonzalez Espinosa, Claudia

    2010-10-15

    Research highlights: {yields} Bone marrow-derived mast cells (BMMCs) secrete functional VEGF but do not degranulate after Cobalt chloride-induced hypoxia. {yields} CoCl{sub 2}-induced VEGF secretion in mast cells occurs by a Ca{sup 2+}-insensitive but brefeldin A and Tetanus toxin-sensitive mechanism. {yields} Trolox and N-acetylcysteine inhibit hypoxia-induced VEGF secretion but only Trolox inhibits Fc{epsilon}RI-dependent anaphylactic degranulation in mast cells. {yields} Src family kinase Fyn activation after free radical production is necessary for hypoxia-induced VEGF secretion in mast cells. -- Abstract: Mast cells (MC) have an important role in pathologic conditions such as asthma and chronic obstructive pulmonary disease (COPD), where hypoxia conduce to deleterious inflammatory response. MC contribute to hypoxia-induced angiogenesis producing factors such as vascular endothelial growth factor (VEGF), but the mechanisms behind the control of hypoxia-induced VEGF secretion in this cell type is poorly understood. We used the hypoxia-mimicking agent cobalt chloride (CoCl{sub 2}) to analyze VEGF secretion in murine bone marrow-derived mast cells (BMMCs). We found that CoCl{sub 2} promotes a sustained production of functional VEGF, able to induce proliferation of endothelial cells in vitro. CoCl{sub 2}-induced VEGF secretion was independent of calcium rise but dependent on tetanus toxin-sensitive vesicle-associated membrane proteins (VAMPs). VEGF exocytosis required free radicals formation and the activation of Src family kinases. Interestingly, an important deficiency on CoCl{sub 2}-induced VEGF secretion was observed in Fyn kinase-deficient BMMCs. Moreover, Fyn kinase was activated by CoCl{sub 2} in WT cells and this activation was prevented by treatment with antioxidants such as Trolox and N-acetylcysteine. Our results show that BMMCs are able to release VEGF under hypoxic conditions through a tetanus toxin-sensitive mechanism, promoted by free radicals

  16. Differential activation of signaling pathways by low-osmolar and iso-osmolar radiocontrast agents in human renal tubular cells.

    PubMed

    Andreucci, Michele; Faga, Teresa; Russo, Domenico; Bertucci, Bernardo; Tamburrini, Oscar; Pisani, Antonio; Sabbatini, Massimo; Fuiano, Giorgio; Michael, Ashour

    2014-02-01

    Radiocontrast media (RCM)-induced nephrotoxicity (CIN) is a major clinical problem accounting for 12% of all hospital-acquired cases of acute kidney injury (AKI). The pathophysiology of AKI due to RCM is not well understood, but direct toxic effects on renal cells have been postulated as contributing to CIN. It is believed that iso-osmolar RCM (IOCM) are less nephrotoxic than low-osmolar RCM (LOCM) but clinical data have been controversial. We have investigated the intracellular signaling pathways that may be affected by the LOCM iomeprol (IOM) and the IOCM iodixanol (IOD). Both IOM and IOD caused a dramatic decrease in phosphorylation of the kinase Akt at Ser473 and Thr308 in human renal tubular (HK-2) cells, with IOM having a greater effect; IOM also caused a greater decrease in cell viability. IOM also had a greater effect on phosphorylation of p38 MAP kinases, JNKs, and NF-kB (Ser276), and caused a marked decrease in the phosphorylation of forkhead box O3a (FOXO3a) and signal transducer and activator of transcription 3 (STAT3). However, IOD caused a greater decrease in the phosphorylation of mTOR (Ser2448) and phospho-ERK 1/2 while both RCM caused a similar decrease in the phosphorylation of phospho-p70S6 kinase (Ser371). In vivo studies showed that both IOM and IOD caused a significant decrease in both pAkt (Ser473) and pERK 1/2 in rat kidneys. Our study gives an insight into the possible mechanism of toxicity of RCM via their action on intracellular signaling pathways and may help in developing pharmacological interventions for their side-effects. PMID:24023012

  17. Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity.

    PubMed

    Nielsen, O B; Ørtenblad, N; Lamb, G D; Stephenson, D G

    2004-05-15

    Strenuous exercise causes an increase in extracellular [K(+)] and intracellular Na(+) ([Na(+)](i)) of working muscles, which may reduce sarcolemma excitability. The excitability of the sarcolemma is, however, to some extent protected by a concomitant increase in the activity of muscle Na(+)-K(+) pumps. The exercise-induced build-up of extracellular K(+) is most likely larger in the T-tubules than in the interstitium but the significance of the cation shifts and Na(+)-K(+) pump for the excitability of the T-tubular membrane and the voltage sensors is largely unknown. Using mechanically skinned fibres, we here study the role of the Na(+)-K(+) pump in maintaining T-tubular function in fibres with reduced chemical K(+) gradient. The Na(+)-K(+) pump activity was manipulated by changing [Na(+)](i). The responsiveness of the T-tubules was evaluated from the excitation-induced force production of the fibres. Compared to control twitch force in fibres with a close to normal intracellular [K(+)] ([K(+)](i)), a reduction in [K(+)](i) to below 60 mM significantly reduced twitch force. Between 10 and 50 mM Na(+), the reduction in force depended on [Na(+)](i), the twitch force at 40 mM K(+) being 22 +/- 4 and 54 +/- 9% (of control force) at a [Na(+)](i) of 10 and 20 mM, respectively (n= 4). Double pulse stimulation of fibres at low [K(+)](i) showed that although elevated [Na(+)](i) increased the responsiveness to single action potentials, it reduced the capacity of the T-tubules to respond to high frequency stimulation. It is concluded that a reduction in the chemical gradient for K(+), as takes place during intensive exercise, may depress T-tubular function, but that a concomitant exercise-induced increase in [Na(+)](i) protects T-tubular function by stimulating the Na(+)-K(+) pump. PMID:15034125

  18. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation

    PubMed Central

    Shigeto, Makoto; Ramracheya, Reshma; Tarasov, Andrei I.; Cha, Chae Young; Chibalina, Margarita V.; Hastoy, Benoit; Philippaert, Koenraad; Reinbothe, Thomas; Rorsman, Nils; Salehi, Albert; Sones, William R.; Vergari, Elisa; Weston, Cathryn; Gorelik, Julia; Katsura, Masashi; Nikolaev, Viacheslav O.; Vennekens, Rudi; Zaccolo, Manuela; Galione, Antony; Johnson, Paul R.V.; Kaku, Kohei; Ladds, Graham; Rorsman, Patrik

    2015-01-01

    Strategies aimed at mimicking or enhancing the action of the incretin hormone glucagon-like peptide 1 (GLP-1) therapeutically improve glucose-stimulated insulin secretion (GSIS); however, it is not clear whether GLP-1 directly drives insulin secretion in pancreatic islets. Here, we examined the mechanisms by which GLP-1 stimulates insulin secretion in mouse and human islets. We found that GLP-1 enhances GSIS at a half-maximal effective concentration of 0.4 pM. Moreover, we determined that GLP-1 activates PLC, which increases submembrane diacylglycerol and thereby activates PKC, resulting in membrane depolarization and increased action potential firing and subsequent stimulation of insulin secretion. The depolarizing effect of GLP-1 on electrical activity was mimicked by the PKC activator PMA, occurred without activation of PKA, and persisted in the presence of PKA inhibitors, the KATP channel blocker tolbutamide, and the L-type Ca2+ channel blocker isradipine; however, depolarization was abolished by lowering extracellular Na+. The PKC-dependent effect of GLP-1 on membrane potential and electrical activity was mediated by activation of Na+-permeable TRPM4 and TRPM5 channels by mobilization of intracellular Ca2+ from thapsigargin-sensitive Ca2+ stores. Concordantly, GLP-1 effects were negligible in Trpm4 or Trpm5 KO islets. These data provide important insight into the therapeutic action of GLP-1 and suggest that circulating levels of this hormone directly stimulate insulin secretion by β cells. PMID:26571400

  19. Secretion and apparent activation of human hepatic lipase requires proper oligosaccharide processing in the endoplasmic reticulum.

    PubMed Central

    Verhoeven, A J; Neve, B P; Jansen, H

    1999-01-01

    Human hepatic lipase (HL) is a glycoprotein with four N-linked oligosaccharide side chains. The importance of glycosylation for the secretion of catalytically active HL was studied in HepG2 cells by using inhibitors of intracellular trafficking, N-glycosylation and oligosaccharide processing. Secretion of HL was inhibited by carbonyl cyanide m-chlorophenylhydrazone (CCCP), monensin, brefeldin A (BFA), tunicamycin, castanospermine and N-methyldeoxynojirimycin, but not by 1-deoxymannojirimycin. Secretion of alpha1-antitrypsin, an unrelated N-glycoprotein, was also inhibited by monensin, BFA and tunicamycin, but not by CCCP, castanospermine or N-methyldeoxynojirimycin. Intracellular HL activity decreased with CCCP, tunicamycin, castanospermine and N-methyldeoxynojirimycin, but increased with monensin and BFA. In the absence of protein synthesis de novo, HL activity secreted into the medium was 7.8+/-2.1-fold higher (mean+/-S.D., n=7) than the simultaneous fall in intracellular HL activity. In cells pretreated with monensin or BFA, this factor decreased to 1.3+/-0.5, indicating that the apparent increase in HL activity had already occurred within these cells. After chromatography on Sepharose-heparin, the specific triacylglycerol hydrolase activity of secreted HL was only 1.7+/-0. 3-fold higher than that of intracellular HL, indicating that the secretion-coupled increase in HL activity is only partly explained by true activation. We conclude that oligosaccharide processing by glucosidases in the endoplasmic reticulum is necessary for the transport of newly synthesized human HL, but not alpha1-antitrypsin, to the Golgi, where the catalytic activity of HL is unmasked. PMID:9854035

  20. Rapid Ca2+ flux through the transverse tubular membrane, activated by individual action potentials in mammalian skeletal muscle

    PubMed Central

    Launikonis, Bradley S; Stephenson, D George; Friedrich, Oliver

    2009-01-01

    Periods of low frequency stimulation are known to increase the net Ca2+ uptake in skeletal muscle but the mechanism responsible for this Ca2+ entry is not known. In this study a novel high-resolution fluorescence microscopy approach allowed the detection of an action potential-induced Ca2+ flux across the tubular (t-) system of rat extensor digitorum longus muscle fibres that appears to be responsible for the net uptake of Ca2+ in working muscle. Action potentials were triggered in the t-system of mechanically skinned fibres from rat by brief field stimulation and t-system [Ca2+] ([Ca2+]t-sys) and cytoplasmic [Ca2+] ([Ca2+]cyto) were simultaneously resolved on a confocal microscope. When initial [Ca2+]t-sys was ≥ 0.2 mm a Ca2+ flux from t-system to the cytoplasm was observed following a single action potential. The action potential-induced Ca2+ flux and associated t-system Ca2+ permeability decayed exponentially and displayed inactivation characteristics such that further Ca2+ entry across the t-system could not be observed after 2–3 action potentials at 10 Hz stimulation rate. When [Ca2+]t-sys was closer to 0.1 mm, a transient rise in [Ca2+]t-sys was observed almost concurrently with the increase in [Ca2+]cyto following the action potential. The change in direction of Ca2+ flux was consistent with changes in the direction of the driving force for Ca2+. This is the first demonstration of a rapid t-system Ca2+ flux associated with a single action potential in mammalian skeletal muscle. The properties of this channel are inconsistent with a flux through the L-type Ca2+ channel suggesting that an as yet unidentified t-system protein is conducting this current. This action potential-activated Ca2+ flux provides an explanation for the previously described Ca2+ entry and accumulation observed with prolonged, intermittent muscle activity. PMID:19332499

  1. Small-Conductance Ca2+-Activated Potassium Channels Negatively Regulate Aldosterone Secretion in Human Adrenocortical Cells.

    PubMed

    Yang, Tingting; Zhang, Hai-Liang; Liang, Qingnan; Shi, Yingtang; Mei, Yan-Ai; Barrett, Paula Q; Hu, Changlong

    2016-09-01

    Aldosterone, which plays a key role in maintaining water and electrolyte balance, is produced by zona glomerulosa cells of the adrenal cortex. Autonomous overproduction of aldosterone from zona glomerulosa cells causes primary hyperaldosteronism. Recent clinical studies have highlighted the pathological role of the KCNJ5 potassium channel in primary hyperaldosteronism. Our objective was to determine whether small-conductance Ca(2+)-activated potassium (SK) channels may also regulate aldosterone secretion in human adrenocortical cells. We found that apamin, the prototypic inhibitor of SK channels, decreased membrane voltage, raised intracellular Ca(2+) and dose dependently increased aldosterone secretion from human adrenocortical H295R cells. By contrast, 1-Ethyl-2-benzimidazolinone, an agonist of SK channels, antagonized apamin's action and decreased aldosterone secretion. Commensurate with an increase in aldosterone production, apamin increased mRNA expression of steroidogenic acute regulatory protein and aldosterone synthase that control the early and late rate-limiting steps in aldosterone biosynthesis, respectively. In addition, apamin increased angiotensin II-stimulated aldosterone secretion, whereas 1-Ethyl-2-benzimidazolinone suppressed both angiotensin II- and high K(+)-stimulated production of aldosterone in H295R cells. These findings were supported by apamin-modulation of basal and angiotensin II-stimulated aldosterone secretion from acutely prepared slices of human adrenals. We conclude that SK channel activity negatively regulates aldosterone secretion in human adrenocortical cells. Genetic association studies are necessary to determine whether mutations in SK channel subtype 2 genes may also drive aldosterone excess in primary hyperaldosteronism. PMID:27432863

  2. Peroxisome Proliferator–Activated Receptor α Protects Renal Tubular Cells from Gentamicin-Induced Apoptosis via Upregulating Na+/H+ Exchanger NHE1

    PubMed Central

    Chen, Cheng-Hsien; Chen, Tso-Hsiao; Wu, Mei-Yi; Chen, Jia-Rung; Hong, Li-Yu; Zheng, Cai-Mei; Chiu, I-Jen; Lin, Yuh-Feng; Hsu, Yung-Ho

    2015-01-01

    Peroxisome proliferator–activated receptor (PPAR)-α is a transcription factor that has been reported to inhibit gentamicin-induced apoptosis in renal tubular cells. However, the antiapoptotic mechanism of PPARα is still unknown. In this study, we found that PPARα overexpression induced Na+/H+ exchanger-1 (NHE1) expression in the rat renal tubular cells NRK-52E. Beraprost, a PPARα ligand, also increased NHE1 expression in the renal tubules in normal mice, but not in PPARα knockout mice. Chromatin immunoprecipitation assays revealed that two PPARα binding elements were located in the rat NHE1 promoter region. Na+/H+ exchanger activity also increased in the PPARα-overexpressed cells. Flow cytometry showed that the PPARα-overexpressed cells were resistant to apoptosis-induced shrinkage. Cariporide, a selective NHE1 inhibitor, inhibited the antiapoptotic effect of PPARα in the gentamicin-treated cells. The interaction between NHE1 and ezrin/radixin/moesin (ERM) and between ERM and phosphatidylinositol 4,5-bisphosphate in the PPARα-overexpressed cells was more than in the control cells. ERM short interfering RNA (siRNA) transfection inhibited the PPARα-induced antiapoptotic effect. PPARα overexpression also increased the phosphoinositide 3-kinase (PI3K) expression, which is dependent on NHE1 activity. Increased PI3K further increased the phosphorylation of the prosurvival kinase Akt in the PPARα-overexpressed cells. Wortmannin, a PI3K inhibitor, inhibited PPARα-induced Akt activity and the antiapoptotic effect. We conclude that PPARα induces NHE1 expression and then recruits ERM to promote PI3K/Akt-mediated cell survival in renal tubular cells. The application of PPARα activation reduces the nephrotoxicity of gentamicin and may expand the clinical use of gentamicin. PMID:26623927

  3. Albumin stimulates p44/p42 extracellular-signal-regulated mitogen-activated protein kinase in opossum kidney proximal tubular cells.

    PubMed

    Dixon, R; Brunskill, N J

    2000-03-01

    The presence of protein in the urine of patients with renal disease is an adverse prognostic feature. It has therefore been suggested that proteinuria per se may be responsible for the development of renal tubulo-interstitial scarring and fibrosis, and disturbances in tubular cell growth and proliferation. We have used the opossum kidney proximal tubular cell line to investigate the effects of albumin on cell growth. The effect of albumin on cell proliferation was investigated by cell counting and measurement of [(3)H]thymidine incorporation. We studied the effect of recombinant human albumin on the activity of p44/p42 extracellular-signal-regulated mitogen-activated protein kinase (MAP kinase ) using an in vitro kinase assay, and immunoblotting with antibodies against active extracellular-signal-regulated kinase (ERK). The effects of the ERK inhibitor PD98059 were also examined. Recombinant human albumin was found to stimulate proliferation of opossum kidney cells in a dose-dependent manner, with maximal stimulation at a concentration of 1 mg/ml. In addition, recombinant human albumin activated ERK in a time-dependent (maximal after 5 min) and dose-dependent (maximal at 1 mg/ml) fashion. These effects on cell proliferation and ERK activity were inhibited by PD98059, and were not reproduced by ovalbumin or mannitol. The data therefore indicate that albumin is able to stimulate growth and proliferation of proximal tubular cells that is dependent on the ERK family of MAP kinases. The potential importance of this pathway in the development of renal disease is discussed. PMID:10677388

  4. Correlation between secretion and phospholipase D activation in differentiated HL60 cells.

    PubMed Central

    Stutchfield, J; Cockcroft, S

    1993-01-01

    Receptor-directed agonists including N-formylmethionyl-leucyl-phenylalanine (fMetLeuPhe), C5a, ATP and UTP all activate phospholipase D (PLD), which is accompanied by secretion in differentiated HL60 cells. Interference in the production of phosphatidase (PA) by the PLD pathway by diverting it towards the production of phosphatidylethanol (PEt) in the presence of ethanol leads to near-total inhibition of the secretion evoked by ATP and UTP and a partial inhibition of that evoked by fMetLeuPhe and C5a. In streptolysin-O-permeabilized cells, fMetLeuPhe is able to activate PLD, and this is dependent on the presence of a low concentration of guanosine 5'-[gamma-thio]-triphosphate (GTP[S]). Ca2+ (10 microM) and GTP[S] individually or in combination are also able to activate PLD and secretion. The stimulation of secretion in permeabilized cells stimulated by Ca2+ alone or fMetLeuPhe or GTP[S] is also abrogated when the production of PA is diverted to PEt by the presence of ethanol. Activation of PLD by GTP[S] or fMetLeuPhe is decreased if the cells are permeabilized first and GTP[S] or fMetLeuPhe is added subsequently. This corresponds well with the loss of the secretory response. We conclude that the ability of GTP[S] or fMetLeuPhe to stimulate secretion from permeabilized cells is dependent on a prior activation of the PLD signalling pathway. PA, generated as a consequence of PLD activation, acts as second messenger that can provide an initiating signal for secretion and is not required for exocytosis itself. PMID:8352731

  5. Mutational Analysis of Cvab, an ABC Transporter Involved in the Secretion of Active Colicin V

    PubMed Central

    Tai, Phang C.

    2012-01-01

    CvaB is the central membrane transporter of the colicin V secretion system that belongs to an ATP-binding cassette superfamily. Previous data showed that the N-terminal and C-terminal domains of CvaB are essential for the function of CvaB. N-terminal domain of CvaB possesses Ca2+-dependent cysteine proteolytic activity, and two critical residues, Cys32 and His105, have been identified. In this study, we also identify Asp121 as being the third residue of the putative catalytic triad within the active site of the enzyme. The Asp121 mutants lose both their colicin V secretion activity and N-terminal proteolytic activity. The adjacent residue Pro122 also appears to play a critical role in the colicin V secretion. However, the reversal of the two residues D121P - P122D results in loss of activity. Based on molecular modeling and protein sequence alignment, several residues adjacent to the critical residues, Cys32 and His105, were also examined and characterized. Site-directed mutagenesis of Trp101, Asp102, Val108, Leu76, Gly77, and Gln26 indicate that the neighboring residues around the catalytic triad affect colicin V secretion. Several mutated CvaB proteins with defective secretion were also tested, including Asp121 and Pro122, and were found to be structurally stable. These results indicate that the residues surrounding the identified catalytic triad are functionally involved in the secretion of biologically active colicin V. PMID:22539970

  6. A Novel Serine Protease Secreted by Medicinal Maggots Enhances Plasminogen Activator-Induced Fibrinolysis

    PubMed Central

    van der Plas, Mariena J. A.; Andersen, Anders S.; Nazir, Sheresma; van Tilburg, Nico H.; Oestergaard, Peter R.; Krogfelt, Karen A.; van Dissel, Jaap T.; Hensbergen, Paul J.

    2014-01-01

    Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As haemostatic processes play an important role in wound healing, this study focused on the effects of maggot secretions on coagulation and fibrinolysis. The results showed that maggot secretions enhance plasminogen activator-induced formation of plasmin and fibrinolysis in a dose- and time-dependent manner. By contrast, coagulation was not affected by secretions. Biochemical studies indicated that a novel serine protease within secretions, designated Sericase, cleaved plasminogen to several fragments. Recombinant Sericase degraded plasminogen leading amongst others to the formation of the mini-plasminogen like fragment Val454-plasminogen. In addition, the presence of a non-proteolytic cofactor in secretions was discovered, which plays a role in the enhancement of plasminogen activator-induced fibrinolysis by Sericase. We conclude from our in vitro studies that the novel serine protease Sericase, with the aid of a non-proteolytic cofactor, enhances plasminogen activator-induced fibrinolysis. PMID:24647546

  7. Coupling of airway ciliary activity and mucin secretion to mechanical stresses by purinergic signaling.

    PubMed

    Davis, C William; Lazarowski, Eduardo

    2008-11-30

    The mucociliary clearance system is comprised of three components, ion transport activities controlling the height of airway surface liquid (ASL), mucin secretion, and ciliary activity. These activities in humans are controlled principally by local agonists, extracellular nucleotides and nucleosides released from the epithelium. Importantly, mechanical stresses stimulate goblet cell mucin secretion, ciliary beating, and Cl- and fluid secretion through mechanically induced nucleotide release. Emerging evidence also implicates co-secretion of nucleotides and mucin from goblet cells as a source of extracellular agonist. At rest, ATP is released onto airway surfaces at approximately 370fmol/mincm2, but only approximately 3% of released ATP is recovered in ASL. Secreted UTP meets with a similar fate. A wide variety of hydrolytic and transphosphorylating ecto-enzymes convert the triphosphate nucleotides into ADP, AMP, and adenosine, UDP, UMP, and uridine. Of these, ATP, adenosine, UTP, and UDP act as agonists at apical P2Y2 (ATP, UTP), P2Y6 (UDP), and A2B (adenosine) receptors on ciliated and/or goblet cells to regulate mucociliary clearance. PMID:18635403

  8. Arg tyrosine kinase modulates TGF-β1 production in human renal tubular cells under high-glucose conditions.

    PubMed

    Torsello, Barbara; Bianchi, Cristina; Meregalli, Chiara; Di Stefano, Vitalba; Invernizzi, Lara; De Marco, Sofia; Bovo, Giorgio; Brivio, Rinaldo; Strada, Guido; Bombelli, Silvia; Perego, Roberto A

    2016-08-01

    Renal tubular cells are involved in the tubular interstitial fibrosis observed in diabetic nephropathy. It is debated whether epithelial-mesenchymal transition (EMT) affects tubular cells, which under high-glucose conditions overproduce transforming growth factor-β (TGF-β), a fibrogenic cytokine involved in interstitial fibrosis development. Our study investigated the involvement of non-receptor tyrosine kinase Arg (also called Abl2) in TGF-β production. Human primary tubular cell cultures exposed to high-glucose conditions were used. These cells showed an elongated morphology, stress fibers and vimentin increment but maintained most of the epithelial marker expression and distribution. In these cells exposed to high glucose, which overexpressed and secreted active TGF-β1, Arg protein and activity was downregulated. A further TGF-β1 increase was induced by Arg silencing with siRNA, as with the Arg tyrosine kinase inhibitor Imatinib. In the cells exposed to high glucose, reactive oxygen species (ROS)-dependent Arg kinase downregulation induced both RhoA activation, through p190RhoGAPA (also known as ARHGAP35) modulation, and proteasome activity inhibition. These data evidence a new specific involvement of Arg kinase into the regulation of TGF-β1 expression in tubular cells under high-glucose conditions and provide cues for new translational approaches in diabetic nephropathy. PMID:27298228

  9. Berberine induces GLP-1 secretion through activation of bitter taste receptor pathways.

    PubMed

    Yu, Yunli; Hao, Gang; Zhang, Quanying; Hua, Wenyan; Wang, Meng; Zhou, Wenjia; Zong, Shunlin; Huang, Ming; Wen, Xiaozhou

    2015-09-15

    Our previous studies revealed that berberine-mediated GLP-1 secretion was a possible mechanism for berberine exerting good effects on hyperglycemia. This study was designed to ascertain whether berberine-induced secretion of GLP-1 was related with activation of bitter taste receptors expressed in gastrointestinal tract. Western blotting results showed that TAS2R38, a subtype of bitter taste receptor, was expressed on human enteroendocrine NCI-H716 cells. GLP-1 secretion induced by berberine from NCI-H716 cells was inhibited by incubation with anti-TAS2R38 antibody. We further performed gene silencing using siRNA to knockdown TAS2R38 from NCI-H716 cells, which showed that siRNA knockdown of the TAS2R38 reduced berberine-mediated GLP-1 secretion. We adopted inhibitors of PLC and TRPM5 known to be involved in bitter taste transduction to investigate the underlying pathways mediated in berberine-induced GLP-1 secretion. It was found that PLC inhibitor U73122 inhibited berberine-induced GLP-1 release in NCI-H716 cells, while TRPM5 blocker quinine failed to attenuate berberine-induced secretion of GLP-1. The present results demonstrated that berberine stimulated GLP-1 secretion via activation of gut-expressed bitter taste receptors in a PLC-dependent manner. Because berberine was found to be a ligand of bitter taste receptor, the results of present study may provide an explanation for some bitter taste substance obtain hypoglycemic effect. PMID:26206195

  10. Angiogenin stimulates endothelial cell prostacyclin secretion by activation of phospholipase A2.

    PubMed Central

    Bicknell, R; Vallee, B L

    1989-01-01

    Angiogenin stimulates capillary and umbilical vein endothelial cell prostacyclin secretion but not that of prostaglandins of the E series. The response was quantitated by radioimmunoassay and by [3H]arachidonate labeling followed by analysis of the secreted prostaglandins. The stimulated secretion lasts for several minutes and is optimal at 2-4 min. The dose-response (peak at 1-10 ng/ml) is similar to that previously observed for activation of endothelial cell phospholipase C. Stimulated secretion was blocked by pretreatment with the inhibitors of prostacyclin synthesis, indomethacin and tranylcypromine, and also the specific inhibitor of phospholipase A2, quinacrine, as well as pertussis toxin and the diglyceryl and monoglyceryl lipase inhibitor RHC 80267. Stimulated secretion was also abolished in cells that were either pretreated for 48 hr with phorbol ester to down-regulate protein kinase C or incubated with the protein kinase inhibitor H7. Hydrolysis of phosphatidylinositol by phospholipase A2 appears to be the source of angiogenin-mobilized arachidonate; angiogenin-induced hydrolysis of phosphatidylcholine was not detected. Activation of phospholipase A2 occurs in the absence of an angiogenin-induced calcium flux. The results are discussed in terms of mechanisms of agonist-induced intracellular arachidonate mobilization and relevance to angiogenesis. PMID:2646638

  11. Fha Interaction with Phosphothreonine of TssL Activates Type VI Secretion in Agrobacterium tumefaciens

    PubMed Central

    Lin, Jer-Sheng; Wu, Hsin-Hui; Hsu, Pang-Hung; Ma, Lay-Sun; Pang, Yin-Yuin; Tsai, Ming-Daw; Lai, Erh-Min

    2014-01-01

    The type VI secretion system (T6SS) is a widespread protein secretion system found in many Gram-negative bacteria. T6SSs are highly regulated by various regulatory systems at multiple levels, including post-translational regulation via threonine (Thr) phosphorylation. The Ser/Thr protein kinase PpkA is responsible for this Thr phosphorylation regulation, and the forkhead-associated (FHA) domain-containing Fha-family protein is the sole T6SS phosphorylation substrate identified to date. Here we discovered that TssL, the T6SS inner-membrane core component, is phosphorylated and the phosphorylated TssL (p-TssL) activates type VI subassembly and secretion in a plant pathogenic bacterium, Agrobacterium tumefaciens. Combining genetic and biochemical approaches, we demonstrate that TssL is phosphorylated at Thr 14 in a PpkA-dependent manner. Further analysis revealed that the PpkA kinase activity is responsible for the Thr 14 phosphorylation, which is critical for the secretion of the T6SS hallmark protein Hcp and the putative toxin effector Atu4347. TssL phosphorylation is not required for the formation of the TssM-TssL inner-membrane complex but is critical for TssM conformational change and binding to Hcp and Atu4347. Importantly, Fha specifically interacts with phosphothreonine of TssL via its pThr-binding motif in vivo and in vitro and this interaction is crucial for TssL interaction with Hcp and Atu4347 and activation of type VI secretion. In contrast, pThr-binding ability of Fha is dispensable for TssM structural transition. In conclusion, we discover a novel Thr phosphorylation event, in which PpkA phosphorylates TssL to activate type VI secretion via its direct binding to Fha in A. tumefaciens. A model depicting an ordered TssL phosphorylation-induced T6SS assembly pathway is proposed. PMID:24626341

  12. Defective insulin secretion by chronic glucagon receptor activation in glucose intolerant mice.

    PubMed

    Ahlkvist, Linda; Omar, Bilal; Valeur, Anders; Fosgerau, Keld; Ahrén, Bo

    2016-03-01

    Stimulation of insulin secretion by short-term glucagon receptor (GCGR) activation is well characterized; however, the effect of long-term GCGR activation on β-cell function is not known, but of interest, since hyperglucagonemia occurs early during development of type 2 diabetes. Therefore, we examined whether chronic GCGR activation affects insulin secretion in glucose intolerant mice. To induce chronic GCGR activation, high-fat diet fed mice were continuously (2 weeks) infused with the stable glucagon analog ZP-GA-1 and challenged with oral glucose and intravenous glucose±glucagon-like peptide 1 (GLP1). Islets were isolated to evaluate the insulin secretory response to glucose±GLP1 and their pancreas were collected for immunohistochemical analysis. Two weeks of ZP-GA-1 infusion reduced insulin secretion both after oral and intravenous glucose challenges in vivo and in isolated islets. These inhibitory effects were corrected for by GLP1. Also, we observed increased β-cell area and islet size. We conclude that induction of chronic ZP-GA-1 levels in glucose intolerant mice markedly reduces insulin secretion, and thus, we suggest that chronic activation of the GCGR may contribute to the failure of β-cell function during development of type 2 diabetes. PMID:26698567

  13. Renal tubular dysfunction measured by N-acetyl-beta glucosaminidase/Creatinine activity index in children receiving antiepileptic drugs: a randomized controlled trial.

    PubMed

    Mazaheri, Mojgan; Samaie, Afshin; Semnani, Vahid

    2011-01-01

    To evaluate renal side-effects of anti-epileptic medication by valproate (VPA) and carbamazepine (CBZ), we performed a prospective study to assess renal tubular function by measuring N-acetyl-β glucosaminidase (NAG)/Cr activity index in epileptic children. The study was conducted on 112 children who were diagnosed with epilepsy (28 patients were observed before treatment with anti-epileptics, 28 children were administered VPA, 28 children were treated with CBZ, and 28 healthy children were selected age &sex matched for). An especial NAG assay kit was used for quantitative measuring of NAG in patient urine samples. The patients receiving VPA exhibited higher rate of NAG activity compared with the two groups which not receiving anti-epileptic drugs. Measurement of urinary NAG/Cr index in the children who received CBZ also, was significantly higher than those who were not administered anti-epileptic drugs. The measurement of NAG/Cr index in the VPA group was significantly higher than that in the CBZ group (NAG index: 2.75 versus 1.71). Children on anti-epileptic treatment with VPA or CBZ might demonstrate signs of renal tubular dysfunction, reflected by NAG/Cr activity index. This side effect can be potentially more occurred following VPA administration. PMID:21569539

  14. Renal tubular dysfunction measured by N-acetyl-beta glucosaminidase/Creatinine activity index in children receiving antiepileptic drugs: a randomized controlled trial

    PubMed Central

    2011-01-01

    To evaluate renal side-effects of anti-epileptic medication by valproate (VPA) and carbamazepine (CBZ), we performed a prospective study to assess renal tubular function by measuring N-acetyl-β glucosaminidase (NAG)/Cr activity index in epileptic children. The study was conducted on 112 children who were diagnosed with epilepsy (28 patients were observed before treatment with anti-epileptics, 28 children were administered VPA, 28 children were treated with CBZ, and 28 healthy children were selected age &sex matched for). An especial NAG assay kit was used for quantitative measuring of NAG in patient urine samples. The patients receiving VPA exhibited higher rate of NAG activity compared with the two groups which not receiving anti-epileptic drugs. Measurement of urinary NAG/Cr index in the children who received CBZ also, was significantly higher than those who were not administered anti-epileptic drugs. The measurement of NAG/Cr index in the VPA group was significantly higher than that in the CBZ group (NAG index: 2.75 versus 1.71). Children on anti-epileptic treatment with VPA or CBZ might demonstrate signs of renal tubular dysfunction, reflected by NAG/Cr activity index. This side effect can be potentially more occurred following VPA administration. PMID:21569539

  15. Fenofibrate, a PPARα agonist, protect proximal tubular cells from albumin-bound fatty acids induced apoptosis via the activation of NF-kB

    PubMed Central

    Zuo, Nan; Zheng, Xiaoyu; Liu, Hanzhe; Ma, Xiaoli

    2015-01-01

    Albumin-bound fatty acids is the main cause of renal damage, PPARα is responsible in the metabolism of fatty acids. Previous study found that PPARα played a protective role in fatty acids overload associated tubular injury. The aim of the present study is to investigate whether fenofibrate, a PPARα ligands, could contribute to the renoprotective action in fatty acids overload proximal tubule epithelial cells. We observed in HK-2 cells that fenofibrate significantly inhibited fatty acids bound albumin (FA-BSA) induced up-regulation of MCP-1 and IL-8. Treatment with fenofibrate attenuated renal oxidative stress induced by FA-BSA as evidenced by decreased MDA level, increased SOD activity and catalase, GPx-1 expression. FA-BSA induced apoptosis of HK-2 cells were also obviously prevented by fenofibrate. Furthermore, fenofibrate significantly increased the expression of PPARα mRNA and protein in FA-BSA treated cells. Finally, the activation of NF-kB induced by FA-BSA was markedly suppressed by fenofibrate. Taken together, our study describes a renoprotective role of fenofibrate in fatty acids associated tubular toxicity, and the transcriptional activation of PPARα and suppression of NF-kB were at least partially involved. PMID:26617775

  16. Fenofibrate, a PPARα agonist, protect proximal tubular cells from albumin-bound fatty acids induced apoptosis via the activation of NF-kB.

    PubMed

    Zuo, Nan; Zheng, Xiaoyu; Liu, Hanzhe; Ma, Xiaoli

    2015-01-01

    Albumin-bound fatty acids is the main cause of renal damage, PPARα is responsible in the metabolism of fatty acids. Previous study found that PPARα played a protective role in fatty acids overload associated tubular injury. The aim of the present study is to investigate whether fenofibrate, a PPARα ligands, could contribute to the renoprotective action in fatty acids overload proximal tubule epithelial cells. We observed in HK-2 cells that fenofibrate significantly inhibited fatty acids bound albumin (FA-BSA) induced up-regulation of MCP-1 and IL-8. Treatment with fenofibrate attenuated renal oxidative stress induced by FA-BSA as evidenced by decreased MDA level, increased SOD activity and catalase, GPx-1 expression. FA-BSA induced apoptosis of HK-2 cells were also obviously prevented by fenofibrate. Furthermore, fenofibrate significantly increased the expression of PPARα mRNA and protein in FA-BSA treated cells. Finally, the activation of NF-kB induced by FA-BSA was markedly suppressed by fenofibrate. Taken together, our study describes a renoprotective role of fenofibrate in fatty acids associated tubular toxicity, and the transcriptional activation of PPARα and suppression of NF-kB were at least partially involved. PMID:26617775

  17. The Secrets of the Iceman. Technology Learning Activity.

    ERIC Educational Resources Information Center

    Deal, Walter F., III

    1993-01-01

    This learning activity asks students to use critical thinking skills to imagine life in the late stone age, including the tools and technology that would have existed. Presents the context, the challenge, objectives, resources, material and equipment needs, and evaluation methods. (SK)

  18. Detection of antidiabetic activity by crude paratoid gland secretions from common Indian toad (bufomelano stictus)

    PubMed Central

    Neerati, Prasad

    2015-01-01

    Background: Amphibians have provided a remarkable array of biological active compounds, which are secreted from socalled granular skin glands which serve to protect the amphibians from predators due to its noxious effects on buccal tissue and at least in the case of some peptides, to protect from bacterial (or) protozoan infections. Given the respiratory and antimicrobial functions of amphibian skin, it is likely that some of the novel molecules found in amphibian granular gland secretions might be of use in the treatment of skin and respiratory infections. Secretions from common Indian toad (Bufo melanostictus) a member of Bufonidae family has the history of medicinal use however the anti-diabetic activity is not reported. The present study is aimed to determine whether paratoid gland extract have any influence on the diabetes and the pharmacokinetics and pharmacodynamics of glimepiride (GLM) in normal and diabetic rats. Materials and Methods: An aqueous and methanolic extracts of paratoid glandular secretions were prepared, air dried and used to determine the antidiabetic activity in rats. The blood sampling was done at preset time intervals between 0, 0.5, 1, 2, 4, 6, 8 and 12 h, using heparinized capillaries. The blood glucose levels are estimated by glucose oxidase-peroxidase method, and reversed-phase high-performance liquid chromatography is used to determine the pharmacokinetic parameters of GLM using glibenclamide as an internal standard. Results: Both the aqueous and methanolic extracts produced better glycemic control in diabetic rats, and methanolic extract is better than the aqueous extract. Serum concentrations of GLM increased at 2nd h, and the percentage glucose reduction is maximal at the 4th h with both aqueous and methanolic extracts of paratoid secretions of common Indian toad. Conclusions: Paratoid gland secretions of the common Indian toad is antidiabetic, in addition it has beneficial effects in combination with GLM. Further, it requires the

  19. A sensitive assay for the biosynthesis and secretion of MANF using NanoLuc activity.

    PubMed

    Norisada, Junpei; Hirata, Yoko; Amaya, Fumimasa; Kiuchi, Kazutoshi; Oh-hashi, Kentaro

    2014-07-11

    Mesencephalic astrocyte-derived neurotrophic factor (MANF) has been reported to prevent neuronal cell death caused by certain stimuli. Accordingly, the molecular features of MANF have been intensively investigated since the reporting of its cytoprotective actions. In addition to the characterization of the transcriptional regulation of MANF under pathophysiological conditions, it is important to understand its intracellular transport and secretion after translation. In this study, we developed a convenient and quantitative assay to evaluate the post-translational regulation of MANF using NanoLuc, a highly active and small luciferase. We inserted NanoLuc after the putative signal peptide sequence (SP) of MANF to construct NanoLuc-tagged MANF (SP-NL-MANF). Similar to wild-type (wt) MANF, SP-NL-MANF was secreted from transiently transfected HEK293 cells in a time-dependent manner. The overexpression of mutant Sar1 or wild-type GRP78, which has been reported to decrease wt MANF secretion, also attenuated the secretion of SP-NL-MANF. Using INS-1 cells stably expressing SP-NL-MANF, we found that the biosynthesis and secretion of SP-NL-MANF can be evaluated quantitatively using only a small number of cells. We further investigated the effects of several stimuli responsible for the expression of ER stress-induced genes on the secretion of SP-NL-MANF from INS-1 cells. Treatment with thapsigargin and high potassium significantly increased NanoLuc activity in the culture medium, but serum withdrawal dramatically down-regulated luciferase activity both inside and outside of the cells. Collectively, these results demonstrate that our method for measuring NanoLuc-tagged MANF as a secretory factor is highly sensitive and convenient not only for characterizing post-translational regulation but also for screening useful compounds that may be used to treat ER stress-related diseases such as neurodegenerative disease, ischemia and diabetes. PMID:24845376

  20. Basolateral K+ channel involvement in forskolin-activated chloride secretion in human colon.

    PubMed

    McNamara, B; Winter, D C; Cuffe, J E; O'Sullivan, G C; Harvey, B J

    1999-08-15

    1. In this study we investigated the role of basolateral potassium transport in maintaining cAMP-activated chloride secretion in human colonic epithelium. 2. Ion transport was quantified in isolated human colonic epithelium using the short-circuit current technique. Basolateral potassium transport was studied using nystatin permeabilization. Intracellular calcium measurements were obtained from isolated human colonic crypts using fura-2 spectrofluorescence imaging. 3. In intact isolated colonic strips, forskolin and prostaglandin E2 (PGE2) activated an inward transmembrane current (ISC) consistent with anion secretion (for forskolin DeltaISC = 63.8+/-6.2 microA cm(-2), n = 6; for PGE2 DeltaISC = 34.3+/-5.2 microA cm(-2), n = 6). This current was inhibited in chloride-free Krebs solution or by inhibiting basolateral chloride uptake with bumetanide and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid DIDS). 4. The forskolin- and PGE2-induced chloride secretion was inhibited by basolateral exposure to barium (5 mM), tetrapentylammonium (10 microM) and tetraethylammonium (10 mM). 5. The transepithelial current produced under an apical to serosal K+ gradient in nystatin-perforated colon is generated at the basolateral membrane by K+ transport. Forskolin failed to activate this current under conditions of high or low calcium and failed to increase the levels of intracellular calcium in isolated crypts 6. In conclusion, we propose that potassium recycling through basolateral K+ channels is essential for cAMP-activated chloride secretion. PMID:10432355

  1. Substrates Control Multimerization and Activation of the Multi-Domain ATPase Motor of Type VII Secretion

    DOE PAGESBeta

    Rosenberg, Oren S.; Dovala, Dustin; Li, Xueming; Connolly, Lynn; Bendebury, Anastasia; Finer-Moore, Janet; Holton, James; Cheng, Yifan; Stroud, Robert M.; Cox, Jeffery S.

    2015-04-09

    We report that Mycobacterium tuberculosis and Staphylococcus aureus secrete virulence factors via type VII protein secretion (T7S), a system that intriguingly requires all of its secretion substrates for activity. To gain insights into T7S function, we used structural approaches to guide studies of the putative translocase EccC, a unique enzyme with three ATPase domains, and its secretion substrate EsxB. The crystal structure of EccC revealed that the ATPase domains are joined by linker/pocket interactions that modulate its enzymatic activity. EsxB binds via its signal sequence to an empty pocket on the C-terminal ATPase domain, which is accompanied by an increasemore » in ATPase activity. Surprisingly, substrate binding does not activate EccC allosterically but, rather, by stimulating its multimerization. Thus, the EsxB substrate is also an integral T7S component, illuminating a mechanism that helps to explain interdependence of substrates, and suggests a model in which binding of substrates modulates their coordinate release from the bacterium.« less

  2. Substrates Control Multimerization and Activation of the Multi-Domain ATPase Motor of Type VII Secretion

    SciTech Connect

    Rosenberg, Oren S.; Dovala, Dustin; Li, Xueming; Connolly, Lynn; Bendebury, Anastasia; Finer-Moore, Janet; Holton, James; Cheng, Yifan; Stroud, Robert M.; Cox, Jeffery S.

    2015-04-09

    We report that Mycobacterium tuberculosis and Staphylococcus aureus secrete virulence factors via type VII protein secretion (T7S), a system that intriguingly requires all of its secretion substrates for activity. To gain insights into T7S function, we used structural approaches to guide studies of the putative translocase EccC, a unique enzyme with three ATPase domains, and its secretion substrate EsxB. The crystal structure of EccC revealed that the ATPase domains are joined by linker/pocket interactions that modulate its enzymatic activity. EsxB binds via its signal sequence to an empty pocket on the C-terminal ATPase domain, which is accompanied by an increase in ATPase activity. Surprisingly, substrate binding does not activate EccC allosterically but, rather, by stimulating its multimerization. Thus, the EsxB substrate is also an integral T7S component, illuminating a mechanism that helps to explain interdependence of substrates, and suggests a model in which binding of substrates modulates their coordinate release from the bacterium.

  3. Characteristics of hemolytic activity induced by skin secretions of the frog Kaloula pulchra hainana

    PubMed Central

    2013-01-01

    Background The hemolytic activity of skin secretions obtained by stimulating the frog Kaloula pulchra hainana with diethyl ether was tested using human, cattle, rabbit, and chicken erythrocytes. The skin secretions had a significant concentration-dependent hemolytic effect on erythrocytes. The hemolytic activity of the skin secretions was studied in the presence of osmotic protectants (polyethylene glycols and carbohydrates), cations (Mg2+, Ca2+, Ba2+, Cu2+, and K+), or antioxidants (ascorbic acid, reduced glutathione, and cysteine). Results Depending on their molecular mass, osmotic protectants effectively inhibited hemolysis. The inhibition of skin hemolysis was observed after treatment with polyethylene glycols (1000, 3400, and 6000 Da). Among divalent cations, only 1 mM Cu2+ markedly inhibited hemolytic activity. Antioxidant compounds slightly reduced the hemolytic activity. Conclusions The results suggested that skin secretions of K. pulchra hainana induce a pore-forming mechanism to form pores with a diameter of 1.36-2.0 nm rather than causing oxidative damage to the erythrocyte membrane. PMID:24499077

  4. Substrates Control Multimerization and Activation of the Multi-domain ATPase Motor of Type VII Secretion

    PubMed Central

    Rosenberg, Oren S.; Dovala, Dustin; Li, Xueming; Connolly, Lynn; Bendebury, Anastasia; Finer-Moore, Janet; Holton, James; Cheng, Yifan; Stroud, Robert M.; Cox, Jeffery S.

    2015-01-01

    Summary Mycobacterium tuberculosis and Staphylococcus aureus secrete virulence factors via Type VII protein secretion (T7S), a system that intriguingly requires all of its secretion substrates for activity. To gain insights into T7S function, we used structural approaches to guide studies of the putative translocase EccC, a unique enzyme with three ATPase domains, and its secretion substrate EsxB. The crystal structure of EccC revealed that the ATPase domains are joined by linker/pocket interactions that modulate its enzymatic activity. EsxB binds via its signal sequence to an empty pocket on the C-terminal ATPase domain, which is accompanied by an increase in ATPase activity. Surprisingly, substrate binding does not activate EccC allosterically, but rather by stimulating its multimerization. Thus, the EsxB substrate is also an integral T7S component, illuminating a mechanism that helps explain interdependence of substrates and suggests a model in which binding of substrates modulates their coordinate release from the bacterium. PMID:25865481

  5. Unfolded protein response activation reduces secretion and extracellular aggregation of amyloidogenic immunoglobulin light chain

    PubMed Central

    Cooley, Christina B.; Ryno, Lisa M.; Plate, Lars; Morgan, Gareth J.; Hulleman, John D.; Kelly, Jeffery W.; Wiseman, R. Luke

    2014-01-01

    Light-chain amyloidosis (AL) is a degenerative disease characterized by the extracellular aggregation of a destabilized amyloidogenic Ig light chain (LC) secreted from a clonally expanded plasma cell. Current treatments for AL revolve around ablating the cancer plasma cell population using chemotherapy regimens. Unfortunately, this approach is limited to the ∼70% of patients who do not exhibit significant organ proteotoxicity and can tolerate chemotherapy. Thus, identifying new therapeutic strategies to alleviate LC organ proteotoxicity should allow AL patients with significant cardiac and/or renal involvement to subsequently tolerate established chemotherapy treatments. Using a small-molecule screening approach, the unfolded protein response (UPR) was identified as a cellular signaling pathway whose activation selectively attenuates secretion of amyloidogenic LC, while not affecting secretion of a nonamyloidogenic LC. Activation of the UPR-associated transcription factors XBP1s and/or ATF6 in the absence of stress recapitulates the selective decrease in amyloidogenic LC secretion by remodeling the endoplasmic reticulum proteostasis network. Stress-independent activation of XBP1s, or especially ATF6, also attenuates extracellular aggregation of amyloidogenic LC into soluble aggregates. Collectively, our results show that stress-independent activation of these adaptive UPR transcription factors offers a therapeutic strategy to reduce proteotoxicity associated with LC aggregation. PMID:25157167

  6. Essential role of presynaptic NMDA receptors in activity-dependent BDNF secretion and corticostriatal LTP.

    PubMed

    Park, Hyungju; Popescu, Andrei; Poo, Mu-ming

    2014-12-01

    Activation of N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) in postsynaptic dendrites is required for long-term potentiation (LTP) of many excitatory synapses, but the role of presynaptic axonal NMDARs in synaptic plasticity remains to be clarified. Here we report that axonal NMDARs play an essential role in LTP induction at mouse corticostriatal synapses by triggering activity-induced presynaptic secretion of brain-derived neurotrophic factor (BDNF). Genetic depletion of either BDNF or the NMDAR subunit GluN1 specifically in cortical axons abolished corticostriatal LTP in response to theta burst stimulation (TBS). Furthermore, functional axonal NMDARs were required for TBS-triggered prolonged axonal Ca(2+) elevation and BDNF secretion, supporting the notion that activation of axonal NMDARs induces BDNF secretion via enhancing Ca(2+) signals in the presynaptic nerve terminals. These results demonstrate that presynaptic NMDARs are equally important as postsynaptic NMDARs in LTP induction of corticostriatal synapses due to their role in mediating activity-induced presynaptic BDNF secretion. PMID:25467984

  7. Immunity Against Parainfluenza-3 Virus in Cattle: Anti-Neuraminidase Activity in Serum and Nasal Secretion

    PubMed Central

    Morein, B.; Höglund, S.; Bergman, R.

    1973-01-01

    The antigenicity of two parainfluenza=3 virus strains, a “neuraminidasestrong” and a “neuraminidase-weak,” was compared. For both strains the amount of hemagglutinin units was equal. The antibody responses to neuraminidase and hemagglutinin were measured on samples of serum and nasal secretion and were found to be similar, irrespective of the strain used for immunization. Anti-neuraminidase activity was demonstrated in the gel phase of nasal secretion of immunized cattle. Immunglobulin A was found attached to the peplomers of inhibited virus by immuno-electron microscopy. Images PMID:4355138

  8. Neurotransmitter-induced inhibition of exocytosis in insulin-secreting beta cells by activation of calcineurin.

    PubMed

    Renström, E; Ding, W G; Bokvist, K; Rorsman, P

    1996-09-01

    Neurotransmitters and hormones such as somatostatin, galanin, and adrenalin reduce insulin secretion. Their inhibitory action involves direct interference with the exocytotic machinery. We have examined the molecular processes underlying this effect using high resolution measurements of cell capacitance. Suppression of exocytosis was maximal at concentrations that did not cause complete inhibition of glucose-stimulated electrical activity. This action was dependent on activation of G proteins but was not associated with inhibition of the voltage-dependent Ca2+ currents or adenylate cyclase activity. The molecular processes initiated by the agonists culminate in the activation of the Ca(2+)-dependent protein phosphatase calcineurin, and suppression of the activity of this enzyme abolishes their action on exocytosis. We propose that mechanisms similar to those we report here may contribute to adrenergic and peptidergic inhibition of secretion in other neuroendocrine cells and in nerve terminals. PMID:8816714

  9. Proteases from Lonomia obliqua venomous secretions: comparison of procoagulant, fibrin(ogen)olytic and amidolytic activities.

    PubMed

    Pinto, Antônio F M; Silva, Kátia R L M; Guimarães, Jorge A

    2006-01-01

    The hemorrhagic syndrome caused by Lonomia obliqua caterpillars is an increasing problem in Southern Brazil. The clinical profile is characterized by both hemorrhagic and pro-coagulant symptoms, constituting a paradoxical action of the venom. The effects upon blood coagulation and fibrin(ogen)olysis have been shown to result from the combined action of several active principles found mostly in the bristle extract. The present study reports quali-quantitative differences among L. obliqua secretions: Cryosecretion, hemolymph, bristle extract and tegument extract. Cryosecretion and hemolymph displayed strong amidolytic activity upon several substrates, presented moderated procoagulant activity and high fibrinogen degrading ability. Bristle and tegument extracts presented low amidolytic activity, but bristle extract showed the most potent procoagulant activity and both extracts presented low fibrinogen degrading ability. The differential involvement of these secretions during the accidents with L. obliqua can elucidate the different symptoms presented after envenomation. PMID:16360724

  10. Secretion of biologically active human interleukin 22 (IL-22) by Lactococcus lactis.

    PubMed

    Loera-Arias, María J; Villatoro-Hernández, Julio; Parga-Castillo, Miguel A; Salcido-Montenegro, Alejandro; Barboza-Quintana, Oralia; Muñoz-Maldonado, Gerardo E; Montes-de-Oca-Luna, Roberto; Saucedo-Cárdenas, Odila

    2014-12-01

    Interleukin-22 (IL-22) participates in the modulation of innate immunity and inflammation. This cytokine has important therapeutic potential, such as with ulcerative colitis, liver and lung injury, and infection, in different animal models. We generated a Lactococcus lactis strain that secretes human IL-22 under the regulation of the nisin-inducible promoter. Identification and secretion of this cytokine was demonstrated using western blots of culture supernatants from IL-22-expressing bacteria. The recombinant IL-22 protein produced by L. lactis was biologically active as determined by its ability to induce IL-10 secretion when co-cultured with a colon epithelial cell line in vitro. We consider this novel strain a promising live vaccine for various therapeutic applications. PMID:25214209

  11. Growth-regulated synthesis and secretion of biologically active nerve growth factor by human keratinocytes.

    PubMed

    Di Marco, E; Marchisio, P C; Bondanza, S; Franzi, A T; Cancedda, R; De Luca, M

    1991-11-15

    Nerve growth factor (NGF) transcripts were identified in normal human keratinocytes in primary and secondary culture. The expression of the NGF mRNA was strongly down-regulated by corticosteroids and was maximal when keratinocytes were in the exponential phase of growth. Immunofluorescence studies on growing keratinocytes colonies and on elutriated keratinocytes obtained from growing colonies and mature stratified epithelium showed specific staining of the Golgi apparatus only in basal keratinocytes in the exponential phase of growth. The keratinocyte-derived NGF was secreted in a biologically active form as assessed by neurite induction in sensory neurons obtained from chick embryo dorsal root ganglia. Based on these data we suggest that the basal keratinocyte is the cell synthesizing and secreting NGF in the human adult epidermis. The paracrine secretion of NGF by keratinocytes might have a major role in regulating innervation, lymphocyte function, and melanocyte growth and differentiation in epidermal morphogenesis as well as during wound healing. PMID:1718982

  12. Secretion of SerpinB2 from endothelial cells activated with inflammatory stimuli

    SciTech Connect

    Boncela, Joanna; Przygodzka, Patrycja; Wyroba, Elzbieta; Papiewska-Pajak, Izabela; Cierniewski, Czeslaw S.

    2013-05-01

    Due to the lack of an N-terminal signal peptide, SerpinB2 (plasminogen activator inhibitor type 2) accumulates in cells and only a small percentage of it is secreted. The extracellular concentration of SerpinB2 significantly increases during inflammation. In the present study we investigated the mechanism with which SerpinB2 can be secreted from endothelial cells activated with LPS. We evaluated the intracellular distribution of SerpinB2 by double immunogold labeling followed by a high resolution electron microscopy analysis. We found that SerpinB2 gathers in the vesicular structures and in the endothelial cell periphery. These vesicles stained positive for the trans-Golgi network marker TGN46, which is consistent with their formation by the endoplasmatic reticulum (ER) and Golgi-dependent pathways. SerpinB2 was delivered to the plasma membrane, apparently together with TGN46 in the same vesicles, which after fusion with the membranes released cargo. Secretion of SerpinB2 was partially inhibited by brefeldin A. The secreted SerpinB2 was predominantly in its nonglycosylated 43 kDa form as evaluated by Western immunoblotting. Our data suggest that increased expression of SerpinB2 by an inflammatory stimulus is sufficient to generate structures that resemble secretory vesicles. These vesicles may represent the mechanism by which high local concentrations of SerpinB2 are released at inflammation sites from endothelial cells. - Highlights: ► LPS stimulates generation of secretory vesicles containing SerpinB2. ► SerpinB2 concentrates in TGN46 positive vesicles close to the plasma membrane. ► Brefeldin A inhibits secretion of SerpinB2. ► The secreted SerpinB2 was predominantly in its nonglycosylated 43 kDa.

  13. Cytokine secretion and NK cell activity in human ADAM17 deficiency

    PubMed Central

    Chavkin, Maor; Schmiedel, Dominik; Wong, Eitan; Werner, Marion; Yaacov, Barak; Averbuch, Diana; Molho-Pessach, Vered; Stepensky, Polina; Kaynan, Noa; Bar-On, Yotam; Seidel, Einat; Yamin, Rachel; Sagi, Irit; Elpeleg, Orly; Mandelboim, Ofer

    2015-01-01

    Genetic deficiencies provide insights into gene function in humans. Here we describe a patient with a very rare genetic deficiency of ADAM17. We show that the patient's PBMCs had impaired cytokine secretion in response to LPS stimulation, correlating with the clinical picture of severe bacteremia from which the patient suffered. ADAM17 was shown to cleave CD16, a major NK killer receptor. Functional analysis of patient's NK cells demonstrated that his NK cells express normal levels of activating receptors and maintain high surface levels of CD16 following mAb stimulation. Activation of individual NK cell receptors showed that the patient's NK cells are more potent when activated directly by CD16, albeit no difference was observed in Antibody Depedent Cytotoxicity (ADCC) assays. Our data suggest that ADAM17 inhibitors currently considered for clinical use to boost CD16 activity should be cautiously applied, as they might have severe side effects resulting from impaired cytokine secretion. PMID:26683521

  14. Sustained elevated levels of circulating vasopressin selectively stimulate the proliferation of kidney tubular cells via the activation of V2 receptors.

    PubMed

    Alonso, Gérard; Galibert, Evelyne; Boulay, Véra; Guillou, Anne; Jean, Alexandra; Compan, Valérie; Guillon, Gilles

    2009-01-01

    The hypothalamic hormone vasopressin (AVP) has known mitogenic effects on various cell types. This study was designed to determine whether sustained elevated levels of circulating AVP could influence cell proliferation within adult tissues known to express different AVP receptors, including the pituitary, adrenal gland, liver, and kidney. Plasmatic AVP was chronically increased by submitting animals to prolonged hyperosmotic stimulation or implanting them with a AVP-containing osmotic minipump. After several days of either treatment, increased cell proliferation was detected only within the kidney. This kidney cell proliferation was not affected by the administration of selective V1a or V1b receptor antagonists but was either inhibited or mimicked by the administration of a selective V2 receptor antagonist or agonist, respectively. Kidney proliferative cells mostly concerned a subpopulation of differentiated tubular cells known to express the V2 receptors and were associated with the phosphorylation of ERK. These data indicate that in the adult rat, sustained elevated levels of circulating AVP stimulates the proliferation of a subpopulation of kidney tubular cells expressing the V2 receptor, providing the first illustration of a mitogenic effect of AVP via the activation of the V2 receptor subtype. PMID:18787031

  15. Broadening the Spectrum of Actin-Based Protrusive Activity Mediated by Arp2/3 Complex-Facilitated Polymerization: Motility of Cytoplasmic Ridges and Tubular Projections

    PubMed Central

    Henson, John H.; Gianakas, Anastasia D.; Henson, Lauren H.; Lakin, Christina L.; Voss, Meagen K.; Bewersdorf, Joerg; Oldenbourg, Rudolf; Morris, Robert L.

    2014-01-01

    Arp2/3 complex-facilitated actin polymerization plays an essential role in a variety of cellular functions including motility, adherence, endocytosis and trafficking. In the present study we employ the sea urchin coelomocyte experimental model system to test the hypotheses that Arp2/3 complex-nucleated actin assembly mediates the motility of two unusual cellular protrusions; the cytoplasmic ridges present during coelomocyte spreading, and inducible, tubular-shaped, and neurite-like projections. Our investigations couple pharmacological manipulation employing inhibitors of actin polymerization and the Arp2/3 complex with a wide array of imaging methods including digitally enhanced phase contrast, DIC and polarization light microscopy of live cells; conventional, confocal and super-resolution light microscopy of fluorescently labeled cells; and scanning and transmission electron microscopy. Taken together, the results of this study indicate that Arp2/3 complex-facilitated actin polymerization underlies the motility of coelomocyte cytoplasmic ridges and tubular projections, that these processes are related to each other, and that they have been preliminarily identified in other cell types. The results also highlight the broad spectrum of actin-based protrusive activities dependent on the Arp2/3 complex and provide additional insights into the pervasive nature of this ubiquitous actin nucleator. Furthermore we provide the first evidence of a possible mechanistic difference between the impacts of the small molecule drugs BDM and CK666 on the Arp2/3 complex. PMID:25111797

  16. Antimicrobial activity of the pygidial gland secretion of three ground beetle species (Insecta: Coleoptera: Carabidae)

    NASA Astrophysics Data System (ADS)

    Nenadić, Marija; Soković, Marina; Glamočlija, Jasmina; Ćirić, Ana; Perić-Mataruga, Vesna; Ilijin, Larisa; Tešević, Vele; Vujisić, Ljubodrag; Todosijević, Marina; Vesović, Nikola; Ćurčić, Srećko

    2016-04-01

    The antimicrobial properties of the pygidial gland secretions released by the adults of the three ground beetle species, Carabus ullrichii, C. coriaceus, and Abax parallelepipedus, have been tested. Microdilution method was applied for detection of minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), and minimal fungicidal concentrations (MFCs). Additionally, morpho-histology of the pygidial glands is investigated. We have tested 16 laboratory and clinical strains of human pathogens—eight bacterial both gram-positive and gram-negative species and eight fungal species. The pygidial secretion samples of C. ullrichii have showed the strongest antimicrobial effect against all strains of treated bacteria and fungi. Staphylococcus aureus, Lysteria monocytogenes, and Salmonella typhimurium proved to be the most sensitive bacterial strains. Penicillium funiculosum proved to be the most sensitive micromycete, while P. ochrochloron and P. verrucosum var . cyclopium the most resistant micromycetes. The pygidial secretion of C. coriaceus has showed antibacterial potential solely against Pseudomonas aeruginosa and antifungal activity against Aspergillus fumigatus, A. versicolor, A. ochraceus, and P. ochrochloron. Antibacterial properties of pygidial gland secretion of A. parallelepipedus were achieved against P. aeruginosa, while antifungal activity was detected against five of the eight tested micromycetes (A. fumigatus, A. versicolor, A. ochraceus, Trichoderma viride, and P. verrucosum var . cyclopium). Commercial antibiotics Streptomycin and Ampicillin and mycotics Ketoconazole and Bifonazole, applied as the positive controls, showed higher antibacterial/antifungal properties for all bacterial and fungal strains. The results of this observation might have a significant impact on the environmental aspects and possible medical purpose in the future.

  17. Defensive behaviour and biological activities of the abdominal secretion in the ant Crematogaster scutellaris (Hymenoptera: Myrmicinae).

    PubMed

    Marlier, J F; Quinet, Y; de Biseau, J C

    2004-11-30

    Using bioassays, the defensive behaviour of Crematogaster scutellaris and the biological activities of its abdominal secretion were investigated. Beside classical aggressive behaviours such as grips, C. scutellaris workers performed frequent characteristic gaster flexions during interspecific encounters, sometimes tempting to apply their abdominal secretion topically on the enemy. The toxicity of the venom of C. scutellaris to other ants greatly differed among the species tested, some being killed after the topical application of only three droplets, while others were quite resistant to a dose of 90 droplets. All ant species tested were strongly and immediately repelled by a contact between their antennae or mouthparts with the venom of C. scutellaris. Abdominal secretion was never used during intraspecific interference and workers were resistant to a topical application of the venom of their own species. Intraspecific repellency was significant but moderate compared to interspecific one. Workers of C. scutellaris were never seen using their venom during prey capture. In conclusion, the main biological activity of the abdominal secretion of C. scutellaris seems to be its repellency to other ant species. This is supported by field experiments showing that Pheidole pallidula foragers were efficiently repelled at coexploited baits, allowing the monopolization of most prey by C. scutellaris. PMID:15518992

  18. Secretion of SerpinB2 from endothelial cells activated with inflammatory stimuli.

    PubMed

    Boncela, Joanna; Przygodzka, Patrycja; Wyroba, Elzbieta; Papiewska-Pajak, Izabela; Cierniewski, Czeslaw S

    2013-05-01

    Due to the lack of an N-terminal signal peptide, SerpinB2 (plasminogen activator inhibitor type 2) accumulates in cells and only a small percentage of it is secreted. The extracellular concentration of SerpinB2 significantly increases during inflammation. In the present study we investigated the mechanism with which SerpinB2 can be secreted from endothelial cells activated with LPS. We evaluated the intracellular distribution of SerpinB2 by double immunogold labeling followed by a high resolution electron microscopy analysis. We found that SerpinB2 gathers in the vesicular structures and in the endothelial cell periphery. These vesicles stained positive for the trans-Golgi network marker TGN46, which is consistent with their formation by the endoplasmatic reticulum (ER) and Golgi-dependent pathways. SerpinB2 was delivered to the plasma membrane, apparently together with TGN46 in the same vesicles, which after fusion with the membranes released cargo. Secretion of SerpinB2 was partially inhibited by brefeldin A. The secreted SerpinB2 was predominantly in its nonglycosylated 43kDa form as evaluated by Western immunoblotting. Our data suggest that increased expression of SerpinB2 by an inflammatory stimulus is sufficient to generate structures that resemble secretory vesicles. These vesicles may represent the mechanism by which high local concentrations of SerpinB2 are released at inflammation sites from endothelial cells. PMID:23474086

  19. Biological activities of skin and parotoid gland secretions of bufonid toads (Bufo bufo, Bufo verrucosissimus and Bufotes variabilis) from Turkey.

    PubMed

    Nalbantsoy, Ayse; Karış, Mert; Yalcin, Husniye Tansel; Göçmen, Bayram

    2016-05-01

    Toad glandular secretions and skin extractions contain numerous natural agents which may provide unique resources for novel drug development. Especially the skin-parotoid gland secretions of toads from genus Bufo contain as many as 86 different types of active compounds, each with the potential of becoming a potent drug. In the present study, crude skin-parotoid gland secretions from Bufo bufo, Bufo verrucosissimus and Bufotes variabilis from Turkey were screened against various cancer cells together with normal cells using MTT assay. Furthermore, the antimicrobial properties of skin secretions were tested on selected bacterial and fungal species for assessing the possible medical applications. Antimicrobial activity of skin secretions was studied by determining minimal inhibitory concentration (MIC) in broth dilution method. Hemolytic activity of each skin-secretion was also estimated for evaluating pharmaceutical potential. Both skin-parotoid gland secretions showed high cytotoxic effect on all cancerous and non-cancerous cell lines with IC50 values varying between <0.1μg/ml and 6.02μg/ml. MIC results of antimicrobial activity tests were found to be between 3.9μg/ml and 250μg/ml. No hemolytic activities on rabbit red blood cells at concentrations between 0.5μg/ml and 50μg/ml were observed. In conclusion, skin-parotoid secretions of bufonid toads might be remarkable candidates for anti-cancer and antimicrobial agents without hemolytic activities. PMID:27133069

  20. Micro-Tubular Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; Anderson, Everett B.; Jayne, Karen D.; Woodman, Alan S.

