Science.gov

Sample records for active twist control

  1. Acoustic Aspects of Active-Twist Rotor Control

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Wilbur, Matthew L.

    2002-01-01

    The use of an Active Twist Rotor system to provide both vibration reduction and performance enhancement has been explored in recent analytical and experimental studies. Effects of active-twist control on rotor noise, however, had not been determined. During a recent wind tunnel test of an active-twist rotor system, a set of acoustic measurements were obtained to assess the effects of active-twist control on noise produced by the rotor, especially blade-vortex interaction (BVI) noise. It was found that for rotor operating conditions where BVI noise is dominant, active-twist control provided a reduction in BVI noise level. This BVI noise reduction was almost, but not quite, as large as that obtained in a similar test using HHC. However, vibration levels were usually adversely affected at operating conditions favoring minimum BVI noise. Conversely, operating conditions favoring minimum vibration levels affected BVI noise levels, but not always adversely.

  2. Active-Twist Rotor Control Applications for UAVs

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Wilkie, W. Keats

    2004-01-01

    The current state-of-the-art in active-twist rotor control is discussed using representative examples from analytical and experimental studies, and the application to rotary-wing UAVs is considered. Topics include vibration and noise reduction, rotor performance improvement, active blade tracking, stability augmentation, and rotor blade de-icing. A review of the current status of piezoelectric fiber composite actuator technology, the class of piezoelectric actuators implemented in active-twist rotor systems, is included.

  3. A Computational Study of BVI Noise Reduction Using Active Twist Control

    NASA Technical Reports Server (NTRS)

    Fogarty, David E.; Wilbur, Matthew L.; Sekula, Martin K.

    2010-01-01

    The results of a computational study examining the effects of active-twist control on blade-vortex interaction (BVI) noise using the Apache Active Twist Rotor are presented. The primary goal of this activity is to reduce BVI noise during a low-speed descent flight condition using active-twist control. Rotor aeroelastic behavior was modeled using the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics code and the rotor noise was predicted using the acoustics code PSU-WOPWOP. The accuracy of the analysis was validated through comparisons with experimental acoustic data for the first generation Active Twist Rotor at an advance ratio of mu=0.14. The application of active-twist to the main rotor blade system consisted of harmonic actuation frequencies ranging from 2P to 5P, control phase angles from 0' to 360 , and tip-twist amplitudes ranging from 0.5 to 4.0 . The acoustic analysis was conducted for a single low-speed flight condition of advance ratio =0.14 and shaft angle-of-attack, c^=+6 , with BVI noise levels predicted on a flat plane of observers located 1.1 rotor diameters beneath the rotor. The results indicated reductions of up to 11dB in BVI noise using 1.25 tip-twist amplitude with negligible effects on 4P vertical hub shear.

  4. Means for controlling aerodynamically induced twist

    NASA Technical Reports Server (NTRS)

    Elber, W. (Inventor)

    1982-01-01

    A control mechanism which provides active compensation for aerodynamically induced twist deformation of high aspect ratio wings consists of a torque tube, internal to each wing and rigidly attached near the tip of each wing, which is moved by an actuator located in the aircraft fuselage. As changes in the aerodynamic loads on the wings occur the torque tube is rotated to compensate for the induced wing twist.

  5. The Twist Limit for Bipolar Active Regions

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Gary, Allen

    2008-01-01

    We present new evidence that further supports the standard idea that active regions are emerged magnetic-flux-rope omega loops. When the axial magnetic twist of a cylindrical flux rope exceeds a critical amount, the flux rope becomes unstable to kinking, and the excess axial twist is converted into writhe twist by the kinking. This suggests that, if active regions are emerged omega loops, then (1) no active region should have magnetic twist much above the limit set by kinking, (2) active regions having twist near the limit should often arise from kinked omega loops, and (3) since active regions having large delta sunspots are outstandingly twisted, these arise from kinked omega loops and should have twist near the limit for kinking. From each of 36 vector magnetograms of bipolar active regions, we have measured (1) the total flux of the vertical field above 100 G, (2) the area covered by this flux, and (3) the net electric current that arches over the polarity inversion line. These three quantities yield an estimate of the axial magnetic twist in a simple model cylindrical flux rope that corresponds to the top of the active region s hypothetical omega loop prior to emergence. In all 36 cases, the estimated twist is below the critical limit for kinking. The 11 most twisted active regions (1) have estimated twist within a factor of approx.3 of the limit, and (2) include all of our 6 active regions having large delta sunspots. Thus, our observed twist limit for bipolar active regions is in good accord with active regions being emerged omega loops.

  6. Aerodynamic Design Study of an Advanced Active Twist Rotor

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K.; Wilbur, Matthew L.; Yeager, William T., Jr.

    2003-01-01

    An Advanced Active Twist Rotor (AATR) is currently being developed by the U.S. Army Vehicle Technology Directorate at NASA Langley Research Center. As a part of this effort, an analytical study was conducted to determine the impact of blade geometry on active-twist performance and, based on those findings, propose a candidate aerodynamic design for the AATR. The process began by creating a baseline design which combined the dynamic design of the original Active Twist Rotor and the aerodynamic design of a high lift rotor concept. The baseline model was used to conduct a series of parametric studies to examine the effect of linear blade twist and blade tip sweep, droop, and taper on active-twist performance. Rotor power requirements and hub vibration were also examined at flight conditions ranging from hover to advance ratio = 0.40. A total of 108 candidate designs were analyzed using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) code. The study concluded that the vibration reduction capabilities of a rotor utilizing controlled, strain-induced twisting are enhanced through the incorporation of blade tip sweep, droop, and taper into the blade design, while they are degraded by increasing the nose-down linear blade twist. Based on the analysis of rotor power, hub vibration, and active-twist response, a candidate aerodynamic design for the AATR consisting of a blade with approximately 10 degrees of linear blade twist and a blade tip design with 30 degree sweep, 10 degree droop, and 2.5:1 taper ratio over the outer five percent of the blade is proposed.

  7. A demonstration of passive blade twist control using extension-twist coupling

    NASA Technical Reports Server (NTRS)

    Lake, Renee C.; Nixon, Mark W.; Wilbur, Matthew L.; Singleton, Jeffrey D.; Mirick, Paul H.

    1992-01-01

    The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist coupling are presented. A set of low twist model-scale helicopter rotor blades was manufactured with a view towards demonstrating the passive blade twist control concept. Hover testing of the blades was conducted to measure the change in blade twist as a function of rotor speed. The blades were spun through the 0-800 rpm range, with a corresponding sweep of collective pitch to determine the effect on the blade elastic twist. Hover data were obtained for both a ballasted and unballasted blade configuration in atmospheric conditions, where maximum twist changes of 2.54 and 5.24 degrees were respectively observed. These results compared well with those from a finite element analysis of the blade, which yielded maximum twists of 3.01 and 5.61 degrees for the unballasted and ballasted blade configurations, respectively. The aerodynamic-induced effects on the blade elastic twist, determined by testing a ballasted blade configuration in a near-vacuum condition, were found to be minimal with a maximum twist difference of 0.17 degrees observed between the two test environments. The effect of collective pitch sweep on the elastic twist was minimal.

  8. Improvements to tilt rotor performance through passive blade twist control

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.

    1988-01-01

    A passive blade twist control is presented in which the twist distribution of a tilt rotor blade is elastically changed as a function of rotor speed. The elastic twist deformation is used to achieve two different blade twist distributions corresponding to the two rotor speeds used on conventional tilt rotors in hover and forward flight. By changing the blade twist distribution, the aerodynamic performance can be improved in both modes of flight. The concept presented obtains a change in twist distribution with extension-twist-coupled composite blade structure. This investigation first determines the linear twists which are optimum for each flight mode. Based on the optimum linear twist distributions, three extension-twist-coupled blade designs are developed using coupled-beam and laminate analyses integrated with an optimization analysis. The designs are optimized for maximum twist deformation subject to material strength limitations. The aerodynamic performances of the final designs are determined which show that the passive blade twist control concept is viable, and can enhance conventional tilt rotor performance.

  9. Aeromechanical Evaluation of Smart-Twisting Active Rotor

    NASA Technical Reports Server (NTRS)

    Lim, Joon W.; Boyd, D. Douglas, Jr.; Hoffman, Frauke; van der Wall, Berend G.; Kim, Do-Hyung; Jung, Sung N.; You, Young H.; Tanabe, Yasutada; Bailly, Joelle; Lienard, Caroline; Delrieux, Yves

    2014-01-01

    An investigation of Smart-Twisting Active Rotor (STAR) was made to assess potential benefits of the current active twist rotor concept for performance improvement, vibration reduction, and noise alleviation. The STAR rotor is a 40% Mach-scaled, Bo105 rotor with an articulated flap-lag hinge at 3.5%R and no pre-cone. The 0-5 per rev active twist harmonic inputs were applied for various flight conditions including hover, descent, moderate to high speed level flights, and slowed rotor high advance ratio. For the analysis, the STAR partners used multiple codes including CAMRAD II, S4, HOST, rFlow3D, elsA, and their associated software. At the high thrust level in hover, the 0 per rev active twist with 80% amplitude increased figure of merit (FM) by 0.01-0.02 relative to the baseline. In descent, the largest BVI noise reduction was on the order of 2 to 5 dB at the 3 per rev active twist. In the high speed case (mu = 0.35), the 2 per rev actuation was found to be the most effective in achieving a power reduction as well as a vibration reduction. At the 2 per rev active twist, total power was reduced by 0.65% at the 60 deg active twist phase, and vibration was reduced by 47.6% at the 45 deg active twist phase. The use of the 2 per rev active twist appears effective for vibration reduction. In the high advance ratio case (mu = 0.70), the 0 per rev actuation appeared to have negligible impact on performance improvement. In summary, computational simulations successfully demonstrated that the current active twist concept provided a significant reduction of the maximum BVI noise in descent, a significant reduction of the vibration in the high speed case, a small improvement on rotor performance in hover, and a negligible impact on rotor performance in forward flight.

  10. Optimization of an Active Twist Rotor Blade Planform for Improved Active Response and Forward Flight Performance

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K; Wilbur, Matthew L.

    2014-01-01

    A study was conducted to identify the optimum blade tip planform for a model-scale active twist rotor. The analysis identified blade tip design traits which simultaneously reduce rotor power of an unactuated rotor while leveraging aeromechanical couplings to tailor the active response of the blade. Optimizing the blade tip planform for minimum rotor power in forward flight provided a 5 percent improvement in performance compared to a rectangular blade tip, but reduced the vibration control authority of active twist actuation by 75 percent. Optimizing for maximum blade twist response increased the vibration control authority by 50 percent compared to the rectangular blade tip, with little effect on performance. Combined response and power optimization resulted in a blade tip design which provided similar vibration control authority to the rectangular blade tip, but with a 3.4 percent improvement in rotor performance in forward flight.

  11. Activation of the Notch1/STAT3/Twist signaling axis promotes gastric cancer progression.

    PubMed

    Hsu, Kai-Wen; Hsieh, Rong-Hong; Huang, Kuo-Hung; Fen-Yau Li, Anna; Chi, Chin-Wen; Wang, Tzu-Yin; Tseng, Min-Jen; Wu, Kou-Juey; Yeh, Tien-Shun

    2012-08-01

    Gastric carcinoma is one of the most common malignancies and a lethal cancer in the world. Notch signaling and transcription factors STAT3 (signal transducer and activator of transcription 3) and Twist regulate tumor development and are critical regulators of gastric cancer progression. Herein, the relationship among Notch, STAT3 and Twist pathways in the control of gastric cancer progression was studied. We found that Twist and phosphorylated STAT3 levels were promoted by the activated Notch1 receptor in human stomach adenocarcinoma SC-M1, embryonic kidney HEK293 and erythroleukemia K562 cells. Notch1 signaling dramatically induced Twist promoter activity through a C promoter binding factor-1-independent manner and STAT3 phosphorylation. Overexpression of Notch1 receptor intracellular domain (N1IC) enhanced the interaction between nuclear STAT3 and Twist promoter in cells. Gastric cancer progression of SC-M1 cells was promoted by N1IC through STAT3 phosphorylation and Twist expression including colony formation, migration and invasion. STAT3 regulated gastric cancer progression of SC-M1 cells via Twist. N1IC also elevated the progression of other gastric cancer cells such as AGS and KATO III cells through STAT3 and Twist. The N1IC-promoted tumor growth and lung metastasis of SC-M1 cells in mice were suppressed by the STAT3 inhibitor JSI-124 and Twist knockdown. Furthermore, Notch1 and Notch ligand Jagged1 expressions were significantly associated with phosphorylated STAT3 and Twist levels in gastric cancer tissues of patients. Taken together, these results suggest that Notch1/STAT3/Twist signaling axis is involved in progression of human gastric cancer and modulation of this cascade has potential for the targeted combination therapy.

  12. Twist1 activity thresholds define multiple functions in limb development.

    PubMed

    Krawchuk, Dayana; Weiner, Shoshana J; Chen, You-Tzung; Lu, Benson C; Costantini, Frank; Behringer, Richard R; Laufer, Ed

    2010-11-01

    The basic helix-loop-helix transcription factor Twist1 is essential for normal limb development. Twist1(-/-) embryos die at midgestation. However, studies on early limb buds found that Twist1(-/-) mutant limb mesenchyme has an impaired response to FGF signaling from the apical ectodermal ridge, which disrupts the feedback loop between the mesenchyme and AER, and reduces and shifts anteriorly Shh expression in the zone of polarizing activity. We have combined Twist1 null, hypomorph and conditional alleles to generate a Twist1 allelic series that survives to birth. As Twist1 activity is reduced, limb skeletal defects progress from preaxial polydactyly to girdle reduction combined with hypoplasia, aplasia or mirror symmetry of all limb segments. With reduced Twist1 activity there is striking and progressive upregulation of ectopic Shh expression in the anterior of the limb, combined with an anterior shift in the posterior Shh domain, which is expressed at normal intensity, and loss of the posterior AER. Consequently limb outgrowth is initially impaired, before an ectopic anterior Shh domain expands the AER, promoting additional growth and repatterning. Reducing the dosage of FGF targets of the Etv gene family, which are known repressors of Shh expression in anterior limb mesenchyme, strongly enhances the anterior skeletal phenotype. Conversely this and other phenotypes are suppressed by reducing the dosage of the Twist1 antagonist Hand2. Our data support a model whereby multiple Twist1 activity thresholds contribute to early limb bud patterning, and suggest how particular combinations of skeletal defects result from differing amounts of Twist1 activity.

  13. Twist1 activity thresholds define multiple functions in limb development

    PubMed Central

    Krawchuk, Dayana; Weiner, Shoshana J.; Chen, You-Tzung; Lu, Benson; Costantini, Frank; Behringer, Richard R.; Laufer, Ed

    2010-01-01

    Summary The basic helix-loop-helix transcription factor Twist1 is essential for normal limb development. Twist1−/− embryos die at midgestation. However, studies on early limb buds found that Twist1−/− mutant limb mesenchyme has an impaired response to FGF signaling from the apical ectodermal ridge, which disrupts the feedback loop between the mesenchyme and AER, and reduces and shifts anteriorly Shh expression in the zone of polarizing activity. We have combined Twist1 null, hypomorph and conditional alleles to generate a Twist1 allelic series that survives to birth. As Twist1 activity is reduced, limb skeletal defects progress from preaxial polydactyly to girdle reduction combined with hypoplasia, aplasia or mirror symmetry of all limb segments. With reduced Twist1 activity there is striking and progressive upregulation of ectopic Shh expression in the anterior of the limb, combined with an anterior shift in the posterior Shh domain, which is expressed at normal intensity, and loss of the posterior AER. Consequently limb outgrowth is initially impaired, before an ectopic anterior Shh domain expands the AER, promoting additional growth and repatterning. Reducing the dosage of FGF targets of the Etv gene family, which are known repressors of Shh expression in the anterior limb mesenchyme, strongly enhances the anterior skeletal phenotype. Conversely this and other phenotypes are suppressed by reducing the dosage of the Twist1 antagonist Hand2. Our data support a model whereby multiple Twist1 activity thresholds contribute to early limb bud patterning, and suggest how particular combinations of skeletal defects result from differing amounts of Twist1 activity. PMID:20732316

  14. Wind tunnel test of a smart rotor with individual blade twist control

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Chopra, Inderjit

    1997-06-01

    The objective of this research is to develop a smart rotor with active control of blade twist using embedded piezoceramic elements as sensors and actuators to minimize rotor vibrations. A 1/8-th Froude-scale (dynamically-scaled) bearingless helicopter rotor model was built with banks of torsional actuators capable of manipulating blade twist at frequencies from 5 to 100 Hz. To assess the effectiveness of the torsional actuators and vibration suppression capabilities, systematic wind tunnel testing was conducted in the Glenn L. Martin Wind Tunnel. Using accelerometers embedded in the blade tip, the oscillatory blade twist response was measured. The changes in rotor vibratory loads due to piezo- induced twist were determined using a rotating hub balance located at the rotor hub. Experimental test results show that tip twist amplitudes on the order of 0.5 deg are attainable by the current actuator configurations in forward flight. Although these amplitudes were less than the target value (1 - 2 deg for complete vibration suppression control), test results show that partial vibration reduction is possible. Using open-loop phase shift control of blade twist at the first four rotor harmonics, changes in rotor thrust of up to 9% of the steady-state values were measured, resulting in up to 3 and 8% reductions in rotor pitching and rolling moments, respectively. It is expected that the hub load control authority of the smart rotor can be improved in future models with refined actuator configurations and implementation of closed-loop feedback controls.

  15. Projection Moire Interferometry for Rotorcraft Applications: Deformation Measurements of Active Twist Rotor Blades

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Soto, Hector L.; South, Bruce W.

    2002-01-01

    Projection Moire Interferometry (PMI) has been used during wind tunnel tests to obtain azimuthally dependent blade bending and twist measurements for a 4-bladed Active Twist Rotor (ATR) system in simulated forward flight. The ATR concept offers a means to reduce rotor vibratory loads and noise by using piezoelectric active fiber composite actuators embedded in the blade structure to twist each blade as they rotate throughout the rotor azimuth. The twist imparted on the blades for blade control causes significant changes in blade loading, resulting in complex blade deformation consisting of coupled bending and twist. Measurement of this blade deformation is critical in understanding the overall behavior of the ATR system and the physical mechanisms causing the reduction in rotor loads and noise. PMI is a non-contacting, video-based optical measurement technique capable of obtaining spatially continuous structural deformation measurements over the entire object surface within the PMI system field-of-view. When applied to rotorcraft testing, PMI can be used to measure the azimuth-dependent blade bending and twist along the full span of the rotor blade. This paper presents the PMI technique as applied to rotorcraft testing, and provides results obtained during the ATR tests demonstrating the PMI system performance. PMI measurements acquired at select blade actuation conditions generating minimum and maximum rotor loads are provided to explore the interrelationship between rotor loads, blade bending, and twist.

  16. Vibration control of pre-twisted rotating composite thin-walled beams with piezoelectric fiber composites

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Chan; Park, Jae-Sang; Kim, Ji-Hwan

    2007-02-01

    Rotating composite beam structures like blades are applied in many fields of aerospace and mechanical engineering. In this research, bending vibration control of the pre-twisted rotating composite thin-walled beam is studied. The formulation is based on single cell composite beam including a warping function, centrifugal force, Coriolis acceleration, pre-twist angle and piezoelectric effect. A negative velocity feedback control algorithm is applied to realize the adaptive capability of the beam. Using a finite-element method, numerical simulations show that macro-fiber composite (MFC) actuators which are piezoelectric fiber composites and PVDF sensors can generate active vibration control effect. Relations between active vibration control effect and design parameters of beams such as rotating speeds, pre-twist angles and fiber orientations in a host structure are investigated in detail. Besides, a case study conformed that the effective damping performance can be obtained by suitable arrangement and distribution of the sensor and actuator pairs.

  17. Hover Testing of the NASA/Army/MIT Active Twist Rotor Prototype Blade

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Wilkie, W. Keats; Cesnik, Carlos E. S.; Shin, Sangloon

    2000-01-01

    Helicopter rotor individual blade control promises to provide a mechanism for increased rotor performance and reduced rotorcraft vibrations and noise. Active material methods, such as piezoelectrically actuated trailing-edge flaps and strain-induced rotor blade twisting, provide a means of accomplishing individual blade control without the need for hydraulic power in the rotating system. Recent studies have indicated that controlled strain induced blade twisting can be attained using piezoelectric active fiber composite technology. In order to validate these findings experimentally, a cooperative effort between NASA Langley Research Center, the Army Research Laboratory, and the MIT Active Materials and Structures Laboratory has been developed. As a result of this collaboration an aeroelastically-scaled active-twist model rotor blade has been designed and fabricated for testing in the heavy gas environment of the Langley Transonic Dynamics Tunnel (TDT). The results of hover tests of the active-twist prototype blade are presented in this paper. Comparisons with applicable analytical predictions of active-twist frequency response in hovering flight are also presented.

  18. Multicyclic Controllable Twist Rotor Data Analysis

    NASA Technical Reports Server (NTRS)

    Wei, F. S.; Weisbrich, A. L.

    1979-01-01

    Rsults provide functional relationship between rotor performance, blade vibratory loads and dual control settings and indicate that multicyclic control produced significant reductions in blade flatwise bending moments and blade root actuator control loads. Higher harmonic terms of servo flap deflection were found to be most pronounced in flatwise bending moment, transmission vertical vibration and pitch link vibratory load equations. The existing test hardware represents a satisfactory configuration for demonstrating MCTR technology and defining a data base for additional wind tunnel testing.

  19. Twist of Magnetic Fields in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqi; Bao, Shudong; Kuzanyan, Kirill M.

    2002-05-01

    We study the twist properties of photospheric magnetic fields in solar active regions using magnetographic data on 422 active regions obtained at the Huairou Solar Observing Station in 1988 1997. We calculate the mean twist (force-free field αf) of the active regions and compare it with the mean current-helicity density of these same active regions, h c =B ∥·(∇×B)∥. The latitude and longitude distributions and time dependence of these quantities is analyzed. These parameters represent two different tracers of the α effect in dynamo theory, so we might expect them to possess similar properties. However, apart from differences in their definitions, they also display differences associated with the technique used to recalculate the magnetographic data and with their different physical meanings. The distributions of the mean αf and h c both show hemispherical asymmetry—negative (positive) values in the northern (southern) hemisphere—although this tendency is stronger for h c. One reason for these differences may be the averaging procedure, when twists of opposite sign in regions with weak fields make a small contribution to the mean current-helicity density. Such transequatorial regularity is in agreement with the expectations of dynamo theory. In some active regions, the average αf and h c do not obey this transequatorial rule. As a whole, the mean twist of the magnetic fields αf of active regions does not vary significantly with the solar cycle. Active regions that do not follow the general behavior for αf do not show any appreciable tendency to cluster at certain longitudes, in contrast to results for h c noted in previous studies. We analyze similarities and differences in the distributions of these two quantities. We conclude that using only one of these tracers, such as αf, to search for signatures of the α effect can have disadvantages, which should be taken into account in future studies.

  20. Unwinding motion of a twisted active region filament

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Kong, D. F.; Liu, J. H.; Xu, C. L.

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  1. The Effect of Tip Geometry on Active-Twist Rotor Response

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Sekula, Martin K.

    2005-01-01

    A parametric examination of the effect of tip geometry on active-twist rotor system response is conducted. Tip geometry parameters considered include sweep, taper, anhedral, nonlinear twist, and the associated radial initiation location for each of these variables. A detailed study of the individual effect of each parameter on active-twist response is presented, and an assessment offered of the effect of combining multiple tip shape parameters. Tip sweep is shown to have the greatest affect on active-twist response, significantly decreasing the response available. Tip taper and anhedral are shown to increase moderately the active-twist response, while nonlinear twist is shown to have a minimal effect. A candidate tip shape that provides active-twist response equivalent to or greater than a rectangular planform blade is presented.

  2. Evidence of Twisted Flux-Tube Emergence in Active Regions

    NASA Astrophysics Data System (ADS)

    Poisson, M.; Mandrini, C. H.; Démoulin, P.; López Fuentes, M.

    2015-03-01

    Elongated magnetic polarities are observed during the emergence phase of bipolar active regions (ARs). These extended features, called magnetic tongues, are interpreted as a consequence of the azimuthal component of the magnetic flux in the toroidal flux-tubes that form ARs. We develop a new systematic and user-independent method to identify AR tongues. Our method is based on determining and analyzing the evolution of the AR main polarity inversion line (PIL). The effect of the tongues is quantified by measuring the acute angle [ τ] between the orientation of the PIL and the direction orthogonal to the AR main bipolar axis. We apply a simple model to simulate the emergence of a bipolar AR. This model lets us interpret the effect of magnetic tongues on parameters that characterize ARs ( e.g. the PIL inclination and the tilt angles, and their evolution). In this idealized kinematic emergence model, τ is a monotonically increasing function of the twist and has the same sign as the magnetic helicity. We systematically apply our procedure to a set of bipolar ARs (41 ARs) that were observed emerging in line-of-sight magnetograms over eight years. For most of the cases studied, the tongues only have a small influence on the AR tilt angle since tongues have a much lower magnetic flux than the more concentrated main polarities. From the observed evolution of τ, corrected for the temporal evolution of the tilt angle and its final value when the AR is fully emerged, we estimate the average number of turns in the subphotospherically emerging flux-rope. These values for the 41 observed ARs are below unity, except for one. This indicates that subphotospheric flux-ropes typically have a low amount of twist, i.e. highly twisted flux-tubes are rare. Our results demonstrate that the evolution of the PIL is a robust indicator of the presence of tongues and constrains the amount of twist in emerging flux-tubes.

  3. Proximal Blade Twist Feedback Control for Heliogyro Solar Sails

    NASA Astrophysics Data System (ADS)

    Smith, Sarah Mitchell

    A heliogyro spacecraft is a specific type of solar sail that generates thrust from the reflection of solar photons. It consists of multiple long (200 to 600 meters), thin blades, similar to a helicopter. The heliogyro's blades remain in tension by spinning around the central hub of the spacecraft. The individual blades are pitched collectively or cyclically to produce the desired maneuver profile. The propellant-free heliogyro is a long-duration sustainable spacecraft whose maneuverability allows it to attain previously inaccessible orbits for traditional spacecraft. The blades are constructed from thin Mylar sheets, approximately 2.5 ?m thick, which have very little inherent damping making it necessary to include some other way of attenuating blade vibration caused by maneuvering. The most common approach is to incorporate damping through the root pitch actuator. However, due to the small root pitch control torques required, on the order of 2 ?Nm, compared to the large friction torques associated with a root pitch actuator, it is challenging to design a root control system that takes friction into account and can still add damping to the blade. The purpose of this research is to address the limitations of current control designs for a heliogyro spacecraft and to develop a physically realizable root pitch controller that effectively damps the torsional structural modes of a single heliogyro blade. Classical control theory in conjunction with impedance control techniques are used to design a position-source root pitch controller to dominate friction with high gains, wrapped with an outer loop that adds damping to the blade by sensing differential twist outboard of the blade root. First, modal parameter characterization experiments were performed on a small-scale heliogyro blade in a high vacuum chamber to determine a damping constant to be used in the membrane ladder finite element model of the blade. The experimental damping ratio of the lowest frequency torsional

  4. Period-control and chaos-anti-control of a semiconductor laser using the twisted fiber

    NASA Astrophysics Data System (ADS)

    Yan, Sen-Lin

    2016-09-01

    A novel semiconductor laser system is presented based on a twisted fiber. To study the period-control and chaos-anti-control of the laser system, we design a type of optic path as a control setup using the combination of the twisted fiber and the polarization controller while we present a physical dynamics model of the delayed dual-feedback laser containing the twisted fiber effect. We give an analysis of the effect of the twisted fiber on the laser. We use the effects of the delayed phase and the rotation angle of the twisted fiber and the characteristics of the system to achieve control of the laser. The laser is deduced to a stable state, a double-periodic state, a period-6 state, a period-8 state, a period-9 state, a multi-period state, beat phenomenon, and so on. The periodic laser can be anti-controlled to chaos. Some chaos-anti-control area is found. The laser system is very useful for the study of chaos-control of the laser setup and the applications of some physics effects.

  5. The Effect of Non-Harmonic Active Twist Actuation on BVI Noise

    NASA Technical Reports Server (NTRS)

    Fogarty, David E.; Wilbur, Matthew L.; Sekula, Martin K.

    2011-01-01

    The results of a computational study examining the effects of non-harmonic active-twist control on blade-vortex interaction (BVI) noise for the Apache Active Twist Rotor are presented. Rotor aeroelastic behavior was modeled using the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics code and the rotor noise was predicted using the acoustics code PSU-WOPWOP. The application of non-harmonic active-twist inputs to the main rotor blade system comprised three parameters: azimuthal location to start actuation, azimuthal duration of actuation, and magnitude of actuation. The acoustic analysis was conducted for a single low-speed flight condition of advance ratio mu=0.14 and shaft angle-of-attack, a(sub s)=+6deg. BVI noise levels were predicted on a flat plane of observers located 1.1 rotor diameters beneath the rotor. The results indicate significant reductions of up to 10dB in BVI noise using a starting azimuthal location for actuation of 90?, an azimuthal duration of actuation of 90deg, and an actuation magnitude of +1.5 ft-lb.

  6. Adaptive dual-layer super-twisting control and observation

    NASA Astrophysics Data System (ADS)

    Edwards, Christopher; Shtessel, Yuri

    2016-09-01

    In this paper, a super-twisting-like structure with adaptive gains is proposed. The structure is parameterised by two scalar gains, both of which adapt, and by an additional time-varying term. The magnitudes of the adaptive terms are allowed to both increase and decrease as appropriate so that they are as small as possible, in the sense that they do not unnecessarily over-bound the uncertainty, and yet are large enough to sustain a sliding motion. In the paper, a new time varying gain is incorporated into the traditional super-twisting architecture. The proposed adaption law has a dual-layer structure which is formally analyzed using Lyapunov techniques. The additional term has the effect of simplifying the stability analysis whilst guaranteeing the second-order sliding mode properties of the traditional super-twisting scheme.

  7. Further Examination of the Vibratory Loads Reduction Results from the NASA/ARMY/MIT Active Twist Rotor Test

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Sekula, Martin K.

    2002-01-01

    The vibration reduction capabilities of a model rotor system utilizing controlled, strain-induced blade twisting are examined. The model rotor blades, which utilize piezoelectric active fiber composite actuators, were tested in the NASA Langley Transonic Dynamics Tunnel using open-loop control to determine the effect of active-twist on rotor vibratory loads. The results of this testing have been encouraging, and have demonstrated that active-twist rotor designs offer the potential for significant load reductions in future helicopter rotor systems. Active twist control was found to use less than 1% of the power necessary to operate the rotor system and had a pronounced effect on both rotating- and fixed-system loads, offering reductions in individual harmonic loads of up to 100%. A review of the vibration reduction results obtained is presented, which includes a limited set of comparisons with results generated using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) rotorcraft comprehensive analysis.

  8. Controlling polarization twisting of light resulting from surface plasmon interactions with threefold symmetric nanostructures

    NASA Astrophysics Data System (ADS)

    Ashall, B.; Vohnsen, B.; Berndt, M.; Zerulla, D.

    2009-12-01

    The design and architecture of nanostructures for the purpose of controlling and manipulating surface plasmon polariton (SPP) dynamics is currently a focal point of research. It is driven by the predicted impact that plasmonic components will have on many future technologies. In this paper, we demonstrate the first instance of plasmon-mediated polarization reorientation observed in the far field with no associated re-emission directional change. Specifically, it is demonstrated that, as a result of the interaction between SPPs and tailor-designed nanostructures of threefold symmetry characteristics, a polarization twisting of the SPP-mediated reradiated light is attained. It is shown that the dynamics of such an interaction can be controlled externally, enabling active control of the outgoing polarization orientation. In order to further understand the origin of the processes involved, Green’s function based simulations of the interactions are presented and confirm that the origin of the polarization twisting can be explained via asymmetrical in-plane SPP scattering.

  9. Electrically controllable Fresnel lens in 90° twisted nematic liquid crystals.

    PubMed

    Kuo, Chie-Tong; Li, Chien-Yu; Lin, Shih-Hung; Yeh, Hui-Chen

    2015-10-05

    This study presents a theoretical analysis and experimental demonstration of an electrically controllable Fresnel lens in a 90° twisted nematic liquid crystal cell. The cell gap was chosen to satisfy the Gooch-Tarry conditions, and therefore, the polarization rotation effect was valid regardless of the incident polarization direction. The polarization sensitivity of the diffraction efficiency of the 90° twisted nematic Fresnel lens was dependent on the applied voltage regime. Theoretical calculations effectively explain the experimental results.

  10. Twist Model Development and Results from the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Allen, Michael J.

    2007-01-01

    Understanding the wing twist of the active aeroelastic wing (AAW) F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption. This technique produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.

  11. Twist Model Development and Results From the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew; Allen, Michael J.

    2005-01-01

    Understanding the wing twist of the active aeroelastic wing F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption and by using neural networks. These techniques produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.

  12. Coupled CFD/CSD Computation of Airloads of an Active-Twist Rotor

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K

    2013-01-01

    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code for blade trim and aeroelastic effects is presented for a second-generation Active-Twist Rotor. Mesh and temporal sensitives of computed airloads are evaluated. In the final paper, computed airloads will be compared with wind tunnel data for the Active-Twist Rotor test that is currently underway.

  13. Active-Region Twist Derived from Magnetic Tongues and Linear Force-Free Extrapolations

    NASA Astrophysics Data System (ADS)

    Poisson, Mariano; López Fuentes, Marcelo; Mandrini, Cristina H.; Démoulin, Pascal

    2015-11-01

    The main aim of this study is to compare the amount of twist present in emerging active regions (ARs) from photospheric and coronal data. We use linear force-free field models of the observed coronal structure of ARs to determine the global twist. The coronal twist is derived, on one hand, from the force-free parameter [α] of the model and, on the other, from the computed coronal magnetic helicity normalized by the magnetic flux squared. We compare our results, for the same set of ARs, with those of Poisson et al. ( Solar Phys. 290, 727, 2015), in which the twist was estimated using the so-called magnetic tongues observed in line-of-sight magnetograms during AR emergence. We corroborate the agreement between the photospheric and coronal twist-sign and the presence of magnetic tongues as an early proxy of the AR non-potentiality. We find a globally linear relationship between the coronal twist and the one previously deduced for the emerging AR flux rope at the photospheric level. The coronal-twist value is typically lower by a factor of six than the one deduced for the emerging flux rope. We interpret this result as due to the partial emergence of the flux rope that forms the region.

  14. Spin-Orbit Twisted Spin Waves: Group Velocity Control

    NASA Astrophysics Data System (ADS)

    Perez, F.; Baboux, F.; Ullrich, C. A.; D'Amico, I.; Vignale, G.; Karczewski, G.; Wojtowicz, T.

    2016-09-01

    We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC), Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave. The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel applications in spin-wave routing devices and for the realization of lenses for spin waves.

  15. Multiband retardation control using multi-twist retarders

    NASA Astrophysics Data System (ADS)

    Hornburg, Kathryn J.; Komanduri, Ravi K.; Escuti, Michael J.

    2014-05-01

    We introduce and demonstrate an approach to create highly chromatic retardation spectra across various wave­ lengths. The design approach is based on Multi-Twist Retarder (MTR) principle where multiple liquid crystal polymer layers are coated on top of each other on a single substrate. Previous MTRs have been applied to develop broadband achromatic retarders, but here we show that MTRs are quite flexible, and their retardation spectrum can be tuned to create arbitrary profiles. As a representative example, we show this tailorability by creating a retarder which produces approximately zero retardation in visible (500-900 nm) and half-wave retardation in near- infrared (1-2.7 μm) wavelength region. This would provide enhancement in remote sensing, telecom, and spectroscopy systems where it is advantageous to have an optical element which affects only one band, but is largely transparent otherwise.

  16. Initial Aerodynamic and Acoustic Study of an Active Twist Rotor Using a Loosely Coupled CFD/CSD Method

    NASA Technical Reports Server (NTRS)

    Boyd, David D. Jr.

    2009-01-01

    Preliminary aerodynamic and performance predictions for an active twist rotor for a HART-II type of configuration are performed using a computational fluid dynamics (CFD) code, OVERFLOW2, and a computational structural dynamics (CSD) code, CAMRAD -II. These codes are loosely coupled to compute a consistent set of aerodynamics and elastic blade motions. Resultant aerodynamic and blade motion data are then used in the Ffowcs-Williams Hawkins solver, PSU-WOPWOP, to compute noise on an observer plane under the rotor. Active twist of the rotor blade is achieved in CAMRAD-II by application of a periodic torsional moment couple (of equal and opposite sign) at the blade root and tip at a specified frequency and amplitude. To provide confidence in these particular active twist predictions for which no measured data is available, the rotor system geometry and computational set up examined here are identical to that used in a previous successful Higher Harmonic Control (HHC) computational study. For a single frequency equal to three times the blade passage frequency (3P), active twist is applied across a range of control phase angles at two different amplitudes. Predicted results indicate that there are control phase angles where the maximum mid-frequency noise level and the 4P non -rotating hub vibrations can be reduced, potentially, both at the same time. However, these calculated reductions are predicted to come with a performance penalty in the form of a reduction in rotor lift-to-drag ratio due to an increase in rotor profile power.

  17. Development of an Active Twist Rotor for Wind: Tunnel Testing (NLPN97-310

    NASA Technical Reports Server (NTRS)

    Cesnik, Carlos E. S.; Shin, SangJoon; Hagood, Nesbitt W., IV

    1998-01-01

    The development of the Active Twist Rotor prototype blade for hub vibration and noise reduction studies is presented in this report. Details of the modeling, design, and manufacturing are explored. The rotor blade is integrally twisted by direct strain actuation. This is accomplished by distributing embedded piezoelectric fiber composites along the span of the blade. The development of the analysis framework for this type of active blade is presented. The requirements for the prototype blade, along with the final design results are also presented. A detail discussion on the manufacturing aspects of the prototype blade is described. Experimental structural characteristics of the prototype blade compare well with design goals, and preliminary bench actuation tests show lower performance than originally predicted. Electrical difficulties with the actuators are also discussed. The presented prototype blade is leading to a complete fully articulated four-blade active twist rotor system for future wind tunnel tests.

  18. Deep Tunnel's twists and turns -- CSO control in metro Chicago

    SciTech Connect

    Farnan, J.C.; Lue-Hing, C.; O'Connor, T.K.; Rakoczy, J.R.

    1998-07-01

    Metro-Chicago began its search for a comprehensive solution to its severe and then-worsening combined sewer overflow (CSO) pollution and flooding problems even before enactment of the 1972 Federal Clean Water Act. Many studies and extensive interagency cooperation singled out the Tunnel and Reservoir Plan (TARP) as the best means of cost-effectively achieving three anti-pollution and anti-flooding objectives: protect Chicagoland's main drinking water supply--Lake Michigan--from raw sewage backflows; clean up polluted streams; and alleviated basement sewage backups. Owing to TARP's uniqueness, initially there was little or no design, construction or operations experience to draw upon to help implement the project. But since TARP's four systems operate independently, and new tunnel segments are placed into operation as soon as completed, the District has been able to continuously monitor performance and obtain operations feedback. This has enabled ongoing refinement of design, construction, and operational strategy on successive TARP tunnel contracts. Herein is a brief discussion of TARP's development--an evolutionary process with many twists and turns--and of problems and opportunities encountered which resulted in design or operations changes.

  19. Kindlin-3 enhances breast cancer progression and metastasis by activating Twist-mediated angiogenesis

    PubMed Central

    Sossey-Alaoui, Khalid; Pluskota, Elzbieta; Davuluri, Gangarao; Bialkowska, Katarzyna; Das, Mitali; Szpak, Dorota; Lindner, Daniel J.; Downs-Kelly, Erinn; Thompson, Cheryl L.; Plow, Edward F.

    2014-01-01

    The FERM domain containing protein Kindlin-3 has been recognized as a major regulator of integrin function in hematopoietic cells, but its role in neoplasia is totally unknown. We have examined the relationship between Kindlin-3 and breast cancer in mouse models and human tissues. Human breast tumors showed a ∼7-fold elevation in Kindlin-3 mRNA compared with nonneoplastic tissue by quantitative polymerase chain reaction. Kindlin-3 overexpression in a breast cancer cell line increased primary tumor growth and lung metastasis by 2.5- and 3-fold, respectively, when implanted into mice compared with cells expressing vector alone. Mechanistically, the Kindlin-3-overexpressing cells displayed a 2.2-fold increase in vascular endothelial growth factor (VEGF) secretion and enhanced β1 integrin activation. Increased VEGF secretion resulted from enhanced production of Twist, a transcription factor that promotes tumor angiogenesis. Knockdown of Twist diminished VEGF production, and knockdown of β1 integrins diminished Twist and VEGF production by Kindlin-3-overexpressing cells, while nontargeting small interfering RNA had no effect on expression of these gene products. Thus, Kindlin-3 influences breast cancer progression by influencing the crosstalk between β1 integrins and Twist to increase VEGF production. This signaling cascade enhances breast cancer cell invasion and tumor angiogenesis and metastasis.—Sossey-Alaoui, K., Pluskota, E., Davuluri, G., Bialkowska, K., Das, M., Szpak, D., Lindner, D. J., Downs-Kelly, E., Thompson, C. L., Plow, E. F. Kindlin-3 enhances breast cancer progression and metastasis by activating Twist-mediated angiogenesis. PMID:24469992

  20. Application of Out-of-Plane Warping to Control Rotor Blade Twist

    NASA Technical Reports Server (NTRS)

    VanWeddingen, Yannick; Bauchau, Olivier; Kottapalli, Sesi; Ozbay, Serkan; Mehrotra, Yogesh

    2012-01-01

    The goal of this ongoing study is to develop and demonstrate the feasibility of a blade actuation system to dynamically change the twist, and/or the camber, of an airfoil section and, consequently, alter the in-flight aerodynamic loading on the blade for efficient flight control. The required analytical and finite element tools are under development to enable an accurate and comprehensive aeroelastic assessment of the current Full-Blade Warping and 3D Warping Actuated Trailing Edge Flap concepts. The feasibility of the current concepts for swashplateless rotors and higher harmonic blade control is also being investigated. In particular, the aim is to complete the following objectives, some of which have been completed (as noted below) and others that are currently ongoing: i) Develop a Vlasov finite element model and validate against the ABAQUS shell models (completed). ii) Implement the 3D warping actuation concept within the comprehensive analysis code DYMORE. iii) Perform preliminary aeroelastic simulations of blades using DYMORE with 3D warping actuation: a) Investigate the blade behavior under 1 per/rev actuation. Determine whether sufficient twist can be generated and sustained to achieve primary blade control. b) Investigate the behavior of a trailing edge flap configuration under higher harmonic excitations. Determine how much twist can be obtained at the harmonics 2-5 per/rev. iv) Determine actuator specifications such as the power required, load and displacements, and identify the stress and strain distributions in the actuated blades. In general, the completion of Item ii) above will give an additional research capability in rotorcraft dynamics analyses, i.e., the capability to calculate the rotor blade twist due to warping, something that is not currently available in any of the existing comprehensive rotorcraft analyses.

  1. Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers

    NASA Astrophysics Data System (ADS)

    Park, Jungwoo; Yoo, Ji Wang; Seo, Hee Won; Lee, Youngkwan; Suhr, Jonghwan; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk; Hunt, Robert; Kim, Kwang Jin; Kim, Soo Hyun; Nam, Jae-Do

    2017-03-01

    As a new class of thermally activated actuators based on polymeric fibers, we investigated polyethylene terephthalate (PET) yarns for the development of a twisted-coiled polymer fiber actuator (TCA). The PET yarn TCA exhibited the maximum linear actuation up to 8.9% by external heating at above the glass transition temperature, 160 °C–180 °C. The payload of the actuator was successfully correlated with the preload and training-load conditions by an empirical equation. Furthermore, the PET-based TCA was electrically driven by Joule heating after the PET surface was metallization with silver. For the fast and precise control of PET yarn TCA, electroless silver plating was conducted to form electrical conductive layers on the PET fiber surface. The silver plated PET-based TCA was tested by Joule heating and the tensile actuation was increased up to 12.1% (6 V) due to the enhanced surface hardness and slippage of PET fibers. Overall, silver plating of the polymeric yarn provided a fast actuation speed and enhanced actuation performance of the TCA actuator by Joule heating, providing a great potential for being used in artificial muscle for biomimetic machines including robots, industrial actuators and powered exoskeletons.

  2. Drag-based composite super-twisting sliding mode control law design for Mars entry guidance

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenhua; Yang, Jun; Li, Shihua; Guo, Lei

    2016-06-01

    In this paper, the drag-based trajectory tracking guidance problem is investigated for Mars entry vehicle subject to uncertainties. A composite super twisting sliding mode control method based on finite-time disturbance observer is proposed for guidance law design. The proposed controller not only eliminates the effects of matched and mismatched disturbances due to uncertainties of atmospheric models and vehicle aerodynamics but also guarantees the continuity of control action. Numerical simulations are carried out on the basis of Mars Science Laboratory mission, where the results show that the proposed methods can improve the Mars entry guidance precision as compared with some existing guidance methods including PID and ADRC.

  3. Structural Design of Wing Twist for Pitch Control of Joined Wing Sensor Craft

    DTIC Science & Technology

    2006-03-01

    obtained deflections either. Although the strain induced into the structure by the aft wing twist was on the order of the aerodynamic forces alone...4-14 4.14 Slit Vertical Restraint Forces for Configuration #4 with Twist and Aerodynamic ...4-4 4.3 Aft Wing Strains Due to Twist and Aerodynamic Loads . . . . . . . . . . . . . . . . 4-4

  4. Control of discrete time systems based on recurrent Super-Twisting-like algorithm.

    PubMed

    Salgado, I; Kamal, S; Bandyopadhyay, B; Chairez, I; Fridman, L

    2016-09-01

    Most of the research in sliding mode theory has been carried out to in continuous time to solve the estimation and control problems. However, in discrete time, the results in high order sliding modes have been less developed. In this paper, a discrete time super-twisting-like algorithm (DSTA) was proposed to solve the problems of control and state estimation. The stability proof was developed in terms of the discrete time Lyapunov approach and the linear matrix inequalities theory. The system trajectories were ultimately bounded inside a small region dependent on the sampling period. Simulation results tested the DSTA. The DSTA was applied as a controller for a Furuta pendulum and for a DC motor supplied by a DSTA signal differentiator.

  5. Evaluations of bit sleeve and twisted-body bit designs for controlling roof bolter dust

    PubMed Central

    Beck, T.W.

    2015-01-01

    Drilling into coal mine roof strata to install roof bolts has the potential to release substantial quantities of respirable dust. Due to the proximity of drill holes to the breathing zone of roof bolting personnel, dust escaping the holes and avoiding capture by the dust collection system pose a potential respiratory health risk. Controls are available to complement the typical dry vacuum collection system and minimize harmful exposures during the initial phase of drilling. This paper examines the use of a bit sleeve in combination with a dust-hog-type bit to improve dust extraction during the critical initial phase of drilling. A twisted-body drill bit is also evaluated to determine the quantity of dust liberated in comparison with the dust-hog-type bit. Based on the results of our laboratory tests, the bit sleeve may reduce dust emissions by one-half during the initial phase of drilling before the drill bit is fully enclosed by the drill hole. Because collaring is responsible for the largest dust liberations, overall dust emission can also be substantially reduced. The use of a twisted-body bit has minimal improvement on dust capture compared with the commonly used dust-hog-type bit. PMID:26257435

  6. Prediction of BVI Noise for an Active Twist Rotor Using a Loosely Coupled CFD/CSD Method and Comparison to Experimental Data

    NASA Technical Reports Server (NTRS)

    Fogarty, David E.; Wilbur, Matthew L.; Sekula, Martin K.; Boyd, David Douglas, Jr.

    2012-01-01

    Numerical predictions of the acoustic characteristics of an Active Twist Rotor (ATR), using two methods to compute the rotor blade aerodynamics and elastic blade motion are compared to experimental data from a wind tunnel test in the NASA Langley Transonic Dynamics Tunnel (TDT) in 2000. The first method, a loosely coupled iterative method, utilizes the Computational Fluid Dynamics (CFD) code OVERFLOW 2 and the Computational Structural Dynamics (CSD) code CAMRAD II. The second method utilizes the CAMRAD II free-wake model only. The harmonic active-twist control to the main rotor blade system is identified with three parameters - harmonic actuation frequency, actuation amplitude, and control phase angle. The resulting aerodynamics and blade motion data from the two methods are then used in the acoustics code PSU-WOPWOP to predict acoustic pressure on a spherical array of equally spaced observers surrounding the rotor. This spherical distribution of pressure is used to compute the sound power level representing baseline and actuated conditions. Sound power levels for three categories of noise are defined as - blade-vortex interaction sound power level (BVIPWL), low frequency sound power level (LFPWL), and overall sound power level, OAPWL. Comparisons with measured data indicate the CFD/CSD analysis successfully captures the trends in sound power levels and the effects of active-twist control at advance ratios of 0.14 and 0.17. The free-wake model predictions show inconsistent sound power levels relative to the trends in the experimental and CFD data. This paper presents the first ever comparison between CFD/CSD acoustic predictions for an active-twist rotor and experimental measurements.

  7. Maternal Inheritance of Twist and Analysis of MAPK Activation in Embryos of the Polychaete Annelid Platynereis dumerilii

    PubMed Central

    Pfeifer, Kathrin; Schaub, Christoph; Domsch, Katrin; Dorresteijn, Adriaan; Wolfstetter, Georg

    2014-01-01

    In this study, we aimed to identify molecular mechanisms involved in the specification of the 4d (mesentoblast) lineage in Platynereis dumerilii. We employ RT-PCR and in situ hybridization against the Platynereis dumerilii twist homolog (Pdu-twist) to reveal mesodermal specification within this lineage. We show that Pdu-twist mRNA is already maternally distributed. After fertilization, ooplasmatic segregation leads to relocation of Pdu-twist transcripts into the somatoblast (2d) lineage and 4d, indicating that the maternal component of Pdu-twist might be an important prerequisite for further mesoderm specification but does not represent a defining characteristic of the mesentoblast. However, after the primordial germ cells have separated from the 4d lineage, zygotic transcription of Pdu-twist is exclusively observed in the myogenic progenitors, suggesting that mesodermal specification occurs after the 4d stage. Previous studies on spiral cleaving embryos revealed a spatio-temporal correlation between the 4d lineage and the activity of an embryonic organizer that is capable to induce the developmental fates of certain micromeres. This has raised the question if specification of the 4d lineage could be connected to the organizer activity. Therefore, we aimed to reveal the existence of such a proposed conserved organizer in Platynereis employing antibody staining against dpERK. In contrast to former observations in other spiralian embryos, activation of MAPK signaling during 2d and 4d formation cannot be detected which questions the existence of a conserved connection between organizer function and specification of the 4d lineage. However, our experiments unveil robust MAPK activation in the prospective nephroblasts as well as in the macromeres and some micromeres at the blastopore in gastrulating embryos. Inhibition of MAPK activation leads to larvae with a shortened body axis, defects in trunk muscle spreading and improper nervous system condensation, indicating a

  8. EGF Receptor Promotes Prostate Cancer Bone Metastasis by Downregulating miR-1 and Activating TWIST1

    PubMed Central

    Chang, Yung-Sheng; Chen, Wei-Yu; Yin, Juan Juan; Sheppard-Tillman, Heather; Huang, Jiaoti; Liu, Yen-Nien

    2016-01-01

    Dysregulation of the EGFR signaling axis enhances bone metastases in many solid cancers. However, the relevant downstream effector signals in this axis are unclear. miR-1 was recently shown to function as a tumor suppressor in prostate cancer cells, where its expression correlated with reduced metastatic potential. In this study, we demonstrated a role for EGFR translocation in regulating transcription of miR-1-1, which directly targets expression of TWIST1. Consistent with these findings, we observed decreased miR-1 levels that correlated with enhanced expression of activated EGFR and TWIST1 in a cohort of human prostate cancer specimens and additional datasets. Our findings support a model in which nuclear EGFR acts as a transcriptional repressor to constrain the tumor-suppressive role of miR-1 and sustain oncogenic activation of TWIST1, thereby leading to accelerated bone metastasis. PMID:26071255

  9. Over-Expressed Twist Associates with Markers of Epithelial Mesenchymal Transition and Predicts Poor Prognosis in Breast Cancers via ERK and Akt Activation

    PubMed Central

    Liang, Yuan-Ke; Chen, Wei-Ling; Zhang, Fan; Bai, Jing-Wen; Qiu, Si-Qi; Du, Cai-Wen; Huang, Wen-He; Zhang, Guo-Jun

    2015-01-01

    Overexpression of Twist, a highly conserved basic helix-loop-helix transcription factor, is associated with epithelial-mesenchymal transition (EMT) and predicts poor prognosis in various kinds of cancers, including breast cancer. In order to further clarify Twist’s role in breast cancer, we detected Twist expression in breast cancer tissues by immunohistochemistry. Twist expression was observed in 54% (220/408) of breast cancer patients and was positively associated with tumor size, Ki67, VEGF-C and HER2 expression. Conversely, Twist was negatively associated with estrogen receptor (ER), progesterone receptor (PgR) and E-cadherin expression. Patients with Twist expression had a poorer prognosis for 30-month disease free survival (DFS) (82.9%) than patients with negative Twist (92.3%). Overexpression of Twist led to dramatic changes in cellular morphology, proliferation, migratory/invasive capability, and expression of EMT-related biomarkers in breast cancer cells. Moreover, we show that Twist serves as a driver of tumorigenesis, as well as an inducer of EMT, at least in part, through activation of the Akt and extracellular signal-regulated protein kinase (ERK) pathways which are critical for Twist-mediated EMT. Our results demonstrate that Twist expression is an important prognostic factor in breast cancer patients. PMID:26295469

  10. Twisted multifilament superconductor

    NASA Technical Reports Server (NTRS)

    Coles, W. D. (Inventor)

    1973-01-01

    Masking selected portions of a ribbon and forming an intermetallic compound on the unmasked portions by a controlled diffusion reaction produces a twisted filamentary structure. The masking material prohibits the formation of superconductive material on predetermined areas of the substrate.