    2004-01-01

    Micro-tubular fuel cells that would operate at power levels on the order of hundreds of watts or less are under development as alternatives to batteries in numerous products - portable power tools, cellular telephones, laptop computers, portable television receivers, and small robotic vehicles, to name a few examples. Micro-tubular fuel cells exploit advances in the art of proton-exchange-membrane fuel cells. The main advantage of the micro-tubular fuel cells over the plate-and-frame fuel cells would be higher power densities: Whereas the mass and volume power densities of low-pressure hydrogen-and-oxygen-fuel plate-and-frame fuel cells designed to operate in the targeted power range are typically less than 0.1 W/g and 0.1 kW/L, micro-tubular fuel cells are expected to reach power densities much greater than 1 W/g and 1 kW/L. Because of their higher power densities, micro-tubular fuel cells would be better for powering portable equipment, and would be better suited to applications in which there are requirements for modularity to simplify maintenance or to facilitate scaling to higher power levels. The development of PEMFCs has conventionally focused on producing large stacks of cells that operate at typical power levels >5 kW. The usual approach taken to developing lower-power PEMFCs for applications like those listed above has been to simply shrink the basic plate-and-frame configuration to smaller dimensions. A conventional plate-and-frame fuel cell contains a membrane/electrode assembly in the form of a flat membrane with electrodes of the same active area bonded to both faces. In order to provide reactants to both electrodes, bipolar plates that contain flow passages are placed on both electrodes. The mass and volume overhead of the bipolar plates amounts to about 75 percent of the total mass and volume of a fuel-cell stack. Removing these bipolar plates in the micro-tubular fuel cell significantly increases the power density.

  1. Selective optogenetic activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone secretion

    PubMed Central

    Han, Su Young; McLennan, Timothy; Czieselsky, Katja; Herbison, Allan E.

    2015-01-01

    Normal reproductive functioning in mammals depends upon gonadotropin-releasing hormone (GnRH) neurons generating a pulsatile pattern of gonadotropin secretion. The neural mechanism underlying the episodic release of GnRH is not known, although recent studies have suggested that the kisspeptin neurons located in the arcuate nucleus (ARN) may be involved. In the present experiments we expressed channelrhodopsin (ChR2) in the ARN kisspeptin population to test directly whether synchronous activation of these neurons would generate pulsatile luteinizing hormone (LH) secretion in vivo. Characterization studies showed that this strategy targeted ChR2 to 70% of all ARN kisspeptin neurons and that, in vitro, these neurons were activated by 473-nm blue light with high fidelity up to 30 Hz. In vivo, the optogenetic activation of ARN kisspeptin neurons at 10 and 20 Hz evoked high amplitude, pulse-like increments in LH secretion in anesthetized male mice. Stimulation at 10 Hz for 2 min was sufficient to generate repetitive LH pulses. In diestrous female mice, only 20-Hz activation generated significant increments in LH secretion. In ovariectomized mice, 5-, 10-, and 20-Hz activation of ARN kisspeptin neurons were all found to evoke LH pulses. Part of the sex difference, but not the gonadal steroid dependence, resulted from differential pituitary sensitivity to GnRH. Experiments in kisspeptin receptor-null mice, showed that kisspeptin was the critical neuropeptide underlying the ability of ARN kisspeptin neurons to generate LH pulses. Together these data demonstrate that synchronized activation of the ARN kisspeptin neuronal population generates pulses of LH. PMID:26443858

  2. Modulation of Ca2+ oscillation and melatonin secretion by BKCa channel activity in rat pinealocytes.

    PubMed

    Mizutani, Hiroya; Yamamura, Hisao; Muramatsu, Makoto; Hagihara, Yumiko; Suzuki, Yoshiaki; Imaizumi, Yuji

    2016-05-01

    The pineal glands regulate circadian rhythm through the synthesis and secretion of melatonin. The stimulation of nicotinic acetylcholine receptor due to parasympathetic nerve activity causes an increase in intracellular Ca(2+) concentration and eventually downregulates melatonin production. Our previous report shows that rat pinealocytes have spontaneous and nicotine-induced Ca(2+) oscillations that are evoked by membrane depolarization followed by Ca(2+) influx through voltage-dependent Ca(2+) channels (VDCCs). These Ca(2+) oscillations are supposed to contribute to the inhibitory mechanism of melatonin secretion. Here we examined the involvement of large-conductance Ca(2+)-activated K(+) (BKCa) channel conductance on the regulation of Ca(2+) oscillation and melatonin production in rat pinealocytes. Spontaneous Ca(2+) oscillations were markedly enhanced by BKCa channel blockers (1 μM paxilline or 100 nM iberiotoxin). Nicotine (100 μM)-induced Ca(2+) oscillations were also augmented by paxilline. In contrast, spontaneous Ca(2+) oscillations were abolished by BKCa channel opener [3 μM 12,14-dichlorodehydroabietic acid (diCl-DHAA)]. Under whole cell voltage-clamp configurations, depolarization-elicited outward currents were significantly activated by diCl-DHAA and blocked by paxilline. Expression analyses revealed that the α and β3 subunits of BKCa channel were highly expressed in rat pinealocytes. Importantly, the activity of BKCa channels modulated melatonin secretion from whole pineal gland of the rat. Taken together, BKCa channel activation attenuates these Ca(2+) oscillations due to depolarization-synchronized Ca(2+) influx through VDCCs and results in a recovery of reduced melatonin secretion during parasympathetic nerve activity. BKCa channels may play a physiological role for melatonin production via a negative-feedback mechanism. PMID:26791489

  3. Secreted beta-amyloid precursor protein stimulates mitogen-activated protein kinase and enhances tau phosphorylation.

    PubMed Central

    Greenberg, S M; Koo, E H; Selkoe, D J; Qiu, W Q; Kosik, K S

    1994-01-01

    Biological effects related to cell growth, as well as a role in the pathogenesis of Alzheimer disease, have been ascribed to the beta-amyloid precursor protein (beta-APP). Little is known, however, about the intracellular cascades that mediate these effects. We report that the secreted form of beta-APP potently stimulates mitogen-activated protein kinases (MAPKs). Brief exposure of PC-12 pheochromocytoma cells to beta-APP secreted by transfected Chinese hamster ovary cells stimulated the 43-kDa form of MAPK by > 10-fold. Induction of a dominant inhibitory form of ras in a PC12-derived cell line prevented the stimulation of MAPK by secreted beta-APP, demonstrating the dependence of the effect upon p21ras. Because the microtubule-associated protein tau is hyperphosphorylated in Alzheimer disease, we sought and found a 2-fold enhancement in tau phosphorylation associated with the beta-APP-induced MAPK stimulation. In the ras dominant inhibitory cell line, beta-APP failed to enhance phosphorylation of tau. The data presented here provide a link between secreted beta-APP and the phosphorylation state of tau. Images PMID:8041753

  4. PDIA6 regulates insulin secretion by selectively inhibiting the RIDD activity of IRE1.

    PubMed

    Eletto, Daniela; Eletto, Davide; Boyle, Sarah; Argon, Yair

    2016-02-01

    Protein disulfide isomerase A6 (PDIA6) interacts with protein kinase RNA-like endoplasmic reticulum kinase (PERK) and inositol requiring enzyme (IRE)-1 and inhibits their unfolded protein response signaling. In this study, shRNA silencing of PDIA6 expression in insulin-producing mouse cells reduced insulin production (5-fold) and, consequently, glucose-stimulated insulin secretion (3-4-fold). This inhibition of insulin release was independent of the PDIA6-PERK interaction or PERK activity. Acute inhibition of PERK did not change the short-term response of β cells to glucose. Rather, PDIA6 affected insulin secretion by modulating one of the activities of IRE1. At 11 mM glucose and lower, the regulated IRE1-dependent decay (RIDD) of the mRNA activity of IRE1 was activated, but not its X-box binding protein (XBP)-1 splicing activity. In the absence of PDIA6, RIDD activity toward insulin transcripts was enhanced up to 4-fold, as shown by molecular assays in cultured cells and the use of a fluorescent reporter in intact islets. Such physiologic activation of IRE1 by glucose contrasted with IRE1 activation by chemical stress, when both IRE1 activities were induced. Thus, whereas the stimulus determines the quality of IRE1 signaling, PDIA6 attenuates multiple enzymatic activities of IRE1, maintaining its signaling within a physiologically tolerable range. PMID:26487694

  5. Nonopiate active proenkephalin-derived peptides are secreted by T helper cells.

    PubMed

    Roth, K A; Lorenz, R G; Unanue, R A; Weaver, C T

    1989-10-01

    Recent investigations have shown that the neuroendocrine and immune systems profoundly affect each other. In part, these interactions occur via common chemical messengers and receptors. One possible shared chemical messenger is the opioid precursor preproenkephalin, for which high concentrations of messenger RNA are present in brain, adrenal, and activated T helper cells. Because the biologic action of most peptide messengers depends on the posttranslational processing of the precursor, we have examined T helper cell lines for the production of proenkephalin-derived peptides. These peptides were characterized by multiple radioimmunoassays, gel filtration chromatography, and opiate radioreceptor assays. We found that activated T helper cells secrete significant concentrations of high-molecular-weight, opiate-inactive peptides, which are distinct from the proenkephalin-derived peptides of the neuroendocrine system. These studies clearly indicate cell-specific processing of proenkephalin, and suggest that the T helper cell-secreted products may have nonopiate receptor-mediated actions. PMID:2529160

  6. Root tip-dependent, active riboflavin secretion by Hyoscyamus albus hairy roots under iron deficiency.

    PubMed

    Higa, Ataru; Miyamoto, Erika; ur Rahman, Laiq; Kitamura, Yoshie

    2008-04-01

    Hyoscyamus albus hairy roots with/without an exogenous gene (11 clones) were established by inoculation of Agrobacterium rhizogenes. All clones cultured under iron-deficient condition secreted riboflavin from the root tips into the culture medium and the productivity depended on the number and size of root tips among the clones. A decline of pH was observed before riboflavin production and root development. By studying effects of proton-pump inhibitors, medium acidification with external organic acid, and riboflavin addition upon pH change and riboflavin productivity, we indicate that riboflavin efflux is not directly connected to active pH reduction, and more significantly active riboflavin secretion occurs as a response to an internal requirement in H. albus hairy roots under iron deficiency. PMID:18367404

  7. A fluorescent lipid analogue can be used to monitor secretory activity and for isolation of mammalian secretion mutants.

    PubMed Central

    Ktistakis, N T; Kao, C Y; Wang, R H; Roth, M G

    1995-01-01

    The use of reporter proteins to study the regulation of secretion has often been complicated by posttranslational processing events that influence the secretion of certain proteins, but are not part of the cellular mechanisms that specifically regulate secretion. This has been a particular limitation for the isolation of mammalian secretion mutants, which has typically been a slow process. To provide a reporter of secretory activity independent of protein processing events, cells were labeled with the fluorescent lipid analogue C5-DMB-ceramide (ceramide coupled to the fluorophore boron dipyrromethene difluoride) and its secretion was followed by fluorescence microscopy and fluorescence-activated cell sorting. Brefeldin A, which severely inhibits secretion in Chinese hamster ovary cells, blocked secretion of C5-DMB-ceramide. At high temperature, export of C5-DMB-ceramide was inhibited in HRP-1 cells, which have a conditional defect in secretion. Using C5-DMB-ceramide as a reporter of secretory activity, several different pulse-chase protocols were designed that selected mutant Chinese hamster ovary cells that were resistant to the drug brefeldin A and others that were defective in the transport of glycoproteins to the cell surface. Mutant cells of either type were identified in a mutagenized population at a frequency of 10(-6). Thus, the fluorescent lipid C5-DMB-ceramide can be used as a specific marker of secretory activity, providing an efficient, general approach for isolating mammalian cells with defects in the secretory pathway. Images PMID:7787242

  8. Monosodium Urate Activates Src/Pyk2/PI3 Kinase and Cathepsin Dependent Unconventional Protein Secretion From Human Primary Macrophages*

    PubMed Central

    Välimäki, Elina; Miettinen, Juho J.; Lietzén, Niina; Matikainen, Sampsa; Nyman, Tuula A.

    2013-01-01

    Monosodium urate (MSU) is an endogenous danger signal that is crystallized from uric acid released from injured cells. MSU is known to activate inflammatory response in macrophages but the molecular mechanisms involved have remained uncharacterized. Activated macrophages start to secrete proteins to activate immune response and to recruit other immune cells to the site of infection and/or tissue damage. Secretome characterization after activation of innate immune system is essential to unravel the details of early phases of defense responses. Here, we have analyzed the secretome of human primary macrophages stimulated with MSU using quantitative two-dimensional gel electrophoresis based proteomics as well as high-throughput qualitative GeLC-MS/MS approach combining protein separation by SDS-PAGE and protein identification by liquid chromatography-MS/MS. Both methods showed that MSU stimulation induced robust protein secretion from lipopolysaccharide-primed human macrophages. Bioinformatic analysis of the secretome data showed that MSU stimulation strongly activates unconventional, vesicle mediated protein secretion. The unconventionally secreted proteins included pro-inflammatory cytokines like IL-1β and IL-18, interferon-induced proteins, and danger signal proteins. Also active forms of lysosomal proteases cathepsins were secreted on MSU stimulation, and cathepsin activity was essential for MSU-induced unconventional protein secretion. Additionally, proteins associated to phosphorylation events including Src family tyrosine kinases were increased in the secretome of MSU-stimulated cells. Our functional studies demonstrated that Src, Pyk2, and PI3 kinases act upstream of cathepsins to activate the overall protein secretion from macrophages. In conclusion, we provide the first comprehensive characterization of protein secretion pathways activated by MSU in human macrophages, and reveal a novel role for cathepsins and Src, Pyk2, PI3 kinases in the activation of

  9. Viability, Apoptosis, Proliferation, Activation, and Cytokine Secretion of Human Keratoconus Keratocytes after Cross-Linking

    PubMed Central

    Stachon, Tanja; Wang, Jiong; Seitz, Berthold; Szentmáry, Nóra

    2015-01-01

    Purpose. The purpose of this study was to determine the impact of cross-linking (CXL) on viability, apoptosis, proliferation, activation, and cytokine secretion of human keratoconus (KC) keratocytes, in vitro. Methods. Primary KC keratocytes were cultured in DMEM/Ham's F12 medium supplemented with 10% FCS and underwent UVA illumination (370 nm, 2 J/cm2) during exposure to 0.1% riboflavin and 20% Dextran in PBS. Twenty-four hours after CXL, viability was assessed using Alamar blue assay; apoptosis using APO-DIRECT Kit; proliferation using ELISA-BrdU kit; and CD34 and alpha-smooth muscle actin (α-SMA) expression using flow cytometry. Five and 24 hours after CXL, FGFb, HGF, TGFβ1, VEGF, KGF, IL-1β, IL-6, and IL-8 secretion was measured using enzyme-linked-immunoabsorbent assay (ELISA). Results. Following CXL, cell viability and proliferation decreased (P < 0.05; P = 0.009), the percentage of apoptotic keratocytes increased (P < 0.05) significantly, and CD34 and α-SMA expression remained unchanged (P > 0.06). Five hours after CXL, FGFb secretion increased significantly (P = 0.037); however no other cytokine secretion differed significantly from controls after 5 or 24 hours (P > 0.12). Conclusions. Cross-linking decreases viability, triggers apoptosis, and inhibits proliferation, without an impact on multipotent hematopoietic stem cell transformation and myofibroblastic transformation of KC keratocytes. CXL triggers FGFb secretion of KC keratocytes transiently (5 hours), normalizing after 24 hours. PMID:25699261

  10. New insights into the biological activity and secretion properties of a polypeptide derived from tilapia somatotropin.

    PubMed

    Acosta, Jannel; Carpio, Yamila; Morales, Reynold; Aguila, Julio César; Acanda, Yosvani; Herrera, Fidel; Estrada, Mario P

    2010-08-01

    In a previous study, we unexpectedly found that tilapia growth hormone (tiGH) secreted to the culture media by transformed cells of the yeast Pichia pastoris lacks 46 amino acids from the C-terminal end. In the present study, we cloned the exact fragment that code for this truncated variant and demonstrated its growth promoting activity in goldfish when it's administered by immersion bath. Furthermore, a better characterization of this polypeptide was performed. Administration of the polypeptide derived from tiGH increased superoxide anion production and has a mitogenic effect on peripheral blood leukocytes. This molecule binds to liver membranes proteins in vitro in a saturable manner. Beside, we cloned and expressed tiGH and its truncated variant in mammalian cells using the signal peptide of this hormone and we observed that the secretion was drastically reduced in the truncated tiGH as compared to the intact molecule. Truncated tilapia growth hormone lacking the helix 4 and two disulfide loops is still a bioactive hormone, suggesting that the disulfide bonds and the helix 4 are not essential for the biological activities examined in this work. However, the growth hormone C-terminal portion seems to be essential for this hormone to be secreted by cultured cells in vitro. PMID:20382254

  11. Cardiac myocyte–secreted cAMP exerts paracrine action via adenosine receptor activation

    PubMed Central

    Sassi, Yassine; Ahles, Andrea; Truong, Dong-Jiunn Jeffery; Baqi, Younis; Lee, Sang-Yong; Husse, Britta; Hulot, Jean-Sébastien; Foinquinos, Ariana; Thum, Thomas; Müller, Christa E.; Dendorfer, Andreas; Laggerbauer, Bernhard; Engelhardt, Stefan

    2014-01-01

    Acute stimulation of cardiac β-adrenoceptors is crucial to increasing cardiac function under stress; however, sustained β-adrenergic stimulation has been implicated in pathological myocardial remodeling and heart failure. Here, we have demonstrated that export of cAMP from cardiac myocytes is an intrinsic cardioprotective mechanism in response to cardiac stress. We report that infusion of cAMP into mice averted myocardial hypertrophy and fibrosis in a disease model of cardiac pressure overload. The protective effect of exogenous cAMP required adenosine receptor signaling. This observation led to the identification of a potent paracrine mechanism that is dependent on secreted cAMP. Specifically, FRET-based imaging of cAMP formation in primary cells and in myocardial tissue from murine hearts revealed that cardiomyocytes depend on the transporter ABCC4 to export cAMP as an extracellular signal. Extracellular cAMP, through its metabolite adenosine, reduced cardiomyocyte cAMP formation and hypertrophy by activating A1 adenosine receptors while delivering an antifibrotic signal to cardiac fibroblasts by A2 adenosine receptor activation. Together, our data reveal a paracrine role for secreted cAMP in intercellular signaling in the myocardium, and we postulate that secreted cAMP may also constitute an important signal in other tissues. PMID:25401477

  12. Characterization and Biological Activities of Ocellatin Peptides from the Skin Secretion of the Frog Leptodactylus pustulatus.

    PubMed

    Marani, Mariela Mirta; Dourado, Flávio Santos; Quelemes, Patrick Veras; de Araujo, Alyne Rodrigues; Perfeito, Márcia Luana Gomes; Barbosa, Eder Alves; Véras, Leiz Maria Costa; Coelho, Andreia Luísa Rodrigues; Andrade, Etielle Barroso; Eaton, Peter; Longo, João Paulo Figueiró; Azevedo, Ricardo Bentes; Delerue-Matos, Cristina; Leite, José Roberto S A

    2015-07-24

    Eight new peptides were isolated from the skin secretion of the frog Leptodactylus pustulatus and their amino acid sequences determined by de novo sequencing and by cDNA cloning. Structural similarities between them and other antimicrobial peptides from the skin secretion of Leptodactylus genus frogs were found. Ocellatins-PT1 to -PT5 (25 amino acid residues) are amidated at the C-terminus, while ocellatins-PT6 to -PT8 (32 amino acid residues) have free carboxylates. Antimicrobial activity, hemolytic tests, and cytotoxicity against a murine fibroblast cell line were investigated. All peptides, except for ocellatin-PT2, have antimicrobial activity against at least one Gram-negative strain. Ocellatin-PT8 inhibited the growth of Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Salmonella choleraesuis strains with MICs in the 60-240 μM range. No significant effect was observed in human erythrocytes and in a murine fibroblast cell line after exposure to the peptides at MICs. A comparison between sequences obtained by both direct HPLC-MS de novo sequencing and cDNA cloning demonstrates the secretion of mature peptides derived from a pre-pro-peptide structure. PMID:26107622

  13. Oxytocin-secreting system: A major part of the neuroendocrine center regulating immunologic activity.

    PubMed

    Wang, Ping; Yang, Hai-Peng; Tian, Shujun; Wang, Liwei; Wang, Stephani C; Zhang, Fengmin; Wang, Yu-Feng

    2015-12-15

    Interactions between the nervous system and immune system have been studied extensively. However, the mechanisms underlying the neural regulation of immune activity, particularly the neuroendocrine regulation of immunologic functions, remain elusive. In this review, we provide a comprehensive examination of current evidence on interactions between the immune system and hypothalamic oxytocin-secreting system. We highlight the fact that oxytocin may have significant effects in the body, beyond its classical functions in lactation and parturition. Similar to the hypothalamo-pituitary-adrenal axis, the oxytocin-secreting system closely interacts with classical immune system, integrating both neurochemical and immunologic signals in the central nervous system and in turn affects immunologic defense, homeostasis, and surveillance. Lastly, this review explores therapeutic potentials of oxytocin in treating immunologic disorders. PMID:26616885

  14. Antimicrobial activities of components of the glandular secretions of leaf cutting ants of the genus Atta.

    PubMed

    Mendonça, Adriana de Lima; da Silva, Carlos Eduardo; de Mesquita, Fernando Lucas Torres; Campos, Rousseau da Silva; Do Nascimento, Ruth R; Ximenes, Eulália Camelo Pessoa de Azevedo; Sant'Ana, Antônio Euzébio G

    2009-05-01

    The secretions of the mandibular and metapleural glands of leaf cutting ants contain antimicrobial substances that protect the mutualistic fungal colony within the nest from attack by parasitic micro-organisms. The major constituents of these secretions (citral, 4-methyl-3-heptanol, 2-heptanone, 3-octanone, 4-methyl-2-heptanone, beta-citronellol, geraniol, phenylacetic, indolacetic, hexanoic and octanoic acids were tested against resistant strains of the human pathogens, Escherichia coli, Staphylococcus aureus and Candida albicans. Assays were carried out using filter paper discs impregnated with either hexane or water solutions of the analytes in the concentration range 250-6,000 ng/microl. Although most of the tested compounds presented strong antibacterial and antifungal activities, citral, geraniol, 4-methyl-3-heptanol, hexanoic and octanoic acids were the most effective, particularly against C. albicans. The results suggest that these compounds may be of potential value as antibiotics in the treatment of human candidiasis. PMID:19214771

  15. Soluble HLA class I antigen secretion by normal lymphocytes: relationship with cell activation and effect of interferon-gamma.

    PubMed Central

    Brieva, J A; Villar, L M; Leoro, G; Alvarez-Cermeño, J C; Roldán, E; Gonzalez-Porqué, P

    1990-01-01

    HLA class I antigens are thought to be integral membrane proteins. However, soluble forms of these molecules have been detected. Our laboratory has recently shown that the predominant form of these soluble proteins present in human serum, spleen tissue and culture supernatant of activated lymphocytes exhibits molecular weight and structure similar to classical HLA class I antigens, but lacks HLA A or B polymorphic determinants. In the present study, the secretion of such soluble proteins by lymphocytes has been further explored. Phytohaemagglutinin-stimulated normal lymphocytes secrete considerable quantities of soluble HLA (sHLA) class I proteins. This secretion seems to be a general property of lymphocytes, since activation of T as well as B cells by appropriate mitogens equally induce sHLA I secretion. Lymphocytes require RNA and protein synthesis, but not DNA synthesis, for the secretion to occur. Kinetic studies reveal that maximal sHLA I secretion precedes the peak of DNA synthesis by 24 h. In vitro stimulation with antigens or alloantigens also provokes sHLA I secretion. Moreover, this phenomenon has also been detected for in vivo-activated lymphocytes, as enhanced spontaneous sHLA I secretion was observed in cultures of low-density blastic B and T cells, and of blood lymphocytes obtained from normal subjects who had received a booster immunization 5 days earlier. Interferon-gamma (IFN-gamma) increases the expression of membrane-bound class I antigens but does not induce any sHLA I secretion, suggesting that both molecules are under different regulatory mechanisms. Our results indicate that human lymphocytes, upon stimulation, actively secrete considerable amounts of a soluble form of these biologically relevant proteins. PMID:2122936

  16. Inhibition of inflammasome activation by Coxiella burnetii type IV secretion system effector IcaA

    PubMed Central

    Cunha, Larissa D.; Ribeiro, Juliana M.; Fernandes, Talita D.; Massis, Liliana M.; Khoo, Chen Ai; Moffatt, Jennifer H.; Newton, Hayley J.; Roy, Craig R.; Zamboni, Dario S.

    2015-01-01

    Coxiella burnetii is a highly infectious bacterium that promotes its own replication in macrophages by inhibiting several host cell responses. Here, we show that C. burnetii inhibits caspase-1 activation in primary mouse macrophages. By using co-infection experiments, we determine that the infection of macrophages with C. burnetii inhibits the caspase-11-mediated non-canonical activation of the NLRP3 inflammasome induced by subsequent infection with Escherichia coli or Legionella pneumophila. Genetic screening using flagellin mutants of L. pneumophila as a surrogate host, reveals a novel C. burnetii gene (IcaA) involved in the inhibition of caspase activation. Expression of IcaA in L. pneumophila inhibited the caspase-11 activation in macrophages. Moreover, icaA- mutants of C. burnetii failed to suppress the caspase-11-mediated inflammasome activation induced by L. pneumophila. Our data reveal IcaA as a novel C. burnetii effector protein that is secreted by the Dot/Icm type IV secretion system and interferes with the caspase-11-induced, non-canonical activation of the inflammasome. PMID:26687278

  17. STAT3 Impairs STAT5 Activation in the Development of IL-9-Secreting T Cells.

    PubMed

    Olson, Matthew R; Verdan, Felipe Fortino; Hufford, Matthew M; Dent, Alexander L; Kaplan, Mark H

    2016-04-15

    Th cell subsets develop in response to multiple activating signals, including the cytokine environment. IL-9-secreting T cells develop in response to the combination of IL-4 and TGF-β, although they clearly require other cytokine signals, leading to the activation of transcription factors including STAT5. In Th17 cells, there is a molecular antagonism of STAT5 with STAT3 signaling, although whether this paradigm exists in other Th subsets is not clear. In this paper, we demonstrate that STAT3 attenuates the ability of STAT5 to promote the development of IL-9-secreting T cells. We demonstrate that production of IL-9 is increased in the absence of STAT3 and cytokines that result in a sustained activation of STAT3, including IL-6, have the greatest potency in repressing IL-9 production in a STAT3-dependent manner. Increased IL-9 production in the absence of STAT3 correlates with increased endogenous IL-2 production and STAT5 activation, and blocking IL-2 responses eliminates the difference in IL-9 production between wild-type and STAT3-deficient T cells. Moreover, transduction of developing Th9 cells with a constitutively active STAT5 eliminates the ability of IL-6 to reduce IL-9 production. Thus, STAT3 functions as a negative regulator of IL-9 production through attenuation of STAT5 activation and function. PMID:26976954

  18. The peptide LSARLAF causes platelet secretion and aggregation by directly activating the integrin alphaIIbbeta3.

    PubMed Central

    Derrick, J M; Taylor, D B; Loudon, R G; Gartner, T K

    1997-01-01

    A novel peptide (designed to bind to alphaIIbbeta3) caused platelet aggregation and aggregation-independent secretion of the contents of alpha-granules in an alphaIIbbeta3-dependent fashion. The agonist peptide induced secretion in the presence of prostaglandin E1. In cell-free assays, alphaIIbbeta3 bound specifically to immobilized agonist peptide and the peptide enhanced the binding of fibrinogen to immobilized alphaIIbbeta3. The agonist peptide apparently activates alphaIIbbeta3 by directly inducing a conformational change in the receptor. This change activates the platelets and causes secretion in a manner independent of fibrinogen binding. PMID:9230107

  19. Electrical activity-triggered glucagon-like peptide-1 secretion from primary murine L-cells

    PubMed Central

    Rogers, G J; Tolhurst, G; Ramzan, A; Habib, A M; Parker, H E; Gribble, F M; Reimann, F

    2011-01-01

    Glucagon like peptide 1 (GLP-1) based therapies are now widely used for the treatment of type 2 diabetes. Developing our understanding of intestinal GLP-1 release may facilitate the development of new therapeutics aimed at targeting the GLP-1 producing L-cells. This study was undertaken to characterise the electrical activity of primary L-cells and the importance of voltage gated sodium and calcium channels for GLP-1 secretion. Primary murine L-cells were identified and purified using transgenic mice expressing a fluorescent protein driven by the proglucagon promoter. Fluorescent L-cells were identified within primary colonic cultures for patch clamp recordings. GLP-1 secretion was measured from primary colonic cultures. L-cells purified by flow cytometry were used to measure gene expression by microarray and quantitative RT-PCR. Electrical activity in L-cells was due to large voltage gated sodium currents, inhibition of which by tetrodotoxin reduced both basal and glutamine-stimulated GLP-1 secretion. Voltage gated calcium channels were predominantly of the L-type, Q-type and T-type, by expression analysis, consistent with the finding that GLP-1 release was blocked both by nifedipine and ω-conotoxin MVIIC. We observed large voltage-dependent potassium currents, but only a small chromanol sensitive current that might be attributable to KCNQ1. GLP-1 release from primary L-cells is linked to electrical activity and activation of L-type and Q-type calcium currents. The concept of an electrically excitable L-cell provides a basis for understanding how GLP-1 release may be modulated by nutrient, hormonal and pharmaceutical stimuli. PMID:21224236

  20. Westinghouse tubular SOFC technology

    SciTech Connect

    Ray, E.R.

    1992-12-01

    A summary of significant developments and accomplishments which have recently occurred throughout the tubular Solidi Oxide Fuel Cell (SOFC) program include: Demonstration that thousands of tubular solid oxide fuel cells can be fabricated with consistent and reproducible performance. Continuous operation of a 3 kWe tubular SOFC system for over six months at a customer`s test site. Demonstration of stable performance and lifetime in excess of 5,300 hours for a 3 kWe generator module, operating on desulfurized natural gas without external humidification. Demonstration of stable performance and life times in excess of 30,000 hours in multiple single cell tests. Design, construction and operation of a dedicated cell, module and generator Pre-Pilot Manufacturing Facility (PPMF). Successful 6,840 hour bundle tests of 50 cm. cells produced at the PPMF. Significant improvements in cell performance and life and marked reduction in cell degradation. Design, construction and successful operation of a 20 kWe tubular solid oxide fuel cell generator module. Design, construction, shipment and installation of 25 kWe (40 kWe peak power) field units.

  1. Westinghouse tubular SOFC technology

    SciTech Connect

    Ray, E.R.

    1992-01-01

    A summary of significant developments and accomplishments which have recently occurred throughout the tubular Solidi Oxide Fuel Cell (SOFC) program include: Demonstration that thousands of tubular solid oxide fuel cells can be fabricated with consistent and reproducible performance. Continuous operation of a 3 kWe tubular SOFC system for over six months at a customer's test site. Demonstration of stable performance and lifetime in excess of 5,300 hours for a 3 kWe generator module, operating on desulfurized natural gas without external humidification. Demonstration of stable performance and life times in excess of 30,000 hours in multiple single cell tests. Design, construction and operation of a dedicated cell, module and generator Pre-Pilot Manufacturing Facility (PPMF). Successful 6,840 hour bundle tests of 50 cm. cells produced at the PPMF. Significant improvements in cell performance and life and marked reduction in cell degradation. Design, construction and successful operation of a 20 kWe tubular solid oxide fuel cell generator module. Design, construction, shipment and installation of 25 kWe (40 kWe peak power) field units.

  2. Classically Activated Macrophages Use Stable Microtubules for Matrix Metalloproteinase-9 (MMP-9) Secretion*

    PubMed Central

    Hanania, Raed; Song Sun, He; Xu, Kewei; Pustylnik, Sofia; Jeganathan, Sujeeve; Harrison, Rene E.

    2012-01-01

    As major effector cells of the innate immune response, macrophages must adeptly migrate from blood to infected tissues. Endothelial transmigration is accomplished by matrix metalloproteinase (MMP)-induced degradation of basement membrane and extracellular matrix components. The classical activation of macrophages with LPS and IFN-γ causes enhanced microtubule (MT) stabilization and secretion of MMPs. Macrophages up-regulate MMP-9 expression and secretion upon immunological challenge and require its activity for migration during the inflammatory response. However, the dynamics of MMP-9 production and intracellular distribution as well as the mechanisms responsible for its trafficking are unknown. Using immunofluorescent imaging, we localized intracellular MMP-9 to small Golgi-derived cytoplasmic vesicles that contained calreticulin and protein-disulfide isomerase in activated RAW 264.7 macrophages. We demonstrated vesicular organelles of MMP-9 aligned along stable subsets of MTs and showed that selective modulation of MT dynamics contributes to the enhanced trafficking of MMP-9 extracellularly. We found a Rab3D-dependent association of MMP-9 vesicles with the molecular motor kinesin, whose association with the MT network was greatly enhanced after macrophage activation. Finally, we implicated kinesin 5B and 3B isoforms in the effective trafficking of MMP-9 extracellularly. PMID:22270361

  3. Anti-Diarrheal Mechanism of the Traditional Remedy Uzara via Reduction of Active Chloride Secretion

    PubMed Central

    Fromm, Anja; Günzel, Dorothee

    2011-01-01

    Background and Purpose The root extract of the African Uzara plant is used in traditional medicine as anti-diarrheal drug. It is known to act via inhibition of intestinal motility, but malabsorptive or antisecretory mechanisms are unknown yet. Experimental Approach HT-29/B6 cells and human colonic biopsies were studied in Ussing experiments in vitro. Uzara was tested on basal as well as on forskolin- or cholera toxin-induced Cl− secretion by measuring short-circuit current (ISC) and tracer fluxes of 22Na+ and 36Cl−. Para- and transcellular resistances were determined by two-path impedance spectroscopy. Enzymatic activity of the Na+/K+-ATPase and intracellular cAMP levels (ELISA) were measured. Key Results In HT-29/B6 cells, Uzara inhibited forskolin- as well as cholera toxin-induced ISC within 60 minutes indicating reduced active chloride secretion. Similar results were obtained in human colonic biopsies pre-stimulated with forskolin. In HT-29/B6, the effect of Uzara on the forskolin-induced ISC was time- and dose-dependent. Analyses of the cellular mechanisms of this Uzara effect revealed inhibition of the Na+/K+-ATPase, a decrease in forskolin-induced cAMP production and a decrease in paracellular resistance. Tracer flux experiments indicate that the dominant effect is the inhibition of the Na+/K+-ATPase. Conclusion and Implications Uzara exerts anti-diarrheal effects via inhibition of active chloride secretion. This inhibition is mainly due to an inhibition of the Na+/K+-ATPase and to a lesser extent to a decrease in intracellular cAMP responses and paracellular resistance. The results imply that Uzara is suitable for treating acute secretory diarrhea. PMID:21479205

  4. Spontaneous Activity of Cochlear Hair Cells Triggered by Fluid Secretion Mechanism in Adjacent Support Cells.

    PubMed

    Wang, Han Chin; Lin, Chun-Chieh; Cheung, Rocky; Zhang-Hooks, YingXin; Agarwal, Amit; Ellis-Davies, Graham; Rock, Jason; Bergles, Dwight E

    2015-12-01

    Spontaneous electrical activity of neurons in developing sensory systems promotes their maturation and proper connectivity. In the auditory system, spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from glia-like inner supporting cells (ISCs), facilitating maturation of central pathways before hearing onset. Here, we find that ATP stimulates purinergic autoreceptors in ISCs, triggering Cl(-) efflux and osmotic cell shrinkage by opening TMEM16A Ca(2+)-activated Cl(-) channels. Release of Cl(-) from ISCs also forces K(+) efflux, causing transient depolarization of IHCs near ATP release sites. Genetic deletion of TMEM16A markedly reduces the spontaneous activity of IHCs and spiral ganglion neurons in the developing cochlea and prevents ATP-dependent shrinkage of supporting cells. These results indicate that supporting cells in the developing cochlea have adapted a pathway used for fluid secretion in other organs to induce periodic excitation of hair cells. PMID:26627734

  5. Cytotoxic Activity and Antiproliferative Effects of Crude Skin Secretion from Physalaemus nattereri (Anura: Leptodactylidae) on in vitro Melanoma Cells

    PubMed Central

    Cruz e Carvalho, Andréa; Prías Márquez, César Augusto; Azevedo, Ricardo Bentes; Joanitti, Graziella Anselmo; Pires Júnior, Osmindo Rodrigues; Fontes, Wagner; Castro, Mariana S.

    2015-01-01

    Anuran secretions are rich sources of bioactive molecules, including antimicrobial and antitumoral compounds. The aims of this study were to investigate the therapeutic potential of Physalaemus nattereri skin secretion against skin cancer cells, and to assess its cytotoxic action mechanisms on the murine melanoma cell line B16F10. Our results demonstrated that the crude secretion reduced the viability of B16F10 cells, causing changes in cell morphology (e.g., round shape and structure shrinkage), reduction in mitochondrial membrane potential, increase in phosphatidylserine exposure, and cell cycle arrest in S-phase. Together, these changes suggest that tumor cells die by apoptosis. This skin secretion was also subjected to chromatographic fractioning using RP-HPLC, and eluted fractions were assayed for antiproliferative and antibacterial activities. Three active fractions showed molecular mass components in a range compatible with peptides. Although the specific mechanisms causing the reduced cell viability and cytotoxicity after the treatment with crude secretion are still unknown, it may be considered that molecules, such as the peptides found in the secretion, are effective against B16F10 tumor cells. Considering the growing need for new anticancer drugs, data presented in this study strongly reinforce the validity of P. nattereri crude secretion as a rich source of new anticancer molecules. PMID:26457717

  6. 7-hydroxycalamenene Effects on Secreted Aspartic Proteases Activity and Biofilm Formation of Candida spp.

    PubMed Central

    Azevedo, Mariana M. B.; Almeida, Catia A.; Chaves, Francisco C. M.; Rodrigues, Igor A.; Bizzo, Humberto R.; Alviano, Celuta S.; Alviano, Daniela S.

    2016-01-01

    Background: The 7-hydroxycalamenenene-rich essential oil (EO) obtained from the leaves of Croton cajucara (red morphotype) have been described as active against bacteria, protozoa, and fungi species. In this work, we aimed to evaluate the effectiveness of 7-hydroxycalamenenene against Candida albicans and nonalbicans species. Materials and Methods: C. cajucara EO was obtained by hydrodistillation and its major compound, 7-hydroxycalamenene, was purified using preparative column chromatography. The anti-candidal activity was investigated by minimum inhibitory concentration (MIC) and secreted aspartic proteases (SAP) and biofilm inhibition assays. Results: 7-hydroxycalamenene (98% purity) displayed anti-candidal activity against all Candida species tested. Higher activity was observed against Candida dubliniensis, Candida parapsilosis and Candida albicans, showing MIC values ranging from 39.06 μg/ml to 78.12 μg/ml. The purified 7-hydroxycalamenene was able to inhibit 58% of C. albicans ATCC 36801 SAP activity at MIC concentration (pH 7.0). However, 7-hydroxycalamenene demonstrated poor inhibitory activity on C. albicans ATCC 10231 biofilm formation even at the highest concentration tested (2500 μg/ml). Conclusion: The bioactive potential of 7-hydroxycalamenene against planktonic Candida spp. further supports its use for the development of antimicrobials with anti-candidal activity. SUMMARY Croton cajucara Benth. essential oil provides high amounts of 7-hydroxycalamenene7-Hydroxycalameneneisolated from C. cajucarais active against Candida spp7-Hydroxycalameneneinhibits C. albicans aspartic protease activity7-Hydroxycalamenene was not active against C. albicans biofilm formation. Figure PMID:27019560

  7. Inflammasome activation and IL-1β target IL-1α for secretion as opposed to surface expression

    PubMed Central

    Fettelschoss, Antonia; Kistowska, Magdalena; LeibundGut-Landmann, Salomé; Beer, Hans-Dietmar; Johansen, Pål; Senti, Gabriela; Contassot, Emmanuel; Bachmann, Martin F.; French, Lars E.; Oxenius, Annette; Kündig, Thomas M.

    2011-01-01

    Interleukin-1α (IL-1α) and -β both bind to the same IL-1 receptor (IL-1R) and are potent proinflammatory cytokines. Production of proinflammatory (pro)–IL-1α and pro–IL-1β is induced by Toll-like receptor (TLR)-mediated NF-κB activation. Additional stimulus involving activation of the inflammasome and caspase-1 is required for proteolytic cleavage and secretion of mature IL-1β. The regulation of IL-1α maturation and secretion, however, remains elusive. IL-1α exists as a cell surface-associated form and as a mature secreted form. Here we show that both forms of IL-1α, the surface and secreted form, are differentially regulated. Surface IL-1α requires NF-κB activation only, whereas secretion of mature IL-1α requires additional activation of the inflammasome and caspase-1. Surprisingly, secretion of IL-1α also required the presence of IL-1β, as demonstrated in IL-1β–deficient mice. We further demonstrate that IL-1β directly binds IL-1α, thus identifying IL-1β as a shuttle for another proinflammatory cytokine. These results have direct impact on selective treatment modalities of inflammatory diseases. PMID:22006336

  8. Anti-Pseudomonas activity in bronchial secretions of patients receiving amikacin or tobramycin as a continuous infusion.

    PubMed Central

    Mombelli, G; Coppens, L; Thys, J P; Klastersky, J

    1981-01-01

    The penetration of amikacin and tobramycin into bronchial secretions and the resulting anti-Pseudomonas activity were assessed in two groups of tracheostomized or intubated patients with tracheobronchial infection and purulent bronchial secretions. The aminoglycosides were administered as continuous, high-dose intravenous infusions. The mean drug concentrations in serum and bronchial secretions were 12.8 and 2.0 microgram/ml for amikacin and 3.6 and 0.7 microgram/ml for tobramycin. The bronchial secretion/serum ratios varied over a wide range: from 9.6 to 22.8% (average, 14.9%) for amikacin and from 3 to 39.3% (average, 17.5%) for tobramycin. Sustained anti-Pseudomonas activities in bronchial secretions were achieved only in patients with very high aminoglycoside levels in serum. In most patients, however, no anti-Pseudomonas activity could be detected within bronchial secretions despite therapeutic levels of amikacin and tobramycin and adequate bactericidal activities in serum. PMID:7247362

  9. Unfolding the relationship between secreted molecular chaperones and macrophage activation states

    PubMed Central

    Henderson, Samantha

    2008-01-01

    Over the last 20 years, it has emerged that many molecular chaperones and protein-folding catalysts are secreted from cells and function, somewhat in the manner of cytokines, as pleiotropic signals for a variety of cells, with much attention being focused on the macrophage. During the last decade, it has become clear that macrophages respond to bacterial, protozoal, parasitic and host signals to generate phenotypically distinct states of activation. These activation states have been termed ‘classical’ and ‘alternative’ and represent not a simple bifurcation in response to external signals but a range of cellular phenotypes. From an examination of the literature, the hypothesis is propounded that mammalian molecular chaperones are able to induce a wide variety of alternative macrophage activation states, and this may be a system for relating cellular or tissue stress to appropriate macrophage responses to restore homeostatic equilibrium. PMID:18958583

  10. Azurocidin, a natural antibiotic from human neutrophils: expression, antimicrobial activity, and secretion.

    PubMed

    Almeida, R P; Vanet, A; Witko-Sarsat, V; Melchior, M; McCabe, D; Gabay, J E

    1996-06-01

    The azurophil granules of human PMN contain four antibiotic proteins, the serprocidins, which have extensive homology to one another and to serine proteases. Azurocidin, a member of this family, is a 29-kDa glycoprotein with broad spectrum antimicrobial activity and chemotactic activity toward monocytes. Insect cells transfected with a baculovirus vector carrying azurocidin cDNA produced a recombinant azurocidin protein. We purified the recombinant azurocidin protein from the culture medium of the infected cells and showed that it retained the antimicrobial activity of the native neutrophil-derived molecule. In addition, we present evidence that a 49-amino-acid region of the recombinant azurocidin protein is required for its secretion from insect cells. PMID:8776752

  11. Stimulation of IGF-binding protein-1 secretion by AMP-activated protein kinase.

    PubMed

    Lewitt, M S

    2001-04-20

    Insulin-like growth factor-binding protein-1 (IGFBP-1) is stimulated during intensive exercise and in catabolic conditions to very high concentrations, which are not completely explained by known regulators such as insulin and glucocorticoids. The role of AMP-activated protein kinase (AMPK), an important signaling system in lipid and carbohydrate metabolism, in regulating IGFBP-1 was studied in H4-II-E rat hepatoma cells. Arsenic(III) oxide and 5-aminoimidazole-4-carboxamide-riboside (AICAR) were used as activators. AICAR (150 microM) stimulated IGFBP-1 secretion twofold during a 5-h incubation (P = 0.002). Insulin (100 ng/ml) inhibited IGFBP-1 by 80% (P < 0.001), but this was completely abolished in the presence of 150 microM AICAR. The effect of dexamethasone in stimulating IGFBP-1 threefold was additive to the effect of AICAR (P < 0.001) and, in the presence of AICAR, was incompletely inhibited by insulin. In conclusion AMPK is identified as a novel regulatory pathway for IGFBP-1, stimulating secretion and blocking the inhibitory effect of insulin. PMID:11302732

  12. Detection of Y Chromosome DNA as Evidence of Semen in Cervicovaginal Secretions of Sexually Active Women

    PubMed Central

    Chomont, Nicolas; Grésenguet, Gérard; Lévy, Michel; Hocini, Hakim; Becquart, Pierre; Matta, Mathieu; Tranchot-Diallo, Juliette; Andreoletti, Laurent; Carreno, Marie-Paule; Kazatchkine, Michel D.; Bélec, Laurent

    2001-01-01

    The detection of traces of semen in cervicovaginal secretions (CVS) from sexually active women practicing unprotected sex is a prerequisite for the accurate study of cervicovaginal immunity. Two semen markers, the prostatic-specific antigen (PSA) and the Y chromosome, were detected in parallel in CVS obtained by a standardized vaginal washing of consecutive women attending the principal medical center for sexually transmitted diseases of Bangui, Central African Republic. PSA was detected by immunoenzymatic capture assay in the cell-free fraction of CVS, and the Y chromosome was detected by a single PCR assay of DNA extracted by silica from the cell fraction (Y PCR). Fifty (19%) cell-free fractions of the 264 β-globin-positive CVS samples were positive for PSA, and 100 (38%) cell fractions of the CVS samples were positive for the Y chromosome. All the 50 (19%) PSA-containing CVS samples were also positive for the Y chromosome. Fifty (19%) CVS samples were positive only for the Y chromosome, with no detectable PSA. The remaining 164 (62%) CVS samples were both PSA and Y chromosome negative. These findings demonstrate that CVS from sexually active women may contain cell-associated semen residues unrecognized by conventional immunoenzymatic assays used to detect semen components. The detection of cell-associated male DNA with a highly sensitive and specific procedure such as Y PCR constitutes a method of choice to detect semen traces in female genital secretions. PMID:11527810

  13. Detergent Isolation Stabilizes and Activates the Shigella Type III Secretion System Translocator Protein IpaC.

    PubMed

    Bernard, Abram R; Duarte, Shari M; Kumar, Prashant; Dickenson, Nicholas E

    2016-07-01

    Shigella rely on a type III secretion system as the primary virulence factor for invasion and colonization of human hosts. Although there are an estimated 90 million Shigella infections, annually responsible for more than 100,000 deaths worldwide, challenges isolating and stabilizing many type III secretion system proteins have prevented a full understanding of the Shigella invasion mechanism and additionally slowed progress toward a much needed Shigella vaccine. Here, we show that the non-denaturing zwitterionic detergent N, N-dimethyldodecylamine N-oxide (LDAO) and non-ionic detergent n-octyl-oligo-oxyethylene efficiently isolated the hydrophobic Shigella translocator protein IpaC from the co-purified IpaC/IpgC chaperone-bound complex. Both detergents resulted in monomeric IpaC that exhibits strong membrane binding and lysis characteristics while the chaperone-bound complex does not, suggesting that the stabilizing detergents provide a means of following IpaC "activation" in vitro. Additionally, biophysical characterization found that LDAO provides significant thermal and temporal stability to IpaC, protecting it for several days at room temperature and brief exposure to temperatures reaching 90°C. In summary, this work identified and characterized conditions that provide stable, membrane active IpaC, providing insight into key interactions with membranes and laying a strong foundation for future vaccine formulation studies taking advantage of the native immunogenicity of IpaC and the stability provided by LDAO. PMID:27297397

  14. Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots.

    PubMed

    Courty, P E; Labbé, J; Kohler, A; Marçais, B; Bastien, C; Churin, J L; Garbaye, J; Le Tacon, F

    2011-01-01

    The impact of ectomycorrhiza formation on the secretion of exoenzymes by the host plant and the symbiont is unknown. Thirty-eight F(1) individuals from an interspecific Populus deltoides (Bartr.)×Populus trichocarpa (Torr. & A. Gray) controlled cross were inoculated with the ectomycorrhizal fungus Laccaria bicolor. The colonization of poplar roots by L. bicolor dramatically modified their ability to secrete enzymes involved in organic matter breakdown or organic phosphorus mobilization, such as N-acetylglucosaminidase, β-glucuronidase, cellobiohydrolase, β-glucosidase, β-xylosidase, laccase, and acid phosphatase. The expression of genes coding for laccase, N-acetylglucosaminidase, and acid phosphatase was studied in mycorrhizal and non-mycorrhizal root tips. Depending on the genes, their expression was regulated upon symbiosis development. Moreover, it appears that poplar laccases or phosphatases contribute poorly to ectomycorrhiza metabolic activity. Enzymes secreted by poplar roots were added to or substituted by enzymes secreted by L. bicolor. The enzymatic activities expressed in mycorrhizal roots differed significantly between the two parents, while it did not differ in non-mycorrhizal roots. Significant differences were found between poplar genotypes for all enzymatic activities measured on ectomycorrhizas except for laccases activity. In contrast, no significant differences were found between poplar genotypes for enzymatic activities of non-mycorrhizal root tips except for acid phosphatase activity. The level of enzymes secreted by the ectomycorrhizal root tips is under the genetic control of the host. Moreover, poplar heterosis was expressed through the enzymatic activities of the fungal partner. PMID:20881013

  15. Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots

    PubMed Central

    Courty, P. E.; Labbé, J.; Kohler, A.; Marçais, B.; Bastien, C.; Churin, J. L.; Garbaye, J.; Le Tacon, F.

    2011-01-01

    The impact of ectomycorrhiza formation on the secretion of exoenzymes by the host plant and the symbiont is unknown. Thirty-eight F1 individuals from an interspecific Populus deltoides (Bartr.)×Populus trichocarpa (Torr. & A. Gray) controlled cross were inoculated with the ectomycorrhizal fungus Laccaria bicolor. The colonization of poplar roots by L. bicolor dramatically modified their ability to secrete enzymes involved in organic matter breakdown or organic phosphorus mobilization, such as N-acetylglucosaminidase, β-glucuronidase, cellobiohydrolase, β-glucosidase, β-xylosidase, laccase, and acid phosphatase. The expression of genes coding for laccase, N-acetylglucosaminidase, and acid phosphatase was studied in mycorrhizal and non-mycorrhizal root tips. Depending on the genes, their expression was regulated upon symbiosis development. Moreover, it appears that poplar laccases or phosphatases contribute poorly to ectomycorrhiza metabolic activity. Enzymes secreted by poplar roots were added to or substituted by enzymes secreted by L. bicolor. The enzymatic activities expressed in mycorrhizal roots differed significantly between the two parents, while it did not differ in non-mycorrhizal roots. Significant differences were found between poplar genotypes for all enzymatic activities measured on ectomycorrhizas except for laccases activity. In contrast, no significant differences were found between poplar genotypes for enzymatic activities of non-mycorrhizal root tips except for acid phosphatase activity. The level of enzymes secreted by the ectomycorrhizal root tips is under the genetic control of the host. Moreover, poplar heterosis was expressed through the enzymatic activities of the fungal partner. PMID:20881013

  16. Inhibition of cAMP-Activated Intestinal Chloride Secretion by Diclofenac: Cellular Mechanism and Potential Application in Cholera

    PubMed Central

    Pongkorpsakol, Pawin; Pathomthongtaweechai, Nutthapoom; Srimanote, Potjanee; Soodvilai, Sunhapas; Chatsudthipong, Varanuj; Muanprasat, Chatchai

    2014-01-01

    Cyclic AMP-activated intestinal Cl− secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl− secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl− secretion in human intestinal epithelial (T84) cells with IC50 of ∼20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl− current showed that diclofenac reversibly inhibited CFTR Cl− channel activity (IC50∼10 µM) via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na+-K+ ATPases and Na+-K+-Cl− cotransporters, but inhibited cAMP-activated basolateral K+ channels with IC50 of ∼3 µM. In addition, diclofenac suppressed Ca2+-activated Cl− channels, inwardly rectifying Cl− channels, and Ca2+-activated basolateral K+ channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment) had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT)-induced Cl− secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg) reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca2+-activated Cl− secretion by inhibiting both apical Cl− channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal

  17. Small-molecule CFTR activators increase tear secretion and prevent experimental dry eye disease.

    PubMed

    Flores, Alyssa M; Casey, Scott D; Felix, Christian M; Phuan, Puay W; Verkman, A S; Levin, Marc H

    2016-05-01

    Dry eye disorders, including Sjögren's syndrome, constitute a common problem in the aging population, with limited effective therapeutic options available. The cAMP-activated Cl(-) channel cystic fibrosis transmembrane conductance regulator (CFTR) is a major prosecretory channel at the ocular surface. We investigated whether compounds that target CFTR can correct the abnormal tear film in dry eye. Small-molecule activators of human wild-type CFTR identified by high-throughput screening were evaluated in cell culture and in vivo assays, to select compounds that stimulate Cl(-)-driven fluid secretion across the ocular surface in mice. An aminophenyl-1,3,5-triazine, CFTRact-K089, fully activated CFTR in cell cultures with EC50 ∼250 nM and produced an ∼8.5 mV hyperpolarization in ocular surface potential difference. When delivered topically, CFTRact-K089 doubled basal tear volume for 4 h and had no effect in CF mice. CFTRact-K089 showed sustained tear film bioavailability without detectable systemic absorption. In a mouse model of aqueous-deficient dry eye produced by lacrimal ablation, topical administration of 0.1 nmol CFTRact-K089 3 times daily restored tear volume to basal levels, preventing corneal epithelial disruption when initiated at the time of surgery and reversing it when started after development of dry eye. Our results support the potential utility of CFTR-targeted activators as a novel prosecretory treatment for dry eye.-Flores, A. M., Casey, S. D., Felix, C. M., Phuan, P. W., Verkman, A. S., Levin, M. H. Small-molecule CFTR activators increase tear secretion and prevent experimental dry eye disease. PMID:26842854

  18. Lipase Activity in Insect Oral Secretions Mediates Defense Responses in Arabidopsis1[C][W][OA

    PubMed Central

    Schäfer, Martin; Fischer, Christine; Meldau, Stefan; Seebald, Eileen; Oelmüller, Ralf; Baldwin, Ian T.

    2011-01-01

    How plants perceive herbivory is not yet well understood. We investigated early responses of the model plant Arabidopsis (Arabidopsis thaliana) to attack from the generalist grasshopper herbivore, Schistocerca gregaria (Caelifera). When compared with wounding alone, S. gregaria attack and the application of grasshopper oral secretions (GS) to puncture wounds elicited a rapid accumulation of various oxylipins, including 13-hydroperoxy octadecatrienoic acid, 12-oxo-phytodienoic acid (OPDA), jasmonic acid, and jasmonic acid-isoleucine. Additionally, GS increased cytosolic calcium levels, mitogen-activated protein kinase (MPK3 and MPK6) activity, and ethylene emission but not the accumulation of hydrogen peroxide. Although GS contain caeliferin A16:0, a putative elicitor of caeliferan herbivores, treatment with pure, synthetic caeliferin A16:0 did not induce any of the observed responses. With mutant plants, we demonstrate that the observed changes in oxylipin levels are independent of MPK3 and MPK6 activity but that MPK6 is important for the GS-induced ethylene release. Biochemical and pharmacological analyses revealed that the lipase activity of GS plays a central role in the GS-induced accumulation of oxylipins, especially OPDA, which could be fully mimicked by treating puncture wounds only with a lipase from Rhizopus arrhizus. GS elicitation increased the levels of OPDA-responsive transcripts. Because the oral secretions of most insects used to study herbivory-induced responses in Arabidopsis rapidly elicit similar accumulations of OPDA, we suggest that lipids containing OPDA (arabidopsides) play an important role in the activation of herbivory-induced responses. PMID:21546453

  19. Does adrenergic activity suppress insulin secretion during surgery? A clinical experiment with halothane anesthesia.

    PubMed Central

    Aärimaa, M; Syvälahti, E; Ovaska, J

    1978-01-01

    Peroperative inhibition of insulin release is widely attributed to increased alpha-adrenergic activity. To test this hypothesis serum insulin and glucose concentrations were measured at short intervals in 11 patients who underwent major surgery. Five patients were anesthetized with halothane and six with general anesthesia without halothane. The results were similar in both patient groups; halothane had no effect on insulin. This suggests that suppression of insulin under operations is probably not due to activation of the alpha-adrenergic receptors of the pancreatic beta-cells. The authors propose that suppression of insulin secretion during surgery may be caused by adrenaline, which, in competing for the glucose receptors, insensitizes the pancreatic beta-cells. PMID:202205

  20. Differential Reovirus-Specific and Herpesvirus-Specific Activator Protein 1 Activation of Secretogranin II Leads to Altered Virus Secretion

    PubMed Central

    Berard, Alicia R.; Severini, Alberto

    2015-01-01

    ABSTRACT Viruses utilize host cell machinery for propagation and manage to evade cellular host defense mechanisms in the process. Much remains unknown regarding how the host responds to viral infection. We recently performed global proteomic screens of mammalian reovirus TIL- and T3D-infected and herpesvirus (herpes simplex virus 1 [HSV-1])-infected HEK293 cells. The nonenveloped RNA reoviruses caused an upregulation, whereas the enveloped DNA HSV-1 caused a downregulation, of cellular secretogranin II (SCG2). SCG2, a member of the granin family that functions in hormonal peptide sorting into secretory vesicles, has not been linked to virus infections previously. We confirmed SCG2 upregulation and found SCG2 phosphorylation by 18 h postinfection (hpi) in reovirus-infected cells. We also found a decrease in the amount of reovirus secretion from SCG2 knockdown cells. Similar analyses of cells infected with HSV-1 showed an increase in the amount of secreted virus. Analysis of the stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK) pathway indicated that each virus activates different pathways leading to activator protein 1 (AP-1) activation, which is the known SCG2 transcription activator. We conclude from these experiments that the negative correlation between SCG2 quantity and virus secretion for both viruses indicates a virus-specific role for SCG2 during infection. IMPORTANCE Mammalian reoviruses affect the gastrointestinal system or cause respiratory infections in humans. Recent work has shown that all mammalian reovirus strains (most specifically T3D) may be useful oncolytic agents. The ubiquitous herpes simplex viruses cause common sores in mucosal areas of their host and have coevolved with hosts over many years. Both of these virus species are prototypical representatives of their viral families, and investigation of these viruses can lead to further knowledge of how they and the other more pathogenic members of their respective

  1. Comparison of effects of phorbol esters and glucose on protein kinase C activation and insulin secretion in pancreatic islets.

    PubMed Central

    Easom, R A; Hughes, J H; Landt, M; Wolf, B A; Turk, J; McDaniel, M L

    1989-01-01

    The tumour-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) induces insulin secretion from isolated pancreatic islets, and this suggests a potential role for protein kinase C in the regulation of stimulus-secretion coupling in islets. In the present study, the hypothesis that the insulinotropic effect of TPA is mediated by activation of protein kinase C in pancreatic islets has been examined. TPA induced a gradual translocation of protein kinase C from the cytosol to a membrane-associated state which correlated with the gradual onset of insulin secretion. The pharmacologically inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not mimic this effect. TPA also induced a rapid time-dependent decline of total protein kinase C activity in islets and the appearance of a Ca2+- and phospholipid-independent protein kinase activity. Insulin secretion induced by TPA was completely suppressed (IC50 approximately 10 nM) by staurosporine, a potent protein kinase C inhibitor. Staurosporine also inhibited islet cytosolic protein kinase C activity at similar concentrations (IC50 approximately 2 nM). In addition, staurosporine partially (approximately 60%) inhibited glucose-induced insulin secretion at concentrations (IC50 approximately 10 nM) similar to those required to inhibit TPA-induced insulin secretion, suggesting that staurosporine may act at a step common to both mechanisms, possibly the activation of protein kinase C. However, stimulatory concentrations of glucose did not induce down-regulation of translocation of protein kinase C, and the inhibition of glucose-induced insulin release by staurosporine was incomplete. Significant questions therefore remain unresolved as to the possible involvement of protein kinase C in glucose-induced insulin secretion. PMID:2690823

  2. Novel effects of sphingosylphosphorylcholine on invasion of breast cancer: Involvement of matrix metalloproteinase-3 secretion leading to WNT activation.

    PubMed

    Kim, Hyun Ji; Kang, Gyeoung Jin; Kim, Eun Ji; Park, Mi Kyung; Byun, Hyun Jung; Nam, Seungyoon; Lee, Ho; Lee, Chang Hoon

    2016-09-01

    Sphingosylphosphorylcholine (SPC) participates in several cellular processes including metastasis. SPC induces keratin reorganization and regulates the viscoelasticity of metastatic cancer cells including PANC-1 cancer cells leading to enhanced migration and invasion. The role of SPC and the relevant mechanism in invasion of breast cell are as yet unknown. SPC dose-dependently induces invasion of breast cancer cells or breast immortalized cells. Reverse transcription polymerase chain reaction and Western blot analyses of MCF10A and ZR-75-1 cells indicated that SPC induces expression and secretion of matrix metalloproteinase-3 (MMP3). From online KMPLOT, relapse free survival is high in patients having low MMP3 expressed basal breast cancer (n=581, p=0.032). UK370106 (MMP3 inhibitor) or gene silencing of MMP3 markedly inhibited the SPC-induced invasion of MCF10A cells. An extracellular signal-regulated kinase (ERK) inhibitor, PD98059, significantly suppressed the secretion and the gelatinolytic activity of MMP3, and invasion in MCF10A cells. Over-expression of ERK1 and ERK2 promoted both the expression and secretion of MMP3. In contrast, gene silencing of ERK1 and ERK2 attenuated the secretion of MMP3 in MCF10A cells. The effects of SPC-induced MMP3 secretion on β-catenin and TCF/lymphoid enhancer factor (LEF) promoter activity were examined since MMP3 indirectly activates canonical Wnt signaling. SPC induced translocation of β-catenin to nucleus and increased TCF/LEF promoter activity. These events were suppressed by UK370106 or PD98059. Wnt inhibitor, FH535 inhibited SPC-induced MMP3 secretion and invasion. Taken together, these results suggest that SPC induces MMP3 expression and secretion via ERK leading to Wnt activation. PMID:27216977

  3. Dietary sugar promotes systemic TOR activation in Drosophila through AKH-dependent selective secretion of Dilp3

    PubMed Central

    Kim, Jung; Neufeld, Thomas P.

    2015-01-01

    Secreted ligands of the insulin family promote cell growth and maintain sugar homeostasis. Insulin release is tightly regulated in response to dietary conditions, but how insulin producing cells (IPCs) coordinate their responses to distinct nutrient signals is unclear. Here, we show that regulation of insulin secretion in Drosophila larvae has been segregated into distinct branches: whereas amino acids promote secretion of Drosophila insulin-like peptide 2 (Dilp2), circulating sugars promote selective release of Dilp3. Dilp3 is uniquely required for sugar-mediated activation of TOR signaling and suppression of autophagy in the larval fat body. Sugar levels are not sensed directly by the IPCs, but rather by the adipokinetic hormone (AKH)-producing cells of the corpora cardiaca, and we demonstrate that AKH signaling is required in the IPCs for sugar-dependent Dilp3 release. Thus, IPCs integrate multiple cues to regulate secretion of distinct insulin subtypes under varying nutrient conditions. PMID:25882208

  4. Proteins Secreted By Embryonic Stem Cells Activate Cardiomyocytes Through Ligand Binding Pathways

    PubMed Central

    LaFramboise, W. A.; Petrosko, P.; Krill-Burger, J. M.; Morris, D. R.; McCoy, A. R.; Scalise, D.; Malehorn, D. E.; Guthrie, R. D.; Becich, M. J.; Dhir, R.

    2010-01-01

    Human embryonic stem cells (hESC) underly embryogenesis but paracrine signals associated with the process are unknown. This study was designed to 1) profile native proteins secreted by undifferentiated hESC and 2) determine their biological effects on primary neonatal cardiomyocytes. We utilized multi-analyte, immunochemical assays to characterize media conditioned by undifferentiated hESC versus unconditioned media. Expression profiling was performed on cardiomyocytes subjected to these different media conditions and altered transcripts were mapped to critical pathways. Thirty-two of 109 proteins were significantly elevated in conditioned media ranging in concentration from thrombospondin (57.2 ± 5.0 ng/ml) to nerve growth factor (7.4 ± 1.2 pg/ml) and comprising chemokines, cytokines, growth factors, and proteins involved in cell adhesion and extracellular matrix remodeling. Conditioned media induced karyokinesis, cytokinesis and proliferation in mono- and binucleate cardiomyocytes. Pathway analysis revealed comprehensive activation of the ROCK 1 and 2 G-protein coupled receptor (GPCR) pathway associated with cytokinesis, and the RAS/RAF/MEK/ERK receptor tyrosine kinase (RTK) and JAK/STAT-cytokine pathway involved in cell cycle progression. These results provide a partial database of proteins secreted by pluripotent hESC that potentiate cell division in cardiomyocytes via a paracrine mechanism suggesting a potential role for these stem cell factors in cardiogenesis and cardiac repair. PMID:20045494

  5. Diverse signaling systems activated by the sweet taste receptor in human GLP-1-secreting cells.

    PubMed

    Ohtsu, Yoshiaki; Nakagawa, Yuko; Nagasawa, Masahiro; Takeda, Shigeki; Arakawa, Hirokazu; Kojima, Itaru

    2014-08-25

    Sweet taste receptor regulates GLP-1 secretion in enteroendocrine L-cells. We investigated the signaling system activated by this receptor using Hutu-80 cells. We stimulated them with sucralose, saccharin, acesulfame K and glycyrrhizin. These sweeteners stimulated GLP-1 secretion, which was attenuated by lactisole. All these sweeteners elevated cytoplasmic cyclic AMP ([cAMP]c) whereas only sucralose and saccharin induced a monophasic increase in cytoplasmic Ca(2+) ([Ca(2+)]c). Removal of extracellular calcium or sodium and addition of a Gq/11 inhibitor greatly reduced the [Ca(2+)]c responses to two sweeteners. In contrast, acesulfame K induced rapid and sustained reduction of [Ca(2+)]c. In addition, glycyrrhizin first reduced [Ca(2+)]c which was followed by an elevation of [Ca(2+)]c. Reductions of [Ca(2+)]c induced by acesulfame K and glycyrrhizin were attenuated by a calmodulin inhibitor or by knockdown of the plasma membrane calcium pump. These results indicate that various sweet molecules act as biased agonists and evoke strikingly different patterns of intracellular signals. PMID:25017733

  6. Hypertension, Increased Aldosterone Secretion and Low Plasma Renin Activity Relieved by Dexamethasone

    PubMed Central

    Sutherland, D. J. A.; Ruse, J. L.; Laidlaw, J. C.