  11. Force and twist dependence of RepC nicking activity on torsionally-constrained DNA molecules

    PubMed Central

    Pastrana, Cesar L.; Carrasco, Carolina; Akhtar, Parvez; Leuba, Sanford H.; Khan, Saleem A.; Moreno-Herrero, Fernando

    2016-01-01

    Many bacterial plasmids replicate by an asymmetric rolling-circle mechanism that requires sequence-specific recognition for initiation, nicking of one of the template DNA strands and unwinding of the duplex prior to subsequent leading strand DNA synthesis. Nicking is performed by a replication-initiation protein (Rep) that directly binds to the plasmid double-stranded origin and remains covalently bound to its substrate 5′-end via a phosphotyrosine linkage. It has been proposed that the inverted DNA sequences at the nick site form a cruciform structure that facilitates DNA cleavage. However, the role of Rep proteins in the formation of this cruciform and the implication for its nicking and religation functions is unclear. Here, we have used magnetic tweezers to directly measure the DNA nicking and religation activities of RepC, the replication initiator protein of plasmid pT181, in plasmid sized and torsionally-constrained linear DNA molecules. Nicking by RepC occurred only in negatively supercoiled DNA and was force- and twist-dependent. Comparison with a type IB topoisomerase in similar experiments highlighted a relatively inefficient religation activity of RepC. Based on the structural modeling of RepC and on our experimental evidence, we propose a model where RepC nicking activity is passive and dependent upon the supercoiling degree of the DNA substrate. PMID:27488190

  12. Twisted gastrulation (Tsg) is regulated by Tob and enhances TGF-β signaling in activated T lymphocytes

    PubMed Central

    Tzachanis, Dimitrios; Li, Lequn; Lafuente, Esther M.; Berezovskaya, Alla; Freeman, Gordon J.

    2007-01-01

    Quiescent T cells express Tob, an APRO gene family member, which functions as a transcriptional regulator. Subtractive hybridization identified Twisted gastrulation (Tsg) as one of the genes suppressed by Tob. Tsg is a secreted protein that interacts with Drosophila decapentaplegic (Dpp) and its vertebrate orthologs BMP2/4 and regulates morphogenetic effects in embryos. Here, we report the expression and function of Tsg in human T cells. Tsg mRNA was almost undetectable in unstimulated T cells and was up-regulated after activation by TCR/CD3 and either CD28, IL-2, or PMA. Tsg protein had no effect on responses of primary T cells to TCR/CD3 stimulation but had a potent inhibitory effect on proliferation and cytokine production of primed alloreactive CD4+ cells. Surprisingly, Tsg did not affect phosphorylation of the BMP-specific Smad1 but induced phosphorylation of the TGF-β–specific Smad2 and mediated DNA binding on Smad3/4 consensus-binding sites, suggesting that it acted downstream of TGF-β. In vitro association assays revealed a direct interaction of Tsg and TGF-β proteins. Thus, Tsg functions as an agonist synergizing with TGF-β to inhibit T-cell activation. Modulation of Tsg signaling may represent a novel target for molecular intervention toward control of aberrant T-cell responses during ongoing graft-versus-host disease (GVHD) and autoimmune diseases. PMID:17164348

  13. Twisting solar coronal jet launched at the boundary of an active region

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Guo, Y.; Moreno-Insertis, F.; Aulanier, G.; Yelles Chaouche, L.; Nishizuka, N.; Harra, L. K.; Thalmann, J. K.; Vargas Dominguez, S.; Liu, Y.

    2013-11-01

    Aims: A broad jet was observed in a weak magnetic field area at the edge of active region NOAA 11106 that also produced other nearby recurring and narrow jets. The peculiar shape and magnetic environment of the broad jet raised the question of whether it was created by the same physical processes of previously studied jets with reconnection occurring high in the corona. Methods: We carried out a multi-wavelength analysis using the EUV images from the Atmospheric Imaging Assembly (AIA) and magnetic fields from the Helioseismic and Magnetic Imager (HMI) both on-board the Solar Dynamics Observatory, which we coupled to a high-resolution, nonlinear force-free field extrapolation. Local correlation tracking was used to identify the photospheric motions that triggered the jet, and time-slices were extracted along and across the jet to unveil its complex nature. A topological analysis of the extrapolated field was performed and was related to the observed features. Results: The jet consisted of many different threads that expanded in around 10 minutes to about 100 Mm in length, with the bright features in later threads moving faster than in the early ones, reaching a maximum speed of about 200 km s-1. Time-slice analysis revealed a striped pattern of dark and bright strands propagating along the jet, along with apparent damped oscillations across the jet. This is suggestive of a (un)twisting motion in the jet, possibly an Alfvén wave. Bald patches in field lines, low-altitude flux ropes, diverging flow patterns, and a null point were identified at the basis of the jet. Conclusions: Unlike classical λ or Eiffel-tower-shaped jets that appear to be caused by reconnection in current sheets containing null points, reconnection in regions containing bald patches seems to be crucial in triggering the present jet. There is no observational evidence that the flux ropes detected in the topological analysis were actually being ejected themselves, as occurs in the violent phase of

  14. Direct Observation and Control of Ultrafast Photoinduced Twisted Intramolecular Charge Transfer (TICT) in Triphenyl-Methane Dyes

    PubMed Central

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2012-01-01

    Femtosecond time-resolved infrared spectroscopy was employed to study intramolecular charge transfer in triphenylmethane dyes, including malachite green (MG), malachite green carbinol base (MGCB), and leucomalachite green (LMG). A local excited state (LE) and a twisted intramolecular charge-transfer (TICT) state have been observed directly in MG. Furthermore, solvent-controlled TICT measurements in a series of linear alcohols indicate that the transition time (4–11 ps) from LE to TICT is strongly dependent on alcohol viscosity, which is due to rotational hindrance of dimethylaniline in high-viscosity solvents. For LMG, no TICT is observed due to steric hindrance caused by the sp3-hybridized central carbon atom. However, for MGCB, TICT is rescued by the addition of the electron-donating hydroxyl group to the bridge. These results for MG and its analogues provide new insight regarding the dynamics and mechanism of twisted intramolecular charge transfer (TICT) in triphenylmethane dyes. PMID:23009668

  15. Light's twist

    PubMed Central

    Padgett, Miles

    2014-01-01

    That light travels in straight lines is a statement of the obvious. However, the energy and momentum flow within light beams can twist to form vortices such as eddies in a stream. These twists carry angular momentum, which can make microscopic objects spin, be used to encode extra information in communication systems, enable the design of novel imaging systems and allow new tests of quantum mechanics. PMID:25484612

  16. Discrete Levels of Twist Activity Are Required to Direct Distinct Cell Functions during Gastrulation and Somatic Myogenesis

    PubMed Central

    Wong, Ming-Ching; Dobi, Krista C.; Baylies, Mary K.

    2014-01-01

    Twist (Twi), a conserved basic helix-loop-helix transcriptional regulator, directs the epithelial-to-mesenchymal transition (EMT), and regulates changes in cell fate, cell polarity, cell division and cell migration in organisms from flies to humans. Analogous to its role in EMT, Twist has been implicated in metastasis in numerous cancer types, including breast, pancreatic and prostate. In the Drosophila embryo, Twist is essential for discrete events in gastrulation and mesodermal patterning. In this study, we derive a twi allelic series by examining the various cellular events required for gastrulation in Drosophila. By genetically manipulating the levels of Twi activity during gastrulation, we find that coordination of cell division is the most sensitive cellular event, whereas changes in cell shape are the least sensitive. Strikingly, we show that by increasing levels of Snail expression in a severe twi hypomorphic allelic background, but not a twi null background, we can reconstitute gastrulation and produce viable adult flies. Our results demonstrate that the level of Twi activity determines whether the cellular events of ventral furrow formation, EMT, cell division and mesodermal migration occur. PMID:24915423

  17. Theoretical stability and control characteristics of wings with various amounts of taper and twist

    NASA Technical Reports Server (NTRS)

    Pearson, Henry A; Jones, Robert T

    1938-01-01

    Stability derivatives have been computed for twisted wings of different plan forms that include variations in both the wing taper and the aspect ratio. Taper ratios of 1.0, 0,50, and 0.25 are considered for each of three aspect ratios: 6, 10, and 16. The specific derivatives for which results are given are the rolling-moment and the yawing-moment derivatives with respect to (a) rolling velocity, (b) yawing velocity, and (c) angle of sideslip. These results are given in such a form that the effect of any initial symmetrical wing twist (such as may be produced by flaps) on the derivatives may easily be taken into account. In addition to the stability derivatives, results are included for determining the theoretical rolling moment due to aileron deflection and a series of influence lines is given by which the loading across the span may be determined for any angle-of-attack distribution that may occur on the wing plan forms considered. The report also includes incidental references to the application of the results.

  18. Note: Position/torque control of antagonistic robot joint with high-compliant twisted string actuators (TSAs).

    PubMed

    Park, Jihyuk; Kim, Ji-Chul; Kim, Kyung-Soo; Kim, Soohyun

    2016-12-01

    A tendon-driven robot joint that has a low inertia compared with a conventional drive system is proposed. The robot joint displaces the drive system toward the robot base, and it is driven by twisted string actuators (TSAs), which are a substitute for the conventional heavy drive system. The design of the proposed robot joint is based on an antagonistic scheme that is actuated by two motors. The torques from the motors are transmitted to the robot joint through the TSAs. Based on the geometric analysis of TSAs, strategies for position and torque control are proposed for an antagonistic robot joint driven by TSAs. To verify the proposed control strategies, several control experiments are conducted using a developed prototype of a robot joint.

  19. Inhibition of TWIST1 leads to activation of oncogene-induced senescence in oncogene-driven non-small cell lung cancer.

    PubMed

    Burns, Timothy F; Dobromilskaya, Irina; Murphy, Sara C; Gajula, Rajendra P; Thiyagarajan, Saravanan; Chatley, Sarah N H; Aziz, Khaled; Cho, Yoon-Jae; Tran, Phuoc T; Rudin, Charles M

    2013-04-01

    A large fraction of non-small cell lung cancers (NSCLC) are dependent on defined oncogenic driver mutations. Although targeted agents exist for EGFR- and EML4-ALK-driven NSCLCs, no therapies target the most frequently found driver mutation, KRAS. Furthermore, acquired resistance to the currently targetable driver mutations is nearly universally observed. Clearly a novel therapeutic approach is needed to target oncogene-driven NSCLCs. We recently showed that the basic helix-loop-helix transcription factor Twist1 cooperates with mutant Kras to induce lung adenocarcinoma in transgenic mouse models and that inhibition of Twist1 in these models led to Kras-induced senescence. In the current study, we examine the role of TWIST1 in oncogene-driven human NSCLCs. Silencing of TWIST1 in KRAS-mutant human NSCLC cell lines resulted in dramatic growth inhibition and either activation of a latent oncogene-induced senescence program or, in some cases, apoptosis. Similar effects were observed in EGFR mutation-driven and c-Met-amplified NSCLC cell lines. Growth inhibition by silencing of TWIST1 was independent of p53 or p16 mutational status and did not require previously defined mediators of senescence, p21 and p27, nor could this phenotype be rescued by overexpression of SKP2. In xenograft models, silencing of TWIST1 resulted in significant growth inhibition of KRAS-mutant, EGFR-mutant, and c-Met-amplified NSCLCs. Remarkably, inducible silencing of TWIST1 resulted in significant growth inhibition of established KRAS-mutant tumors. Together these findings suggest that silencing of TWIST1 in oncogene driver-dependent NSCLCs represents a novel and promising therapeutic strategy.

  20. Twisted baskets.

    PubMed

    Hermann, Keith; Pratumyot, Yaowalak; Polen, Shane; Hardin, Alex M; Dalkilic, Erdin; Dastan, Arif; Badjić, Jovica D

    2015-02-23

    A preparative procedure for obtaining a pair of twisted molecular baskets, each comprising a chiral framework with either right ((P)-1syn) or left ((M)-1syn) sense of twist and six ester groups at the rim has been developed and optimized. The racemic (P/M)-1syn can be obtained in three synthetic steps from accessible starting materials. The resolution of (P/M)-1syn is accomplished by its transesterification with (1R,2S,5R)-(-)-menthol in the presence of a Ti(IV) catalyst to give diastereomeric 8(P) and 8(M). It was found that dendritic-like cavitands 8(P) and 8(M), in CD2Cl2, undergo self-inclusion ((1)H NMR spectroscopy) with a menthol moiety occupying the cavity of each host. Importantly, the degree of inclusion of the menthol group was ((1)H NMR spectroscopy) found to be greater in the case of 8(P) than 8(M). Accordingly, it is suggested that different folding characteristic of 8(P) and 8(M) ought to affect the physicochemical characteristics of the hosts to permit their effective separation by column chromatography. The absolute configuration of 8(P)/8(M), encompassing right- and left-handed "cups", was determined with the exciton chirality method and also verified in silico (DFT: B3LYP/TZVP). Finally, the twisted baskets are strongly fluorescent due to three naphthalene chromophores, having a high fluorescence quantum yield within the rigid framework of 8(P)/8(M).

  1. Synthesis of medium-bridged twisted lactams via cation-pi control of the regiochemistry of the intramolecular Schmidt reaction.

    PubMed

    Szostak, Michal; Yao, Lei; Aubé, Jeffrey

    2010-02-19

    Medium-bridged twisted amides can be synthesized by the intramolecular Schmidt reaction of 2-azidoalkyl ketones. In these reactions, the regiochemistry of the Schmidt reaction is diverted into a typically disfavored pathway by the presence of an aromatic group at the alpha-position adjacent to the ketone, which stabilizes the predominantly reactive conformation of the azidohydrin intermediate by engaging in a nonbonded cation-pi interaction with the positively charged diazonium cation. This results in the rarely observed rearrangement of the C-C bond distal to the azidoalkyl chain. This reaction pathway also requires the azide-containing tether to be situated in the axial orientation in the key azidohydrin intermediate. Examination of the effect of substitution of aromatic rings on the regiochemistry of the Schmidt reaction shows an increase in the migratory selectivity with more electron-rich aromatic groups. The selectivity is lower when an electron-withdrawing substituent is placed on the aromatic ring. The ability of cation-pi interactions to act as a controlling element decreases when Lewis acids coordinate to substituents on the aromatic ring. The developed version of the Schmidt reaction provides a direct access to a family of medium-bridged twisted amides with a [4.3.1] bicyclic system, compounds which are very difficult to access with use of other currently available methods.

  2. A method for controlling the synthesis of stable twisted two-dimensional conjugated molecules

    PubMed Central

    Li, Yongjun; Jia, Zhiyu; Xiao, Shengqiang; Liu, Huibiao; Li, Yuliang

    2016-01-01

    Thermodynamic stabilization (π-electron delocalization through effective conjugation) and kinetic stabilization (blocking the most-reactive sites) are important considerations when designing stable polycyclic aromatic hydrocarbons displaying tunable optoelectronic properties. Here, we demonstrate an efficient method for preparing a series of stable two-dimensional (2D) twisted dibenzoterrylene-acenes. We investigated their electronic structures and geometries in the ground state through various experiments assisted by calculations using density functional theory. We find that the length of the acene has a clear effect on the photophysical, electrochemical, and magnetic properties. These molecules exhibit tunable ground-state structures, in which a stable open-shell quintet tetraradical can be transferred to triplet diradicals. Such compounds are promising candidates for use in nonlinear optics, field effect transistors and organic spintronics; furthermore, they may enable broader applications of 2D small organic molecules in high-performance electronic and optical devices. PMID:27181692

  3. Twist: a molecular target in cancer therapeutics.

    PubMed

    Khan, Md Asaduzzaman; Chen, Han-chun; Zhang, Dianzheng; Fu, Junjiang

    2013-10-01

    Twist, the basic helix-loop-helix transcription factor, is involved in the process of epithelial to mesenchymal transitions (EMTs), which play an essential role in cancer metastasis. Overexpression of Twist or its promoter methylation is a common scenario in metastatic carcinomas. Twist is activated by a variety of signal transduction pathways, including Akt, signal transducer and activator of transcription 3, mitogen-activated protein kinase, Ras, and Wnt signaling. Activated Twist upregulates N-cadherin and downregulates E-cadherin, which are the hallmarks of EMT. Moreover, Twist plays an important role in some physiological processes involved in metastasis, like angiogenesis, invadopodia, extravasation, and chromosomal instability. Twist also protects cancer cells from apoptotic cell death. In addition, Twist is responsible for the stemness of cancer cells and the generation of drug resistance. Recently, targeting Twist has gained significant interests in cancer therapeutics. The inactivation of Twist by small RNA technology or chemotherapeutic approach has been proved successful. Moreover, several inhibitors which are antagonistic to the upstream or downstream molecules of Twist signaling pathways have also been identified. Development of potential treatment strategies by targeting Twist has a great promise in cancer therapeutics.

  4. Adaptive continuous twisting algorithm

    NASA Astrophysics Data System (ADS)

    Moreno, Jaime A.; Negrete, Daniel Y.; Torres-González, Victor; Fridman, Leonid

    2016-09-01

    In this paper, an adaptive continuous twisting algorithm (ACTA) is presented. For double integrator, ACTA produces a continuous control signal ensuring finite time convergence of the states to zero. Moreover, the control signal generated by ACTA compensates the Lipschitz perturbation in finite time, i.e. its value converges to the opposite value of the perturbation. ACTA also keeps its convergence properties, even in the case that the upper bound of the derivative of the perturbation exists, but it is unknown.

  5. Generalizing twisted gauge invariance

    SciTech Connect

    Duenas-Vidal, Alvaro; Vazquez-Mozo, Miguel A.

    2009-05-01

    We discuss the twisting of gauge symmetry in noncommutative gauge theories and show how this can be generalized to a whole continuous family of twisted gauge invariances. The physical relevance of these twisted invariances is discussed.

  6. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives.

    PubMed

    Ko, Sangwon; Hoke, Eric T; Pandey, Laxman; Hong, Sanghyun; Mondal, Rajib; Risko, Chad; Yi, Yuanping; Noriega, Rodrigo; McGehee, Michael D; Brédas, Jean-Luc; Salleo, Alberto; Bao, Zhenan

    2012-03-21

    Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.

  7. Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona

    SciTech Connect

    Thalmann, J. K.

    2014-01-01

    The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region (AR) corona has only recently been substantiated by high-resolution observations. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms. We deliver estimates of the free magnetic energy associated with a braided coronal structure. Our model results suggest (∼100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the AR corona being heated by field line braiding. We were able to appropriately assess the coronal free energy by using vector field measurements and we attribute the lower energy estimate of CG13 to the underestimated (by a factor of 10) azimuthal field strength. We also quantify the increase in the overall twist of a flare-related flux rope that was noted by CG13. From our models we find that the overall twist of the flux rope increased by about half a turn within 12 minutes. Unlike another method to which we compare our results, we evaluate the winding of the flux rope's constituent field lines around each other purely based on their modeled coronal three-dimensional field line geometry. To our knowledge, this is done for the first time here.

  8. LncRNA-Hh Strengthen Cancer Stem Cells Generation in Twist-Positive Breast Cancer via Activation of Hedgehog Signaling Pathway.

    PubMed

    Zhou, Mingli; Hou, Yixuan; Yang, Guanglun; Zhang, Hailong; Tu, Gang; Du, Yan-e; Wen, Siyang; Xu, Liyun; Tang, Xi; Tang, Shifu; Yang, Li; Cui, Xiaojiang; Liu, Manran

    2016-01-01

    Cancer stem cells (CSCs) are a subpopulation of neoplastic cells with self-renewal capacity and limitless proliferative potential as well as high invasion and migration capacity. These cells are commonly associated with epithelial-mesenchymal transition (EMT), which is also critical for tumor metastasis. Recent studies illustrate a direct link between EMT and stemness of cancer cells. Long non-coding RNAs (lncRNAs) have emerged as important new players in the regulation of multiple cellular processes in various diseases. To date, the role of lncRNAs in EMT-associated CSC stemness acquisition and maintenance remains unclear. In this study, we discovered that a set of lncRNAs were dysregulated in Twist-positive mammosphere cells using lncRNA microarray analysis. Multiple lncRNAs-associated canonical signaling pathways were identified via bioinformatics analysis. Especially, the Shh-GLI1 pathway associated lncRNA-Hh, transcriptionally regulated by Twist, directly targets GAS1 to stimulate the activation of hedgehog signaling (Hh). The activated Hh increases GLI1 expression, and enhances the expression of SOX2 and OCT4 to play a regulatory role in CSC maintenance. Thus, the mammosphere-formation efficiency (MFE) and the self-renewal capacity in vitro, and oncogenicity in vivo in Twist-positive breast cancer cells are elevated. lncRNA-Hh silence in Twist-positive breast cells attenuates the activated Shh-GLI1 signaling and decreases the CSC-associated SOX and OCT4 levels, thus reduces the MFE and tumorigenesis of transplanted tumor. Our results reveal that lncRNAs function as an important regulator endowing Twist-induced EMT cells to gain the CSC-like stemness properties.

  9. AKT-ions with a TWIST between EMT and MET

    PubMed Central

    Tang, Huifang; Massi, Daniela; Hemmings, Brian A.; Mandalà, Mario; Hu, Zhengqiang; Wicki, Andreas; Xue, Gongda

    2016-01-01

    The transcription factor Twist is an important regulator of cranial suture during embryogenesis. Closure of the neural tube is achieved via Twist-triggered cellular transition from an epithelial to mesenchymal phenotype, a process known as epithelial-mesenchymal transition (EMT), characterized by a remarkable increase in cell motility. In the absence of Twist activity, EMT and associated phenotypic changes in cell morphology and motility can also be induced, albeit moderately, by other transcription factor families, including Snail and Zeb. Aberrant EMT triggered by Twist in human mammary tumour cells was first reported to drive metastasis to the lung in a metastatic breast cancer model. Subsequent analysis of many types of carcinoma demonstrated overexpression of these unique EMT transcription factors, which statistically correlated with worse outcome, indicating their potential as biomarkers in the clinic. However, the mechanisms underlying their activation remain unclear. Interestingly, increasing evidence indicates they are selectively activated by distinct intracellular kinases, thereby acting as downstream effectors facilitating transduction of cytoplasmic signals into nucleus and reprogramming EMT and mesenchymal-epithelial transition (MET) transcription to control cell plasticity. Understanding these relationships and emerging data indicating differential phosphorylation of Twist leads to complex and even paradoxical functionalities, will be vital to unlocking their potential in clinical settings. PMID:27623213

  10. Super-twisting sliding mode differentiation for improving PD controllers performance of second order systems.

    PubMed

    Salgado, Ivan; Chairez, Isaac; Camacho, Oscar; Yañez, Cornelio

    2014-07-01

    Designing a proportional derivative (PD) controller has as main problem, to obtain the derivative of the output error signal when it is contaminated with high frequency noises. To overcome this disadvantage, the supertwisting algorithm (STA) is applied in closed-loop with a PD structure for multi-input multi-output (MIMO) second order nonlinear systems. The stability conditions were analyzed in terms of a strict non-smooth Lyapunov function and the solution of Riccati equations. A set of numerical test was designed to show the advantages of implementing PD controllers that used STA as a robust exact differentiator. The first numerical example showed the stabilization of an inverted pendulum. The second example was designed to solve the tracking problem of a two-link robot manipulator.

  11. Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.

    2015-01-01

    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.

  12. Sterically-controlled intermolecular Friedel-Crafts acylation with twisted amides via selective N-C cleavage under mild conditions.

    PubMed

    Liu, Yongmei; Meng, Guangrong; Liu, Ruzhang; Szostak, Michal

    2016-05-21

    Highly chemoselective Friedel-Crafts acylation with twisted amides under mild conditions is reported for the first time. The reaction shows high functional group tolerance, obviating the need for preformed sensitive organometallic reagents and expensive transition metal catalysts. The high reactivity of amides is switched on by ground-state steric distortion to disrupt the amide bond nN→πCO* resonance as a critical design feature. Conceptually, this new acid-promoted mechanism of twisted amides provides direct access to bench-stable acylating reagents under mild, metal-free conditions.

  13. Cable-Twisting Machine

    NASA Technical Reports Server (NTRS)

    Kurnett, S.

    1982-01-01

    New cable-twisting machine is smaller and faster than many production units. Is useful mainly in production of short-run special cables. Already-twisted cable can be fed along axis of machine. Faster operation than typical industrial cable-twisting machines possible by using smaller spools of wire.

  14. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures

    NASA Astrophysics Data System (ADS)

    Mishchenko, A.; Tu, J. S.; Cao, Y.; Gorbachev, R. V.; Wallbank, J. R.; Greenaway, M. T.; Morozov, V. E.; Morozov, S. V.; Zhu, M. J.; Wong, S. L.; Withers, F.; Woods, C. R.; Kim, Y.-J.; Watanabe, K.; Taniguchi, T.; Vdovin, E. E.; Makarovsky, O.; Fromhold, T. M.; Fal'Ko, V. I.; Geim, A. K.; Eaves, L.; Novoselov, K. S.

    2014-10-01

    Recent developments in the technology of van der Waals heterostructures made from two-dimensional atomic crystals have already led to the observation of new physical phenomena, such as the metal-insulator transition and Coulomb drag, and to the realization of functional devices, such as tunnel diodes, tunnel transistors and photovoltaic sensors. An unprecedented degree of control of the electronic properties is available not only by means of the selection of materials in the stack, but also through the additional fine-tuning achievable by adjusting the built-in strain and relative orientation of the component layers. Here we demonstrate how careful alignment of the crystallographic orientation of two graphene electrodes separated by a layer of hexagonal boron nitride in a transistor device can achieve resonant tunnelling with conservation of electron energy, momentum and, potentially, chirality. We show how the resonance peak and negative differential conductance in the device characteristics induce a tunable radiofrequency oscillatory current that has potential for future high-frequency technology.

  15. Twisted Van der Waals Systems

    NASA Astrophysics Data System (ADS)

    Gani, Satrio; Rossi, Enrico

    Van der Waals systems formed by two-dimensional (2D) crystals and nanostructures possess electronic properties that make them extremely interesting for basic science and for possible technological applications. By tuning the relative angle (the twist angle) between the layers, or nanostructures, forming the Van der Waals systems experimentalists have been able to control the stacking configuration of such systems. We study the dependence on the twist angle of the electronic properties of two classes of Van der Waals systems: double layers formed by two, one-atom thick, layers of a metal dichalcogenide such as molybdenum disulfide (MoS2), and graphene nanoribbons on a hexagonal boron nitride substrate. We present results that show how, for both classes of systems, the electronic properties can be strongly tuned via the twist angle. Work supported by ACS-PRF-53581-DNI5 and NSF-DMR-1455233.

  16. "Oliver Twist": A Teacher's Guide.

    ERIC Educational Resources Information Center

    Cashion, Carol; Fischer, Diana

    This teacher's guide for public television's 3-part adaptation of Charles Dickens's "Oliver Twist" provides information that will help enrich students' viewing of the series, whether or not they read the novel. The guide includes a wide range of discussion and activity ideas; there is also a series Web site and a list of Web resources.…

  17. The Invariant Twist of Magnetic Fields in the Relativistic Jets of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Christodoulou, Dimitris M.; Kazanas, Demosthenes; Gabuzda, Denise C.