    1966-01-01

    A father and son are described with a condition characterized by benign hypertension, potassium deficiency, increased aldosterone secretion rate (ASR), raised plasma volume and suppressed plasma renin activity (PRA). There were intermittent elevations of urine 17-ketosteroids and 17-hydroxycorticoids (17-OHCS) but no increase in urine THS, normal circadian rhythm of plasma 17-OHCS, and normal urine 17-OHCS response to dexamethasone and intravenous ACTH. Plasma ACTH and corticosterone secretion were not elevated. Pregnanetriol excretion was normal but urine pregnanediol was increased. At operation on the father no adrenal tumour was found; the excised left adrenal weighed 7 g. and showed nodular cortical hyperplasia; juxtaglomerular cells showed only occasional granules. Following operation hypertension persisted and ASR was half the preoperative value. All abnormalities in father and son were relieved by dexamethasone (DM) 2 mg. daily. The condition recurred following cessation of DM but was relieved by a second course of treatment. No such response to DM was seen in a normal subject or in a patient with Conn's syndrome. For a number of reasons it is suggested that patients with hypertension, increased ASR and low PRA be given a trial of dexamethasone treatment before undergoing adrenal surgery. ImagesFig. 14 PMID:4288576

  7. Simulation of Cl− Secretion in Epithelial Tissues: New Methodology Estimating Activity of Electro-Neutral Cl− Transporter

    PubMed Central

    Sasamoto, Kouhei; Niisato, Naomi; Taruno, Akiyuki; Marunaka, Yoshinori

    2015-01-01

    Transcellular Cl− secretion is, in general, mediated by two steps; (1) the entry step of Cl− into the cytosolic space from the basolateral space across the basolateral membrane by Cl− transporters, such as Na+-K+-2Cl− cotransporter (NKCC1, an isoform of NKCC), and (2) the releasing step of Cl− from the cytosolic space into the luminal (air) space across the apical membrane via Cl− channels, such as cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel. Transcellular Cl− secretion has been characterized by using various experimental techniques. For example, measurements of short-circuit currents in the Ussing chamber and patch clamp techniques provide us information on transepithelial ion movements via transcellular pathway, transepithelial conductance, activity (open probability) of single channel, and whole cell currents. Although many investigators have tried to clarify roles of Cl− channels and transporters located at the apical and basolateral membranes in transcellular Cl− secretion, it is still unclear how Cl− channels/transporters contribute to transcellular Cl− secretion and are regulated by various stimuli such as Ca2+ and cAMP. In the present study, we simulate transcellular Cl− secretion using mathematical models combined with electrophysiological measurements, providing information on contribution of Cl− channels/transporters to transcellular Cl− secretion, activity of electro-neutral ion transporters and how Cl− channels/transporters are regulated. PMID:26779025

  8. Mammalian protein secretion without signal peptide removal. Biosynthesis of plasminogen activator inhibitor-2 in U-937 cells

    SciTech Connect

    Ye, R.D.; Wun, T.C.; Sadler, J.E.

    1988-04-05

    Plasminogen activator inhibitor-2 (PAI-2) is a serine protease inhibitor that regulates plasmin generation by inhibiting urokinase and tissue plasminogen activator. The primary structure of PAI-2 suggests that it may be secreted without cleavage of a single peptide. To confirm this hypothesis we have studied the glycosylation and secretion of PAI-2 in human monocytic U-937 cells by metabolic labeling, immunoprecipitation, glycosidase digestion, and protein sequencing. PAI-2 is variably glycosylated on asparagine residues to yield intracellular intermediates with zero, one, two, or three high mannose-type oligosaccharide units. Secretion of the N-glycosylated species began by 1 h of chase and the secreted molecules contained both complex-type N-linked and O-linked oligosaccharides. Enzymatically deglycosylated PAI-2 had an electrophoretic mobility identical to that of the nonglycosylated precursor and also to that of PAI-2 synthesized in vitro in a rabbit reticulocyte lysate from synthetic mRNA derived from full length PAI-2 cDNA. The amino-terminal protein sequence of secreted PAI-2 began with the initiator methionine residue. These results indicate that PAI-2 is glycosylated and secreted efficiently without the cleavage of a signal peptide. PAI-2 shares this property with its nearest homologue in the serine protease inhibitor family, chicken ovalbumin, and appears to be the first well characterized example of this phenomenon among natural mammalian proteins.

  9. Platelet surface-associated activation and secretion-mediated inhibition of coagulation factor XII.

    PubMed

    Zakharova, Natalia V; Artemenko, Elena O; Podoplelova, Nadezhda A; Sveshnikova, Anastasia N; Demina, Irina A; Ataullakhanov, Fazly I; Panteleev, Mikhail A

    2015-01-01

    Coagulation factor XII (fXII) is important for arterial thrombosis, but its physiological activation mechanisms are unclear. In this study, we elucidated the role of platelets and platelet-derived material in fXII activation. FXII activation was only observed upon potent platelet stimulation (with thrombin, collagen-related peptide, or calcium ionophore, but not ADP) accompanied by phosphatidylserine exposure and was localised to the platelet surface. Platelets from three patients with grey platelet syndrome did not activate fXII, which suggests that platelet-associated fXII-activating material might be released from α-granules. FXII was preferentially bound by phosphotidylserine-positive platelets and annexin V abrogated platelet-dependent fXII activation; however, artificial phosphotidylserine/phosphatidylcholine microvesicles did not support fXII activation under the conditions herein. Confocal microscopy using DAPI as a poly-phosphate marker did not reveal poly-phosphates associated with an activated platelet surface. Experimental data for fXII activation indicates an auto-inhibition mechanism (ki/ka = 180 molecules/platelet). Unlike surface-associated fXII activation, platelet secretion inhibited activated fXII (fXIIa), particularly due to a released C1-inhibitor. Platelet surface-associated fXIIa formation triggered contact pathway-dependent clotting in recalcified plasma. Computer modelling suggests that fXIIa inactivation was greatly decreased in thrombi under high blood flow due to inhibitor washout. Combined, the surface-associated fXII activation and its inhibition in solution herein may be regarded as a flow-sensitive regulator that can shift the balance between surface-associated clotting and plasma-dependent inhibition, which may explain the role of fXII at high shear and why fXII is important for thrombosis but negligible in haemostasis. PMID:25688860

  10. Platelet Surface-Associated Activation and Secretion-Mediated Inhibition of Coagulation Factor XII

    PubMed Central

    Zakharova, Natalia V.; Artemenko, Elena O.; Podoplelova, Nadezhda A.; Sveshnikova, Anastasia N.; Demina, Irina A.; Ataullakhanov, Fazly I.; Panteleev, Mikhail A.

    2015-01-01

    Coagulation factor XII (fXII) is important for arterial thrombosis, but its physiological activation mechanisms are unclear. In this study, we elucidated the role of platelets and platelet-derived material in fXII activation. FXII activation was only observed upon potent platelet stimulation (with thrombin, collagen-related peptide, or calcium ionophore, but not ADP) accompanied by phosphatidylserine exposure and was localised to the platelet surface. Platelets from three patients with grey platelet syndrome did not activate fXII, which suggests that platelet-associated fXII-activating material might be released from α-granules. FXII was preferentially bound by phosphotidylserine-positive platelets and annexin V abrogated platelet-dependent fXII activation; however, artificial phosphotidylserine/phosphatidylcholine microvesicles did not support fXII activation under the conditions herein. Confocal microscopy using DAPI as a poly-phosphate marker did not reveal poly-phosphates associated with an activated platelet surface. Experimental data for fXII activation indicates an auto-inhibition mechanism (ki/ka = 180 molecules/platelet). Unlike surface-associated fXII activation, platelet secretion inhibited activated fXII (fXIIa), particularly due to a released C1-inhibitor. Platelet surface-associated fXIIa formation triggered contact pathway-dependent clotting in recalcified plasma. Computer modelling suggests that fXIIa inactivation was greatly decreased in thrombi under high blood flow due to inhibitor washout. Combined, the surface-associated fXII activation and its inhibition in solution herein may be regarded as a flow-sensitive regulator that can shift the balance between surface-associated clotting and plasma-dependent inhibition, which may explain the role of fXII at high shear and why fXII is important for thrombosis but negligible in haemostasis. PMID:25688860

  11. Ligand-independent activation of peroxisome proliferator-activated receptor-gamma by insulin and C-peptide in kidney proximal tubular cells: dependent on phosphatidylinositol 3-kinase activity.

    PubMed

    Al-Rasheed, Nawal M; Chana, Ravinder S; Baines, Richard J; Willars, Gary B; Brunskill, Nigel J

    2004-11-26

    Peroxisome proliferator-activated receptor gamma (PPARgamma) has key roles in the regulation of adipogenesis, inflammation, and lipid and glucose metabolism. C-peptide is believed to be inert and without appreciable biological functions. Recent studies suggest that C-peptide possesses multiple functions. The present study investigated the effects of insulin and C-peptide on PPARgamma transcriptional activity in opossum kidney proximal tubular cells. Both insulin and C-peptide induced a concentration-dependent stimulation of PPARgamma transcriptional activity. Both agents substantially augmented thiazolidinedione-stimulated PPARgamma transcriptional activity. Neither insulin nor C-peptide had any effect on the expression levels of PPARgamma. GW9662, a PPARgamma antagonist, blocked PPARgamma activation by thiazolidinediones but had no effect on either insulin- or C-peptide-stimulated PPARgamma transcriptional activity. Co-transfection of opossum kidney cells with dominant negative mitogen-activated protein kinase kinase significantly depressed basal PPARgamma transcriptional activity but had no effect on that induced by either insulin or C-peptide. Both insulin- and C-peptide-stimulated PPARgamma transcriptional activity were attenuated by wortmannin and by expression of a dominant negative phosphatidylinositol (PI) 3-kinase p85 regulatory subunit. In addition PI 3-kinase-dependent phosphorylation of PPARgamma was observed after stimulation by C-peptide or insulin. C-peptide effects but not insulin on PPARgamma transcriptional activity were abolished by pertussis toxin pretreatment. Finally both C-peptide and insulin positively control the expression of the PPARgamma-regulated CD36 scavenger receptor in human THP-1 monocytes. We concluded that insulin and C-peptide can stimulate PPARgamma activity in a ligand-independent fashion and that this effect is mediated by PI 3-kinase. These results support a new and potentially important physiological role for C-peptide in

  12. Osmoregulation of vasopressin secretion via activation of neurohypophysial nerve terminals glycine receptors by glial taurine.

    PubMed

    Hussy, N; Brès, V; Rochette, M; Duvoid, A; Alonso, G; Dayanithi, G; Moos, F C

    2001-09-15

    Osmotic regulation of supraoptic nucleus (SON) neuron activity depends in part on activation of neuronal glycine receptors (GlyRs), most probably by taurine released from adjacent astrocytes. In the neurohypophysis in which the axons of SON neurons terminate, taurine is also concentrated in and osmo-dependently released by pituicytes, the specialized glial cells ensheathing nerve terminals. We now show that taurine release from isolated neurohypophyses is enhanced by hypo-osmotic and decreased by hyper-osmotic stimulation. The high osmosensitivity is shown by the significant increase on only 3.3% reduction in osmolarity. Inhibition of taurine release by 5-nitro-2-(3-phenylpropylamino)benzoic acid, niflumic acid, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid suggests the involvement of volume-sensitive anion channels. On purified neurohypophysial nerve endings, activation of strychnine-sensitive GlyRs by taurine or glycine primarily inhibits the high K(+)-induced rise in [Ca(2+)](i) and subsequent release of vasopressin. Expression of GlyRs in vasopressin and oxytocin terminals is confirmed by immunohistochemistry. Their implication in the osmoregulation of neurohormone secretion was assessed on isolated whole neurohypophyses. A 6.6% hypo-osmotic stimulus reduces by half the depolarization-evoked vasopressin secretion, an inhibition totally prevented by strychnine. Most importantly, depletion of taurine by a taurine transport inhibitor also abolishes the osmo-dependent inhibition of vasopressin release. Therefore, in the neurohypophysis, an osmoregulatory system involving pituicytes, taurine, and GlyRs is operating to control Ca(2+) influx in and neurohormone release from nerve terminals. This elucidates the functional role of glial taurine in the neurohypophysis, reveals the expression of GlyRs on axon terminals, and further defines the role of glial cells in the regulation of neuroendocrine function. PMID:11549721

  13. Bile Salts Modulate the Mucin-Activated Type VI Secretion System of Pandemic Vibrio cholerae

    PubMed Central

    Unterweger, Daniel; Diaz-Satizabal, Laura; Ogg, Stephen; Pukatzki, Stefan

    2015-01-01

    The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen’s arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS). This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus) and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection. PMID:26317760

  14. The central metabolism regulator EIIAGlc switches Salmonella from growth arrest to acute virulence through activation of virulence factor secretion.

    PubMed

    Mazé, Alain; Glatter, Timo; Bumann, Dirk

    2014-06-12

    The ability of Salmonella to cause disease depends on metabolic activities and virulence factors. Here, we show that a key metabolic protein, EIIAGlc, is absolutely essential for acute infection, but not for Salmonella survival, in a mouse typhoid fever model. Surprisingly, phosphorylation-dependent EIIAGlc functions, including carbohydrate transport and activation of adenylate cyclase for global regulation, do not explain this virulence phenotype. Instead, biochemical studies, in vitro secretion and translocation assays, and in vivo genetic epistasis experiments suggest that EIIAGlc binds to the type three secretion system 2 (TTSS-2) involved in systemic virulence, stabilizes its cytoplasmic part including the crucial TTSS-2 ATPase, and activates virulence factor secretion. This unexpected role of EIIAGlc reveals a striking direct link between central Salmonella metabolism and a crucial virulence mechanism. PMID:24835993

  15. Cytokine-activated human endothelial cells synthesize and secrete a monocyte chemoattractant, MCP-1/JE.

    PubMed Central

    Rollins, B. J.; Yoshimura, T.; Leonard, E. J.; Pober, J. S.

    1990-01-01

    We have demonstrated inducible expression of the mRNA encoding the monocyte chemoattractant MCP-1, the human homolog of the JE gene, in endothelial cells within 3 hours of treatment with IL-1 beta and tumor necrosis factor. IFN-gamma also induced expression of this mRNA after 24 hours, but to a lesser extent. MCP-1/JE protein steadily accumulated in the medium of endothelial cells during a 48-hour exposure to IL-1 beta. Medium conditioned by IL-1 beta-treated endothelial cells contained monocyte chemoattractant activity that was immunoadsorbed by anti-MCP-1 antibodies. These results suggest that endothelial cells secrete a monocyte chemoattractant, MCP-1/JE, in response to inflammatory mediators, and thus may contribute to the accumulation of monocytes at sites of inflammation. Images Figure 1 Figure 2 PMID:2113354

  16. Protein Secretion in Human Mammary Epithelial Cells following HER1 Receptor Activation: Influence of HER2 and HER3 Expression

    SciTech Connect

    Zhang, Yi; Gonzalez-Hernandez, Rachel M.; Zangar, Richard C.

    2011-02-14

    Background: Secretion of proteins by mammary cells results in autocrine and paracrine signaling that defines cell growth, migration and the extracellular environment. Even so, we have a very limited understanding of the cellular regulatory processes that regulate protein secretion. Method: In this study, we utilize an ELISA microarray platform to evaluate the effects of epidermal growth factor receptor (HER) expression on protein secretion in human epithelial mammary cells (HMEC). These secreted proteins included several HER1 ligands, interleukins 1α and 18, RANTES, vascular endothelial and platelet derived growth factors, matrix metalloproteases 1, 2 and 9, and the extracellular portion of the HER1 and HER2 proteins. Result: We utilized HMEC lines that were engineered to express different levels of HER1, HER2 and HER3. We determined the effects of these receptors on the secretion of a variety of growth factors, cytokines, and proteases. Conclusion: Overall, this study suggests that HER overexpression orchestrate broad affects on the tumor microenvironment by altering the secretion of a diverse group of biologically active proteins.

  17. Rapid Temporal Dynamics of Transcription, Protein Synthesis, and Secretion during Macrophage Activation*

    PubMed Central

    Eichelbaum, Katrin; Krijgsveld, Jeroen

    2014-01-01

    Macrophages provide the first line of host defense with their capacity to react to an array of cytokines and bacterial components requiring tight regulation of protein expression and secretion to invoke a properly tuned innate immune response. To capture the dynamics of this system, we introduce a novel method combining pulsed stable isotope labeling with amino acids in cell culture (SILAC) with pulse labeling using the methionine analog azidohomoalanine that allows the enrichment of newly synthesized proteins via click-chemistry followed by their identification and quantification by mass spectrometry. We show that this permits the analysis of proteome changes on a rapid time scale, as evidenced by the detection of 4852 newly synthesized proteins after only a 20-min SILAC pulse. We have applied this methodology to study proteome response during macrophage activation in a time-course manner. We have combined this with full proteome, transcriptome, and secretome analyses, producing an integrative analysis of the first 3 h of lipopolysaccharide-induced macrophage activation. We observed the rapid induction of multiple processes well known to TLR4 signaling, as well as anti-inflammatory proteins and proteins not previously associated with immune response. By correlating transcriptional, translational, and secretory events, we derived novel mechanistic principles of processes specifically induced by lipopolysaccharides, including ectodomain shedding and proteolytic processing of transmembrane and extracellular proteins and protein secretion independent of transcription. In conclusion, we demonstrate that the combination of pulsed azidohomoalanine and pulsed SILAC permits the detailed characterization of proteomic events on a rapid time scale. We anticipate that this approach will be very useful in probing the immediate effects of cellular stimuli and will provide mechanistic insight into cellular perturbation in multiple biological systems. The data have been deposited

  18. Characterization and immunological activity of different forms of recombinant secreted Hc of botulinum neurotoxin serotype B products expressed in yeast.

    PubMed

    Liu, Bo; Shi, DanYang; Chang, ShaoHong; Gong, Xin; Yu, YunZhou; Sun, ZhiWei; Wu, Jun

    2015-01-01

    The recombinant Hc proteins of botulinum neurotoxins and tetanus toxin are exclusively produced by intracellular heterologous expression in Pichia pastoris for use in subunit vaccines; the same Hc proteins produced by secreted heterologous expression are hyper-glycosylated and immunologically inert. Here, several different recombinant secreted Hc proteins of botulinum neurotoxin serotype B (BHc) were expressed in yeast and we characterized and assessed their immunological activity in detail. Recombinant low-glycosylated secreted BHc products (BSK) were also immunologically inert, similar to hyper-glycosylated BHc products (BSG), although deglycosylation restored their immunological activities. Unexpectedly, deglycosylated proBHc contained an unexpected pro-peptide of an α-factor signal and fortuitous N-linked glycosylation sites in the non-cleaved pro-peptide sequences, but not in the BHc sequences. Notably, a non-glycosylated secreted homogeneous BHc isoform (mBHc), which we successfully prepared after deleting the pro-peptide and removing its single potential glycosylation site, was immunologically active and could confer effective protective immunity, similarly to non-glycosylated rBHc. In summary, we conclude that a non-glycosylated secreted BHc isoform can be prepared in yeast by deleting the pro-peptide of the α-factor signal and mutating its single potential glycosylation site. This approach provides a rational and feasible strategy for the secretory expression of botulism or other toxin antigens. PMID:25567004

  19. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation.

    PubMed

    Abdallah, Abdallah M; Bestebroer, Jovanka; Savage, Nigel D L; de Punder, Karin; van Zon, Maaike; Wilson, Louis; Korbee, Cees J; van der Sar, Astrid M; Ottenhoff, Tom H M; van der Wel, Nicole N; Bitter, Wilbert; Peters, Peter J

    2011-11-01

    During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5--two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators--during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1β activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread. PMID:21957139

  20. Simultaneous targeted activation of Notch1 and Vhl-disruption in the kidney proximal epithelial tubular cells in mice

    PubMed Central

    Johansson, Elinn; Rönö, Birgitte; Johansson, Martin; Lindgren, David; Möller, Christina; Axelson, Håkan; Smith, Emma M. K.

    2016-01-01

    Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, representing approximately 75% of all renal neoplasms. ccRCC is known to be strongly associated with silencing of the von Hippel Lindau (VHL) tumor suppressor gene, yet VHL deficiency alone does not seem to be sufficient to drive the oncogenic transformation of normal renal epithelium and induce renal tumorigenesis. We, and others, have previously suggested that constitutive activation of the Notch signaling pathway, alongside with VHL loss, contribute to the oncogenic features of ccRCC. Here we report a prevailing hyperactivation of the Notch1 receptor in human ccRCC relative to the healthy counterpart. To explore the consequences of the elevated Notch1 signaling observed in ccRCC patient material, we made use of a conditional mouse model based on concurrent ectopic expression of constitutively active Notch1 (NICD1) and deletion of the Vhl gene. Histological examination of the kidneys of the conditional mice demonstrate the existence of nests of dysplastic cells with a clear cytoplasm as a consequence of lipid accumulation, thus displaying a one important hallmark of human ccRCC. PMID:27491826

  1. Simultaneous targeted activation of Notch1 and Vhl-disruption in the kidney proximal epithelial tubular cells in mice.

    PubMed

    Johansson, Elinn; Rönö, Birgitte; Johansson, Martin; Lindgren, David; Möller, Christina; Axelson, Håkan; Smith, Emma M K

    2016-01-01

    Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, representing approximately 75% of all renal neoplasms. ccRCC is known to be strongly associated with silencing of the von Hippel Lindau (VHL) tumor suppressor gene, yet VHL deficiency alone does not seem to be sufficient to drive the oncogenic transformation of normal renal epithelium and induce renal tumorigenesis. We, and others, have previously suggested that constitutive activation of the Notch signaling pathway, alongside with VHL loss, contribute to the oncogenic features of ccRCC. Here we report a prevailing hyperactivation of the Notch1 receptor in human ccRCC relative to the healthy counterpart. To explore the consequences of the elevated Notch1 signaling observed in ccRCC patient material, we made use of a conditional mouse model based on concurrent ectopic expression of constitutively active Notch1 (NICD1) and deletion of the Vhl gene. Histological examination of the kidneys of the conditional mice demonstrate the existence of nests of dysplastic cells with a clear cytoplasm as a consequence of lipid accumulation, thus displaying a one important hallmark of human ccRCC. PMID:27491826

  2. Bile salt receptor complex activates a pathogenic type III secretion system

    PubMed Central

    Li, Peng; Rivera-Cancel, Giomar; Kinch, Lisa N; Salomon, Dor; Tomchick, Diana R; Grishin, Nick V; Orth, Kim

    2016-01-01

    Bile is an important component of the human gastrointestinal tract with an essential role in food absorption and antimicrobial activities. Enteric bacterial pathogens have developed strategies to sense bile as an environmental cue to regulate virulence genes during infection. We discovered that Vibrio parahaemolyticus VtrC, along with VtrA and VtrB, are required for activating the virulence type III secretion system 2 in response to bile salts. The VtrA/VtrC complex activates VtrB in the presence of bile salts. The crystal structure of the periplasmic domains of the VtrA/VtrC heterodimer reveals a β-barrel with a hydrophobic inner chamber. A co-crystal structure of VtrA/VtrC with bile salt, along with biophysical and mutational analysis, demonstrates that the hydrophobic chamber binds bile salts and activates the virulence network. As part of a family of conserved signaling receptors, VtrA/VtrC provides structural and functional insights into the evolutionarily conserved mechanism used by bacteria to sense their environment. DOI: http://dx.doi.org/10.7554/eLife.15718.001 PMID:27377244

  3. Secreted Thrombospondin-1 Regulates Macrophage Interleukin-1β Production and Activation through CD47

    PubMed Central

    Stein, Erica V.; Miller, Thomas W.; Ivins-O’Keefe, Kelly; Kaur, Sukhbir; Roberts, David D.

    2016-01-01

    Thrombospondin-1 regulates inflammation by engaging several cell surface receptors and by modulating activities of other secreted factors. We have uncovered a novel role of thrombospondin-1 in modulating production and activation of the proinflammatory cytokine IL-1β by human and murine macrophages. Physiological concentrations of thrombospondin-1 limit the induction by lipopolysaccharide of IL-1β mRNA and total protein production by human macrophages. This inhibition can be explained by the ability of thrombospondin-1 to disrupt the interaction between CD47 and CD14, thereby limiting activation of NFκB/AP-1 by lipopolysaccharide. Only the CD47-binding domain of thrombospondin-1 exhibits this activity. In contrast, CD47, CD36, and integrin-binding domains of thrombospondin-1 independently enhance the inflammasome-dependent maturation of IL-1β in human THP-1 monocyte-derived macrophages. Correspondingly, mouse bone marrow-derived macrophages that lack either thrombospondin-1 or CD47 exhibit diminished induction of mature IL-1β in response to lipopolysaccharide. Lack of CD47 also limits lipopolysaccharide induction of IL-1β, NLRP3, and caspase-1 mRNAs. These data demonstrate that thrombospondin-1 exerts CD47-dependent and -independent pro-and anti-inflammatory effects on the IL-1β pathway. Therefore, thrombospondin-1 and its receptor CD47 may be useful targets for limiting the pro-inflammatory effects of lipopolysaccharide and for treating endotoxemia. PMID:26813769

  4. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation.

    PubMed

    Yang, Jieling; Zhao, Yue; Shi, Jianjin; Shao, Feng

    2013-08-27

    Inflammasome mediated by central nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) protein is critical for defense against bacterial infection. Here we show that type III secretion system (T3SS) needle proteins from several bacterial pathogens, including Salmonella typhimurium, enterohemorrhagic Escherichia coli, Shigella flexneri, and Burkholderia spp., can induce robust inflammasome activation in both human monocyte-derived and mouse bone marrow macrophages. Needle protein activation of human NRL family CARD domain containing 4 (NLRC4) inflammasome requires the sole human neuronal apoptosis inhibitory protein (hNAIP). Among the seven mouse NAIPs, NAIP1 functions as the mouse counterpart of hNAIP. We found that NAIP1 recognition of T3SS needle proteins was more robust in mouse dendritic cells than in bone marrow macrophages. Needle proteins, as well as flagellin and rod proteins from five different bacteria, exhibited differential and cell type-dependent inflammasome-stimulating activity. Comprehensive profiling of the three types of NAIP ligands revealed that NAIP1 sensing of the needle protein dominated S. flexneri-induced inflammasome activation, particularly in dendritic cells. hNAIP/NAIP1 and NAIP2/5 formed a large oligomeric complex with NLRC4 in the presence of corresponding bacterial ligands, and could support reconstitution of the NLRC4 inflammasome in a ligand-specific manner. PMID:23940371

  5. Geomagnetic activity influences the melatonin secretion at latitude 70 degrees N.

    PubMed

    Weydahl, A; Sothern, R B; Cornélissen, G; Wetterberg, L

    2001-01-01

    Factors other than light may affect variations in melatonin, including disturbances in the geomagnetic field. Such a possibility was tested in Alta, Norway, located at latitude 70 degrees N, where the aurora borealis is a result of large changes in the horizontal component (H) of the geomagnetic field. Geomagnetic disturbances are felt more strongly closer to the pole than at lower latitudes. Also noteworthy in Alta is the fact that the sun does not rise above the horizon for several weeks during the winter. To examine whether changes in geomagnetic activity influence the secretion of melatonin, saliva was collected from 25 healthy subjects in Alta several times during the day-night and at different times of the year. Single cosinor analyses yielded individual estimates of.the circadian amplitude and MESOR of melatonin. A 3-hour mean value for the local geomagnetic activity index, K, was used for approximately the same 24-hour span. A circadian rhythm was found to characterize both melatonin and K, the peak in K (23:24) preceding that of melatonin (06:08). During the span of investigation, a circannual variation also characterized both variables. Correlation analyses suggest that changes in geomagnetic activity had to be of a certain magnitude to affect the circadian amplitude of melatonin. If large enough (> 80 nT/3 h), changes in geomagnetic activity also significantly decreased salivary melatonin concentration. PMID:11774869

  6. Holdase activity of secreted Hsp70 masks amyloid-β42 neurotoxicity in Drosophila.

    PubMed

    Fernandez-Funez, Pedro; Sanchez-Garcia, Jonatan; de Mena, Lorena; Zhang, Yan; Levites, Yona; Khare, Swati; Golde, Todd E; Rincon-Limas, Diego E

    2016-08-30

    Alzheimer's disease (AD) is the most prevalent of a large group of related proteinopathies for which there is currently no cure. Here, we used Drosophila to explore a strategy to block Aβ42 neurotoxicity through engineering of the Heat shock protein 70 (Hsp70), a chaperone that has demonstrated neuroprotective activity against several intracellular amyloids. To target its protective activity against extracellular Aβ42, we added a signal peptide to Hsp70. This secreted form of Hsp70 (secHsp70) suppresses Aβ42 neurotoxicity in adult eyes, reduces cell death, protects the structural integrity of adult neurons, alleviates locomotor dysfunction, and extends lifespan. SecHsp70 binding to Aβ42 through its holdase domain is neuroprotective, but its ATPase activity is not required in the extracellular space. Thus, the holdase activity of secHsp70 masks Aβ42 neurotoxicity by promoting the accumulation of nontoxic aggregates. Combined with other approaches, this strategy may contribute to reduce the burden of AD and other extracellular proteinopathies. PMID:27531960

  7. Mars Life? - Microscopic Tubular Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This electron microscope image shows tubular structures of likely Martian origin. These structures are very similar in size and shape to extremely tiny microfossils found in some Earth rocks. This photograph is part of a report by a NASA research team published in the Aug. 16, 1996, issue of the journal Science. A two-year investigation by the team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.

  8. Mars Life? - Microscopic Tubular Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This electron microscope image shows extremely tiny tubular structures that are possible microscopic fossils of bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller. The fossil-like structures were found in carbonate minerals formed along pre-existing fractures in the meteorite in a fashion similar to the way fossils occur in limestone on Earth, although on a microscopic scale.

  9. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    SciTech Connect

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Mirshahi, Faridoddin; Grider, John R.; Murthy, Karnam S.; Sanyal, Arun J.

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  10. The Bacterial Alarmone (p)ppGpp Activates the Type III Secretion System in Erwinia amylovora

    PubMed Central

    Ancona, Veronica; Lee, Jae Hoon; Chatnaparat, Tiyakhon; Oh, Jinrok; Hong, Jong-In

    2015-01-01

    ABSTRACT The hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by a sigma factor cascade. In this study, the role of the bacterial alarmone ppGpp in activating the T3SS and virulence of E. amylovora was investigated using ppGpp mutants generated by Red recombinase cloning. The virulence of a ppGpp-deficient mutant (ppGpp0) as well as a dksA mutant of E. amylovora was completely impaired, and bacterial growth was significantly reduced, suggesting that ppGpp is required for full virulence of E. amylovora. Expression of T3SS genes was greatly downregulated in the ppGpp0 and dksA mutants. Western blotting showed that accumulations of the HrpA protein in the ppGpp0 and dksA mutants were about 10 and 4%, respectively, of that in the wild-type strain. Furthermore, higher levels of ppGpp resulted in a reduced cell size of E. amylovora. Moreover, serine hydroxamate and α-methylglucoside, which induce amino acid and carbon starvation, respectively, activated hrpA and hrpL promoter activities in hrp-inducing minimal medium. These results demonstrated that ppGpp and DksA play central roles in E. amylovora virulence and indicated that E. amylovora utilizes ppGpp as an internal messenger to sense environmental/nutritional stimuli for regulation of the T3SS and virulence. IMPORTANCE The type III secretion system (T3SS) is a key pathogenicity factor in Gram-negative bacteria. Fully elucidating how the T3SS is activated is crucial for comprehensively understanding the function of the T3SS, bacterial pathogenesis, and survival under stress conditions. In this study, we present the first evidence that the bacterial alarmone ppGpp-mediated stringent response activates the T3SS through a sigma factor cascade, indicating that ppGpp acts as an internal messenger to sense environmental/nutritional stimuli for

  11. Avian renal proximal tubule urate secretion is inhibited by cellular stress-induced AMP-activated protein kinase.

    PubMed

    Bataille, Amy M; Maffeo, Carla L; Renfro, J Larry

    2011-06-01

    Urate is a potent antioxidant at high concentrations but it has also been associated with a wide variety of health risks. Plasma urate concentration is determined by ingestion, production, and urinary excretion; however, factors that regulate urate excretion remain uncertain. The objective of this study was to determine whether cellular stress, which has been shown to affect other renal transport properties, modulates urate secretion in the avian renal proximal tubule. Chick kidney proximal tubule epithelial cell primary culture monolayers were used to study the transepithelial transport of radiolabeled urate. This model allowed examination of the processes, such as multidrug resistance protein 4 (Mrp4, Abcc4), which subserve urate secretion in a functional, intact, homologous system. Our results show that the recently implicated urate efflux transporter, breast cancer resistance protein (ABCG2), does not significantly contribute to urate secretion in this system. Exposure to a high concentration of zinc for 6 h induced a cellular stress response and a striking decrease in transepithelial urate secretion. Acute exposure to zinc had no effect on transepithelial urate secretion or isolated membrane vesicle urate transport, suggesting involvement of a cellular stress adaptation. Activation of AMP-activated protein kinase (AMPK), a candidate modulator of ATP-dependent urate efflux, by 5'-aminoimidazole-4-carboxamide 1-β-d-ribo-furanoside caused a decrease in urate secretion similar to that seen with zinc-induced cellular stress. This effect was prevented with the AMPK inhibitor compound C. Notably, the decrease in urate secretion seen with zinc-induced cellular stress was also prevented by compound C, implicating AMPK in regulation of renal uric acid excretion. PMID:21429974

  12. Full activation of mouse platelets requires ADP secretion regulated by SERCA3 ATPase-dependent calcium stores.

    PubMed

    Elaïb, Ziane; Adam, Frédéric; Berrou, Eliane; Bordet, Jean-Claude; Prévost, Nicolas; Bobe, Régis; Bryckaert, Marijke; Rosa, Jean-Philippe

    2016-08-25

    The role of the sarco-endoplasmic reticulum calcium (Ca(2+)) adenosine triphosphatase (ATPase) 3 (SERCA3) in platelet physiology remains poorly understood. Here, we show that SERCA3 knockout (SERCA3(-/-)) mice exhibit prolonged tail bleeding time and rebleeding. Thrombus formation was delayed both in arteries and venules in an in vivo ferric chloride-induced thrombosis model. Defective platelet adhesion and thrombus growth over collagen was confirmed in vitro. Adenosine 5'-diphosphate (ADP) removal by apyrase diminished adhesion and thrombus growth of control platelets to the level of SERCA3(-/-) platelets. Aggregation, dense granule secretion, and Ca(2+) mobilization of SERCA3(-/-) platelets induced by low collagen or low thrombin concentration were weaker than controls. Accordingly, SERCA3(-/-) platelets exhibited a partial defect in total stored Ca(2+) and in Ca(2+) store reuptake following thrombin stimulation. Importantly ADP, but not serotonin, rescued aggregation, secretion, and Ca(2+) mobilization in SERCA3(-/-) platelets, suggesting specificity. Dense granules appeared normal upon electron microscopy, mepacrine staining, and total serotonin content, ruling out a dense granule defect. ADP induced normal platelet aggregation, excluding a defect in ADP activation pathways. The SERCA3-specific inhibitor 2,5-di-(tert-butyl)-1,4-benzohydroquinone diminished both Ca(2+) mobilization and secretion of control platelets, as opposed to the SERCA2b inhibitor thapsigargin. This confirmed the specific role of catalytically active SERCA3 in ADP secretion. Accordingly, SERCA3-dependent Ca(2+) stores appeared depleted in SERCA3(-/-) platelets. Finally, αIIbβ3 integrin blockade did not affect SERCA3-dependent secretion, therefore proving independent of αIIbβ3 engagement. Altogether, these results show that SERCA3-dependent Ca(2+) stores control a specific ADP secretion pathway required for full platelet secretion induced by agonists at low concentration and independent

  13. Characterization of Salmonella Type III Secretion Hyper-Activity Which Results in Biofilm-Like Cell Aggregation

    PubMed Central

    Jennings, Matthew E.; Quick, Laura N.; Ubol, Nicha; Shrom, Sally; Dollahon, Norman; Wilson, James W.

    2012-01-01

    We have previously reported the cloning of the Salmonella enterica serovar Typhimurium SPI-1 secretion system and the use of this clone to functionally complement a ΔSPI-1 strain for type III secretion activity. In the current study, we discovered that S. Typhimurium cultures containing cloned SPI-1 display an adherent biofilm and cell clumps in the media. This phenotype was associated with hyper-expression of SPI-1 type III secretion functions. The biofilm and cell clumps were associated with copious amounts of secreted SPI-1 protein substrates SipA, SipB, SipC, SopB, SopE, and SptP. We used a C-terminally FLAG-tagged SipA protein to further demonstrate SPI-1 substrate association with the cell aggregates using fluorescence microscopy and immunogold electron microscopy. Different S. Typhimurium backgrounds and both flagellated and nonflagellated strains displayed the biofilm phenotype. Mutations in genes essential for known bacterial biofilm pathways (bcsA, csgBA, bapA) did not affect the biofilms formed here indicating that this phenomenon is independent of established biofilm mechanisms. The SPI-1-mediated biofilm was able to massively recruit heterologous non-biofilm forming bacteria into the adherent cell community. The results indicate a bacterial aggregation phenotype mediated by elevated SPI-1 type III secretion activity with applications for engineered biofilm formation, protein purification strategies, and antigen display. PMID:22412985

  14. Leptin Induces Oxidative Stress Through Activation of NADPH Oxidase in Renal Tubular Cells: Antioxidant Effect of L-Carnitine.

    PubMed

    Blanca, Antonio J; Ruiz-Armenta, María V; Zambrano, Sonia; Salsoso, Rocío; Miguel-Carrasco, José L; Fortuño, Ana; Revilla, Elisa; Mate, Alfonso; Vázquez, Carmen M

    2016-10-01

    Leptin is a protein involved in the regulation of food intake and in the immune and inflammatory responses, among other functions. Evidences demonstrate that obesity is directly associated with high levels of leptin, suggesting that leptin may directly link obesity with the elevated cardiovascular and renal risk associated with increased body weight. Adverse effects of leptin include oxidative stress mediated by activation of NADPH oxidase. The aim of this study was to evaluate the effect of L-carnitine (LC) in rat renal epithelial cells (NRK-52E) exposed to leptin in order to generate a state of oxidative stress characteristic of obesity. Leptin increased superoxide anion (O2 (•) -) generation from NADPH oxidase (via PI3 K/Akt pathway), NOX2 expression and nitrotyrosine levels. On the other hand, NOX4 expression and hydrogen peroxide (H2 O2 ) levels diminished after leptin treatment. Furthermore, the expression of antioxidant enzymes, catalase, and superoxide dismutase, was altered by leptin, and an increase in the mRNA expression of pro-inflammatory factors was also found in leptin-treated cells. LC restored all changes induced by leptin to those levels found in untreated cells. In conclusion, stimulation of NRK-52E cells with leptin induced a state of oxidative stress and inflammation that could be reversed by preincubation with LC. Interestingly, LC induced an upregulation of NOX4 and restored the release of its product, hydrogen peroxide, which suggests a protective role of NOX4 against leptin-induced renal damage. J. Cell. Biochem. 117: 2281-2288, 2016. © 2016 Wiley Periodicals, Inc. PMID:26918530

  15. Deletion of creB in Aspergillus oryzae increases secreted hydrolytic enzyme activity.

    PubMed

    Hunter, A J; Morris, T A; Jin, B; Saint, C P; Kelly, J M

    2013-09-01

    Aspergillus oryzae has been used in the food and beverage industry for centuries, and industrial strains have been produced by multiple rounds of selection. Targeted gene deletion technology is particularly useful for strain improvement in such strains, particularly when they do not have a well-characterized meiotic cycle. Phenotypes of an Aspergillus nidulans strain null for the CreB deubiquitinating enzyme include effects on growth and repression, including increased activity levels of various enzymes. We show that Aspergillus oryzae contains a functional homologue of the CreB deubiquitinating enzyme and that a null strain shows increased activity levels of industrially important secreted enzymes, including cellulases, xylanases, amylases, and proteases, as well as alleviated inhibition of spore germination on glucose medium. Reverse transcription-quantitative PCR (RT-qPCR) analysis showed that the increased levels of enzyme activity in both Aspergillus nidulans and Aspergillus oryzae are mirrored at the transcript level, indicating transcriptional regulation. We report that Aspergillus oryzae DAR3699, originally isolated from soy fermentation, has a similar phenotype to that of a creB deletion mutant of the RIB40 strain, and it contains a mutation in the creB gene. Collectively, the results for Aspergillus oryzae, Aspergillus nidulans, Trichoderma reesei, and Penicillium decumbens show that deletion of creB may be broadly useful in diverse fungi for increasing production of a variety of enzymes. PMID:23835170

  16. Dynamics of the Type III Secretion System Activity of Enteropathogenic Escherichia coli

    PubMed Central

    Mills, Erez; Baruch, Kobi; Aviv, Gili; Nitzan, Mor; Rosenshine, Ilan

    2013-01-01

    ABSTRACT Type III secretion systems (TTSSs) are employed by pathogens to translocate host cells with effector proteins, which are crucial for virulence. The dynamics of effector translocation, behavior of the translocating bacteria, translocation temporal order, and relative amounts of each of the translocated effectors are all poorly characterized. To address these issues, we developed a microscopy-based assay that tracks effector translocation. We used this assay alongside a previously described real-time population-based translocation assay, focusing mainly on enteropathogenic Escherichia coli (EPEC) and partly comparing it to Salmonella. We found that the two pathogens exhibit different translocation behaviors: in EPEC, a subpopulation that formed microcolonies carried out most of the translocation activity, while Salmonella executed protein translocation as planktonic bacteria. We also noted variability in host cell susceptibility, with some cells highly resistant to translocation. We next extended the study to determine the translocation dynamics of twenty EPEC effectors and found that all exhibited distinct levels of translocation efficiency. Further, we mapped the global effects of key TTSS-related components on TTSS activity. Our results provide a comprehensive description of the dynamics of the TTSS activity of EPEC and new insights into the mechanisms that control the dynamics. PMID:23900171

  17. Proteolytic activity regarding Sarconesiopsis magellanica (Diptera: Calliphoridae) larval excretions and secretions.

    PubMed

    Pinilla, Yudi T; Moreno-Pérez, Darwin A; Patarroyo, Manuel A; Bello, Felio J

    2013-12-01

    Sarconesiopsis magellanica (Diptera: Calliphoridae) is a medically important necrophagous fly which is used for establishing the post-mortem interval. Diptera maggots release proteolytic enzymes contained in larval excretion and secretion (ES) products playing a key role in digestion. Special interest in proteolytic enzymes has also been aroused regarding understanding their role in wound healing since they degrade necrotic tissue during larval therapy. This study was thus aimed at identifying and characterising S. magellanica proteolytic enzyme ES products for the first time. These products were obtained from first-, second- and third-instar larvae taken from a previously-established colony. ES proteins were separated by SDS-PAGE and their proteolytic activity was characterised by zymograms and inhibition assays involving BAPNA (Nα-benzoyl-dl-Arg-p-nitroanilide) and SAPNA substrates, using synthetic inhibitors. The protein profile ranged from ∼69kDa to ∼23kDa; several of them coincided with the Lucilia sericata ES protein profile. Serine-protease hydrolysis activity (measured by zymogram) was confirmed when a ∼25kDa band disappeared upon ES incubation with PMSF inhibitor at pH 7.8. Analysis of larval ES proteolytic activity on BAPNA and SAPNA substrates (determined by using TLCK and TPCK specific inhibitors) suggested a greater amount of trypsin-like protease. These results support the need for further experiments aimed at validating S. magellanica use in larval therapy. PMID:24076089

  18. Gallic Acid, the Active Ingredient of Terminalia bellirica, Enhances Adipocyte Differentiation and Adiponectin Secretion.

    PubMed

    Makihara, Hiroko; Koike, Yuka; Ohta, Masatomi; Horiguchi-Babamoto, Emi; Tsubata, Masahito; Kinoshita, Kaoru; Akase, Tomoko; Goshima, Yoshio; Aburada, Masaki; Shimada, Tsutomu

    2016-01-01

    Visceral obesity induces the onset of metabolic disorders such as insulin resistance and diabetes mellitus. Adipose tissue is considered as a potential pharmacological target for treating metabolic disorders. The fruit of Terminalia bellirica is extensively used in Ayurvedic medicine to treat patients with diseases such as diabetes mellitus. We previously investigated the effects of a hot water extract of T. bellirica fruit (TB) on obesity and insulin resistance in spontaneously obese type 2 diabetic mice. To determine the active ingredients of TB and their molecular mechanisms, we focused on adipocyte differentiation using mouse 3T3-L1 cells, which are widely used to study adipocyte physiology. We show here that TB enhanced the differentiation of 3T3-L1 cells to mature adipocytes and that one of the active main components was identified as gallic acid. Gallic acid (10-30 µM) enhanced the expression and secretion of adiponectin via adipocyte differentiation and also that of fatty acid binding protein-4, which is the target of peroxisome proliferator-activated receptor gamma (PPARγ), although it does not alter the expression of the upstream genes PPARγ and CCAAT enhancer binding protein alpha. In the PPARγ ligand assay, the binding of gallic acid to PPARγ was undetectable. These findings indicate that gallic acid mediates the therapeutic effects of TB on metabolic disorders by regulating adipocyte differentiation. Therefore, TB shows promise as a candidate for preventing and treating patients with metabolic syndrome. PMID:27374289

  19. Deletion of creB in Aspergillus oryzae Increases Secreted Hydrolytic Enzyme Activity

    PubMed Central

    Hunter, A. J.; Morris, T. A.; Jin, B.; Saint, C. P.

    2013-01-01

    Aspergillus oryzae has been used in the food and beverage industry for centuries, and industrial strains have been produced by multiple rounds of selection. Targeted gene deletion technology is particularly useful for strain improvement in such strains, particularly when they do not have a well-characterized meiotic cycle. Phenotypes of an Aspergillus nidulans strain null for the CreB deubiquitinating enzyme include effects on growth and repression, including increased activity levels of various enzymes. We show that Aspergillus oryzae contains a functional homologue of the CreB deubiquitinating enzyme and that a null strain shows increased activity levels of industrially important secreted enzymes, including cellulases, xylanases, amylases, and proteases, as well as alleviated inhibition of spore germination on glucose medium. Reverse transcription-quantitative PCR (RT-qPCR) analysis showed that the increased levels of enzyme activity in both Aspergillus nidulans and Aspergillus oryzae are mirrored at the transcript level, indicating transcriptional regulation. We report that Aspergillus oryzae DAR3699, originally isolated from soy fermentation, has a similar phenotype to that of a creB deletion mutant of the RIB40 strain, and it contains a mutation in the creB gene. Collectively, the results for Aspergillus oryzae, Aspergillus nidulans, Trichoderma reesei, and Penicillium decumbens show that deletion of creB may be broadly useful in diverse fungi for increasing production of a variety of enzymes. PMID:23835170

  20. Azithromycin inhibits IL-1 secretion and non-canonical inflammasome activation

    PubMed Central

    Gualdoni, Guido A.; Lingscheid, Tilman; Schmetterer, Klaus G.; Hennig, Annika; Steinberger, Peter; Zlabinger, Gerhard J.

    2015-01-01

    Deregulation of inflammasome activation was recently identified to be involved in the pathogenesis of various inflammatory diseases. Although macrolide antibiotics display well described immunomodulatory properties, presumably involved in their clinical effects, their impact on inflammasome activation has not been investigated. We compared the influence of macrolides on cytokine induction in human monocytes. The role of intracellular azithromycin-accumulation was examined by interference with Ca++-dependent uptake. We have also analysed the signalling cascades involved in inflammasome activation, and substantiated the findings in a murine sepsis model. Azithromycin, but not clarithromycin or roxithromycin, specifically inhibited IL-1α and IL-1β secretion upon LPS stimulation. Interference with Ca++-dependent uptake abolished the cytokine-modulatory effect, suggesting a role of intracellular azithromycin accumulation in the modulatory role of this macrolide. Azithromycin’s inhibiting effects were observed upon LPS, but not upon flagellin, stimulation. Consistent with this observation, we found impaired induction of the LPS-sensing caspase-4 whereas NF-κB signalling was unaffected. Furthermore, azithromycin specifically affected IL-1β levels in a murine endotoxin sepsis model. We provide the first evidence of a differential impact of macrolides on the inflammasome/IL-1β axis, which may be of relevance in inflammasome-driven diseases such as chronic obstructive pulmonary disease or asthma. PMID:26152605

  1. Proximal tubular NHEs: sodium, protons and calcium?

    PubMed Central

    Alexander, R. Todd; Dimke, Henrik; Cordat, Emmanuelle

    2016-01-01

    Na+/H+ exchange activity in the apical membrane of the proximal tubule is fundamental to the reabsorption of Na+ and water from the filtrate. The role of this exchange process in bicarbonate reclamation and, consequently, the maintenance of acid-base homeostasis has been appreciated for at least half a century and remains a pillar of renal tubular physiology. More recently, apical Na+/H+ exchange, mediated by Na+/H+ exchanger isoform 3 (NHE3), has been implicated in proximal tubular reabsorption of Ca2+ and Ca2+ homeostasis in general. Overexpression of NHE3 increased paracellular Ca2+ flux in a proximal tubular cell model. Consistent with this observation, mice with genetic deletion of Nhe3 have a noticable renal Ca2+ leak. These mice also display decreased intestinal Ca2+ uptake and osteopenia. This review highlights the traditional roles of proximal tubular Na+/H+ exchange and summarizes recent novel findings implicating the predominant isoform, NHE3, in Ca2+ homeostasis. PMID:23761670

  2. Secretion of a lysophospholipase D activity by adipocytes: involvement in lysophosphatidic acid synthesis

    PubMed Central

    Gesta, Stéphane; Simon, Marie-Françoise; Rey, Astrid; Sibrac, David; Girard, Alexia; Lafontan, Max; Valet, Philippe; Saulnier-Blache, Jean Sébastien

    2002-01-01

    The aim of the present work was to depict the metabolic pathways involved in extra-cellular production of lysophosphatidic acid (LPA) by adipocytes. LPA was followed by quantifying the accumulation of LPA in the incubation medium (conditioned medium: CM) of 3T3F442A adipocytes, or human adipose tissue explants, using a radioenzymatic assay. Surprisingly, after separation from the cells, the amount of LPA present in CM could significantly be increased by further incubation at 37°C. This suggested the presence of a LPA-synthesizing activity (LPA-SA) in CM. LPA-SA appeared as a soluble activity which was inhibited by divalent ion chelators: EDTA and phenanthrolin. The effect of EDTA was preferentially reverted by CoCl2, as described for a lysophospholipase D- (lyso-PLD) activity previously identified in rat plasma. LPA concentration could also be increased by treatment with a bacterial PLD, demonstrating the presence of PLD-sensitive LPA-precursors (mainly lysophosphatidylcholine) in adipocyte CM. LPA-SA could be increased by addition of exogenous lysophosphatidylcholine, lysophosphatidylglycerol, or lyso-platelet activating factor, demonstrating that LPA-SA resulted from the action of a lyso-PLD. LPA-SA was not inhibited, but rather activated, by primary alcohol (ethanol and 1-butanol), suggesting that adipocyte lyso-PLD was not a classical PLD. Finally, LPA-SA was found to be weaker in CM of undifferentiated adipocyte (preadipocytes) as compared to CM of differentiated adipocytes. In conclusion, our results reveal the existence of a secreted lyso-PLD activity regulated during adipocyte-differentiation and involved in extra-cellular production of synthesis of LPA by adipocytes. PMID:12032165

  3. Development and utilization of activated STAT3 detection assays for screening a library of secreted proteins.

    PubMed

    Fursov, Natalie; Gates, Irina V; Panavas, Tadas; Giles-Komar, Jill; Powers, Gordon

    2011-08-01

    Interleukin-6 (IL-6) family of cytokines are multifunctional proteins that play an important role in host defenses, acute phase reactions, immune responses, hematopoiesis, and tumorigenesis. The cytokines are produced by various lymphoid and nonlymphoid cells and mediate their biological activity through initial low-affinity binding to cell surface receptors, which are specific for their respective ligands. Ligand-specific receptor binding results in the receptor heterodimerization with ubiquitously expressed signal-transducing transmembrane component gp130 followed by activation of the gp130-associated Janus kinase, which, in turn, phosphorylates signal transducer and activator of transcription 3 (STAT3). Phosphorylated STAT3 (pSTAT3) dimerizes and translocates to the nucleus, where it activates gene transcription. Activation of STAT3 is essential to IL-6 family-associated physiological effects. Therefore, the ability to assess STAT3 phosphorylation is important for drug discovery efforts targeting IL-6 family cytokines. Various reagents and technologies are available to detect the effect of IL-6 type cytokines in treated cells. The present study describes the development of two pSTAT3 detection assays: the high-throughput screening assay based on Meso-Scale Discovery technology, which utilizes electrochemoluminescent signal measurements for the detection of pSTAT3 in treated cell extracts, and the secondary characterization assay based on fluorescent imaging analysis, which monitors pSTAT3 nuclear translocation in cells after activation. We have successfully utilized these assays to screen a small library of secreted proteins and identified inducers of STAT3 phosphorylation. The results obtained in this study demonstrate that both assays are robust, reliable, and amenable to high-throughput screening applications. PMID:21294636

  4. Insulin secretion enhancing activity of roselle calyx extract in normal and streptozotocin-induced diabetic rats

    PubMed Central

    Wisetmuen, Eamruthai; Pannangpetch, Patchareewan; Kongyingyoes, Bunkerd; Kukongviriyapan, Upa; Yutanawiboonchai, Wiboonchai; Itharat, Arunporn

    2013-01-01

    Background and Objective: Our recent study revealed the antihyperglycemic activity of an ethanolic extract of roselle calyxes (Hibiscus sabdariffa) in diabetic rats. The present study had, therefore, an objective to investigate the mechanism underlying this activity. Materials and Methods: Male Sprague Dawley rats were induced to be diabetes by intraperitoneal injection of 45 mg/kg streptozotocin (STZ). Normal rats as well as diabetic rats were administered with the ethanolic extract of H. sabdariffa calyxes (HS-EE) at 0.1 and 1.0 g/kg/day, respectively, for 6 weeks. Then, blood glucose and insulin levels, at basal and glucose-stimulated secretions, were measured. The pancreas was dissected to examine histologically. Results: HS-EE 1.0 g/kg/day significantly decreased the blood glucose level by 38 ± 12% in diabetic rats but not in normal rats. In normal rats, treatment with 1.0 g/kg HS-EE increased the basal insulin level significantly as compared with control normal rats (1.28 ± 0.25 and 0.55 ± 0.05 ng/ml, respectively). Interestingly, diabetic rats treated with 1.0 g/kg HS-EE also showed a significant increase in basal insulin level as compared with the control diabetic rats (0.30 ± 0.05 and 0.15 ± 0.01 ng/ml, respectively). Concerning microscopic histological examination, HS-EE 1.0 g/kg significantly increased the number of islets of Langerhans in both normal rats (1.2 ± 0.1 and 2.0 ± 0.1 islet number/10 low-power fields (LPF) for control and HS-EE treated group, respectively) and diabetic rats (1.0 ± 0.3 and 3.9 ± 0.6 islet number/10 LPF for control and HS-EE treated group, respectively). Conclusion: The antidiabetic activity of HS-EE may be partially mediated via the stimulating effect on insulin secretion. PMID:23798879

  5. Active site mutants of human secreted Group IIA Phospholipase A2 lacking hydrolytic activity retain their bactericidal effect.

    PubMed

    Chioato, Lucimara; Aragão, Elisangela Aparecida; Ferreira, Tatiana Lopes; Ward, Richard J

    2012-01-01

    The Human Secreted Group IIA Phospholipase A(2) (hsPLA2GIIA) presents potent bactericidal activity, and is considered to contribute to the acute-phase immune response. Hydrolysis of inner membrane phospholipids is suggested to underlie the bactericidal activity, and we have evaluated this proposal by comparing catalytic activity with bactericidal and liposome membrane damaging effects of the G30S, H48Q and D49K hsPLA2GIIA mutants. All mutants showed severely impaired hydrolytic activities against mixed DOPC:DOPG liposome membranes, however the bactericidal effect against Micrococcus luteus was less affected, with 50% killing at concentrations of 1, 3, 7 and 9 μg/mL for the wild-type, D49K, H48Q and G30S mutants respectively. Furthermore, all proteins showed Ca(2+)-independent damaging activity against liposome membranes demonstrating that in addition to the hydrolysis-dependent membrane damage, the hsPLA2GIIA presents a mechanism for permeabilization of phospholipid bilayers that is independent of catalytic activity, which may play a role in the bactericidal function of the protein. PMID:21986368

  6. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    SciTech Connect

    Ostrow, Lyle W.; Suchyna, Thomas M.; Sachs, Frederick

    2011-06-24

    Highlights: {yields} Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. {yields} Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca{sup 2+} permeant SACs. {yields} The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. {yields} Stretch-induced ET-1 production depends on a calcium influx. {yields} SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch (<20%) of a rubber substrate increased ET-1 secretion, and 4 {mu}M GsMTx-4 (a specific inhibitor of SACs) inhibited secretion by 30%. GsMTx-4 did not alter basal ET-1 levels in the absence of stretch. Decreasing the calcium influx by lowering extracellular calcium also inhibited stretch-induced ET-1 secretion without effecting ET-1 secretion in unstretched controls. Furthermore, inhibiting SACs with the less specific inhibitor streptomycin also inhibited stretch-induced ET-1 secretion. The data can be explained with a simple model in which ET-1 secretion depends on an internal Ca{sup 2+} threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  7. Expandable tubulars for use in geologic structures

    DOEpatents

    Spray, Jeffery A.; Svedeman, Steven; Walter, David; Mckeighan, Peter; Siebanaler, Shane; Dewhurst, Peter; Hobson, Steven; Foss, Doug; Wirz, Holger; Sharpe, Aaron; Apostal, Michael

    2014-08-12

    An expandable tubular includes a plurality of leaves formed from sheet material that have curved surfaces. The leaves extend around a portion or fully around the diameter of the tubular structure. Some of the adjacent leaves of the tubular are coupled together. The tubular is compressed to a smaller diameter so that it can be inserted through previously deployed tubular assemblies. Once the tubular is properly positioned, it is deployed and coupled or not coupled to a previously deployed tubular assembly. The tubular is useful for all types of wells and boreholes.

  8. The twin-arginine signal peptide of Bacillus subtilis YwbN can direct either Tat- or Sec-dependent secretion of different cargo proteins: secretion of active subtilisin via the B. subtilis Tat pathway.

    PubMed

    Kolkman, Marc A B; van der Ploeg, René; Bertels, Michael; van Dijk, Maurits; van der Laan, Joop; van Dijl, Jan Maarten; Ferrari, Eugenio

    2008-12-01

    Proteins that are produced for commercial purposes in Bacillus subtilis are commonly secreted via the Sec pathway. Despite its high secretion capacity, the secretion of heterologous proteins via the Sec pathway is often unsuccessful. Alternative secretion routes, like the Tat pathway, are therefore of interest. Two parallel Tat pathways with distinct specificities have previously been discovered in B. subtilis. To explore the application potential of these Tat pathways, several commercially relevant or heterologous model proteins were fused to the signal peptides of the known B. subtilis Tat substrates YwbN and PhoD. Remarkably, the YwbN signal peptide directed secretion of active subtilisin, a typical Sec substrate, via the B. subtilis TatAyCy route. In contrast, the same signal peptide directed Tat-independent secretion of the Bacillus licheniformis alpha-amylase (AmyL). Moreover, the YwbN signal peptide directed secretion of SufI, an Escherichia coli Tat substrate, in a Tat-independent manner, most likely via Sec. Our results suggest that cytoplasmic protein folding prior to translocation is probably a major determinant of Tat-dependent protein secretion in B. subtilis, as is the case with E. coli. We conclude that future applications for the Tat system of B. subtilis will most likely involve commercially interesting proteins that are Sec incompatible. PMID:18931290

  9. Nisin-Triggered Activity of Lys44, the Secreted Endolysin from Oenococcus oeni Phage fOg44▿

    PubMed Central

    Nascimento, João Gil; Guerreiro-Pereira, Maria Carolina; Costa, Sérgio Fernandes; São-José, Carlos; Santos, Mário Almeida

    2008-01-01

    The intrinsic resistance of Oenococcus oeni cells to the secreted endolysin from oenophage fOg44 (Lys44) was investigated. Experiments with several antimicrobials support the hypothesis that the full activity of Lys44 requires sudden ion-nonspecific dissipation of the proton motive force, an event undertaken by the fOg44 holin in the phage infection context. PMID:17981964

  10. Multidrug-resistance P-glycoprotein (MDR1) secretes platelet-activating factor.

    PubMed Central

    Raggers, R J; Vogels, I; van Meer, G

    2001-01-01

    The human multidrug-resistance (MDR1) P-glycoprotein (Pgp) is an ATP-binding-cassette transporter (ABCB1) that is ubiquitously expressed. Often its concentration is high in the plasma membrane of cancer cells, where it causes multidrug resistance by pumping lipophilic drugs out of the cell. In addition, MDR1 Pgp can transport analogues of membrane lipids with shortened acyl chains across the plasma membrane. We studied a role for MDR1 Pgp in transport to the cell surface of the signal-transduction molecule platelet-activating factor (PAF). PAF is the natural short-chain phospholipid 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine. [(14)C]PAF synthesized intracellularly from exogenous alkylacetylglycerol and [(14)C]choline became accessible to albumin in the extracellular medium of pig kidney epithelial LLC-PK1 cells in the absence of vesicular transport. Its translocation across the apical membrane was greatly stimulated by the expression of MDR1 Pgp, and inhibited by the MDR1 inhibitors PSC833 and cyclosporin A. Basolateral translocation was not stimulated by expression of the basolateral drug transporter MRP1 (ABCC1). It was insensitive to the MRP1 inhibitor indomethacin and to depletion of GSH which is required for MRP1 activity. While efficient transport of PAF across the apical plasma membrane may be physiologically relevant in MDR1-expressing epithelia, PAF secretion in multidrug-resistant tumours may stimulate angiogenesis and thereby tumour growth. PMID:11463358

  11. [Intestinal dysbacteriosis promotes intestinal intraepithelial T lymphocyte activation and proinflammatory cytokine secretion in mice].

    PubMed

    Luo, Xia; Luo, Shuang; Zheng, Yanyi; Wen, Ruyan; Deng, Xiangliang; Zhou, Lian

    2016-08-01

    Objective To study the effect of intestinal dysbacteriosis on mouse intestinal intraepithelial T lymphocytes (iIELs). Methods The intestinal dysbacteriosis was induced in mice by oral administration of ceftriaxone sodium. The iIELs were digested with ethylene diaminetetraacetic acid (EDTA) and DL-dithiothreitol (DTT). The phenotype of iIELs and the proportions of subsets of T cells were detected by flow cytometry; the concentrations of cytokines (IL-2, IL-6, IFN-γ) in the intestine were examined by ELISA; the intestinal bacteria were analyzed with selective medium and PCR. Results Compared with the control group, intestinal commensal bacteria in mice were significantly reduced after the administration of ceftriaxone sodium, but fungi and yeasts increased. The proportions of T cell subgroups in ilELs changed, in which the proportion of TCR γδ(+)T cells significantly increased, and the activated CD3(+)T, CD8(+)T and TCR γδ(+)T cells increased. The concentrations of IL-2, IL-6 and IFN-γ were significantly raised in the intestine. Conclusion The dysbacteriosis results in the decrease of commensal bacteria, the increase of the fungus, the damage of microbial barrier, the more activated T cells in ilELs and the promotion of proinflammatory cytokine secretion in the gut. This is probably one of the reasons for inflammatory bowel disease caused by dysbacteriosis. PMID:27412931

  12. Dermal gland secretions of tropical bont tick,Amblyomma variegatum (Acarina: Ixodidae): Biological activity on predators and pathogens.

    PubMed

    Pavis, C; Mauleon, H; Barre, N; Maibeche, M

    1994-07-01

    When they are mechanically disturbed, all instars of the tropical bont tickAmblyomma variegatum exude droplets of a liquid on the dorsal, lateral, and ventral cuticle. These spread out and quickly evaporate. In this study, the possible role of these secretions was investigated in relation to predators and pathogens. In laboratory bioassays, it was demonstrated that the secretions from engorged larvae, nymphs, and females have an antibiotic activity against the bacteria speciesBacillus thuringiensis andSerratia marcescens, combined with a repellent effect on a potential predator, the fire-antSolenopsis geminata. PMID:24242646

  13. Immobilized tubular fermentor

    SciTech Connect

    Gencer, M.A.; Mutharasan, R.

    1983-09-01

    In this article, a mathematical model describing the kinetics of ethanol fermentation in a whole cell immobilized tubular fermentor is proposed. Experimental results show reasonable agreement with the proposed model. A procedure for treating the fermentation data for determining the ethanol inhibition constants k1 and k2 is described. The ethanol productivity of the immobilized cell fermentor is compared with those of traditional fermentors. Experimental studies indicate that with Saccharomyces cerevisiae (NRRL Y132) culture, ethanol productivity in the range 21.2-83.7 g ethanol/L/h at ethanol concentration of 76-60 g/L can be achieved. This is comparable to or higher than those reported in the literature for yeast. The product yield factor of 0.5 g ethanol/g glucose was obtained. The immobilized cell fermentor does not show washout at dilution rates of 7/h and shows good stability over a 650-h operating period.

  14. Tapered, tubular polyester fabric

    NASA Technical Reports Server (NTRS)

    Lapointe, Donat J. E. (Inventor); Wright, Lawrence T. (Inventor); Vincent, Laurence J. (Inventor)

    1987-01-01

    A tapered tubular polyester sleeve is described to serve as the flexible foundation for a spacesuit limb covering. The tube has a large end and a small end with a length to be determined. The ratio of taper is also determined by scale factors. All the warp yarns extend to the large end. A requisite number of warp yarns extend the full length of the sleeve. Other warp yarns extend from the large end but are terminated along the length of the sleeve. It is then woven with a filling yarn which extends in a full circle along the full length of the sleeve to thereby define the tapered sleeve. The sleeve after fabrication is then placed on a mandrel, heated in an oven, and then attached to the arm or other limb of the spacesuit.

  15. Tapered, tubular polyester fabric

    NASA Technical Reports Server (NTRS)

    LaPointe, Donat J. E. (Inventor); Vincent, Laurence J. (Inventor); Wright, Lawrence T. (Inventor)

    1988-01-01

    A tapered tubular polyester sleeve as set forth. It has a large end 12 and a small end 14 with a length to be determined. The ratio of taper is also determined by scale factors. All the warp yarns extend to the large end 12. A requisite number of warp yarns 16 extend the full length of the sleeve. Other warp yarns exemplified at 18, 22, 26, 28, 30 and 32 extend from the large end but are terminated along the length of the sleeve. It is then woven with a filling yarn 40 which extends in a full circle along the full length of the sleeve to thereby define the tapered sleeve. The sleeve after fabrication is then placed on a mandrel 42, heated in an oven 44 and is thereafter placed on the arm or other limb of a space suit exemplified at 50.

  16. [Tubular involvement in glomerular diseases of the kidney (author's transl)].

    PubMed

    Lubee, G; Balzar, E

    1977-01-21

    An attempt is made in this study to provide an answer to the question whether glomerular diseases are accompanied by tubular disorders. The urinary lysozyme activity was determined by means of a turbidimetric assay method in 10 healthy children as controls, 10 patients with glomerulonephritis, 8 patients with Alport's syndrome (hereditary glomerulonephritis with deafness) and 12 children with idiopathic nephrotic syndrome. In most of the cases a significant increase in urinary lysozyme excretion, indicative of tubular damage, was found and this finding correlates well with the tubular morphology of the patients. PMID:320767

  17. Efficient secretion of biologically active Chondroitinase ABC from mammalian cells in the absence of an N-terminal signal peptide.

    PubMed

    Klüppel, Michael

    2011-05-01

    Proteoglycans carrying chondroitin sulfate side chains have been shown to fulfill important biological functions in development, disease, and signaling. One area of considerable interest is the functional importance of chondroitin sulfates as inhibitors of the regeneration of axonal projections in the mammalian central nervous system. In animal models of spinal cord injury, injections of the enzyme Chondroitinase ABC from the bacterium Proteus vulgaris into the lesion site leads to degradation of chondroitin sulfates, and promotes axonal regeneration and significant functional recovery. Here, a mammalian expression system of an epitope-tagged Chondroitinase ABC protein is described. It is demonstrated that the addition of a eukaryotic secretion signal sequence to the N-terminus of the bacterial Chondroitinase ABC sequence allowed secretion, but interfered with function of the secreted enzyme. In contrast, expression of the Chondroitinase ABC gene without N-terminal eukaryotic secretion sequence or bacterial hydrophobic leader sequence led to efficient secretion of a biologically active Chondroitinase ABC protein from both immortalized and primary cells. Moreover, the C-terminal epitope tag could be utilized to follow expression of this protein. This novel Chondroitinase ABC gene is a valuable tool for a better understanding of the in vivo roles of chondroitin sulfates in mammalian development and disease, as well as in gene therapy approaches, including the treatment of spinal chord injuries. PMID:21213020

  18. Antimicrobial activity of the pygidial gland secretion of the troglophilic ground beetle Laemostenus (Pristonychus) punctatus (Dejean, 1828) (Insecta: Coleoptera: Carabidae).

    PubMed

    Nenadić, M; Soković, M; Glamočlija, J; Ćirić, A; Perić-Mataruga, V; Tešević, V; Vujisić, L; Todosijević, M; Vesović, N; Ćurčić, S

    2016-08-01

    The antimicrobial activity of the pygidial gland secretion released by adult individuals of the troglophilic ground beetle Laemostenus (Pristonychus) punctatus (Dejean, 1828), applying microdilution method with the aim to detect minimal inhibitory concentration, minimal bactericidal concentration and minimal fungicidal concentration, has been investigated. In addition, morphology of the pygidial glands is observed. We have tested 16 laboratory and clinical strains of human pathogens - eight bacterial both gram-positive and gram-negative species and eight fungal species. The pygidial secretion samples have showed antimicrobial properties against all strains of treated bacteria and fungi. Micrococcus flavus proved to be more resistant compared with other bacterial strains. More significant antimicrobial properties of the secretion are observed against Escherichia coli, which proved to be the most sensitive bacteria. Aspergillus fumigatus proved to be the most resistant, while Penicillium ochrochloron and Penicillium verrucosum var. cyclopium the most sensitive micromycetes. Commercial antibiotics Streptomycin and Ampicillin and antimycotics Ketoconazole and Bifonazole, applied as positive controls, showed higher antibacterial properties for all bacterial and fungal strains, except for P. ochrochloron, which proved to be more resistant on Ketoconazole compared with the pygidial gland secretion of L. (P.) punctatus. Apart from the role in ecological aspects, the antimicrobial properties of the tested secretion possibly might have medical significance in the future. PMID:27018928

  19. Active JNK-dependent secretion of Drosophila Tyrosyl-tRNA synthetase by loser cells recruits haemocytes during cell competition.

    PubMed

    Casas-Tintó, Sergio; Lolo, Fidel-Nicolás; Moreno, Eduardo

    2015-01-01

    Cell competition is a process by which the slow dividing cells (losers) are recognized and eliminated from growing tissues. Loser cells are extruded from the epithelium and engulfed by the haemocytes, the Drosophila macrophages. However, how macrophages identify the dying loser cells is unclear. Here we show that apoptotic loser cells secrete Tyrosyl-tRNA synthetase (TyrRS), which is best known as a core component of the translational machinery. Secreted TyrRS is cleaved by matrix metalloproteinases generating MiniTyr and EMAP fragments. EMAP acts as a guiding cue for macrophage migration in the Drosophila larvae, as it attracts the haemocytes to the apoptotic loser cells. JNK signalling and Kish, a component of the secretory pathway, are autonomously required for the active secretion of TyrRS by the loser cells. Altogether, this mechanism guarantees effective removal of unfit cells from the growing tissue. PMID:26658841

  20. Parachute Jumping Induces More Sympathetic Activation Than Cortisol Secretion in First-Time Parachutists

    PubMed Central

    Messina, Giovanni; Chieffi, Sergio; Viggiano, Andrea; Tafuri, Domenico; Cibelli, Giuseppe; Valenzano, Anna; Triggiani, Antonio Ivano; Messina, Antonietta; De Luca, Vincenzo; Monda, Marcellino

    2016-01-01

    Background: The word “stress” describes the status of the body affected by external or internal forces, or “stressors”, threatening to alter its dynamic balance or homeostasis. The adaptive changes which occur in reply to stressors are either behavioral or physical. Once a given threshold is surpassed, a systemic reaction takes place involving the “stress system” in the brain together with its peripheral components, the hypothalamic-pituitary-adrenal axis and autonomic sympathetic. Objectives: Stress induces an activation of the sympathetic nervous system (SNS) and the hypothalamic-pituitary-adrenal (HPA) axis. The purpose of this study was to investigate whether the SNS and the HPA axis would show parallel or divergent stress response patterns in a session of first parachute jump. Patients and Methods: Activation of the SNS was evaluated by dosage of salivary alpha-amylase, galvanic skin responses, and heart rate in seven male novice parachutists. Activation of HPA axis was tested by dosage of cortisol. These variables were measured before and 1 minute and 90 minute after the jump. Results: All variables reached a peak at 1 minute post-jump. Salivary alpha-amylase, galvanic skin responses and heart rate did not return to basal value at 90 minutes post-jump, while cortisol returned to basal value at 90 minutes post-jump. Conclusions: This evidence indicates that parachute jumping is accompanied by a dissociation of SNS and HPA response patterns in novice parachutists, showing a slower recovery in sympathetic activity than in cortisol secretion. PMID:27217924

  1. Activators of PKA and Epac distinctly influence insulin secretion and cytosolic Ca2+ in female mouse islets stimulated by glucose and tolbutamide.

    PubMed

    Henquin, Jean-Claude; Nenquin, Myriam

    2014-09-01

    Amplification of insulin secretion by cAMP is mediated by protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac). Using selective activators, we determined how each effector influences the cytosolic free Ca(2+) concentration ([Ca(2+)]c) and insulin secretion in mouse islets. Alone PKA activator amplified glucose- and tolbutamide-induced insulin secretion, with a greater impact on second than first phase. Epac activator strongly amplified both phases in response to either secretagogue. Amplification was even greater when activators were combined. Although both activators similarly amplified glucose-induced insulin secretion, Epac activator was particularly efficient on tolbutamide-induced insulin secretion. That greater efficacy is attributed to higher [Ca(2+)]c rather than interaction of tolbutamide with Epac, because it was also observed during KCl stimulation. Moreover, in contrast to Epac activator, tolbutamide was inactive when insulin secretion was increased by gliclazide, and its effect on glucose-induced insulin secretion was unaffected by an inhibitor of Epac2. PKA activator increased [Ca(2+)]c during acute or steady-state glucose stimulation, whereas Epac activator had no effect alone or in combination. Neither activator affected [Ca(2+)]c response to tolbutamide or KCl. Metabolic (glucose-mediated) amplification of insulin secretion was unaffected by PKA activator. It was attenuated when insulin secretion was augmented by Epac activator but insensitive to Epac2 inhibitor, which suggests distinct although somewhat overlapping mechanisms. In conclusion, activators of PKA and Epac amplify insulin secretion by augmenting the action of Ca(2+) on exocytosis and, for PKA only, slightly increasing glucose-induced [Ca(2+)]c rise. The influence of Epac seems more important than that of PKA during first phase. PMID:24977470

  2. Expression and secretion of a biologically active mouse sonic hedgehog protein by the methylotrophic yeast Pichia pastoris.

    PubMed

    Sakuma, Y; Kimura, M; Takabatake, T; Takeshima, K; Fujimura, H

    1999-09-01

    We have successfully secreted the amino-terminal functional domain of mouse sonic hedgehog protein (SHH) into culture fluid using a yeast Pichia pastoris expression system. A cDNA fragment encoding the amino-terminal domain of mouse SHH was inserted downstream of the Saccharomyces cerevisiae alpha-mating factor secretion signal. The DNA fragment was introduced into the host genome by the spheroplast transformation method. Transformants were selected based on their resistance to G418: His+ transformants which showed resistance to over 8 mg G418/ml were selected and analyzed for determination of the plasmid copy number. One His+ clone which has eight copies of the expression cassette per genome was cultured in minimal medium deficient for histidine, and further cultured in buffered medium supplemented with methanol which activates the AOX1 promoter. SDS-PAGE analysis indicated efficient expression and secretion of mouse SHH into culture fluid. The yield of secreted SHH was estimated to be 50 micrograms/ml. Purified protein was assayed for biological activity and found to activate the transcription of the Patched genes (Ptc-1 and Ptc-2) encoding receptors for SHH. PMID:10531654

  3. Secreted and O-GlcNAcylated MIF binds to the human EGF receptor and inhibits its activation.

    PubMed

    Zheng, Yanhua; Li, Xinjian; Qian, Xu; Wang, Yugang; Lee, Jong-Ho; Xia, Yan; Hawke, David H; Zhang, Gang; Lyu, Jianxin; Lu, Zhimin

    2015-10-01

    Activation of epidermal growth factor receptor (EGFR), which occurs in many types of tumour, promotes tumour progression. However, no extracellular antagonist of human EGFR has been identified. We found that human macrophage migration inhibitory factor (MIF) is O-GlcNAcylated at Ser 112/Thr 113 at its carboxy terminus. The naturally secreted and O-GlcNAcylated MIF binds to EGFR, thereby inhibiting the binding of EGF to EGFR and EGF-induced EGFR activation, phosphorylation of ERK and c-Jun, cell invasion, proliferation and brain tumour formation. Activation of EGFR through mutation or its ligand binding enhances the secretion of MMP13, which degrades extracellular MIF, and results in abrogation of the negative regulation of MIF on EGFR. The finding that EGFR activation downregulates its antagonist in the tumour microenvironment represents an important feedforward mechanism for human tumour cells to enhance EGFR signalling and promote tumorigenesis. PMID:26280537

  4. Cripto-1 modulates macrophage cytokine secretion and phagocytic activity via NF-κB signaling.

    PubMed

    Zhang, Dong-mei; Bao, Yong-Li; Yu, Chun-Lei; Wang, Yi-meng; Song, Zhen-Bo

    2016-02-01

    Cripto-1 is an oncogenic protein belonging to the epidermal growth factor–Cripto-1/FRL-1/Cryptic family. It has important roles in tumor formation and metastasis, but its effects on the immune system are unclear. In the present study, we investigated the effects of Cripto-1 overexpression on macrophage activities and examined the underlying mechanisms. A cell line stably overexpressing Cripto-1 was developed. The culture supernatant from this cell line was collected and used to condition macrophages (RAW264.7, THP-1, and primary mouse macrophages) for various times. Exposure to this supernatant significantly increased the mRNA and protein expression levels of the anti-inflammatory cytokine interleukin (IL)-10 and of three pro-inflammatory cytokines (tumor necrosis factor-α, IL-6, and IL-1β), but did not affect the expression of transforming growth factor-β, another anti-inflammatory cytokine. Exposure to this supernatant also enhanced macrophage phagocytosis of chicken erythrocytes and yeast cells. Similar effects were observed in macrophages stimulated with purified Cripto-1 protein. Mechanistic experiments revealed that Cripto-1 activated nuclear factor (NF)-κB signaling by inducing IκB kinase phosphorylation and p65 nuclear translocation. Pretreatment with ammonium pyrrolidine dithiocarbamate, a specific NF-κB inhibitor, inhibited Cripto-1-induced cytokine secretion and phagocytosis of macrophages. Taken together, our present findings suggest that Cripto-1 enhances macrophage phagocytic activity and upregulates the production of anti- and pro-inflammatory cytokines via the NF-κB signaling pathway. PMID:26476731

  5. GPR119 Agonist AS1269574 Activates TRPA1 Cation Channels to Stimulate GLP-1 Secretion.

    PubMed

    Chepurny, Oleg G; Holz, George G; Roe, Michael W; Leech, Colin A

    2016-06-01

    GPR119 is a G protein-coupled receptor expressed on intestinal L cells that synthesize and secrete the blood glucose-lowering hormone glucagon-like peptide-1 (GLP-1). GPR119 agonists stimulate the release of GLP-1 from L cells, and for this reason there is interest in their potential use as a new treatment for type 2 diabetes mellitus. AS1269574 is one such GPR119 agonist, and it is the prototype of a series of 2,4,6 trisubstituted pyrimidines that exert positive glucoregulatory actions in mice. Here we report the unexpected finding that AS1269574 stimulates GLP-1 release from the STC-1 intestinal cell line by directly promoting Ca(2+) influx through transient receptor potential ankyrin 1 (TRPA1) cation channels. These GPR119-independent actions of AS1269574 are inhibited by TRPA1 channel blockers (AP-18, A967079, HC030031) and are not secondary to intracellular Ca(2+) release or cAMP production. Patch clamp studies reveal that AS1269574 activates an outwardly rectifying membrane current with properties expected of TRPA1 channels. However, the TRPA1 channel-mediated action of AS1269574 to increase intracellular free calcium concentration is not replicated by GPR119 agonists (AR231453, oleoylethanolamide) unrelated in structure to AS1269574. Using human embryonic kidney-293 cells expressing recombinant rat TRPA1 channels but not GPR119, direct TRPA1 channel activating properties of AS1269574 are validated. Because we find that AS1269574 also acts in a conventional GPR119-mediated manner to stimulate proglucagon gene promoter activity in the GLUTag intestinal L cell line, new findings reported here reveal the surprising capacity of AS1269574 to act as a dual agonist at two molecular targets (GPR119/TRPA1) important to the control of L-cell function and type 2 diabetes mellitus drug discovery research. PMID:27082897

  6. Generation and secretion of eosinophilotactic activity from human polymorphonuclear neutrophils by various mechanisms of cell activation.

    PubMed Central

    König, W; Frickhofen, N; Tesch, H

    1979-01-01

    An eosinophil chemotactic factor(s) (ECF) can be generated from human polymorphonuclear neutrophils by the calcium ionophore, phagocytosis, arachidonic acid and hypotonic lysis. In kinetic studies it is observed that peak ECF activity is released prior to the maximum of lysosomal enzyme release with the calcium ionophore, phagocytosis and arachidonic acid, while under conditions of hypotonic exposure ECF activity appears after the maximum of enzyme release. The ECF obtained by hypotonic exposure shows a fluctuating pattern with sharp peaks and steep fall-offs in activity. The ECF-release for each stimulus is temperature dependent; extracellular calcium is required when the ionophore or phagocytosis are used as stimuli, while with arachidonic acid and hypotonic exposure no extracellular calcium is necessary for ECF-release. On Sephadex G-25 each preparation of ECF eluted in the low molecular weight range at approximately 500 daltons. Eosinophils can be deactivated and cross-deactivated with the various ECF-preparations indicating either a molecular identity or a common mode of action on eosinophils. PMID:437847

  7. Tubular g-C3 N4 Isotype Heterojunction: Enhanced Visible-Light Photocatalytic Activity through Cooperative Manipulation of Oriented Electron and Hole Transfer.

    PubMed

    Tong, Zhenwei; Yang, Dong; Sun, Yuanyuan; Nan, Yanhu; Jiang, Zhongyi

    2016-08-01

    A tubular g-C3 N4 isotype heterojunction (TCNH) photocatalyst was designed for cooperative manipulation of the oriented transfer of photogenerated electrons and holes to pursue high catalytic performance. The adduct of cyanuric acid and melamine (CA·M) is first hydrothermally treated to assemble into hexagonal prism crystals; then the hybrid precursors of urea and CA·M crystals are calcined to form tubular g-C3 N4 isotype heterojunctions. Upon visible-light irradiation, the photogenerated electrons transfer from g-C3 N4 (CA·M) to g-C3 N4 (urea) driven by the conduction band offset of 0.05 eV, while the photogenerated holes transfer from g-C3 N4 (urea) to g-C3 N4 (CA·M) driven by the valence band offset of 0.18 eV, which renders oriented transfer of the charge carriers across the heterojunction interface. Meanwhile, the tubular structure of TCNH is favorable for oriented electron transfer along the longitudinal dimension, which greatly decreases the chance of charge carrier recombination. Consequently, TCNH exhibits a high hydrogen evolution rate of 63 μmol h(-1) (0.04 g, λ > 420 nm), which is nearly five times of the pristine g-C3 N4 and higher than most of the existing g-C3 N4 photocatalysts. This study demonstrates that isotype heterojunction structure and tubular structure can jointly manipulate the oriented transfer of electrons and holes, thus facilitating the visible-light photocatalysis. PMID:27348710

  8. Rap1 Activation Plays a Regulatory Role in Pancreatic Amylase Secretion*S⃞

    PubMed Central

    Sabbatini, Maria E.; Chen, Xuequn; Ernst, Stephen A.; Williams, John A.

    2008-01-01

    Rap1 is a member of the Ras superfamily of small GTP-binding proteins and is localized on pancreatic zymogen granules. The current study was designed to determine whether GTP-Rap1 is involved in the regulation of amylase secretion. Rap1A/B and the two Rap1 guanine nucleotide exchange factors, Epac1 and CalDAG-GEF III, were identified in mouse pancreatic acini. A fraction of both Rap1 and Epac1 colocalized with amylase in zymogen granules, but only Rap1 was integral to the zymogen granule membranes. Stimulation with cholecystokinin (CCK), carbachol, and vasoactive intestinal peptide all induced Rap1 activation, as did calcium ionophore A23187, phorbol ester, forskolin, 8-bromo-cyclic AMP, and the Epac-specific cAMP analog 8-pCPT-2′-O-Me-cAMP. The phospholipase C inhibitor U-73122 abolished carbachol- but not forskolin-induced Rap1 activation. Co-stimulation with carbachol and 8-pCPT-2′-O-Me-cAMP led to an additive effect on Rap1 activation, whereas a synergistic effect was seen on amylase release. Although the protein kinase A inhibitor H-89 abolished forskolin-stimulated CREB phosphorylation, it did not modify forskolin-induced GTP-Rap1 levels, excluding PKA participation. Overexpression of Rap1 GTPase-activating protein, which blocked Rap1 activation, reduced the effect of 8-bromo-cyclic AMP, 8-pCPT-2′-O-Me-cAMP, and vasoactive intestinal peptide on amylase release by 60% and reduced CCK- as well as carbachol-stimulated pancreatic amylase release by 40%. These findings indicate that GTP-Rap1 is required for pancreatic amylase release. Rap1 activation not only mediates the cAMP-evoked response via Epac1 but is also involved in CCK- and carbachol-induced amylase release, with their action most likely mediated by CalDAG-GEF III. PMID:18577515

  9. House dust mite extracts activate cultured human dermal endothelial cells to express adhesion molecules and secrete cytokines.

    PubMed

    Arlian, Larry G; Elder, B Laurel; Morgan, Marjorie S

    2009-05-01

    The human skin contacts molecules from house dust mites that are ubiquitous in many environments. These mite-derived molecules may penetrate the skin epidermis and dermis and contact microvascular endothelial cells and influence their function. The purpose of this study was to determine the response of normal human dermal microvascular endothelial cells to extracts of the dust mites, Dermatophagoides farinae, D. pteronyssinus, and Euroglyphus maynei with and without endotoxin (lipopolysaccharide). Endothelial cells were stimulated with mite extracts and the expression of surface molecules and the secretion of cytokines were measured in the absence and presence of polymyxin B to bind endotoxin. All three mite extracts stimulated endothelial cells to express intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin and to secrete interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP-1), and granulocyte/macrophage colony stimulating factor (GM-CSF). Euroglyphus maynei-induced expression of all the cell surface molecules was not inhibited when the endotoxin activity in the mite extract was inhibited. In contrast, endothelial cells challenged with D. farinae or D. pteronyssinus extract depleted of endotoxin activity expressed only constitutive levels of ICAM-1, VCAM-1, and E-selectin. D. farinae and E. maynei extracts depleted of endotoxin activity still induced secretion of IL-8 and MCP-1 but at reduced levels. Only constitutive amounts of IL-6, G-CSF, and GM-CSF were secreted in response to any of the endotoxin-depleted mite extracts. Extracts of D. farinae, D. pteronyssinus, and E. maynei contain both endotoxins and other molecules that can stimulate expression of cell adhesion molecules and chemokine receptors and the secretion of cytokines by normal human microvascular endothelial cells. PMID:19496432

  10. Aeromonas hydrophila Beta-Hemolysin Induces Active Chloride Secretion in Colon Epithelial Cells (HT-29/B6)

    PubMed Central

    Epple, H. J.; Mankertz, J.; Ignatius, R.; Liesenfeld, O.; Fromm, M.; Zeitz, M.; Chakraborty, T.; Schulzke, J. D.

    2004-01-01

    The diarrheal mechanisms in Aeromonas enteritis are not completely understood. In this study we investigated the effect of aeromonads and of their secretory products on ion secretion and barrier function of monolayers of human intestinal cells (HT-29/B6). Ion secretion was determined as a short-circuit current (ISC) of HT-29/B6 monolayers mounted in Ussing-type chambers. Transepithelial resistance (Rt) served as a measure of permeability. A diarrheal strain of Aeromonas hydrophila (strain Sb) added to the mucosal side of HT-29/B6 monolayers induced a significant ISC (39 ± 3 μA/cm2) and decreased the Rt to ∼10% of the initial value. A qualitatively identical response was obtained with sterile supernatant of strain Sb, and Aeromonas supernatant also induced a significant ISC in totally stripped human colon. Tracer flux and ion replacement studies revealed the ISC to be mainly accounted for by electrogenic Cl− secretion. Supernatant applied serosally completely abolished basal ISC. The supernatant-induced ISC was inhibited by the protein kinase C inhibitor chelerythrine, whereas a protein kinase A inhibitor (H8) and a Ca2+ chelator (BAPTA-AM) had no effect. Physicochemical properties indicated that the supernatant's active compound was an aerolysin-related Aeromonas beta-hemolysin. Accordingly, identical ISC and Rt responses were obtained with Escherichia coli lysates harboring the cloned beta-hemolysin gene from strain SB or the aerA gene encoding for aerolysin. Sequence comparison revealed a 64% homology between aerolysin and the beta-hemolysin cloned from Aeromonas sp. strain Sb. In conclusion, beta-hemolysin secreted by pathogenic aeromonads induces active Cl− secretion in the intestinal epithelium, possibly by channel insertion into the apical membrane and by activation of protein kinase C. PMID:15271947

  11. GLUT1 activity contributes to the impairment of PEDF secretion by the RPE

    PubMed Central

    Calado, Sofia M.; Alves, Liliana S.; Simão, Sónia

    2016-01-01

    Purpose In this study, we aimed to understand whether glucose transporter 1 (GLUT1) activity affects the secretion capacity of antiangiogenic factor pigment epithelium-derived factor (PEDF) by the RPE cells, thus explaining the reduction in PEDF levels observed in patients with diabetic retinopathy (DR). Methods Analysis of GLUT1 expression, localization, and function was performed in vitro in RPE cells (D407) cultured with different glucose concentrations, corresponding to non-diabetic (5 mM of glucose) and diabetic (25 mM of glucose) conditions, further subjected to normoxia or hypoxia. The expression of PEDF was also evaluated in the secretome of the cells cultured in these conditions. Analysis of GLUT1 and PEDF expression was also performed in vivo in the RPE of Ins2Akita diabetic mice and age-matched wild-type (WT) controls. Results We observed an increase in GLUT1 under hypoxia in a glucose-dependent manner, which we found to be directly associated with the translocation and stabilization of GLUT1 in the cell membrane. This stabilization led to an increase in glucose uptake by RPE cells. This increase was followed by a decrease in PEDF expression in RPE cells cultured in conditions that simulated DR. Compared with non-diabetic WT mice, the RPE of Ins2Akita mice showed increased GLUT1 overexpression with a concomitant decrease in PEDF expression. Conclusions Collectively, our data show that expression of GLUT1 is stimulated by hyperglycemia and low oxygen supply, and this overexpression was associated with increased activity of GLUT1 in the cell membrane that contributes to the impairment of the RPE secretory function of PEDF. PMID:27440994

  12. GM-CSF Promotes Macrophage Alternative Activation after Renal Ischemia/Reperfusion Injury

    PubMed Central

    Huynh, Larry; Marlier, Arnaud; Lee, Yashang; Moeckel, Gilbert W.; Cantley, Lloyd G.

    2015-01-01

    After kidney ischemia/reperfusion (I/R) injury, monocytes home to the kidney and differentiate into activated macrophages. Whereas proinflammatory macrophages contribute to the initial kidney damage, an alternatively activated phenotype can promote normal renal repair. The microenvironment of the kidney during the repair phase mediates the transition of macrophage activation from a proinflammatory to a reparative phenotype. In this study, we show that macrophages isolated from murine kidneys during the tubular repair phase after I/R exhibit an alternative activation gene profile that differs from the canonical alternative activation induced by IL-4–stimulated STAT6 signaling. This unique activation profile can be reproduced in vitro by stimulation of bone marrow-derived macrophages with conditioned media from serum-starved mouse proximal tubule cells. Secreted tubular factors were found to activate macrophage STAT3 and STAT5 but not STAT6, leading to induction of the unique alternative activation pattern. Using STAT3-deficient bone marrow-derived macrophages and pharmacologic inhibition of STAT5, we found that tubular cell-mediated macrophage alternative activation is regulated by STAT5 activation. Both in vitro and after renal I/R, tubular cells expressed GM-CSF, a known STAT5 activator, and this pathway was required for in vitro alternative activation of macrophages by tubular cells. Furthermore, administration of a neutralizing antibody against GM-CSF after renal I/R attenuated kidney macrophage alternative activation and suppressed tubular proliferation. Taken together, these data show that tubular cells can instruct macrophage activation by secreting GM-CSF, leading to a unique macrophage reparative phenotype that supports tubular proliferation after sterile ischemic injury. PMID:25388222

  13. An albumin-associated PLA2-like activity inactivates surfactant phosphatidylcholine secreted from fetal type II pneumocytes.

    PubMed

    Damas, Jolanta E; Cake, Max H

    2011-12-01

    Type II pneumocytes are responsible for the synthesis and secretion of pulmonary surfactant, which reduces surface tension in lung alveoli, thus decreasing their tendency to collapse during expiration. For this effect to be sustained, the integrity of the surface-active components of surfactant must be maintained. This study has shown that, when cultured type II pneumocytes are exposed to lipoprotein-free serum (LFS), the level of lyso-phosphatidylcholine (lyso-PC) in the secreted surfactant phospholipids is markedly elevated with a concomitant decline in the level of phosphatidylcholine (PC). This effect is the result of hydrolysis of surfactant PC by a phospholipase A(2) (PLA(2))-like activity present within serum. Anion-exchange chromatography, gel filtration chromatography and preparative electrophoresis of human LFS have shown that this PLA(2)-like activity coelutes with albumin and is biochemically distinct from the secretory form of PLA(2). Furthermore, specific inhibitors of PLA(2) such as p-bromophenacyl bromide, aristolochic acid, and palmitoyl trifluoromethyl ketone do not inhibit this activity of serum. Commercially purified human serum albumin fraction V and recombinant human serum albumin (rHSA) are almost as effective as LFS in enhancing the level of lyso-PC in the media. The latter finding implies that rHSA directly generates lyso-PC from secreted PC and suggests that this PLA(2)-like activity may be an intrinsic attribute of albumin. PMID:21908590

  14. The Elevated Secreted Immunoglobulin D Enhanced the Activation of Peripheral Blood Mononuclear Cells in Rheumatoid Arthritis

    PubMed Central

    Chen, Hengshi; Zhang, Lingling; Chang, Yan; Yan, Shangxue; Dai, Xing; Ma, Yang; Huang, Qiong; Wei, Wei

    2016-01-01

    Immunoglobulin D (IgD) is a surface immunoglobulin that is expressed as either membrane IgD (mIgD) or secreted IgD (sIgD). Researchers have shown that sIgD is often elevated in patients with autoimmune diseases. The possible roles of sIgD on the function of peripheral blood mononuclear cells (PBMCs) in rheumatoid arthritis (RA) are still unclear. In this study, we compared the expression of sIgD, mIgD and IgD receptor (IgDR) in RA patients and healthy controls, and investigated the effect of sIgD on the function of PBMCs. We found that the levels of sIgD, mIgD and IgDR were significantly higher in RA patients compared with healthy controls. The concentrations of sIgD were positively correlated with soluble receptor activator of nuclear factor-κB ligand (sRANKL), rheumatoid factor (RF) and C-reactive protein (CRP) in RA patients. Strikingly, IgD could enhance the proliferation of PBMCs and induce IL-1α, IL-1β, TNF-α, IL-6 and IL-10 production from PBMCs. Moreover, the percentage of activated T cell subsets (CD4+CD69+, CD4+CD154+) and activated B cell subsets (CD19+CD23+, CD19+CD21+, CD19+IgD+ and CD19-CD138+) were increased by IgD. The percentage of unactivated T cell subset (CD4+CD62L+) and immature B cell subset (CD19+IgM+IgD-) were decreased by IgD in PBMCs. Furthermore, the expressions of IgDR on T and B cells were significantly increased by treatment with IgD. Our results demonstrate that IgD enhanced the activation of PBMCs, which may contribute to RA pathogenesis. Therefore, IgD could be a potential novel immunotherapeutic target for the management of RA. PMID:26814717

  15. Autophagy and Tubular Cell Death in the Kidney.

    PubMed

    Havasi, Andrea; Dong, Zheng

    2016-05-01

    Many common renal insults such as ischemia and toxic injury primarily target the tubular epithelial cells, especially the highly metabolically active proximal tubular segment. Tubular epithelial cells are particularly dependent on autophagy to maintain homeostasis and respond to stressors. The pattern of autophagy in the kidney has a unique spatial and chronologic signature. Recent evidence has shown that there is complex cross-talk between autophagy and various cell death pathways. This review specifically discusses the interplay between autophagy and cell death in the renal tubular epithelia. It is imperative to review this topic because recent discoveries have improved our mechanistic understanding of the autophagic process and have highlighted its broad clinical applications, making autophagy a major target for drug development. PMID:27339383

  16. TNFalpha-mediated plasminogen activation on neutrophils is involved in the high plasmin activity in mammary secretion of drying-off cows.

    PubMed

    Chou, Wen K; Yu, Ting C; Chen, Shuen E; Peh, Ho C; Liu, Wen B; Chen, Ming T; Nagahata, Hajime; Chang, Chai J

    2009-11-01

    Interactions between inflammatory cytokines and plasminogen (Pg) activation system on immune cells are yet to be established. In previous studies we reported a somatic cell-associated elevation of proteolytic activity in mammary secretion of drying-off goats and cows. The purposes of the present study were to examine the role of TNF-alpha in polymorphonuclear neutrophil (PMN)-associated Pg activation, and the significance of this activation pathway for overall plasmin (Pm) activity in mammary secretion of drying-off cows. Results of experiments in vitro showed that the spontaneous Pg activation observed on fresh preparations of bovine blood PMN was completely blocked by anti bovine TNF-alpha antibody, and was further up-regulated by exogenous bovine TNF-alpha. Monitoring the parameters of mammary secretion of drying-off cows revealed that both somatic cell counts and differential PMN ratio was significantly elevated at weeks 1, 2 and 3 of milk stasis. Nevertheless, specific activity of soluble Pm in mammary secretion increased and the level of 17-kDa TNF-alpha decreased immediately following milk stasis. Iimmunoblotting revealed that although both 26-kDa pro-TNF-alpha and 17-kDa TNF-alpha were consistently present in somatic cells of mammary secretion collected at weeks 0, 1, 2 and 3 of milk stasis, only 26-kDa pro-TNF-alpha was present in somatic cells of milk during lactation. In-vitro assay indicated that cell-free mammary secretion of drying-off cows exerted no Pg activation bioactivity towards bovine blood PMN. Altogether, the current study suggests the existence of an active TNF-alpha-Pg-Pm autocrine/paracrine loop on the massively infiltrated PMN inside udders of drying-off cows, which involves extensive binding and internalization of 17-kDa TNF-alpha on PMN and consequently activation of Pg, resulting in high Pm activity and low 17-kDa TNF-alpha level in mammary secretion. These coordinated mechanisms may play a role in the defence of drying-off mammary

  17. Dietary sugar promotes systemic TOR activation in Drosophila through AKH-dependent selective secretion of Dilp3.

    PubMed

    Kim, Jung; Neufeld, Thomas P

    2015-01-01

    Secreted ligands of the insulin family promote cell growth and maintain sugar homeostasis. Insulin release is tightly regulated in response to dietary conditions, but how insulin-producing cells (IPCs) coordinate their responses to distinct nutrient signals is unclear. Here we show that regulation of insulin secretion in Drosophila larvae has been segregated into distinct branches-whereas amino acids promote the secretion of Drosophila insulin-like peptide 2 (Dilp2), circulating sugars promote the selective release of Dilp3. Dilp3 is uniquely required for the sugar-mediated activation of TOR signalling and suppression of autophagy in the larval fat body. Sugar levels are not sensed directly by the IPCs, but rather by the adipokinetic hormone (AKH)-producing cells of the corpora cardiaca, and we demonstrate that AKH signalling is required in the IPCs for sugar-dependent Dilp3 release. Thus, IPCs integrate multiple cues to regulate the secretion of distinct insulin subtypes under varying nutrient conditions. PMID:25882208

  18. Chronic glucolipotoxic conditions in pancreatic islets impair insulin secretion due to dysregulated calcium dynamics, glucose responsiveness and mitochondrial activity

    PubMed Central

    2013-01-01

    Background In the progression towards diabetes, glucolipotoxicity is one of the main causes of pancreatic beta cell pathology. The aim of this study was to examine the in vitro effects of chronic glucolipotoxic conditions on cellular responses in pancreatic islets, including glucose and fat metabolism, Calcium mobilization, insulin secretion and insulin content. Results Exposure of islets to chronic glucolipotoxic conditions decreased glucose stimulated insulin secretion in vitro. Reduced protein levels of Glut2/slc2a2, and decreased glucokinase and pyruvate carboxylase mRNA levels indicated a significant lowering in glucose sensing. Concomitantly, both fatty acid uptake and triglyceride accumulation increased significantly while fatty acid oxidation decreased. This general suppression in glucose metabolism correlated well with a decrease in mitochondrial number and activity, reduction in cellular ATP content and dampening of the TCA cycle. Further, we also observed a decrease in IP3 levels and lower Calcium mobilization in response to glucose. Importantly, chronic glucolipotoxic conditions in vitro decreased insulin gene expression, insulin content, insulin granule docking (to the plasma membrane) and insulin secretion. Conclusions Our results present an integrated view of the effects of chronic glucolipotoxic conditions on known and novel signaling events, in vitro, that results in reduced glucose responsiveness and insulin secretion. PMID:23815372

  19. Fish oil regulates adiponectin secretion by a peroxisome proliferator-activated receptor-gamma-dependent mechanism in mice.

    PubMed

    Neschen, Susanne; Morino, Katsutaro; Rossbacher, Jörg C; Pongratz, Rebecca L; Cline, Gary W; Sono, Saki; Gillum, Matthew; Shulman, Gerald I

    2006-04-01

    Adiponectin has insulin-sensitizing, antiatherogenic, and anti-inflammatory properties, but little is known about factors that regulate its secretion. To examine the effect of fish oil on adiponectin secretion, mice were fed either a control diet or isocaloric diets containing 27% safflower oil or 27, 13.5, and 8% menhaden fish oil. Within 15 days, fish oil feeding raised plasma adiponectin concentrations two- to threefold in a dose-dependent manner, and the concentrations remained approximately twofold higher for 7 days when the fish oil diet was replaced by the safflower oil diet. Within 24 h, fish oil markedly induced transcription of the adiponectin gene in epididymal adipose tissue but not in subcutaneous fat. The increase of plasma adiponectin by fish oil was completely blocked by administration of the peroxisome proliferator-activated receptor (PPAR)gamma inhibitor bisphenol-A-diglycidyl ether. In contrast, there was no effect of fish oil feeding on adiponectin secretion in PPARalpha-null mice. These data suggest that fish oil is a naturally occurring potent regulator of adiponectin secretion in vivo and that it does so through a PPARgamma-dependent and PPARalpha-independent manner in epididymal fat. PMID:16567512

  20. Spa47 is an oligomerization-activated type three secretion system (T3SS) ATPase from Shigella flexneri.

    PubMed

    Burgess, Jamie L; Jones, Heather B; Kumar, Prashant; Toth, Ronald T; Middaugh, C Russell; Antony, Edwin; Dickenson, Nicholas E

    2016-05-01

    Gram-negative pathogens often use conserved type three secretion systems (T3SS) for virulence. The Shigella type three secretion apparatus (T3SA) penetrates the host cell membrane and provides a unidirectional conduit for injection of effectors into host cells. The protein Spa47 localizes to the base of the apparatus and is speculated to be an ATPase that provides the energy for T3SA formation and secretion. Here, we developed an expression and purification protocol, producing active Spa47 and providing the first direct evidence that Spa47 is a bona fide ATPase. Additionally, size exclusion chromatography and analytical ultracentrifugation identified multiple oligomeric species of Spa47 with the largest greater than 8 fold more active for ATP hydrolysis than the monomer. An ATPase inactive Spa47 point mutant was then engineered by targeting a conserved Lysine within the predicted Walker A motif of Spa47. Interestingly, the mutant maintained a similar oligomerization pattern as active Spa47, but was unable to restore invasion phenotype when used to complement a spa47 null S. flexneri strain. Together, these results identify Spa47 as a Shigella T3SS ATPase and suggest that its activity is linked to oligomerization, perhaps as a regulatory mechanism as seen in some related pathogens. Additionally, Spa47 catalyzed ATP hydrolysis appears to be essential for host cell invasion, providing a strong platform for additional studies dissecting its role in virulence and providing an attractive target for anti-infective agents. PMID:26947936

  1. Comparison of cholinesterase activities in the excretion-secretion products of Trichinella pseudospiralis and Trichinella spiralis muscle larvae.

    PubMed

    Ros-Moreno, R M; De Armas-Serra, C; Gimenez-Pardo, C; Rodriguez-Caabeiro, F

    2002-06-01

    The presence of cholinesterases (ChE) is reported in T. pseudospiralis excretion-secretion products (ESP) by spectrophotometric method, using acetylthiocholine (ATCI) and butyrilthiocholine (BTCI) as substrates. By inhibition assays, we found that T. pseudospiralis release both acetyl- and butiryl-cholinesterases (AchE and BchE, respectively). The sedimentation coefficientes of these enzymes were determined by sucrose density gradient. We studied the in vivo ChE secretion by immunoblot assays using AchE from Electrophorus (electric eel) and sera from normal or infected mice with T. pseudospiralis or T. spiralis. The presence of anti-AchE antibodies was only demonstrated in the sera from T. pseudospiralis infected mice. Moreover the in vivo secretion was corroborated by the high difference determinate between the ChE activity of the immuno complexes from T. pseudospiralis infected sera and the immunocomplexes from T. spiralis infected sera as well as normal sera. Finally, we analyzed the effect of the organophosphate Neguvón (metrifonate) on the ChE activity from the T. pseudospiralis ESP. The drug inhibits in part this activity. Moreover Neguvón (metrifonate) showed a high activity against the T. pseudospiralis viability. PMID:12116861

  2. Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of β-catenin.

    PubMed

    Jähn, K; Lara-Castillo, N; Brotto, L; Mo, C L; Johnson, M L; Brotto, M; Bonewald, L F

    2012-01-01

    It is a widely held belief that the sole effect of muscle on bone is through mechanical loading. However, as the two tissues are intimately associated, we hypothesized that muscle myokines may have positive effects on bone. We found that factors produced by muscle will protect osteocytes from undergoing cell death induced by dexamethasone (dex), a glucocorticoid known to induce osteocyte apoptosis thereby compromising their capacity to regulate bone remodeling. Both the trypan blue exclusion assay for cell death and nuclear fragmentation assay for apoptosis were used. MLO-Y4 osteocytes, primary osteocytes, and MC3T3 osteoblastic cells were protected against dex-induced apoptosis by C2C12 myotube conditioned media (MT-CM) or by CM from ex vivo electrically stimulated, intact extensor digitorum longus (EDL) or soleus muscle derived from 4 month-old mice. C2C12 MT-CM, but not undifferentiated myoblast CM prevented dex-induced cell apoptosis and was potent down to 0.1 % CM. The CM from EDL muscle electrically stimulated tetanically at 80 Hz was more potent (10 fold) in prevention of dex-induced osteocyte death than CM from soleus muscle stimulated at the same frequency or CM from EDL stimulated at 1 Hz. This suggests that electrical stimulation increases production of factors that preserve osteocyte viability and that type II fibers are greater producers than type I fibers. The muscle factor(s) appears to protect osteocytes from cell death through activation of the Wnt/β-catenin pathway, as MT-CM induces β-catenin nuclear translocation and β-catenin siRNA abrogated the positive effects of MT-CM on dex-induced apoptosis. We conclude that muscle cells naturally secrete factor(s) that preserve osteocyte viability. PMID:22972510

  3. Peptidomimetic Small Molecules Disrupt Type IV Secretion System Activity in Diverse Bacterial Pathogens

    PubMed Central

    Shaffer, Carrie L.; Good, James A. D.; Kumar, Santosh; Krishnan, K. Syam; Gaddy, Jennifer A.; Loh, John T.; Chappell, Joseph; Almqvist, Fredrik

    2016-01-01

    ABSTRACT Bacteria utilize complex type IV secretion systems (T4SSs) to translocate diverse effector proteins or DNA into target cells. Despite the importance of T4SSs in bacterial pathogenesis, the mechanism by which these translocation machineries deliver cargo across the bacterial envelope remains poorly understood, and very few studies have investigated the use of synthetic molecules to disrupt T4SS-mediated transport. Here, we describe two synthetic small molecules (C10 and KSK85) that disrupt T4SS-dependent processes in multiple bacterial pathogens. Helicobacter pylori exploits a pilus appendage associated with the cag T4SS to inject an oncogenic effector protein (CagA) and peptidoglycan into gastric epithelial cells. In H. pylori, KSK85 impedes biogenesis of the pilus appendage associated with the cag T4SS, while C10 disrupts cag T4SS activity without perturbing pilus assembly. In addition to the effects in H. pylori, we demonstrate that these compounds disrupt interbacterial DNA transfer by conjugative T4SSs in Escherichia coli and impede vir T4SS-mediated DNA delivery by Agrobacterium tumefaciens in a plant model of infection. Of note, C10 effectively disarmed dissemination of a derepressed IncF plasmid into a recipient bacterial population, thus demonstrating the potential of these compounds in mitigating the spread of antibiotic resistance determinants driven by conjugation. To our knowledge, this study is the first report of synthetic small molecules that impair delivery of both effector protein and DNA cargos by diverse T4SSs. PMID:27118587

  4. Tubular Overexpression of Angiopoietin-1 Attenuates Renal Fibrosis

    PubMed Central

    Lee, Heedoo; Kim, Yeawon; Liu, Tuoen; Guo, Qiusha; Geminiani, Julio J.; Austin, Paul F.; Chen, Ying Maggie

    2016-01-01

    Emerging evidence has highlighted the pivotal role of microvasculature injury in the development and progression of renal fibrosis. Angiopoietin-1 (Ang-1) is a secreted vascular growth factor that binds to the endothelial-specific Tie2 receptor. Ang-1/Tie2 signaling is critical for regulating blood vessel development and modulating vascular response after injury, but is dispensable in mature, quiescent vessels. Although dysregulation of vascular endothelial growth factor (VEGF) signaling has been well studied in renal pathologies, much less is known about the role of the Ang-1/Tie2 pathway in renal interstitial fibrosis. Previous studies have shown contradicting effects of overexpressing Ang-1 systemically on renal tubulointerstitial fibrosis when different engineered forms of Ang-1 are used. Here, we investigated the impact of site-directed expression of native Ang-1 on the renal fibrogenic process and peritubular capillary network by exploiting a conditional transgenic mouse system [Pax8-rtTA/(TetO)7 Ang-1] that allows increased tubular Ang-1 production in adult mice. Using a murine unilateral ureteral obstruction (UUO) fibrosis model, we demonstrate that targeted Ang-1 overexpression attenuates myofibroblast activation and interstitial collagen I accumulation, inhibits the upregulation of transforming growth factor β1 and subsequent phosphorylation of Smad 2/3, dampens renal inflammation, and stimulates the growth of peritubular capillaries in the obstructed kidney. Our results suggest that Ang-1 is a potential therapeutic agent for targeting microvasculature injury in renal fibrosis without compromising the physiologically normal vasculature in humans. PMID:27454431

  5. Tubular Overexpression of Angiopoietin-1 Attenuates Renal Fibrosis.

    PubMed

    Singh, Sudhir; Manson, Scott R; Lee, Heedoo; Kim, Yeawon; Liu, Tuoen; Guo, Qiusha; Geminiani, Julio J; Austin, Paul F; Chen, Ying Maggie

    2016-01-01

    Emerging evidence has highlighted the pivotal role of microvasculature injury in the development and progression of renal fibrosis. Angiopoietin-1 (Ang-1) is a secreted vascular growth factor that binds to the endothelial-specific Tie2 receptor. Ang-1/Tie2 signaling is critical for regulating blood vessel development and modulating vascular response after injury, but is dispensable in mature, quiescent vessels. Although dysregulation of vascular endothelial growth factor (VEGF) signaling has been well studied in renal pathologies, much less is known about the role of the Ang-1/Tie2 pathway in renal interstitial fibrosis. Previous studies have shown contradicting effects of overexpressing Ang-1 systemically on renal tubulointerstitial fibrosis when different engineered forms of Ang-1 are used. Here, we investigated the impact of site-directed expression of native Ang-1 on the renal fibrogenic process and peritubular capillary network by exploiting a conditional transgenic mouse system [Pax8-rtTA/(TetO)7 Ang-1] that allows increased tubular Ang-1 production in adult mice. Using a murine unilateral ureteral obstruction (UUO) fibrosis model, we demonstrate that targeted Ang-1 overexpression attenuates myofibroblast activation and interstitial collagen I accumulation, inhibits the upregulation of transforming growth factor β1 and subsequent phosphorylation of Smad 2/3, dampens renal inflammation, and stimulates the growth of peritubular capillaries in the obstructed kidney. Our results suggest that Ang-1 is a potential therapeutic agent for targeting microvasculature injury in renal fibrosis without compromising the physiologically normal vasculature in humans. PMID:27454431

  6. Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport

    PubMed Central

    Satoh, Nobuhiko; Nakamura, Motonobu; Suzuki, Masashi; Suzuki, Atsushi; Seki, George; Horita, Shoko

    2015-01-01

    A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2) and stimulates sodium-bicarbonate cotransporter (NBCe1), resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC) and epithelial sodium channel (ENaC) activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1) mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK). Moreover, sodium-proton exchanger 3 (NHE3) in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport. PMID:26491696

  7. Roles of Akt and SGK1 in the Regulation of Renal Tubular Transport.

    PubMed

    Satoh, Nobuhiko; Nakamura, Motonobu; Suzuki, Masashi; Suzuki, Atsushi; Seki, George; Horita, Shoko

    2015-01-01

    A serine/threonine kinase Akt is a key mediator in various signaling pathways including regulation of renal tubular transport. In proximal tubules, Akt mediates insulin signaling via insulin receptor substrate 2 (IRS2) and stimulates sodium-bicarbonate cotransporter (NBCe1), resulting in increased sodium reabsorption. In insulin resistance, the IRS2 in kidney cortex is exceptionally preserved and may mediate the stimulatory effect of insulin on NBCe1 to cause hypertension in diabetes via sodium retention. Likewise, in distal convoluted tubules and cortical collecting ducts, insulin-induced Akt phosphorylation mediates several hormonal signals to enhance sodium-chloride cotransporter (NCC) and epithelial sodium channel (ENaC) activities, resulting in increased sodium reabsorption. Serum- and glucocorticoid-inducible kinase 1 (SGK1) mediates aldosterone signaling. Insulin can stimulate SGK1 to exert various effects on renal transporters. In renal cortical collecting ducts, SGK1 regulates the expression level of ENaC through inhibition of its degradation. In addition, SGK1 and Akt cooperatively regulate potassium secretion by renal outer medullary potassium channel (ROMK). Moreover, sodium-proton exchanger 3 (NHE3) in proximal tubules is possibly activated by SGK1. This review focuses on recent advances in understanding of the roles of Akt and SGK1 in the regulation of renal tubular transport. PMID:26491696

  8. Recombinant fusion protein of cholera toxin B subunit with YVAD secreted by Lactobacillus casei inhibits lipopolysaccharide-induced caspase-1 activation and subsequent IL-1 beta secretion in Caco-2 cells

    PubMed Central

    2014-01-01

    Background Lactobacillus species are used as bacterial vectors to deliver functional peptides to the intestine because they are delivered live to the intestine, colonize the mucosal surface, and continue to produce the desired protein. Previously, we generated a recombinant Lactobacillus casei secreting the cholera toxin B subunit (CTB), which can translocate into intestinal epithelial cells (IECs) through GM1 ganglioside. Recombinant fusion proteins of CTB with functional peptides have been used as carriers for the delivery of these peptides to IECs because of the high cell permeation capacity of recombinant CTB (rCTB). However, there have been no reports of rCTB fused with peptides expressed or secreted by Lactobacillus species. In this study, we constructed L. casei secreting a recombinant fusion protein of CTB with YVAD (rCTB–YVAD). YVAD is a tetrapeptide (tyrosine–valine–alanine–aspartic acid) that specifically inhibits caspase-1, which catalyzes the production of interleukin (IL)-1β, an inflammatory cytokine, from its inactive precursor. Here, we examined whether rCTB–YVAD secreted by L. casei binds to GM1 ganglioside and inhibits caspase-1 activation in Caco-2 cells used as a model of IECs. Results We constructed the rCTB–YVAD secretion vector pSCTB–YVAD by modifying the rCTB secretion vector pSCTB. L. casei secreting rCTB–YVAD was generated by transformation with pSCTB–YVAD. Both the culture supernatant of pSCTB–YVAD-transformed L. casei and purified rCTB–YVAD bound to GM1 ganglioside, as did the culture supernatant of pSCTB-transformed L. casei and purified rCTB. Interestingly, although both purified rCTB–YVAD and rCTB translocated into Caco-2 cells, regardless of lipopolysaccharide (LPS), only purified rCTB–YVAD but not rCTB inhibited LPS-induced caspase-1 activation and subsequent IL-1β secretion in Caco-2 cells, without affecting cell viability. Conclusions The rCTB protein fused to a functional peptide secreted by L. casei

  9. Device for inserting tubular members together

    SciTech Connect

    Milberger, L.J.

    1992-03-17

    This patent describes a well, a lower tubular member with a sealing surface located in the well, an upper tubular member which inserts into engagement with the lower tubular member during running in, the upper and lower tubular members being exposed to well fluid pressure, an improved means for sliding the upper tubular member into engagement with the lower tubular member. It comprises the upper tubular member having a first side and a second side, the second side having a sealing section which mates with the sealing surface of the lower tubular sidewall; axially spaced apart seal means located on the running tool sidewall for sealingly engaging the first side of the upper tubular member above and below the sealing section during running in, for defining a low pressure area between the running tool and the first side which is isolated from the well fluid pressure; the sealing section of the upper tubular member being exposed to well fluid pressure during running in, resulting in a pressure difference across the upper tubular member between the first side of the tubular member and the sealing section, means for eliminating the pressure difference across the upper tubular member between the first side and the sealing section after the upper tubular member has reached its engaged position with the lower tubular member, allowing the sealing section to move radially into engagement with the sealing surface. This patent also describes a method for sliding an upper tubular member into engagement with a sealing surface of a lower tubular member in a well having well fluid pressure, comprising in combination: providing the upper tubular member with a first side and a second side and providing the second side with a sealing section for mating with the sealing surface of the lower tubular member.

  10. Genetic Dissection of the Signaling Cascade that Controls Activation of the Shigella Type III Secretion System from the Needle Tip

    PubMed Central

    Murillo, I.; Martinez-Argudo, I.; Blocker, A. J.

    2016-01-01

    Many Gram-negative bacterial pathogens use type III secretion systems (T3SSs) for virulence. The Shigella T3SS consists of a hollow needle, made of MxiH and protruding from the bacterial surface, anchored in both bacterial membranes by multimeric protein rings. Atop the needle lies the tip complex (TC), formed by IpaD and IpaB. Upon physical contact with eukaryotic host cells, T3S is initiated leading to formation of a pore in the eukaryotic cell membrane, which is made of IpaB and IpaC. Through the needle and pore channels, further bacterial proteins are translocated inside the host cell to meditate its invasion. IpaD and the needle are implicated in transduction of the host cell-sensing signal to the T3S apparatus. Furthermore, the sensing-competent TC seems formed of 4 IpaDs topped by 1 IpaB. However, nothing further is known about the activation process. To investigate IpaB’s role during T3SS activation, we isolated secretion-deregulated IpaB mutants using random mutagenesis and a genetic screen. We found ipaB point mutations in leading to defects in secretion activation, which sometimes diminished pore insertion and host cell invasion. We also demonstrated IpaB communicates intramolecularly and intermolecularly with IpaD and MxiH within the TC because mutations affecting these interactions impair signal transduction. PMID:27277624

  11. Two Novel Dermaseptin-Like Antimicrobial Peptides with Anticancer Activities from the Skin Secretion of Pachymedusa dacnicolor.

    PubMed

    Shi, Daning; Hou, Xiaojuan; Wang, Lei; Gao, Yitian; Wu, Di; Xi, Xinping; Zhou, Mei; Kwok, Hang Fai; Duan, Jinao; Chen, Tianbao; Shaw, Chris

    2016-01-01

    The dermaseptin antimicrobial peptide family contains members of 27-34 amino acids in length that have been predominantly isolated from the skins/skin secretions of phyllomedusine leaf frogs. By use of a degenerate primer in Rapid amplification of cDNA ends (RACE) PCR designed to a common conserved domain within the 5'-untranslated regions of previously-characterized dermaseptin encoding cDNAs, two novel members of this peptide family, named dermaseptin-PD-1 and dermaseptin-PD-2, were identified in the skin secretion of the phyllomedusine frog, Pachymedusa dacnicolor. The primary structures of both peptides were predicted from cloned cDNAs, as well as being confirmed by mass spectral analysis of crude skin secretion fractions resulted from reversed-phase high-performance liquid chromatography. Chemically-synthesized replicates of dermaseptin-PD-1 and dermaseptin-PD-2 were investigated for antimicrobial activity using standard model microorganisms (Gram-positive bacteria, Gram-negative bacteria and a yeast) and for cytotoxicity using mammalian red blood cells. The possibility of synergistic effects between the two peptides and their anti-cancer cell proliferation activities were assessed. The peptides exhibited moderate to high inhibition against the growth of the tested microorganisms and cancer cell lines with low haemolytic activity. Synergistic interaction between the two peptides in inhibiting the proliferation of Escherichia coli and human neuronal glioblastoma cell line, U251MG was also manifested. PMID:27187467

  12. Two Novel Dermaseptin-Like Antimicrobial Peptides with Anticancer Activities from the Skin Secretion of Pachymedusa dacnicolor

    PubMed Central

    Shi, Daning; Hou, Xiaojuan; Wang, Lei; Gao, Yitian; Wu, Di; Xi, Xinping; Zhou, Mei; Kwok, Hang Fai; Duan, Jinao; Chen, Tianbao; Shaw, Chris

    2016-01-01

    The dermaseptin antimicrobial peptide family contains members of 27–34 amino acids in length that have been predominantly isolated from the skins/skin secretions of phyllomedusine leaf frogs. By use of a degenerate primer in Rapid amplification of cDNA ends (RACE) PCR designed to a common conserved domain within the 5′-untranslated regions of previously-characterized dermaseptin encoding cDNAs, two novel members of this peptide family, named dermaseptin-PD-1 and dermaseptin-PD-2, were identified in the skin secretion of the phyllomedusine frog, Pachymedusa dacnicolor. The primary structures of both peptides were predicted from cloned cDNAs, as well as being confirmed by mass spectral analysis of crude skin secretion fractions resulted from reversed-phase high-performance liquid chromatography. Chemically-synthesized replicates of dermaseptin-PD-1 and dermaseptin-PD-2 were investigated for antimicrobial activity using standard model microorganisms (Gram-positive bacteria, Gram-negative bacteria and a yeast) and for cytotoxicity using mammalian red blood cells. The possibility of synergistic effects between the two peptides and their anti-cancer cell proliferation activities were assessed. The peptides exhibited moderate to high inhibition against the growth of the tested microorganisms and cancer cell lines with low haemolytic activity. Synergistic interaction between the two peptides in inhibiting the proliferation of Escherichia coli and human neuronal glioblastoma cell line, U251MG was also manifested. PMID:27187467

  13. Genetic Dissection of the Signaling Cascade that Controls Activation of the Shigella Type III Secretion System from the Needle Tip.

    PubMed

    Murillo, I; Martinez-Argudo, I; Blocker, A J

    2016-01-01

    Many Gram-negative bacterial pathogens use type III secretion systems (T3SSs) for virulence. The Shigella T3SS consists of a hollow needle, made of MxiH and protruding from the bacterial surface, anchored in both bacterial membranes by multimeric protein rings. Atop the needle lies the tip complex (TC), formed by IpaD and IpaB. Upon physical contact with eukaryotic host cells, T3S is initiated leading to formation of a pore in the eukaryotic cell membrane, which is made of IpaB and IpaC. Through the needle and pore channels, further bacterial proteins are translocated inside the host cell to meditate its invasion. IpaD and the needle are implicated in transduction of the host cell-sensing signal to the T3S apparatus. Furthermore, the sensing-competent TC seems formed of 4 IpaDs topped by 1 IpaB. However, nothing further is known about the activation process. To investigate IpaB's role during T3SS activation, we isolated secretion-deregulated IpaB mutants using random mutagenesis and a genetic screen. We found ipaB point mutations in leading to defects in secretion activation, which sometimes diminished pore insertion and host cell invasion. We also demonstrated IpaB communicates intramolecularly and intermolecularly with IpaD and MxiH within the TC because mutations affecting these interactions impair signal transduction. PMID:27277624

  14. Central and peripheral administration of kisspeptin activates gonadotropin but not somatotropin secretion in prepubertal gilts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role that kisspeptin might have in regulating the onset of puberty in large domestic animals is unknown. We tested the hypothesis that either central or peripheral infusion of kisspeptin would stimulate gonadotropin and growth hormone secretion in prepubertal gilts. In experiment 1, prepuberta...

  15. Activation of the calcium sensing receptor stimulates gastrin and gastric acid secretion in healthy participants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gastric acid secretion is a complex process regulated by neuronal and hormonal pathways. Ex vivo studies in human gastric tissues indicate that the calcium sensing receptor (CaR), expressed on the surface of G and parietal cells, may be involved in this regulation. We sought to determine whether cin...

  16. Activation of the calcium sensing receptor stimulates serum gastrin and gastric acid secretion in healthy subjects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gastric acid secretion is a complex process regulated by neuronal and hormonal pathways. Ex vivo studies in human gastric tissues indicate that the calcium sensing receptor (CaR), expressed on the surface of G and parietal cells, may be involved in this regulation. We sought to determine whether cin...

  17. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion

    PubMed Central

    Riz, Michela; Pedersen, Morten Gram

    2015-01-01

    Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1), peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT) and ATP-sensitive K+-channels (K(ATP)-channels) to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP) current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP)-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release. PMID:26630068

  18. Intracellular calcium-release and protein kinase C-activation stimulate sonic hedgehog gene expression during gastric acid secretion

    PubMed Central

    El-Zaatari, Mohamad; Zavros, Yana; Tessier, Art; Waghray, Meghna; Lentz, Steve; Gumucio, Deborah; Todisco, Andrea; Merchant, Juanita L.

    2010-01-01

    Introduction Hypochlorhydria during Helicobacter pylori infection inhibits gastric Shh expression. We investigated whether acid-secretory mechanisms regulate Shh gene expression through Ca2+i-dependent protein kinase C (PKC) or cAMP-dependent protein kinase A (PKA)-activation. Method We blocked Hedgehog signaling by transgenically overexpressing a secreted form of the Hedgehog interacting protein-1 (sHip-1), a natural inhibitor of hedgehog ligands, which induced hypochlorhydria. Gadolinium, EGTA+BAPTA, PKC-overexpressing adenoviruses, and PKC-inhibitors were used to modulate Ca2+i-release, PKC-activity and Shh gene expression in primary gastric cell, organ, and AGS cell line cultures. PKA hyperactivity was induced in the H+/K+-β-cholera-toxin overexpressing mice (Ctox). Results Mice that expressed sHip-1 had lower levels of gastric acid (hypochlorhydria), reduced production of somatostatin, and increased gastrin gene expression. Hypochlorhydria in these mice repressed Shh gene expression, similar to the levels obtained with omeprazole treatment of wild-type mice. However, Shh expression was also repressed in the hyperchlorhydric Ctox model with elevated cAMP, suggesting that the regulation of Shh was not solely acid-dependent, but pertained to specific acid-stimulatory signaling pathways. Based on previous reports that Ca2+i-release also stimulates acid secretion in parietal cells, we showed that gadolinium-, thapsigargin- and carbachol-mediated release of Ca2+i induced Shh expression. Ca2+-chelation with BAPTA+EGTA reduced Shh expression. Overexpression of PKC-α, -β and -δ (but not PKC-ε) induced Shh gene expression. In addition, phorbol esters induced a Shh-regulated reporter gene. Conclusion Secretagogues that stimulate gastric acid secretion induce Shh gene expression through increased Ca2+i-release and PKC activation. Shh might be the ligand transducing changes in gastric acidity to the regulation of G-cell secretion of gastrin. PMID:20816837

  19. Mathematical Modeling of Interacting Glucose-Sensing Mechanisms and Electrical Activity Underlying Glucagon-Like Peptide 1 Secretion.

    PubMed

    Riz, Michela; Pedersen, Morten Gram

    2015-12-01

    Intestinal L-cells sense glucose and other nutrients, and in response release glucagon-like peptide 1 (GLP-1), peptide YY and other hormones with anti-diabetic and weight-reducing effects. The stimulus-secretion pathway in L-cells is still poorly understood, although it is known that GLP-1 secreting cells use sodium-glucose co-transporters (SGLT) and ATP-sensitive K+-channels (K(ATP)-channels) to sense intestinal glucose levels. Electrical activity then transduces glucose sensing to Ca2+-stimulated exocytosis. This particular glucose-sensing arrangement with glucose triggering both a depolarizing SGLT current as well as leading to closure of the hyperpolarizing K(ATP) current is of more general interest for our understanding of glucose-sensing cells. To dissect the interactions of these two glucose-sensing mechanisms, we build a mathematical model of electrical activity underlying GLP-1 secretion. Two sets of model parameters are presented: one set represents primary mouse colonic L-cells; the other set is based on data from the GLP-1 secreting GLUTag cell line. The model is then used to obtain insight into the differences in glucose-sensing between primary L-cells and GLUTag cells. Our results illuminate how the two glucose-sensing mechanisms interact, and suggest that the depolarizing effect of SGLT currents is modulated by K(ATP)-channel activity. Based on our simulations, we propose that primary L-cells encode the glucose signal as changes in action potential amplitude, whereas GLUTag cells rely mainly on frequency modulation. The model should be useful for further basic, pharmacological and theoretical investigations of the cellular signals underlying endogenous GLP-1 and peptide YY release. PMID:26630068

  20. Monocytes/macrophages support mammary tumor invasivity by co-secreting lineage-specific EGFR ligands and a STAT3 activator

    PubMed Central

    2013-01-01

    Background Tumor-associated macrophages (TAM) promote malignant progression, yet the repertoire of oncogenic factors secreted by TAM has not been clearly defined. We sought to analyze which EGFR- and STAT3-activating factors are secreted by monocytes/macrophages exposed to tumor cell-secreted factors. Methods Following exposure of primary human monocytes and macrophages to supernatants of a variety of tumor cell lines, we have analyzed transcript and secreted protein levels of EGFR family ligands and of STAT3 activators. To validate our findings, we have analyzed TAM infiltration levels, systemic and local protein levels as well as clinical data of primary breast cancer patients. Results Primary human monocytes and macrophages respond to tumor cell-derived factors by secreting EGFR- and STAT3-activating ligands, thus inducing two important oncogenic pathways in carcinoma cells. Tumor cell-secreted factors trigger two stereotype secretory profiles in peripheral blood monocytes and differentiated macrophages: monocytes secrete epiregulin (EREG) and oncostatin-M (OSM), while macrophages secrete heparin-binding EGF-like growth factor (HB-EGF) and OSM. HB-EGF and OSM cooperatively induce tumor cell chemotaxis. HB-EGF and OSM are co-expressed by TAM in breast carcinoma patients, and plasma levels of both ligands correlate strongly. Elevated HB-EGF levels accompany TAM infiltration, tumor growth and dissemination in patients with invasive disease. Conclusions Our work identifies systemic markers for TAM involvement in cancer progression, with the potential to be developed into molecular targets in cancer therapy. PMID:23597096

  1. The rebirth of interest in renal tubular function.

    PubMed

    Lowenstein, Jerome; Grantham, Jared J

    2016-06-01

    The measurement of glomerular filtration rate by the clearance of inulin or creatinine has evolved over the past 50 years into an estimated value based solely on plasma creatinine concentration. We have examined some of the misconceptions and misunderstandings of the classification of renal disease and its course, which have followed this evolution. Furthermore, renal plasma flow and tubular function, which in the past were estimated by the clearance of the exogenous aryl amine, para-aminohippurate, are no longer measured. Over the past decade, studies in experimental animals with reduced nephron mass and in patients with reduced renal function have identified small gut-derived, protein-bound uremic retention solutes ("uremic toxins") that are poorly filtered but are secreted into the lumen by organic anion transporters (OATs) in the proximal renal tubule. These are not effectively removed by conventional hemodialysis or peritoneal dialysis. Residual renal function, urine produced in patients with advanced renal failure or undergoing dialysis treatment, may represent, at least in part, secretion of fluid and uremic toxins, such as indoxyl sulfate, mediated by proximal tubule OATs and might serve as a useful survival function. In light of this new evidence of the physiological role of proximal tubule OATs, we suggest that measurement of renal tubular function and renal plasma flow may be of considerable value in understanding and managing chronic kidney disease. Data obtained in normal subjects indicate that renal plasma flow and renal tubular function might be measured by the clearance of the endogenous aryl amine, hippurate. PMID:26936872

  2. Neutrophilic Cathepsin C Is Maturated by a Multistep Proteolytic Process and Secreted by Activated Cells during Inflammatory Lung Diseases.

    PubMed

    Hamon, Yveline; Legowska, Monika; Hervé, Virginie; Dallet-Choisy, Sandrine; Marchand-Adam, Sylvain; Vanderlynden, Lise; Demonte, Michèle; Williams, Rich; Scott, Christopher J; Si-Tahar, Mustapha; Heuzé-Vourc'h, Nathalie; Lalmanach, Gilles; Jenne, Dieter E; Lesner, Adam; Gauthier, Francis; Korkmaz, Brice

    2016-04-15

    The cysteine protease cathepsin C (CatC) activates granule-associated proinflammatory serine proteases in hematopoietic precursor cells. Its early inhibition in the bone marrow is regarded as a new therapeutic strategy for treating proteolysis-driven chronic inflammatory diseases, but its complete inhibition is elusive in vivo Controlling the activity of CatC may be achieved by directly inhibiting its activity with a specific inhibitor or/and by preventing its maturation. We have investigated immunochemically and kinetically the occurrence of CatC and its proform in human hematopoietic precursor cells and in differentiated mature immune cells in lung secretions. The maturation of proCatC obeys a multistep mechanism that can be entirely managed by CatS in neutrophilic precursor cells. CatS inhibition by a cell-permeable inhibitor abrogated the release of the heavy and light chains from proCatC and blocked ∼80% of CatC activity. Under these conditions the activity of neutrophil serine proteases, however, was not abolished in precursor cell cultures. In patients with neutrophilic lung inflammation, mature CatC is found in large amounts in sputa. It is secreted by activated neutrophils as confirmed through lipopolysaccharide administration in a nonhuman primate model. CatS inhibitors currently in clinical trials are expected to decrease the activity of neutrophilic CatC without affecting those of elastase-like serine proteases. PMID:26884336

  3. STAT3 and STAT6 Signaling Pathways Synergize to Promote Cathepsin Secretion from Macrophages via IRE1α Activation.

    PubMed

    Yan, Dongyao; Wang, Hao-Wei; Bowman, Robert L; Joyce, Johanna A

    2016-09-13

    Tumor-associated macrophages play critical roles during tumor progression by promoting angiogenesis, cancer cell proliferation, invasion, and metastasis. Cysteine cathepsin proteases, produced by macrophages and cancer cells, modulate these processes, but it remains unclear how these typically lysosomal enzymes are regulated and secreted within the tumor microenvironment. Here, we identify a STAT3 and STAT6 synergy that potently upregulates cathepsin secretion by macrophages via engagement of an unfolded protein response (UPR) pathway. Whole-genome expression analyses revealed that the TH2 cytokine interleukin (IL)-4 synergizes with IL-6 or IL-10 to activate UPR via STAT6 and STAT3. Pharmacological inhibition of the UPR sensor IRE1α blocks cathepsin secretion and blunts macrophage-mediated cancer cell invasion. Similarly, genetic deletion of STAT3 and STAT6 signaling components impairs tumor development and invasion in vivo. Together, these findings demonstrate that cytokine-activated STAT3 and STAT6 cooperate in macrophages to promote a secretory phenotype that enhances tumor progression in a cathepsin-dependent manner. PMID:27626662

  4. Bufadienolides from parotoid gland secretions of Cuban toad Peltophryne fustiger (Bufonidae): Inhibition of human kidney Na(+)/K(+)-ATPase activity.