    2009-01-01

    The origin of cosmic magnetic (B) fields remains an open question. It is generally believed that very weak primordial B fields are amplified by dynamo processes, but it appears unlikely that the amplification proceeds fast enough to account for the fields presently observed in galaxies and galaxy clusters. In an alternative scenario, cosmic B fields are generated near the inner edges of accretion disks in Active Galactic Nuclei (AGNs) by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with photons. While dynamo processes show no preference for the polarity of the (presumably random) seed field that they amplify, this alternative mechanism uniquely relates the polarity of the poloidal B field to the angular velocity of the accretion disk, resulting in a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry came about by chance being less than 1 %. This lends support to the hypothesis that the Universe is seeded by B fields that are generated in AGN via this mechanism

  18. Down regulation of Akirin-2 increases chemosensitivity in human glioblastomas more efficiently than Twist-1

    PubMed Central

    Krossa, Sebastian; Schmitt, Anne Dorothée; Hattermann, Kirsten; Fritsch, Jürgen; Scheidig, Axel J.; Mehdorn, Hubertus Maximilian; Held-Feindt, Janka

    2015-01-01

    The Twist-1 transcription factor and its interacting protein Akirin-2 regulate apoptosis. We found that in glioblastomas, highly malignant brain tumors, Akirin-2 and Twist-1 were expressed in glial fibrillary acidic protein positive tumor regions as well as in tumor endothelial cells and infiltrating macrophages / microglia. Temozolomide (TMZ) induced the expression of both molecules, partly shifting their nuclear to cytosolic localization. The knock-down (kd) of Akirin-2 increased the activity of cleaved (c)Caspase-3/-7, the amounts of cCaspases-3, -7 and cPARP-1 and resulted in an increased number of apoptotic cells after TMZ exposure. Glioblastoma cells containing decreased amounts of Akirin-2 after kd contained increased amounts of cCaspase-3 as determined by the ImageStreamx Mark II technology. For Twist-1, similar results were obtained with the exception that the combination of TMZ treatment and Twist-1 kd failed to significantly reduce chemoresistance compared with controls. This could be attributed to a cell population containing only slightly increased cCaspase-3 together with decreased Twist-1 levels, which was clearly larger than the respective population observed under Akirin-2 kd. Our results showed that, compared with Twist-1, Akirin-2 is the more promising target for RNAi strategies antagonizing Twist-1/Akirin-2 facilitated glioblastoma cell survival. PMID:26036627

  19. Ribozyme Catalysis with a Twist: Active State of the Twister Ribozyme in Solution Predicted from Molecular Simulation.

    PubMed

    Gaines, Colin S; York, Darrin M

    2016-03-09

    We present results from molecular dynamics simulations and free energy calculations of the twister ribozyme at different stages along the reaction path to gain insight into its mechanism. The results, together with recent biochemical experiments, provide support for a mechanism involving general-acid catalysis by a conserved adenine residue in the active site. Although adenine has been previously implicated as a general acid acting through the N1 position in other ribozymes such as the hairpin and VS ribozymes, in the twister ribozyme there may be a twist. Biochemical experiments suggest that general acid catalysis may occur through the N3 position, which has never before been implicated in this role; however, currently, there is a lack of a detailed structural model for the active state of the twister ribozyme in solution that is consistent with these and other experiments. Simulations in a crystalline environment reported here are consistent with X-ray crystallographic data, and suggest that crystal packing contacts trap the RNA in an inactive conformation with U-1 in an extruded state that is incompatible with an in-line attack to the scissile phosphate. Simulations in solution, on the other hand, reveal this region to be dynamic and able to adopt a conformation where U-1 is stacked with G33. In this state, the nucleophile is in line with the scissile phosphate, and the N1 position of G33 and N3 position of A1 are poised to act as a general base and acid, respectively, as supported by mutational experiments. Free energy calculations further predict the electrostatic environment causes a shift of the microscopic pKa at the N3 position of A1 toward neutrality by approximately 5 pKa units. These results offer a unified interpretation of a broad range of currently available experimental data that points to a novel mode of general acid catalysis through the N3 position of an adenine nucleobase, thus expanding the repertoire of known mechanistic strategies employed by

  20. Ribozyme catalysis with a twist: the active state of the twister ribozyme in solution predicted from molecular simulation

    PubMed Central

    Gaines, Colin S.; York, Darrin M.

    2016-01-01

    We present results from molecular dynamics simulations and free energy calculations of the twister ribozyme at different stages along the reaction path in order to gain insight into its mechanism. Results, together with recent biochemical experiments, provide support for a mechanism involving general acid catalysis by a conserved adenine residue in the active site. Although adenine has been previously implicated as a general acid acting through the N1 position in other ribozymes such as the hairpin and VS ribozymes, in the twister ribozyme there may be - a twist. Biochemical experiments suggest that general acid catalysis may occur through the N3 position, which has never before been implicated in this role; however, there currently lacks a detailed structural model for the active state of the twister ribozyme in solution that is consistent with these and other experiments. Simulations in a crystalline environment reported here are consistent with X-ray crystallographic data, and suggest that crystal packing contacts trap the RNA in an inactive conformation with U-1 in an extruded state that is incompatible with an in-line attack to the scissile phosphate. Simulations in solution, on the other hand, reveal this region to be dynamic and able to adopt a conformation where U-1 is stacked with G33. In this state, the nucleophile is in line with the scissile phosphate, and the N1 position of G33 and N3 position of A1 are poised to act as general base and acid, respectively, as supported by mutational experiments. Free energy calculations further predict the electrostatic environment causes a shift of the microscopic pKa at the N3 position of A1 toward neutrality by approximately 5 pKa units. These results offer a unified interpretation of a broad range of currently available experimental data that points to a novel mode of general acid catalysis through the N3 position of an adenine nucleobase, thus expanding the repertoire of known mechanistic strategies employed by

  1. Wire harness twisting aid

    NASA Technical Reports Server (NTRS)

    Casey, E. J.; Commadore, C. C.; Ingles, M. E.

    1980-01-01

    Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.

  2. A Twist in fate: evolutionary comparison of Twist structure and function.

    PubMed

    Castanon, Irinka; Baylies, Mary K

    2002-04-03

    The general requirement to induce mesoderm and allocate cells into different mesodermal tissues such as body muscle or heart is common in many animal embryos. Since the discovery of the twist gene, there has been great progress toward unraveling the molecular mechanisms that control mesoderm specification and differentiation. Twist was first identified in Drosophila as a gene crucial for proper gastrulation and mesoderm formation. In the fly embryo, Twist continues to play additional roles, allocating mesodermal cells into the body wall muscle fate and patterning a subset of these muscles. Twist is also required for proper differentiation of the adult musculature. Twist homologues have been identified in a great variety of organisms, which span the phylogenetic tree. These organisms include other invertebrates such as jellyfish, nematode, leech and lancelet as well as vertebrates such as frog, chick, fish, mouse and human. The Twist family shares both homology in structure across the basic helix-loop-helix domain and in expression during mesoderm and muscle development in most species. Here we review the current state of knowledge of the Twist family and consider how Twist functions during development. Moreover, we highlight experimental evidence that shows common themes that Twist employs during specification and patterning of the mesoderm among evolutionarily distant organisms. Conserved principles and the molecular mechanisms underlying them are discussed.

  3. Perversions with a twist

    PubMed Central

    Silva, Pedro E. S.; Trigueiros, Joao L.; Trindade, Ana C.; Simoes, Ricardo; Dias, Ricardo G.; Godinho, Maria Helena; de Abreu, Fernao Vistulo

    2016-01-01

    Perversions connecting two helices with symmetric handedness are a common occurrence in nature, for example in tendrils. These defects can be found in our day life decorating ribbon gifts or when plants use tendrils to attach to a support. Perversions arise when clamped elastic filaments coil into a helical shape but have to conserve zero overall twist. We investigate whether other types of perversions exist and if they display different properties. Here we show mathematically and experimentally that a continuous range of different perversions can exist and present different geometries. Experimentally, different perversions were generated using micro electrospun fibres. Our experimental results also confirm that these perversions behave differently upon release and adopt different final configurations. These results also demonstrate that it is possible to control on demand the formation and shape of microfilaments, in particular, of electrospun fibres by using ultraviolet light. PMID:27025549

  4. Helically twisted photonic crystal fibres.

    PubMed

    Russell, P St J; Beravat, R; Wong, G K L

    2017-02-28

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic 'space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of 'numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame.This article is part of the themed issue 'Optical orbital angular momentum'.

  5. Helically twisted photonic crystal fibres

    PubMed Central

    Beravat, R.; Wong, G. K. L.

    2017-01-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic ‘space’, cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of ‘numerical experiments’ based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069771

  6. Helically twisted photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Russell, P. St. J.; Beravat, R.; Wong, G. K. L.

    2017-02-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic `space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of `numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue 'Optical orbital angular momentum'.

  7. Polarization twist in perovskite ferrielectrics

    PubMed Central

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-01-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of ‘polarization twist’, which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824

  8. A twist of insight - the role of Twist-family bHLH factors in development

    PubMed Central

    BARNES, RALSTON M.; FIRULLI, ANTHONY B.

    2009-01-01

    Members of the Twist-family of bHLH proteins play a pivotal role in a number of essential developmental programs. Twist-family bHLH proteins function by dimerizing with other bHLH members and binding to cis- regulatory elements, called E-boxes. While Twist-family members may simply exhibit a preference in terms of high-affinity binding partners, a complex, multilevel cascade of regulation creates a dynamic role for these bHLH proteins. We summarize in this review information on each Twist-family member concerning expression pattern, function, regulation, downstream targets, and interactions with other bHLH proteins. Additionally, we focus on the phospho-regulatory mechanisms that tightly control posttranslational modification of Twist-family member bHLH proteins. PMID:19378251

  9. Twisted partially pure spinors

    NASA Astrophysics Data System (ADS)

    Herrera, Rafael; Tellez, Ivan

    2016-08-01

    Motivated by the relationship between orthogonal complex structures and pure spinors, we define twisted partially pure spinors in order to characterize spinorially subspaces of Euclidean space endowed with a complex structure.

  10. Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Shin, SangJoon; Cesnik, Carlos E. S.

    2001-01-01

    Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration

  11. Twisted radio waves and twisted thermodynamics.

    PubMed

    Kish, Laszlo B; Nevels, Robert D

    2013-01-01

    We present and analyze a gedanken experiment and show that the assumption that an antenna operating at a single frequency can transmit more than two independent information channels to the far field violates the Second Law of Thermodynamics. Transmission of a large number of channels, each associated with an angular momenta 'twisted wave' mode, to the far field in free space is therefore not possible.

  12. Active control system trends

    NASA Technical Reports Server (NTRS)

    Yore, E. E.; Gunderson, D. C.

    1976-01-01

    The active control concepts which achieve the benefit of improved mission performance and lower cost and generate system trends towards improved dynamic performance, more integration, and digital fly by wire mechanization are described. Analytical issues and implementation requirements and tools and approaches developed to address the analytical and implementation issues are briefly discussed.

  13. The Small C-terminal Domain Phosphatase 1 Inhibits Cancer Cell Migration and Invasion by Dephosphorylating Ser(P)68-Twist1 to Accelerate Twist1 Protein Degradation.

    PubMed

    Sun, Tong; Fu, Junjiang; Shen, Tao; Lin, Xia; Liao, Lan; Feng, Xin-Hua; Xu, Jianming

    2016-05-27

    Twist1 is a basic helix-loop-helix transcription factor that strongly promotes epithelial-to-mesenchymal transition, migration, invasion, and metastasis of cancer cells. The MAPK-phosphorylated Twist1 on its serine 68 (Ser(P)(68)-Twist1) has a significantly enhanced stability and function to drive cancer cell invasion and metastasis. However, the phosphatase that dephosphorylates Ser(P)(68)-Twist1 and destabilizes Twist1 has not been identified and characterized. In this study, we screened a serine/threonine phosphatase cDNA expression library in HEK293T cells with ectopically coexpressed Twist1. We found that the small C-terminal domain phosphatase 1 (SCP1) specifically dephosphorylates Ser(P)(68)-Twist1 in both cell-free reactions and living cells. SCP1 uses its amino acid residues 43-63 to interact with the N terminus of Twist1. Increased SCP1 expression in cells decreased Ser(P)(68)-Twist1 and total Twist1 proteins, whereas knockdown of SCP1 increased Ser(P)(68)-Twist1 and total Twist1 proteins. Furthermore, the levels of SCP1 are negatively correlated with Twist1 protein levels in several cancer cell lines. SCP1-dephosphorylated Twist1 undergoes fast degradation via the ubiquitin-proteasome pathway. Importantly, an increase in SCP1 expression in breast cancer cells with either endogenous or ectopically expressed Twist1 largely inhibits the Twist1-induced epithelial-to-mesenchymal transition phenotype and the migration and invasion capabilities of these cells. These results indicate that SCP1 is the phosphatase that counterregulates the MAPK-mediated phosphorylation of Ser(68)-Twist1. Thus, an increase in SCP1 expression and activity may be a useful strategy for eliminating the detrimental roles of Twist1 in cancer cells.

  14. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    PubMed Central

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134

  15. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation.

    PubMed

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-15

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  16. Twisted Yangians of small rank

    NASA Astrophysics Data System (ADS)

    Guay, Nicolas; Regelskis, Vidas; Wendlandt, Curtis

    2016-04-01

    We study quantized enveloping algebras called twisted Yangians associated with the symmetric pairs of types CI, BDI, and DIII (in Cartan's classification) when the rank is small. We establish isomorphisms between these twisted Yangians and the well known Olshanskii's twisted Yangians of types AI and AII, and also with the Molev-Ragoucy reflection algebras associated with symmetric pairs of type AIII. We also construct isomorphisms with twisted Yangians in Drinfeld's original presentation.

  17. Twist Propagation in Dinucleosome Arrays

    PubMed Central

    Dobrovolskaia, Irina V.; Kenward, Martin; Arya, Gaurav

    2010-01-01

    We present a Monte Carlo simulation study of the distribution and propagation of twist from one DNA linker to another for a two-nucleosome array subjected to externally applied twist. A mesoscopic model of the array that incorporates nucleosome geometry along with the bending and twisting mechanics of the linkers is employed and external twist is applied in stepwise increments to mimic quasistatic twisting of chromatin fibers. Simulation results reveal that the magnitude and sign of the imposed and induced twist on contiguous linkers depend strongly on their relative orientation. Remarkably, the relative direction of the induced and applied twist can become inverted for a subset of linker orientations—a phenomenon we refer to as “twist inversion”. We characterize the twist inversion, as a function of relative linker orientation, in a phase diagram and explain its key features using a simple model based on the geometry of the nucleosome/linker complex. In addition to twist inversion, our simulations reveal “nucleosome flipping”, whereby nucleosomes may undergo sudden flipping in response to applied twist, causing a rapid bending of the linker and a significant change in the overall twist and writhe of the array. Our findings shed light on the underlying mechanisms by which torsional stresses impact chromatin organization. PMID:21081084

  18. Self-Portraits with a Twist

    ERIC Educational Resources Information Center

    DeMarco, Frederick

    2010-01-01

    This article describes an art activity on self-portraiture inspired by artist Tim Hawkinson. Hawkinson created a sculpture titled "Emoter" in which his face, moved by motors, twisted and contorted based on random signals from a TV. This art activity incorporates technology into the art room, brings the work of practicing artists alive, and is a…

  19. Active control of convection

    NASA Astrophysics Data System (ADS)

    Singer, Jonathan; Bau, Haim H.

    1991-12-01

    It is demonstrated theoretically that active (feedback) control can be used to alter the characteristics of thermal convection in a toroidal, vertical loop heated from below and cooled from above. As the temperature difference between the heated and cooled sections of the loop increases, the flow in the uncontrolled loop changes from no motion to steady, time-independent motion to temporally oscillatory, chaotic motion. With the use of a feedback controller effecting small perturbations in the boundary conditions, one can maintain the no-motion state at significantly higher temperature differences than the critical one corresponding to the onset of convection in the uncontrolled system. Alternatively, one can maintain steady, time-independent flow under conditions in which the flow would otherwise be chaotic. That is, the controller can be used to suppress chaos. Likewise, it is possible to stabilize periodic nonstable orbits that exist in the chaotic regime of the uncontrolled system. Finally, the controller also can be used to induce chaos in otherwise laminar (fully predictable), nonchaotic flow.

  20. Cross-Coordinated Control: An Experimentally Verified Technique for the Hybrid Twist and Wrench Control of a Voltage-Controlled Industrial Robot

    DTIC Science & Technology

    1988-12-30

    extremely straight forward development for discrete PID control . Certainly other models are 0 available. Astr6m and Wittenmark [19841, Ogata [1970] and...Hydraulic Control Systems, John Wiley & Sons, Inc., New York. Ogata , K., 1970, Modern Control Engineering, Prentice-Hall, Inc.. Englewood Cliffs, NJ... Ogata , K., 1987, Discrete-Time Control Systems, Prentice-Hall, Inc., Englewood Cliffs. NJ. Ohwovoriole, M.S., 1980, "An Extension to Screw Theory and

  1. The Aurora-A-Twist1 axis promotes highly aggressive phenotypes in pancreatic carcinoma.

    PubMed

    Wang, Jing; Nikhil, Kumar; Viccaro, Keith; Chang, Lei; Jacobsen, Max; Sandusky, George; Shah, Kavita

    2017-03-15

    We uncovered a crucial role for the Aurora kinase A (AURKA)-Twist1 axis in promoting epithelial-to-mesenchymal transition (EMT) and chemoresistance in pancreatic cancer. Twist1 is the first EMT-specific target of AURKA that was identified using an innovative screen. AURKA phosphorylates Twist1 at three sites, which results in its multifaceted regulation - AURKA inhibits its ubiquitylation, increases its transcriptional activity and favors its homodimerization. Twist1 reciprocates and prevents AURKA degradation, thereby triggering a feedback loop. Ablation of either AURKA or Twist1 completely inhibits EMT, highlighting both proteins as central players in EMT progression. Phosphorylation-dead Twist1 serves as a dominant-negative and fully reverses the EMT phenotype induced by Twist1, underscoring the crucial role of AURKA-mediated phosphorylation in mediating Twist1-induced malignancy. Likewise, Twist1-overexpressing BxPC3 cells formed large tumors in vivo, whereas expression of phosphorylation-dead Twist1 fully abrogated this effect. Furthermore, immunohistochemical analysis of pancreatic cancer specimens revealed a 3-fold higher level of Twist1 compared to that seen in healthy normal tissues. This is the first study that links Twist1 in a feedback loop with its activating kinase, which indicates that concurrent inhibition of AURKA and Twist1 will be synergistic in inhibiting pancreatic tumorigenesis and metastasis.

  2. PDGF-D promotes cell growth, aggressiveness, angiogenesis and EMT transformation of colorectal cancer by activation of Notch1/Twist1 pathway.

    PubMed

    Chen, Jinhuang; Yuan, Wenzheng; Wu, Liang; Tang, Qiang; Xia, Qinghua; Ji, Jintong; Liu, Zhengyi; Ma, Zhijun; Zhou, Zili; Cheng, Yifeng; Shu, Xiaogang

    2017-02-07

    Platelet-derived growth factor-D (PDGF-D) plays a crucial role in the progression of several cancers. However, its role in colorectal cancer (CRC) remains unclear. Our study showed that PDGF-D was highly expressed in CRC tissues and was positively associated with the clinicopathological features. Down-regulation of PDGF-D inhibited the tumor growth, migration and angiogenesis of SW480 cells in vitro and in vivo. Whereas up-regulation of PDGF-D promoted the malignant behaviors of HCT116 cells. Moreover, PDGF-D up-regulated the expression of Notch1 and Twist1 in CRC cells. In addition, PDGF-D expression promoted Epithelial to mesenchymal transition (EMT), which was accompanied with decreased E-cadherin and increased Vimentin expression. Consistently, PDGF-D, Notch1, and Twist1 are obviously up-regulated in transforming growth factor-beta 1 (TGF-β1) treated HCT116 cells. Since Notch1 and Twist1 play an important role in EMT and tumor progression, we examined whether there is a correlation between Notch1 and Twist1 in EMT status. Our results showed that up-regulation of Notch1 was able to rescue the effects of PDGF-D down-regulation on Twist1 expression in SW480 cells, whereas down-regulation of Notch1 reduced Twist1 expression in HCT116 cells. Furthermore, we found that Twist1 promoted EMT and aggressiveness of CRC cells. These results suggest that PDGF-D promotes tumor growth and aggressiveness of CRC, moreover, down-regulation of PDGF-D inactivates Notch1/Twist1 axis, which could reverse EMT and prevent CRC progression.

  3. Resonance Raman spectroscopy in twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Righi, A.; Venezuela, P.; Chacham, H.; Costa, S. D.; Fantini, C.; Ruoff, R. S.; Colombo, L.; Bacsa, W. S.; Pimenta, M. A.

    2013-12-01

    In this work we study the Raman spectra of twisted bilayer graphene samples, with different twisting angles, by changing the incident laser energy between 2.54 and 4.14 eV. The spectra exhibit a number of extra peaks, classified in different families, each one associated with bilayer graphenes with different twisting rotational angles. We theoretically analyze the laser energy dependence of these extra peaks considering a set of discrete wavevectors within the interior of the Brillouin zone of graphene, which activate special double-resonance Raman processes. Our result show a nice qualitative agreement between the experimental and simulated spectra, demonstrating that these extra peaks are indeed ascribed to an umklapp double-resonance process in graphene systems.

  4. Twist planet drive

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1996-01-01

    A planetary gear system includes a sun gear coupled to an annular ring gear through a plurality of twist-planet gears, a speeder gear, and a ground structure having an internal ring gear. Each planet gear includes a solid gear having a first half portion in the form of a spur gear which includes vertical gear teeth and a second half portion in the form of a spur gear which includes helical gear teeth that are offset from the vertical gear teeth and which contact helical gear teeth on the speeder gear and helical gear teeth on the outer ring gear. One half of the twist planet gears are preloaded downward, while the other half are preloaded upwards, each one alternating with the other so that each one twists in a motion opposite to its neighbor when rotated until each planet gear seats against the sun gear, the outer ring gear, the speeder gear, and the inner ring gear. The resulting configuration is an improved stiff anti-backlash gear system.

  5. An H-Infinity Approach to Control Synthesis with Load Minimization for the F/A-18 Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Lind, Rick

    1999-01-01

    The F/A-18 Active Aeroelastic Wing research aircraft will demonstrate technologies related to aeroservoelastic effects such as wing twist and load minimization. This program presents several challenges for control design that are often not considered for traditional aircraft. This paper presents a control design based on H-infinity synthesis that simultaneously considers the multiple objectives associated with handling qualities, actuator limitations, and loads. A point design is presented to demonstrate a controller and the resulting closed-loop properties.

  6. Tamoxifen inhibits ER-negative breast cancer cell invasion and metastasis by accelerating Twist1 degradation.

    PubMed

    Ma, Gang; He, Jianjun; Yu, Yang; Xu, Yixiang; Yu, Xiaobin; Martinez, Jarrod; Lonard, David M; Xu, Jianming

    2015-01-01

    Twist1 is a transcription factor driving epithelial-mesenchymal transition, invasion and metastasis of breast cancer cells. Mice with germ-line Twist1 knockout are embryonic lethal, while adult mice with inducible Twist1 knockout have no obvious health problems, suggesting that Twist1 is a viable therapeutic target for the inhibition of invasion and metastasis of breast cancer in adult patients. In this study, we expressed a luciferase protein or a Twist1-luciferase fusion protein in HeLa cells as part of a high throughput system to screen 1280 compounds in the Library of Pharmacologically Active Compounds (LOPAC) from Sigma-Aldrich for their effects on Twist1 protein expression. One of the most interesting compounds identified is tamoxifen, a selective estrogen receptor (ER) modulator used to treat ER-positive breast cancer. Tamoxifen treatment significantly accelerated Twist1 degradation in multiple cell lines including HEK293 human kidney cells, 4T1 and 168FARN mouse mammary tumor cells with either ectopically or endogenously expressed Twist1. Tamoxifen-induced Twist1 degradation could be blocked by the MG132 proteasome inhibitor, suggesting that tamoxifen induces Twist1 degradation through the ubiquitination-proteasome pathway. However, tamoxifen-induced Twist1 degradation was independent of Twist1 mRNA expression, estrogen signaling and MAPK-mediated Twist1 phosphorylation in these cells. Importantly, tamoxifen also significantly inhibited invasive behavior in Matrigel and lung metastasis in SCID-bg mice of ER-negative 4T1 mammary tumor cells, which depend on endogenous Twist1 to invade and metastasize. These results indicate that tamoxifen can significantly accelerate Twist1 degradation to suppress cancer cell invasion and metastasis, suggesting that tamoxifen can be used not only to treat ER-positive breast cancers but also to reduce Twist1-mediated invasion and metastasis in ER-negative breast cancers.

  7. Twisted Ribbons: Theory, Experiment and Applications

    NASA Astrophysics Data System (ADS)

    Chopin, Julien; Davidovitch, Benjamin; Silva, Flavio A.; Toledo Filho, Romildo D.; Kudrolli, Arshad

    2014-03-01

    We investigate, experimentally and theoretically, the buckling and wrinkling instabilities of a pre-stretched ribbon upon twisting and propose strategies for the fabrication of structured yarns. Our experiment consists in a thin elastic sheet in the form of a ribbon which is initially stretched by a fixed load and then subjected to a twist by rotating the ends through a prescribed angle. We show that a wide variety of shapes and instabilities can be obtained by simply varying the applied twist and tension. The observed structures which include helicoids with and without longitudinal and transverse wrinkles, and spontaneous creases, can be organized in a phase diagram with the tension and twist angle as control parameters [J. Chopin and A. Kudrolli, PRL (2013)]. Using a far-from-threshold analysis and a slender body approximation, we provide a comprehensive understanding of the longitudinal and transverse instabilities and show that several regimes emerge depending on subtle combinations of loading and geometrical parameters. Further, we show that the wrinkling instabilities can be manipulated to fabricate structured yarns which may be used to encapsulate amorphous materials or serve as efficient reinforcements for cement-based composites. COPPETEC / CNPq - Science Without Border Program

  8. Active control of convection

    SciTech Connect

    Bau, H.H.

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  9. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  10. Twisted bialgebroids versus bialgebroids from a Drinfeld twist

    NASA Astrophysics Data System (ADS)

    Borowiec, Andrzej; Pachoł, Anna

    2017-02-01

    Bialgebroids (respectively Hopf algebroids) are bialgebras (Hopf algebras) over noncommutative rings. Drinfeld twist techniques are particularly useful in the (deformation) quantization of Lie algebras as well as the underlying module algebras (=quantum spaces). A smash product construction combines both of them into the new algebra which, in fact, does not depend on the twist. However, we can turn it into a bialgebroid in a twist-dependent way. Alternatively, one can use Drinfeld twist techniques in a category of bialgebroids. We show that both the techniques indicated in the title—the twisting of a bialgebroid or constructing a bialgebroid from the twisted bialgebra—give rise to the same result in the case of a normalized cocycle twist. This can be useful for the better description of a quantum deformed phase space. We argue that within this bialgebroid framework one can justify the use of deformed coordinates (i.e. spacetime noncommutativity), which are frequently postulated in order to explain quantum gravity effects.

  11. Inner Surface Chirality of Single-Handed Twisted Carbonaceous Tubular Nanoribbons.

    PubMed

    Liu, Dan; Li, Baozong; Guo, Yongmin; Li, Yi; Yang, Yonggang

    2015-11-01

    Single-handed twisted 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and single-layered nanoribbons were prepared by tuning the water/ethanol volume ratio in the reaction mixture at pH = 11.6 through a supramolecular templating approach. The single-layered nanoribbons were formed by shrinking tubular nanoribbons after the removal of the templates. In addition, solvent-induced handedness inversion was achieved. The handedness of the polybissilsesquioxanes could be controlled by changing the ethanol/water volume ratio in the reaction mixture. After carbonization at 900 °C for 4.0 h and removal of silica, single-handed twisted carbonaceous tubular nanoribbons and single-layered nanoribbons with micropores in the walls were obtained. X-ray diffraction and Raman spectroscopy analyses indicated that the carbon is predominantly amorphous. The circular dichroism spectra show that the twisted tubular nanoribbons exhibit optical activity, while the twisted single-layered nanoribbons do not. The results shown here indicate that chirality is transferred from the organic self-assemblies to the inner surfaces of the 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and subsequently to those of the carbonaceous tubular nanoribbons.