    PubMed

    Perera Córdova, Wilmer H; Leitão, Suzana Guimarães; Cunha-Filho, Geraldino; Bosch, Roberto Alonso; Alonso, Isel Pascual; Pereda-Miranda, Rogelio; Gervou, Rodrigo; Touza, Natália Araújo; Quintas, Luis Eduardo M; Noël, François

    2016-02-01

    Parotoid gland secretions of toad species are a vast reservoir of bioactive molecules with a wide range of biological properties. Herein, for the first time, it is described the isolation by preparative reversed-phase HPLC and the structure elucidation by NMR spectroscopy and/or mass spectrometry of nine major bufadienolides from parotoid gland secretions of the Cuban endemic toad Peltophryne fustiger: ψ-bufarenogin, gamabufotalin, bufarenogin, arenobufagin, 3-(N-suberoylargininyl) marinobufagin, bufotalinin, telocinobufagin, marinobufagin and bufalin. In addition, the secretion was analyzed by UPLC-MS/MS which also allowed the identification of azelayl arginine. The effect of arenobufagin, bufalin and ψ-bufarenogin on Na(+)/K(+)-ATPase activity in a human kidney preparation was evaluated. These bufadienolides fully inhibited the Na(+)/K(+)-ATPase in a concentration-dependent manner, although arenobufagin (IC50 = 28.3 nM) and bufalin (IC50 = 28.7 nM) were 100 times more potent than ψ-bufarenogin (IC50 = 3020 nM). These results provided evidence about the importance of the hydroxylation at position C-14 in the bufadienolide skeleton for the inhibitory activity on the Na(+)/K(+)-ATPase. PMID:26615828

  5. Bicarbonate-water interactions in the rat proximal convoluted tubule. An effect of volume flux on active proton secretion

    PubMed Central

    1984-01-01

    The effect of volume absorption on bicarbonate absorption was examined in the in vivo perfused rat proximal convoluted tubule. Volume absorption was inhibited by isosmotic replacement of luminal NaCl with raffinose. In tubules perfused with 25 mM bicarbonate, as raffinose was increased from 0 to 55 to 63 mM, volume absorption decreased from 2.18 +/- 0.10 to 0.30 +/- 0.18 to -0.66 +/- 0.30 nl/mm X min, respectively, and bicarbonate absorption decreased from 131 +/- 5 to 106 +/- 8 to 91 +/- 13 pmol/mm X min, respectively. This bicarbonate-water interaction could not be attributed to dilutional changes in luminal or peritubular bulk phase bicarbonate concentrations. Inhibition of active proton secretion by acetazolamide abolished the effect of volume flow on bicarbonate absorption, which implies that the bicarbonate reflection coefficient is close to 1 and eliminates the possibility of solvent drag across the tight junction. When the luminal bicarbonate concentration was varied, the magnitude of the bicarbonate-water interaction increased with increasing luminal bicarbonate concentration. The largest interaction occurred at high luminal bicarbonate concentrations, where the rate of proton secretion has been previously shown to be independent of luminal bicarbonate concentration and pH. The results thus suggest that a peritubular and/or cellular compartment exists that limits bicarbonate diffusion, and where pH changes secondary to bicarbonate-water interactions (solute polarization) alter the rate of active proton secretion. PMID:6096481

  6. Hypoxia increases membranal and secreted HLA-DR in endothelial cells, rendering them T-cell activators.

    PubMed

    Lahat, Nitza; Bitterman, Haim; Weiss-Cerem, Lea; Rahat, Michal A

    2011-10-01

    Transplantation involves preoperative ischemic periods that contribute to endothelial cell (EC) dysfunction and T-cell activation, leading to graft rejection. As hypoxia is a major constituent of ischemia, we evaluated its effect on the ability of ECs to express HLA-DR, which is required for presentation of antigens to T cells, and by itself serves as an important target for allogeneic T cells. Primary human umbilical vein ECs (HUVEC) and the human endothelial cell line EaHy926 were incubated in normoxia or hypoxia (PO(2) < 0.3%). Hypoxia increased the membranal expression (by 4-6 fold, P < 0.01) and secretion (by sixfold, P < 0.05) of HLA-DR protein, without influencing the accumulation of its mRNA. Alternative splicing, attenuated trafficking, or shedding from the plasma membrane were not observed, but the lysosomal inhibitor bafilomycin A1 reduced HLA-DR secretion. Hypoxia-induced endothelial HLA-DR elevated and diminished the secretion of IL-2 and IL-10, respectively, from co-cultured allogeneic CD4(+) T cells in a HLA-DR-dependent manner, as demonstrated by the use of monoclonal anti-HLA-DR. Our results indicate a yet not fully understood post-translational mechanism(s), which elevate both membranal and soluble HLA-DR expression. This elevation is involved in allogeneic T-cell activation, highlighting the pivotal role of ECs in ischemia/hypoxia-associated injury and graft rejection. PMID:21806687

  7. Secreted Toxoplasma gondii molecules interfere with expression of MHC-II in interferon gamma-activated macrophages.

    PubMed

    Leroux, Louis-Philippe; Dasanayake, Dayal; Rommereim, Leah M; Fox, Barbara A; Bzik, David J; Jardim, Armando; Dzierszinski, Florence S

    2015-04-01

    The obligate intracellular protozoan parasite Toxoplasma gondii interferes with major histocompatibility complex class II antigen presentation to dampen host CD4(+) T cell responses. While it is known that T. gondii inhibits major histocompatibility complex class II gene transcription and expression in infected host cells, the mechanism of this host manipulation is unknown. Here, we show that soluble parasite proteins inhibit IFNγ-induced expression of major histocompatibility complex class II on the surface of the infected cell in a dose-dependent response that was abolished by protease treatment. Subcellular fractionation of T. gondii tachyzoites revealed that the major histocompatibility complex class II inhibitory activity co-partitioned with rhoptries and/or dense granules. However, parasite mutants deleted for single rhoptries or dense granules genes (ROP1, 4/7, 14, 16 and 18 or GRA 2-9 and 12 knock-out strains) retained the ability to inhibit expression of major histocompatibility complex class II. In addition, excreted/secreted antigens released by extracellular tachyzoites displayed immunomodulatory activity characterized by an inhibition of major histocompatibility complex class II expression, and reduced expression and release of TNFα by macrophages. Tandem MS analysis of parasite excreted/secreted antigens generated a list of T. gondii secreted proteins that may participate in major histocompatibility complex class II inhibition and the modulation of host immune functions. PMID:25720921

  8. Medullary nephrocalcinosis, distal renal tubular acidosis and polycythaemia in a patient with nephrotic syndrome

    PubMed Central

    2012-01-01

    Background Medullary nephrocalcinosis and distal renal tubular acidosis are closely associated and each can lead to the other. These clinical entities are rare in patients with nephrotic syndrome and polycythaemia is an unusual finding in such patients. We describe the presence of medullary nephrocalcinosis, distal renal tubular acidosis and polycythaemia in a patient with nephrotic syndrome due to minimal change disease. Proposed mechanisms of polycythaemia in patients with nephrotic syndrome and distal renal tubular acidosis include, increased erythropoietin production and secretion of interleukin 8 which in turn stimulate erythropoiesis. Case presentation A 22 year old Sri Lankan Sinhala male with nephrotic syndrome due to minimal change disease was investigated for incidentally detected polycythaemia. Investigations revealed the presence of renal tubular acidosis type I and medullary nephrocalcinosis. Despite extensive investigation, a definite cause for polycythaemia was not found in this patient. Treatment with potassium and bicarbonate supplementation with potassium citrate led to correction of acidosis thereby avoiding the progression of nephrocalcinosis and harmful effects of chronic acidosis. Conclusion The constellation of clinical and biochemical findings in this patient is unique but the pathogenesis of erythrocytosis is not clearly explained. The proposed mechanisms for erythrocytosis in other patients with proteinuria include increased erythropoietin secretion due to renal hypoxia and increased secretion of interleukin 8 from the kidney. This case illustrates that there may exist hitherto unknown connections between tubular and glomerular dysfunction in patients with nephrotic syndrome. PMID:22834973

  9. Lipid derivatives activate GPR119 and trigger GLP-1 secretion in primary murine L-cells

    PubMed Central

    Moss, Catherine E.; Glass, Leslie L.; Diakogiannaki, Eleftheria; Pais, Ramona; Lenaghan, Carol; Smith, David M.; Wedin, Marianne; Bohlooly-Y, Mohammad; Gribble, Fiona M.; Reimann, Frank

    2016-01-01

    Aims/hypothesis Glucagon-like peptide-1 (GLP-1) is an incretin hormone derived from proglucagon, which is released from intestinal L-cells and increases insulin secretion in a glucose dependent manner. GPR119 is a lipid derivative receptor present in L-cells, believed to play a role in the detection of dietary fat. This study aimed to characterize the responses of primary murine L-cells to GPR119 agonism and assess the importance of GPR119 for the detection of ingested lipid. Methods GLP-1 secretion was measured from murine primary cell cultures stimulated with a panel of GPR119 ligands. Plasma GLP-1 levels were measured in mice lacking GPR119 in proglucagon-expressing cells and controls after lipid gavage. Intracellular cAMP responses to GPR119 agonists were measured in single primary L-cells using transgenic mice expressing a cAMP FRET sensor driven by the proglucagon promoter. Results L-cell specific knockout of GPR119 dramatically decreased plasma GLP-1 levels after a lipid gavage. GPR119 ligands triggered GLP-1 secretion in a GPR119 dependent manner in primary epithelial cultures from the colon, but were less effective in the upper small intestine. GPR119 agonists elevated cAMP in ∼70% of colonic L-cells and 50% of small intestinal L-cells. Conclusions/interpretation GPR119 ligands strongly enhanced GLP-1 release from colonic cultures, reflecting the high proportion of colonic L-cells that exhibited cAMP responses to GPR119 agonists. Less GPR119-dependence could be demonstrated in the upper small intestine. In vivo, GPR119 in L-cells plays a key role in oral lipid-triggered GLP-1 secretion. PMID:26144594

  10. Muscarinic activation of Ca2+/calmodulin-dependent protein kinase II in pancreatic islets. Temporal dissociation of kinase activation and insulin secretion.

    PubMed Central

    Babb, E L; Tarpley, J; Landt, M; Easom, R A

    1996-01-01

    We have demonstrated previously that glucose activates the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) in isolated rat pancreatic islets in a manner consistent with a role of this enzyme in the regulation of insulin secretion [Wenham, Landt and Easom (1994) J. Biol. Chem. 269, 4947-4952]. In the current study, the muscarinic agonist, carbachol, has been shown to induce the conversion of CaM kinase II into a Ca(2+)-independent, autonomous form indicative of its activation. Maximal activation (2-fold) was achieved by 15 s, followed by a rapid return to basal levels by 1 min. This response was primarily the result of the mobilization of Ca2+ from intracellular stores since it was not affected by a concentration (20 microM) of verapamil that completely prevented the activation of CaM kinase II by glucose. Surprisingly, carbachol added prior to, or simultaneously with, glucose attenuated nutrient activation of CaM kinase II. This effect was mimicked by cholecystokinin-8 (CCK-8) and thapsigargin, suggesting its mediation by phospholipase C and the mobilization of intracellular Ca2+. In contrast, carbachol, CCK-8 and thapsigargin markedly potentiated glucose (12 mM)-induced insulin secretion. These results suggest that CaM kinase II activation can be temporally dissociated from insulin secretion but do not exclude the potential dependence of insulin exocytosis on CaM kinase II-mediated protein phosphorylation. PMID:8694759

  11. Mutation of the protein-O-mannosyltransferase enhances secretion of the human urokinase-type plasminogen activator in Hansenula polymorpha.

    PubMed

    Agaphonov, Michael O; Sokolov, Sviatoslav S; Romanova, Nina V; Sohn, Jung-Hoon; Kim, So-Young; Kalebina, Tatyana S; Choi, Eui-Sung; Ter-Avanesyan, Michael D

    2005-10-15

    Human urokinase-type plasminogen activator (uPA) is poorly secreted and aggregates in the endoplasmic reticulum of yeast cells due to inefficient folding. A screen for Hansenula polymorpha mutants with improved uPA secretion revealed a gene encoding a homologue of the Saccharomyces cerevisiae protein-O-mannosyltransferase Pmt1p. Expression of the H. polymorpha PMT1 gene (HpPMT1) abolished temperature sensitivity of the S. cerevisiae pmt1 pmt2 double mutant. As in S. cerevisiae, inactivation of the HpPMT1 gene affected electrophoretic mobility of the O-glycosylated protein, extracellular chitinase. In contrast to S. cerevisiae, disruption of HpPMT1 alone caused temperature sensitivity. Inactivation of the HpPMT1 gene decreased intracellular aggregation of uPA, suggesting that enhanced secretion of uPA was due to improvement of its folding in the endoplasmic reticulum. Unlike most of the endoplasmic reticulum membrane proteins, HpPmt1p possesses the C-terminal KDEL retention signal. PMID:16200504

  12. Distal Renal Tubular Acidosis and Calcium Nephrolithiasis

    NASA Astrophysics Data System (ADS)

    Moe, Orson W.; Fuster, Daniel G.; Xie, Xiao-Song

    2008-09-01

    Calcium stones are commonly encountered in patients with congenital distal renal tubular acidosis, a disease of renal acidification caused by mutations in either the vacuolar H+-ATPase (B1 or a4 subunit), anion exchanger-1, or carbonic anhydrase II. Based on the existing database, we present two hypotheses. First, heterozygotes with mutations in B1 subunit of H+-ATPase are not normal but may harbor biochemical abnormalities such as renal acidification defects, hypercalciuria, and hypocitraturia which can predispose them to kidney stone formation. Second, we propose at least two mechanisms by which mutant B1 subunit can impair H+-ATPase: defective pump assembly and defective pump activity.

  13. Tubular solid oxide fuel cell development program

    SciTech Connect

    1995-08-01

    This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

  14. A Simple Tubular Reactor Experiment.

    ERIC Educational Resources Information Center

    Hudgins, Robert R.; Cayrol, Bertrand

    1981-01-01

    Using the hydrolysis of crystal violet dye by sodium hydroxide as an example, the theory, apparatus, and procedure for a laboratory demonstration of tubular reactor behavior are described. The reaction presented can occur at room temperature and features a color change to reinforce measured results. (WB)

  15. Lubiprostone activates non-CFTR-dependent respiratory epithelial chloride secretion in cystic fibrosis mice

    PubMed Central

    MacDonald, Kelvin D.; McKenzie, Karen R.; Henderson, Mark J.; Hawkins, Charles E.; Vij, Neeraj; Zeitlin, Pamela L.

    2008-01-01

    Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl− transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 μM lubiprostone was −5.8 ± 2.1 mV (CF, n = 12), −8.1 ± 2.6 mV (C57Bl/6 wild-type, n = 12), and −5.3 ± 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 μM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia. PMID:18805957

  16. Downregulation of renal tubular Wnt/β-catenin signaling by Dickkopf-3 induces tubular cell death in proteinuric nephropathy

    PubMed Central

    Wong, D W L; Yiu, W H; Wu, H J; Li, R X; Liu, Y; Chan, K W; Leung, J C K; Chan, L Y Y; Lai, K N; Tang, S C W

    2016-01-01

    Studies on the role of Wnt/β-catenin signaling in different forms of kidney disease have yielded discrepant results. Here, we report the biphasic change of renal β-catenin expression in mice with overload proteinuria in which β-catenin was upregulated at the early stage (4 weeks after disease induction) but abrogated at the late phase (8 weeks). Acute albuminuria was observed at 1 week after bovine serum albumin injection, followed by partial remission at 4 weeks that coincided with overexpression of renal tubular β-catenin. Interestingly, a rebound in albuminuria at 8 weeks was accompanied by downregulated tubular β-catenin expression and heightened tubular apoptosis. In addition, there was an inverse relationship between Dickkopf-3 (Dkk-3) and renal tubular β-catenin expression at these time points. In vitro, a similar trend in β-catenin expression was observed in human kidney-2 (HK-2) cells with acute (upregulation) and prolonged (downregulation) exposure to albumin. Induction of a proapoptotic phenotype by albumin was significantly enhanced by silencing β-catenin in HK-2 cells. Finally, Dkk-3 expression and secretion was increased after prolonged exposure to albumin, leading to the suppression of intracellular β-catenin signaling pathway. The effect of Dkk-3 on β-catenin signaling was confirmed by incubation with exogenous Dkk-3 in HK-2 cells. Taken together, these data suggest that downregulation of tubular β-catenin signaling induced by Dkk-3 has a detrimental role in chronic proteinuria, partially through the increase in apoptosis. PMID:27010856

  17. The Novel Secreted Adipokine WNT1-inducible Signaling Pathway Protein 2 (WISP2) Is a Mesenchymal Cell Activator of Canonical WNT*

    PubMed Central

    Grünberg, John R.; Hammarstedt, Ann; Hedjazifar, Shahram; Smith, Ulf

    2014-01-01

    WNT1-inducible-signaling pathway protein 2 (WISP2) is primarily expressed in mesenchymal stem cells, fibroblasts, and adipogenic precursor cells. It is both a secreted and cytosolic protein, the latter regulating precursor cell adipogenic commitment and PPARγ induction by BMP4. To examine the effect of the secreted protein, we expressed a full-length and a truncated, non-secreted WISP2 in NIH3T3 fibroblasts. Secreted, but not truncated WISP2 activated the canonical WNT pathway with increased β-catenin levels, its nuclear targeting phosphorylation, and LRP5/6 phosphorylation. It also inhibited Pparg activation and the effect of secreted WISP2 was reversed by the WNT antagonist DICKKOPF-1. Differentiated 3T3-L1 adipose cells were also target cells where extracellular WISP2 activated the canonical WNT pathway, inhibited Pparg and associated adipose genes and, similar to WNT3a, promoted partial dedifferentiation of the cells and the induction of a myofibroblast phenotype with activation of markers of fibrosis. Thus, WISP2 exerts dual actions in mesenchymal precursor cells; secreted WISP2 activates canonical WNT and maintains the cells in an undifferentiated state, whereas cytosolic WISP2 regulates adipogenic commitment. PMID:24451367

  18. Power generation characteristics of tubular type SOFC by wet process

    SciTech Connect

    Tajiri, H.; Nakayama, T.; Kuroishi, M.

    1996-12-31

    The development of a practical solid oxide fuel cell requires improvement of a cell performance and a cell manufacturing technology suitable for the mass production. In particular tubular type SOFC is thought to be superior in its reliability because its configuration can avoid the high temperature sealing and reduce the thermal stress resulting from the contact between cells. The authors have fabricated a tubular cell with an air electrode support by a wet processing technique, which is suitable for mass production in improving a power density. To enhance the power output of the module, the Integrated Tubular-Type (ITT) cell has been developed. This paper reports the performance of the single cells with various active anode areas and the bundle with series-connected 9-ITT cells with an active anode area of 840 cm{sup 2}.

  19. Methylglyoxal and carboxyethyllysine reduce glutamate uptake and S100B secretion in the hippocampus independently of RAGE activation.

    PubMed

    Hansen, Fernanda; Battú, Cíntia Eickhoff; Dutra, Márcio Ferreira; Galland, Fabiana; Lirio, Franciane; Broetto, Núbia; Nardin, Patrícia; Gonçalves, Carlos-Alberto

    2016-02-01

    Diabetes is a metabolic disease characterized by high fasting-glucose levels. Diabetic complications have been associated with hyperglycemia and high levels of reactive compounds, such as methylglyoxal (MG) and advanced glycation endproducts (AGEs) formation derived from glucose. Diabetic patients have a higher risk of developing neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. Herein, we examined the effect of high glucose, MG and carboxyethyllysine (CEL), a MG-derived AGE of lysine, on oxidative, metabolic and astrocyte-specific parameters in acute hippocampal slices, and investigated some of the mechanisms that could mediate these effects. Glucose, MG and CEL did not alter reactive oxygen species (ROS) formation, glucose uptake or glutamine synthetase activity. However, glutamate uptake and S100B secretion were decreased after MG and CEL exposure. RAGE activation and glycation reactions, examined by aminoguanidine and L-lysine co-incubation, did not mediate these changes. Acute MG and CEL exposure, but not glucose, were able to induce similar effects on hippocampal slices, suggesting that conditions of high glucose concentrations are primarily toxic by elevating the rates of these glycation compounds, such as MG, and by generation of protein cross-links. Alterations in the secretion of S100B and the glutamatergic activity mediated by MG and AGEs can contribute to the brain dysfunction observed in diabetic patients. PMID:26347375

  20. The Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host Autophagy by Activating Endoplasmic Reticulum Stress.

    PubMed

    Jiang, Feng; Wang, Xia; Wang, Bei; Chen, Lihong; Zhao, Zhendong; Waterfield, Nicholas R; Yang, Guowei; Jin, Qi

    2016-08-01

    Pseudomonas aeruginosa is an opportunistic pathogen that regularly causes nosocomial infections in hospitalized patients. The type VI secretion system (T6SS) is responsible for the secretion of numerous virulence effector proteins that can both interfere with competing microbes and manipulate host cells. Here, we report a detailed investigation of a P. aeruginosa H2-T6SS-dependent phospholipase effector, TplE, which acts as a trans-kingdom toxin. Delivery of TplE to the periplasmic space of rival bacteria leads to growth inhibition. Importantly, TplE, also contains a eukaryotic PGAP1-like domain, which targets the host ER apparatus, ultimately leading to disruption of the ER. TplE activity leads to the activation of the unfolded protein response (UPR) through the IRE1α-XBP1 pathway, enhancing autophagic flux. These findings indicate that this T6SS-delivered phospholipase effector is active against both prokaryotic and eukaryotic cellular targets, highlighting the T6SS as a versatile weapon in the Pseudomonas arsenal. PMID:27477276

  1. Chelation of Membrane-Bound Cations by Extracellular DNA Activates the Type VI Secretion System in Pseudomonas aeruginosa.

    PubMed

    Wilton, Mike; Wong, Megan J Q; Tang, Le; Liang, Xiaoye; Moore, Richard; Parkins, Michael D; Lewenza, Shawn; Dong, Tao G

    2016-08-01

    Pseudomonas aeruginosa employs its type VI secretion system (T6SS) as a highly effective and tightly regulated weapon to deliver toxic molecules to target cells. T6SS-secreted proteins of P. aeruginosa can be detected in the sputum of cystic fibrosis (CF) patients, who typically present a chronic and polymicrobial lung infection. However, the mechanism of T6SS activation in the CF lung is not fully understood. Here we demonstrate that extracellular DNA (eDNA), abundant within the CF airways, stimulates the dynamics of the H1-T6SS cluster apparatus in Pseudomonas aeruginosa PAO1. Addition of Mg(2+) or DNase with eDNA abolished such activation, while treatment with EDTA mimicked the eDNA effect, suggesting that the eDNA-mediated effect is due to chelation of outer membrane-bound cations. DNA-activated H1-T6SS enables P. aeruginosa to nonselectively attack neighboring species regardless of whether or not it was provoked. Because of the importance of the T6SS in interspecies interactions and the prevalence of eDNA in the environments that P. aeruginosa inhabits, our report reveals an important adaptation strategy that likely contributes to the competitive fitness of P. aeruginosa in polymicrobial communities. PMID:27271742

  2. EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG

    PubMed Central

    Collin, Mattias; Olsén, Arne

    2001-01-01

    Streptococcus pyogenes is an important human pathogen that selectively interacts with proteins involved in the humoral defense system, such as immunoglobulins and complement factors. In this report we show that S.pyogenes has the ability to hydrolyze the chitobiose core of the asparagine-linked glycan on immuno globulin G (IgG) when bacteria are grown in the presence of human plasma. This activity is associated with the secretion of a novel 108 kDa protein denoted EndoS. EndoS has endoglycosidase activity on purified soluble IgG as well as IgG bound to the bacterial surface. EndoS is required for the activity on IgG, as an isogenic EndoS mutant could not hydrolyze the glycan on IgG. In addition, we show that the secreted streptococcal cysteine proteinase SpeB cleaves IgG in the hinge region in a papain-like manner. This is the first example of an endoglycosidase produced by a bacterial pathogen that selectively hydrolyzes human IgG, and reveals a novel mechanism which may contribute to S.pyogenes pathogenesis. PMID:11406581

  3. Group A Streptococcus Secreted Esterase Hydrolyzes Platelet-Activating Factor to Impede Neutrophil Recruitment and Facilitate Innate Immune Evasion

    PubMed Central

    Li, Jinquan; Garcia, Cristiana C.; Feng, Wenchao; Kirpotina, Liliya N.; Hilmer, Jonathan; Tavares, Luciana P.; Layton, Arthur W.; Quinn, Mark T.; Bothner, Brian; Teixeira, Mauro M.; Lei, Benfang

    2012-01-01

    The innate immune system is the first line of host defense against invading organisms. Thus, pathogens have developed virulence mechanisms to evade the innate immune system. Here, we report a novel means for inhibition of neutrophil recruitment by Group A Streptococcus (GAS). Deletion of the secreted esterase gene (designated sse) in M1T1 GAS strains with (MGAS5005) and without (MGAS2221) a null covS mutation enhances neutrophil ingress to infection sites in the skin of mice. In trans expression of SsE in MGAS2221 reduces neutrophil recruitment and enhances skin invasion. The sse deletion mutant of MGAS5005 (ΔsseMGAS5005) is more efficiently cleared from skin than the parent strain. SsE hydrolyzes the sn-2 ester bond of platelet-activating factor (PAF), converting biologically active PAF into inactive lyso-PAF. KM and kcat of SsE for hydrolysis of 2-thio-PAF were similar to those of the human plasma PAF acetylhydrolase. Treatment of PAF with SsE abolishes the capacity of PAF to induce activation and chemotaxis of human neutrophils. More importantly, PAF receptor-deficient mice significantly reduce neutrophil infiltration to the site of ΔsseMGAS5005 infection. These findings identify the first secreted PAF acetylhydrolase of bacterial pathogens and support a novel GAS evasion mechanism that reduces phagocyte recruitment to sites of infection by inactivating PAF, providing a new paradigm for bacterial evasion of neutrophil responses. PMID:22496650

  4. Caspase-1 Dependent IL-1β Secretion and Antigen-Specific T-Cell Activation by the Novel Adjuvant, PCEP

    PubMed Central

    Awate, Sunita; Eng, Nelson F.; Gerdts, Volker; Babiuk, Lorne A.; Mutwiri, George

    2014-01-01

    The potent adjuvant activity of the novel adjuvant, poly[di(sodiumcarboxylatoethylphenoxy)phosphazene] (PCEP), with various antigens has been reported previously. However, very little is known about its mechanisms of action. We have recently reported that intramuscular injection of PCEP induces NLRP3, an inflammasome receptor gene, and inflammatory cytokines, including IL-1β and IL-18, in mouse muscle tissue. Caspase-1 is required for the processing of pro-forms of IL-1β and IL-18 into mature forms and is a critical constituent of the NLRP3 inflammasome. Hence, in the present study, we investigated the role of caspase-1 in the secretion of IL-1β and IL-18 in PCEP-stimulated splenic dendritic cells (DCs). Caspase inhibitor YVAD-fmk-treated splenic DCs showed significantly reduced IL-1β and IL-18 secretion in response to PCEP stimulation. Further, PCEP had no effect on the expression of MHC class II or co-stimulatory molecules, CD86 and CD40, suggesting that PCEP does not induce DC maturation. However, PCEP directly activated B-cells to induce significant production of IgM. In addition, PCEP+ovalbumin (OVA) immunized mice showed significantly increased production of antigen-specific IFN-γ by CD4+ and CD8+ T-cells. We conclude that PCEP activates innate immunity, leading to increased antigen-specific T-cell responses. PMID:26344742

  5. Biologically active APRIL is secreted following intracellular processing in the Golgi apparatus by furin convertase

    PubMed Central

    López-Fraga, M.; Fernández, R.; Albar, J.P.; Hahne, M.

    2001-01-01

    Tumor necrosis factor (TNF) ligand family members are synthesized as transmembrane proteins, and cleavage of the membrane-anchored proteins from the cell surface is frequently observed. The TNF-related ligands APRIL and BLyS and their cognate receptors BCMA/TACI form a two ligand/two receptor system that has been shown to participate in B- and T-cell stimulation. In contrast to BLyS, which is known to be cleaved from the cell surface, we found that APRIL is processed intracellularly by furin convertase. Blockage of protein transport from the endoplasmic reticulum to the Golgi apparatus by Brefeldin A treatment abrogated APRIL processing, whereas monensin, an inhibitor of post-Golgi transport, did not interfere with cleavage of APRIL, but blocked secretion of processed APRIL. Thus, APRIL shows a unique maturation pathway among the TNF ligand family members, as it not detectable as a membrane-anchored protein at the cell surface, but is processed in the Golgi apparatus prior to its secretion. PMID:11571266

  6. Activation of Salivary Secretion: Coupling of Cell Volume and [Ca2+]i in Single Cells

    NASA Astrophysics Data System (ADS)

    Foskett, J. Kevin; Melvin, James E.

    1989-06-01

    High-resolution differential interference contrast microscopy and digital imaging of the fluorescent calcium indicator dye fura-2 were performed simultaneously in single rat salivary gland acinar cells to examine the effects of muscarinic stimulation on cell volume and cytoplasmic calcium concentration ([Ca2+]i). Agonist stimulation of fluid secretion is initially associated with a rapid tenfold increase in [Ca2+]i as well as a substantial cell shrinkage. Subsequent changes of cell volume in the continued presence of agonist are tightly coupled to dynamic levels of [Ca2+]i, even during [Ca2+]i oscillations. Experiments with Ca2+ chelators and ionophores showed that physiological elevations of [Ca2+]i are necessary and sufficient to cause changes in cell volume. The relation between [Ca2+]i and cell volume suggests that the latter reflects the secretory state of the acinar cell. Agonist-induced changes in [Ca2+]i, by modulating specific ion permeabilities, result in solute movement into or out of the cell. The resultant cell volume changes may be important in modulating salivary secretion.

  7. Collagenolytic Activities of the Major Secreted Cathepsin L Peptidases Involved in the Virulence of the Helminth Pathogen, Fasciola hepatica

    PubMed Central

    Robinson, Mark W.; Corvo, Ileana; Jones, Peter M.; George, Anthony M.; Padula, Matthew P.; To, Joyce; Cancela, Martin; Rinaldi, Gabriel; Tort, Jose F.; Roche, Leda; Dalton, John P.

    2011-01-01

    Background The temporal expression and secretion of distinct members of a family of virulence-associated cathepsin L cysteine peptidases (FhCL) correlates with the entry and migration of the helminth pathogen Fasciola hepatica in the host. Thus, infective larvae traversing the gut wall secrete cathepsin L3 (FhCL3), liver migrating juvenile parasites secrete both FhCL1 and FhCL2 while the mature bile duct parasites, which are obligate blood feeders, secrete predominantly FhCL1 but also FhCL2. Methodology/Principal Findings Here we show that FhCL1, FhCL2 and FhCL3 exhibit differences in their kinetic parameters towards a range of peptide substrates. Uniquely, FhCL2 and FhCL3 readily cleave substrates with Pro in the P2 position and peptide substrates mimicking the repeating Gly-Pro-Xaa motifs that occur within the primary sequence of collagen. FhCL1, FhCL2 and FhCL3 hydrolysed native type I and II collagen at neutral pH but while FhCL1 cleaved only non-collagenous (NC, non-Gly-X-Y) domains FhCL2 and FhCL3 exhibited collagenase activity by cleaving at multiple sites within the α1 and α2 triple helix regions (Col domains). Molecular simulations created for FhCL1, FhCL2 and FhCL3 complexed to various seven-residue peptides supports the idea that Trp67 and Tyr67 in the S2 subsite of the active sites of FhCL3 and FhCL2, respectively, are critical to conferring the unique collagenase-like activity to these enzymes by accommodating either Gly or Pro residues at P2 in the substrate. The data also suggests that FhCL3 accommodates hydroxyproline (Hyp)-Gly at P3-P2 better than FhCL2 explaining the observed greater ability of FhCL3 to digest type I and II collagens compared to FhCL2 and why these enzymes cleave at different positions within the Col domains. Conclusions/Significance These studies further our understanding of how this helminth parasite regulates peptidase expression to ensure infection, migration and establishment in host tissues. PMID:21483711

  8. Bile acids stimulate chloride secretion through CFTR and calcium-activated Cl- channels in Calu-3 airway epithelial cells.

    PubMed

    Hendrick, Siobhán M; Mroz, Magdalena S; Greene, Catherine M; Keely, Stephen J; Harvey, Brian J

    2014-09-01

    Bile acids resulting from the aspiration of gastroesophageal refluxate are often present in the lower airways of people with cystic fibrosis and other respiratory distress diseases. Surprisingly, there is little or no information on the modulation of airway epithelial ion transport by bile acids. The secretory effect of a variety of conjugated and unconjugated secondary bile acids was investigated in Calu-3 airway epithelial cells grown under an air-liquid interface and mounted in Ussing chambers. Electrogenic transepithelial ion transport was measured as short-circuit current (Isc). The taurine-conjugated secondary bile acid, taurodeoxycholic acid (TDCA), was found to be the most potent modulator of basal ion transport. Acute treatment (5 min) of Calu-3 cells with TDCA (25 μM) on the basolateral side caused a stimulation of Isc, and removal of extracellular Cl(-) abolished this response. TDCA produced an increase in the cystic fibrosis transmembrane conductance regulator (CFTR)-dependent current that was abolished by pretreatment with the CFTR inhibitor CFTRinh172. TDCA treatment also increased Cl(-) secretion through calcium-activated chloride (CaCC) channels and increased the Na(+)/K(+) pump current. Acute treatment with TDCA resulted in a rapid cellular influx of Ca(2+) and increased cAMP levels in Calu-3 cells. Bile acid receptor-selective activation with INT-777 revealed TGR5 localized at the basolateral membrane as the receptor involved in TDCA-induced Cl(-) secretion. In summary, we demonstrate for the first time that low concentrations of bile acids can modulate Cl(-) secretion in airway epithelial cells, and this effect is dependent on both the duration and sidedness of exposure to the bile acid. PMID:24993131

  9. Corticosteroid-Induced MKP-1 Represses Pro-Inflammatory Cytokine Secretion by Enhancing Activity of Tristetraprolin (TTP) in ASM Cells.

    PubMed

    Prabhala, Pavan; Bunge, Kristin; Ge, Qi; Ammit, Alaina J

    2016-10-01

    Exaggerated cytokine secretion drives pathogenesis of a number of chronic inflammatory diseases, including asthma. Anti-inflammatory pharmacotherapies, including corticosteroids, are front-line therapies and although they have proven clinical utility, the molecular mechanisms responsible for their actions are not fully understood. The corticosteroid-inducible gene, mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1, DUSP1) has emerged as a key molecule responsible for the repressive effects of steroids. MKP-1 is known to deactivate p38 MAPK phosphorylation and can control the expression and activity of the mRNA destabilizing protein-tristetraprolin (TTP). But whether corticosteroid-induced MKP-1 acts via p38 MAPK-mediated modulation of TTP function in a pivotal airway cell type, airway smooth muscle (ASM), was unknown. While pretreatment of ASM cells with the corticosteroid dexamethasone (preventative protocol) is known to reduce ASM synthetic function in vitro, the impact of adding dexamethasone after stimulation (therapeutic protocol) had not been explored. Whether dexamethasone modulates TTP in a p38 MAPK-dependent manner in this cell type was also unknown. We address this herein and utilize an in vitro model of asthmatic inflammation where ASM cells were stimulated with the pro-asthmatic cytokine tumor necrosis factor (TNF) and the impact of adding dexamethasone 1 h after stimulation assessed. IL-6 mRNA expression and protein secretion was significantly repressed by dexamethasone acting in a temporally distinct manner to increase MKP-1, deactivate p38 MAPK, and modulate TTP phosphorylation status. In this way, dexamethasone-induced MKP-1 acts via p38 MAPK to switch on the mRNA destabilizing function of TTP to repress pro-inflammatory cytokine secretion from ASM cells. J. Cell. Physiol. 231: 2153-2158, 2016. © 2016 Wiley Periodicals, Inc. PMID:26825339

  10. Anorexia nervosa, laxative abuse, hypopotassemia and distal renal tubular acidosis.

    PubMed

    Pines, A; Kaplinsky, N; Olchovsky, D; Frankl, O; Goldfarb, D; Iaina, A

    1985-01-01

    A case of anorexia nervosa in a 28-year-old woman with laxative abuse, hypopotassemia and severe metabolic acidosis, is described. The diagnosis of classical renal tubular acidosis, Type I, was confirmed by our inability to decrease urinary pH beyond 5.5 and to increase ammonia excretion during an ammonium chloride loading test. A bicarbonate loading test and normal plasma aldosterone with high renin activity excluded proximal renal tubular acidosis, hyporeninemic-hypoaldosteronemic renal tubular acidosis and Bartter's syndrome. The inability to increase ammonium excretion during severe metabolic acidosis following ammonium chloride loading did not favor the possibility of a transient physiological adaptation of ammoniagenesis at the tubular cell level, related to potassium depletion. Although mental disorder, laxative abuse, abstinence from food intake and severe potassium depletion intermingled in a vicious cycle, we assume that one of the following possibilities may explain the clinical presentation in our patient: either two separated and unrelated disorders, or laxative abuse as the cause of renal tubular acidification impairment. PMID:3972559

  11. Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity

    PubMed Central

    Verdeguer, Francisco; Soustek, Meghan S.; Hatting, Maximilian; Blättler, Sharon M.; McDonald, Devin; Barrow, Joeva J.

    2015-01-01

    Mitochondrial oxidative and thermogenic functions in brown and beige adipose tissues modulate rates of energy expenditure. It is unclear, however, how beige or white adipose tissue contributes to brown fat thermogenic function or compensates for partial deficiencies in this tissue and protects against obesity. Here, we show that the transcription factor Yin Yang 1 (YY1) in brown adipose tissue activates the canonical thermogenic and uncoupling gene expression program. In contrast, YY1 represses a series of secreted proteins, including fibroblast growth factor 21 (FGF21), bone morphogenetic protein 8b (BMP8b), growth differentiation factor 15 (GDF15), angiopoietin-like 6 (Angptl6), neuromedin B, and nesfatin, linked to energy expenditure. Despite substantial decreases in mitochondrial thermogenic proteins in brown fat, mice lacking YY1 in this tissue are strongly protected against diet-induced obesity and exhibit increased energy expenditure and oxygen consumption in beige and white fat depots. The increased expression of secreted proteins correlates with elevation of energy expenditure and promotion of beige and white fat activation. These results indicate that YY1 in brown adipose tissue controls antagonistic gene expression programs associated with energy balance and maintenance of body weight. PMID:26503783

  12. Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.

    PubMed

    Verdeguer, Francisco; Soustek, Meghan S; Hatting, Maximilian; Blättler, Sharon M; McDonald, Devin; Barrow, Joeva J; Puigserver, Pere

    2016-01-01

    Mitochondrial oxidative and thermogenic functions in brown and beige adipose tissues modulate rates of energy expenditure. It is unclear, however, how beige or white adipose tissue contributes to brown fat thermogenic function or compensates for partial deficiencies in this tissue and protects against obesity. Here, we show that the transcription factor Yin Yang 1 (YY1) in brown adipose tissue activates the canonical thermogenic and uncoupling gene expression program. In contrast, YY1 represses a series of secreted proteins, including fibroblast growth factor 21 (FGF21), bone morphogenetic protein 8b (BMP8b), growth differentiation factor 15 (GDF15), angiopoietin-like 6 (Angptl6), neuromedin B, and nesfatin, linked to energy expenditure. Despite substantial decreases in mitochondrial thermogenic proteins in brown fat, mice lacking YY1 in this tissue are strongly protected against diet-induced obesity and exhibit increased energy expenditure and oxygen consumption in beige and white fat depots. The increased expression of secreted proteins correlates with elevation of energy expenditure and promotion of beige and white fat activation. These results indicate that YY1 in brown adipose tissue controls antagonistic gene expression programs associated with energy balance and maintenance of body weight. PMID:26503783

  13. Spergularia marina Induces Glucagon-Like Peptide-1 Secretion in NCI-H716 Cells Through Bile Acid Receptor Activation

    PubMed Central

    Kim, Kyong; Lee, Yu Mi; Rhyu, Mee-Ra

    2014-01-01

    Abstract Spergularia marina Griseb. (SM) is a halophyte that grows in mud flats. The aerial portions of SM have been eaten as vegetables and traditionally used to prevent chronic diseases in Korea. However, there has been no scientific report that demonstrates the pharmacological effects of SM. Glucagon-like peptide-1 (GLP-1) is important for the maintenance of glucose and energy homeostasis through acting as a signal in peripheral and neural systems. To discover a functional food for regulating glucose and energy homeostasis, we evaluated the effect of an aqueous ethanolic extract (AEE) of SM on GLP-1 release from enteroendocrine NCI-H716 cells. In addition, we explored the Takeda G-protein-coupled receptor 5 (TGR5) agonist activity of AEE-SM in Chinese hamster ovary (CHO)-K1 cells transiently transfected with human TGR5. As a result, treatment of NCI-H716 cells with AEE-SM increased GLP-1 secretion and intracellular Ca2+ and cyclic AMP (cAMP) levels in a dose-dependent manner. Transfection of NCI-H716 cells with TGR5-specific small interference RNA inhibited AEE-SM-induced GLP-1 secretion and the increase in Ca2+ and cAMP levels. Moreover, AEE-SM showed that the TGR5 agonist activity in CHO-K1 cells transiently transfected with TGR5. The results suggest that AEE-SM might be a candidate for a functional food to regulate glucose and energy homeostasis. PMID:25260089

  14. Hydathode trichomes actively secreting water from leaves play a key role in the physiology and evolution of root-parasitic rhinanthoid Orobanchaceae

    PubMed Central

    Světlíková, Petra; Hájek, Tomáš; Těšitel, Jakub

    2015-01-01

    Background and Aims Root hemiparasites from the rhinanthoid clade of Orobanchaceae possess metabolically active glandular trichomes that have been suggested to function as hydathode trichomes actively secreting water, a process that may facilitate resource acquisition from the host plant’s root xylem. However, no direct evidence relating the trichomes to water secretion exists, and carbon budgets associated with this energy-demanding process have not been determined. Methods Macro- and microscopic observations of the leaves of hemiparasitic Rhinanthus alectorolophus were conducted and night-time gas exchange was measured. Correlations were examined among the intensity of guttation, respiration and transpiration, and analysis of these correlations allowed the carbon budget of the trichome activity to be quantified. We examined the intensity of guttation, respiration and transpiration, correlations among which indicate active water secretion. Key Results Guttation was observed on the leaves of 50 % of the young, non-flowering plants that were examined, and microscopic observations revealed water secretion from the glandular trichomes present on the abaxial leaf side. Night-time rates of respiration and transpiration and the presence of guttation drops were positively correlated, which is a clear indicator of hydathode trichome activity. Subsequent physiological measurements on older, flowering plants indicated neither intense guttation nor the presence of correlations, which suggests that the peak activity of hydathodes is in the juvenile stage. Conclusions This study provides the first unequivocal evidence for the physiological role of the hydathode trichomes in active water secretion in the rhinanthoid Orobanchaceae. Depending on the concentration of organic elements calculated to be in the host xylem sap, the direct effect of water secretion on carbon balance ranges from close to neutral to positive. However, it is likely to be positive in the xylem-only feeding

  15. Muscle and skin necrotizing and edema-forming activities of Duvernoy's gland secretion of the xenodontine colubrid snake Philodryas patagoniensis from the north-east of Argentina.

    PubMed

    Peichoto, M E; Acosta, O; Leiva, L; Teibler, P; Maruñak, S; Ruíz, R

    2004-11-01

    Philodryas patagoniensis is a colubrid snake spread by all South America, but very little is known about the composition and biological activities of its Duvernoy's gland secretion. In order to characterize it, we studied edematogenic, dermonecrotic and myonecrotic activities. For edematogenic activity, solutions containing different amounts of secretion were injected s.c. in the right foot pad of mice, both feet were subsequently cut off and weighed individually. For myonecrotic activity, mice were injected i.m. with solutions containing 40 microg of secretion, and at various time intervals mice were bled to determine serum creatine kinase activity and gastrocnemius muscles were removed for microscopic examination (Hematoxylin-Eosin stain). For dermonecrotic activity, solutions containing different amounts of secretion were injected into the shaved dorsal skin of mice; the necrotic lesion was measured on the inner surface of the skin and trimmed for microscopic examination (Hematoxylin-Eosin stain). Phospholipase A(2) activity was evaluated using a kinetic method. Results showed that P. patagoniensis Duvernoy's gland secretion exhibits a high edematogenic activity and moderate myonecrotic and dermonecrotic activities, while lacking phospholipase A(2) effect. Regarding edema, a 30% increase in the weight was produced by injecting 0.26 microg of Duvernoy's gland secretion. Microscopically, myonecrosis reached its highest intensity 12 h after injection, which was also demonstrated by serum creatine kinase levels. Dermonecrosis was proportional to the amount of secretion injected, with a minimum necrotizing dose of 15.7 microg. Myonecrotic, edematogenic and dermonecrotic activities were inhibited when the secretion was pre-incubated with 1 mM Na(2)EDTA. This suggests that the enzymes responsible for those activities are mostly metalloproeinases. All the studies carried out up to now demonstrate the potential toxicity of P. patagoniensis Duvernoy's gland secretion

  16. Pore-forming activity of type III system-secreted proteins leads to oncosis of Pseudomonas aeruginosa-infected macrophages.

    PubMed

    Dacheux, D; Goure, J; Chabert, J; Usson, Y; Attree, I

    2001-04-01

    The Pseudomonas aeruginosa cystic fibrosis isolate CHA induces type III secretion system-dependent but ExoU-independent oncosis of neutrophils and macrophages. Time-lapse microscopy of the infection process revealed the rapid accumulation of motile bacteria around infected cells undergoing the process of oncosis, a phenomenon we termed pack swarming. Characterization of the non-chemotactic CHAcheZ mutant showed that pack swarming is a bacterial chemotactic response to infected macrophages. A non-cytotoxic mutant, lacking the type III-secreted proteins PcrV, PopB and PopD, was able to pack swarm only in the presence of the parental strain CHA or when macrophages were pretreated with the pore-forming toxin streptolysin O. Interaction of P. aeruginosa with red blood cells (RBCs) showed that the contact-dependent haemolysis provoked by CHA requires secretion via the type III system and the PcrV, PopB/PopD proteins. The pore inserted into RBC membrane was estimated from osmoprotection experiments to be between 2.8 and 3.5 nm. CHA-infected macrophages could be protected from cell lysis with PEG3350, indicating that the pore introduced into RBC and macrophage membranes is of similar size. The time course uptake of the vital fluorescent dye, Yo-Pro-1, into infected macrophages confirmed that the formation of transmembrane pores by CHA precedes cellular oncosis. Therefore, CHA-induced macrophage death results from a pore-forming activity that is dependent on the intact pcrGVHpopBD operon. PMID:11298277

  17. Open–closed switching of synthetic tubular pores

    PubMed Central

    Kim, Yongju; Kang, Jiheong; Shen, Bowen; Wang, Yanqiu; He, Ying; Lee, Myongsoo

    2015-01-01

    While encouraging progress has been made on switchable nanopores to mimic biological channels and pores, it remains a great challenge to realize long tubular pores with a dynamic open–closed motion. Here we report μm-long, dynamic tubular pores that undergo rapid switching between open and closed states in response to a thermal signal in water. The tubular walls consist of laterally associated primary fibrils stacked from disc-shaped molecules in which the discs readily tilt by means of thermally regulated dehydration of the oligoether chains placed on the wall surfaces. Notably, this pore switching mediates a controlled water-pumping catalytic action for the dehydrative cyclization of adenosine monophosphate to produce metabolically active cyclic adenosine monophosphate. We believe that our work may allow the creation of a variety of dynamic pore structures with complex functions arising from open–closed motion. PMID:26456695

  18. Peroxisome Proliferator-Activated Receptor α Activates Human Multidrug Resistance Transporter 3/ATP-Binding Cassette Protein Subfamily B4 Transcription and Increases Rat Biliary Phosphatidylcholine Secretion

    PubMed Central

    Ghonem, Nisanne S.; Ananthanarayanan, Meenakshisundaram; Soroka, Carol J.; Boyer, James L.

    2014-01-01

    Multidrug resistance transporter 3/ATP-binding cassette protein subfamily B4 (MDR3/ABCB4) is a critical determinant of biliary phosphatidylcholine (PC) secretion. Clinically, mutations and partial deficiencies in MDR3 result in cholestatic liver injury. Thus, MDR3 is a potential therapeutic target for cholestatic liver disease. Fenofibrate is a peroxisome proliferator-activated receptor (PPAR) α ligand that has antiinflammatory actions and regulates bile acid detoxification. Here we examined the mechanism by which fenofibrate regulates MDR3 gene expression. Fenofibrate significantly up-regulated MDR3 messenger RNA (mRNA) and protein expression in primary cultured human hepatocytes, and stimulated MDR3 promoter activity in HepG2 cells. In silico analysis of 5′-upstream region of human MDR3 gene revealed a number of PPARα response elements (PPRE). Electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays demonstrated specific binding of PPARα to the human MDR3 promoter. Targeted mutagenesis of three novel PPREs reduced inducibility of the MDR3 promoter by fenofibrate. In collagen sandwich cultured rat hepatocytes, treatment with fenofibrate increased secretion of fluorescent PC into bile canaliculi. Conclusion Fenofibrate transactivates MDR3 gene transcription by way of the binding of PPARα to three novel and functionally critical PPREs in the MDR3 promoter. Fenofibrate treatment further stimulates biliary phosphatidylcholine secretion in rat hepatocytes, thereby providing a functional correlate. We have established a molecular mechanism that may contribute to the beneficial use of fenofibrate therapy in human cholestatic liver disease. PMID:24122873

  19. Effect of peroxisome proliferator-activated receptor-alpha agonist (bezafibrate) on gastric secretion and gastric cytoprotection in rats.

    PubMed

    Pathak, Rahul; Asad, Mohammed; Hrishikeshavan, H Jagannath; Prasad, Satya

    2007-06-01

    The effect of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) on gastric secretion and gastric cytoprotection was evaluated using five different models of gastric ulcers: acetic acid-induced chronic gastric ulcers, pylorus ligation, ethanol-induced, indomethacin-induced and ischemia-reperfusion-induced gastric ulcers. Bezafibrate, a PPAR-alpha agonist was administered at two different doses of 10 and 100 mg/kg body weight intraperitoneanally. Both doses of bezafibrate showed significant antiulcer effect in ethanol-induced, indomethacin-induced and pylorus ligation-induced gastric ulcers. Bezafibrate increased healing of ulcer in acetic acid-induced chronic gastric ulcer model. Both doses were also effective in preventing gastric lesions induced by ischemia-reperfusion. It was concluded that PPAR-alpha activation increases healing of gastric ulcers and also prevents development of gastric ulcers in rats. PMID:17521298

  20. The activity of candidate virucidal agents, low pH and genital secretions against HIV-1 in vitro.

    PubMed

    O'Connor, T J; Kinchington, D; Kangro, H O; Jeffries, D J

    1995-01-01

    The effect of low pH, normally present in the female genital tract, on HIV viability was examined. HIV is more acid stable than previously reported with no substantial reduction in infectivity occurring until pH levels are reduced below 4.5. The virucidal activity of 3 topical spermicides and chlorhexidine was assessed in vitro using previously established and newly modified assay systems. None of the agents tested had a selectivity index (SI) greater than 5.2. Semen and cervical secretions were assessed for their ability to inhibit HIV-1. While no virucidal effect was found in the latter, seminal fluid was found to have significant activity against HIV-1 and a SI of approximately 50. PMID:7548290

  1. Effects of the propeptide of group X secreted phospholipase A(2) on substrate specificity and interfacial activity on phospholipid monolayers.

    PubMed

    Point, Vanessa; Bénarouche, Anaïs; Jemel, Ikram; Parsiegla, Goetz; Lambeau, Gérard; Carrière, Frédéric; Cavalier, Jean-François

    2013-01-01

    Group X secreted phospholipase A(2) (GX sPLA(2)) plays important physiological roles in the gastrointestinal tract, in immune and sperm cells and is involved in several types of inflammatory diseases. It is secreted either as a mature enzyme or as a mixture of proenzyme (with a basic 11 amino acid propeptide) and mature enzyme. The role of the propeptide in the repression of sPLA(2) activity has been studied extensively using liposomes and micelles as model interfaces. These substrates are however not always suitable for detecting some fine tuning of lipolytic enzymes. In the present study, the monolayer technique is used to compare PLA(2) activity of recombinant mouse GX sPLA(2) (mGX) and its pro-form (PromGX) on monomolecular films of dilauroyl-phosphatidyl-ethanolamine (DLPE), -choline (DLPC) and -glycerol (DLPG). The PLA(2) activity and substrate specificity of mGX (PE ≈ PG > PC) were found to be surface pressure-dependent. mGX displayed a high activity on DLPE and DLPG but not on DLPC monolayers up to surface pressures corresponding to the lateral pressure of biological membranes (30-35 mN/m). Overall, the propeptide impaired the enzyme activity, particularly on DLPE whatever the surface pressure. However some conditions could be found where the propeptide had little effects on the repression of PLA(2) activity. In particular, both PromGX and mGX had similar activities on DLPG at a surface pressure of 30 mN/m. These findings show that PromGX can be potentially active depending on the presentation of the substrate (i.e., lipid packing) and one cannot exclude such an activity in a physiological context. A structural model of PromGX was built to investigate how the propeptide controls the activity of GX sPLA(2). This model shows that the propeptide is located within the interfacial binding site (i-face) and could disrupt both the interfacial binding of the enzyme and the access to the active site by steric hindrance. PMID:22967966

  2. Secreted lipoxygenase from Pseudomonas aeruginosa exhibits biomembrane oxygenase activity and induces hemolysis in human red blood cells.

    PubMed

    Banthiya, Swathi; Pekárová, Mária; Kuhn, Hartmut; Heydeck, Dagmar

    2015-10-15

    Pseudomonas aeruginosa (PA) expresses a secreted lipoxygenase (LOX), which oxygenates free arachidonic acid predominantly to 15S-H(p)ETE. The enzyme is capable of binding phospholipids at its active site and physically interacts with model membranes. However, its membrane oxygenase activity has not been quantified. To address this question, we overexpressed PA-LOX as intracellular his-tag fusion protein in Escherichia coli, purified it to electrophoretic homogeneity and compared its biomembrane oxygenase activity with that of rabbit ALOX15. We found that both enzymes were capable of oxygenating mitochondrial membranes to specific oxygenation products and 13S-H(p)ODE and 15S-H(p)ETE esterified to phosphatidylcholine and phosphatidylethanolamine were identified as major oxygenation products. When normalized to similar linoleic acid oxygenase activity, the rabbit enzyme exhibited a much more effective mitochondrial membrane oxygenase activity. In contrast, during long-term incubations (24 h) with red blood cells PA-LOX induced significant (50%) hemolysis whereas rabbit ALOX15 was more or less ineffective. These data indicate the principle capability of PA-LOX of oxygenating membrane bound phospholipids which is likely to alter the barrier function of the biomembranes. Although the membrane oxygenase activity was lower than the fatty acid oxygenase activity of PA-LOX red blood cell membrane oxygenation might be of biological relevance for P. aeruginosa septicemia. PMID:26361973

  3. Ernest Henry Starling (1866-1927) on the glomerular and tubular functions of the kidney.

    PubMed

    Fine, Leon G

    2014-01-01

    Around the turn of the 20th century, Ernest Henry Starling (1866-1927) made many fundamental contributions to the understanding of human physiology. With a deep interest in how fluid balance is regulated, he naturally turned to explore the intricacies of kidney function. Early in his career he focused upon the process of glomerular filtration and was able to substantiate the view of Carl Ludwig that this process can be explained entirely upon the basis of hydrostatic and oncotic pressure gradients across the glomerular capillary wall and that the process can be regulated by alterations in the tone of the afferent and efferent arterioles. To explore renal tubular function he employed a heart-lung-kidney model in the dog and was able to infer that certain substances are reabsorbed by the tubules (e.g. sodium chloride) and certain by tubular secretion (e.g. uric acid, indigo carmine dye). By temporarily blocking tubular function using hydrocyanic acid he was able to conclude that secreted substances must be taken up on the peritubular side of the cell and concentrated within the cell to drive the secretory process. Finally, he was able to appreciate that the kidney is an organ which is regulated according to the needs of the organism and that the processes of glomerular filtration, tubular secretion and reabsorption are all subject to regulatory influences, which have evolved to conserve the normal chemical composition of the cells and fluids of the body. PMID:24970544

  4. Hexamers of the Type II Secretion ATPase GspE from Vibrio cholerae with Increased ATPase Activity

    PubMed Central

    Lu, Connie; Turley, Stewart; Marionni, Samuel T.; Park, Young-Jun; Lee, Kelly K.; Patrick, Marcella; Shah, Ripal; Sandkvist, Maria; Bush, Matthew F.; Hol, Wim G. J.

    2013-01-01

    SUMMARY The Type II Secretion System (T2SS), a multi-protein machinery spanning two membranes in Gram-negative bacteria, is responsible for the secretion of folded proteins from the periplasm across the outer membrane. The critical multi-domain T2SS assembly ATPase GspEEpsE had so far not been structurally characterized as a hexamer. Here, four hexamers of Vibrio cholerae GspEEpsE are obtained when fused to Hcp1 as an assistant hexamer, as shown by native mass spectrometry. The enzymatic activity of the GspEEpsE-Hcp1 fusions is ~20 times higher than that of a GspEEpsE monomer indicating that increasing the local concentration of GspEEpsE by the fusion strategy was successful. Crystal structures of GspEEpsE-Hcp1 fusions with different linker lengths reveal regular and elongated hexamers of GspEEpsE with major differences in domain orientation within subunits, and in subunit assembly. SAXS studies on GspEEpsE-Hcp1 fusions suggest that even further variability in GspEEpsE hexamer architecture is likely. PMID:23954505

  5. Central role of the exchange factor GEF-H1 in TNF-α–induced sequential activation of Rac, ADAM17/TACE, and RhoA in tubular epithelial cells

    PubMed Central

    Waheed, Faiza; Dan, Qinghong; Amoozadeh, Yasaman; Zhang, Yuqian; Tanimura, Susumu; Speight, Pam; Kapus, András; Szászi, Katalin

    2013-01-01

    Transactivation of the epidermal growth factor receptor (EGFR) by tumor necrosis factor-α (TNF-α) is a key step in mediating RhoA activation and cytoskeleton and junction remodeling in the tubular epithelium. In this study we explore the mechanisms underlying TNF-α–induced EGFR activation. We show that TNF-α stimulates the TNF-α convertase enzyme (TACE/a disintegrin and metalloproteinase-17), leading to activation of the EGFR/ERK pathway. TACE activation requires the mitogen-activated protein kinase p38, which is activated through the small GTPase Rac. TNF-α stimulates both Rac and RhoA through the guanine nucleotide exchange factor (GEF)-H1 but by different mechanisms. EGFR- and ERK-dependent phosphorylation at the T678 site of GEF-H1 is a prerequisite for RhoA activation only, whereas both Rac and RhoA activation require GEF-H1 phosphorylation on S885. Of interest, GEF-H1-mediated Rac activation is upstream from the TACE/EGFR/ERK pathway and regulates T678 phosphorylation. We also show that TNF-α enhances epithelial wound healing through TACE, ERK, and GEF-H1. Taken together, our findings can explain the mechanisms leading to hierarchical activation of Rac and RhoA by TNF-α through a single GEF. This mechanism could coordinate GEF functions and fine-tune Rac and RhoA activation in epithelial cells, thereby promoting complex functions such as sheet migration. PMID:23389627

  6. Probabilistic secretion of quanta and the synaptosecretosome hypothesis: evoked release at active zones of varicosities, boutons, and endplates.

    PubMed Central

    Bennett, M R; Gibson, W G; Robinson, J

    1997-01-01

    A quantum of transmitter may be released upon the arrival of a nerve impulse if the influx of calcium ions through a nearby voltage-dependent calcium channel is sufficient to activate the vesicle-associated calcium sensor protein that triggers exocytosis. A synaptic vesicle, together with its calcium sensor protein, is often found complexed with the calcium channel in active zones to form what will be called a "synaptosecretosome." In the present work, a stochastic analysis is given of the conditions under which a quantum is released from the synaptosecretosome by a nerve impulse. The theoretical treatment considers the rise of calcium at the synaptosecretosome after the stochastic opening of a calcium channel at some time during the impulse, followed by the stochastic binding of calcium to the vesicle-associated protein and the probability of this leading to exocytosis. This allows determination of the probabilities that an impulse will release 0, 1, 2,... quanta from an active zone, whether this is in a varicosity, a bouton, or a motor endplate. A number of experimental observations of the release of transmitter at the active zones of sympathetic varicosities and boutons as well as somatic motor endplates are described by this analysis. These include the likelihood of the secretion of only one quantum at an active zone of endplates and of more than one quantum at an active zone of a sympathetic varicosity. The fourth-power relationship between the probability of transmitter release at the active zones of sympathetic varicosities and motor endplates and the external calcium concentration is also explained by this approach. So, too, is the fact that the time course of the increased rate of quantal secretion from a somatic active zone after an impulse is invariant with changes in the amount of calcium that enters through its calcium channel, whether due to changes consequent on the actions of autoreceptor agents such as adenosine or to facilitation. The increased

  7. Abortiporus biennis tolerance to insoluble metal oxides: oxalate secretion, oxalate oxidase activity, and mycelial morphology.

    PubMed

    Graz, Marcin; Jarosz-Wilkołazka, Anna; Pawlikowska-Pawlega, Bozena

    2009-06-01

    The ability of Abortiporus biennis to tolerate and solubilize toxic metal oxides (Cu(2)O, Al(2)O(3), ZnO, CuFe(2)O(4)Zn, CdO, and MnO(2)) incorporated into agar media was investigated and the growth rate, oxalic acid secretion, and mycelial morphology were monitored. Among the tested metal oxides, formation of clear zones underneath the mycelium growing on Cu(2)O- and ZnO-amended plates was observed. ZnO, CdO and Cu(2)O caused the highest rate of fungal growth inhibition. An increased level of oxalic acid concentration was detected as a response of A. biennis to the presence of Cu(2)O, MnO(2), ZnO and CuFe(2)O(4)Zn in growth medium. The oxalate oxidase (OXO) was found to be responsible for oxalic acid degradation in A. biennis cultivated in metal-amended media. An increased level of OXO was observed in media amended with Cu(2)O, ZnO and MnO(2). Confocal microscopy used in this study revealed changes in mycelial morphology which appeared as increased hyphal branching, increased septation and increased spore number. PMID:18985279

  8. Yeast killer plasmid mutations affecting toxin secretion and activity and toxin immunity function

    SciTech Connect

    Bussey, H.; Sacks, W.; Galley, D.; Saville, D.

    1982-04-01

    M double-stranded RNA (MdsRNA) plasmid mutants were obtained by mutagenesis and screening of a diploid killer culture partially heat cured of the plasmid, so that a high proportion of the cells could be expected to have only one M plasmid. Mutants with neutral (K/sup -/), immune (R/sup +/) or suicide (killer (K/sup +/), sensitive (R/sup -/)) phenotypes were examined. All mutants became K/sup -/ R/sup -/ sensitives on heat curing of the MdsRNA plasmid, and showed cytoplasmic inheritance by random spore analysis. In some cases, M plasmid mutations were indicated by altered mobility of the MdsRNA by agarose gel electrophoresis or by altered size of in vitro translation products from denatured dsRNA. Neutral mutants were of two types: nonsecretors of the toxin protein or secretors of an inactive toxin. Of three neutral nonsecretors examined, one (NLP-1), probably a nonsense mutation, made a smaller protoxin precursor in vitro and in vivo, and two made full-size protoxin molecules. The in vivo protoxin of 43,000 molecular weight was unstable in the wild type and kinetically showed a precursor product relationship to the processed, secreted 11,000-molecular-weight toxin. In one nonsecretor (N1), the protoxin appeared more stable in a pulse-chase experiment, and could be altered in a recognition site required for protein processing.

  9. Involvement of diacylglycerol produced by phospholipase D activation in Aβ-induced reduction of sAPPα secretion in SH-SY5Y neuroblastoma cells.

    PubMed

    Tanabe, Fuminori; Nakajima, Tomoko; Ito, Masahiko

    2014-04-18

    We previously reported that the thiol proteinase inhibitor, E-64-d, ameliorated amyloid β (Aβ)-induced reduction of soluble amyloid precursor protein α (sAPPα) secretion by reversing ceramide-induced protein kinase C down-regulation in SH-SY5Y neuroblastoma cells. In the present study, we showed that Aβ (1-42) peptide enhanced diacylglycerol (DAG) production by phospholipase D (PLD) activation in these cells. We subsequently examined whether PLD was involved in Aβ-induced reduction of sAPPα secretion and showed that 2 μM CAY10593, which selectively inhibits PLD2, ameliorated reduction of sAPPα secretion, whereas 50 nM CAY10593, which selectively inhibits PLD1, did not. Moreover, 50 µM propranolol, a phosphatidic acid phosphohydrolase inhibitor, also ameliorated Aβ-induced reduction of sAPPα secretion, suggesting that DAG may be responsible for Aβ-induced reduction of sAPPα. We subsequently examined whether DAG affects sAPPα secretion and showed that a DAG analog reduced sAPPα secretion in SH-SY5Y cells. In addition, DAG enhanced ceramide production by stimulating neutral sphingomyelinase (N-SMase) activity. We previously demonstrated that Aβ stimulates N-SMase activity in SH-SY5Y cells. Here, we showed that inhibition of PLD2 by 2 μM CAY10593 suppressed Aβ-induced N-SMase activation. Taken together, the results suggest that DAG produced through the PLD pathway is involved in Aβ-induced reduction of sAPPα secretion in SH-SY5Y cells. PMID:24650665

  10. Dendritic cells and NK cells stimulate bystander T cell activation in response to TLR agonists through secretion of IFN-alpha beta and IFN-gamma.

    PubMed

    Kamath, Arun T; Sheasby, Christopher E; Tough, David F

    2005-01-15

    Recognition of conserved features of infectious agents by innate pathogen receptors plays an important role in initiating the adaptive immune response. We have investigated early changes occurring among T cells after injection of TLR agonists into mice. Widespread, transient phenotypic activation of both naive and memory T cells was observed rapidly after injection of molecules acting through TLR3, -4, -7, and -9, but not TLR2. T cell activation was shown to be mediated by a combination of IFN-alphabeta, secreted by dendritic cells (DCs), and IFN-gamma, secreted by NK cells; notably, IFN-gamma-secreting NK cells expressed CD11c and copurified with DCs. Production of IFN-gamma by NK cells could be stimulated by DCs from TLR agonist-injected mice, and although soluble factors secreted by LPS-stimulated DCs were sufficient to induce IFN-gamma, maximal IFN-gamma production required both direct contact of NK cells with DCs and DC-secreted cytokines. In vitro, IFN-alphabeta, IL-18, and IL-12 all contributed to DC stimulation of NK cell IFN-gamma, whereas IFN-alphabeta was shown to be important for induction of T cell bystander activation and NK cell IFN-gamma production in vivo. The results delineate a pathway involving innate immune mediators through which TLR agonists trigger bystander activation of T cells. PMID:15634897

  11. Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction

    PubMed Central

    Namkung, Wan; Yao, Zhen; Finkbeiner, Walter E.; Verkman, A. S.