  12. Twist relates to tubular epithelial-mesenchymal transition and interstitial fibrogenesis in the obstructed kidney.

    PubMed

    Kida, Yujiro; Asahina, Kinji; Teraoka, Hirobumi; Gitelman, Inna; Sato, Tetsuji

    2007-07-01

    Epithelial-mesenchymal transition (EMT) is a critical step in renal fibrosis. It has been recently reported that a transcription factor, Twist, plays a pivotal role in metastasis of breast tumors by inducing EMT. In this study, we examined whether Twist relates to renal fibrogenesis including EMT of tubular epithelia, evaluating Twist expression level in the unilateral ureteral obstruction (UUO) model. Kidneys of mice subjected to UUO were harvested 1, 3, 7, and 10 days after obstruction. Compared with control kidneys, Twist mRNA-level significantly increased 3 days after UUO (UUO day 3 kidney) and further augmented until 10 days after UUO. Twist expression increased in tubular epithelia of the dilated tubules and the expanded interstitial areas of UUO kidneys, where cell-proliferating appearances were frequently found in a time-dependent manner. Although a part of tubular cells in whole nephron segment were immunopositive for Twist in UUO day 7 kidneys, tubular epithelia downstream of nephron more frequently expressed Twist than upstream of nephron. In UUO day 7 kidneys, some tubular epithelia were confirmed to coexpress Twist and fibroblast-specific protein-1, a marker for EMT, indicating that Twist is involved in tubular EMT under pathological state. Twist was expressed also in a number of alpha-smooth muscle actin-positive myofibroblasts located in the expanded interstitial area of UUO kidneys. From these findings, the present investigation suggests that Twist is associated with tubular EMT, proliferation of myofibroblasts, and subsequent renal fibrosis in obstructed kidneys.

  13. Right handed chiral superstructures from achiral molecules: self-assembly with a twist

    PubMed Central

    Anuradha, A; La, Duong Duc; Al Kobaisi, Mohammad; Bhosale, Sheshanath V.

    2015-01-01

    The induction and development of chiral supramolecular structures from hierarchical self-assembly of achiral compounds is closely related to the evolution of life and the chiral amplification found in nature. Here we show that the combination of achiral tetraphenylethene (TPE) an AIE-active luminophore bearing four long alkyl chains via amide linkage allows the entire process of induction and control of supramolecular chirality into well-defined uniform right-handed twisted superstructures via solvent composition and polarity, i.e. solvophobic effect. We showed that the degree of twist and the pitch of the ribbons can be controlled to one-handed helical structure via solvophobic effects. The twisted superstructure assembly was visualised by scanning electron microscope (SEM) and transmission electron microscopy (TEM), furthermore, circular dichroism (CD) confirms used to determine controlled right-handed assembly. This controlled assembly of an AIE-active molecule can be of practical value; for example, as templates for helical crystallisation, catalysis and a chiral mechanochromic luminescent superstructure formation. PMID:26493294

  14. Right handed chiral superstructures from achiral molecules: self-assembly with a twist

    NASA Astrophysics Data System (ADS)

    Anuradha; La, Duong Duc; Al Kobaisi, Mohammad; Bhosale, Sheshanath V.

    2015-10-01

    The induction and development of chiral supramolecular structures from hierarchical self-assembly of achiral compounds is closely related to the evolution of life and the chiral amplification found in nature. Here we show that the combination of achiral tetraphenylethene (TPE) an AIE-active luminophore bearing four long alkyl chains via amide linkage allows the entire process of induction and control of supramolecular chirality into well-defined uniform right-handed twisted superstructures via solvent composition and polarity, i.e. solvophobic effect. We showed that the degree of twist and the pitch of the ribbons can be controlled to one-handed helical structure via solvophobic effects. The twisted superstructure assembly was visualised by scanning electron microscope (SEM) and transmission electron microscopy (TEM), furthermore, circular dichroism (CD) confirms used to determine controlled right-handed assembly. This controlled assembly of an AIE-active molecule can be of practical value; for example, as templates for helical crystallisation, catalysis and a chiral mechanochromic luminescent superstructure formation.

  15. Controls Considerations for Turbine Active Clearance Control

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2004-01-01

    This presentation discusses active control of turbine tip clearance from a control systems perspective. It is a subset of charts that were presented at the 2003 meeting of the International Society of Air Breathing Engines which was held August 31 through September 5 in Cleveland, Ohio. The associated reference paper is cited at the end of the presentation. The presentation describes active tip clearance control research being conducted by NASA to improve turbine engine systems. The target application for this effort is commercial aircraft engines. However, it is believed that the technologies developed as part of this research will benefit a broad spectrum of current and future turbomachinery. The first part of the presentation discusses the concept of tip clearance, problems associated with it, and the benefits of controlling it. It lays out a framework for implementing tip clearance controls that enables the implementation to progress from purely analytical to hardware-in-the-loop to fully experimental. And it briefly discusses how the technologies developed will be married to the previously described ACC Test Rig for hardware-in-the-loop demonstrations. The final portion of the presentation, describes one of the key technologies in some detail by presenting equations and results for a functional dynamic model of the tip clearance phenomena. As shown, the model exhibits many of the clearance dynamics found in commercial gas turbine engines. However, initial attempts to validate the model identified limitations that are being addressed to make the model more realistic.

  16. Twist Helicity in Classical Vortices

    NASA Astrophysics Data System (ADS)

    Scheeler, Martin W.; Kedia, Hridesh; Kleckner, Dustin; Irvine, William T. M.

    2015-11-01

    Recent experimental work has demonstrated that a partial measure of fluid Helicity (the sum of linking and writhing of vortex tubes) is conserved even as those vortices undergo topology changing reconnections. Measuring the total Helicity, however, requires additional information about how the vortex lines are locally twisted inside the vortex core. To bridge this gap, we have developed a novel technique for experimentally measuring twist Helicity. Using this method, we are able to measure the production and eventual decay of twist for a variety of vortex evolutions. Remarkably, we observe twist dynamics capable of conserving total Helicity even in the presence of rapidly changing writhe. This work was supported by the NSF MRSEC shared facilities at the University of Chicago (DMR-0820054) and an NSF CAREER award (DMR-1351506). W.T.M.I. further acknowledges support from the A.P. Sloan Foundation and the Packard Foundation.

  17. Oscillatory growth for twisting crystals.

    PubMed

    Ibaraki, Shunsuke; Ise, Ryuta; Ishimori, Koichiro; Oaki, Yuya; Sazaki, Gen; Yokoyama, Etsuro; Tsukamoto, Katsuo; Imai, Hiroaki

    2015-05-18

    We demonstrate the oscillatory phenomenon for the twisting growth of a triclinic crystal through in situ observation of the concentration field around the growing tip of a needle by high-resolution phase-shift interferometry.

  18. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  19. Development and Testing of Control Laws for the Active Aeroelastic Wing Program

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Clarke, Robert; Gera, Joseph; Hodgkinson, John

    2005-01-01

    The Active Aeroelastic Wing research program was a joint program between the U.S. Air Force Research Laboratory and NASA established to investigate the characteristics of an aeroelastic wing and the technique of using wing twist for roll control. The flight test program employed the use of an F/A-18 aircraft modified by reducing the wing torsional stiffness and adding a custom research flight control system. The research flight control system was optimized to maximize roll rate using only wing surfaces to twist the wing while simultaneously maintaining design load limits, stability margins, and handling qualities. NASA Dryden Flight Research Center developed control laws using the software design tool called CONDUIT, which employs a multi-objective function optimization to tune selected control system design parameters. Modifications were made to the Active Aeroelastic Wing implementation in this new software design tool to incorporate the NASA Dryden Flight Research Center nonlinear F/A-18 simulation for time history analysis. This paper describes the design process, including how the control law requirements were incorporated into constraints for the optimization of this specific software design tool. Predicted performance is also compared to results from flight.

  20. Demonstration of Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  1. Twist-induced Magnetosphere Reconfiguration for Intermittent Pulsars

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Yu, Cong; Tong, Hao

    2016-08-01

    We propose that the magnetosphere reconfiguration induced by magnetic twists in the closed field line region can account for the mode switching of intermittent pulsars. We carefully investigate the properties of axisymmetric force-free pulsar magnetospheres with magnetic twists in closed field line regions around the polar caps. The magnetosphere with twisted closed lines leads to enhanced spin-down rates. The enhancement in spin-down rate depends on the size of the region with twisted closed lines. Typically, it is increased by a factor of ˜2, which is consistent with the intermittent pulsars’ spin-down behavior during the “off” and “on” states. We find that there is a threshold of maximal twist angle {{Δ }}{φ }{{thres}}˜ 1. The magnetosphere is stable only if the closed line twist angle is less than {{Δ }}{φ }{{thres}}. Beyond this value, the magnetosphere becomes unstable and gets untwisted. The spin-down rate would reduce to its off-state value. The quasi-periodicity in spin-down rate change can be explained by long-term activities in the star’s crust and the untwisting induced by MHD instability. The estimated duration of on-state is about 1 week, consistent with observations. Due to the MHD instability, there exists an upper limit for the spin-down ratio (f˜ 3) between the on-state and the off-state, if the Y-point remains at the light cylinder.

  2. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  3. Persistent expression of Twist1 in chondrocytes causes growth plate abnormalities and dwarfism in mice.

    PubMed

    Guzzo, Rosa M; Andreeva, Viktoria; Spicer, Douglas B; Drissi, M Hicham

    2011-01-01

    Evidence from various in vitro gain and loss of function studies indicate that the bHLH transcription factor Twist1 negatively regulates chondrocyte differentiation; however limited information regarding Twist1 function in postnatal cartilage development and maintenance is available. Twist1 expression within the postnatal growth plate is restricted to immature, proliferating chondrocytes, and is significantly decreased or absent in hypertrophic chondrocytes. In order to examine the effect of maintaining the expression of Twist1 at later stages of chondocyte differentiation, we used type II collagen Cre (Col2-Cre) mice to activate a Cre-inducible Twist1 transgene specifically in chondrocytes (Col2-Twist1). At two weeks, postnatal growth was inhibited in Col2-Twist1 mice, as evidenced by limb shortening. Histological examination revealed abnormal growth plate structure, characterized by poor columnar organization of proliferating cartilaginous cells, decreased cellularity, and expansion of the hypertrophic zone. Moreover, structural defects within the growth plates of Col2-Twist1 transgenic mice included abnormal vascular invasion and focal regions of bony formation. Quantitative analysis of endochondral bone formation via micro-computed topography revealed impaired trabecular bone formation in the hindlimbs of Col2-Twist1 transgenic mice at various timepoints of postnatal development. Taken together, these findings indicate that regulated Twist1 expression contributes to growth plate organization and endochondral ossification to modulate postnatal longitudinal bone growth.

  4. Fractional active disturbance rejection control.

    PubMed

    Li, Dazi; Ding, Pan; Gao, Zhiqiang

    2016-05-01

    A fractional active disturbance rejection control (FADRC) scheme is proposed to improve the performance of commensurate linear fractional order systems (FOS) and the robust analysis shows that the controller is also applicable to incommensurate linear FOS control. In FADRC, the traditional extended states observer (ESO) is generalized to a fractional order extended states observer (FESO) by using the fractional calculus, and the tracking differentiator plus nonlinear state error feedback are replaced by a fractional proportional-derivative controller. To simplify controller tuning, the linear bandwidth-parameterization method has been adopted. The impacts of the observer bandwidth ωo and controller bandwidth ωc on system performance are then analyzed. Finally, the FADRC stability and frequency-domain characteristics for linear single-input single-output FOS are analyzed. Simulation results by FADRC and ADRC on typical FOS are compared to demonstrate the superiority and effectiveness of the proposed scheme.

  5. Active Control of Stationary Vortices

    NASA Astrophysics Data System (ADS)

    Nino, Giovanni; Breidenthal, Robert; Bhide, Aditi; Sridhar, Aditya

    2016-11-01

    A system for active stationary vortex control is presented. The system uses a combination of plasma actuators, pressure sensors and electrical circuits deposited on aerodynamic surfaces using printing electronics methods. Once the pressure sensors sense a change on the intensity or on the position of the stationary vortices, its associated controller activates a set of plasma actuator to return the vortices to their original or intended positions. The forces produced by the actuators act on the secondary flow in the transverse plane, where velocities are much less than in the streamwise direction. As a demonstration case, the active vortex control system is mounted on a flat plate under low speed wind tunnel testing. Here, a set of vortex generators are used to generate the stationary vortices and the plasma actuators are used to move them. Preliminary results from the experiments are presented and compared with theoretical values. Thanks to the USAF AFOSR STTR support under contract # FA9550-15-C-0007.

  6. Phonons in twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Cocemasov, Alexandr I.; Nika, Denis L.; Balandin, Alexander A.

    2013-07-01

    We theoretically investigate phonon dispersion in AA-stacked, AB-stacked, and twisted bilayer graphene with various rotation angles. The calculations are performed using the Born-von Karman model for the intralayer atomic interactions and the Lennard-Jones potential for the interlayer interactions. It is found that the stacking order affects the out-of-plane acoustic phonon modes the most. The difference in the phonon densities of states in the twisted bilayer graphene and in AA- or AB-stacked bilayer graphene appears in the phonon frequency range 90-110 cm-1. Twisting bilayer graphene leads to the emergence of different phonon branches—termed hybrid folded phonons—which originate from the mixing of phonon modes from different high-symmetry directions in the Brillouin zone. The frequencies of the hybrid folded phonons depend strongly on the rotation angle and can be used for noncontact identification of the twist angles in graphene samples. The obtained results and the tabulated frequencies of phonons in twisted bilayer graphene are important for the interpretation of experimental Raman data and in determining the thermal conductivity of these material systems.

  7. Extended active disturbance rejection controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2012-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  8. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2014-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  9. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2016-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  10. Active control of combustion instabilities

    NASA Astrophysics Data System (ADS)

    Al-Masoud, Nidal A.

    A theoretical analysis of active control of combustion thermo-acoustic instabilities is developed in this dissertation. The theoretical combustion model is based on the dynamics of a two-phase flow in a liquid-fueled propulsion system. The formulation is based on a generalized wave equation with pressure as the dependent variable, and accommodates all influences of combustion, mean flow, unsteady motions and control inputs. The governing partial differential equations are converted to an equivalent set of ordinary differential equations using Galerkin's method by expressing the unsteady pressure and velocity fields as functions of normal mode shapes of the chamber. This procedure yields a representation of the unsteady flow field as a system of coupled nonlinear oscillators that is used as a basis for controllers design. Major research attention is focused on the control of longitudinal oscillations with both linear and nonlinear processes being considered. Starting with a linear model using point actuators, the optimal locations of actuators and sensors are developed. The approach relies on the quantitative measures of the degree of controllability and component cost. These criterion are arrived at by considering the energies of the system's inputs and outputs. The optimality criteria for sensor and actuator locations provide a balance between the importance of the lower order (controlled) and the higher (residual) order modes. To address the issue of uncertainties in system's parameter, the minimax principles based controller is used. The minimax corresponds to finding the best controller for the worst parameter deviation. In other words, choosing controller parameters to minimize, and parameter deviation to maximize some quadratic performance metric. Using the minimax-based controller, a remarkable improvement in the control system's ability to handle parameter uncertainties is achieved when compared to the robustness of the regular control schemes such as LQR

  11. Performance of twist-coupled blades on variable speed rotors

    SciTech Connect

    Lobitz, D.W.; Veers, P.S.; Laino, D.J.

    1999-12-07

    The load mitigation and energy capture characteristics of twist-coupled HAWT blades that are mounted on a variable speed rotor are investigated in this paper. These blades are designed to twist toward feather as they bend with pretwist set to achieve a desirable twist distribution at rated power. For this investigation, the ADAMS-WT software has been modified to include blade models with bending-twist coupling. Using twist-coupled and uncoupled models, the ADAMS software is exercised for steady wind environments to generate C{sub p} curves at a number of operating speeds to compare the efficiencies of the two models. The ADAMS software is also used to generate the response of a twist-coupled variable speed rotor to a spectrum of stochastic wind time series. This spectrum contains time series with two mean wind speeds at two turbulence levels. Power control is achieved by imposing a reactive torque on the low speed shaft proportional to the RPM squared with the coefficient specified so that the rotor operates at peak efficiency in the linear aerodynamic range, and by limiting the maximum RPM to take advantage of the stall controlled nature of the rotor. Fatigue calculations are done for the generated load histories using a range of material exponents that represent materials from welded steel to aluminum to composites, and results are compared with the damage computed for the rotor without twist-coupling. Results indicate that significant reductions in damage are achieved across the spectrum of applied wind loading without any degradation in power production.

  12. To twist or poke? A method for identifying usability issues with the rotary controller and touch screen for control of in-vehicle information systems.

    PubMed

    Harvey, Catherine; Stanton, Neville A; Pickering, Carl A; McDonald, Mike; Zheng, Pengjun

    2011-07-01

    In-vehicle information systems (IVIS) can be controlled by the user via direct or indirect input devices. In order to develop the next generation of usable IVIS, designers need to be able to evaluate and understand the usability issues associated with these two input types. The aim of this study was to investigate the effectiveness of a set of empirical usability evaluation methods for identifying important usability issues and distinguishing between the IVIS input devices. A number of usability issues were identified and their causal factors have been explored. These were related to the input type, the structure of the menu/tasks and hardware issues. In particular, the translation between inputs and on-screen actions and a lack of visual feedback for menu navigation resulted in lower levels of usability for the indirect device. This information will be useful in informing the design of new IVIS, with improved usability. STATEMENT OF RELEVANCE: This paper examines the use of empirical methods for distinguishing between direct and indirect IVIS input devices and identifying usability issues. Results have shown that the characteristics of indirect input devices produce more serious usability issues, compared with direct devices and can have a negative effect on the driver-vehicle interaction.

  13. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  14. Curvature regulation of the ciliary beat through axonemal twist.

    PubMed

    Sartori, Pablo; Geyer, Veikko F; Howard, Jonathon; Jülicher, Frank

    2016-10-01

    Cilia and flagella are hairlike organelles that propel cells through fluid. The active motion of the axoneme, the motile structure inside cilia and flagella, is powered by molecular motors of the axonemal dynein family. These motors generate forces and torques that slide and bend the microtubule doublets within the axoneme. To create regular waveforms, the activities of the dyneins must be coordinated. It is thought that coordination is mediated by stresses due to radial, transverse, or sliding deformations, and which build up within the moving axoneme and feed back on dynein activity. However, which particular components of the stress regulate the motors to produce the observed waveforms of the many different types of flagella remains an open question. To address this question, we describe the axoneme as a three-dimensional bundle of filaments and characterize its mechanics. We show that regulation of the motors by radial and transverse stresses can lead to a coordinated flagellar motion only in the presence of twist. We show that twist, which could arise from torque produced by the dyneins, couples curvature to transverse and radial stresses. We calculate emergent beating patterns in twisted axonemes resulting from regulation by transverse stresses. The resulting waveforms are similar to those observed in flagella of Chlamydomonas and sperm. Due to the twist, the waveform has nonplanar components, which result in swimming trajectories such as twisted ribbons and helices, which agree with observations.

  15. Curvature regulation of the ciliary beat through axonemal twist

    NASA Astrophysics Data System (ADS)

    Sartori, Pablo; Geyer, Veikko F.; Howard, Jonathon; Jülicher, Frank

    2016-10-01

    Cilia and flagella are hairlike organelles that propel cells through fluid. The active motion of the axoneme, the motile structure inside cilia and flagella, is powered by molecular motors of the axonemal dynein family. These motors generate forces and torques that slide and bend the microtubule doublets within the axoneme. To create regular waveforms, the activities of the dyneins must be coordinated. It is thought that coordination is mediated by stresses due to radial, transverse, or sliding deformations, and which build up within the moving axoneme and feed back on dynein activity. However, which particular components of the stress regulate the motors to produce the observed waveforms of the many different types of flagella remains an open question. To address this question, we describe the axoneme as a three-dimensional bundle of filaments and characterize its mechanics. We show that regulation of the motors by radial and transverse stresses can lead to a coordinated flagellar motion only in the presence of twist. We show that twist, which could arise from torque produced by the dyneins, couples curvature to transverse and radial stresses. We calculate emergent beating patterns in twisted axonemes resulting from regulation by transverse stresses. The resulting waveforms are similar to those observed in flagella of Chlamydomonas and sperm. Due to the twist, the waveform has nonplanar components, which result in swimming trajectories such as twisted ribbons and helices, which agree with observations.

  16. Drinfeld J Presentation of Twisted Yangians

    NASA Astrophysics Data System (ADS)

    Belliard, Samuel; Regelskis, Vidas

    2017-03-01

    We present a quantization of a Lie coideal structure for twisted half-loop algebras of finite-dimensional simple complex Lie algebras. We obtain algebra closure relations of twisted Yangians in Drinfeld J presentation for all symmetric pairs of simple Lie algebras and for simple twisted even half-loop Lie algebras. We provide the explicit form of the closure relations for twisted Yangians in Drinfeld J presentation for the sl_3 Lie algebra.

  17. Drinfeld twisting elements on Hom-bialgebras

    NASA Astrophysics Data System (ADS)

    Makhlouf, A.; Torrecillas, B.

    2014-09-01

    The purpose of this paper is to introduce the concept of a twisting element based on a Hom- bialgebra and to use it to provide twists or deformations of Hom-associative algebras. Moreover we review the module theory in Hom-setting and show that a twisting element based on a bialgebra gives rise to a twisting element based on a Hom-bialgebra.

  18. Novel Active Combustion Control Valve

    NASA Technical Reports Server (NTRS)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  19. Active controls for ride smoothing

    NASA Technical Reports Server (NTRS)

    Conner, D. W.; Thompson, G. O.

    1976-01-01

    Active controls technology offers great promise for significantly smoothing the ride, and thus improving public and air carrier acceptance, of certain types of transport aircraft. Recent findings which support this promise are presented in the following three pertinent areas: (1) Ride quality versus degree of traveler satisfaction; (2) significant findings from a feasibility study of a ride smoothing system; and (3) potential ride problems identified for several advanced transport concepts.

  20. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms

    PubMed Central

    Qin, Qian; Xu, Young; He, Tao; Qin, Chunlin; Xu, Jianming

    2012-01-01

    This article reviews the molecular structure, expression pattern, physiological function, pathological roles and molecular mechanisms of Twist1 in development, genetic disease and cancer. Twist1 is a basic helix-loop-helix domain-containing transcription factor. It forms homo- or hetero-dimers in order to bind the Nde1 E-box element and activate or repress its target genes. During development, Twist1 is essential for mesoderm specification and differentiation. Heterozygous loss-of-function mutations of the human Twist1 gene cause several diseases including the Saethre-Chotzen syndrome. The Twist1-null mouse embryos die with unclosed cranial neural tubes and defective head mesenchyme, somites and limb buds. Twist1 is expressed in breast, liver, prostate, gastric and other types of cancers, and its expression is usually associated with invasive and metastatic cancer phenotypes. In cancer cells, Twist1 is upregulated by multiple factors including SRC-1, STAT3, MSX2, HIF-1α, integrin-linked kinase and NF-κB. Twist1 significantly enhances epithelial-mesenchymal transition (EMT) and cancer cell migration and invasion, hence promoting cancer metastasis. Twist1 promotes EMT in part by directly repressing E-cadherin expression by recruiting the nucleosome remodeling and deacetylase complex for gene repression and by upregulating Bmi1, AKT2, YB-1, etc. Emerging evidence also suggests that Twist1 plays a role in expansion and chemotherapeutic resistance of cancer stem cells. Further understanding of the mechanisms by which Twist1 promotes metastasis and identification of Twist1 functional modulators may hold promise for developing new strategies to inhibit EMT and cancer metastasis. PMID:21876555

  1. Optogenetic control of epileptiform activity

    PubMed Central

    Tønnesen, Jan; Sørensen, Andreas T.; Deisseroth, Karl; Lundberg, Cecilia; Kokaia, Merab

    2009-01-01

    The optogenetic approach to gain control over neuronal excitability both in vitro and in vivo has emerged as a fascinating scientific tool to explore neuronal networks, but it also opens possibilities for developing novel treatment strategies for neurologic conditions. We have explored whether such an optogenetic approach using the light-driven halorhodopsin chloride pump from Natronomonas pharaonis (NpHR), modified for mammalian CNS expression to hyperpolarize central neurons, may inhibit excessive hyperexcitability and epileptiform activity. We show that a lentiviral vector containing the NpHR gene under the calcium/calmodulin-dependent protein kinase IIα promoter transduces principal cells of the hippocampus and cortex and hyperpolarizes these cells, preventing generation of action potentials and epileptiform activity during optical stimulation. This study proves a principle, that selective hyperpolarization of principal cortical neurons by NpHR is sufficient to curtail paroxysmal activity in transduced neurons and can inhibit stimulation train-induced bursting in hippocampal organotypic slice cultures, which represents a model tissue of pharmacoresistant epilepsy. This study demonstrates that the optogenetic approach may prove useful for controlling epileptiform activity and opens a future perspective to develop it into a strategy to treat epilepsy. PMID:19581573

  2. Universal teleportation with a twist

    PubMed

    Braunstein; D'Ariano; Milburn; Sacchi

    2000-04-10

    We give a transfer theorem for teleportation based on twisting the entanglement measurement. This allows one to say what local unitary operation must be performed to complete the teleportation in any situation, generalizing the scheme to include overcomplete measurements, non-Abelian groups of local unitary operations (e.g., angular momentum teleportation), and the effect of nonmaximally entangled resources.

  3. Tuning bilayer twist using chiral counterions

    NASA Astrophysics Data System (ADS)

    Oda, R.; Huc, I.; Schmutz, M.; Candau, S. J.; Mackintosh, F. C.

    1999-06-01

    From seashells to DNA, chirality is expressed at every level of biological structures. In self-assembled structures it may emerge cooperatively from chirality at the molecular scale. Amphiphilic molecules, for example, can form a variety of aggregates and mesophases that express the chirality of their constituent molecules at a supramolecular scale of micrometres (refs 1-3). Quantitative prediction of the large-scale chirality based on that at themolecular scale remains a largely unsolved problem. Furthermore, experimental control over the expression of chirality at the supramolecular level is difficult to achieve: mixing of different enantiomers usually results in phase separation. Here we present an experimental and theoretical description of a system in which chirality can be varied continuously and controllably (`tuned') in micrometre-scale structures. We observe the formation of twisted ribbons consisting of bilayers of gemini surfactants (two surfactant molecules covalently linked at their charged head groups). We find that the degree of twist and the pitch of the ribbons can be tuned by the introduction of opposite-handed chiral counterions in various proportions. This degree of control might be of practical value; for example, in the use of thehelical structures as templates for helical crystallization of macromolecules,.

  4. Twist buckling behavior of arteries.

    PubMed

    Garcia, Justin R; Lamm, Shawn D; Han, Hai-Chao

    2013-10-01

    Arteries are often subjected to torsion due to body movement and surgical procedures. While it is essential that arteries remain stable and patent under twisting loads, the stability of arteries under torsion is poorly understood. The goal of this work was to experimentally investigate the buckling behavior of arteries under torsion and to determine the critical buckling torque, the critical buckling twist angle, and the buckling shape. Porcine common carotid arteries were slowly twisted in vitro until buckling occurred while subjected to a constant axial stretch ratio (1.1, 1.3, 1.5 (in vivo level) and 1.7) and lumen pressure (20, 40, 70 and 100 mmHg). Upon buckling, the arteries snapped to form a kink. For a group of six arteries, the axial stretch ratio significantly affected the critical buckling torque ([Formula: see text]) and the critical buckling twist angle ([Formula: see text]). Lumen pressure also significantly affected the critical buckling torque ([Formula: see text]) but had no significant effect on the critical twist angle ([Formula: see text]). Convex material constants for a Fung strain energy function were determined and fit well with the axial force, lumen pressure, and torque data measured pre-buckling. The material constants are valid for axial stretch ratios, lumen pressures, and rotation angles of 1.3-1.5, 20-100 mmHg, and 0-270[Formula: see text], respectively. The current study elucidates the buckling behavior of arteries under torsion and provides new insight into mechanical instability of blood vessels.