    2011-01-01

    TMEM16A (ANO1) is a calcium-activated chloride channel (CaCC) expressed in secretory epithelia, smooth muscle, and other tissues. Cell-based functional screening of ∼110,000 compounds revealed compounds that activated TMEM16A CaCC conductance without increasing cytoplasmic Ca2+. By patch-clamp, N-aroylaminothiazole “activators” (Eact) strongly increased Cl− current at 0 Ca2+, whereas tetrazolylbenzamide “potentiators” (Fact) were not active at 0 Ca2+ but reduced the EC50 for Ca2+-dependent TMEM16A activation. Of 682 analogs tested, the most potent activator (Eact) and potentiator (Fact) produced large and more sustained CaCC Cl− currents than general agonists of Ca2+ signaling, with EC50 3–6 μM and Cl− conductance comparable to that induced transiently by Ca2+-elevating purinergic agonists. Analogs of activators were identified that fully inhibited TMEM16A Cl− conductance, providing further evidence for direct TMEM16A binding. The TMEM16A activators increased CaCC conductance in human salivary and airway submucosal gland epithelial cells, and IL-4 treated bronchial cells, and stimulated submucosal gland secretion in human bronchi and smooth muscle contraction in mouse intestine. Small-molecule, TMEM16A-targeted activators may be useful for drug therapy of cystic fibrosis, dry mouth, and gastrointestinal hypomotility disorders, and for pharmacological dissection of TMEM16A function.—Namkung, W., Yao, Z., Finkbeiner, W. E., Verkman, A. S. Small-molecule activators of TMEM16A, a calcium-activated chloride channel, stimulate epithelial chloride secretion and intestinal contraction. PMID:21836025

  12. Lipolanthionine peptides act as inhibitors of TLR2-mediated IL-8 secretion. Synthesis and structure-activity relationships.

    PubMed

    Seyberth, Tobias; Voss, Söhnke; Brock, Roland; Wiesmüller, Karl-Heinz; Jung, Günther

    2006-03-01

    Lipoproteins from gram-positive and -negative bacteria, mycoplasma, and shorter synthetic lipopeptide analogues activate cells of the innate immune system via the Toll-like receptor TLR2/TLR1 or TLR2/TLR6 heterodimers. For this reason, these compounds constitute highly active adjuvants for vaccines either admixed or covalently linked. The lanthionine scaffold has structural similarity with the S-(2,3-dihydroxypropyl)cysteine core structure of the lipopeptides. Therefore, lanthionine-based lipopeptide amides were synthesized and probed for activity as potential TLR2 agonists or antagonists. A collection of analytically defined lipolanthionine peptide amides exhibited an inhibitory effect of the TLR2-mediated IL-8 secretion when applied in high molar excess to the agonistic synthetic lipopeptide Pam3Cys-Ser-(Lys)4-OH. Structure-activity relationships revealed the influence of the chirality of the two alpha-carbon atoms, the chain lengths of the attached fatty acids and fatty amines, and the oxidation level of the sulfur atom on the inhibitory activity of the lipolanthionine peptide amides. PMID:16509590

  13. Non-Cationic Proteins Are Associated with HIV Neutralizing Activity in Genital Secretions of Female Sex Workers

    PubMed Central

    Birse, Kenzie D. M.; Cole, Amy L.; Hirbod, Taha; McKinnon, Lyle; Ball, Terry B.; Westmacott, Garrett R.; Kimani, Joshua; Plummer, Frank; Cole, Alexander M.; Burgener, Adam; Broliden, Kristina

    2015-01-01

    Objective Cationic proteins found in cervicovaginal secretions (CVS) are known to contribute to the early antiviral immune response against HIV-infection in vitro. We here aimed to define additional antiviral factors that are over-expressed in CVS from female sex workers at high risk of infection. Methods CVS were collected from Kenyan HIV-seronegative (n = 34) and HIV-seropositive (n = 12) female sex workers, and were compared with those from HIV-seronegative low-risk women (n = 12). The highly exposed seronegative (HESN) sex workers were further divided into those with less (n = 22) or more (n = 12) than three years of documented sex work. Cationic protein-depleted CVS were assessed for HIV-neutralizing activity by a PBMC-based HIV-neutralizing assay, and then characterized by proteomics. Results HIV neutralizing activity was detected in all unprocessed CVS, however only CVS from the female sex worker groups maintained its HIV neutralizing activity after cationic protein-depletion. Differentially abundant proteins were identified in the cationic protein-depleted secretions including 26, 42, and 11 in the HESN>3yr, HESN<3yr, and HIV-positive groups, respectively. Gene ontology placed these proteins into functional categories including proteolysis, oxidation-reduction, and epidermal development. The proteins identified in this study include proteins previously associated with the HESN phenotype in other cohorts as well as novel proteins not yet associated with anti-HIV activities. Conclusion While cationic proteins appear to contribute to the majority of the intrinsic HIV neutralizing activity in the CVS of low-risk women, a broader range of non-cationic proteins were associated with HIV neutralizing activity in HESN and HIV-positive female sex workers. These results indicate that novel protein factors found in CVS of women with high-risk sexual practices may have inherent antiviral activity, or are involved in other aspects of anti-HIV host defense, and warrant

  14. Secretion and Reversible Assembly of Extracellular-like Matrix by Enzyme-Active Colloidosome-Based Protocells.

    PubMed

    Akkarachaneeyakorn, Khrongkhwan; Li, Mei; Davis, Sean A; Mann, Stephen

    2016-03-29

    The secretion and reversible assembly of an extracellular-like matrix by enzyme-active inorganic protocells (colloidosomes) is described. Addition of N-fluorenyl-methoxycarbonyl-tyrosine-(O)-phosphate to an aqueous suspension of alkaline phosphatase-containing colloidosomes results in molecular uptake and dephosphorylation to produce a time-dependent sequence of supramolecular hydrogel motifs (outer membrane wall, cytoskeletal-like interior and extra-protocellular matrix) that are integrated and remodelled within the microcapsule architecture and surrounding environment. Heat-induced disassembly of the extra-protocellular matrix followed by cooling produces colloidosomes with a densely packed hydrogel interior. These procedures are exploited for the fabrication of nested colloidosomes with spatially delineated regions of hydrogelation. PMID:26981922

  15. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    PubMed

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels. PMID:19160674

  16. Novel series of tacrine-tianeptine hybrids: Synthesis, cholinesterase inhibitory activity, S100B secretion and a molecular modeling approach.

    PubMed

    Ceschi, Marco Antonio; da Costa, Jessie Sobieski; Lopes, João Paulo Bizarro; Câmara, Viktor Saraiva; Campo, Leandra Franciscato; Borges, Antonio César de Amorim; Gonçalves, Carlos Alberto Saraiva; de Souza, Daniela Fraga; Konrath, Eduardo Luis; Karl, Ana Luiza Martins; Guedes, Isabella Alvim; Dardenne, Laurent Emmanuel

    2016-10-01

    Tianeptine was linked to various 9-aminoalkylamino-1,2,3,4-tetrahydroacridines using EDC·HCl/HOBt to afford a series of tacrine-tianeptine hybrids. The hybrids were tested for their ability to inhibit AChE and BuChE and IC50 values in the nanomolar concentration scale were obtained. AChE molecular modeling studies of these hybrids indicated that tacrine moiety interacts in the bottom of the gorge with the catalytic active site (CAS) while tianeptine binds to peripheral anionic site (PAS). Furthermore, the compounds 2g and 2e were able to reduce the in vitro basal secretion of S100B, suggesting its therapeutic action in some cases or stages of Alzheimer's disease. PMID:27392529

  17. Aldosterone induces active K+ secretion by enhancing mucosal expression of Kcnn4c and Kcnma1 channels in rat distal colon

    PubMed Central

    Singh, Satish K.; O'Hara, Bryan; Talukder, Jamilur R.

    2012-01-01

    Although both Kcnn4c and Kcnma1 channels are present on colonic mucosal membranes, only Kcnma1 has been suggested to mediate K+ secretion in the colon. Therefore, studies were initiated to investigate the relative roles of Kcnn4c and Kcnma1 in mediating aldosterone (Na-free diet)-induced K+ secretion. Mucosal to serosal (m-s), serosal to mucosal (s-m), and net 86Rb+ (K+ surrogate) fluxes as well as short circuit currents (Isc; measure of net ion movement) were measured under voltage clamp condition in rat distal colon. Active K+ absorption, but not K+ secretion, is present in normal, while aldosterone induces active K+ secretion (1.04 ± 0.26 vs. −1.21 ± 0.15 μeq·h−1·cm−2; P < 0.001) in rat distal colon. Mucosal VO4 (a P-type ATPase inhibitor) inhibited the net K+ absorption in normal, while it significantly enhanced net K+ secretion in aldosterone animals. The aldosterone-induced K+ secretion was inhibited by the mucosal addition of 1) either Ba2+ (a nonspecific K+ channel blocker) or charybdotoxin (CTX; a common Kcnn4 and Kcnma1 channel blocker) by 89%; 2) tetraethyl ammonium (TEA) or iberiotoxin (IbTX; a Kcnma1 channel blocker) by 64%; and 3) TRAM-34 (a Kcnn4 channel blocker) by 29%. TRAM-34, but not TEA, in the presence of IbTX further significantly inhibited the aldosterone-induced K+ secretion. Thus the aldosterone-induced Ba2+/CTX-sensitive K+ secretion consists of IbTX/TEA-sensitive (Kcnma1) and IbTX/TEA-insensitive fractions. TRAM-34 inhibition of the IbTX-insensitive fraction is consistent with the aldosterone-induced K+ secretion being mediated partially via Kcnn4c. Western and quantitative PCR analyses indicated that aldosterone enhanced both Kcnn4c and Kcnma1α protein expression and mRNA abundance. In vitro exposure of isolated normal colonic mucosa to aldosterone also enhanced Kcnn4c and Kcnma1α mRNA levels, and this was prevented by exposure to actinomycin D (an RNA synthesis inhibitor). These observations indicate that aldosterone

  18. Nocardia farcinica Activates Human Dendritic Cells and Induces Secretion of Interleukin-23 (IL-23) Rather than IL-12p70

    PubMed Central

    Eisenblätter, Martin; Buchal, Ariane; Gayum, Hermine; Jasny, Edith; Renner Viveros, Pablo; Ulrichs, Timo; Schneider, Thomas; Schumann, Ralf R.; Zweigner, Janine

    2012-01-01

    Studying the interaction of dendritic cells (DCs) with bacteria controlled by T-cell-mediated immune responses may reveal novel adjuvants for the induction of cellular immunity. Murine studies and the observation that nocardias infect predominantly immunosuppressed patients have suggested that these bacteria may possess an adjuvant potential. Moreover, adjuvants on the basis of the nocardial cell wall have been applied in clinical studies. Since the handling of adjuvants by DCs may determine the type of immune responses induced by a vaccine, the present study aimed at investigating the interaction of immature human monocyte-derived DCs with live or inactivated Nocardia farcinica in vitro and determining the cellular phenotypic changes as well as alterations in characteristic functions, such as phagocytosis, induction of T-cell proliferation, and cytokine secretion. Human DCs ingested N. farcinica and eradicated the bacterium intracellularly. DCs exposed to inactivated N. farcinica were activated, i.e., they developed a mature phenotype, downregulated their phagocytic capacity, and stimulated allogeneic T cells in mixed leukocyte reactions. Soluble factors were not involved in this process. To elucidate the potential adjuvant effect of N. farcinica on the induction of T-cell-mediated immune responses, we characterized the cytokines produced by nocardia-exposed DCs and detected substantial amounts of tumor necrosis factor alpha (TNF-α) and interleukin-12 p40 (IL-12p40). However, nocardia-treated DCs secreted only small amounts of IL-12p70, which were significantly smaller than the amounts of IL-23. Thus, N. farcinica activates DCs, but adjuvants based on this bacterium may have only a limited capacity to induce Th1 immune responses. PMID:22988018

  19. Renal Function in Diabetic Disease Models: The Tubular System in the Pathophysiology of the Diabetic Kidney

    PubMed Central

    Vallon, Volker; Thomson, Scott C.

    2013-01-01

    Diabetes mellitus affects the kidney in stages. At the onset of diabetes mellitus, in a subset of diabetic patients the kidneys grow large, and glomerular filtration rate (GFR) becomes supranormal, which are risk factors for developing diabetic nephropathy later in life. This review outlines a pathophysiological concept that focuses on the tubular system to explain these changes. The concept includes the tubular hypothesis of glomerular filtration, which states that early tubular growth and sodium-glucose cotransport enhance proximal tubule reabsorption and make the GFR supranormal through the physiology of tubuloglomerular feedback. The diabetic milieu triggers early tubular cell proliferation, but the induction of TGF-β and cyclin-dependent kinase inhibitors causes a cell cycle arrest and a switch to tubular hypertrophy and a senescence-like phenotype. Although this growth phenotype explains unusual responses like the salt paradox of the early diabetic kidney, the activated molecular pathways may set the stage for tubulointerstitial injury and diabetic nephropathy. PMID:22335797

  20. Propionic acid secreted from propionibacteria induces NKG2D ligand expression on human-activated T lymphocytes and cancer cells.

    PubMed

    Andresen, Lars; Hansen, Karen Aagaard; Jensen, Helle; Pedersen, Stine Falsig; Stougaard, Peter; Hansen, Helle Rüsz; Jurlander, Jesper; Skov, Søren

    2009-07-15

    We found that propionic acid secreted from propionibacteria induces expression of the NKG2D ligands MICA/B on activated T lymphocytes and different cancer cells, without affecting MICA/B expression on resting peripheral blood cells. Growth supernatant from propionibacteria or propionate alone could directly stimulate functional MICA/B surface expression and MICA promoter activity by a mechanism dependent on intracellular calcium. Deletion and point mutations further demonstrated that a GC-box motif around -110 from the MICA transcription start site is essential for propionate-mediated MICA promoter activity. Other short-chain fatty acids such as lactate, acetate, and butyrate could also induce MICA/B expression. We observed a striking difference in the molecular signaling pathways that regulate MICA/B. A functional glycolytic pathway was essential for MICA/B expression after exposure to propionate and CMV. In contrast, compounds with histone deacetylase-inhibitory activity such as butyrate and FR901228 stimulated MICA/B expression through a pathway that was not affected by inhibition of glycolysis, clearly suggesting that MICA/B is regulated through different molecular mechanisms. We propose that propionate, produced either by bacteria or during cellular metabolism, has significant immunoregulatory function and may be cancer prophylactic. PMID:19553547

  1. Glioma-secreted soluble factors stimulate microglial activation: The role of interleukin-1β and tumor necrosis factor-α.

    PubMed

    Hwang, Ji-Sun; Jung, Eun-Hye; Kwon, Mi-Youn; Han, Inn-Oc

    2016-09-15

    We aimed to elucidate the effect of soluble factors secreted by glioma on microglial activation. Conditioned medium (CM) from glioma cells, CRT-MG and C6, significantly induced nitric oxide (NO) production and stimulated the mRNA expression of inducible NO synthase (iNOS), interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha (TNF-α) and cyclooxygenase 2 (COX-2) in BV2 cells. Glioma CM stimulated p38 mitogen-activated protein kinase (MAPK) phosphorylation, and a p38 MAPK inhibitor, SB203580, suppressed CM-induced NO production in BV2 cells. In addition, CM stimulated nuclear factor-kappaB (NF-κB) DNA binding and transcriptional activity, which was repressed by SB203580. Gliomas displayed higher mRNA expression and release of TNF-α and IL-1β than primary astrocyte cells. Neutralization of TNF-α and IL-1β in C6-CM using a neutralizing antibody inhibited NO/iNOS expression in BV-2 cells. These results indicate potential contribution of diffusible tumor-derived factors to regulate microglial activation and subsequent tumor microenvironment. PMID:27609291

  2. Secretion by stimulated murine macrophages of a heparin-binding fibroblast growth activity, distinct from basic FGE and IL-1

    SciTech Connect

    Rappolee, D.A.; Banda, M.J.; Werb, Z.

    1986-03-01

    Wound healing requires granulation and formation of neovascularization tissue. These two events require increases in fibroblasts, vascular endothelial, and smooth muscle cells. Macrophages may produce several growth factors which participate in these would healing events. To test this hypothesis they have partially purified a fibroblast growth promoting activity from a murine macrophage cell line (P388 Dl). The activity causes growth in Balb/c and Swiss 3T3 cells as measured by thymidine uptake, nuclear labeling and increase in cell number. PDGF, Basic FGF, and EGF are also mitogenic by thymidine uptake, but purified human IL-1 and recombinant murine IL-1 are not. The activity is pH 2.5-, freeze/thaw-, and dialysis/lyphilyzation-stable. The activity elutes from heparin-Sepharose at 2.0M, but not 0.15m, 0.5M, or 3.0M NaCl. Basic FGF elutes from the same heparin-Sepharose batch at 3.0M, but not at the other three NaCl concentrations. The growth activity is secreted by viable murine macrophage line cells (P388D1, WEHI-3, RAW 264.7) at a 48 hour peak after activating (LPS) or phagocytic stimuli. Unstimulated P388D1 caused growth 1.7 times control whereas stimulation increases the growth 5.1 to 7.1 times control. The optimal activity concentration fails to complement insulin in an assay in which optimal basic FGF concentration complements insulin. These data suggest that the activity may contain a progression factor.

  3. Peroxisome proliferator-activated receptor {alpha} agonists modulate Th1 and Th2 chemokine secretion in normal thyrocytes and Graves' disease

    SciTech Connect

    Antonelli, Alessandro; Ferrari, Silvia Martina; Frascerra, Silvia; Corrado, Alda; Pupilli, Cinzia; Bernini, Giampaolo; Benvenga, Salvatore; Ferrannini, Ele; Fallahi, Poupak

    2011-07-01

    Until now, no data are present about the effect of peroxisome proliferator-activated receptor (PPAR){alpha} activation on the prototype Th1 [chemokine (C-X-C motif) ligand (CXCL)10] (CXCL10) and Th2 [chemokine (C-C motif) ligand 2] (CCL2) chemokines secretion in thyroid cells. The role of PPAR{alpha} and PPAR{gamma} activation on CXCL10 and CCL2 secretion was tested in Graves' disease (GD) and control primary thyrocytes stimulated with interferon (IFN){gamma} and tumor necrosis factor (TNF){alpha}. IFN{gamma} stimulated both CXCL10 and CCL2 secretion in primary GD and control thyrocytes. TNF{alpha} alone stimulated CCL2 secretion, while had no effect on CXCL10. The combination of IFN{gamma} and TNF{alpha} had a synergistic effect both on CXCL10 and CCL2 chemokines in GD thyrocytes at levels comparable to those of controls. PPAR{alpha} activators inhibited the secretion of both chemokines (stimulated with IFN{gamma} and TNF{alpha}) at a level higher (for CXCL10, about 60-72%) than PPAR{gamma} agonists (about 25-35%), which were confirmed to inhibit CXCL10, but not CCL2. Our data show that CCL2 is modulated by IFN{gamma} and TNF{alpha} in GD and normal thyrocytes. Furthermore we first show that PPAR{alpha} activators inhibit the secretion of CXCL10 and CCL2 in thyrocytes, suggesting that PPAR{alpha} may be involved in the modulation of the immune response in the thyroid.

  4. Antibacterial Activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide Secreted from Pichia pastoris

    PubMed Central

    Song, Ki-Duk; Lee, Woon-Kyu

    2014-01-01

    Cecropins (Cec) are antibacterial peptides and their expression is induced in a pig intestinal parasite Ascaris suum by bacterial infection. To explore the usefulness of its activity as an antibiotic, CecP4 cDNA was prepared and cloned into the pPICZ B expression vector and followed by the integration into AOX1 locus in Pichia pastoris. The supernatants from cell culture were collected after methanol induction and concentrated for the test of antimicrobial activity. The recombinant P. patoris having CecP4 showed antimicrobial activity when tested against Staphyllococcus aureus in disc diffusion assay. We selected one of the CecP4 clones (CecP4-2) and performed further studies with it. The growth of recombinant P. pastoris was optimized using various concentration of methanol, and it was found that 2% methanol in the culture induced more antibacterial activity, compared to 1% methanol. We extended the test of antimicrobial activity by applying the concentrated supernatant of CecP4 culture to Pseudomonas aeruginosa and E. coli respectively. Recombinant CecP4 also showed antimicrobial activity against both Pseudomona and E. coli, suggesting the broad spectrum of its antimicrobial activity. After improvements for the scale-up, it will be feasible to use recombinant CecP4 for supplementation to the feed to control microbial infections in young animals, such as piglets. PMID:25049952

  5. Antibacterial Activity of Recombinant Pig Intestinal Parasite Cecropin P4 Peptide Secreted from Pichia pastoris.

    PubMed

    Song, Ki-Duk; Lee, Woon-Kyu

    2014-02-01

    Cecropins (Cec) are antibacterial peptides and their expression is induced in a pig intestinal parasite Ascaris suum by bacterial infection. To explore the usefulness of its activity as an antibiotic, CecP4 cDNA was prepared and cloned into the pPICZ B expression vector and followed by the integration into AOX1 locus in Pichia pastoris. The supernatants from cell culture were collected after methanol induction and concentrated for the test of antimicrobial activity. The recombinant P. patoris having CecP4 showed antimicrobial activity when tested against Staphyllococcus aureus in disc diffusion assay. We selected one of the CecP4 clones (CecP4-2) and performed further studies with it. The growth of recombinant P. pastoris was optimized using various concentration of methanol, and it was found that 2% methanol in the culture induced more antibacterial activity, compared to 1% methanol. We extended the test of antimicrobial activity by applying the concentrated supernatant of CecP4 culture to Pseudomonas aeruginosa and E. coli respectively. Recombinant CecP4 also showed antimicrobial activity against both Pseudomona and E. coli, suggesting the broad spectrum of its antimicrobial activity. After improvements for the scale-up, it will be feasible to use recombinant CecP4 for supplementation to the feed to control microbial infections in young animals, such as piglets. PMID:25049952

  6. The cytoprotective effects of oleoylethanolamide in insulin-secreting cells do not require activation of GPR119

    PubMed Central

    Stone, Virginia M; Dhayal, Shalinee; Smith, David M; Lenaghan, Carol; Brocklehurst, Katy J; Morgan, Noel G

    2012-01-01

    BACKGROUND AND PURPOSE β-cells express a range of fatty acid-responsive G protein-coupled receptors, including GPR119, which regulates insulin secretion and is seen as a potential therapeutic target in type 2 diabetes. The long-chain unsaturated fatty acid derivative oleoylethanolamide (OEA) is an endogenous agonist of GPR119 and, under certain conditions, some long-chain unsaturated fatty acids can promote β-cell cytoprotection. It is not known, however, if OEA is cytoprotective in β-cells. The present study has examined this and determined whether GPR119 is involved. METHODS Clonal rat insulin-secreting cell lines, BRIN-BD11 or INS-1E, were exposed to fatty acids complexed with BSA. cAMP levels, insulin release and cell viability were measured. Protein expression was studied by Western blotting and receptor expression by RT-PCR. KEY RESULTS GPR119 was expressed in both BRIN-BD11 and INS-1E cells and OEA was cytoprotective in these cells. However, cytoprotection was not reproduced by any of a range of selective, synthetic ligands of GPR119. The cytoprotective response to OEA was lost during exposure to inhibitors of fatty acid amide hydrolase (FAAH) suggesting that OEA per se is not the cytoprotective species but that release of free oleate is required. Similar data were obtained with anandamide, which was cytoprotective only under conditions favouring release of free arachidonate. CONCLUSIONS AND IMPLICATIONS Activation of GPR119 is not required to mediate the cytoprotective actions of OEA in BRIN-BD11 or INS-1E cells. Rather, OEA is internalised and subjected to hydrolysis by FAAH to release free oleate, which then mediates the cytoprotection. PMID:22029844

  7. Genetic and Biochemical Characterization of the Cell Wall Hydrolase Activity of the Major Secreted Protein of Lactobacillus rhamnosus GG

    PubMed Central

    Claes, Ingmar J. J.; Schoofs, Geert; Regulski, Krzysztof; Courtin, Pascal; Chapot-Chartier, Marie-Pierre; Rolain, Thomas; Hols, Pascal; von Ossowski, Ingemar; Reunanen, Justus; de Vos, Willem M.; Palva, Airi; Vanderleyden, Jos; De Keersmaecker, Sigrid C. J.; Lebeer, Sarah

    2012-01-01

    Lactobacillus rhamnosus GG (LGG) produces two major secreted proteins, designated here Msp1 (LGG_00324 or p75) and Msp2 (LGG_00031 or p40), which have been reported to promote the survival and growth of intestinal epithelial cells. Intriguingly, although each of these proteins shares homology with cell wall hydrolases, a physiological function that correlates with such an enzymatic activity remained to be substantiated in LGG. To investigate the bacterial function, we constructed knock-out mutants in the corresponding genes aiming to establish a genotype to phenotype relation. Microscopic examination of the msp1 mutant showed the presence of rather long and overly extended cell chains, which suggests that normal daughter cell separation is hampered. Subsequent observation of the LGG wild-type cells by immunofluorescence microscopy revealed that the Msp1 protein accumulates at the septum of exponential-phase cells. The cell wall hydrolyzing activity of the Msp1 protein was confirmed by zymogram analysis. Subsequent analysis by RP-HPLC and mass spectrometry of the digestion products of LGG peptidoglycan (PG) by Msp1 indicated that the Msp1 protein has D-glutamyl-L-lysyl endopeptidase activity. Immunofluorescence microscopy and the failure to construct a knock-out mutant suggest an indispensable role for Msp2 in priming septum formation in LGG. PMID:22359601

  8. Schistosoma mansoni Hemozoin Modulates Alternative Activation of Macrophages via Specific Suppression of Retnla Expression and Secretion

    PubMed Central

    Truscott, Martha; Evans, D. Andrew; Gunn, Matt

    2013-01-01

    The trematode Schistosoma mansoni is one of the etiological agents of schistosomiasis, a key neglected tropical disease responsible for an estimated annual loss of 70 million disability-adjusted life years. Hematophagy represents the primary nutrient acquisition pathway of this parasite, but digestion of hemoglobin also liberates toxic heme. Schistosomes detoxify heme via crystallization into hemozoin, which is subsequently regurgitated into the host's circulation. Here we demonstrate that during experimental schistosomiasis, hemozoin accumulating in the mouse liver is taken up by phagocytes at a time coincident with the development of the egg-induced T-helper 2 (Th2) granulomatous immune response. Furthermore, the uptake of hemozoin also coincides with the hepatic expression of markers of alternative macrophage activation. Alternatively activated macrophages are a key effector cell population associated with protection against schistosomiasis, making hemozoin well placed to play an important immunomodulatory role in this disease. To systematically explore this hypothesis, S. mansoni hemozoin was purified and added to in vitro bone marrow-derived macrophage cultures concurrently exposed to cytokines chosen to reflect the shifting state of macrophage activation in vivo. Macrophages undergoing interleukin-4 (IL-4)-induced alternative activation in the presence of hemozoin developed a phenotype specifically lacking in Retnla, a characteristic alternatively activated macrophage product associated with regulation of Th2 inflammatory responses. As such, in addition to its important detoxification role during hematophagy, we propose that schistosome hemozoin also provides a potent immunomodulatory function in the coevolved network of host-parasite relationships during schistosomiasis. PMID:23090958

  9. "Store-operated" cAMP signaling contributes to Ca2+-activated Cl- secretion in T84 colonic cells.

    PubMed

    Nichols, Jonathan M; Maiellaro, Isabella; Abi-Jaoude, Joanne; Curci, Silvana; Hofer, Aldebaran M

    2015-10-15

    Apical cAMP-dependent CFTR Cl(-) channels are essential for efficient vectorial movement of ions and fluid into the lumen of the colon. It is well known that Ca(2+)-mobilizing agonists also stimulate colonic anion secretion. However, CFTR is apparently not activated directly by Ca(2+), and the existence of apical Ca(2+)-dependent Cl(-) channels in the native colonic epithelium is controversial, leaving the identity of the Ca(2+)-activated component unresolved. We recently showed that decreasing free Ca(2+) concentration ([Ca(2+)]) within the endoplasmic reticulum (ER) lumen elicits a rise in intracellular cAMP. This process, which we termed "store-operated cAMP signaling" (SOcAMPS), requires the luminal ER Ca(2+) sensor STIM1 and does not depend on changes in cytosolic Ca(2+). Here we assessed the degree to which SOcAMPS participates in Ca(2+)-activated Cl(-) transport as measured by transepithelial short-circuit current (Isc) in polarized T84 monolayers in parallel with imaging of cAMP and PKA activity using fluorescence resonance energy transfer (FRET)-based reporters in single cells. In Ca(2+)-free conditions, the Ca(2+)-releasing agonist carbachol and Ca(2+) ionophore increased Isc, cAMP, and PKA activity. These responses persisted in cells loaded with the Ca(2+) chelator BAPTA-AM. The effect on Isc was enhanced in the presence of the phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX), inhibited by the CFTR inhibitor CFTRinh-172 and the PKA inhibitor H-89, and unaffected by Ba(2+) or flufenamic acid. We propose that a discrete component of the "Ca(2+)-dependent" secretory activity in the colon derives from cAMP generated through SOcAMPS. This alternative mode of cAMP production could contribute to the actions of diverse xenobiotic agents that disrupt ER Ca(2+) homeostasis, leading to diarrhea. PMID:26316590

  10. Role of Nitric Oxide in the Regulation of Renin and Vasopressin Secretion

    NASA Technical Reports Server (NTRS)

    Reid, Ian A.

    1994-01-01

    Research during recent years has established nitric oxide as a unique signaling molecule that plays important roles in the regulation of the cardiovascular, nervous, immune, and other systems. Nitric oxide has also been implicated in the control of the secretion of hormones by the pancreas, hypothalamus, and anterior pituitary gland, and evidence is accumulating that it contributes to the regulation of the secretion of renin and vasopressin, hormones that play key roles in the control of sodium and water balance. Several lines of evidence have implicated nitric oxide in the control of renin secretion. The enzyme nitric oxide synthase is present in vascular and tubular elements of the kidney, particularly in cells of the macula densa, a structure that plays an important role in the control of renin secretion. Guanylyl cyclase, a major target for nitric oxide, is also present in the kidney. Drugs that inhibit nitric oxide synthesis generally suppress renin release in vivo and in vitro, suggesting a stimulatory role for the L-arginine/nitric oxide pathway in the control of renin secretion. Under some conditions, however, blockade of nitric oxide synthesis increases renin secretion. Recent studies indicate that nitric oxide not only contributes to the regulation of basal renin secretion, but also participates in the renin secretory responses to activation of the renal baroreceptor, macula densa, and beta adrenoceptor mechanisms that regulate renin secretion. Histochemical and immunocytochemical studies have revealed the presence of nitric oxide synthase in the supraoptic and paraventricular nuclei of the hypothalamus and in the posterior pituitary gland. Colocalization of nitric oxide synthase and vasopressin has been demonstrated in some hypothalamic neurons. Nitric oxide synthase activity in the hypothalamus and pituitary is increased by maneuvers known to stimulate vasopressin secretion, including salt loading and dehydration, Administration of L-arginine and nitric

  11. The secret life of CFTR as a calcium-activated chloride channel.

    PubMed

    Billet, Arnaud; Hanrahan, John W

    2013-11-01

    cAMP-stimulated anion conductance is defective in cystic fibrosis (CF). The regulatory domain of CFTR, the anion channel protein encoded by the CF gene, possesses an unusually high density of consensus sequences for phosphorylation by protein kinase A (14 in a stretch of <200 amino acids). Thus it is not surprising that CFTR is viewed primarily as a cAMP-stimulated anion channel, and most studies have focused on this mode of activation. However, there is growing evidence that CFTR also responds to Ca(2+)-mobilizing secretagogues and contributes substantially to cholinergic and purinergic responses in native tissues. G protein-coupled receptors that signal through Gαq can stimulate CFTR channels by activating Ca(2+)-dependent adenylyl cyclase and tyrosine kinases, and also by inhibiting protein phosphatase type 2A. Here we review evidence for these novel mechanisms of CFTR activation and discuss how they may help explain previous observations. PMID:23959675

  12. Secrets of the Marsh. An Activity Resource Book For and By Children. Second Edition.

    ERIC Educational Resources Information Center

    Euler, Aline, Ed.

    This publication contains a collection of student-produced activities about wildlife. Children's views of the varying life forms that they encountered in field walks to a marsh are expressed through the games, puzzles, stories, and pictures that they created. Samples of the students' work are organized into separate topic areas. These include: (1)…

  13. Neural stem cells secrete factors facilitating brain regeneration upon constitutive Raf-Erk activation.

    PubMed

    Rhee, Yong-Hee; Yi, Sang-Hoon; Kim, Joo Yeon; Chang, Mi-Yoon; Jo, A-Young; Kim, Jinyoung; Park, Chang-Hwan; Cho, Je-Yoel; Choi, Young-Jin; Sun, Woong; Lee, Sang-Hun

    2016-01-01

    The intracellular Raf-Erk signaling pathway is activated during neural stem cell (NSC) proliferation, and neuronal and astrocytic differentiation. A key question is how this signal can evoke multiple and even opposing NSC behaviors. We show here, using a constitutively active Raf (ca-Raf), that Raf-Erk activation in NSCs induces neuronal differentiation in a cell-autonomous manner. By contrast, it causes NSC proliferation and the formation of astrocytes in an extrinsic autocrine/paracrine manner. Thus, treatment of NSCs with medium (CM) conditioned in ca-Raf-transduced NSCs (Raf-CM; RCM) became activated to form proliferating astrocytes resembling radial glial cells (RGCs) or adult-type NSCs. Infusion of Raf-CM into injured mouse brains caused expansion of the NSC population in the subventricular zone, followed by the formation of new neurons that migrated to the damaged site. Our study shows an example how molecular mechanisms dissecting NSC behaviors can be utilized to develop regenerative therapies in brain disorders. PMID:27554447

  14. Neural stem cells secrete factors facilitating brain regeneration upon constitutive Raf-Erk activation

    PubMed Central

    Rhee, Yong-Hee; Yi, Sang-Hoon; Kim, Joo Yeon; Chang, Mi-Yoon; Jo, A-Young; Kim, Jinyoung; Park, Chang-Hwan; Cho, Je-Yoel; Choi, Young-Jin; Sun, Woong; Lee, Sang-Hun

    2016-01-01

    The intracellular Raf-Erk signaling pathway is activated during neural stem cell (NSC) proliferation, and neuronal and astrocytic differentiation. A key question is how this signal can evoke multiple and even opposing NSC behaviors. We show here, using a constitutively active Raf (ca-Raf), that Raf-Erk activation in NSCs induces neuronal differentiation in a cell-autonomous manner. By contrast, it causes NSC proliferation and the formation of astrocytes in an extrinsic autocrine/paracrine manner. Thus, treatment of NSCs with medium (CM) conditioned in ca-Raf-transduced NSCs (Raf-CM; RCM) became activated to form proliferating astrocytes resembling radial glial cells (RGCs) or adult-type NSCs. Infusion of Raf-CM into injured mouse brains caused expansion of the NSC population in the subventricular zone, followed by the formation of new neurons that migrated to the damaged site. Our study shows an example how molecular mechanisms dissecting NSC behaviors can be utilized to develop regenerative therapies in brain disorders. PMID:27554447

  15. Hemodynamic and tubular changes induced by contrast media.

    PubMed

    Caiazza, Antonella; Russo, Luigi; Sabbatini, Massimo; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI. PMID:24678510

  16. Hemodynamic and Tubular Changes Induced by Contrast Media

    PubMed Central

    Caiazza, Antonella; Russo, Luigi; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI. PMID:24678510

  17. Inhibition of Monoacylglycerol Lipase Activity Decreases Glucose-Stimulated Insulin Secretion in INS-1 (832/13) Cells and Rat Islets

    PubMed Central

    Burritt, Nathan E.; Corkey, Barbara E.; Deeney, Jude T.

    2016-01-01

    Lipid signals derived from lipolysis and membrane phospholipids play an important role in glucose-stimulated insulin secretion (GSIS), though the exact secondary signals remain unclear. Previous reports have documented a stimulatory role of exogenously added mono-acyl-glycerol (MAG) on insulin secretion from cultured β-cells and islets. In this report we have determined effects of increasing intracellular MAG in the β-cell by inhibiting mono-acyl-glycerol lipase (MGL) activity, which catalyzes the final step in triacylglycerol breakdown, namely the hydrolysis of MAG to glycerol and free fatty acid (FA). To determine the role of MGL in GSIS, we used three different pharmacological agents (JZL184, MJN110 and URB602). All three inhibited GSIS and depolarization-induced insulin secretion in INS-1 (832/13). JZL184 significantly inhibited both GSIS and depolarization-induced insulin secretion in rat islets. JZL184 significantly decreased lipolysis and increased both mono- and diacyglycerol species in INS-1 cells. Analysis of the kinetics of GSIS showed that inhibition was greater during the sustained phase of secretion. A similar pattern was observed in the response of Ca2+ to glucose and depolarization but to a lesser degree suggesting that altered Ca2+ handling alone could not explain the reduction in insulin secretion. In addition, a significant reduction in long chain-CoA (LC-CoA) was observed in INS-1 cells at both basal and stimulatory glucose following inhibition of MGL. Our data implicate an important role for MGL in insulin secretion. PMID:26867016

  18. Sleep Deprivation Aggravates Median Nerve Injury-Induced Neuropathic Pain and Enhances Microglial Activation by Suppressing Melatonin Secretion

    PubMed Central

    Huang, Chun-Ta; Chiang, Rayleigh Ping-Ying; Chen, Chih-Li; Tsai, Yi-Ju

    2014-01-01

    deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion. SLEEP 2014;37(9):1513-1523. PMID:25142572

  19. Inhibition of gingipains by their profragments as the mechanism protecting Porphyromonas gingivalis against premature activation of secreted proteases

    PubMed Central

    Veillard, Florian; Sztukowska, Maryta; Mizgalska, Danuta; Ksiazek, Mirosław; Houston, John; Potempa, Barbara; Enghild, Jan J.; Thogersen, Ida B.; Gomis-Rüth, F. Xavier; Nguyen, Ky-Anh; Potempa, Jan

    2013-01-01

    Background Arginine-specific (RgpB and RgpA) and lysine-specific (Kgp) gingipains are secretory cysteine proteinases of Porphyromonas gingivalis that act as important virulence factors for the organism. They are translated as zymogens with both N- and C-terminal extensions, which are proteolytically cleaved during secretion. In this report, we describe and characterize inhibition of the gingipains by their N-terminal prodomains to maintain latency during their export through the cellular compartments. Methods Recombinant forms of various prodomains (PD) were analyzed for their interaction with mature gingipains. The kinetics of their inhibition of proteolytic activity along with the formation of stable inhibitory complexes with native gingipains was studied by gel filtration, native PAGE and substrate hydrolysis. Results PDRgpB and PDRgpA formed tight complexes with arginine-specific gingipains (Ki in the range from 6.2 nM to 0.85 nM). In contrast, PDKgp showed no inhibitory activity. A conserved Arg-102 residue in PDRgpB and PDRgpA was recognized as the P1 residue. Mutation of Arg-102 to Lys reduced inhibitory potency of PDRgpB by one order of magnitude while its substitutions with Ala, Gln or Gly totally abolished the PD inhibitory activity. Covalent modification of the catalytic cysteine with tosyl-L-Lys-chloromethylketone (TLCK) or H-D-Phe-Arg-chloromethylketone did not affect formation of the stable complex. Conclusion Latency of arginine-specific progingipains is efficiently exerted by N-terminal prodomains thus protecting the periplasm from potentially damaging effect of prematurely activated gingipains. General significance Blocking progingipain activation may offer an attractive strategy to attenuate P. gingivalis pathogenicity. PMID:23583629

  20. Activities of Secreted Aryl Alcohol Quinone Oxidoreductases from Pycnoporus cinnabarinus Provide Insights into Fungal Degradation of Plant Biomass.

    PubMed

    Mathieu, Yann; Piumi, Francois; Valli, Richard; Aramburu, Juan Carro; Ferreira, Patricia; Faulds, Craig B; Record, Eric

    2016-04-15

    Auxiliary activities family 3 subfamily 2 (AA3_2) from the CAZy database comprises various functions related to ligninolytic enzymes, such as fungal aryl alcohol oxidases (AAO) and glucose oxidases, both of which are flavoenzymes. The recent study of thePycnoporus cinnabarinusCIRM BRFM 137 genome combined with its secretome revealed that four AA3_2 enzymes are secreted during biomass degradation. One of these AA3_2 enzymes, scf184803.g17, has recently been produced heterologously inAspergillus niger Based on the enzyme's activity and specificity, it was assigned to the glucose dehydrogenases (PcinnabarinusGDH [PcGDH]). Here, we analyze the distribution of the other three AA3_2 enzymes (scf185002.g8, scf184611.g7, and scf184746.g13) to assess their putative functions. These proteins showed the highest homology with aryl alcohol oxidase fromPleurotus eryngii Biochemical characterization demonstrated that they were also flavoenzymes harboring flavin adenine dinucleotide (FAD) as a cofactor and able to oxidize a wide variety of phenolic and nonphenolic aryl alcohols and one aliphatic polyunsaturated primary alcohol. Though presenting homology with fungal AAOs, these enzymes exhibited greater efficiency in reducing electron acceptors (quinones and one artificial acceptor) than molecular oxygen and so were defined as aryl-alcohol:quinone oxidoreductases (AAQOs) with two enzymes possessing residual oxidase activity (PcAAQO2 andPcAAQO3). Structural comparison ofPcAAQO homology models withP. eryngiiAAO demonstrated a wider substrate access channel connecting the active-site cavity to the solvent, explaining the absence of activity with molecular oxygen. Finally, the ability ofPcAAQOs to reduce radical intermediates generated by laccase fromP. cinnabarinuswas demonstrated, shedding light on the ligninolytic system of this fungus. PMID:26873317

  1. Secretly Eccentric: The Giant Planet and Activity Cycle of GJ 328

    NASA Astrophysics Data System (ADS)

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Boss, Alan P.

    2013-09-01

    We announce the discovery of a ~2 Jupiter-mass planet in an eccentric 11 yr orbit around the K7/M0 dwarf GJ 328. Our result is based on 10 years of radial velocity (RV) data from the Hobby-Eberly and Harlan J. Smith telescopes at McDonald Observatory, and from the Keck Telescope at Mauna Kea. Our analysis of GJ 328's magnetic activity via the Na I D features reveals a long-period stellar activity cycle, which creates an additional signal in the star's RV curve with amplitude 6-10 m s-1. After correcting for this stellar RV contribution, we see that the orbit of the planet is more eccentric than suggested by the raw RV data. GJ 328b is currently the most massive, longest-period planet discovered around a low-mass dwarf.

  2. Anti-Candida activity and biofilm inhibitory effects of secreted products of tropical environmental yeasts.

    PubMed

    Tan, H W; Tay, S T

    2011-04-01

    This study describes the killer phenotypes of tropical environmental yeasts and the inhibition effects of the culture filtrates on the biofilm of Candida albicans. A total of 26 (10.5%) of 258 yeast isolates obtained from an environmental sampling study demonstrated killer activity to Candida species. The killer yeasts were identified as species belonging to the genus Aureobasidium, Pseudozyma, Ustilago and Candida based on sequence analysis of the ITS1-5.8S-ITS2 region of the yeasts. Pseudozyma showed the broadest killing effects against sensitive strains of Candida. New species of Ustilago and Pseudozyma demonstrating killer phenotypes were identified in this study. Interestingly, more than 50% reduction in the metabolic activity of Candida albicans biofilm was noted after exposure to the culture filtrates of the nine killer yeasts. Purification and characterization of toxin and metabolites are essential for understanding the yeast killing effects. PMID:21602784

  3. SECRETLY ECCENTRIC: THE GIANT PLANET AND ACTIVITY CYCLE OF GJ 328

    SciTech Connect

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Boss, Alan P.

    2013-09-10

    We announce the discovery of a {approx}2 Jupiter-mass planet in an eccentric 11 yr orbit around the K7/M0 dwarf GJ 328. Our result is based on 10 years of radial velocity (RV) data from the Hobby-Eberly and Harlan J. Smith telescopes at McDonald Observatory, and from the Keck Telescope at Mauna Kea. Our analysis of GJ 328's magnetic activity via the Na I D features reveals a long-period stellar activity cycle, which creates an additional signal in the star's RV curve with amplitude 6-10 m s{sup -1}. After correcting for this stellar RV contribution, we see that the orbit of the planet is more eccentric than suggested by the raw RV data. GJ 328b is currently the most massive, longest-period planet discovered around a low-mass dwarf.

  4. Effects of prunetin on the proteolytic activity, secretion and gene expression of MMP-3 in vitro and production of MMP-3 in vivo.

    PubMed

    Nam, Dae Cheol; Kim, Bo Kun; Lee, Hyun Jae; Shin, Hyun-Dae; Lee, Choong Jae; Hwang, Sun-Chul

    2016-03-01

    We investigated whether prunetin affects the proteolytic activity, secretion, and gene expression of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as in vivo production of MMP-3 in the rat knee joint to evaluate the potential chondroprotective eff ect of prunetin. Rabbit articular chondrocytes were cultured in a monolayer, and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure interleukin-1β (IL-1β)-induced expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), and ADAMTS-5. In rabbit articular chondrocytes, the effects of prunetin on IL-1β-induced secretion and proteolytic activity of MMP-3 were investigated using western blot analysis and casein zymography, respectively. The eff ect of prunetin on MMP-3 protein production was also examined in vivo. The results were as follows: (1) prunetin inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5; (2) prunetin inhibited the secretion and proteolytic activity of MMP-3; (3) prunetin suppressed the production of MMP-3 protein in vivo. These results suggest that prunetin can regulate the gene expression, secretion, and proteolytic activity of MMP-3, by directly acting on articular chondrocytes. PMID:26937219

  5. Effects of prunetin on the proteolytic activity, secretion and gene expression of MMP-3 in vitro and production of MMP-3 in vivo

    PubMed Central

    Nam, Dae Cheol; Kim, Bo Kun; Lee, Hyun Jae; Shin, Hyun-Dae

    2016-01-01

    We investigated whether prunetin affects the proteolytic activity, secretion, and gene expression of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as in vivo production of MMP-3 in the rat knee joint to evaluate the potential chondroprotective eff ect of prunetin. Rabbit articular chondrocytes were cultured in a monolayer, and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure interleukin-1β (IL-1β)-induced expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), and ADAMTS-5. In rabbit articular chondrocytes, the effects of prunetin on IL-1β-induced secretion and proteolytic activity of MMP-3 were investigated using western blot analysis and casein zymography, respectively. The eff ect of prunetin on MMP-3 protein production was also examined in vivo. The results were as follows: (1) prunetin inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5; (2) prunetin inhibited the secretion and proteolytic activity of MMP-3; (3) prunetin suppressed the production of MMP-3 protein in vivo. These results suggest that prunetin can regulate the gene expression, secretion, and proteolytic activity of MMP-3, by directly acting on articular chondrocytes. PMID:26937219

  6. Staphylococcal Enterotoxin B Primes Cytokine Secretion and Lytic Activity in Response to Native Bacterial Antigens

    PubMed Central

    Mason, Kevin M.; Dryden, Tricia D.; Bigley, Nancy J.; Fink, Pamela S.

    1998-01-01

    Superantigens stimulate T-lymphocyte proliferation and cytokine production, but the effects of superantigen exposure on cell function within a complex, highly regulated immune response remain to be determined. In this study, we demonstrate that superantigen exposure significantly alters the murine host response to bacterial antigens in an in vitro coculture system. Two days after exposure to the superantigen staphylococcal enterotoxin B, splenocytes cultured with Streptococcus mutans produced significantly greater amounts of gamma interferon (IFN-γ) and interleukin-12 than did sham-injected controls. The majority of IFN-γ production appeared to be CD8+ T-cell derived since depletion of this cell type dramatically reduced the levels of IFN-γ. To study host cell damage that may occur following superantigen exposure, we analyzed cytotoxicity to “bystander” fibroblast cells cultured with splenocytes in the presence of bacterial antigens. Prior host exposure to staphylococcal enterotoxin B significantly enhanced fibroblast cytotoxicity in the presence of bacteria. Neutralization of IFN-γ decreased the amount of cytotoxicity observed. However, a greater reduction was evident when splenocyte-bacterium cocultures were separated from the bystander cell monolayer via a permeable membrane support. Increased cytotoxicity appears to be primarily dependent upon cell-cell contact. Collectively, these data indicate that overproduction of inflammatory cytokines may alter the activity of cytotoxic immune cells. Superantigen exposure exacerbates cytokine production and lytic cell activity when immune cells encounter bacteria in vitro and comparable activities could possibly occur in vivo. PMID:9784507

  7. Tubular inverse opal scaffolds for biomimetic vessels

    NASA Astrophysics Data System (ADS)

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-01

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially

  8. An Infection-enhanced Oncolytic Adenovirus Secreting H. pylori Neutrophil-activating Protein with Therapeutic Effects on Neuroendocrine Tumors

    PubMed Central

    Ramachandran, Mohanraj; Yu, Di; Wanders, Alkwin; Essand, Magnus; Eriksson, Fredrik

    2013-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) is a major virulence factor involved in H. pylori infection. HP-NAP can mediate antitumor effects by recruiting neutrophils and inducing Th1-type differentiation in the tumor microenvironment. It therefore holds strong potential as a therapeutic gene. Here, we armed a replication-selective, infection-enhanced adenovirus with secretory HP-NAP, Ad5PTDf35-[Δ24-sNAP], and evaluated its therapeutic efficacy against neuroendocrine tumors. We observed that it could specifically infect and eradicate a wide range of tumor cells lines from different origin in vitro. Insertion of secretory HP-NAP did not affect the stability or replicative capacity of the virus and infected tumor cells could efficiently secrete HP-NAP. Intratumoral administration of the virus in nude mice xenografted with neuroendocrine tumors improved median survival. Evidence of biological HP-NAP activity was observed 24 hours after treatment with neutrophil infiltration in tumors and an increase of proinflammatory cytokines such as tumor necrosis factor (TNF)-α and MIP2-α in the systemic circulation. Furthermore, evidence of Th1-type immune polarization was observed as a result of increase in IL-12/23 p40 cytokine concentrations 72 hours postvirus administration. Our observations suggest that HP-NAP can serve as a potent immunomodulator in promoting antitumor immune response in the tumor microenvironment and enhance the therapeutic effect of oncolytic adenovirus. PMID:23817216

  9. In vitro morphology, viability and cytokine secretion of uterine telocyte-activated mouse peritoneal macrophages.

    PubMed

    Chi, Chi; Jiang, Xiao-Juan; Su, Lei; Shen, Zong-Ji; Yang, Xiao-Jun

    2015-12-01

    Telocytes (TCs), a distinct interstitial cell population, have been identified in the uterus, oviduct and placenta, with multiple proposed potential biological functions. Their unique structure allows them to form intercellular junctions with various immunocytes, both in normal and diseased tissues, suggesting a potential functional relationship with the local immune response. It has been hypothesized that through direct heterocellular junctions or indirect paracrine effects, TCs influence the activity of local immunocytes that are involved in the inflammatory process and in immune-mediated reproductive abnormalities. However, no reliable cytological evidence for this hypothesis is currently available. In this study, we cultured primary murine uterine TCs and collected TC conditioned media (TCM). Mouse peritoneal macrophages (pMACs) were co-cultured for 48 hrs with TCM or with DMEM/F12 or lipopolysaccharide (LPS) as negative and positive controls, respectively. Normal uterine TCs with a typical structure and a CD-34-positive/vimentin-positive/c-kit-negative immunophenotype were observed during culture. Morphologically, TCM-treated pMACs displayed an obvious activation/immunoresponse, in contrast to over-stimulation and cell death after LPS treatment and no sign of activation in the presence of DMEM/F12. Accordingly, a cell counting kit 8 (CCK-8) assay indicated significant activation of pMACs by TCM and LPS compared to DMEM/F12, thus supporting the marked morphological differences among these groups of cells. Furthermore, within a panel of macrophage-derived cytokines/enzymes, interleukin-6 (IL-6) and inducible nitric oxide synthase were significantly elevated in TCM-treated pMACs; tumour necrosis factor α, IL1-R1, and IL-10 were slightly, but significantly, up-regulated; and no changes were observed for transforming growth factor-β1, IL-1β, IL-23α and IL-18. Our results indicate that TCs are not simply innocent bystanders but are rather functional players in

  10. Open tubular columns containing the immobilized ligand binding domain of peroxisome proliferator-activated receptors α and γ for dual agonists characterization by frontal affinity chromatography with MS detection

    PubMed Central

    Temporini, C.; Pochetti, G.; Fracchiolla, G.; Piemontese, L.; Montanari, R.; Moaddel, R.; Laghezza, A.; Altieri, F.; Cervoni, L.; Ubiali, D.; Prada, E.; Loiodice, F.; Massolini, G.; Calleri, E.

    2013-01-01

    The peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. In the last years novel PPARs ligands have been identified and these include PPARα/γ dual agonists. To rapidly identify novel PPARs dual ligands, a robust binding assay amenable to high-throughput screening towards PPAR isoforms would be desirable. In this work we describe a parallel assay based on the principles of Frontal Affinity Chromatography coupled to Mass Spectrometry (FAC-MS) that can be used to characterize dual agonists. For this purpose the ligand binding domain of PPARα receptor was immobilized onto the surface of open tubular capillaries to create new PPAR-alpha-OT columns to be used in parallel with PPAR-gamma-OT columns. The two biochromatographic systems were used in both ranking and Kd experiments towards new ureidofibrate-like dual agonists for subtype selectivity ratio determination. In order to validate the system, the Kd values determined by frontal analysis chromatography were compared to the affinity constants obtained by ITC experiments. The results of this study strongly demonstrate the specific nature of the interaction of the ligands with the two immobilized receptor subtypes. PMID:23466198

  11. An ABC transporter and an outer membrane lipoprotein participate in posttranslational activation of type VI secretion in Pseudomonas aeruginosa.

    PubMed

    Casabona, Maria G; Silverman, Julie M; Sall, Khady M; Boyer, Frédéric; Couté, Yohann; Poirel, Jessica; Grunwald, Didier; Mougous, Joseph D; Elsen, Sylvie; Attree, Ina

    2013-02-01

    Pseudomonas aeruginosa is capable of injecting protein toxins into other bacterial cells through one of its three type VI secretion systems (T6SSs). The activity of this T6SS is tightly regulated on the posttranslational level by phosphorylation-dependent and -independent pathways. The phosphorylation-dependent pathway consists of a Threonine kinase/phosphatase pair (PpkA/PppA) that acts on a forkhead domain-containing protein, Fha1, and a periplasmic protein, TagR, that positively regulates PpkA. In the present work, we biochemically and functionally characterize three additional proteins of the phosphorylation-dependent regulatory cascade that controls T6S activation: TagT, TagS and TagQ. We show that similar to TagR, these proteins act upstream of the PpkA/PppA checkpoint and influence phosphorylation of Fha1 and, apparatus assembly and effector export. Localization studies demonstrate that TagQ is an outer membrane lipoprotein and TagR is associated with the outer membrane. Consistent with their homology to lipoprotein outer membrane localization (Lol) components, TagT and TagS form a stable inner membrane complex with ATPase activity. However, we find that outer membrane association of T6SS lipoproteins TagQ and TssJ1, and TagR, is unaltered in a ΔtagTS background. Notably, we found that TagQ is indispensible for anchoring of TagR to the outer membrane fraction. As T6S-dependent fitness of P. aeruginosa requires TagT, S, R and Q, we conclude that these proteins likely participate in a trans-membrane signalling pathway that promotes H1-T6SS activity under optimal environmental conditions. PMID:22765374

  12. High Systemic Levels of the Cytokine-Inducing HMGB1 Isoform Secreted in Severe Macrophage Activation Syndrome

    PubMed Central

    Palmblad, Karin; Schierbeck, Hanna; Sundberg, Erik; Horne, Anna-Carin; Harris, Helena Erlandsson; Henter, Jan-Inge; Antoine, Daniel J; Andersson, Ulf

    2014-01-01

    Macrophage activation syndrome (MAS) is a potentially fatal complication of systemic inflammation. High mobility group box 1 (HMGB1) is a nuclear protein extensively leaked extracellularly during necrotic cell death or actively secreted by natural killer (NK) cells, macrophages and additional cells during infection or sterile injury. Extracellular HMGB1 orchestrates key events in inflammation as a prototypic alarmin. The redox states of its three cysteines render the molecule mutually exclusive functions: fully reduced “all-thiol HMGB1” exerts chemotactic activity; “disulfide HMGB1” has cytokine-inducing, toll-like receptor 4 (TLR4)-mediated effects—while terminally oxidized “sulfonyl HMGB1” lacks inflammatory activity. This study examines the kinetic pattern of systemic HMGB1 isoform expression during therapy in four children with severe MAS. Three of the four patients with underlying systemic rheumatic diseases were treated with biologics and two suffered from triggering herpes virus infections at the onset of MAS. All patients required intensive care unit therapy due to life-threatening illness. Tandem mass-spectrometric analysis revealed dramatically increased systemic levels of the cytokine-inducing HMGB1 isoform during early MAS. Disease control coincided with supplementary etoposide therapy initiated to boost apoptotic cell death, when systemic HMGB1 levels drastically declined and the molecule emerged mainly in its oxidized, noninflammatory isoform. Systemic interferon (IFN)-γ and ferritin peaked concomitantly with HMGB1, whereas interleukin (IL)-18 and monocyte chemotactic protein (MCP)-1 levels developed differently. In conclusion, this work provides new insights in HMGB1 biology, suggesting that the molecule is not merely a biomarker of inflammation, but most likely also contributes to the pathogenesis of MAS. These observations encourage further studies of disulfide HMGB1 antagonists to improve outcome of MAS. PMID:25247290

  13. Osteoprotegerin in Exosome-Like Vesicles from Human Cultured Tubular Cells and Urine

    PubMed Central

    Benito-Martin, Alberto; Ucero, Alvaro Conrado; Zubiri, Irene; Posada-Ayala, Maria; Fernandez-Fernandez, Beatriz; Cannata-Ortiz, Pablo; Sanchez-Nino, Maria Dolores; Ruiz-Ortega, Marta; Egido, Jesus; Alvarez-Llamas, Gloria; Ortiz, Alberto

    2013-01-01

    Urinary exosomes have been proposed as potential diagnostic tools. TNF superfamily cytokines and receptors may be present in exosomes and are expressed by proximal tubular cells. We have now studied the expression of selected TNF superfamily proteins in exosome-like vesicles from cultured human proximal tubular cells and human urine and have identified additional proteins in these vesicles by LC-MS/MS proteomics. Human proximal tubular cells constitutively released exosome-like vesicles that did not contain the TNF superfamily cytokines TRAIL or TWEAK. However, exosome-like vesicles contained osteoprotegerin (OPG), a TNF receptor superfamily protein, as assessed by Western blot, ELISA or selected reaction monitoring by nLC-(QQQ)MS/MS. Twenty-one additional proteins were identified in tubular cell exosome-like vesicles, including one (vitamin D binding protein) that had not been previously reported in exosome-like vesicles. Twelve were extracellular matrix proteins, including the basement membrane proteins type IV collagen, nidogen-1, agrin and fibulin-1. Urine from chronic kidney disease patients contained a higher amount of exosomal protein and exosomal OPG than urine from healthy volunteers. Specifically OPG was increased in autosomal dominant polycystic kidney disease urinary exosome-like vesicles and expressed by cystic epithelium in vivo. In conclusion, OPG is present in exosome-like vesicles secreted by proximal tubular epithelial cells and isolated from Chronic Kidney Disease urine. PMID:24058411

  14. Secret Places.

    ERIC Educational Resources Information Center

    Ridolfi, Kerry

    1997-01-01

    Argues that children are as deep as the ocean, with secret places inside of them waiting to be opened. Notes that it is powerful for students to learn they can make sense of the world through words, and describes inviting them into poetry as they read poetry, create poetry packets, and write and revise poems. (SR)

  15. Cdk5 inhibitory peptide (CIP) inhibits Cdk5/p25 activity induced by high glucose in pancreatic beta cells and recovers insulin secretion from p25 damage.

    PubMed

    Zheng, Ya-Li; Li, Congyu; Hu, Ya-Fang; Cao, Li; Wang, Hui; Li, Bo; Lu, Xiao-Hua; Bao, Li; Luo, Hong-Yan; Shukla, Varsha; Amin, Niranjana D; Pant, Harish C

    2013-01-01

    Cdk5/p25 hyperactivity has been demonstrated to lead to neuron apoptosis and degenerations. Chronic exposure to high glucose (HG) results in hyperactivity of Cdk5 and reduced insulin secretion. Here, we set out to determine whether abnormal upregulation of Cdk5/p25 activity may be induced in a pancreatic beta cell line, Min6 cells. We first confirmed that p25 were induced in overexpressed p35 cells treated with HG and increased time course dependence. Next, we showed that no p25 was detected under short time HG stimulation (4-12 hrs), however was detectable in the long exposure in HG cells (24 hrs and 48 hrs). Cdk5 activity in the above cells was much higher than low glucose treated cells and resulted in more than 50% inhibition of insulin secretion. We confirmed these results by overexpression of p25 in Min6 cells. As in cortical neurons, CIP, a small peptide, inhibited Cdk5/p25 activity and restored insulin secretion. The same results were detected in co-infection of dominant negative Cdk5 (DNCdk5) with p25. CIP also reduced beta cells apoptosis induced by Cdk5/p25. These studies indicate that Cdk5/p25 hyperactivation deregulates insulin secretion and induces cell death in pancreatic beta cells and suggests that CIP may serve as a therapeutic agent for type 2 diabetes. PMID:24039692

  16. A Role for Syntaxin 3 in the Secretion of IL-6 from Dendritic Cells Following Activation of Toll-Like Receptors

    PubMed Central

    Collins, Laura E.; DeCourcey, Joseph; Rochfort, Keith D.; Kristek, Maja; Loscher, Christine E.

    2015-01-01

    The role of dendritic cells (DCs) in directing the immune response is due in part to their capacity to produce a range of cytokines. Importantly, DCs are a source of cytokines, which can promote T cell survival and T helper cell differentiation. While it has become evident that soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptors (SNAREs) are involved in membrane fusion and ultimately cytokine release, little is known about which members of this family facilitate the secretion of specific cytokines from DCs. We profiled mRNA of 18 SNARE proteins in DCs in response to activation with a panel of three Toll-like receptors (TLR) ligands and show differential expression of SNAREs in response to their stimulus and subsequent secretion patterns. Of interest, STX3 mRNA was up-regulated in response to TLR4 and TLR7 activation but not TLR2 activation. This correlated with secretion of IL-6 and MIP-1α. Abolishment of STX3 from DCs by RNAi resulted in the attenuation of IL-6 levels and to some extent MIP-1α levels. Analysis of subcellular location of STX3 by confocal microscopy showed translocation of STX3 to the cell membrane only in DCs secreting IL-6 or MIP-1α, indicating a role for STX3 in trafficking of these immune mediators. Given the role of IL-6 in Th17 differentiation, these findings suggest the potential of STX3 as therapeutic target in inflammatory disease. PMID:25674084

  17. Ca(2+)-activated K+ channels modulate muscarinic secretion in cat chromaffin cells.

    PubMed Central

    Uceda, G; Artalejo, A R; López, M G; Abad, F; Neher, E; García, A G

    1992-01-01

    1. This study was aimed at testing the hypothesis that Ca(2+)-dependent K+ channels regulate the release of catecholamines mediated by muscarinic stimulation of cat adrenal chromaffin cells. Two parameters were measured: the secretory response to brief pulses of methacholine (100 microM for 10 s) in intact cat adrenal glands perfused at a high rate with oxygenated Krebs solution; and the changes in cytosolic Ca2+ concentrations, [Ca2+]i, produced by puff applications of methacholine pulses (also 100 microM for 10 s) in isolated single cat adrenal chromaffin cells loaded with Fura-2. 2. A pulse of methacholine released 805 +/- 164 ng of catecholamines (mean of thirty-two pulses). d-Tubocurarine (DTC) increased the secretory response in a concentration-dependent manner. The maximum increase (around 1000 ng catecholamines over control values) was reached at 100 microM-DTC and the EC50 was around 10 microM. 3. The secretory responses to methacholine alone, or to the combination of methacholine plus DTC, were strongly dependent on the extracellular Ca2+ concentration, [Ca2+]o. Thus Ca2+o removal from the perfusing solution for 5-10 min abolished catecholamine release. 4. At 0.1 microM, isradipine (an L-type Ca2+ channel blocker) inhibited by 71% the secretory response to DTC plus methacholine. At 1 microM, Bay K 8644 (an L-type Ca2+ channel activator) increased 2-fold the secretory response to DTC plus methacholine (2746 ng of catecholamines). 5. Apamin (1 microM) increased 3.5-fold the secretory response to methacholine pulses (from 500 to 1800 ng of catecholamines). 6. Methacholine pulses enhanced [Ca2+]i from the resting level of 100 nM to a peak of 1000 nM which quickly declined to basal level. DTC (100 microM) enhanced by 20% the [Ca2+]i peak and substantially prolonged its duration. 7. Apamin (1 microM) increased by 60% the [Ca2+]i peak evoked by methacholine, and delayed the initiation of decline of the [Ca2+]i peak. 8. These results are compatible with the idea

  18. Candida tropicalis Biofilms: Biomass, Metabolic Activity and Secreted Aspartyl Proteinase Production.

    PubMed

    Negri, Melyssa; Silva, Sónia; Capoci, Isis Regina Grenier; Azeredo, Joana; Henriques, Mariana

    2016-04-01

    According to epidemiological data, Candida tropicalis has been related to urinary tract infections and haematological malignancy. Several virulence factors seem to be responsible for C. tropicalis infections, for example: their ability to adhere and to form biofilms onto different indwelling medical devices; their capacity to adhere, invade and damage host human tissues due to enzymes production such as proteinases. The main aim of this work was to study the behaviour of C. tropicalis biofilms of different ages (24-120 h) formed in artificial urine (AU) and their ability to express aspartyl proteinase (SAPT) genes. The reference strain C. tropicalis ATCC 750 and two C. tropicalis isolates from urine were used. Biofilms were evaluated in terms of culturable cells by colony-forming units enumeration; total biofilm biomass was evaluated using the crystal violet staining method; metabolic activity was evaluated by XTT assay; and SAPT gene expression was determined by real-time PCR. All strains of C. tropicalis were able to form biofilms in AU, although with differences between strains. Candida tropicalis biofilms showed a decrease in terms of the number of culturable cells from 48 to 72 h. Generally, SAPT3 was highly expressed. C. tropicalis strains assayed were able to form biofilms in the presence of AU although in a strain- and time-dependent way, and SAPT genes are expressed during C. tropicalis biofilm formation. PMID:26572148

  19. Chlorogenic Acid Activates CFTR-Mediated Cl- Secretion in Mice and Humans: Therapeutic Implications for Chronic Rhinosinusitis

    PubMed Central

    Illing, Elisa; Cho, Do-Yeon; Zhang, Shaoyan; Skinner, Daniel F.; Dunlap, Quinn A.; Sorscher, Eric J.; Woodworth, Bradford A.