  5. Twist Buckling Behavior of Arteries

    PubMed Central

    Garcia, Justin R.; Lamm, Shawn D.; Han, Hai-Chao

    2012-01-01

    Arteries are often subjected to torsion due to body movement and surgical procedures. While it is essential that arteries remain stable and patent under twisting loads, the stability of arteries under torsion is poorly understood. The goal of this work was to experimentally investigate the buckling behavior of arteries under torsion and to determine the critical buckling torque, the critical buckling twist angle, and the buckling shape. Porcine common carotid arteries were slowly twisted in vitro until buckling occurred while subjected to a constant axial stretch ratio (1.1, 1.3, 1.5 (in vivo level), and 1.7) and lumen pressure (20, 40, 70, and 100 mmHg). Upon buckling, the arteries snapped to form a kink. For a group of six arteries, the axial stretch ratio significantly affected the critical buckling torque (p < 0.002) and the critical buckling twist angle (p < 0.001). Lumen pressure also significantly affected the critical buckling torque (p < 0.001) but had no significant effect on the critical twist angle (p = 0.067). Convex material constants for a Fung strain energy function were determined and fit well with the axial force, lumen pressure, and torque data measured pre-buckling. The material constants are valid for axial stretch ratios, lumen pressures, and rotation angles of 1.3 – 1.5, 20 – 100 mmHg, and 0 – 270 degrees, respectively. The current study elucidates the buckling behavior of arteries under torsion and provides new insight into mechanical instability of blood vessels. PMID:23160845

  6. Atomic form factor for twisted vortex photons interacting with atoms

    NASA Astrophysics Data System (ADS)

    Guthrey, Pierson; Kaplan, Lev; McGuire, J. H.

    2014-04-01

    The relatively new atomic form factor for twisted (vortex) beams, which carry orbital angular momentum (OAM), is considered and compared to the conventional atomic form factor for plane-wave beams that carry only spin angular momentum. Since the vortex symmetry of a twisted photon is more complex that that of a plane wave, evaluation of the atomic form factor is also more complex for twisted photons. On the other hand, the twisted photon has additional parameters, including the OAM quantum number, ℓ, the nodal radial number, p, and the Rayleigh range, zR, which determine the cone angle of the vortex. This Rayleigh range may be used as a variable parameter to control the interaction of twisted photons with matter. Here we address (i) normalization of the vortex atomic form factor, (ii) displacement of target atoms away from the center of the beam vortex, and (iii) formulation of transition probabilities for a variety of photon-atom processes. We attend to features related to experiments that can test the range of validity and accuracy of calculations of these variations of the atomic form factor. Using the absolute square of the form factor for vortex beams, we introduce a vortex factor that can be directly measured.

  7. Interfacial Atomic Structure of Twisted Few-Layer Graphene.

    PubMed

    Ishikawa, Ryo; Lugg, Nathan R; Inoue, Kazutoshi; Sawada, Hidetaka; Taniguchi, Takashi; Shibata, Naoya; Ikuhara, Yuichi

    2016-02-18

    A twist in bi- or few-layer graphene breaks the local symmetry, introducing a number of intriguing physical properties such as opening new bandgaps. Therefore, determining the twisted atomic structure is critical to understanding and controlling the functional properties of graphene. Combining low-angle annular dark-field electron microscopy with image simulations, we directly determine the atomic structure of twisted few-layer graphene in terms of a moiré superstructure which is parameterized by a single twist angle and lattice constant. This method is shown to be a powerful tool for accurately determining the atomic structure of two-dimensional materials such as graphene, even in the presence of experimental errors. Using coincidence-site-lattice and displacement-shift-complete theories, we show that the in-plane translation state between layers is not a significant structure parameter, explaining why the present method is adequate not only for bilayer graphene but also a few-layered twisted graphene.

  8. Twinning and twisting of tri- and bilayer graphene.

    PubMed

    Brown, Lola; Hovden, Robert; Huang, Pinshane; Wojcik, Michal; Muller, David A; Park, Jiwoong

    2012-03-14

    The electronic, optical, and mechanical properties of bilayer and trilayer graphene vary with their structure, including the stacking order and relative twist, providing novel ways to realize useful characteristics not available to single layer graphene. However, developing controlled growth of bilayer and trilayer graphene requires efficient large-scale characterization of multilayer graphene structures. Here, we use dark-field transmission electron microscopy for rapid and accurate determination of key structural parameters (twist angle, stacking order, and interlayer spacing) of few-layer CVD graphene. We image the long-range atomic registry for oriented bilayer and trilayer graphene, find that it conforms exclusively to either Bernal or rhombohedral stacking, and determine their relative abundances. In contrast, our data on twisted multilayers suggest the absence of such long-range atomic registry. The atomic registry and its absence are consistent with the two different strain-induced deformations we observe; by tilting the samples to break mirror symmetry, we find a high density of twinned domains in oriented multilayer graphene, where multiple domains of two different stacking configurations coexist, connected by discrete twin boundaries. In contrast, individual layers in twisted regions continuously stretch and shear independently, forming elaborate Moiré patterns. These results, and the twist angle distribution in our CVD graphene, can be understood in terms of an angle-dependent interlayer potential model.

  9. "Twisted Beam" SEE Observations of Ionospheric Heating from HAARP

    NASA Astrophysics Data System (ADS)

    Briczinski, S. J.; Bernhardt, P. A.; Siefring, C. L.; Han, S.-M.; Pedersen, T. R.; Scales, W. A.

    2015-10-01

    Nonlinear interactions of high power HF radio waves in the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaska is the world's largest heating facility, yielding effective radiated powers in the gigawatt range. New results are present from HAARP experiments using a "twisted beam" excitation mode. Analysis of twisted beam heating shows that the SEE results obtained are identical to more traditional patterns. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional "solid spot" region from a pencil beam. The ring heating pattern may be more conducive to the creation of stable artificial airglow layers because of the horizontal structure of the ring. The results of these runs include artificial layer creation and evolution as pertaining to the twisted beam pattern. The SEE measurements aid the interpretation of the twisted beam interactions in the ionosphere.

  10. Evaluation of innovative concepts for semi-active and active rotorcraft control

    NASA Astrophysics Data System (ADS)

    Van Weddingen, Yannick

    2011-12-01

    Lead-lag dampers are present in most rotor systems to provide the desired level of damping for all flight conditions. These dampers are critical components of the rotor system, and the performance of semi-active Coulomb friction-based lead-lag dampers is examined for the UH-60 aircraft. The concept of adaptive damping, or "damping on demand," is discussed for both ground resonance and forward flight. The concept of selective damping is also assessed, and shown to face many challenges. In rotorcraft flight dynamics, optimized warping twist change is a potentially enabling technology to improve overall rotorcraft performance. Research efforts in recent years have led to the application of active materials for rotorcraft blade actuation. An innovative concept is proposed wherein the typically closed section blade is cut open to create a torsionally compliant structure that acts as its own amplification device; deformation of the blade is dynamically controlled by out-of-plane warping. Full-blade warping is shown to have the potential for great design flexibility. Recent advances in rotorcraft blade design have also focused on variable-camber airfoils, particularly concepts involving "truss-core" configurations. One promising concept is the use of hexagonal chiral lattice structures in continuously deformable helicopter blades. The static behavior of passive and active chiral networks using piezoelectric actuation strategies is investigated, including under typical aerodynamic load levels. The analysis is then extended to the dynamic response of active chiral networks in unsteady aerodynamic environments.

  11. Selected advanced aerodynamics and active controls technology concepts development on a derivative B-747

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The feasibility of applying wing tip extensions, winglets, and active control wing load alleviation to the Boeing 747 is investigated. Winglet aerodynamic design methods and high speed wind tunnel test results of winglets and of symmetrically deflected ailerons are presented. Structural resizing analyses to determine weight and aeroelastic twist increments for all the concepts and flutter model test results for the wing with winglets are included. Control law development, system mechanization/reliability studies, and aileron balance tab trade studies for active wing load alleviation systems are discussed. Results are presented in the form of incremental effects on L/D, structural weight, block fuel savings, stability and control, airplane price, and airline operating economics.

  12. Folding DNA into Twisted and Curved Nanoscale Shapes

    PubMed Central

    Dietz, Hendrik; Douglas, Shawn M.; Shih, William M.

    2009-01-01

    We demonstrate the ability to engineer complex shapes that twist and curve at the nanoscale from DNA. Through programmable self-assembly, strands of DNA are directed to form a custom-shaped bundle of tightly crosslinked double helices, arrayed in parallel to their helical axes. Targeted insertions and deletions of base pairs cause the DNA bundles to develop twist of either handedness or to curve. The degree of curvature could be quantitatively controlled, and a radius of curvature as tight as 6 nanometers was achieved. We also combined multiple curved elements to build several different types of intricate nanostructures, such as a wireframe beach ball or square-toothed gears. PMID:19661424

  13. Twisting and Writhing with George Ellery Hale

    NASA Astrophysics Data System (ADS)

    Canfield, Richard C.

    2013-06-01

    Early in his productive career in astronomy, George Ellery Hale developed innovative solar instrumentation that allowed him to make narrow-band images. Among the solar phenomena he discovered were sunspot vortices, which he attributed to storms akin to cyclones in our own atmosphere. Using the concept of magnetic helicity, physicists and mathematicians describe the topology of magnetic fields, including twisting and writhing. Our contemporary understanding of Hale's vortices as a consequence of large-scale twist in sunspot magnetic fields hinges on a key property of helicity: conservation. I will describe the critical role that this property plays, when applied to twist and writhe, in a fundamental aspect of global solar magnetism: the hemispheric and solar cycle dependences of active region electric currents with respect to magnetic fields. With the advent of unbroken sequences of high-resolution magnetic images, such as those presently available from the Helioseismic and Magnetic Imager on Solar Dynamics Observatory, the flux of magnetic helicity through the photosphere can be observed quantitatively. As magnetic flux tubes buoy up through the convection zone, buffeted and shredded by turbulence, they break up into fragments by repeated random bifurcation. We track these rising flux fragments in the photosphere, and calculate the flux of energy and magnetic helicity there. Using a quantitative model of coronal currents, we also track connections between these fragments to calculate the energy and magnetic helicity stored at topological interfaces that are in some ways analogous to the storage of stress at faults in the Earth's crust. Comparison of these values to solar flares and interplanetary coronal mass ejections implies that this is the primary storage mechanism for energy and magnetic helicity released in those phenomena, and suggests a useful tool for quantitative prediction of geomagnetic storms.

  14. Twisting Fluorescence through Extrinsic Chiral Antennas.

    PubMed

    Yan, Chen; Wang, Xiaolong; Raziman, T V; Martin, Olivier J F

    2017-04-12

    Plasmonic antennas and planar structures have been undergoing intensive developments in order to control the scattering and absorption of light. One specific class, extrinsic chiral surfaces, that does not possess 2-fold rotational symmetry exhibits strong asymmetric transmission for different circular polarizations under obliquely incident illumination. In this work, we show that the design of those surfaces can be optimized with complex multipolar resonances in order to twist the fluorescence emission from nearby molecules. While this emission is usually dipolar and linearly polarized, the interaction with these resonances twists it into a multipolar radiation pattern with opposite helicity in different directions. The proposed structure maximizes this effect and provides control over the polarization of light. Splitting of left- and right-handed circularly polarized light is experimentally obtained in the backward direction. These results highlight the intricate interplay between the near-field absorption and the far-field scattering of a plasmonic nanostructure and are further used for modifying the emission of incoherent quantum sources. Our finding can potentially lead to the development of polarization- and angle-resolved ultracompact optical devices.

  15. Chiral power change upon photoisomerization in twisted nematic liquid crystals.

    PubMed

    Simoncelli, Sabrina; Aramendía, Pedro F

    2015-05-05

    In this work, we use the photoisomerization of azobenzenes, a phenanthrospirooxazine, and a fulgide in a twisted nematic liquid crystalline phase to change the chiral twisting power of the system. The changes are probed by the rotatory power of linearly polarized light. Time resolved and steady state experiments are carried out. The chiral change and the photoisomerization process have similar characteristic recovery times and activation energy, thus probing that the change is induced by the modification in the chemical composition of the photochromic dopant system. The amplitude of the light twisting power change correlates with the order change in the liquid crystal (LC) but not with the modification in the absorption characteristics of the system. This indicates that the driving force of the chiral change is the microscopic order modification in the LC phase that affects the helical pitch of the phase.

  16. Renormalization constants for 2-twist operators in twisted mass QCD

    SciTech Connect

    Alexandrou, C.; Constantinou, M.; Panagopoulos, H.; Stylianou, F.; Korzec, T.

    2011-01-01

    Perturbative and nonperturbative results on the renormalization constants of the fermion field and the twist-2 fermion bilinears are presented with emphasis on the nonperturbative evaluation of the one-derivative twist-2 vector and axial-vector operators. Nonperturbative results are obtained using the twisted mass Wilson fermion formulation employing two degenerate dynamical quarks and the tree-level Symanzik improved gluon action. The simulations have been performed for pion masses in the range of about 450-260 MeV and at three values of the lattice spacing a corresponding to {beta}=3.9, 4.05, 4.20. Subtraction of O(a{sup 2}) terms is carried out by performing the perturbative evaluation of these operators at 1-loop and up to O(a{sup 2}). The renormalization conditions are defined in the RI{sup '}-MOM scheme, for both perturbative and nonperturbative results. The renormalization factors, obtained for different values of the renormalization scale, are evolved perturbatively to a reference scale set by the inverse of the lattice spacing. In addition, they are translated to MS at 2 GeV using 3-loop perturbative results for the conversion factors.

  17. Vibrations of twisted rotating blades

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-01-01

    The literature dealing with vibrations of turbomachinery blades is voluminous, but the vast majority of it treats the blades as beams. In a previous paper a two-dimensional analytical procedure was developed and demonstrated on simple models of blades having camber. The procedure utilizes shallow shell theory along with the classical Ritz method for solving the vibration problem. Displacement functions are taken as algebraic polynomials. In the present paper the method is demonstrated on blade models having camber. Comparisons are first made with results in the literature for nonrotating twisted plates and various disagreements between results are pointed out. A method for depicting mode shape information is demonstrated, permitting one to examine all three components of displacement. Finally, the analytical procedure is demonstrated on rotating twisted blade modes, both without and with camber.

  18. Would You Rather (WYR), with a Sexual Health Twist!

    ERIC Educational Resources Information Center

    Rosen, Brittany; McNeill, Elisa Beth; Wilson, Kelly

    2014-01-01

    Would You Rather (WYR), with a Sexual Health Twist! teaching technique uses two youth games, "Would you rather…" and Twister®, to actively engage students in developing decision-making skills regarding human sexuality. Utilizing the "Would you rather" choices, the teacher provides a short scenario with two difficult choices.…

  19. Evolution of twisted magnetic fields

    SciTech Connect

    Zweibel, E.G.; Boozer, A.H.

    1985-02-01

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

  20. New twist on artificial muscles

    PubMed Central

    Haines, Carter S.; Li, Na; Spinks, Geoffrey M.; Aliev, Ali E.; Di, Jiangtao; Baughman, Ray H.

    2016-01-01

    Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy. PMID:27671626

  1. New twist on artificial muscles.

    PubMed

    Haines, Carter S; Li, Na; Spinks, Geoffrey M; Aliev, Ali E; Di, Jiangtao; Baughman, Ray H

    2016-10-18

    Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy.

  2. "Twisted Beam" SEE Observations of Ionospheric Heating from HAARP

    NASA Astrophysics Data System (ADS)

    Briczinski, S. J.; Bernhardt, P. A.; Pedersen, T. R.; Rodriguez, S.; SanAntonio, G.

    2012-12-01

    High power HF radio waves exciting the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaksa is the world's largest heating facility, providing effective radiated powers in the gigawatt range. Experiments performed at HAARP have allowed researchers to study many non-linear effects of wave-plasma interactions. Stimulated Electromagnetic Emission (SEE) is of interest to the ionospheric community for its diagnostic purposes. Typical SEE experiments at HAARP have focused on characterizing the parametric decay of the electromagnetic pump wave into several different wave modes such as upper and lower hybrid, ion acoustic, ion-Bernstein and electron-Bernstein. These production modes have been extensively studied at HAARP using traditional beam heating patterns and SEE detection. New results are present from HAARP experiments using a "twisted beam" excitation mode. Unlike traditional heating beams used at HAARP or other heating facilities, the twisted beam attempts to impart orbital angular momentum (OAM) into the heating region. Analysis of twisted beam heating shows that the SEE results obtained are nearly identical to the modes without OAM. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional "solid spot" region. The ring heating pattern may be more conducive to the creation of artificial airglow layers. The results of these runs include artificial layer creation and evolution as pertaining to the twisted beam pattern. The SEE measurements aid the interpretation of the twisted beam interactions in the ionosphere.

  3. Reynolds number effects on flow over twisted cylinder with drag reduction and vortex suppression

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hwan; Yoon, Hyun Sik

    2015-11-01

    We investigated the Reynolds number effects on the flow over a twisted cylinder in the range of 3×103 <= Re <=1×104. To analyze the effect of the twisted cylinder, a large eddy simulation (LES) with a dynamic subgrid model was employed. A simulation of the smooth cylinder was also carried out to compare the results with those of the twisted cylinder. As Re increased, the mean drag and lift coefficient of the twisted cylinder increased with the same tendency as those of the smooth cylinder. However, the increases in the mean drag and lift coefficient of the twisted cylinder were much smaller than those of the smooth. Furthermore, elongated shear layer and suppressed vortex shedding from the twisted cylinder occurred compared to those of the smooth cylinder, resulting in a drag reduction and suppression of the vortex-induced vibration (VIV). In particular, the twisted cylinder achieved a significant reduction of over 96% in VIV compared with that of the smooth cylinder, regardless of increasing Re. As a result, we concluded that the twisted cylinder effectively controlled the flow structures with reductions in the drag and VIV compared with the smooth cylinder, irrespective of increasing Re. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) through GCRC-SOP (No. 2011-0030013) and (NRF-2015R1D1A3A01020867).

  4. The emerging role of Twist proteins in hematopoietic cells and hematological malignancies

    PubMed Central

    Merindol, N; Riquet, A; Szablewski, V; Eliaou, J-F; Puisieux, A; Bonnefoy, N

    2014-01-01

    Twist1 and Twist2 (Twist1–2) are two transcription factors, members of the basic helix-loop-helix family, that have been well established as master transcriptional regulators of embryogenesis and developmental programs of mesenchymal cell lineages. Their role in oncogenesis in epithelium-derived cancer and in epithelial-to-mesenchymal transition has also been thoroughly characterized. Recently, emerging evidence also suggests a key role for Twist1–2 in the function and development of hematopoietic cells, as well as in survival and development of numerous hematological malignancies. In this review, we summarize the latest data that depict the role of Twist1–2 in monocytes, T cells and B lymphocyte activation, and in associated hematological malignancies. PMID:24769647

  5. Twisted complex superfluids in optical lattices

    PubMed Central

    Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören

    2015-01-01

    We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a complex order parameter. This unconventional superfluid phase spontaneously breaks the time-reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent lattice sites. We discuss the entire phase diagram of the extended Bose—Hubbard model for a honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two components, we find twisted superfluid phases with strong correlations between the species already for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite degeneracy ranging continuously from a supersolid to a twisted superfluid. PMID:26345721

  6. Twisted complex superfluids in optical lattices.

    PubMed

    Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören

    2015-09-08

    We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a complex order parameter. This unconventional superfluid phase spontaneously breaks the time-reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent lattice sites. We discuss the entire phase diagram of the extended Bose-Hubbard model for a honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two components, we find twisted superfluid phases with strong correlations between the species already for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite degeneracy ranging continuously from a supersolid to a twisted superfluid.

  7. Dystonia redefined as central non-paretic loss of control of muscle action: a concept including inability to activate muscles required for a specific movement, or 'negative dystonia'.

    PubMed

    Mezaki, Takahiro

    2007-01-01

    Dystonia is defined as a syndrome of sustained muscle contractions, frequently causing twisting and repetitive movements, or abnormal postures. Although this definition comprises an essential feature of dystonia, the clinical observation indicates that there is an additional aspect of dystonia; failure to adequately activate muscles required for specific movement, exemplified by the lack of contractions of the levator palpebrae superioris muscles in apraxia of lid opening, as well as by inability to activate appropriate muscles in cervical dystonia or in the paretic form of writer's cramp, and possibly by dropped head syndrome or camptocormia seen in parkinsonian patients without apparent truncal dystonia or rigidity. Taking this "negative dystonia" into consideration, the author proposes a revised definition of dystonia as a symptom characterized by the central non-paretic loss of voluntary control of muscle activities, which may result in either excessive or deficient contractions of muscles, frequently causing twisting and repetitive movements, limitation of movements, or abnormal postures.

  8. Viscous Nonlinear Dynamics of Twist and Writhe

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.; Powers, Thomas R.; Wiggins, Chris H.

    1998-06-01

    Exploiting the ``natural'' frame of space curves, we formulate an intrinsic dynamics of a twisted elastic filament in a viscous fluid. Coupled nonlinear equations describing the temporal evolution of the filament's complex curvature and twist density capture the dynamic interplay of twist and writhe. These equations are used to illustrate a remarkable nonlinear phenomenon: geometric untwisting of open filaments, whereby twisting strains relax through a transient writhing instability without axial rotation. Experimentally observed writhing motions of fibers of the bacterium B. subtilis [N. H. Mendelson et al., J. Bacteriol. 177, 7060 (1995)] may be examples of this untwisting process.

  9. DVCS amplitude with kinematical twist-3 terms

    SciTech Connect

    Radyushkin, A.V.; Weiss, C.

    2000-08-01

    The authors compute the amplitude of deeply virtual Compton scattering (DVCS) using the calculus of QCD string operators in coordinate representation. To restore the electromagnetic gauge invariance (transversality) of the twist-2 amplitude they include the operators of twist-3 which appear as total derivatives of twist-2 operators. The results are equivalent to a Wandzura-Wilczek approximation for twist-3 skewed parton distributions. They find that this approximation gives a finite result for the amplitude of a longitudinally polarized virtual photon, while the amplitude for transverse polarization is divergent, i.e., factorization breaks down in this term.

  10. Twisted Gaussian Schell-model beams

    SciTech Connect

    Simon, R. ); Mukunda, N. Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore )

    1993-01-01

    The authors introduce a new class of partially coherent axially symmetric Gaussian Schell-model (GSM) beams incorporating a new twist phase quadratic in configuration variables. This phase twists the beam about its axis during propagation and is shown to be bounded in strength because of the positive semidefiniteness of the cross-spectral density. Propagation characteristics and invariants for such beams are derived and interpreted, and two different geometric representations are developed. Direct effects of the twist phase on free propagation as well as in parabolic index fibers are demonstrated. Production of such twisted GSM beams, starting with Li-Wolf anisotropic GSM beams, is described. 34 refs., 3 figs.

  11. Active control of combustion instability

    SciTech Connect

    Lang, W.; Poinsot, T.; Candel, S.

    1987-12-01

    The principle of 'antisound' is used to construct a method for the suppression of combustion instabilities. This active instability control (AIC) method uses external acoustic excitation by a loudspeaker to suppress the oscillations of a flame. The excitation signal is provided by a microphone located upstream of the flame. This signal is filtered, processed, amplified, and sent to the loudspeaker. The AIC method is validated on a laboratory combustor. It allows the suppression of all unstable modes of the burner for any operating ratio. The influence of the microphone and loudspeaker locations on the performance of the AIC system is described. For a given configuration, domains of stability, i.e., domains where the AIC system parameters provide suppression of the oscillation, are investigated. Measurements of the electric input of the loudspeaker show that the energy consumption of the AIC system is almost negligible and suggest that this method could be used for industrial combustor stabilization. Finally, a simple model describing the effects of the AIC system is developed and its results compared to the experiment.

  12. Active thermal control system evolution

    NASA Technical Reports Server (NTRS)

    Petete, Patricia A.; Ames, Brian E.

    1991-01-01

    The 'restructured' baseline of the Space Station Freedom (SSF) has eliminated many of the growth options for the Active Thermal Control System (ATCS). Modular addition of baseline technology to increase heat rejection will be extremely difficult. The system design and the available real estate no longer accommodate this type of growth. As the station matures during its thirty years of operation, a demand of up to 165 kW of heat rejection can be expected. The baseline configuration will be able to provide 82.5 kW at Eight Manned Crew Capability (EMCC). The growth paths necessary to reach 165 kW have been identified. Doubling the heat rejection capability of SSF will require either the modification of existing radiator wings or the attachment of growth structure to the baseline truss for growth radiator wing placement. Radiator performance can be improved by enlarging the surface area or by boosting the operating temperature with a heat pump. The optimal solution will require both modifications. The addition of growth structure would permit the addition of a parallel ATCS using baseline technology. This growth system would simplify integration. The feasibility of incorporating these growth options to improve the heat rejection capacity of SSF is under evaluation.

  13. Radially dependent angular acceleration of twisted light.

    PubMed

    Webster, Jason; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2017-02-15

    While photons travel in a straight line at constant velocity in free space, the intensity profile of structured light may be tailored for acceleration in any degree of freedom. Here we propose a simple approach to control the angular acceleration of light. Using Laguerre-Gaussian modes as our twisted beams carrying orbital angular momentum, we show that superpositions of opposite handedness result in a radially dependent angular acceleration as they pass through a focus (waist plane). Due to conservation of orbital angular momentum, we find that propagation dynamics are complex despite the free-space medium: the outer part of the beam (rings) rotates in an opposite direction to the inner part (petals), and while the outer part accelerates, the inner part decelerates. We outline the concepts theoretically and confirm them experimentally. Such exotic structured light beams are topical due to their many applications, for instance in optical trapping and tweezing, metrology, and fundamental studies in optics.

  14. Overview of Langley activities in active controls research

    NASA Technical Reports Server (NTRS)

    Abel, I.; Newsom, J. R.

    1981-01-01

    The application of active controls technology to reduce aeroelastic response of aircraft structures offers a potential for significant payoffs in terms of aerodynamic efficiency and weight savings. The activities of the Langley Research Center (laRC) in advancing active controls technology. Activities are categorized into the development of appropriate analysis tools, control law synthesis methodology, and experimental investigations aimed at verifying both analysis and synthesis methodology.

  15. Twisting the N=2 string

    NASA Astrophysics Data System (ADS)

    Ketov, Sergei V.; Lechtenfeld, Olaf; Parkes, Andrew J.

    1995-03-01

    The most general homogeneous monodromy conditions in N=2 string theory are classified in terms of the conjugacy classes of the global symmetry group U(1,1)⊗openZ2. For classes which generate a discrete subgroup Γ, the corresponding target space backgrounds openC1,1/Γ include half spaces, complex orbifolds, and tori. We propose a generalization of the intercept formula to matrix-valued twists, but find massless physical states only for Γ=open1 (untwisted) and Γ=openZ2 (in the manner of Mathur and Mukhi), as well as for Γ being a parabolic element of U(1,1). In particular, the 16 openZ2-twisted sectors of the N=2 string are investigated, and the corresponding ground states are identified via bosonization and BRST cohomology. We find enough room for an extended multiplet of ``spacetime'' supersymmetry, with the number of supersymmetries being dependent on global ``spacetime'' topology. However, world-sheet locality for the chiral vertex operators does not permit interactions among all massless ``spacetime'' fermions.

  16. Achievements and tasks for active noise control

    NASA Astrophysics Data System (ADS)

    Tichy, Jiri

    This short survey attempted to highlight some achievements of the latest active control applications. Except for the active control of a one-dimensional sound field in ducts and active headphones, the applications for active control technology are still being developed. Although the principles of active control are simple, their applications still require substantial research and modeling of the sound fields to find optimal solutions. There is no doubt that active control of sound field triggered extensive research of the fundamental properties of the sound field which goes beyond the textbook simplifications. Also, new hardware, particularly actuators, are under development. As more realism is brought into assessment of applicability of active control, we will see in the future increasing confidence of industry to adopt this new technology.

  17. Tools for active control system design

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.; Tiffany, S. H.; Newsom, J. R.

    1984-01-01

    Efficient control law analysis and design tools which properly account for the interaction of flexible structures, unsteady aerodynamics and active controls are developed. Development, application, validation and documentation of efficient multidisciplinary computer programs for analysis and design of active control laws are also discussed.

  18. STOUT SMEARING FOR TWISTED FERMIONS.

    SciTech Connect

    SCHOLZ,W.; JANSEN, K.; McNEILE, C.; MONTVAY, I.; RICHARDS, C.; URBACH, C.; WENGER, U.

    2007-07-30

    The effect of Stout smearing is investigated in numerical simulations with twisted mass Wilson quarks. The phase transition near zero quark mass is studied on 12{sup 3} x 24, 16{sup 3} x 32 and 24{sup 3} x 48 lattices at lattice spacings a {approx_equal} 0.1-0.125 fm. The phase structure of Wilson fermions with twisted mass ({mu}) has been investigated in [1,2]. As it is explained there, the observed first order phase transition limits the minimal pion mass which can be reached in simulations at a given lattice spacing: m{sub k}{sup min} {approx_equal} {theta}(a). The phase structure is schematically depicted in the left panel of Fig. I . The phase transition can be observed in simulations with twisted mass fermions, for instance, as a ''jump'' or even metastabilities in the average plaquette value as a function of the hopping parameter ({kappa}). One possibility to weaken the phase transition and therefore allow for lighter pion masses at a given lattice spacing is to use an improved gauge action like the DBW2, Iwasaki, or tree-level Symanzik (tlSym) improved gauge action instead of the simple Wilson gauge action. This has been successfully demonstrated in [3,4,5]. Here we report on our attempts to use a smeared gauge field in the fermion lattice Dirac operator to further reduce the strength of the phase transition. This is relevant in simulations with N{sub f} = 2 + 1 + 1 (u,d,s,c) quark flavors [6] where the first order phase transition becomes stronger compared to N{sub f} = 2 simulations. The main impact of the above mentioned improved gauge actions on the gauge fields occurring in simulations is to suppress short range fluctuations (''dislocations'') and the associated ''exceptionally small'' eigenvalues of the fermion matrix. The same effect is expected from smearing the gauge field links in the fermion action. The cumulated effect of the improved gauge action and smeared links should allow for a smaller pion mass at a given lattice spacing and volume. Our

  19. Twisting of glycosidic bonds by hydrolases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patterns of scissile bond twisting have been found in crystal structures of glycoside hydrolases (GHs) that are complexed with substrates and inhibitors. To estimate the increased potential energy in the substrates that results from this twisting, we have plotted torsion angles for the scissile bond...

  20. Cyclic Cocycles on Twisted Convolution Algebras

    NASA Astrophysics Data System (ADS)

    Angel, Eitan

    2013-01-01

    We give a construction of cyclic cocycles on convolution algebras twisted by gerbes over discrete translation groupoids. For proper étale groupoids, Tu and Xu (Adv Math 207(2):455-483, 2006) provide a map between the periodic cyclic cohomology of a gerbe-twisted convolution algebra and twisted cohomology groups which is similar to the construction of Mathai and Stevenson (Adv Math 200(2):303-335, 2006). When the groupoid is not proper, we cannot construct an invariant connection on the gerbe; therefore to study this algebra, we instead develop simplicial techniques to construct a simplicial curvature 3-form representing the class of the gerbe. Then by using a JLO formula we define a morphism from a simplicial complex twisted by this simplicial curvature 3-form to the mixed bicomplex computing the periodic cyclic cohomology of the twisted convolution algebras.

  1. Deciphering the molecular mechanisms underlying the binding of the TWIST1/E12 complex to regulatory E-box sequences.

    PubMed

    Bouard, Charlotte; Terreux, Raphael; Honorat, Mylène; Manship, Brigitte; Ansieau, Stéphane; Vigneron, Arnaud M; Puisieux, Alain; Payen, Léa

    2016-06-20

    The TWIST1 bHLH transcription factor controls embryonic development and cancer processes. Although molecular and genetic analyses have provided a wealth of data on the role of bHLH transcription factors, very little is known on the molecular mechanisms underlying their binding affinity to the E-box sequence of the promoter. Here, we used an in silico model of the TWIST1/E12 (TE) heterocomplex and performed molecular dynamics (MD) simulations of its binding to specific (TE-box) and modified E-box sequences. We focused on (i) active E-box and inactive E-box sequences, on (ii) modified active E-box sequences, as well as on (iii) two box sequences with modified adjacent bases the AT- and TA-boxes. Our in silico models were supported by functional in vitro binding assays. This exploration highlighted the predominant role of protein side-chain residues, close to the heart of the complex, at anchoring the dimer to DNA sequences, and unveiled a shift towards adjacent ((-1) and (-1*)) bases and conserved bases of modified E-box sequences. In conclusion, our study provides proof of the predictive value of these MD simulations, which may contribute to the characterization of specific inhibitors by docking approaches, and their use in pharmacological therapies by blocking the tumoral TWIST1/E12 function in cancers.

  2. Developing Internal Controls through Activities

    ERIC Educational Resources Information Center

    Barnes, F. Herbert

    2009-01-01

    Life events can include the Tuesday afternoon cooking class with the group worker or the Saturday afternoon football game, but in the sense that Fritz Redl thought of them, these activities are only threads in a fabric of living that includes all the elements of daily life: playing, working, school-based learning, learning through activities,…

  3. Orbiter active thermal control system description

    NASA Technical Reports Server (NTRS)

    Laubach, G. E.

    1975-01-01

    A brief description of the Orbiter Active Thermal Control System (ATCS) including (1) major functional requirements of heat load, temperature control and heat sink utilization, (2) the overall system arrangement, and (3) detailed description of the elements of the ATCS.

  4. Active Control of Open Cavities

    NASA Technical Reports Server (NTRS)

    UKeiley, Lawrence

    2010-01-01

    Open loop edge blowing was demonstrated as an effective method for reducing the broad band and tonal components of the fluctuating surface pressure in open cavities. Closed loop has been successfully applied to low Mach number open cavities. Need to push actuators that are viable for closed loop control in bandwidth and output. Need a better understanding of the effects of control on the flow through detailed measurements so better actuation strategies can be developed.

  5. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells

    NASA Technical Reports Server (NTRS)

    Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)

    2001-01-01

    A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.

  6. Folded supersymmetry with a twist

    DOE PAGES

    Cohen, Timothy; Craig, Nathaniel; Lou, Hou Keong; ...

    2016-03-30

    Folded supersymmetry (f-SUSY) stabilizes the weak scale against radiative corrections from the top sector via scalar partners whose gauge quantum numbers differ from their Standard Model counterparts. This non-trivial pairing of states can be realized in extra-dimensional theories with appropriate supersymmetry-breaking boundary conditions. We present a class of calculable f-SUSY models that are parametrized by a non-trivial twist in 5D boundary conditions and can accommodate the observed Higgs mass and couplings. Although the distinctive phenomenology associated with the novel folded states should provide strong evidence for this mechanism, the most stringent constraints are currently placed by conventional supersymmetry searches. Asmore » a result, these models remain minimally fine-tuned in light of LHC8 data and provide a range of both standard and exotic signatures accessible at LHC13.« less

  7. Folded supersymmetry with a twist

    SciTech Connect

    Cohen, Timothy; Craig, Nathaniel; Lou, Hou Keong; Pinner, David

    2016-03-30

    Folded supersymmetry (f-SUSY) stabilizes the weak scale against radiative corrections from the top sector via scalar partners whose gauge quantum numbers differ from their Standard Model counterparts. This non-trivial pairing of states can be realized in extra-dimensional theories with appropriate supersymmetry-breaking boundary conditions. We present a class of calculable f-SUSY models that are parametrized by a non-trivial twist in 5D boundary conditions and can accommodate the observed Higgs mass and couplings. Although the distinctive phenomenology associated with the novel folded states should provide strong evidence for this mechanism, the most stringent constraints are currently placed by conventional supersymmetry searches. As a result, these models remain minimally fine-tuned in light of LHC8 data and provide a range of both standard and exotic signatures accessible at LHC13.

  8. Methods and apparatus for twist bend coupled (TCB) wind turbine blades

    DOEpatents

    Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee

    2006-10-10

    A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.

  9. Student Activity Funds: Procedures & Controls.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles E.

    Student activity funds may create educational opportunities for students, but they frequently create problems for business administrators. The first part of this work reviews the types of organizational issues and transactions an organized student group is likely to encounter, including establishing a constitution, participant roles,…

  10. DYNAMICS OF STRONGLY TWISTED RELATIVISTIC MAGNETOSPHERES

    SciTech Connect

    Parfrey, Kyle; Beloborodov, Andrei M.; Hui, Lam

    2013-09-10

    Magnetar magnetospheres are believed to be strongly twisted due to shearing of the stellar crust by internal magnetic stresses. We present time-dependent axisymmetric simulations showing in detail the evolution of relativistic force-free magnetospheres subjected to slow twisting through large angles. When the twist amplitude is small, the magnetosphere moves quasi-statically through a sequence of equilibria of increasing free energy. At some twist amplitude the magnetosphere becomes tearing-mode unstable to forming a resistive current sheet, initiating large-scale magnetic reconnection in which a significant fraction of the magnetic free energy can be dissipated. This ''critical'' twist angle is insensitive to the resistive length scale. Rapid shearing temporarily stabilizes the magnetosphere beyond the critical angle, allowing the magnetosphere of a rapidly differentially rotating star to store and dissipate more free energy. In addition to these effects, shearing the surface of a rotating star increases the spindown torque applied to the star. If shearing is much slower than rotation, the resulting spikes in spindown rate can occur on timescales anywhere from the long twisting timescale to the stellar spin period or shorter, depending both on the stellar shear distribution and the existing distribution of magnetospheric twists. A model in which energy is stored in the magnetosphere and released by a magnetospheric instability therefore predicts large changes in the measured spindown rate before soft gamma repeater giant flares.

  11. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    Actively controlled mechanical seals have recently been developed for industrial use. This study investigates the feasibility of using such seals for aerospace applications. In a noncontacting mechanical seal, the film thickness depends on the geometry of the seal interface. The amount of coning, which is a measure of the radial convergence or divergence of the seal interface, has a primary effect on the film thickness. Active control of the film thickness is established by controlling the coning with a piezoelectric material. A mathematical model has been formulated to predict the performance of an actively controlled mechanical seal.

  12. Euclidean supersymmetry, twisting and topological sigma models

    NASA Astrophysics Data System (ADS)

    Hull, C. M.; Lindström, U.; Melo dos Santos, L.; von Unge, R.; Zabzine, M.

    2008-06-01

    We discuss two dimensional N-extended supersymmetry in Euclidean signature and its R-symmetry. For N = 2, the R-symmetry is SO(2) × SO(1, 1), so that only an A-twist is possible. To formulate a B-twist, or to construct Euclidean N = 2 models with H-flux so that the target geometry is generalised Kahler, it is necessary to work with a complexification of the sigma models. These issues are related to the obstructions to the existence of non-trivial twisted chiral superfields in Euclidean superspace.

  13. Twisted spectral geometry for the standard model

    NASA Astrophysics Data System (ADS)

    Martinetti, Pierre

    2015-07-01

    In noncommutative geometry, the spectral triple of a manifold does not generate bosonic fields, for fluctuations of the Dirac operator vanish. A Connes-Moscovici twist forces the commutative algebra to be multiplied by matrices. Keeping the space of spinors untouched, twisted-fluctuations then yield perturbations of the spin connection. Applied to the spectral triple of the Standard Model, a similar twist yields the scalar field needed to stabilize the vacuum and to make the computation of the Higgs mass compatible with its experimental value.

  14. Field Test Results from a 10 kW Wind Turbine with Active Flow Control

    NASA Astrophysics Data System (ADS)

    Rice, Thomas; Bychkova, Veronika; Taylor, Keith; Clingman, Dan; Amitay, Michael

    2015-11-01

    Active flow control devices including synthetic jets and dynamic vortex generators were tested on a 10 kW wind turbine at RPI. Previous work has shown that load oscillations caused by dynamic stall could be modified through the use of active flow control by injecting momentum into the flow field near the leading edge of a dynamically pitching model. In this study, this work has been extended to its logical conclusion, field-testing active flow control on a real wind turbine. The blades in the current study have a 0.28m chord and 3.05m span, no twist or taper, and were retrofitted with six synthetic jets on one blade and ten dynamic vortex generators on a second blade. The third blade of this turbine was not modified, in order to serve as a control. Strain gauges were installed on each blade to measure blades' deflection. A simple closed loop control was demonstrated and preliminary results indicate reduced vibrational amplitude. Future testing will be conducted on a larger scale, 600kW machine at NREL, incorporating information collected during this study.

  15. A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes.

    PubMed

    Wang, Meng; Lin, Bao-Ping; Yang, Hong

    2016-12-22

    In nature, plant tendrils can produce two fundamental motion modes, bending and chiral twisting (helical curling) distortions, under the stimuli of sunlight, humidity, wetting or other atmospheric conditions. To date, many artificial plant-like mechanical machines have been developed. Although some previously reported materials could realize bending or chiral twisting through tailoring the samples into various ribbons along different orientations, each single ribbon could execute only one deformation mode. The challenging task is how to endow one individual plant tendril mimic material with two different, fully tunable and reversible motion modes (bending and chiral twisting). Here we show a dual-layer, dual-composition polysiloxane-based liquid crystal soft actuator strategy to synthesize a plant tendril mimic material capable of performing two different three-dimensional reversible transformations (bending versus chiral twisting) through modulation of the wavelength band of light stimuli (ultraviolet versus near-infrared). This material has broad application prospects in biomimetic control devices.

  16. A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Lin, Bao-Ping; Yang, Hong

    2016-12-01

    In nature, plant tendrils can produce two fundamental motion modes, bending and chiral twisting (helical curling) distortions, under the stimuli of sunlight, humidity, wetting or other atmospheric conditions. To date, many artificial plant-like mechanical machines have been developed. Although some previously reported materials could realize bending or chiral twisting through tailoring the samples into various ribbons along different orientations, each single ribbon could execute only one deformation mode. The challenging task is how to endow one individual plant tendril mimic material with two different, fully tunable and reversible motion modes (bending and chiral twisting). Here we show a dual-layer, dual-composition polysiloxane-based liquid crystal soft actuator strategy to synthesize a plant tendril mimic material capable of performing two different three-dimensional reversible transformations (bending versus chiral twisting) through modulation of the wavelength band of light stimuli (ultraviolet versus near-infrared). This material has broad application prospects in biomimetic control devices.

  17. A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes

    PubMed Central

    Wang, Meng; Lin, Bao-Ping; Yang, Hong

    2016-01-01

    In nature, plant tendrils can produce two fundamental motion modes, bending and chiral twisting (helical curling) distortions, under the stimuli of sunlight, humidity, wetting or other atmospheric conditions. To date, many artificial plant-like mechanical machines have been developed. Although some previously reported materials could realize bending or chiral twisting through tailoring the samples into various ribbons along different orientations, each single ribbon could execute only one deformation mode. The challenging task is how to endow one individual plant tendril mimic material with two different, fully tunable and reversible motion modes (bending and chiral twisting). Here we show a dual-layer, dual-composition polysiloxane-based liquid crystal soft actuator strategy to synthesize a plant tendril mimic material capable of performing two different three-dimensional reversible transformations (bending versus chiral twisting) through modulation of the wavelength band of light stimuli (ultraviolet versus near-infrared). This material has broad application prospects in biomimetic control devices. PMID:28004810

  18. Ultracompact photonic coupling splitters twisted by PTT nanowires.

    PubMed

    Xing, Xiaobo; Zhu, Heng; Wang, Yuqing; Li, Baojun

    2008-09-01

    We report a series of ultracompact photonic coupling splitters with multi-input/output ports assembled by twisting flexible polymer nanowires, which were fabricated by one-step drawing method from poly(trimethylene terephthalate) (PTT). Experimental demonstration shows that the properties of the splitters are dependent on the operation wavelength and the input branch of the optical signal launched. For a fixed operation wavelength and the input branch, desirable splitting ratio can be tuned by controlling the input/output branching angle. The excess loss of these splitters is less than 1 dB, and the intrinsic loss is less than 0.4 dB. They are desirable for high density photonic integrated circuits (PICs) and nanonetworks, while the twisting technology will be useful in constructing other wire-based photonic devices.

  19. Mathematical Modeling of Yarn Dynamics in a Generalized Twisting System

    PubMed Central

    Yin, R.; Tao, X. M.; Xu, B. G.

    2016-01-01

    Twisting is an important process to form a continuous yarn from short fibres and to determine the structure and properties of the resultant yarn. This paper proposes a new theoretical model of yarn dynamics in a generalized twisting system, which deals with two important phenomena simultaneously, that is, twist generation and twist propagation. Equations of yarn motion are established and the boundary value problems are numerically solved by Newton-Raphson method. The simulation results are validated by experiments and a good agreement has been demonstrated for the system with a moving rigid cylinder as the twisting element. For the first time, influences of several parameters on the twisting process have been revealed in terms of twist efficiency of the moving rigid cylinder, propagation coefficients of twist trapping and congestion. It was found that the wrap angle and yarn tension have large influence on the twisting process, and the yarn torsional rigidity varies with the twisting parameters. PMID:27079187

  20. Active Control of Transition and Turbulence

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    1987-01-01

    Two active means of manipulating boundary-layer flow developed, one controlling laminar-to-turbulent transition, other controlling amplitude of turbulent fluctuation. Purpose to control skin-friction drag over surfaces inside inlets and ducts. Resulting turbulence downstream has lower skin-friction drag than equivalent flow developing over same surfaces in absence of intervention. Heating strips trigger turbulence while transition amplitude and bandwidth controlled by acoustic signal.

  1. Twists and rotations of solar magnetic fields

    NASA Astrophysics Data System (ADS)

    Piddington, J. H.

    1981-04-01

    A detailed review is given of evidence for the emergence of solar magnetic fields as helically twisted flux ropes, made up of hundreds of thousands of individually twisted flux fibers and reaching concentrations greater than 4000 gauss. The initial pitch angle of the twists is estimated as less than 10 deg in the submerged flux ropes and 1 deg in the fibers, with large-factor increases during (and following) emergence. The upward transmission of magnetic stresses and motions from submerged flux rope sections are major factors in solar physics, with the helical twists accounting for the creation of sunspots and for their stability, fine structure, and mode of decay. They are basic features of solar atmospheric structures, from the largest flare events and prominences to arch filaments and the smallest network components.

  2. New twisted intermetallic compound superconductor: A concept

    NASA Technical Reports Server (NTRS)

    Coles, W. D.; Brown, G. V.; Laurence, J. C.

    1972-01-01

    Method for processing Nb3Sn and other intermetallic compound superconductors produces a twisted, stabilized wire or tube which can be used to wind electromagnetics, armatures, rotors, and field windings for motors and generators as well as other magnetic devices.

  3. Thermal conductivity of twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Li, Hongyang; Ying, Hao; Chen, Xiangping; Nika, Denis L.; Cocemasov, Alexandr I.; Cai, Weiwei; Balandin, Alexander A.; Chen, Shanshan

    2014-10-01

    We have investigated experimentally the thermal conductivity of suspended twisted bilayer graphene. The measurements were performed using an optothermal Raman technique. It was found that the thermal conductivity of twisted bilayer graphene is lower than that of monolayer graphene and the reference, Bernal stacked bilayer graphene in the entire temperature range examined (~300-700 K). This finding indicates that the heat carriers - phonons - in twisted bilayer graphene do not behave in the same manner as that observed in individual graphene layers. The decrease in the thermal conductivity found in twisted bilayer graphene was explained by the modification of the Brillouin zone due to plane rotation and the emergence of numerous folded phonon branches that enhance the phonon Umklapp and normal scattering. The results obtained are important for understanding thermal transport in two-dimensional systems.

  4. Flux-Rope Twist in Eruptive Flares and CMEs: Due to Zipper and Main-Phase Reconnection

    NASA Astrophysics Data System (ADS)

    Priest, E. R.; Longcope, D. W.

    2017-01-01

    The nature of three-dimensional reconnection when a twisted flux tube erupts during an eruptive flare or coronal mass ejection is considered. The reconnection has two phases: first of all, 3D "zipper reconnection" propagates along the initial coronal arcade, parallel to the polarity inversion line (PIL); then subsequent quasi-2D "main-phase reconnection" in the low corona around a flux rope during its eruption produces coronal loops and chromospheric ribbons that propagate away from the PIL in a direction normal to it. One scenario starts with a sheared arcade: the zipper reconnection creates a twisted flux rope of roughly one turn (2π radians of twist), and then main-phase reconnection builds up the bulk of the erupting flux rope with a relatively uniform twist of a few turns. A second scenario starts with a pre-existing flux rope under the arcade. Here the zipper phase can create a core with many turns that depend on the ratio of the magnetic fluxes in the newly formed flare ribbons and the new flux rope. Main phase reconnection then adds a layer of roughly uniform twist to the twisted central core. Both phases and scenarios are modeled in a simple way that assumes the initial magnetic flux is fragmented along the PIL. The model uses conservation of magnetic helicity and flux, together with equipartition of magnetic helicity, to deduce the twist of the erupting flux rope in terms the geometry of the initial configuration. Interplanetary observations show some flux ropes have a fairly uniform twist, which could be produced when the zipper phase and any pre-existing flux rope possess small or moderate twist (up to one or two turns). Other interplanetary flux ropes have highly twisted cores (up to five turns), which could be produced when there is a pre-existing flux rope and an active zipper phase that creates substantial extra twist.

  5. Twist promotes reprogramming of glucose metabolism in breast cancer cells through PI3K/AKT and p53 signaling pathways

    PubMed Central

    Yuan, Jie; Tang, Shifu; Zhang, Hailong; Zhu, Qing; Du, Yan-e; Zhou, Mingli; Wen, Siyang; Xu, Liyun; Tang, Xi; Cui, Xiaojiang; Liu, Manran

    2015-01-01

    Twist, a key regulator of epithelial-mesenchymal transition (EMT), plays an important role in the development of a tumorigenic phenotype. Energy metabolism reprogramming (EMR), a newly discovered hallmark of cancer cells, potentiates cancer cell proliferation, survival, and invasion. Currently little is known about the effects of Twist on tumor EMR. In this study, we found that glucose consumption and lactate production were increased and mitochondrial mass was decreased in Twist-overexpressing MCF10A mammary epithelial cells compared with vector-expressing MCF10A cells. Moreover, these Twist-induced phenotypic changes were augmented by hypoxia. The expression of some glucose metabolism-related genes such as PKM2, LDHA, and G6PD was also found to be upregulated. Mechanistically, activated β1-integrin/FAK/PI3K/AKT/mTOR and suppressed P53 signaling were responsible for the observed EMR. Knockdown of Twist reversed the effects of Twist on EMR in Twist-overexpressing MCF10A cells and Twist-positive breast cancer cells. Furthermore, blockage of the β1-integrin/FAK/PI3K/AKT/mTOR pathway by siRNA or specific chemical inhibitors, or rescue of p53 activation can partially reverse the switch of glucose metabolism and inhibit the migration of Twist-overexpressing MCF10A cells and Twist-positive breast cancer cells. Thus, our data suggest that Twist promotes reprogramming of glucose metabolism in MCF10A-Twist cells and Twist-positive breast cancer cells via activation of the β1-integrin/FAK/PI3K/AKT/mTOR pathway and inhibition of the p53 pathway. Our study provides new insight into EMR. PMID:26342198

  6. Ghost imaging with twisted Gaussian Schell-model beam.

    PubMed

    Cai, Yangjian; Lin, Qiang; Korotkova, Olga

    2009-02-16

    Based on the classical optical coherence theory, ghost imaging with twisted Gaussian Schell-model (GSM) beams is analyzed. It is found that the twist phase of the GSM beam has strong influence on ghost imaging. As the absolute value of the twist factor increases, the ghost image disappears gradually, but its visibility increases. This phenomenon is caused by the fact that the twist phase enhances the transverse spatial coherence of the twisted GSM beam on propagation.

  7. Twisted covariant noncommutative self-dual gravity

    SciTech Connect

    Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.

    2008-12-15

    A twisted covariant formulation of noncommutative self-dual gravity is presented. The formulation for constructing twisted noncommutative Yang-Mills theories is used. It is shown that the noncommutative torsion is solved at any order of the {theta} expansion in terms of the tetrad and some extra fields of the theory. In the process the first order expansion in {theta} for the Plebanski action is explicitly obtained.

  8. Akirin Links Twist-Regulated Transcription with the Brahma Chromatin Remodeling Complex during Embryogenesis

    PubMed Central

    Nowak, Scott J.; Aihara, Hitoshi; Gonzalez, Katie; Nibu, Yutaka; Baylies, Mary K.

    2012-01-01

    The activities of developmentally critical transcription factors are regulated via interactions with cofactors. Such interactions influence transcription factor activity either directly through protein–protein interactions or indirectly by altering the local chromatin environment. Using a yeast double-interaction screen, we identified a highly conserved nuclear protein, Akirin, as a novel cofactor of the key Drosophila melanogaster mesoderm and muscle transcription factor Twist. We find that Akirin interacts genetically and physically with Twist to facilitate expression of some, but not all, Twist-regulated genes during embryonic myogenesis. akirin mutant embryos have muscle defects consistent with altered regulation of a subset of Twist-regulated genes. To regulate transcription, Akirin colocalizes and genetically interacts with subunits of the Brahma SWI/SNF-class chromatin remodeling complex. Our results suggest that, mechanistically, Akirin mediates a novel connection between Twist and a chromatin remodeling complex to facilitate changes in the chromatin environment, leading to the optimal expression of some Twist-regulated genes during Drosophila myogenesis. We propose that this Akirin-mediated link between transcription factors and the Brahma complex represents a novel paradigm for providing tissue and target specificity for transcription factor interactions with the chromatin remodeling machinery. PMID:22396663

  9. Reliable and Affordable Control Systems Active Combustor Pattern Factor Control

    NASA Technical Reports Server (NTRS)

    McCarty, Bob; Tomondi, Chris; McGinley, Ray

    2004-01-01

    Active, closed-loop control of combustor pattern factor is a cooperative effort between Honeywell (formerly AlliedSignal) Engines and Systems and the NASA Glenn Research Center to reduce emissions and turbine-stator vane temperature variations, thereby enhancing engine performance and life, and reducing direct operating costs. Total fuel flow supplied to the engine is established by the speed/power control, but the distribution to individual atomizers will be controlled by the Active Combustor Pattern Factor Control (ACPFC). This system consist of three major components: multiple, thin-film sensors located on the turbine-stator vanes; fuel-flow modulators for individual atomizers; and control logic and algorithms within the electronic control.