    2016-01-01

    Objectives Salubrious effects of the green coffee bean are purportedly secondary to high concentrations of chlorogenic acid. Chlorogenic acid has a molecular structure similar to bioflavonoids that activate transepithelial Cl- transport in sinonasal epithelia. In contrast to flavonoids, the drug is freely soluble in water. The objective of this study is to evaluate the Cl- secretory capability of chlorogenic acid and its potential as a therapeutic activator of mucus clearance in sinus disease. Study Design Basic research Setting Laboratory Subjects and Methods Chlorogenic acid was tested on primary murine nasal septal epithelial(MNSE)[CFTR+/+ and transgenic CFTR-/-] and human sinonasal epithelial(HSNE)[CFTR+/+ and F508del/F508del] cultures under pharmacologic conditions in Ussing chambers to evaluate effects on transepithelial Cl- transport. Cellular cAMP, phosphorylation of the CFTR regulatory domain(R-D), and CFTR mRNA transcription were also measured. Results Chlorogenic acid stimulated transepithelial Cl- secretion [(change in short-circuit current(ΔISC=μA/cm2)] in MNSE(13.1+/-0.9 vs. 0.1+/-0.1, p<0.05) and HSNE(34.3+/-0.9 vs. 0.0+/-0.1, p<0.05). The drug had a long duration until peak effect at 15-30 minutes after application. Significant inhibition with INH-172, as well as absent stimulation in cultures lacking functional CFTR, suggests effects are dependent on CFTR-mediated pathways. However, the absence of elevated cellular cAMP and phosphorylation the CFTR R-D indicates chlorogenic acid does not work through a PKA-dependent mechanism. Conclusion Chlorogenic acid is a water soluble agent that promotes CFTR-mediated Cl- transport in mouse and human sinonasal epithelium. Translating activators of mucociliary transport to clinical use provides a new therapeutic approach to sinus disease. Further in vivo evaluation is planned. PMID:26019132

  20. Estradiol Restrains Prepubertal Gonadotropin Secretion in Female Mice via Activation of ERα in Kisspeptin Neurons.

    PubMed

    Dubois, Sharon L; Wolfe, Andrew; Radovick, Sally; Boehm, Ulrich; Levine, Jon E

    2016-04-01

    Elimination of estrogen receptorα (ERα) from kisspeptin (Kiss1) neurons results in premature LH release and pubertal onset, implicating these receptors in 17β-estradiol (E2)-mediated negative feedback regulation of GnRH release during the prepubertal period. Here, we tested the dependency of prepubertal negative feedback on ERα in Kiss1 neurons. Prepubertal (postnatal d 14) and peripubertal (postnatal d 34) wild-type (WT) and Kiss1 cell-specific ERα knockout (KERαKO) female mice were sham operated or ovariectomized and treated with either vehicle- or E2-containing capsules. Plasma and tissues were collected 2 days after surgery for analysis. Ovariectomy increased LH and FSH levels, and E2 treatments completely prevented these increases in WT mice of both ages. However, in prepubertal KERαKO mice, basal LH levels were elevated vs WT, and both LH and FSH levels were not further increased by ovariectomy or affected by E2 treatment. Similarly, Kiss1 mRNA levels in the medial basal hypothalamus, which includes the arcuate nucleus, were suppressed with E2 treatment in ovariectomized prepubertal WT mice but remained unaffected by any treatment in KERαKO mice. In peripubertal KERαKO mice, basal LH and FSH levels were not elevated vs WT and were unaffected by ovariectomy or E2. In contrast to our previous findings in adult animals, these results demonstrate that suppression of gonadotropins and Kiss1 mRNA by E2 in prepubertal animals depends upon ERα activation in Kiss1 neurons. Our observations are consistent with the hypothesis that these receptors play a critical role in restraining GnRH release before the onset and completion of puberty. PMID:26824364

  1. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2

    PubMed Central

    Kirby, Elizabeth D; Muroy, Sandra E; Sun, Wayne G; Covarrubias, David; Leong, Megan J; Barchas, Laurel A; Kaufer, Daniela

    2013-01-01

    Stress is a potent modulator of the mammalian brain. The highly conserved stress hormone response influences many brain regions, particularly the hippocampus, a region important for memory function. The effect of acute stress on the unique population of adult neural stem/progenitor cells (NPCs) that resides in the adult hippocampus is unclear. We found that acute stress increased hippocampal cell proliferation and astrocytic fibroblast growth factor 2 (FGF2) expression. The effect of acute stress occurred independent of basolateral amygdala neural input and was mimicked by treating isolated NPCs with conditioned media from corticosterone-treated primary astrocytes. Neutralization of FGF2 revealed that astrocyte-secreted FGF2 mediated stress-hormone-induced NPC proliferation. 2 weeks, but not 2 days, after acute stress, rats also showed enhanced fear extinction memory coincident with enhanced activation of newborn neurons. Our findings suggest a beneficial role for brief stress on the hippocampus and improve understanding of the adaptive capacity of the brain. DOI: http://dx.doi.org/10.7554/eLife.00362.001 PMID:23599891

  2. Activation of Muscarinic Acetylcholine Receptor Subtype 4 Is Essential for Cholinergic Stimulation of Gastric Acid Secretion: Relation to D Cell/Somatostatin

    PubMed Central

    Takeuchi, Koji; Endoh, Takuya; Hayashi, Shusaku; Aihara, Takeshi

    2016-01-01

    Background/Aim: Muscarinic acetylcholine receptors exist in five subtypes (M1∼M5), and they are widely expressed in various tissues to mediate diverse autonomic functions, including gastric secretion. In the present study, we demonstrated, using M1∼M5 KO mice, the importance of M4 receptors in carbachol (CCh) stimulation of acid secretion and investigated how the secretion is modulated by the activation of M4 receptors. Methods: C57BL/6J mice of wild-type (WT) and M1–M5 KO were used. Under urethane anesthesia, acid secretion was measured in the stomach equipped with an acute fistula. CCh (30 μg/kg) was given subcutaneously (s.c.) to stimulate acid secretion. Atropine or octreotide (a somatostatin analog) was given s.c. 20 min before the administration of CCh. CYN154806 (a somatostatin SST2 receptor antagonist) was given i.p. 20 min before the administration of octreotide or CCh. Results: CCh caused an increase of acid secretion in WT mice, and the effect was totally inhibited by prior administration of atropine. The effect of CCh was similarly observed in the animals lacking M1, M2 or M5 receptors but significantly decreased in M3 or M4 KO mice. CYN154806, the SST2 receptor antagonist, dose-dependently and significantly reversed the decreased acid response to CCh in M4 but not M3 KO mice. Octreotide, the somatostatin analog, inhibited the secretion of acid under CCh-stimulated conditions in WT mice. The immunohistochemical study showed the localization of M4 receptors on D cells in the stomach. Serum somatostatin levels in M4 KO mice were higher than WT mice under basal conditions, while those in WT mice were significantly decreased in response to CCh. Conclusions: These results suggest that under cholinergic stimulation the acid secretion is directly mediated by M3 receptors and indirectly modified by M4 receptors. It is assumed that the activation of M4 receptors inhibits the release of somatostatin from D cells and minimizes the acid inhibitory effect of

  3. Influence of peroxisome proliferator-activated receptor alpha agonists on the intracellular turnover and secretion of apolipoprotein (Apo) B-100 and ApoB-48.

    PubMed

    Lindén, Daniel; Lindberg, Karin; Oscarsson, Jan; Claesson, Catharina; Asp, Lennart; Li, Lu; Gustafsson, Maria; Borén, Jan; Olofsson, Sven-Olof

    2002-06-21

    The peroxisome proliferator-activated receptor (PPAR) alpha agonist WY 14,643 increased the secretion of apolipoprotein (apo) B-100, but not that of apoB-48, and decreased triglyceride biosynthesis and secretion from primary rat hepatocytes. These effects resulted in decreased secretion of apoB-100-very low density lipoprotein (VLDL) and an increased secretion of apoB-100 on low density lipoproteins/intermediate density lipoproteins. ApoB-48-VLDL was also replaced by more dense particles. The proteasomal inhibitor lactacystin did not influence the recovery of apoB-100 or apoB-48 in primary rat hepatocytes, indicating that co-translational (proteasomal) degradation is of less importance in these cells. Treatment with WY 14,643 made the recovery of apoB-100 sensitive to lactacystin, most likely reflecting the decreased biosynthesis of triglycerides. The PPAR alpha agonist induced a significant increase in the accumulation of pulse-labeled apoB-100 even after a short pulse (2-5 min). There was also an increase in apoB-100 nascent polypeptides, indicating that the co-translational degradation of apoB-100 was inhibited. However, a minor influence on an early posttranslation degradation cannot be excluded. This decreased co-translational degradation of apoB-100 explained the increased secretion of the protein. The levels of apoB-48 remained unchanged during these pulse-chase experiments, and albumin production was not affected, indicating a specific effect of PPAR alpha agonists on the co-translational degradation of apoB-100. These findings explain the difference in the rate of secretion of the two apoB proteins seen after PPAR alpha activation. PPAR alpha agonists increased the expression and biosynthesis of liver fatty acid-binding protein (LFABP). Increased expression of LFABP by transfection of McA-RH7777 cells increased the secretion of apoB-100, decreased triglyceride biosynthesis and secretion, and increased PPAR alpha mRNA levels. These findings suggest that

  4. Tubular inverse opal scaffolds for biomimetic vessels.

    PubMed

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-14

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels. PMID:27241065

  5. The secret struggle of the active girl: a qualitative synthesis of interpersonal factors that influence physical activity in adolescent girls.

    PubMed

    Standiford, Anne

    2013-10-01

    The author conducted a systematic review of 19 international, multidisciplinary, qualitative studies of interpersonal factors that influence physical activity in adolescent girls. Themes were deductively generated based on reported findings, and were organized according to frequency of occurrence. Themes were further organized according to a theoretical model to illustrate how interpersonal, perceptual, and situational influences affect physical activity in adolescent girls. The three most frequently discovered themes follow: (a) ability comparison and competition; (b) family, peer, and teacher influence; and (c) appearance concerns. It is important to consider the influence of gender role conflict on physical activity. PMID:23790150

  6. YopN and TyeA Hydrophobic Contacts Required for Regulating Ysc-Yop Type III Secretion Activity by Yersinia pseudotuberculosis

    PubMed Central

    Amer, Ayad A. A.; Gurung, Jyoti M.; Costa, Tiago R. D.; Ruuth, Kristina; Zavialov, Anton V.; Forsberg, Åke; Francis, Matthew S.

    2016-01-01

    Yersinia bacteria target Yop effector toxins to the interior of host immune cells by the Ysc-Yop type III secretion system. A YopN-TyeA heterodimer is central to controlling Ysc-Yop targeting activity. A + 1 frameshift event in the 3-prime end of yopN can also produce a singular secreted YopN-TyeA polypeptide that retains some regulatory function even though the C-terminal coding sequence of this YopN differs greatly from wild type. Thus, this YopN C-terminal segment was analyzed for its role in type III secretion control. Bacteria producing YopN truncated after residue 278, or with altered sequence between residues 279 and 287, had lost type III secretion control and function. In contrast, YopN variants with manipulated sequence beyond residue 287 maintained full control and function. Scrutiny of the YopN-TyeA complex structure revealed that residue W279 functioned as a likely hydrophobic contact site with TyeA. Indeed, a YopNW279G mutant lost all ability to bind TyeA. The TyeA residue F8 was also critical for reciprocal YopN binding. Thus, we conclude that specific hydrophobic contacts between opposing YopN and TyeA termini establishes a complex needed for regulating Ysc-Yop activity. PMID:27446813

  7. Reduced Adenosine Uptake and Its Contribution to Signaling that Mediates Profibrotic Activation in Renal Tubular Epithelial Cells: Implication in Diabetic Nephropathy

    PubMed Central

    Kretschmar, Catalina; Oyarzún, Carlos; Villablanca, Cristopher; Jaramillo, Catherinne; Alarcón, Sebastián; Perez, Gustavo; Díaz-Encarnación, Montserrat M.; Pastor-Anglada, Marçal; Garrido, Wallys; Quezada, Claudia; San Martín, Rody

    2016-01-01

    Altered nucleoside levels may be linked to pathogenic signaling through adenosine receptors. We hypothesized that adenosine dysregulation contributes to fibrosis in diabetic kidney disease. Our findings indicate that high glucose levels and experimental diabetes decreased uptake activity through the equilibrative nucleoside transporter 1 (ENT1) in proximal tubule cells. In addition, a correlation between increased plasma content of adenosine and a marker of renal fibrosis in diabetic rats was evidenced. At the cellular level, exposure of HK2 cells to high glucose, TGF-β and the general adenosine receptor agonist NECA, induced the expression of profibrotic cell activation markers α-SMA and fibronectin. These effects can be avoided by using a selective antagonist of the adenosine A3 receptor subtype in vitro. Furthermore, induction of fibrosis marker α-SMA was prevented by the A3 receptor antagonist in diabetic rat kidneys. In conclusion, we evidenced the contribution of purinergic signaling to renal fibrosis in experimental diabetic nephropathy. PMID:26808537

  8. Reduced Adenosine Uptake and Its Contribution to Signaling that Mediates Profibrotic Activation in Renal Tubular Epithelial Cells: Implication in Diabetic Nephropathy.

    PubMed

    Kretschmar, Catalina; Oyarzún, Carlos; Villablanca, Cristopher; Jaramillo, Catherinne; Alarcón, Sebastián; Perez, Gustavo; Díaz-Encarnación, Montserrat M; Pastor-Anglada, Marçal; Garrido, Wallys; Quezada, Claudia; San Martín, Rody

    2016-01-01

    Altered nucleoside levels may be linked to pathogenic signaling through adenosine receptors. We hypothesized that adenosine dysregulation contributes to fibrosis in diabetic kidney disease. Our findings indicate that high glucose levels and experimental diabetes decreased uptake activity through the equilibrative nucleoside transporter 1 (ENT1) in proximal tubule cells. In addition, a correlation between increased plasma content of adenosine and a marker of renal fibrosis in diabetic rats was evidenced. At the cellular level, exposure of HK2 cells to high glucose, TGF-β and the general adenosine receptor agonist NECA, induced the expression of profibrotic cell activation markers α-SMA and fibronectin. These effects can be avoided by using a selective antagonist of the adenosine A3 receptor subtype in vitro. Furthermore, induction of fibrosis marker α-SMA was prevented by the A3 receptor antagonist in diabetic rat kidneys. In conclusion, we evidenced the contribution of purinergic signaling to renal fibrosis in experimental diabetic nephropathy. PMID:26808537

  9. Matrix Metalloproteinase-3 (MMP-3) Is an Endogenous Activator of the MMP-9 Secreted by Placental Leukocytes: Implication in Human Labor

    PubMed Central

    Flores-Pliego, Arturo; Espejel-Nuñez, Aurora; Castillo-Castrejon, Marisol; Meraz-Cruz, Noemi; Beltran-Montoya, Jorge; Zaga-Clavellina, Veronica; Nava-Salazar, Sonia; Sanchez-Martinez, Maribel; Vadillo-Ortega, Felipe; Estrada-Gutierrez, Guadalupe

    2015-01-01

    Background The activity of matrix degrading enzymes plays a leading role in the rupture of the fetal membranes under normal and pathological human labor, and matrix metalloproteinase-9 (MMP-9) it is considered a biomarker of this event. To gain further insight into local MMP-9 origin and activation, in this study we analyzed the contribution of human placental leukocytes to MMP-9 secretion and explored the local mechanisms of the pro-enzyme activation. Methods Placental blood leukocytes were obtained from women at term gestation without labor and maintained in culture up to 72 h. MMP-9 activity in the culture supernatants was determined by zymography and using a specific substrate. The presence of a potential pro-MMP-9 activator in the culture supernatants was monitored using a recombinant biotin-labeled human pro-MMP-9. To characterize the endogenous pro-MMP-9 activator, MMP-1, -3, -7 and -9 were measured by multiplex assay in the supernatants, and an inhibition assay of MMP-9 activation was performed using an anti-human MMP-3 and a specific MMP-3 inhibitor. Finally, production of MMP-9 and MMP-3 in placental leukocytes obtained from term pregnancies with and without labor was assessed by immunofluorescence. Results Placental leukocytes spontaneously secreted pro-MMP-9 after 24 h of culture, increasing significantly at 48 h (P≤0.05), when the active form of MMP-9 was detected. Culture supernatants activated the recombinant pro-MMP-9 showing that placental leukocytes secrete the activator. A significant increase in MMP-3 secretion by placental leukocytes was observed since 48 h in culture (P≤0.05) and up to 72 h (P≤0.001), when concentration reached its maximum value. Specific activity of MMP-9 decreased significantly (P≤0.005) when an anti-MMP-3 antibody or a specific MMP-3 inhibitor were added to the culture media. Placental leukocytes from term labor produced more MMP-9 and MMP-3 compared to term non-labor cells. Conclusions In this work we confirm that

  10. Modified Low Density Lipoprotein Stimulates Complement C3 Expression and Secretion via Liver X Receptor and Toll-like Receptor 4 Activation in Human Macrophages*

    PubMed Central

    Mogilenko, Denis A.; Kudriavtsev, Igor V.; Trulioff, Andrey S.; Shavva, Vladimir S.; Dizhe, Ella B.; Missyul, Boris V.; Zhakhov, Alexander V.; Ischenko, Alexander M.; Perevozchikov, Andrej P.; Orlov, Sergey V.

    2012-01-01

    Complement C3 is a pivotal component of three cascades of complement activation. C3 is expressed in human atherosclerotic lesions and is involved in atherogenesis. However, the mechanism of C3 accumulation in atherosclerotic lesions is not well elucidated. We show that acetylated low density lipoprotein and oxidized low density lipoprotein (oxLDL) increase C3 gene expression and protein secretion by human macrophages. Modified LDL (mLDL)-mediated activation of C3 expression mainly depends on liver X receptor (LXR) and partly on Toll-like receptor 4 (TLR4), whereas C3 secretion is increased due to TLR4 activation by mLDL. LXR agonist TO901317 stimulates C3 gene expression in human monocyte-macrophage cells but not in human hepatoma (HepG2) cells. We find LXR-responsive element inside of the promoter region of the human C3 gene, which binds to LXRβ in macrophages but not in HepG2 cells. We show that C3 expression and secretion is decreased in IL-4-treated (M2) and increased in IFNγ/LPS-stimulated (M1) human macrophages as compared with resting macrophages. LXR agonist TO901317 potentiates LPS-induced C3 gene expression and protein secretion in macrophages, whereas oxLDL differently modulates LPS-mediated regulation of C3 in M1 or M2 macrophages. Treatment of human macrophages with anaphylatoxin C3a results in stimulation of C3 transcription and secretion as well as increased oxLDL accumulation and augmented oxLDL-mediated up-regulation of the C3 gene. These data provide a novel mechanism of C3 gene regulation in macrophages and suggest new aspects of cross-talk between mLDL, C3, C3a, and TLR4 during development of atherosclerotic lesions. PMID:22194611

  11. A tubular flux-switching permanent magnet machine

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, W.; Clark, R.; Atallah, K.; Howe, D.

    2008-04-01

    The paper describes a novel tubular, three-phase permanent magnet brushless machine, which combines salient features from both switched reluctance and permanent magnet machine technologies. It has no end windings and zero net radial force and offers a high power density and peak force capability, as well as the potential for low manufacturing cost. It is, therefore, eminently suitable for a variety of applications, ranging from free-piston energy converters to active vehicle suspensions.

  12. DNA Substrate-Induced Activation of the Agrobacterium VirB/VirD4 Type IV Secretion System

    PubMed Central

    Cascales, Eric; Atmakuri, Krishnamohan; Sarkar, Mayukh K.

    2013-01-01

    The bitopic membrane protein VirB10 of the Agrobacterium VirB/VirD4 type IV secretion system (T4SS) undergoes a structural transition in response to sensing of ATP binding or hydrolysis by the channel ATPases VirD4 and VirB11. This transition, detectable as a change in protease susceptibility, is required for DNA substrate passage through the translocation channel. Here, we present evidence that DNA substrate engagement with VirD4 and VirB11 also is required for activation of VirB10. Several DNA substrates (oncogenic T-DNA and plasmids RSF1010 and pCloDF13) induced the VirB10 conformational change, each by mechanisms requiring relaxase processing at cognate oriT sequences. VirD2 relaxase deleted of its translocation signal or any of the characterized relaxases produced in the absence of cognate DNA substrates did not induce the structural transition. Translocated effector proteins, e.g., VirE2, VirE3, and VirF, also did not induce the transition. By mutational analyses, we supplied evidence that the N-terminal periplasmic loop of VirD4, in addition to its catalytic site, is essential for early-stage DNA substrate transfer and the VirB10 conformational change. Further studies of VirB11 mutants established that three T4SS-mediated processes, DNA transfer, protein transfer, and pilus production, can be uncoupled and that the latter two processes proceed independently of the VirB10 conformational change. Our findings support a general model whereby DNA ligand binding with VirD4 and VirB11 stimulates ATP binding/hydrolysis, which in turn activates VirB10 through a structural transition. This transition confers an open-channel configuration enabling passage of the DNA substrate to the cell surface. PMID:23564169

  13. Carcinogenic activity of PbS quantum dots screened using exosomal biomarkers secreted from HEK293 cells.

    PubMed

    Kim, Jung-Hee; Kim, Hye-Rim; Lee, Bo-Ram; Choi, Eun-Sook; In, Su-Il; Kim, Eunjoo

    2015-01-01

    Lead sulfide (PbS) quantum dots (QDs) have been applied in the biomedical area because they offer an excellent platform for theragnostic applications. In order to comprehensively evaluate the biocompatibility of PbS QDs in human cells, we analyzed the exosomes secreted from cells because exosomes are released during cellular stress to convey signals to other cells and serve as a reservoir of enriched biomarkers. PbS QDs were synthesized and coated with 3-mercaptopropionic acid (MPA) to allow the particles to disperse in water. Exosomes were isolated from HEK293 cells treated with PbS-MPA at concentrations of 0 µg/mL, 5 µg/mL, and 50 µg/mL, and the exosomal expression levels of miRNAs and proteins were analyzed. As a result, five miRNAs and two proteins were proposed as specific exosomal biomarkers for the exposure of HEK293 cells to PbS-MPA. Based on the pathway analysis, the molecular signature of the exosomes suggested that PbS-MPA QDs had carcinogenic activity. The comet assay and expression of molecular markers, such as p53, interleukin (IL)-8, and C-X-C motif chemokine 5, indicated that DNA damage occurred in HEK293 cells following PbS-MPA exposure, which supported the carcinogenic activity of the particles. In addition, there was obvious intensification of miRNA expression signals in the exosomes compared with that of the parent cells, which suggested that exosomal biomarkers could be detected more sensitively than those of whole cellular extracts. PMID:26355701

  14. Carcinogenic activity of PbS quantum dots screened using exosomal biomarkers secreted from HEK293 cells

    PubMed Central

    Kim, Jung-Hee; Kim, Hye-Rim; Lee, Bo-Ram; Choi, Eun-Sook; In, Su-Il; Kim, Eunjoo

    2015-01-01

    Lead sulfide (PbS) quantum dots (QDs) have been applied in the biomedical area because they offer an excellent platform for theragnostic applications. In order to comprehensively evaluate the biocompatibility of PbS QDs in human cells, we analyzed the exosomes secreted from cells because exosomes are released during cellular stress to convey signals to other cells and serve as a reservoir of enriched biomarkers. PbS QDs were synthesized and coated with 3-mercaptopropionic acid (MPA) to allow the particles to disperse in water. Exosomes were isolated from HEK293 cells treated with PbS–MPA at concentrations of 0 µg/mL, 5 µg/mL, and 50 µg/mL, and the exosomal expression levels of miRNAs and proteins were analyzed. As a result, five miRNAs and two proteins were proposed as specific exosomal biomarkers for the exposure of HEK293 cells to PbS–MPA. Based on the pathway analysis, the molecular signature of the exosomes suggested that PbS–MPA QDs had carcinogenic activity. The comet assay and expression of molecular markers, such as p53, interleukin (IL)-8, and C-X-C motif chemokine 5, indicated that DNA damage occurred in HEK293 cells following PbS–MPA exposure, which supported the carcinogenic activity of the particles. In addition, there was obvious intensification of miRNA expression signals in the exosomes compared with that of the parent cells, which suggested that exosomal biomarkers could be detected more sensitively than those of whole cellular extracts. PMID:26355701

  15. Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA

    PubMed Central

    Duchez, Anne-Claire; Boudreau, Luc H.; Naika, Gajendra S.; Bollinger, James; Belleannée, Clémence; Cloutier, Nathalie; Laffont, Benoit; Mendoza-Villarroel, Raifish E.; Lévesque, Tania; Rollet-Labelle, Emmanuelle; Rousseau, Matthieu; Allaeys, Isabelle; Tremblay, Jacques J.; Poubelle, Patrice E.; Lambeau, Gérard; Pouliot, Marc; Provost, Patrick; Soulet, Denis; Gelb, Michael H.; Boilard, Eric

    2015-01-01

    Platelets are anucleated blood elements highly potent at generating extracellular vesicles (EVs) called microparticles (MPs). Whereas EVs are accepted as an important means of intercellular communication, the mechanisms underlying platelet MP internalization in recipient cells are poorly understood. Our lipidomic analyses identified 12(S)-hydroxyeicosatetranoic acid [12(S)-HETE] as the predominant eicosanoid generated by MPs. Mechanistically, 12(S)-HETE is produced through the concerted activity of secreted phospholipase A2 IIA (sPLA2-IIA), present in inflammatory fluids, and platelet-type 12-lipoxygenase (12-LO), expressed by platelet MPs. Platelet MPs convey an elaborate set of transcription factors and nucleic acids, and contain mitochondria. We observed that MPs and their cargo are internalized by activated neutrophils in the endomembrane system via 12(S)-HETE. Platelet MPs are found inside neutrophils isolated from the joints of arthritic patients, and are found in neutrophils only in the presence of sPLA2-IIA and 12-LO in an in vivo model of autoimmune inflammatory arthritis. Using a combination of genetically modified mice, we show that the coordinated action of sPLA2-IIA and 12-LO promotes inflammatory arthritis. These findings identify 12(S)-HETE as a trigger of platelet MP internalization by neutrophils, a mechanism highly relevant to inflammatory processes. Because sPLA2-IIA is induced during inflammation, and 12-LO expression is restricted mainly to platelets, these observations demonstrate that platelet MPs promote their internalization in recipient cells through highly regulated mechanisms. PMID:26106157

  16. Implications of Spatiotemporal Regulation of Shigella flexneri Type Three Secretion Activity on Effector Functions: Think Globally, Act Locally

    PubMed Central

    Campbell-Valois, F.-X.; Pontier, Stéphanie M.

    2016-01-01

    Shigella spp. are Gram-negative bacterial pathogens that infect human colonic epithelia and cause bacterial dysentery. These bacteria express multiple copies of a syringe-like protein complex, the Type Three Secretion apparatus (T3SA), which is instrumental in the etiology of the disease. The T3SA triggers the plasma membrane (PM) engulfment of the bacteria by host cells during the initial entry process. It then enables bacteria to escape the resulting phagocytic-like vacuole. Freed bacteria form actin comets to move in the cytoplasm, which provokes bacterial collision with the inner leaflet of the PM. This phenomenon culminates in T3SA-dependent secondary uptake and vacuolar rupture in neighboring cells in a process akin to what is observed during entry and named cell-to-cell spread. The activity of the T3SA of Shigella flexneri was recently demonstrated to display an on/off regulation during the infection. While the T3SA is active when bacteria are in contact with PM-derived compartments, it switches to an inactive state when bacteria are released within the cytosol. These observations indicate that effector proteins transiting through the T3SA are therefore translocated in a highly time and space constrained fashion, likely impacting on their cellular distribution. Herein, we present what is currently known about the composition, the assembly and the regulation of the T3SA activity and discuss the consequences of the on/off regulation of T3SA on Shigella effector properties and functions during the infection. Specific examples that will be developed include the role of effectors IcsB and VirA in the escape from LC3/ATG8-positive vacuoles formed during cell-to-cell spread and of IpaJ protease activity against N-miristoylated proteins. The conservation of a similar regulation of T3SA activity in other pathogens such as Salmonella or Enteropathogenic Escherichia coli will also be briefly discussed. PMID:27014638

  17. Implications of Spatiotemporal Regulation of Shigella flexneri Type Three Secretion Activity on Effector Functions: Think Globally, Act Locally.

    PubMed

    Campbell-Valois, F-X; Pontier, Stéphanie M

    2016-01-01

    Shigella spp. are Gram-negative bacterial pathogens that infect human colonic epithelia and cause bacterial dysentery. These bacteria express multiple copies of a syringe-like protein complex, the Type Three Secretion apparatus (T3SA), which is instrumental in the etiology of the disease. The T3SA triggers the plasma membrane (PM) engulfment of the bacteria by host cells during the initial entry process. It then enables bacteria to escape the resulting phagocytic-like vacuole. Freed bacteria form actin comets to move in the cytoplasm, which provokes bacterial collision with the inner leaflet of the PM. This phenomenon culminates in T3SA-dependent secondary uptake and vacuolar rupture in neighboring cells in a process akin to what is observed during entry and named cell-to-cell spread. The activity of the T3SA of Shigella flexneri was recently demonstrated to display an on/off regulation during the infection. While the T3SA is active when bacteria are in contact with PM-derived compartments, it switches to an inactive state when bacteria are released within the cytosol. These observations indicate that effector proteins transiting through the T3SA are therefore translocated in a highly time and space constrained fashion, likely impacting on their cellular distribution. Herein, we present what is currently known about the composition, the assembly and the regulation of the T3SA activity and discuss the consequences of the on/off regulation of T3SA on Shigella effector properties and functions during the infection. Specific examples that will be developed include the role of effectors IcsB and VirA in the escape from LC3/ATG8-positive vacuoles formed during cell-to-cell spread and of IpaJ protease activity against N-miristoylated proteins. The conservation of a similar regulation of T3SA activity in other pathogens such as Salmonella or Enteropathogenic Escherichia coli will also be briefly discussed. PMID:27014638

  18. Atypical distal renal tubular acidosis confirmed by mutation analysis.

    PubMed

    Weber, S; Soergel, M; Jeck, N; Konrad, M

    2000-12-01

    In autosomal dominant distal renal tubular acidosis type I (dRTA) impaired hydrogen ion secretion is associated with metabolic acidosis, hyperchloremic hypokalemia, hypercalciuria, nephrocalcinosis, and/or nephrolithiasis. A retardation of growth is commonly observed. In this report we present a family with autosomal dominant dRTA with an atypical and discordant clinical picture. The father presented with severe nephrocalcinosis, nephrolithiasis, and isosthenuria but metabolic acidosis was absent. His 6-year-old daughter, however, suffered from metabolic acidosis, hypokalemia, and hypercalciuria. In addition, sonography revealed multiple bilateral renal cysts but no nephrocalcinosis. Mutation analysis of the AE1 gene coding for the renal Cl-/HCO3(-)-exchanger AE1 displayed a heterozygous Arg589Cys exchange in both patients but not in the healthy family members. This point mutation is frequently associated with autosomal dominant dRTA. Diagnosis of autosomal dominant dRTA is supported in this family by results of AE1 mutation analysis. PMID:11149111

  19. Salivary Gland Secretion.

    ERIC Educational Resources Information Center

    Dorman, H. L.; And Others

    1981-01-01

    Describes materials and procedures for an experiment utilizing a live dog to demonstrate: (1) physiology of the salivary gland; (2) parasympathetic control of the salivary gland; (3) influence of varying salivary flow rates on sodium and potassium ions, osmolarity and pH; and (4) salivary secretion as an active process. (DS)

  20. Tubular cell phenotype in HIV-associated nephropathy: role of phospholipid lysophosphatidic acid.

    PubMed

    Ayasolla, Kamesh R; Rai, Partab; Rahimipour, Shai; Hussain, Mohammad; Malhotra, Ashwani; Singhal, Pravin C

    2015-08-01

    Collapsing glomerulopathy and microcysts are characteristic histological features of HIV-associated nephropathy (HIVAN). We have previously reported the role of epithelial mesenchymal transition (EMT) in the development of glomerular and tubular cell phenotypes in HIVAN. Since persistent tubular cell activation of NFκB has been reported in HIVAN, we now hypothesize that HIV may be contributing to tubular cell phenotype via lysophosphatidic acid (LPA) mediated downstream signaling. Interestingly, LPA and its receptors have also been implicated in the tubular interstitial cell fibrosis (TIF) and cyst formation in autosomal dominant polycystic kidney disease (PKD). Primary human proximal tubular cells (HRPTCs) were transduced with either empty vector (EV/HRPTCs), HIV (HIV/HRPTCs) or treated with LPA (LPA/HRPTC). Immunoelectrophoresis of HIV/HRPTCs and LPA/HRPTCs displayed enhanced expression of pro-fibrotic markers: a) fibronectin (2.25 fold), b) connective tissue growth factor (CTGF; 4.8 fold), c) α-smooth muscle actin (α-SMA; 12 fold), and d) collagen I (5.7 fold). HIV enhanced tubular cell phosphorylation of ILK-1, FAK, PI3K, Akt, ERKs and P38 MAPK. HIV increased tubular cell transcriptional binding activity of NF-κB; whereas, a LPA biosynthesis inhibitor (AACOCF3), a DAG kinase inhibitor, a LPA receptor blocker (Ki16425), a NF-κB inhibitor (PDTC) and NFκB-siRNA not only displayed downregulation of a NFκB activity but also showed attenuated expression of profibrotic/EMT genes in HIV milieu. These findings suggest that LPA could be contributing to HIV-induced tubular cell phenotype via NFκB activation in HIVAN. PMID:26079546

  1. Constitutively Active MAVS Inhibits HIV-1 Replication via Type I Interferon Secretion and Induction of HIV-1 Restriction Factors

    PubMed Central

    Gupta, Sachin; Termini, James M.; Issac, Biju; Guirado, Elizabeth; Stone, Geoffrey W.

    2016-01-01

    Type I interferon is known to inhibit HIV-1 replication through the induction of interferon stimulated genes (ISG), including a number of HIV-1 restriction factors. To better understand interferon-mediated HIV-1 restriction, we constructed a constitutively active form of the RIG-I adapter protein MAVS. Constitutive MAVS was generated by fusion of full length MAVS to a truncated form of the Epstein Barr virus protein LMP1 (ΔLMP1). Supernatant from ΔLMP1-MAVS-transfected 293T cells contained high levels of type I interferons and inhibited HIV replication in both TZM-bl and primary human CD4+ T cells. Supernatant from ΔLMP1-MAVS-transfected 293T cells also inhibited replication of VSV-G pseudotyped single cycle SIV in TZM-bl cells, suggesting restriction was post-entry and common to both HIV and SIV. Gene array analysis of ΔLMP1-MAVS-transfected 293T cells and trans-activated CD4+ T cells showed significant upregulation of ISG, including previously characterized HIV restriction factors Viperin, Tetherin, MxB, and ISG56. Interferon blockade studies implicated interferon-beta in this response. In addition to direct viral inhibition, ΔLMP1-MAVS markedly enhanced secretion of IFN-β and IL-12p70 by dendritic cells and the activation and maturation of dendritic cells. Based on this immunostimulatory activity, an adenoviral vector (Ad5) expressing ΔLMP1-MAVS was tested as a molecular adjuvant in an HIV vaccine mouse model. Ad5-Gag antigen combined with Ad5-ΔLMP1-MAVS enhanced control of vaccinia-gag replication in a mouse challenge model, with 4/5 animals showing undetectable virus following challenge. Overall, ΔLMP1-MAVS is a promising reagent to inhibit HIV-1 replication in infected tissues and enhance vaccine-mediated immune responses, while avoiding toxicity associated with systemic type I interferon administration. PMID:26849062

  2. Pituitary adenylate cyclase-activating polypeptide enhances saliva secretion via direct binding to PACAP receptors of major salivary glands in mice.

    PubMed

    Matoba, Yuko; Nonaka, Naoko; Takagi, Yoshitoki; Imamura, Eisaku; Narukawa, Masayuki; Nakamachi, Tomoya; Shioda, Seiji; Banks, William A; Nakamura, Masanori

    2016-09-01

    Xerostomia, or dry mouth, is a common syndrome that is generally treated with artificial saliva; however, no other effective methods have yet been established. Saliva secretion is mainly under the control of the autonomic nervous system. Pituitary adenylate cyclase-activating polypeptide (PACAP) is recognized as a multifunctional neuropeptide in various organs. In this study, we examined the effect of PACAP on saliva secretion, and detected the distribution of the PACAP type 1 receptor (PAC1R) in major salivary glands, including the parotid, submandibular, and sublingual glands, in 9-week-old male C57BL/6 mice. Intranasal administration of PACAP 38 increased the amount of saliva secreted, which was not inhibited by atropine pretreatment. Immunohistochemical analysis showed that PAC1R was distributed in the three major salivary glands. In the parotid and sublingual glands, PAC1R was detected in striated duct cells, whereas in the submandibular gland, a strong PAC1R immunoreaction was detected in tall columnar epithelial cells in the granular ducts (i.e., pillar cells), as well as in some striated duct cells. PACAP significantly increased the concentration of epidermal growth factor in saliva. These results suggest that PACAP directly regulates saliva secretion by controlling the absorption activity in the ducts, and that pillar cells regulate the function of granular epithelial cells in the granular duct, such as the secretion of growth factors into the saliva. Collectively, these results suggest the possibility of PACAP as a new effective treatment of xerostomia. Anat Rec, 299:1293-1299, 2016. © 2016 Wiley Periodicals, Inc. PMID:27339371

  3. Treatment of well tubulars with gelatin

    SciTech Connect

    Lowther, F.E.

    1992-08-04

    This patent describes a method for treating a tubular in a well. It comprises: passing a mass of gelatin downward through the tubular; and passing the mass of gelating, upward in the well tubular toward the surface. This patent also describes a method of treating tubulars in a cased well having at least one string of tubing therein. It comprises positioning a mass in the annulus formed between the casing and the at least one string of tubing; and passing the mass downward in the annulus and in contact with both the inner wall of the casing and the outer wall of the tubing to deposit a protective layer on each of the walls.

  4. METHOD AND APPARATUS FOR FABRICATING TUBULAR UNITS

    DOEpatents

    Haldeman, G.W.

    1959-02-24

    A method and apparatus are described for fabricating tubular assemblies such as clad fuel elements for nuclear reactors. According to this method, a plurality of relatively short cylindrical slug-shaped members are inserted in an outer protective tubular jacket, and the assembly is passed through a reducing die to draw the outer tubular member into tight contact with the slug members, the slugs being automatically spaced with respect to each other and helium being inserted during the drawing operation to fill the spaces. The apparatus includes a pusher rod which functions to space the slugelements equidistantly by pushing on them in the direction of drawing but traveling at a slower rate than that of the tubular member.

  5. An open tubular ion chromatograph.

    PubMed

    Yang, Bingcheng; Zhang, Min; Kanyanee, Tinakorn; Stamos, Brian N; Dasgupta, Purnendu K

    2014-12-01

    We describe an open tubular ion chromatograph (OTIC) that uses anion exchange latex coated 5 μm radius silica and 9.8 μm radius poly(methyl methacrylate) tubes and automated time/pressure based hydrodynamic injection for pL-nL scale injections. It is routinely possible to generate 50,000 plates or more (up to 150,000 plates/m, columns between 0.3 and 0.8 m have been used), and as such, fast separations are possible, comparable to or in some cases better than the current practice of IC. With an optimized admittance detector, nonsuppressed detection permits LODs of submicromolar to double digit micromolar for a variety of analytes. However, large volume injections are possible and can significantly improve on this. A variety of eluents, the use of organic modifiers, and variations of eluent pH can be used to tailor a given separation. The approach is discussed in the context of extraterrestrial exploration, especially Mars, where the existence of large amounts of perchlorate in the soil needs to be confirmed. These columns can survive drying and freezing, and small footprint, low power consumption, and simplicity make OTIC a good candidate for such a mission. PMID:25394230

  6. Enhanced insulin sensitivity mediated by adipose tissue browning perturbs islet morphology and hormone secretion in response to autonomic nervous activation in female mice.

    PubMed

    Omar, Bilal A; Kvist-Reimer, Martina; Enerbäck, Sven; Ahrén, Bo

    2016-01-01

    Insulin resistance results in a compensatory increase in insulin secretion to maintain normoglycemia. Conversely, high insulin sensitivity results in reduced insulin secretion to prevent hypoglycemia. The mechanisms for this inverse adaptation are not well understood. We utilized highly insulin-sensitive mice, due to adipocyte-specific overexpression of the FOXC2 transcription factor, to study mechanisms of the reversed islet adaptation to increased insulin sensitivity. We found that Foxc2TG mice responded to mild hyperglycemia with insulin secretion significantly lower than that of wild-type mice; however, when severe hyperglycemia was induced, Foxc2TG mice demonstrated insulin secretion equal to or greater than that of wild-type mice. In response to autonomic nervous activation by 2-deoxyglucose, the acute suppression of insulin seen in wild-type mice was absent in Foxc2TG mice, suggesting impaired sympathetic signaling to the islet. Basal glucagon was increased in Foxc2TG mice, but they displayed severely impaired glucagon responses to cholinergic and autonomic nervous stimuli. These data suggest that the autonomic nerves contribute to the islet adaptation to high insulin sensitivity, which is compatible with a neuro-adipo regulation of islet function being instrumental for maintaining glucose regulation. PMID:26530152

  7. Bile acids acutely stimulate insulin secretion of mouse β-cells via farnesoid X receptor activation and K(ATP) channel inhibition.

    PubMed

    Düfer, Martina; Hörth, Katrin; Wagner, Rebecca; Schittenhelm, Björn; Prowald, Susanne; Wagner, Thomas F J; Oberwinkler, Johannes; Lukowski, Robert; Gonzalez, Frank J; Krippeit-Drews, Peter; Drews, Gisela

    2012-06-01

    Type 2 diabetes mellitus is associated with alterations in bile acid (BA) signaling. The aim of our study was to test whether pancreatic β-cells contribute to BA-dependent regulation of glucose homeostasis. Experiments were performed with islets from wild-type, farnesoid X receptor (FXR) knockout (KO), and β-cell ATP-dependent K(+) (K(ATP)) channel gene SUR1 (ABCC8) KO mice, respectively. Sodium taurochenodeoxycholate (TCDC) increased glucose-induced insulin secretion. This effect was mimicked by the FXR agonist GW4064 and suppressed by the FXR antagonist guggulsterone. TCDC and GW4064 stimulated the electrical activity of β-cells and enhanced cytosolic Ca(2+) concentration ([Ca(2+)](c)). These effects were blunted by guggulsterone. Sodium ursodeoxycholate, which has a much lower affinity to FXR than TCDC, had no effect on [Ca(2+)](c) and insulin secretion. FXR activation by TCDC is suggested to inhibit K(ATP) current. The decline in K(ATP) channel activity by TCDC was only observed in β-cells with intact metabolism and was reversed by guggulsterone. TCDC did not alter insulin secretion in islets of SUR1-KO or FXR-KO mice. TCDC did not change islet cell apoptosis. This is the first study showing an acute action of BA on β-cell function. The effect is mediated by FXR by nongenomic elements, suggesting a novel link between FXR activation and K(ATP) channel inhibition. PMID:22492528

  8. Acquired resistance to rechallenge injury in rats recovered from subclinical renal damage with uranyl acetate-Importance of proliferative activity of tubular cells

    SciTech Connect

    Sun, Yuan; Fujigaki, Yoshihide; Sakakima, Masanori; Hishida, Akira

    2010-02-15

    Animals recovered from acute renal failure are resistant to subsequent insult. We investigated whether rats recovered from mild proximal tubule (PT) injury without renal dysfunction (subclinical renal damage) acquire the same resistance. Rats 14 days after recovering from subclinical renal damage, which was induced by 0.2 mg/kg of uranyl acetate (UA) (sub-toxic dose), were rechallenged with 4 mg/kg of UA (nephrotoxic dose). Fate of PT cells and renal function were examined in response to nephrotoxic dose of UA. All divided cells after sub-toxic dose of UA insult were labeled with bromodeoxyuridine (BrdU) for 14 days then the number of PT cells with or without BrdU-labeling was counted following nephrotoxic dose of UA insult. Rats recovered from subclinical renal damage gained resistance to nephrotoxic dose of UA with reduced renal dysfunction, less severity of peak damage (necrotic and TUNEL+ apoptotic cells) and accelerated PT cell proliferation, but with earlier peak of PT damage. The decrease in number of PT cells in the early phase of rechallenge injury with nephrotoxic UA was more in rats pretreated with sub-toxic dose of UA than vehicle pretreated rats. The exaggerated loss of PT cells was mainly caused by the exaggerated loss of BrdU+ divided cells. In contrast, accelerated cell proliferation in rats recovered from sub-toxic dose of UA was observed mainly in BrdU- non-divided cells. The findings suggest that rats recovered from subclinical renal damage showed partial acquired resistance to nephrotoxic insult. Accelerated recovery with increased proliferative activity of non-divided PT cells after subclinical renal damage may mainly contribute to acquired resistance.

  9. 78 FR 37584 - U.S. Steel Tubular Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... Employment and Training Administration U.S. Steel Tubular Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United States Steel Corporation, Mckeesport, Pennsylvania; Notice of Amended... workers of U.S. Steel Tubular Products, McKeesport Tubular Operations Division, a subsidiary of...

  10. β-Adrenergic activation of electrogenic K+ and Cl− secretion in guinea pig distal colonic epithelium proceeds via separate cAMP signaling pathways

    PubMed Central

    Halm, Susan T.; Zhang, Jin

    2010-01-01

    Adrenergic stimulation of isolated guinea pig distal colonic mucosa produced transient Cl− and sustained K+ secretion. Transient short-circuit current (Isc) depended on β2-adrenergic receptors (β2-AdrR), and sustained Isc relies on a β1-AdrR/β2-AdrR complex. Epinephrine (epi) increased cAMP content with a biphasic time course similar to changes in epi-activated Isc (epiIsc). Inhibition of transmembrane adenylyl cyclases (tmACs) reduced peak epiIsc and cAMP to near zero without decreasing sustained epiIsc, consistent with cAMP from tmAC signaling for only Cl− secretion. Inhibition of soluble adenylyl cyclase (sAC) reduced sustained epiIsc and cAMP to near zero without decreasing peak epiIsc or cAMP, consistent with cAMP from sAC signaling for K+ secretion. Sensitivity to phosphodiesterase (PDE) inhibitors and peptide YY (PYY) stimulation further supported separate signaling for the two components. PDE3 or PDE4 inhibitors enhanced peak epiIsc but not sustained epiIsc, consistent with these PDEs as part of the β2-AdrR signaling domain. PYY suppressed peak epiIsc in a pertussis toxin (PTx)-sensitive manner, supporting Gαi-dependent inhibition of tmACs producing cAMP for Cl− secretion. Since PYY or PTx did not alter sustained epiIsc, signaling for K+ secretion occurred via a Gαi-independent mechanism. Presence of multiple sAC variants in colonic epithelial cells was supported by domain-specific antibodies. Responses to specific activators and inhibitors suggested that protein kinase A was not involved in activating peak or sustained components of epiIsc, but the cAMP-dependent guanine nucleotide exchange factor, Epac, may contribute. Thus β-adrenergic activation of electrogenic Cl− and K+ secretion, respectively, required tmAC- and sAC-dependent signaling pathways. PMID:20413718

  11. Salmonella-secreted Virulence Factors

    SciTech Connect

    Heffron, Fred; Niemann, George; Yoon, Hyunjin; Kidwai, Afshan S.; Brown, Roslyn N.; McDermott, Jason E.; Smith, Richard D.; Adkins, Joshua N.

    2011-05-01

    In this short review we discuss secreted virulence factors of Salmonella, which directly affect Salmonella interaction with its host. Salmonella secretes protein to subvert host defenses but also, as discussed, to reduce virulence thereby permitting the bacteria to persist longer and more successfully disperse. The type III secretion system (TTSS) is the best known and well studied of the mechanisms that enable secretion from the bacterial cytoplasm to the host cell cytoplasm. Other secretion systems include outer membrane vesicles, which are present in all Gram-negative bacteria examined to date, two-partner secretion, and type VI secretion will also be addressed. Excellent reviews of Salmonella secreted effectors have focused on themes such as actin rearrangements, vesicular trafficking, ubiquitination, and the activities of the virulence factors themselves. This short review is based on S. Typhimurium infection of mice because it is a model of typhoid like disease in humans. We have organized effectors in terms of events that happen during the infection cycle and how secreted effectors may be involved.

  12. Inorganic fluoride. Divergent effects on human proximal tubular cell viability.

    PubMed Central

    Zager, R. A.; Iwata, M.

    1997-01-01

    Fluoride (F) is a widely distributed nephrotoxin with exposure potentially resulting from environmental pollution and from fluorinated anesthetic use (eg, isoflurane). This study sought to characterize some of the subcellular determinants of fluoride cytotoxicity and to determine whether subtoxic F exposure affects tubular cell vulnerability to superimposed ATP depletion and nephrotoxic attack. Human proximal tubular cells (HK-2) were cultured with differing amounts of NaF (0 to 20 mmol/L, overlapping with clinically relevant intrarenal/urinary levels after fluorinated anesthetic use). After completing 24-hour exposures, cell injury was determined (vital dye uptake). Fluoride effects on cell deacylation ([3]H-C20:4 release) and PLA2 activity were also assessed. To determine whether subtoxic F exposure alters tubular cell susceptibility to superimposed injury, cells were exposed to subtoxic NaF doses for 0 to 24 hours and then challenged with simulated ischemia (ATP depletion plus Ca2+ overload) or a clinically relevant nephrotoxic insult (myoglobin exposure). NaF induced dose-dependent cytotoxicity (up to approximately 90% vital dye uptake and increased [3H]C20:4 release). Extracellular Ca2+ chelation (EGTA) and PLA2 inhibitor therapy (aristolochic acid, dibucaine, or mepacrine) each conferred significant protective effects. When subtoxic NaF doses were applied, partial cytosolic PLA2 depletion rapidly developed (approximately 85% within 3 hours, determined on cell extracts). These partially PLA2-depleted cells were markedly resistant to ATP depletion/Ca2+ ionophore injury and to myoglobin-induced attack (approximately 50% decrease in cell death). We conclude that 1) F induces dose-dependent cytotoxicity in cultured human proximal tubular cells, 2) this occurs, in part, via Ca(2+)- and PLA2-dependent mechanism(s), 3) partial cytosolic PLA2 depletion subsequently results, and 4) subtoxic fluoride exposure can acutely increase cell resistance to further attack

  13. Bombesin stimulates cholecystokinin secretion through mitogen-activated protein-kinase-dependent and -independent mechanisms in the enteroendocrine STC-1 cell line.

    PubMed Central

    Némoz-Gaillard, E; Cordier-Bussat, M; Filloux, C; Cuber, J C; Van Obberghen, E; Chayvialle, J A; Abello, J

    1998-01-01

    Bombesin has been reported to stimulate cholecystokinin (CCK) secretion from rat duodeno-jejunal I-cells. Bombesin was shown to activate mitogen-activated protein kinases (MAPKs) in cell types such as Swiss 3T3 fibroblasts and rat pancreatic acinar cells. No information is available on whether MAPK is activated in intestinal endocrine cells upon bombesin stimulation. This was studied by using the CCK-producing enteroendocrine cell line STC-1. Bombesin stimulated markedly and transiently both p42(MAPK) and p44(MAPK), with a maximum at 2 min, and a decrease to basal levels within 10 min. As expected, bombesin stimulated MAPK kinase 1 (MEK-1) activity. Activation of protein kinase C (PKC) with PMA also stimulated p42(MAPK), p44(MAPK) and MEK-1. Treatment of cells with PD 098059 (at 10 microM or 30 microM), which selectively inhibits MEK phosphorylation, blocked bombesin-induced p42(MAPK) and p44(MAPK) activation for at least 90 min. However, PD 098059 inhibited bombesin- and PMA-stimulated CCK secretion during the first 15 min, but failed to significantly reduce CCK release at later times. Inhibition of PKC with staurosporine, or PKC down-regulation by prolonged treatment with PMA, both drastically decreased MEK-1, p42(MAPK) and p44(MAPK) activation upon bombesin stimulation. Additionally, PKC activation appeared to be required for both MAPK-dependent (early) and -independent (late) CCK responses to bombesin. It is concluded that the early CCK secretory response of STC-1 cells to bombesin involves MAPK pathway activation through a PKC-dependent mechanism, whereas the late phase of bombesin-induced CCK secretion, that also requires PKC, appears to result from a MAPK-independent process. PMID:9512470

  14. Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function.

    PubMed

    Reddy, Manjula; Eirikis, Edward; Davis, Cuc; Davis, Hugh M; Prabhakar, Uma

    2004-10-01

    Activation of lymphocytes is a complex, yet finely regulated cascade of events that results in the expression of cytokine receptors, production and secretion of cytokines and expression of several cell surface molecules that eventually lead to divergent immune responses. Assessing the qualitative and quantitative nature of lymphocyte function following immunotherapy provides valuable information about the immune responses mediated by a therapeutic agent. To facilitate evaluation of the immunomodulatory activity of therapeutic agents, we have established a platform of in vitro immunoassays with normal human peripheral blood mononuclear cells (PBMCs) treated with several polyclonal activators that are known to exhibit different modes of action. We evaluated the kinetics of cell surface marker expression and cytokine release from PBMCs stimulated in parallel with various activating agents over a time course. These stimulating agents induced early (CD69 and CD71) and late (CD25 and HLA-DR) activation markers to varying antigen densities, indicated different cytokine profiles, and showed differential inhibition with dexamethasone (DEX), an inhibitor of early signaling events. Based on the association or correlation of the kinetics of activation marker expression and secreted cytokines, the results of our study indicate the appropriate time points for the simultaneous measurement of both these activation products. This study defines the kinetics for both measures of T cell activation and provides a comprehensive review with various polyclonal activators that can serve as a reference for monitoring lymphocyte function in clinical study samples. PMID:15541283

  15. Group V Secretory Phospholipase A2 Is Involved in Tubular Integrity and Sodium Handling in the Kidney.

    PubMed

    Silva-Filho, João Luiz; Peruchetti, Diogo Barros; Moraes-Santos, Felipe; Landgraf, Sharon Schilling; Silva, Leandro Souza; Sirtoli, Gabriela Modenesi; Zamith-Miranda, Daniel; Takiya, Christina Maeda; Pinheiro, Ana Acacia Sá; Diaz, Bruno Lourenço; Caruso-Neves, Celso

    2016-01-01

    Group V (GV) phospholipase A2 (PLA2) is a member of the family of secreted PLA2 (sPLA2) enzymes. This enzyme has been identified in several organs, including the kidney. However, the physiologic role of GV sPLA2 in the maintenance of renal function remains unclear. We used mice lacking the gene encoding GV sPLA2 (Pla2g5-/-) and wild-type breeding pairs in the experiments. Mice were individually housed in metabolic cages and 48-h urine was collected for biochemical assays. Kidney samples were evaluated for glomerular morphology, renal fibrosis, and expression/activity of the (Na+ + K+)-ATPase α1 subunit. We observed that plasma creatinine levels were increased in Pla2g5-/- mice following by a decrease in creatinine clearance. The levels of urinary protein were higher in Pla2g5-/- mice than in the control group. Markers of tubular integrity and function such as γ-glutamyl transpeptidase, lactate dehydrogenase, and sodium excretion fraction (FENa+) were also increased in Pla2g5-/- mice. The increased FENa+ observed in Pla2g5-/- mice was correlated to alterations in cortical (Na+ + K+) ATPase activity/ expression. In addition, the kidney from Pla2g5-/- mice showed accumulation of matrix in corticomedullary glomeruli and tubulointerstitial fibrosis. These data suggest GV sPLA2 is involved in the maintenance of tubular cell function and integrity, promoting sodium retention through increased cortical (Na+ + K+)-ATPase expression and activity. PMID:26820468

  16. Group V Secretory Phospholipase A2 Is Involved in Tubular Integrity and Sodium Handling in the Kidney

    PubMed Central

    Moraes-Santos, Felipe; Landgraf, Sharon Schilling; Silva, Leandro Souza; Sirtoli, Gabriela Modenesi; Zamith-Miranda, Daniel; Takiya, Christina Maeda; Pinheiro, Ana Acacia Sá; Diaz, Bruno Lourenço; Caruso-Neves, Celso

    2016-01-01

    Group V (GV) phospholipase A2 (PLA2) is a member of the family of secreted PLA2 (sPLA2) enzymes. This enzyme has been identified in several organs, including the kidney. However, the physiologic role of GV sPLA2 in the maintenance of renal function remains unclear. We used mice lacking the gene encoding GV sPLA2 (Pla2g5−/−) and wild-type breeding pairs in the experiments. Mice were individually housed in metabolic cages and 48-h urine was collected for biochemical assays. Kidney samples were evaluated for glomerular morphology, renal fibrosis, and expression/activity of the (Na+ + K+)-ATPase α1 subunit. We observed that plasma creatinine levels were increased in Pla2g5−/− mice following by a decrease in creatinine clearance. The levels of urinary protein were higher in Pla2g5−/− mice than in the control group. Markers of tubular integrity and function such as γ-glutamyl transpeptidase, lactate dehydrogenase, and sodium excretion fraction (FENa+) were also increased in Pla2g5−/− mice. The increased FENa+ observed in Pla2g5−/− mice was correlated to alterations in cortical (Na+ + K+) ATPase activity/ expression. In addition, the kidney from Pla2g5−/− mice showed accumulation of matrix in corticomedullary glomeruli and tubulointerstitial fibrosis. These data suggest GV sPLA2 is involved in the maintenance of tubular cell function and integrity, promoting sodium retention through increased cortical (Na+ + K+)-ATPase expression and activity. PMID:26820468

  17. TNFα Amplifies DNaseI Expression in Renal Tubular Cells while IL-1β Promotes Nuclear DNaseI Translocation in an Endonuclease-Inactive Form

    PubMed Central

    Thiyagarajan, Dhivya; Rekvig, Ole Petter; Seredkina, Natalya

    2015-01-01

    We have demonstrated that the renal endonuclease DNaseI is up-regulated in mesangial nephritis while down-regulated during progression of the disease. To determine the basis for these reciprocal DNaseI expression profiles we analyse processes accounting for an early increase in renal DNaseI expression. Main hypotheses were that i. the mesangial inflammation and secreted pro-inflammatory cytokines directly increase DNaseI protein expression in tubular cells, ii. the anti-apoptotic protein tumor necrosis factor receptor-associated protein 1 (Trap 1) is down-regulated by increased expression of DNaseI due to transcriptional interference, and iii. pro-inflammatory cytokines promote nuclear translocation of a variant of DNaseI. The latter hypothesis emerges from the fact that anti-DNaseI antibodies stained tubular cell nuclei in murine and human lupus nephritis. The present study was performed on human tubular epithelial cells stimulated with pro-inflammatory cytokines. Expression of the DNaseI and Trap 1 genes was determined by qPCR, confocal microscopy, gel zymography, western blot and by immune electron microscopy. Results from in vitro cell culture experiments were analysed for biological relevance in kidneys from (NZBxNZW)F1 mice and human patients with lupus nephritis. Central data indicate that stimulating the tubular cells with TNFα promoted increased DNaseI and reduced Trap 1 expression, while TNFα and IL-1β stimulation induced nuclear translocation of the DNaseI. TNFα-stimulation resulted in 3 distinct effects; increased DNaseI and IL-1β gene expression, and nuclear translocation of DNaseI. IL-1β-stimulation solely induced nuclear DNaseI translocation. Tubular cells stimulated with TNFα and simultaneously transfected with IL-1β siRNA resulted in increased DNaseI expression but no nuclear translocation. This demonstrates that IL-1β promotes nuclear translocation of a cytoplasmic variant of DNaseI since translocation clearly was not dependent on DNase

  18. Immunoregulation by macrophages II. Separation of mouse peritoneal macrophages having tumoricidal and bactericidal activities and those secreting PGE and interleukin I

    SciTech Connect

    Hopper, K.E.; Cahill, J.M.

    1983-06-01

    Macrophage subpopulations having bactericidal or tumoricidal activities and secreting interleukin I (IL1) or prostaglandin E (PGE) were identified through primary or secondary infection with Salmonella enteritidis and separated by sedimentation velocity. Bactericidal activity was measured by (3H)-thymidine release from Listeria monocytogenes and tumoricidal activity by 51Cr-release from C-4 fibrosarcoma or P815 mastocytoma cells. Macrophages with bactericidal activity were distinguished from those with tumoricidal activity a) during secondary infection when cytolytic activity occurred only at days 1-4 post injection and bactericidal activity remained high throughout and b) after sedimentation velocity separation. Cytolysis was consistently greatest among adherent cells of low sedimentation velocity, whereas cells with bactericidal activity increased in size during the infection. Tumour cytostasis (inhibition and promotion of (3H)-thymidine uptake) differed from cytolysis in that the former was more prolonged during infection and was also detected among large cells. Secretion of immunoregulatory molecules PGE and IL1 occurred maximally among different macrophage subpopulations separated by sedimentation velocity and depending on the type of stimulus used in vitro. There was an inverse correlation between IL1 production and PGE production after stimulation with C3-zymosan or lipopolysaccharide (LPS). The development of immunity during infection may therefore be dependent upon the relative proportions of effector and regulatory macrophage subpopulations and the selective effects of environmental stimuli on these functions.

  19. Tubular solid oxide fuel cell demonstration activities

    SciTech Connect

    Veyo, S.E.

    1995-08-01

    The development of a viable fuel cell driven electrical power generation system involves not only the development of cell and stack technology, but also the development of the overall system concept, the strategy for control, and the ancillary subsystems. The design requirements used to guide system development must reflect a customer focus in order to evolve a commercial product. In order to obtain useful customer feedback, Westinghouse has practiced the deployment with customers of fully integrated, automatically controlled, packaged solid oxide fuel cell power generation systems. These field units have served to demonstrate to customers first hand the beneficial attributes of the SOFC, to expose deficiencies through experience in order to guide continued development, and to garner real world feedback and data concerning not only cell and stack parameters, but also transportation, installation, permitting and licensing, start-up and shutdown, system alarming, fault detection, fault response, and operator interaction.

  20. VPAC1 receptors regulate intestinal secretion and muscle contractility by activating cholinergic neurons in guinea pig jejunum.

    PubMed

    Fung, Candice; Unterweger, Petra; Parry, Laura J; Bornstein, Joel C; Foong, Jaime P P

    2014-05-01

    In the gastrointestinal tract, vasoactive intestinal peptide (VIP) is found exclusively within neurons. VIP regulates intestinal motility via neurally mediated and direct actions on smooth muscle and secretion by a direct mucosal action, and via actions on submucosal neurons. VIP acts via VPAC1 and VPAC2 receptors; however, the subtype involved in its neural actions is unclear. The neural roles of VIP and VPAC1 receptors (VPAC1R) were investigated in intestinal motility and secretion in guinea pig jejunum. Expression of VIP receptors across the jejunal layers was examined using RT-PCR. Submucosal and myenteric neurons expressing VIP receptor subtype VPAC1 and/or various neurochemical markers were identified immunohistochemically. Isotonic muscle contraction was measured in longitudinal muscle-myenteric plexus preparations. Electrogenic secretion across mucosa-submucosa preparations was measured in Ussing chambers by monitoring short-circuit current. Calretinin(+) excitatory longitudinal muscle motor neurons expressed VPAC1R. Most cholinergic submucosal neurons, notably NPY(+) secretomotor neurons, expressed VPAC1R. VIP (100 nM) induced longitudinal muscle contraction that was inhibited by TTX (1 μM), PG97-269 (VPAC1 antagonist; 1 μM), and hyoscine (10 μM), but not by hexamethonium (200 μM). VIP (50 nM)-evoked secretion was depressed by hyoscine or PG97-269 and involved a small TTX-sensitive component. PG97-269 and TTX combined did not further depress the VIP response observed in the presence of PG97-269 alone. We conclude that VIP stimulates ACh-mediated longitudinal muscle contraction via VPAC1R on cholinergic motor neurons. VIP induces Cl(-) secretion directly via epithelial VPAC1R and indirectly via VPAC1R on cholinergic secretomotor neurons. No evidence was obtained for involvement of other neural VIP receptors. PMID:24578344

  1. Activation of Distinct P2Y Receptor Subtypes Stimulates Insulin Secretion in MIN6 Mouse Pancreatic β Cells

    PubMed Central

    Balasubramanian, Ramachandran; de Azua, Inigo Ruiz; Wess, Jürgen; Jacobson, Kenneth A.

    2010-01-01

    Extracellular nucleotides and their receptor antagonists have therapeutic potential in disorders such as inflammation, brain disorders, and cardiovascular diseases. Pancreatic β cells express several purinergic receptors, and reported nucleotide effects on insulin secretion are contradictory. We studied the effect of P2Y receptors on insulin secretion and cell death in MIN6, mouse pancreatic β cells. Expression of P2Y1 and P2Y6 receptors was revealed by total mRNA analysis using RT-PCR. MIN6 cells were stimulated in the presence of 16.7 mM glucose with or without P2Y1 and P2Y6 agonists, 2-MeSADP and Up3U, respectively. Both the agonists increased insulin secretion with EC50 values of 44.6±7.0 nM and 30.7±12.7 nM respectively. The insulin secretion by P2Y1 and P2Y6 agonists was blocked by their selective antagonists MRS2179 and MRS2578, respectively. Binding of the selective P2Y1 receptor antagonist radioligand [125I]MRS2500 in MIN6 cell membranes was saturable (KD 4.74±0.47 nM), and known P2Y1 ligands competed with high affinities. Inflammation and glucose toxicity leads to pancreatic β cell death in diabetes. Flow cytometric analysis revealed that Up3U but not 2-MeSADP protected MIN6 cells against TNF-α induced apoptosis. Overall, the results demonstrate that selective stimulation of P2Y1 and P2Y6 receptors increases insulin secretion that accompanies intracellular calcium release, suggesting potential application of P2Y receptor ligands in the treatment of diabetes. PMID:20067775

  2. Tubular transport and metabolism of cimetidine in chicken kidneys

    SciTech Connect

    Rennick, B.; Ziemniak, J.; Smith, I.; Taylor, M.; Acara, M.

    1984-02-01

    Renal tubular transport and renal metabolism of (/sup 14/C)cimetidine (CIM) were investigated by unilateral infusion into the renal portal circulation in chickens (Sperber technique). (/sup 14/C)CIM was actively transported at a rate 88% that of simultaneously infused p-aminohippuric acid, and its transport was saturable. The following organic cations competitively inhibited the tubular transport of (/sup 14/C)CIM with decreasing potency: CIM, ranitidine, thiamine, procainamide, guanidine and choline. CIM inhibited the transport of (/sup 14/C)thiamine, (/sup 14/C)amiloride and (/sup 14/C)tetraethylammonium. During CIM infusion, two renal metabolites, CIM sulfoxide and hydroxymethylcimetidine, were found in urine. When CIM sulfoxide was infused, its transport efficiency was 32% and not saturable. CIM sulfoxide did ot inhibit the simultaneous renal tubular transport of p-aminohippuric acid or tetraethylammonium. CIM is transported by the organic cation transport system and the kidney metabolizes CIM. Transport of CIM and other cationic drugs could produce a drug interaction to alter drug excretion.

  3. Extracellular heat shock protein HSP90{beta} secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-{beta}1

    SciTech Connect

    Suzuki, Shigeki; Kulkarni, Ashok B.

    2010-07-30

    Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understanding of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.

  4. Characterization of a salt-activated protease with temperature-dependent secretion in Stenotrophomonas maltophilia FF11 isolated from frozen Antarctic krill.

    PubMed

    Wang, Qingling; Ji, Fangling; Wang, Jingyun; Jiang, Bo; Li, Lu; An, Lijia; Li, Yachen; Bao, Yongming

    2016-06-01

    Seafood is sometimes wasted due to the growth of psychrotolerant microbes which secrete proteases and break down proteins. Stenotrophomonas maltophilia FF11, isolated from frozen Antarctic krill, grows at a wide range of temperatures and secretes more proteases at low temperatures. According to zymogram analysis, two kinds of proteases were produced from this strain. A major protease was produced largely at 15 °C, but not at 37 °C. The temperature-dependent secreted protease was purified to homogeneity. Its molecular mass was determined at 37.4 kDa and its amino acid sequence was also obtained. This protease is a member of the subtilase group according to the NCBI blast analysis. The enzyme was highly stable at high salt concentration (4 M). Interestingly, its activity increased about 1.6-fold under high salt condition. The enzyme remains active and stable in different organic solvents (50 %, v/v) such as dimethylsulfoxide, dimethyl formamide, dioxane and acetone. These properties may provide potential applications in quality control for sea foods, in protein degradation at high salt concentration, in biocatalysis and biotransformation within non-aqueous media, such as detergent and transesterification. PMID:27001262

  5. Histoplasma capsulatum-Induced Cytokine Secretion in Lung Epithelial Cells Is Dependent on Host Integrins, Src-Family Kinase Activation, and Membrane Raft Recruitment.

    PubMed

    Maza, Paloma K; Suzuki, Erika

    2016-01-01

    Histoplasma capsulatum var. capsulatum is a dimorphic fungus that causes histoplasmosis, a human systemic mycosis with worldwide distribution. In the present work, we demonstrate that H. capsulatum yeasts are able to induce cytokine secretion by the human lung epithelial cell line A549 in integrin- and Src-family kinase (SFK)-dependent manners. This conclusion is supported by small interfering RNA (siRNA) directed to α3 and α5 integrins, and PP2, an inhibitor of SFK activation. siRNA and PP2 reduced IL-6 and IL-8 secretion in H. capsulatum-infected A549 cell cultures. In addition, α3 and α5 integrins from A549 cells were capable of associating with H. capsulatum yeasts, and this fungus promotes recruitment of these integrins and SFKs to A549 cell membrane rafts. Corroborating this finding, membrane raft disruption with the cholesterol-chelator methyl-β-cyclodextrin reduced the levels of integrins and SFKs in these cell membrane domains. Finally, pretreatment of A549 cells with the cholesterol-binding compound, and also a membrane raft disruptor, filipin, significantly reduced IL-6 and IL-8 levels in A549-H.capsulatum cultures. Taken together, these results indicate that H. capsulatum yeasts induce secretion of IL-6 and IL-8 in human lung epithelial cells by interacting with α3 and α5 integrins, recruiting these integrins to membrane rafts, and promoting SFK activation. PMID:27148251

  6. Histoplasma capsulatum-Induced Cytokine Secretion in Lung Epithelial Cells Is Dependent on Host Integrins, Src-Family Kinase Activation, and Membrane Raft Recruitment

    PubMed Central

    Maza, Paloma K.; Suzuki, Erika

    2016-01-01

    Histoplasma capsulatum var. capsulatum is a dimorphic fungus that causes histoplasmosis, a human systemic mycosis with worldwide distribution. In the present work, we demonstrate that H. capsulatum yeasts are able to induce cytokine secretion by the human lung epithelial cell line A549 in integrin- and Src-family kinase (SFK)-dependent manners. This conclusion is supported by small interfering RNA (siRNA) directed to α3 and α5 integrins, and PP2, an inhibitor of SFK activation. siRNA and PP2 reduced IL-6 and IL-8 secretion in H. capsulatum-infected A549 cell cultures. In addition, α3 and α5 integrins from A549 cells were capable of associating with H. capsulatum yeasts, and this fungus promotes recruitment of these integrins and SFKs to A549 cell membrane rafts. Corroborating this finding, membrane raft disruption with the cholesterol-chelator methyl-β-cyclodextrin reduced the levels of integrins and SFKs in these cell membrane domains. Finally, pretreatment of A549 cells with the cholesterol-binding compound, and also a membrane raft disruptor, filipin, significantly reduced IL-6 and IL-8 levels in A549-H.capsulatum cultures. Taken together, these results indicate that H. capsulatum yeasts induce secretion of IL-6 and IL-8 in human lung epithelial cells by interacting with α3 and α5 integrins, recruiting these integrins to membrane rafts, and promoting SFK activation. PMID:27148251

  7. C-mannosylation of R-spondin3 regulates its secretion and activity of Wnt/β-catenin signaling in cells.

    PubMed

    Fujiwara, Miho; Kato, Shintaro; Niwa, Yuki; Suzuki, Takehiro; Tsuchiya, Miyu; Sasazawa, Yukiko; Dohmae, Naoshi; Simizu, Siro

    2016-08-01

    R-spondin3 (Rspo3) is a secreted protein, which acts as an agonist of canonical Wnt/β-catenin signaling that plays an important role in embryonic development and homeostasis. In this study, we focused on C-mannosylation, a unique type of glycosylation, of human Rspo3. Rspo3 has two putative C-mannosylation sites at Trp(153) and Trp(156) ; however, it had been unclear whether these sites are C-mannosylated or not. We demonstrated that Rspo3 was C-mannosylated at both Trp(153) and Trp(156) by mass spectrometry. Using C-mannosylation-defective Rspo3 mutant-overexpressing cell lines, we found that C-mannosylation of Rspo3 promotes its secretion and activates Wnt/β-catenin signaling. PMID:27350215

  8. Secretory and basal cells of the epithelium of the tubular glands in the male Mullerian gland of the caecilian Uraeotyphlus narayani (Amphibia: Gymnophiona).

    PubMed

    George, Jancy M; Smita, Matthew; Kadalmani, Balamuthu; Girija, Ramankutty; Oommen, Oommen V; Akbarsha, Mohammad A

    2004-12-01

    Caecilians are exceptional among the vertebrates in that males retain the Mullerian duct as a functional glandular structure. The Mullerian gland on each side is formed from a large number of tubular glands connecting to a central duct, which either connects to the urogenital duct or opens directly into the cloaca. The Mullerian gland is believed to secrete a substance to be added to the sperm during ejaculation. Thus, the Mullerian gland could function as a male accessory reproductive gland. Recently, we described the male Mullerian gland of Uraeotyphlus narayani using light and transmission electron microscopy (TEM) and histochemistry. The present TEM study reports that the secretory cells of both the tubular and basal portions of the tubular glands of the male Mullerian gland of this caecilian produce secretion granules in the same manner as do other glandular epithelial cells. The secretion granules are released in the form of structured granules into the lumen of the tubular glands, and such granules are traceable to the lumen of the central duct of the Mullerian gland. This is comparable to the situation prevailing in the epididymal epithelium of several reptiles. In the secretory cells of the basal portion of the tubular glands, mitochondria are intimately associated with fabrication of the secretion granules. The structural and functional organization of the epithelium of the basal portion of the tubular glands is complicated by the presence of basal cells. This study suggests the origin of the basal cells from peritubular tissue leukocytes. The study also indicates a role for the basal cells in acquiring secretion granules from the neighboring secretory cells and processing them into lipofuscin material in the context of regression of the Mullerian gland during the period of reproductive quiescence. In these respects the basal cells match those in the epithelial lining of the epididymis of amniotes. PMID:15487004

  9. Secreted cysteine proteases of the carcinogenic liver fluke, Opisthorchis viverrini: regulation of cathepsin F activation by autocatalysis and trans-processing by cathepsin B

    PubMed Central

    Sripa, Jittiyawadee; Laha, Thewarach; To, Joyce; Brindley, Paul J.; Sripa, Banchob; Kaewkes, Sasithorn; Dalton, John P.; Robinson, Mark W.

    2010-01-01

    Summary Opisthorchis viverrini is an important helminth pathogen of humans that is endemic in Thailand and Laos. Adult flukes reside within host bile ducts and feed on epithelial tissue and blood cells. Chronic opisthorchiasis is associated with severe hepatobiliary diseases such as cholangiocarcinoma. Here we report that adult O. viverrini secrete two major cysteine proteases: cathepsin F (Ov-CF-1) and cathepsin B1 (Ov-CB-1). Ov-CF-1 is secreted as an inactive zymogen that auto-catalytically processes and activates to a mature enzyme at pH 4.5 via an intermolecular cleavage at the prosegment-mature domain junction. Ov-CB-1 is also secreted as a zymogen but, in contrast to Ov-CF-1, is fully active against peptide and macromolecular substrates despite retaining the N-terminal prosegment. The active Ov-CB-1 zymogen was capable of trans-activating Ov-CF-1 by proteolytic removal of its prosegment at pH 5.5, a pH at which the Ov-CF-1 zymogen cannot auto-catalytically activate. Both cathepsins hydrolyse human haemoglobin but their combined action more efficiently degrades haemoglobin to smaller peptides than each enzyme alone. Ov-CF-1 degraded extracellular matrix proteins more effectively than Ov-CB-1 at physiological pH. We propose that Ov-CB-1 regulates Ov-CF-1 activity and that both enzymes work together to degrade host tissue contributing to the development of liver fluke-associated cholangiocarcinoma. PMID:20070308

  10. Sweet Taste Receptor Expressed in Pancreatic β-Cells Activates the Calcium and Cyclic AMP Signaling Systems and Stimulates Insulin Secretion

    PubMed Central

    Nakagawa, Yuko; Nagasawa, Masahiro; Yamada, Satoko; Hara, Akemi; Mogami, Hideo; Nikolaev, Viacheslav O.; Lohse, Martin J.; Shigemura, Noriatsu; Ninomiya, Yuzo; Kojima, Itaru

    2009-01-01

    Background Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. Methodology/Principal Findings The expression of the sweet taste receptor was determined by RT–PCR and immunohistochemistry. Changes in cytoplasmic Ca2+ ([Ca2+]c) and cAMP ([cAMP]c) were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca2+]c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5)-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca2+]c response. The effect of sucralose on [Ca2+]c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a Gq inhibitor. Sucralose also induced sustained elevation of [cAMP]c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. Conclusions Sweet taste receptor is expressed in β-cells, and activation of this receptor induces insulin secretion by Ca2+ and cAMP-dependent mechanisms. PMID:19352508

  11. Type II Secretion-Dependent Degradative and Cytotoxic Activities Mediated by Stenotrophomonas maltophilia Serine Proteases StmPr1 and StmPr2

    PubMed Central

    DuMont, Ashley L.; Karaba, Sara M.

    2015-01-01

    Stenotrophomonas maltophilia is an emerging opportunistic pathogen that primarily causes pneumonia and bacteremia in immunocompromised individuals. We recently reported that S. maltophilia strain K279a encodes the Xps type II secretion system and that Xps promotes rounding, actin rearrangement, detachment, and death in the human lung epithelial cell line A549. Here, we show that Xps-dependent cell rounding and detachment occur with multiple human and murine cell lines and that serine protease inhibitors block Xps-mediated rounding and detachment of A549 cells. Using genetic analysis, we determined that the serine proteases StmPr1 and StmPr2, which were confirmed to be Xps substrates, are predominantly responsible for secreted proteolytic activities exhibited by strain K279a, as well as the morphological and cytotoxic effects on A549 cells. Supernatants from strain K279a also promoted the degradation of type I collagen, fibrinogen, and fibronectin in a predominantly Xps- and protease-dependent manner, although some Xps-independent degradation of fibrinogen was observed. Finally, Xps, and predominantly StmPr1, degraded interleukin 8 (IL-8) secreted by A549 cells during coculture with strain K279a. Our findings indicate that while StmPr1 and StmPr2 are predominantly responsible for A549 cell rounding, extracellular matrix protein degradation, and IL-8 degradation, additional Xps substrates also contribute to these activities. Altogether, our data provide new insight into the virulence potential of the S. maltophilia Xps type II secretion system and its StmPr1 and StmPr2 substrates. PMID:26169274

  12. Stimulus-response coupling in insulin-secreting HIT cells. Effects of secretagogues on cytosolic Ca2+, diacylglycerol, and protein kinase C activity.

    PubMed

    Regazzi, R; Li, G D; Deshusses, J; Wollheim, C B

    1990-09-01

    The hamster islet B cell line HIT retains the ability to secret insulin in response to glucose and several receptor agonists. We used HIT cells to study the initial signaling events in glucose or receptor agonist-stimulated insulin secretion. Glucose stimulated insulin release from HIT cells in a dose-dependent manner with a half-maximal effect seen already at 1 mM. Insulin release was also stimulated by carbachol in a glucose-dependent manner. Glucose depolarized the HIT cell membrane potential as assessed with the fluorescent probe bisoxonol and raised intracellular Ca2+ as revealed by fura-2 measurements. Using a Mn2+ fura-2 quenching technique, we could show that the rise in intracellular Ca2+ was due to Ca2+ influx following opening of voltage-gated Ca2+ channels. Glucose is thought to increase the diacylglycerol (DAG) content of insulin-secreting cells. However, although HIT cells respond to glucose in terms of insulin secretion, membrane depolarization, and Ca2+ rise, the hexose was unable to increase the proportion of protein kinase C activity associated with membranes. In contrast, the membrane-associated protein kinase C activity increased in HIT cells exposed to the two receptor agonists carbachol and bombesin. Bombesin was shown to generate DAG with the expected fatty acid composition of activators of phospholipase C. Glucose, in contrast, only caused minor increases in DAG containing myristic and palmitic acid without affecting total DAG mass. The failure to detect stimulation of protein kinase C by glucose could be due to both the limited amount and to the different fatty acid composition of the metabolically generated DAG. The latter was in part supported by experiments performed on protein kinase C partially purified from HIT cells. Indeed, 1,2-dipalmitoylglycerol, presumed to be the main DAG species generated by glucose, was only one-third as active as 1,2-dioleoylglycerol and 1-stearoyl-2-arachidonylglycerol in stimulating the isolated enzyme at

  13. Salicylate-induced proximal tubular dysfunction.

    PubMed

    Tsimihodimos, Vasilis; Psychogios, Nikolaos; Kakaidi, Varvara; Bairaktari, Eleni; Elisaf, Moses

    2007-09-01

    We describe the case of a 17-year-old girl who was admitted to our clinic for drug poisoning. Twelve hours after the ingestion of 25 tablets of aspirin (12.5 g of acetylsalicylic acid), the patient had a generalized proximal tubular dysfunction characterized by glucosuria (in the face of normal serum glucose levels), proteinuria, and uric acid wasting. Further characterization of the tubular dysfunction using high-resolution proton nuclear magnetic resonance spectroscopy of the urine showed a pattern consistent with proximal tubular injury. An important characteristic of the salicylate-induced proximal tubular dysfunction in our patient was its rapid reversibility. A trend toward normalization of fractional excretion values of electrolytes was observed 2 days after ingestion. Determination of serum and urine metabolites and spectroscopy of urine 15 days later showed no evidence of tubular dysfunction. The mechanisms potentially implicated in the pathogenesis of salicylate-induced Fanconi syndrome are discussed and a brief review of the relevant literature is provided. PMID:17720526

  14. Anti-activator ExsD Forms a 1:1 Complex with ExsA to Inhibit Transcription of Type III Secretion Operons*

    PubMed Central

    Thibault, Julie; Faudry, Eric; Ebel, Christine; Attree, Ina; Elsen, Sylvie

    2009-01-01

    The ExsA protein is a Pseudomonas aeruginosa transcriptional regulator of the AraC/XylS family that is responsible for activating the type III secretion system operons upon host cell contact. Its activity is known to be controlled in vivo through interaction with its negative regulator ExsD. Using a heterologous expression system, we demonstrated that ExsD is sufficient to inhibit the transcriptional activity of ExsA. Gel shift assays with ExsA- and ExsD-containing cytosolic extracts revealed that ExsD does not block DNA target sites but affects the DNA binding activity of the transcriptional activator. The ExsA-ExsD complex was purified after coproduction of the two partners in Escherichia coli. Size exclusion chromatography and ultracentrifugation analysis revealed a homogeneous complex with a 1:1 ratio. When in interaction with ExsD, ExsA is not able to bind to its specific target any longer, as evidenced by gel shift assays. Size exclusion chromatography further showed a partial dissociation of the complex in the presence of a specific DNA sequence. A model of the molecular inhibitory role of ExsD toward ExsA is proposed, in which, under noninducing conditions, the anti-activator ExsD sequesters ExsA and hinders its binding to DNA sites, preventing the transcription of type III secretion genes. PMID:19369699

  15. The SpeB virulence factor of Streptococcus pyogenes, a multifunctional secreted and cell surface molecule with strepadhesin, laminin-binding and cysteine protease activity.

    PubMed

    Hytönen, J; Haataja, S; Gerlach, D; Podbielski, A; Finne, J

    2001-01-01

    The interactions between pathogenic bacteria and the host need to be resolved at the molecular level in order to develop novel vaccines and drugs. We have previously identified strepadhesin, a novel glycoprotein-binding activity in Streptococcus pyogenes, which is regulated by Mga, a regulator of streptococcal virulence factors. We have now identified the protein responsible for the strepadhesin activity and find that (i) strepadhesin activity is carried by SpeB, streptococcal pyrogenic exotoxin with cysteine protease activity; (ii) SpeB carries laminin-binding activity of the bacteria; and (iii) SpeB is not only a secreted molecule but also occurs unexpectedly tightly bound to the bacterial cell surface. Thus, in contrast to the previous view of SpeB as mainly an extracellular protease, it is also present as a streptococcal surface molecule with binding activity to laminin and other glycoproteins. PMID:11136470

  16. Alveolar Epithelial Cells Are Critical in Protection of the Respiratory Tract by Secretion of Factors Able To Modulate the Activity of Pulmonary Macrophages and Directly Control Bacterial Growth

    PubMed Central

    Petursdottir, Dagbjort H.; Periolo, Natalia; Fernández, Carmen

    2013-01-01

    The respiratory epithelium is a physical and functional barrier actively involved in the clearance of environmental agents. The alveolar compartment is lined with membranous pneumocytes, known as type I alveolar epithelial cells (AEC I), and granular pneumocytes, type II alveolar epithelial cells (AEC II). AEC II are responsible for epithelial reparation upon injury and ion transport and are very active immunologically, contributing to lung defense by secreting antimicrobial factors. AEC II also secrete a broad variety of factors, such as cytokines and chemokines, involved in activation and differentiation of immune cells and are able to present antigen to specific T cells. Another cell type important in lung defense is the pulmonary macrophage (PuM). Considering the architecture of the alveoli, a good communication between the external and the internal compartments is crucial to mount effective responses. Our hypothesis is that being in the interface, AEC may play an important role in transmitting signals from the external to the internal compartment and in modulating the activity of PuM. For this, we collected supernatants from AEC unstimulated or stimulated in vitro with lipopolysaccharide (LPS). These AEC-conditioned media were used in various setups to test for the effects on a number of macrophage functions: (i) migration, (ii) phagocytosis and intracellular control of bacterial growth, and (iii) phenotypic changes and morphology. Finally, we tested the direct effect of AEC-conditioned media on bacterial growth. We found that AEC-secreted factors had a dual effect, on one hand controlling bacterial growth and on the other hand increasing macrophage activity. PMID:23147039

  17. Simultaneous quantification of intracellular and secreted active and inactive glucagon-like peptide-1 from cultured cells.

    PubMed

    Amao, Michiko; Kitahara, Yoshiro; Tokunaga, Ayaka; Shimbo, Kazutaka; Eto, Yuzuru; Yamada, Naoyuki

    2015-03-01

    Glucagon-like peptide-1 (GLP-1) is an incretin peptide that regulates islet hormone secretion. During recent years, incretin-based therapies have been widely used for patients with type 2 diabetes. GLP-1 peptides undergo N- and C-terminal processing for gain or loss of functions. We developed a method to quantify picomolar quantities of intact GLP-1 peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By employing this label-free selected reaction monitoring (SRM) method, we were able to analyze secreted GLP-1(1-37), GLP-1(7-37), and GLP-1(7-36 amid from human enteroendocrine NCI-H716 cells after stimulation with nateglinide, glucose, and sucralose. The absolute total concentrations of secreted GLP-1 peptides at baseline and after stimulation with nateglinide, glucose, and sucralose were 167.3, 498.9, 238.3, and 143.1 pM, respectively. Meanwhile, the ratios of GLP-1(1-37), GLP-1(7-37), and GLP-1(7-36 amide) to total GLP-1 peptides were similar (6 ± 3, 26 ± 3, and 78 ± 5%, respectively). The SRM assay can analyze the concentrations of individual GLP-1 peptides and, therefore, is a tool to investigate the physiological roles of GLP-1 peptides. Furthermore, the molecular species secreted from NCI-H716 cells were unknown. Therefore, we performed a secretopeptidome analysis of supernatants collected from cultured NCI-H716 cells. Together with GLP-1 peptides, we detected neuroendocrine convertase 1, which regulates peptide hormones released from intestinal endocrine L-cells. PMID:25461479

  18. Integrator of Stress Responses Calmodulin Binding Transcription Activator 1 (Camta1) Regulates miR-212/miR-132 Expression and Insulin Secretion.

    PubMed

    Mollet, Inês Guerra; Malm, Helena Anna; Wendt, Anna; Orho-Melander, Marju; Eliasson, Lena

    2016-08-26

    Altered microRNA profiles have been demonstrated in experimental models of type 2 diabetes, including in islets of the diabetic Goto-Kakizaki (GK) rat. Our bioinformatic analysis of conserved sequences in promoters of microRNAs, previously observed to be up-regulated in GK rat islets, revealed putative CGCG-core motifs on the promoter of the miR-212/miR-132 cluster, overexpression of which has been shown to increase insulin secretion. These motifs are possible targets of calmodulin binding transcription activators Camta1 and Camta2 that have been recognized as integrators of stress responses. We also identified putative NKE elements, possible targets of NK2 homeobox proteins like the essential islet transcription factor Nkx2-2. As Camtas can function as co-activators with NK2 proteins in other tissues, we explored the role of Camta1, Camta2, and Nkx2-2 in the regulation of the miR-212/miR-132 cluster and insulin secretion. We demonstrate that exposure of control Wistar or GK rat islets to 16.7 mm glucose increases miR-212/miR-132 expression but significantly less so in the GK rat. In addition, Camta1, Camta2, and Nkx2-2 were down-regulated in GK rat islets, and knockdown of Camta1 reduced miR-212/miR-132 promoter activity and miR-212/miR-132 expression, even under cAMP elevation. Knockdown of Camta1 decreased insulin secretion in INS-1 832/13 cells and Wistar rat islets but increased insulin content. Furthermore, knockdown of Camta1 reduced K(+)-induced insulin secretion and voltage-dependent Ca(2+) currents. We also demonstrate Camta1 and Nkx2-2 protein interaction. These results indicate that Camta1 is required not only for expression of the miR-212/miR-132 cluster but at multiple levels for regulating beta cell insulin content and secretion. PMID:27402838

  19. Precise RNAi-mediated silencing of metabolically active proteins in the defence secretions of juvenile leaf beetles

    PubMed Central

    Bodemann, René Roberto; Rahfeld, Peter; Stock, Magdalena; Kunert, Maritta; Wielsch, Natalie; Groth, Marco; Frick, Sindy; Boland, Wilhelm; Burse, Antje

    2012-01-01

    Allomones are widely used by insects to impede predation. Frequently these chemical stimuli are released from specialized glands. The larvae of Chrysomelina leaf beetles produce allomones in gland reservoirs into which the required precursors and also the enzymes are secreted from attached gland cells. Hence, the reservoirs can be considered as closed bio-reactors for producing defensive secretions. We used RNA interference (RNAi) to analyse in vivo functions of proteins in biosynthetic pathways occurring in insect secretions. After a salicyl alcohol oxidase was silenced in juveniles of the poplar leaf beetles, Chrysomela populi, the precursor salicyl alcohol increased to 98 per cent, while salicyl aldehyde was reduced to 2 per cent within 5 days. By analogy, we have silenced a novel protein annotated as a member of the juvenile hormone-binding protein superfamily in the juvenile defensive glands of the related mustard leaf beetle, Phaedon cochleariae. The protein is associated with the cyclization of 8-oxogeranial to iridoids (methylcyclopentanoid monoterpenes) in the larval exudates made clear by the accumulation of the acylic precursor 5 days after RNAi triggering. A similar cyclization reaction produces the secologanin part of indole alkaloids in plants. PMID:22874750

  20. Tubular Colonic Duplication Presenting as Rectovestibular Fistula

    PubMed Central

    Bendre, Pradnya; D'souza, Flavia; Ramchandra, Mukunda; Nage, Amol; Palse, Nitin

    2015-01-01

    Complete colonic duplication is a very rare congenital anomaly that may have different presentations according to its location and size. Complete colonic duplication can occur in about 15% of all gastrointestinal duplications. Double termination of tubular colonic duplication in the perineum is even more uncommon. We present a case of a Y-shaped tubular colonic duplication which presented with a rectovestibular fistula and a normal anus. Radiological evaluation and initial exploration for sigmoidostomy revealed duplicated colons with a common vascular supply. Endorectal mucosal resection of theduplicated distal segment till the colostomy site with division of the septum of the proximal segment and colostomy closure proved curative without compromise of the continence mechanism. Tubular colonic duplication should always be ruled out when a diagnosis of perineal canal is considered in cases of vestibular fistula alongwith a normal anus. PMID:26473141

  1. Tubular Colonic Duplication Presenting as Rectovestibular Fistula.

    PubMed

    Karkera, Parag J; Bendre, Pradnya; D'souza, Flavia; Ramchandra, Mukunda; Nage, Amol; Palse, Nitin

    2015-09-01

    Complete colonic duplication is a very rare congenital anomaly that may have different presentations according to its location and size. Complete colonic duplication can occur in about 15% of all gastrointestinal duplications. Double termination of tubular colonic duplication in the perineum is even more uncommon. We present a case of a Y-shaped tubular colonic duplication which presented with a rectovestibular fistula and a normal anus. Radiological evaluation and initial exploration for sigmoidostomy revealed duplicated colons with a common vascular supply. Endorectal mucosal resection of theduplicated distal segment till the colostomy site with division of the septum of the proximal segment and colostomy closure proved curative without compromise of the continence mechanism. Tubular colonic duplication should always be ruled out when a diagnosis of perineal canal is considered in cases of vestibular fistula alongwith a normal anus. PMID:26473141

  2. p-Cresol mediates autophagic cell death in renal proximal tubular cells.

    PubMed

    Lin, Hsin-Hung; Huang, Chiu-Ching; Lin, Tze-Yi; Lin, Ching-Yuang

    2015-04-01

    Higher serum level of p-cresol (PC) in chronic kidney disease (CKD) patients has been linked with CKD progression. The toxic effect of PC on diverse cells has been reported by prior studies, except for renal tubular cells. Both autophagy and apoptosis contribute to renal tubular cell death, yet evidence of its response to PC is limited and their crosstalk is still unclear. Autophagy is an important cellular process involved in toxin-induced cell death. Renal tubular cell death in tubular injury is thought to be one of the key events causing the progression of CKD. Thus, we treated rat (NRK-52E) and human (HRPTEC) renal proximal tubular cells (RPTC) with PC and found the cell proliferation was significantly decreased. Cell apoptosis was significantly increased and accompanied with the activation of autophagy as evidenced by increases in LC3-II, beclin 1 and Atg 4. We also found an increase of p62 by c-Jun activation. p62 accumulation could mediate the activation of caspase 8-dependent cell apoptosis. Conversely, knockdown of p62 by siRNA of p62 had the opposite effect by arresting LC3-II accumulation and promoting increasing cell viability. We conclude that PC triggered autophagic RPTC death via JNK-mediated p62 accumulation and then activated caspase 8-dependent cell death pathway. PC can be considered as one of the key events causing progression of CKD, which might affect drug disposition in CKD cases. PMID:25668154

  3. Antiplatelet Activity of Morus alba Leaves Extract, Mediated via Inhibiting Granule Secretion and Blocking the Phosphorylation of Extracellular-Signal-Regulated Kinase and Akt

    PubMed Central

    Rhee, Man Hee; Sung, Yoon-Young; Yang, Won-Kyung; Kim, Seung Hyung; Kim, Ho-Kyoung

    2014-01-01

    Ethnopharmacological Relevance. Morus alba L. leaves (MAE) have been used in fork medicine for the treatment of beriberi, edema, diabetes, hypertension, and atherosclerosis. However, underlying mechanism of MAE on cardiovascular protection remains to be elucidated. Therefore, we investigated whether MAE affect platelet aggregation and thrombosis. Materials and Methods. The anti-platelet activity of MAE was studied using rat platelets. The extent of anti-platelet activity of MAE was assayed in collagen-induced platelet aggregation. ATP and serotonin release was carried out. The activation of integrin αIIbβ3 and phosphorylation of signaling molecules, including MAPK and Akt, were investigated with cytofluorometer and immunoblotting, respectively. The thrombus formation in vivo was also evaluated in arteriovenous shunt model of rats. Results. HPLC chromatographic analysis revealed that MAE contained rutin and isoquercetin. MAE dose-dependently inhibited collagen-induced platelet aggregation. MAE also attenuated serotonin secretion and thromboxane A2 formation. In addition, the extract in vivo activity showed that MAE at 100, 200, and 400 mg/kg significantly and dose-dependently attenuated thrombus formation in rat arterio-venous shunt model by 52.3% (P < 0.001), 28.3% (P < 0.01), and 19.1% (P < 0.05), respectively. Conclusions. MAE inhibit platelet activation, TXB2 formation, serotonin secretion, aggregation, and thrombus formation. The plant extract could be considered as a candidate to anti-platelet and antithrombotic agent. PMID:24701244

  4. Antiplatelet Activity of Morus alba Leaves Extract, Mediated via Inhibiting Granule Secretion and Blocking the Phosphorylation of Extracellular-Signal-Regulated Kinase and Akt.

    PubMed

    Kim, Dong-Seon; Ji, Hyun Dong; Rhee, Man Hee; Sung, Yoon-Young; Yang, Won-Kyung; Kim, Seung Hyung; Kim, Ho-Kyoung

    2014-01-01

    Ethnopharmacological Relevance. Morus alba L. leaves (MAE) have been used in fork medicine for the treatment of beriberi, edema, diabetes, hypertension, and atherosclerosis. However, underlying mechanism of MAE on cardiovascular protection remains to be elucidated. Therefore, we investigated whether MAE affect platelet aggregation and thrombosis. Materials and Methods. The anti-platelet activity of MAE was studied using rat platelets. The extent of anti-platelet activity of MAE was assayed in collagen-induced platelet aggregation. ATP and serotonin release was carried out. The activation of integrin α IIb β 3 and phosphorylation of signaling molecules, including MAPK and Akt, were investigated with cytofluorometer and immunoblotting, respectively. The thrombus formation in vivo was also evaluated in arteriovenous shunt model of rats. Results. HPLC chromatographic analysis revealed that MAE contained rutin and isoquercetin. MAE dose-dependently inhibited collagen-induced platelet aggregation. MAE also attenuated serotonin secretion and thromboxane A2 formation. In addition, the extract in vivo activity showed that MAE at 100, 200, and 400 mg/kg significantly and dose-dependently attenuated thrombus formation in rat arterio-venous shunt model by 52.3% (P < 0.001), 28.3% (P < 0.01), and 19.1% (P < 0.05), respectively. Conclusions. MAE inhibit platelet activation, TXB2 formation, serotonin secretion, aggregation, and thrombus formation. The plant extract could be considered as a candidate to anti-platelet and antithrombotic agent. PMID:24701244

  5. High IFN-γ Release and Impaired Capacity of Multi-Cytokine Secretion in IGRA Supernatants Are Associated with Active Tuberculosis.

    PubMed

    Carrère-Kremer, Séverine; Rubbo, Pierre-Alain; Pisoni, Amandine; Bendriss, Sophie; Marin, Grégory; Peries, Marianne; Bolloré, Karine; Terru, Dominique; Godreuil, Sylvain; Bourdin, Arnaud; Van de Perre, Philippe; Tuaillon, Edouard

    2016-01-01

    Interferon gamma (IFN-γ) release assays (IGRAs) detect Mycobacterium tuberculosis (Mtb) infection regardless of the active (ATB) or latent (LTBI) forms of tuberculosis (TB). In this study, Mtb-specific T cell response against region of deletion 1 (RD1) antigens were explored by a microbead multiplex assay performed in T-SPOT TB assay (T-SPOT) supernatants from 35 patients with ATB and 115 patients with LTBI. T-SPOT is positive when over 7 IFN-γ secreting cells (SC)/250 000 peripheral blood mononuclear cells (PBMC) are enumerated. However, over 100 IFN-γ SC /250 000 PBMC were more frequently observed in the ATB group compared to the LTBI group. By contrast, lower cytokine concentrations and lower cytokine productions relative to IFN-γ secretion were observed for IL 4, IL-12, TNF-α, GM-CSF, Eotaxin and IFN-α when compared to LTBI. Thus, high IFN-γ release and low cytokine secretions in relation with IFN-γ production appeared as signatures of ATB, corroborating that multicytokine Mtb-specific response against RD1 antigens reflects host capacity to contain TB reactivation. In this way, testing cytokine profile in IGRA supernatants would be helpful to improve ATB screening strategy including immunologic tests. PMID:27603919

  6. Carbonyl stress-induced 5-hydroxytriptamine secretion from RIN-14B, rat pancreatic islet tumor cells, via the activation of transient receptor potential ankyrin 1.

    PubMed

    Suzawa, Sayaka; Takahashi, Kenji; Shimada, Takahisa; Ohta, Toshio

    2016-07-01

    Methylglyoxal (MG), a highly reactive dicarbonyl substance, is known as an endogenous carbonyl stress-inducing substance related to various disease states. Irritable bowel syndrome (IBS) is one of the most frequently encountered gastrointestinal disorders and MG is considered to be its causal substance. An increased serum 5-hydroxytryptamine (5-HT) level is related to IBS symptoms and the majority of 5-HT originates from enterochromaffin (EC) cells in the intestine. Here we examine the mechanisms of MG-induced 5-HT secretion using RIN-14B cells derived from a rat pancreatic islet tumor since these cells are used as a model for EC cells. MG increased the intracellular Ca(2+) concentration ([Ca(2+)]i) and 5-HT secretion, both of which were inhibited by the removal of extracellular Ca(2+) and specific transient receptor potential ankyrin 1 (TRPA1) antagonists. MG elicited an inward current under voltage-clamped conditions. Prior application of MG evoked reciprocal suppression of subsequent [Ca(2+)]i responses to allylisothiocyanate, a TRPA1 agonist, and vice versa. Glyoxal, an analog of MG, also evoked [Ca(2+)]i and secretory responses but its potency was much lower than that of MG. The present results suggest that MG promotes 5-HT secretion through the activation of TRPA1 in RIN-14B cells. These results may indicate that TRPA1 is a promising target for the treatment of IBS and that the RIN-14B cell line is a useful model for investigation of IBS. PMID:27423812

  7. N-glycosylation of R-spondin1 at Asn137 negatively regulates its secretion and Wnt/β-catenin signaling-enhancing activity

    PubMed Central

    TSUCHIYA, MIYU; NIWA, YUKI; SIMIZU, SIRO

    2016-01-01

    N-glycosylation is a post-translational protein modification with a wide variety of functions. It has been predicted that R-spondin1 (RSPO1) is N-glycosylated, although this remains unknown. The present study identified that RSPO1 was N-glycosylated at Asn137, and that N-glycosylation of RSPO1 negatively influenced its secretion and enhancing effect on Wnt/β-catenin signaling. In vitro treatment with peptide-N-glycosidase F increased the electrophoretic mobility of RSPO1. Furthermore, treatment of wild-type (wt) RSPO1-overexpressing HT1080 cells with tunicamycin (TM), which inhibits N-glycosylation, resulted in a significant reduction in the molecular weight of RSPO1. However, TM treatment had no effect in the RSPO1 mutant whereby the Asn137 residue was replaced by Gln (N137Q). These results demonstrated for the first time that RSPO1 is N-glycosylated at Asn137. RSPO1 is a secreted protein that has Wnt/β-catenin signaling-enhancing activity and is expected to have therapeutic applications. The role of N-glycosylation in RSPO1 was evaluated by conducting comparative experiments with wt and N137Q RSPO1, which revealed that the N137Q mutant increased the secretion and Wnt/β-catenin signaling-enhancing effect of RSPO1, compared with wt RSPO1. These results suggest that N-glycosylation of RSPO1 has a negative influence on its secretion and Wnt/β-catenin signaling-enhancing effect. PMID:27123103

  8. KNDy (kisspeptin/neurokinin B/dynorphin) neurons are activated during both pulsatile and surge secretion of LH in the ewe.

    PubMed

    Merkley, Christina M; Porter, Katrina L; Coolen, Lique M; Hileman, Stanley M; Billings, Heather J; Drews, Sara; Goodman, Robert L; Lehman, Michael N

    2012-11-01

    KNDy (kisspeptin/neurokinin B/dynorphin) neurons of the arcuate nucleus (ARC) appear to mediate the negative feedback actions of estradiol and are thought to be key regulators of pulsatile LH secretion. In the ewe, KNDy neurons may also be involved with the positive feedback actions of estradiol (E(2)) to induce the LH surge, but the role of kisspeptin neurons in the preoptic area (POA) remains unclear. The goal of this study was to identify which population(s) of kisspeptin neurons is (are) activated during the LH surge and in response to the removal of E(2)-negative feedback, using Fos as an index of neuronal activation. Dual-label immunocytochemistry for kisspeptin and Fos was performed on sections containing the ARC and POA from ewes during the luteal phase of the estrous cycle, or before or after the onset of the LH surge (experiment 1), and from ovary-intact, short-term (24 h) and long-term (>30 d) ovariectomized (OVX) ewes in anestrus (experiment 2). The percentage of kisspeptin neurons expressing Fos in both the ARC and POA was significantly higher during the LH surge. In contrast, the percentage of kisspeptin/Fos colocalization was significantly increased in the ARC, but not POA, after both short- and long-term E(2) withdrawal. Thus, POA kisspeptin neurons in the sheep are activated during, and appear to contribute to, E(2)-positive feedback, whereas ARC kisspeptin (KNDy) neurons are activated during both surge and pulsatile modes of secretion and likely play a role in mediating both positive and negative feedback actions of E(2) on GnRH secretion in the ewe. PMID:22989631

  9. Activity-based protein profiling of secreted cellulolytic enzyme activity dynamics in Trichoderma reesei QM6a, NG14, and RUT-C30

    SciTech Connect

    Anderson, Lindsey N.; Culley, David E.; Hofstad, Beth A.; Chauvigne-Hines, Lacie M.; Zink, Erika M.; Purvine, Samuel O.; Smith, Richard D.; Callister, Stephen J.; Magnuson, Jon M.; Wright, Aaron T.

    2013-12-01

    Development of alternative, non-petroleum based sources of bioenergy that can be applied in the short-term find great promise in the use of highly abundant and renewable lignocellulosic plant biomass.1 This material obtained from different feedstocks, such as forest litter or agricultural residues, can yield liquid fuels and other chemical products through biorefinery processes.2 Biofuels are obtained from lignocellulosic materials by chemical pretreatment of the biomass, followed by enzymatic decomposition of cellulosic and hemicellulosic compounds into soluble sugars that are converted to desired chemical products via microbial metabolism and fermentation.3, 4 To release soluble sugars from polymeric cellulose multiple enzymes are required, including endoglucanase, exoglucanase, and β-glucosidase.5, 6 However, the enzymatic hydrolysis of cellulose into soluble sugars remains a significant limiting factor to the efficient and economically viable utilization of lignocellulosic biomass for transport fuels.7, 8 The primary industrial source of cellulose and hemicellulases is the mesophilic soft-rot fungus Trichoderma reesei,9 having widespread applications in food, feed, textile, pulp, and paper industries.10 The genome encodes 200 glycoside hydrolases, including 10 cellulolytic and 16 hemicellulolytic enzymes.11 The hypercellulolytic catabolite derepressed strain RUT-C30 was obtained through a three-step UV and chemical mutagenesis of the original T. reesei strain QM6a,12, 13 in which strains M7 and NG14 were intermediate, having higher cellulolytic activity than the parent strain but less activity and higher catabolite repression than RUT-C30.14 Numerous methods have been employed to optimize the secreted enzyme cocktail of T. reesei including cultivation conditions, operational parameters, and mutagenesis.3 However, creating an optimal and economical enzyme mixture for production-scale biofuels synthesis may take thousands of experiments to identify.

  10. Tubular solid oxide fuel cell current collector

    DOEpatents

    Bischoff, Brian L.; Sutton, Theodore G.; Armstrong, Timothy R.

    2010-07-20

    An internal current collector for use inside a tubular solid oxide fuel cell (TSOFC) electrode comprises a tubular coil spring disposed concentrically within a TSOFC electrode and in firm uniform tangential electrical contact with the electrode inner surface. The current collector maximizes the contact area between the current collector and the electrode. The current collector is made of a metal that is electrically conductive and able to survive under the operational conditions of the fuel cell, i.e., the cathode in air, and the anode in fuel such as hydrogen, CO, CO.sub.2, H.sub.2O or H.sub.2S.

  11. Deployable and retractable telescoping tubular structure development

    NASA Technical Reports Server (NTRS)

    Thomson, M. W.

    1994-01-01

    A new deployable and retractable telescoping boom capable of high deployed stiffness and strength is described. Deployment and retraction functions are controlled by simple, reliable, and fail-safe latches between the tubular segments. The latch and a BI-STEM (Storable Tubular Extendible Member) actuator work together to eliminate the need for the segments to overlap when deployed. This yields an unusually lightweight boom and compact launch configuration. An aluminum space-flight prototype with three joints displays zero structural deadband, low hysteresis, and high damping. The development approach and difficulties are discussed. Test results provide a joint model for sizing flight booms of any diameter and length.

  12. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation

    SciTech Connect

    Jaguin, Marie; Fardel, Olivier; Lecureur, Valérie

    2015-06-15

    Lung diseases are aggravated by exposure to diesel exhaust particles (DEPs) found in air pollution. Macrophages are thought to play a crucial role in lung immune response to these pollutants, even if the mechanisms involved remain incompletely characterized. In the present study, we demonstrated that classically and alternative human macrophages (MΦ) exhibited increased secretion of PDGF-B in response to DEP extract (DEPe). This occurred via aryl hydrocarbon receptor (AhR)-activation because DEPe-induced PDGF-B overexpression was abrogated after AhR expression knock-down by RNA interference, in both M1 and M2 polarizing MΦ. In addition, TCDD and benzo(a)pyrene, two potent AhR ligands, also significantly increased mRNA expression of PDGF-B in M1 MΦ, whereas some weak ligands of AhR did not. We next evaluated the impact of conditioned media (CM) from MΦ culture exposed to DEPe or of recombinant PDGF-B onto lung fibroblast proliferation. The tyrosine kinase inhibitor, AG-1295, prevents phosphorylations of PDGF-Rβ, AKT and ERK1/2 and the proliferation of MRC-5 fibroblasts induced by recombinant PDGF-B and by CM from M1 polarizing MΦ, strongly suggesting that the PDGF-BB secreted by DEPe-exposed MΦ is sufficient to activate the PDGF-Rβ pathway of human lung fibroblasts. In conclusion, we demonstrated that human MΦ, whatever their polarization status, secrete PDGF-B in response to DEPe and that PDGF-B is a target gene of AhR. Therefore, induction of PDGF-B by DEP may participate in the deleterious effects towards human health triggered by such environmental urban contaminants. - Highlights: • PDGF-B expression and secretion are increased by DEPe exposure in human M1 and M2 MΦ. • DEPe-induced PDGF-B expression is aryl-hydrocarbon-dependent. • DEPe-exposed M1 MΦ secrete sufficient PDGF-B to increase lung fibroblast proliferation.

  13. A Polymeric Nanomedicine Diminishes Inflammatory Events in Renal Tubular Cells

    PubMed Central

    Ocaña-Salceda, Carlos; Sancho, Mónica; Orzáez, Mar; Messeguer, Angel; Ruiz-Ortega, Marta; Egido, Jesús; Vicent, María J.; Ortiz, Alberto; Ramos, Adrián M.

    2013-01-01

    The polyglutamic acid/peptoid 1 (QM56) nanoconjugate inhibits apoptosis by interfering with Apaf-1 binding to procaspase-9. We now describe anti-inflammatory properties of QM56 in mouse kidney and renal cell models. In cultured murine tubular cells, QM56 inhibited the inflammatory response to Tweak, a non-apoptotic stimulus. Tweak induced MCP-1 and Rantes synthesis through JAK2 kinase and NF-κB activation. Similar to JAK2 kinase inhibitors, QM56 inhibited Tweak-induced NF-κB transcriptional activity and chemokine expression, despite failing to inhibit NF-κB-p65 nuclear translocation and NF-κB DNA binding. QM56 prevented JAK2 activation and NF-κB-p65(Ser536) phosphorylation. The anti-inflammatory effect and JAK2 inhibition by QM56 were observed in Apaf-1−/− cells. In murine acute kidney injury, QM56 decreased tubular cell apoptosis and kidney inflammation as measured by down-modulations of MCP-1 and Rantes mRNA expression, immune cell infiltration and activation of the JAK2-dependent inflammatory pathway. In conclusion, QM56 has an anti-inflammatory activity which is independent from its role as inhibitor of Apaf-1 and apoptosis and may have potential therapeutic relevance. PMID:23300960

  14. Familial myopathy with tubular aggregates associated with abnormal pupils.

    PubMed

    Shahrizaila, Nortina; Lowe, James; Wills, Adrian

    2004-09-28

    The authors describe familial tubular aggregate myopathy associated with abnormal pupils. Four family members from two generations had myopathy and pupillary abnormalities. The myopathologic findings consisted of tubular aggregates in many fibers but predominantly type I fibers. PMID:15452313

  15. Vaccination of calves against Cooperia oncophora with a double-domain activation-associated secreted protein reduces parasite egg output and pasture contamination.

    PubMed

    Vlaminck, Johnny; Borloo, Jimmy; Vercruysse, Jozef; Geldhof, Peter; Claerebout, Edwin

    2015-03-01

    With the increasing incidence of anthelmintic resistance worldwide, immunological control of worm infections through vaccination is often put forward as a rational and cost-effective alternative for anthelmintic drugs. In this study we report on the evaluation of a double-domain activation-associated secreted protein purified from the excretory-secretory material of the adult stage of the small intestinal parasite Cooperia oncophora as a vaccine antigen against this parasite. In a first experiment, calves were vaccinated three times i.m. with activation-associated secreted protein and Quil A adjuvant or with adjuvant alone, and subsequently challenged with a trickle infection of 25,000 infective larvae in total over 25 days. Vaccinated calves showed a significant reduction of 91% in their cumulative faecal egg counts and a significantly higher number of inhibited L4s present in their intestine compared with control animals. Furthermore, both female and male adult worms were significantly smaller in the vaccinated group than in the control group. In a second experiment, the vaccine antigen was further evaluated under field conditions. Calves were immunised as described above, followed by a natural challenge infection on pasture. Cooperia oncophora faecal egg counts in the vaccinated animals were reduced during the entire grazing period, resulting in a significant reduction in the cumulative faecal egg counts of 58.5%. Numbers of infective C. oncophora larvae were lower on plots grazed by vaccinated calves, with a reduction in mean pasture larval counts of 65% at housing. A significant reduction of 81.6% in total numbers of C. oncophora worms was shown in the vaccinated group compared with the control group. Taken together, the data highlight the protective capacity of the double-domain activation-associated secreted protein and the possibility of controlling C. oncophora infections through vaccination. PMID:25513963

  16. Structural studies of tubular discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    Mindyuk, Oksana Yaroslavovna

    1999-11-01

    Discotic liquid crystals based on the rigid ring-shaped phenylacetylene macrocycle molecule (PAM) are of great interest due to their potential organization into supramolecular channels. We have used high resolution X-ray diffraction to study the structure of pure and doped PAM and to demonstrate that PAM forms a tubular columnar liquid crystal with an unexpected distortion and doubling of the underlying hexagonal lattice. We have doped PAM with different percentages of silver ions and determined that doping did not change peak positions on the powder diffraction data but significantly altered the intensity of the peaks. This implies that the silver ions were most likely intercalated within the channels formed by the PAM molecules, thus leaving the lattice parameters unaffected. We have also used grazing incidence X-ray diffraction and X-ray reflectivity to study Langmuir films of PAM. PAM adopts an "edge-on" molecular arrangement at the air-water interface. We will discuss the direct observation of the structural reorganization within macromolecular Langmuir films of disc-shaped ionophoric molecules arising from interactions with potassium and cesium ions in the subphase. The columnar order is disrupted by CsCl in the subphase and strongly enhanced by KCl in the subphase, thus effectively tailoring the structural properties of the Langmuir films for potential applications. We have also used X-ray reflectivity (XR) and grazing incidence x-ray diffraction (GID) to study Langmuir films of another macrocyclic ionophore: torand (tributyldodecahydrohexaazakekulene, "TBDK") molecules. TBDK is a rigid, triangular molecule; it has been investigated as a potential surface-active complexing agent. The system forms a stable monolayer at the air-water interface and exhibits two distinct structural phases at lower and higher pressures.

  17. Systematic screening of glycosylation- and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion

    PubMed Central

    2013-01-01

    Background As a strong fermentator, Saccharomyces cerevisiae has the potential to be an excellent host for ethanol production by consolidated bioprocessing. For this purpose, it is necessary to transform cellulose genes into the yeast genome because it contains no cellulose genes. However, heterologous protein expression in S. cerevisiae often suffers from hyper-glycosylation and/or poor secretion. Thus, there is a need to genetically engineer the yeast to reduce its glycosylation strength and to increase its secretion ability. Results Saccharomyces cerevisiae gene-knockout strains were screened for improved extracellular activity of a recombinant exocellulase (PCX) from the cellulose digesting fungus Phanerochaete chrysosporium. Knockout mutants of 47 glycosylation-related genes and 10 protein-trafficking-related genes were transformed with a PCX expression construct and screened for extracellular cellulase activity. Twelve of the screened mutants were found to have a more than 2-fold increase in extracellular PCX activity in comparison with the wild type. The extracellular PCX activities in the glycosylation-related mnn10 and pmt5 null mutants were, respectively, 6 and 4 times higher than that of the wild type; and the extracellular PCX activities in 9 protein-trafficking-related mutants, especially in the chc1, clc1 and vps21 null mutants, were at least 1.5 times higher than the parental strains. Site-directed mutagenesis studies further revealed that the degree of N-glycosylation also plays an important role in heterologous cellulase activity in S. cerevisiae. Conclusions Systematic screening of knockout mutants of glycosylation- and protein trafficking-associated genes in S. cerevisiae revealed that: (1) blocking Golgi-to-endosome transport may force S. cerevisiae to export cellulases; and (2) both over- and under-glycosylation may alter the enzyme activity of cellulases. This systematic gene-knockout screening approach may serve as a convenient means for

  18. Tubular structured hierarchical mesoporous titania material derived from natural cellulosic substances and application as photocatalyst for degradation of methylene blue

    SciTech Connect

    Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo

    2011-11-15

    Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.

  19. Comparative physiology of renal tubular transport mechanisms.

    PubMed Central

    Long, S.; Giebisch, G.

    1979-01-01

    This manuscript discusses current concepts of glomerular filtration and tubular transport of sodium, water, potassium, and urinary acidification by vertebrate kidneys in a comparative context. Work in mammalian and amphibian nephrons receives major emphasis due to our interest in application of new techniques for investigation of cellular mechanisms; when available, data from other vertebrate classes are discussed. Images FIG. 3 PMID:395765

  20. [Hypokalemic pareses secondary to renal tubular acidosis].

    PubMed

    Gøransson, L G; Apeland, T; Omdal, R

    2000-01-30

    A 24 year old woman presented with flaccid paralysis, severe hypokalaemia and hyperchloremia, metabolic acidosis. Immunological tests and labial glandular biopsy indicated primary Sjögren's syndrome as the underlying cause of her distal renal tubular acidosis. The patient recovered after alkali and potassium substitution and was put on oral treatment with potassium citrate. PMID:10827521

  1. Tubular copper thrust chamber design study

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.

    1992-01-01

    The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer.

  2. Tubular Membrane Plant-Growth Unit

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.

    1992-01-01

    Hydroponic system controls nutrient solution for growing crops in space. Pump draws nutrient solution along inside of tubular membrane in pipe from reservoir, maintaining negative pressure in pipe. Roots of plants in slot extract nutrient through membrane within pipe. Crop plants such as wheat, rice, lettuce, tomatoes, soybeans, and beans grown successfully with system.

  3. Volatile anesthetics suppress glucose-stimulated insulin secretion in MIN6 cells by inhibiting glucose-induced activation of hypoxia-inducible factor 1

    PubMed Central

    Suzuki, Kengo; Sato, Yoshifumi; Kai, Shinichi; Nishi, Kenichiro; Adachi, Takehiko; Matsuo, Yoshiyuki

    2015-01-01

    Proper glycemic control is one of the most important goals in perioperative patient management. Insulin secretion from pancreatic β-cells in response to an increased blood glucose concentration plays the most critical role in glycemic control. Several animal and human studies have indicated that volatile anesthetics impair glucose-stimulated insulin secretion (GSIS). A convincing GSIS model has been established, in which the activity of ATP-dependent potassium channels (KATP) under the control of intracellular ATP plays a critical role. We previously reported that pimonidazole adduct formation and stabilization of hypoxia-inducible factor-1α (HIF-1α) were detected in response to glucose stimulation and that MIN6 cells overexpressing HIF-1α were resistant to glucose-induced hypoxia. Genetic ablation of HIF-1α or HIF-1β significantly inhibited GSIS in mice. Moreover, we previously reported that volatile anesthetics suppressed hypoxia-induced HIF activation in vitro and in vivo.To examine the direct effect of volatile anesthetics on GSIS, we used the MIN6 cell line, derived from mouse pancreatic β-cells. We performed a series of experiments to examine the effects of volatile anesthetics (sevoflurane and isoflurane) on GSIS and demonstrated that these compounds inhibited the glucose-induced ATP increase, which is dependent on intracellular hypoxia-induced HIF-1 activity, and suppressed GSIS at a clinically relevant dose in these cells. PMID:26713247

  4. Expression of human. alpha. sub 2 -macroglobulin cDNA in baby hamster kidney fibroblasts: Secretion of high levels of active. alpha. sub 2 -macroglobulin

    SciTech Connect

    Boel, E.; Mortensen, S.B. ); Kristensen, T.; Sottrup-Jensen, L. ); Petersen, C.M. )

    1990-05-01

    Human {alpha}{sub 2}-macroglobulin ({alpha}{sub 2}M) is a unique 720-kDa proteinase inhibitor with a broad specificity. Unlike most other proteinase inhibitors, it does not inhibit proteolytic activity by blocking the active site of the proteinase. During complex formation with a proteinase {alpha}{sub 2}M entraps the proteinase molecule in a reaction that involves large conformational changes in {alpha}{sub 2}M. The authors describe the molecular cloning of {alpha}{sub 2}M cDNA from the human hepatoblastoma cell line HepG2. The cDNA was subcloned under control of the adenovirus major late promoter in a mammalian expression vector and introduced into the baby hamster kidney (BHK) cell line. Transformed clones were isolated and tested for production of human {alpha}{sub 2}M with a specific enzyme-linked immunosorbent assay. Human recombinant {alpha}{sub 2}M (r{alpha}{sub 2}M), secreted and purified form isolated transfected BHK cell lines, was structurally and functionally compared to {alpha}{sub 2}M purified from human serum. The results show that r{alpha}{sub 2}M was secreted from the BHK cells as an active proteinase-binding tetramer with functional thiol esters. Cleavage reactions of r{alpha}{sub 2}M with methylamine and trypsin showed that the recombinant product, which was correctly processed at the N-terminus, exhibited molecular characteristics similar to those of the human serum derived reference.

  5. 7beta-Hydroxycholesterol and 25-hydroxycholesterol-induced interleukin-8 secretion involves a calcium-dependent activation of c-fos via the ERK1/2 signaling pathway in THP-1 cells: oxysterols-induced IL-8 secretion is calcium-dependent.

    PubMed

    Lemaire-Ewing, Stéphanie; Berthier, Arnaud; Royer, Marie Charlotte; Logette, Emmanuelle; Corcos, Laurent; Bouchot, André; Monier, Serge; Prunet, Céline; Raveneau, Magalie; Rébé, Cédric; Desrumaux, Catherine; Lizard, Gérard; Néel, Dominique

    2009-04-01

    Oxysterols found in oxidized low-density lipoproteins are probably involved in the appearance of atheroma; some are cytotoxic and some able to induce cytokine secretion. An oxysterol-induced interleukin-8 (IL-8) secretion in human monocytes/macrophages has been previously noticed, but the mechanisms remained unclear. In this paper, we investigated the signaling pathways leading to the induction of IL-8 secretion in monocytic THP-1 cells treated with 7beta-hydroxycholesterol, a cytototoxic oxysterol, or with 25-hydroxycholesterol, an oxysterol non-cytotoxic toward this cell line. The oxysterol-induced IL-8 secretion appears to be a calcium-dependent phenomenon as shown by the use of calcium channel blockers, which strongly decreased IL-8 secretion and IL-8 messenger RNA (mRNA) levels. Fluo-3 staining used in flow cytometry and video microscopy revealed an oxysterol-induced Ca(2+) influx, varying according to the oxysterol studied, leading to the activation of the MEK/ERK1/2 pathway as demonstrated by Western blot analysis. ERK activation led to an increase of c-fos mRNA and/or an activation of c-fos. Luciferase reporter gene assay using constructs of the human IL-8 gene promoter and Transam assay revealed the involvement of the AP-1 transcription factor in oxysterol-dependent IL-8 secretion. These results demonstrate that oxysterol-induced IL-8 secretion is a calcium-dependent phenomenon involving the MEK/ERK1/2 pathway leading to the activation of IL-8 gene via AP-1 (c-fos). PMID:18317936

  6. Secret key generation via a modified quantum secret sharing protocol

    NASA Astrophysics Data System (ADS)

    Smith, A. M.; Evans, P. G.; Lawrie, B.; Legré, M.; Lougovski, P.; Ray, W.; Williams, B. P.; Qi, B.; Grice, W. P.

    2015-05-01

    We present and experimentally show a novel protocol for distributing secret information between two and only two parties in a N-party single-qubit Quantum Secret Sharing (QSS) system. We demonstrate this new algorithm with N = 3 active parties over ~6km of telecom. fiber. Our experimental device is based on the Clavis2 Quantum Key Distribution (QKD) system built by ID Quantique but is generalizable to any implementation. We show that any two out of the N parties can build secret keys based on partial information from each other and with collaboration from the remaining N - 2 parties. This algorithm allows for the creation of two-party secret keys were standard QSS does not and significantly reduces the number of resources needed to implement QKD on a highly connected network such as the electrical grid.

  7. Secret Key Generation via a Modified Quantum Secret Sharing Protocol

    SciTech Connect

    Smith IV, Amos M; Evans, Philip G; Lawrie, Benjamin J; Legre, Matthieu; Lougovski, Pavel; Ray, William R; Williams, Brian P; Qi, Bing; Grice, Warren P

    2015-01-01

    We present and experimentally show a novel protocol for distributing secret information between two and only two parties in a N-party single-qubit Quantum Secret Sharing (QSS) system. We demonstrate this new algorithm with N = 3 active parties over 6km of telecom. ber. Our experimental device is based on the Clavis2 Quantum Key Distribution (QKD) system built by ID Quantique but is generalizable to any implementation. We show that any two out of the N parties can build secret keys based on partial information from each other and with collaboration from the remaining N > 2 parties. This algorithm allows for the creation of two-party secret keys were standard QSS does not and signicantly reduces the number of resources needed to implement QKD on a highly connected network such as the electrical grid.

  8. Cellular Uptake and Localization of Polymyxins in Renal Tubular Cells Using Rationally Designed Fluorescent Probes

    PubMed Central

    Yun, Bo; Azad, Mohammad A. K.; Nowell, Cameron J.; Nation, Roger L.; Thompson, Philip E.; Roberts, Kade D.

    2015-01-01

    Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity. PMID:26392495

  9. The Sirt1 activator SRT3025 provides atheroprotection in Apoe−/− mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression

    PubMed Central

    Miranda, Melroy X.; van Tits, Lambertus J.; Lohmann, Christine; Arsiwala, Tasneem; Winnik, Stephan; Tailleux, Anne; Stein, Sokrates; Gomes, Ana P.; Suri, Vipin; Ellis, James L.; Lutz, Thomas A.; Hottiger, Michael O.; Sinclair, David A.; Auwerx, Johan; Schoonjans, Kristina; Staels, Bart; Lüscher, Thomas F.; Matter, Christian M.

    2015-01-01

    Aims The deacetylase sirtuin 1 (Sirt1) exerts beneficial effects on lipid metabolism, but its roles in plasma LDL-cholesterol regulation and atherosclerosis are controversial. Thus, we applied the pharmacological Sirt1 activator SRT3025 in a mouse model of atherosclerosis and in hepatocyte culture. Methods and results Apolipoprotein E-deficient (Apoe−/−) mice were fed a high-cholesterol diet (1.25% w/w) supplemented with SRT3025 (3.18 g kg−1 diet) for 12 weeks. In vitro, the drug activated wild-type Sirt1 protein, but not the activation-resistant Sirt1 mutant; in vivo, it increased deacetylation of hepatic p65 and skeletal muscle Foxo1. SRT3025 treatment decreased plasma levels of LDL-cholesterol and total cholesterol and reduced atherosclerosis. Drug treatment did not change mRNA expression of hepatic LDL receptor (Ldlr) and proprotein convertase subtilisin/kexin type 9 (Pcsk9), but increased their protein expression indicating post-translational effects. Consistent with hepatocyte Ldlr and Pcsk9 accumulation, we found reduced plasma levels of Pcsk9 after pharmacological Sirt1 activation. In vitro administration of SRT3025 to cultured AML12 hepatocytes attenuated Pcsk9 secretion and its binding to Ldlr, thereby reducing Pcsk9-mediated Ldlr degradation and increasing Ldlr expression and LDL uptake. Co-administration of exogenous Pcsk9 with SRT3025 blunted these effects. Sirt1 activation with SRT3025 in Ldlr−/− mice reduced neither plasma Pcsk9, nor LDL-cholesterol levels, nor atherosclerosis. Conclusion We identify reduction in Pcsk9 secretion as a novel effect of Sirt1 activity and uncover Ldlr as a prerequisite for Sirt1-mediated atheroprotection in mice. Pharmacological activation of Sirt1 appears promising to be tested in patients for its effects on plasma Pcsk9, LDL-cholesterol, and atherosclerosis. PMID:24603306

  10. CD46 activation regulates miR-150-mediated control of GLUT1 expression and cytokine secretion in human CD4+ T cells

    PubMed Central

    King, Ben C.; Esguerra, Jonathan L. S.; Golec, Ewelina; Eliasson, Lena; Kemper, Claudia; Blom, Anna M.

    2015-01-01

    CD46 is a cell surface complement inhibitor widely expressed in human tissues, in contrast to mice, where expression is limited to the testes. In humans, it has been identified as an important T cell costimulatory receptor, and patients deficient in CD46 or its endogenous ligands are unable to mount effective Th1 T cell responses. Stimulation of human CD4+ T cells with CD3 and CD46 also leads to the differentiation of a ‘switched’ Th1 population, which shuts down IFN-γ secretion and upregulates IL-10, and is believed to be important for negative feedback regulation of the Th1 response. We show here that CD46 costimulation leads to amplified microRNA expression changes in human CD4+ T cells, with associated increases in activation more potent than that mediated by the ‘classic’ costimulator CD28. Blockade of cell-surface CD46 inhibited CD28-mediated costimulation, identifying autocrine CD46 signaling as downstream of CD28. We also identify a downregulation of microRNA-150 in CD46-costimulated T cells, and identify the glucose transporter-1 (GLUT1) encoding transcript SLC2A1 as a target of microRNA-150 regulation, connecting microRNA-150 with modulation of glucose uptake. We also investigated microRNA expression profiles of CD46-induced ‘switched’ IL-10-secreting Th1 T cells and found increased expression of microRNA-150, compared to IFN-γ-secreting Th1 cells. Knockdown of microRNA-150 led to a reduction in IL-10 but not IFN-γ. CD46 therefore controls both Th1 activation and regulation via a miRNA-150-dependent mechanism. PMID:26746193

  11. Sympathetic nerve activity in normal and cystic follicles from isolated bovine ovary: local effect of beta-adrenergic stimulation on steroid secretion.

    PubMed

    Paredes, Alfonso H; Salvetti, Natalia R; Diaz, Ariel E; Dallard, Bibiana E; Ortega, Hugo H; Lara, Hernan E

    2011-01-01

    Cystic ovarian disease (COD) is an important cause of abnormal estrous behavior and infertility in dairy cows. COD is mainly observed in high-yielding dairy cows during the first months post-partum, a period of high stress. We have previously reported that, in lower mammals, stress induces a cystic condition similar to the polycystic ovary syndrome in humans and that stress is a definitive component in the human pathology. To know if COD in cows is also associated with high sympathetic activity, we studied isolated small antral (5 mm), preovulatory (10 mm) and cystic follicles (25 mm). Cystic follicles which present an area 600 fold greater compared with preovulatory follicles has only 10 times less concentration of NE as compared with small antral and preovulatory follicles but they had 10 times more NE in follicular fluid, suggesting a high efflux of neurotransmitter from the cyst wall. This suggestion was reinforced by the high basal release of recently taken-up 3H-NE found in cystic follicles. While lower levels of beta-adrenergic receptor were found in cystic follicles, there was a heightened response to the beta-adrenergic agonist isoproterenol and to hCG, as measured by testosterone secretion. There was however an unexpected capacity of the ovary in vitro to produce cortisol and to secrete it in response to hCG but not to isoproterenol. These data suggest that, during COD, the bovine ovary is under high sympathetic nerve activity that in addition to an increased response to hCG in cortisol secretion could participate in COD development. PMID:21575217

  12. Activation of the human keratinocyte B1 bradykinin receptor induces expression and secretion of metalloproteases 2 and 9 by transactivation of epidermal growth factor receptor.

    PubMed

    Matus, Carola E; Ehrenfeld, Pamela; Pavicic, Francisca; González, Carlos B; Concha, Miguel; Bhoola, Kanti D; Burgos, Rafael A; Figueroa, Carlos D

    2016-09-01

    The B1 bradykinin receptor (BDKRB1) is a component of the kinin cascade localized in the human skin. Some of the effects produced by stimulation of BDKRB1 depend on transactivation of epidermal growth factor receptor (EGFR), but the mechanisms involved in this process have not been clarified yet. The primary purpose of this study was to determine the effect of a BDKRB1 agonist on wound healing in a mouse model and the migration and secretion of metalloproteases 2 and 9 from human HaCaT keratinocytes and delineate the signalling pathways that triggered their secretion. Although stimulation of BDKRB1 induces weak chemotactic migration of keratinocytes and wound closure in an in vitro scratch-wound assay, the BDKRB1 agonist improved wound closure in a mouse model. BDKRB1 stimulation triggers synthesis and secretion of both metalloproteases, effects that depend on the activity of EGFR and subsequent phosphorylation of ERK1/2 and p38 mitogen-activated protein kinases and PI3K/Akt. In the mouse model, immunoreactivity for both gelatinases was concentrated around wound borders. EGFR transactivation by BDKRB1 agonist involves Src kinases family and ADAM17. In addition to extracellular matrix degradation, metalloproteases 2 and 9 regulate cell migration and differentiation, cell functions that are associated with the role of BDKRB1 in keratinocyte differentiation. Considering that BDKRB1 is up-regulated by inflammation and/or by cytokines that are abundant in the inflammatory milieu, more stable BDKRB1 agonists may be of therapeutic value to modulate wound healing. PMID:27093919

  13. CD46 Activation Regulates miR-150-Mediated Control of GLUT1 Expression and Cytokine Secretion in Human CD4+ T Cells.

    PubMed

    King, Ben C; Esguerra, Jonathan L S; Golec, Ewelina; Eliasson, Lena; Kemper, Claudia; Blom, Anna M

    2016-02-15

    CD46 is a cell surface complement inhibitor widely expressed in human tissues, in contrast to mice, where expression is limited to the testes. In humans, it has been identified as an important T cell costimulatory receptor, and patients deficient in CD46 or its endogenous ligands are unable to mount effective Th1 T cell responses. Stimulation of human CD4(+) T cells with CD3 and CD46 also leads to the differentiation of a "switched" Th1 population, which shuts down IFN-γ secretion and upregulates IL-10 and is thought to be important for negative feedback regulation of the Th1 response. In the present study, we show that CD46 costimulation leads to amplified microRNA (miR) expression changes in human CD4(+) T cells, with associated increases in activation more potent than those mediated by the "classic" costimulator CD28. Blockade of cell surface CD46 inhibited CD28-mediated costimulation, identifying autocrine CD46 signaling as downstream of CD28. We also identify a downregulation of miR-150 in CD46-costimulated T cells and identify the glucose transporter 1 encoding transcript SLC2A1 as a target of miR-150 regulation, connecting miR-150 with modulation of glucose uptake. We also investigated microRNA expression profiles of CD46-induced switched IL-10-secreting Th1 T cells and found increased expression of miR-150, compared with IFN-γ-secreting Th1 cells. Knockdown of miR-150 led to a reduction in IL-10 but not IFN-γ. CD46 therefore controls both Th1 activation and regulation via a miR-150-dependent mechanism. PMID:26746193

  14. Sympathetic nerve activity in normal and cystic follicles from isolated bovine ovary: local effect of beta-adrenergic stimulation on steroid secretion

    PubMed Central

    2011-01-01

    Cystic ovarian disease (COD) is an important cause of abnormal estrous behavior and infertility in dairy cows. COD is mainly observed in high-yielding dairy cows during the first months post-partum, a period of high stress. We have previously reported that, in lower mammals, stress induces a cystic condition similar to the polycystic ovary syndrome in humans and that stress is a definitive component in the human pathology. To know if COD in cows is also associated with high sympathetic activity, we studied isolated small antral (5mm), preovulatory (10mm) and cystic follicles (25mm). Cystic follicles which present an area 600 fold greater compared with preovulatory follicles has only 10 times less concentration of NE as compared with sm