  10. A smart soft actuator using a single shape memory alloy for twisting actuation

    NASA Astrophysics Data System (ADS)

    Shim, Jae-Eul; Quan, Ying-Jun; Wang, Wei; Rodrigue, Hugo; Song, Sung-Hyuk; Ahn, Sung-Hoon

    2015-12-01

    Recently, robots have become a topic of interest with regard to their functionality as they need to complete a large number of diverse tasks in a variety of environments. When using traditional mechanical components, many parts are needed to realize complex deformations, such as motors, hinges, and cranks. To produce complex deformations, this work introduces a smart soft composite torsional actuator using a single shape memory alloy (SMA) wire without any additional elements. The proposed twisting actuator is composed of a torsionally prestrained SMA wire embedded at the center of a polydimethylsiloxane matrix that twists by applying an electric current upon joule heating of the SMA wire. This report shows the actuator design, fabrication method, and results for the twisting angle and actuation moment. Results show that a higher electric current helps reach the maximum twisting angle faster, but that if the current is too low or too high, it will not be able to reach its maximum deformation. Also, both the twisting angle and the twisting moment increase with a large applied twisting prestrain, but this increase has an asymptotic behavior. However, results for both the width and the thickness of the actuator show that a larger width and thickness reduce the maximum actuation angle of the actuator. This paper also presents a new mechanism for an SMA-actuated active catheter using only two SMA wires with a total length of 170 mm to bend the tip of the catheter in multiple directions. The fabricated active catheter’s maximum twisting angle is 270°, and the maximum bending curvature is 0.02 mm-1.

  11. Active Control by Conservation of Energy Concept

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2000-01-01

    Three unrelated experiments are discussed; each was extremely sensitive to initial conditions. The initial conditions are the beginnings of the origins of the information that nonlinearity displays. Initial conditions make the phenomenon unstable and unpredictable. With the knowledge of the initial conditions, active control requires far less power than that present in the system response. The first experiment is on the control of shocks from an axisymmetric supersonic jet; the second, control of a nonlinear panel response forced by turbulent boundary layer and sound; the third, control of subharmonic and harmonics of a panel forced by sound. In all three experiments, control is achieved by redistribution of periodic energy response such that the energy is nearly preserved from a previous uncontrolled state. This type of active control improves the performance of the system being controlled.

  12. Active control of buildings during earthquakes

    NASA Technical Reports Server (NTRS)

    Vance, Vicki L.

    1993-01-01

    The objective of this report is to provide an overview of the different types of control systems used in buildings, to discuss the problems associated with current active control mechanisms, and to show the cost-effectiveness of applying active control to buildings. In addition, a small case study investigates the feasibility and benefits of using embedded actuators in buildings. Use of embedded actuators could solve many of the current problems associated with active control by providing a wider bandwidth of control, quicker speed of response, increased reliability and reduced power requirement. Though embedded actuators have not been developed for buildings, they have previously been used in space structures. Many similarities exist between large civil and aerospace structures indicating that direct transfer of concepts between the two disciplines may be possible. In particular, much of the Controls-Structures Interaction (CSI) technology currently being developed could be beneficially applied to civil structures. While several buildings with active control systems have been constructed in Japan, additional research and experimental verification are necessary before active control systems become widely accepted and implemented.

  13. miR-148a is upregulated by Twist1 and T-bet and promotes Th1-cell survival by regulating the proapoptotic gene Bim.

    PubMed

    Haftmann, Claudia; Stittrich, Anna-Barbara; Zimmermann, Jakob; Fang, Zhuo; Hradilkova, Kristyna; Bardua, Markus; Westendorf, Kerstin; Heinz, Gitta A; Riedel, René; Siede, Julia; Lehmann, Katrin; Weinberger, Esther E; Zimmel, David; Lauer, Uta; Häupl, Thomas; Sieper, Joachim; Backhaus, Marina; Neumann, Christian; Hoffmann, Ute; Porstner, Martina; Chen, Wei; Grün, Joachim R; Baumgrass, Ria; Matz, Mareen; Löhning, Max; Scheffold, Alexander; Wittmann, Jürgen; Chang, Hyun-Dong; Rajewsky, Nikolaus; Jäck, Hans-Martin; Radbruch, Andreas; Mashreghi, Mir-Farzin

    2015-04-01

    Repeatedly activated T helper 1 (Th1) cells present during chronic inflammation can efficiently adapt to the inflammatory milieu, for example, by expressing the transcription factor Twist1, which limits the immunopathology caused by Th1 cells. Here, we show that in repeatedly activated murine Th1 cells, Twist1 and T-bet induce expression of microRNA-148a (miR-148a). miR-148a regulates expression of the proapoptotic gene Bim, resulting in a decreased Bim/Bcl2 ratio. Inhibition of miR-148a by antagomirs in repeatedly activated Th1 cells increases the expression of Bim, leading to enhanced apoptosis. Knockdown of Bim expression by siRNA in miR-148a antagomir-treated cells restores viability of the Th1 cells, demonstrating that miR-148a controls survival by regulating Bim expression. Thus, Twist1 and T-bet not only control the differentiation and function of Th1 cells, but also their persistence in chronic inflammation.

  14. Controls on fire activity over the Holocene

    NASA Astrophysics Data System (ADS)

    Kloster, S.; Brücher, T.; Brovkin, V.; Wilkenskjeld, S.

    2014-11-01

    Changes in fire activity over the last 8000 years are simulated with a global fire model driven by changes in climate and vegetation cover. The changes were separated into those caused through variations in fuel availability, fuel moisture or wind speed which react differently to changes in climate. Disentangling these controlling factors helps to understand the overall climate control on fire activity over the Holocene. Globally the burned area is simulated to increase by 2.5% between 8000 and 200 cal yr BP with larger regional changes compensating on a global scale. Despite the absence of anthropogenic fire ignitions, the simulated trends in fire activity agree reasonably well with continental scale reconstructions from charcoal records, with the exception of Europe. For some regions the change in fire activity is predominantly controlled through changes in fuel availability (Australia-Monsoon, American Tropics/Subtropics). For other regions changes in fuel moisture are more important for the overall trend in fire activity (North America, Sub-Saharan Africa, Europe, Asia-Monsoon). In Sub-Saharan Africa, for example, changes in fuel moisture alone lead to an increase in fire activity between 8000 and 200 cal yr BP, while changes in fuel availability lead to a decrease. Overall, the fuel moisture control is dominating the simulated fire activity for Sub-Saharan Africa. The simulations clearly demonstrate that both changes in fuel availability and changes in fuel moisture are important drivers for the fire activity over the Holocene. Fuel availability and fuel moisture do, however, have different climate controls. As such observed changes in fire activity can not be related to single climate parameters such as precipitation or temperature alone. Fire models, as applied in this study, in combination with observational records can help to understand the climate control on fire activity, which is essential to project future fire activity.

  15. Controls on fire activity over the Holocene

    NASA Astrophysics Data System (ADS)

    Kloster, S.; Brucher, T.; Brovkin, V.; Wilkenskjeld, S.

    2015-05-01

    Changes in fire activity over the last 8000 years are simulated with a global fire model driven by changes in climate and vegetation cover. The changes were separated into those caused through variations in fuel availability, fuel moisture or wind speed, which react differently to changes in climate. Disentangling these controlling factors helps in understanding the overall climate control on fire activity over the Holocene. Globally the burned area is simulated to increase by 2.5% between 8000 and 200 cal yr BP, with larger regional changes compensating nearly evening out on a global scale. Despite the absence of anthropogenic fire ignitions, the simulated trends in fire activity agree reasonably well with continental-scale reconstructions from charcoal records, with the exception of Europe. For some regions the change in fire activity is predominantly controlled through changes in fuel availability (Australia monsoon, Central America tropics/subtropics). For other regions changes in fuel moisture are more important for the overall trend in fire activity (North America, Sub-Saharan Africa, Europe, Asia monsoon). In Sub-Saharan Africa, for example, changes in fuel moisture alone lead to an increase in fire activity between 8000 and 200 cal yr BP, while changes in fuel availability lead to a decrease. Overall, the fuel moisture control is dominating the simulated fire activity for Sub-Saharan Africa. The simulations clearly demonstrate that both changes in fuel availability and changes in fuel moisture are important drivers for the fire activity over the Holocene. Fuel availability and fuel moisture do, however, have different climate controls. As such, observed changes in fire activity cannot be related to single climate parameters such as precipitation or temperature alone. Fire models, as applied in this study, in combination with observational records can help in understanding the climate control on fire activity, which is essential to project future fire

  16. Monitoring by Control Technique - Activated Carbon Adsorber

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Activated Carbon Adsorber control techniques used to reduce pollutant emissions.

  17. Active control of turbomachine discrete tones

    NASA Astrophysics Data System (ADS)

    Fleeter, Sanford

    This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.

  18. Approximate active fault detection and control

    NASA Astrophysics Data System (ADS)

    Škach, Jan; Punčochář, Ivo; Šimandl, Miroslav

    2014-12-01

    This paper deals with approximate active fault detection and control for nonlinear discrete-time stochastic systems over an infinite time horizon. Multiple model framework is used to represent fault-free and finitely many faulty models. An imperfect state information problem is reformulated using a hyper-state and dynamic programming is applied to solve the problem numerically. The proposed active fault detector and controller is illustrated in a numerical example of an air handling unit.

  19. Active Polymer Microfiber with Controlled Polarization Sensitivity

    PubMed Central

    Xia, Hongyan; Wang, Ruxue; Liu, Yingying; Cheng, Junjie; Zou, Gang; Zhang, Qijin; Zhang, Douguo; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2016-01-01

    Controlled Polarization Sensitivity of an active polymer microfiber has been proposed and realized with the electrospun method. The fluorescence intensity guiding through this active polymer microfiber shows high sensitivity to the polarization state of the excitation light. What is more, the fluorescence out-coupled from tip of the microfiber can be of designed polarization state. Principle of these phenomena lies on the ordered and controlled orientation of the polydiacetylene (PDA) main chains inside polymer microfiber. PMID:27099828

  20. An extended active control for chaos synchronization

    NASA Astrophysics Data System (ADS)

    Tang, Rong-An; Liu, Ya-Li; Xue, Ju-Kui

    2009-04-01

    By introducing a control strength matrix, the active control theory in chaotic synchronization is developed. With this extended method, chaos complete synchronization can be achieved more easily, i.e., a much smaller control signal is enough to reach synchronization in most cases. Numerical simulations on Rossler, Liu's four-scroll, and Chen system confirmed this and show that the synchronization result depends on the control strength significantly. Especially, in the case of Liu and Chen systems, the response systems' largest Lyapunov exponents' variation with the control strength is not monotone and there exist minima. It is novel for Chen system that the synchronization speed with a special small strength is higher than that of the usual active control which, as a special case of the extended method, has a much larger control strength. All these results indicate that the control strength is an important factor in the actual synchronization. So, with this extended active control, one can make a better and more practical synchronization scheme by adjusting the control strength matrix.

  1. BUILDUP AND RELEASE OF MAGNETIC TWIST DURING THE X3.4 SOLAR FLARE OF 2006 DECEMBER 13

    SciTech Connect

    Inoue, S.; Pandey, V. S.; Magara, T.; Choe, G. S.; Shiota, D.; Yamamoto, T. T.

    2012-11-20

    We analyze the temporal evolution of the three-dimensional magnetic structure of the flaring active region (AR) NOAA 10930 by using the nonlinear force-free fields extrapolated from the photospheric vector magnetic fields observed by the Solar Optical Telescope on board Hinode. This AR consisted mainly of two types of twisted magnetic field lines: one has a strong negative (left-handed) twist due to the counterclockwise motion of the positive sunspot and is rooted in the regions of both polarities in the sunspot at a considerable distance from the polarity inversion line (PIL). In the flare phase, dramatic magnetic reconnection occurs in those negatively twisted lines in which the absolute value of the twist is greater than a half-turn. The other type consists of both positively and negatively twisted field lines formed relatively close to the PIL between two sunspots. A strong Ca II image began to brighten in this region of mixed polarity, in which the positively twisted field lines were found to be injected within one day across the pre-existing negatively twisted region, along which strong currents were embedded. Consequently, the central region near the PIL contains a mix of differently twisted field lines and the strong currents may play a prominent role in flare onset.

  2. A robotic finger driven by twisted and coiled polymer actuator

    NASA Astrophysics Data System (ADS)

    Cho, Kyeong Ho; Song, Min Geun; Jung, Hosang; Park, Jungwoo; Moon, Hyungpil; Koo, Ja Choon; Nam, Jae-Do; Choi, Hyouk Ryeol

    2016-04-01

    Previous studies reported that a twisted and coiled polymer actuator (TCA) generates strong force and large stroke by heating. Nylon 6,6 is known to be the most suitable polymer material for TCA because it has high thermal expansion ratio, high softening point and high toughness which is able to sustain gigantic twisting. In order to find the optimal structure of TCA fabricated with silver-coated nylon sewing threads, an equipment for twist-insertion (structuralization), composed of single DC motor, a slider fabricated by 3D printer and a body frame, is developed. It can measure the behaviors of TCAs as well as fabricate TCAs with desired characteristics by structuralizing fibers with controlled rotation per minutes (RPM) and turns. Comparing performances of diverse structures of TCAs, the optimal structure for TCA is found. For the verification of the availability of the optimal TCA, a TCA-driven biomimetic finger is developed. Finally, we successfully demonstrate the flexion/extension of the finger by using the actuation of TCAs.

  3. van Hove Singularity Enhanced Photochemical Reactivity of Twisted Bilayer Graphene.

    PubMed

    Liao, Lei; Wang, Huan; Peng, Han; Yin, Jianbo; Koh, Ai Leen; Chen, Yulin; Xie, Qin; Peng, Hailin; Liu, Zhongfan

    2015-08-12

    Twisted bilayer graphene (tBLG) exhibits van Hove singularities (VHSs) in the density of states that can be tuned by changing the twist angle (θ), sparking various novel physical phenomena. Much effort has been devoted to investigate the θ-dependent physical properties of tBLG. Yet, the chemical properties of tBLG with VHSs, especially the chemical reactivity, remain unexplored. Here we report the first systematic study on the chemistry of tBLG through the photochemical reaction between graphene and benzoyl peroxide. Twisted bilayer graphene exhibits θ-dependent reactivity, and remarkably enhanced reactivity is obtained when the energy of incident laser matches with the energy interval of the VHSs of tBLG. This work provides an insight on the chemistry of tBLG, and the successful enhancement of chemical reactivity derived from VHS is highly beneficial for the controllable chemical modification of tBLG as well as the development of tBLG based devices.

  4. Transitioning Active Flow Control to Applications

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Horta, Lucas G.; Chen, Fang-Jenq

    1999-01-01

    Active Flow Control Programs at NASA, the U.S. Air Force, and DARPA have been initiated with the goals of obtaining revolutionary advances in aerodynamic performance and maneuvering compared to conventional approaches. These programs envision the use of actuators, sensors, and controllers on applications such as aircraft wings/tails, engine nacelles, internal ducts, nozzles, projectiles, weapons bays, and hydrodynamic vehicles. Anticipated benefits of flow control include reduced weight, part count, and operating cost and reduced fuel burn (and emissions), noise and enhanced safety if the sensors serve a dual role of flow control and health monitoring. To get from the bench-top or laboratory test to adaptive distributed control systems on realistic applications, reliable validated design tools are needed in addition to sub- and large-scale wind-tunnel and flight experiments. This paper will focus on the development of tools for active flow control applications.

  5. Active load control techniques for wind turbines.

    SciTech Connect

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  6. Student Activity Funds: Procedures and Controls.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles E.

    2000-01-01

    An effective internal-control system can help school business administrators meet the challenges of accounting for student activity funds. Such a system should include appropriate policies and procedures, identification of key control points, self-assessments, audit trails, and internal and external audits. (MLH)

  7. Control of nucleus accumbens activity with neurofeedback.

    PubMed

    Greer, Stephanie M; Trujillo, Andrew J; Glover, Gary H; Knutson, Brian

    2014-08-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function.

  8. Exotic Twisted Equivariant Cohomology of Loop Spaces, Twisted Bismut-Chern Character and T-Duality

    NASA Astrophysics Data System (ADS)

    Han, Fei; Mathai, Varghese

    2015-07-01

    We define exotic twisted - equivariant cohomology for the loop space LZ of a smooth manifold Z via the invariant differential forms on LZ with coefficients in the (typically non-flat) holonomy line bundle of a gerbe, with differential an equivariantly flat superconnection. We introduce the twisted Bismut-Chern character form, a loop space refinement of the twisted Chern character form in Bouwknegt et al. (Commun Math Phys 228:17-49, 2002) and Mathai and Stevenson (Commun Math Phys 236:161-186, 2003), which represents classes in the completed periodic exotic twisted -equivariant cohomology of LZ.We establish a localisation theorem for the completed periodic exotic twisted -equivariant cohomology for loop spaces and apply it to establish T-duality in a background flux in type II String Theory from a loop space perspective.

  9. Active vibration control of civil structures

    SciTech Connect

    Farrar, C.; Baker, W.; Fales, J.; Shevitz, D.

    1996-11-01

    This is a final report of a one year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Active vibration control (AVC) of structural and mechanical systems is one of the rapidly advancing areas of engineering research. The multifaceted nature of AVC covers many disciplines, such as sensors and instrumentation, numerical modeling, experimental mechanics, and advanced power systems. This work encompassed a review of the literature on active control of structures focusing both on active control hardware and on control algorithms, a design of an isolation systems using magneto-rheological fluid-filled (MRF) dampers and numerical simulations to study the enhanced vibration mitigation effects of this technology.

  10. CFD Modeling for Active Flow Control

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.

    2001-01-01

    This presentation describes current work under UEET Active Flow Control CFD Research Tool Development. The goal of this work is to develop computational tools for inlet active flow control design. This year s objectives were to perform CFD simulations of fully gridded vane vortex generators, micro-vortex genera- tors, and synthetic jets, and to compare flowfield results with wind tunnel tests of simple geometries with flow control devices. Comparisons are shown for a single micro-vortex generator on a flat plate, and for flow over an expansion ramp with sidewall effects. Vortex core location, pressure gradient and oil flow patterns are compared between experiment and computation. This work lays the groundwork for evaluating simplified modeling of arrays of devices, and provides the opportunity to test simple flow control device/sensor/ control loop interaction.

  11. Active vibration control in microgravity environment

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.

    1987-01-01

    The low gravity environment of the space station is suitable for experiments or manufacturing processes which require near zero gravity. An experiment was fabricated to test the validity of the active control process and to verify the flow and control parameters identified in a theoretical model. Zero gravity is approximated in the horizontal plane using a low friction air bearing table. An analog control system was designed to activate calibrated air jets when displacement of the test mass is sensed. The experiment demonstrates that an air jet control system introduces an effective damping factor to control oscillatory response. The amount of damping as well as the flow parameters, such as pressure drop across the valve and flow rate of air, are verified by the analytical model.

  12. Vibration control through passive constrained layer damping and active control

    NASA Astrophysics Data System (ADS)

    Lam, Margaretha J.; Inman, Daniel J.; Saunders, William R.

    1997-05-01

    To add damping to systems, viscoelastic materials (VEM) are added to structures. In order to enhance the damping effects of the VEM, a constraining layer is attached. When this constraining layer is an active element, the treatment is called active constrained layer damping (ACLD). Recently, the investigation of ACLD treatments has shown it to be an effective method of vibration suppression. In this paper, the treatment of a beam with a separate active element and passive constrained layer (PCLD) element is investigated. A Ritz- Galerkin approach is used to obtain discretized equations of motion. The damping is modeled using the GHM method and the system is analyzed in the time domain. By optimizing on the performance and control effort for both the active and passive case, it is shown that this treatment is capable of lower control effort with more inherent damping, and is therefore a better approach to damp vibration.

  13. Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites

    NASA Astrophysics Data System (ADS)

    Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu

    2011-01-01

    The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately.

  14. Oxysterols: Old Tale, New Twists.

    PubMed

    Luu, Winnie; Sharpe, Laura J; Capell-Hattam, Isabelle; Gelissen, Ingrid C; Brown, Andrew J

    2016-01-01

    Oxysterols have long been known for their important role in cholesterol homeostasis, where they are involved in both transcriptional and posttranscriptional mechanisms for controlling cholesterol levels. However, they are increasingly associated with a wide variety of other, sometimes surprising cell functions. They are activators of the Hedgehog pathway (important in embryogenesis), and they act as ligands for a growing list of receptors, including some that are of importance to the immune system. Oxysterols have also been implicated in several diseases such as neurodegenerative diseases and atherosclerosis. Here, we explore the latest research into the roles oxy-sterols play in different areas, and we evaluate the current evidence for these roles. In addition, we outline critical concepts to consider when investigating the roles of oxysterols in various situations, which includes ensuring that the concentration and form of the oxysterol are relevant in that context--a caveat with which many studies have struggled.

  15. Active control of robot manipulator compliance

    NASA Technical Reports Server (NTRS)

    Nguyen, C. C.; Pooran, F. J.

    1986-01-01

    Work performed at Catholic University on the research grant entitled Active Control of Robot Manipulator Compliance, supported by NASA/Goddard space Flight Center during the period of May 15th, 1986 to November 15th, 1986 is described. The modelling of the two-degree-of-freedom robot is first presented. Then the complete system including the robot and the hybrid controller is simulated on an IBM-XT Personal Computer. Simulation results showed that proper adjustments of controller gains enable the robot to perform successful operations. Further research should focus on developing a guideline for the controller gain design to achieve system stability.

  16. Reducing Bolt Preload Variation with Angle-of-Twist Bolt Loading

    NASA Technical Reports Server (NTRS)

    Thompson, Bryce; Nayate, Pramod; Smith, Doug; McCool, Alex (Technical Monitor)

    2001-01-01

    Critical high-pressure sealing joints on the Space Shuttle reusable solid rocket motor require precise control of bolt preload to ensure proper joint function. As the reusable solid rocket motor experiences rapid internal pressurization, correct bolt preloads maintain the sealing capability and structural integrity of the hardware. The angle-of-twist process provides the right combination of preload accuracy, reliability, process control, and assembly-friendly design. It improves significantly over previous methods. The sophisticated angle-of-twist process controls have yielded answers to all discrepancies encountered while the simplicity of the root process has assured joint preload reliability.

  17. Twist2 contributes to termination of limb bud outgrowth and patterning through direct regulation of Grem1.

    PubMed

    Wade, Christine; Brinas, Inigo; Welfare, Megan; Wicking, Carol; Farlie, Peter G

    2012-10-01

    Twist1 has been demonstrated to play critical roles in the early development of neural crest and mesodermally derived tissues including the limb. Twist2 has been less well characterised but its relatively late onset of expression suggests specific roles in the development of a number of organs. Expression of Twist2 within the developing limbs begins after formation of the limb bud and persists within the peripheral mesenchyme until digital rays condense. We have used RCAS-mediated overexpression in chick to investigate the function of Twist2 in limb development. Viral misexpression following injection into the lateral plate mesoderm results in a spectrum of hypoplastic limb phenotypes. These include generalized shortening of the entire limb, fusion of the autopod skeletal elements, loss of individual digits or distal truncation resulting in complete loss of the autopod. These phenotypes appear to result from a premature termination of limb outgrowth and manifest as defective growth in both the proximal-distal and anterior-posterior axes. In situ hybridisation analysis demonstrates that many components of the Shh/Grem1/Fgf regulatory loop that controls early limb growth and patterning are downregulated by Twist2 overexpression. Grem1 has a complementary expression pattern to Twist2 within the limb primordia and co-expression of both Grem1 and Twist2 results in a rescue of the Twist2 overexpression phenotype. We demonstrate that Twist proteins directly repress Grem1 expression via a regulatory element downstream of the open reading frame. These data indicate that Twist2 regulates early limb morphogenesis through a role in terminating the Shh/Grem1/Fgf autoregulatory loop.

  18. Improvement in performance of heat exchanger fitted with twisted tape

    SciTech Connect

    Sivashanmugam, P.; Sundaram, S.

    1999-04-01

    The improvement in performance of a double pipe heat exchanger fitted with twisted tape as a turbulence promoter with twist ratios of 15.649, 8.54, 5.882, 4.95, and 4.149 was experimentally studied. A maximum percentage gain of 44.7% in energy transfer rate was obtained for the twisted tape of twist ratio 4.149. For all twist ratios, the gain decreases with the Reynolds number and becomes constant for Reynolds numbers greater than 3,000. The smaller the twist ratio is, the larger the gain in energy for a specific Reynolds number.

  19. Mesoscale mechanics of twisting carbon nanotube yarns

    NASA Astrophysics Data System (ADS)

    Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J.

    2015-03-01

    Fabricating continuous macroscopic carbon nanotube (CNT) yarns with mechanical properties close to individual CNTs remains a major challenge. Spinning CNT fibers and ribbons for enhancing the weak interactions between the nanotubes is a simple and efficient method for fabricating high-strength and tough continuous yarns. Here we investigate the mesoscale mechanics of twisting CNT yarns using full atomistic and coarse grained molecular dynamics simulations, considering concurrent mechanisms at multiple length-scales. To investigate the mechanical response of such a complex structure without losing insights into the molecular mechanism, we applied a multiscale strategy. The full atomistic results are used for training a coarse grained model for studying larger systems consisting of several CNTs. The mesoscopic model parameters are updated as a function of the twist angle, based on the full atomistic results, in order to incorporate the atomistic scale deformation mechanisms in larger scale simulations. By bridging across two length scales, our model is capable of accurately predicting the mechanical behavior of twisted yarns while the atomistic level deformations in individual nanotubes are integrated into the model by updating the parameters. Our results focused on studying a bundle of close packed nanotubes provide novel mechanistic insights into the spinning of CNTs. Our simulations reveal how twisting a bundle of CNTs improves the shear interaction between the nanotubes up to a certain level due to increasing the interaction surface. Furthermore, twisting the bundle weakens the intertube interactions due to excessive deformation in the cross sections of individual CNTs in the bundle.

  20. Ergodic properties of linked-twist maps

    NASA Astrophysics Data System (ADS)

    Springham, James

    2008-12-01

    We study a class of homeomorphisms of surfaces collectively known as linked-twist maps. We introduce an abstract definition which enables us to give a precise characterisation of a property observed by other authors, namely that such maps fall into one of two classes termed co- and counter-twisting. We single out three specific linked-twist maps, one each on the two-torus, in the plane and on the two-sphere and for each prove a theorem concerning its ergodic properties with respect to the invariant Lebesgue measure. For the map on the torus we prove that there is an invariant, zero-measure Cantor set on which the dynamics are topologically conjugate to a full shift on the space of symbol sequences. Such features are commonly known as topological horseshoes. For the map in the plane we prove that there is a set of full measure on which the dynamics are measure-theoretically isomorphic to a full shift on the space of symbol sequences. This is commonly known as the Bernoulli property and verifies, under certain conditions, a conjecture of Wojtkowski's. We introduce the map on the sphere and prove that it too has the Bernoulli property. We conclude with some conjectures, drawn from our experience, concerning how one might extend the results we have for specific linked-twist maps to the abstract linked-twist maps we have defined.

  1. Twisted electron-acoustic waves in plasmas

    NASA Astrophysics Data System (ADS)

    Aman-ur-Rehman, Ali, S.; Khan, S. A.; Shahzad, K.

    2016-08-01

    In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number qeff accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.

  2. Rotor Flapping Response to Active Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Khanh; Johnson, Wayne

    2004-01-01

    Rotor active control using higher harmonic blade pitch has been proposed as a means to reduce both rotor radiated noise and airframe vibration and to enhance rotor performance. The higher harmonic input, however, can affect rotor thrust and cyclic flapping - the basic trim characteristics of the rotor. Some of the trim changes can negate the active control benefits. For example, wind tunnel test results of a full scale BO-105 rotor with individual-blade control indicate some rotor performance improvements, accompanied with changes in rotor trim, using two-per-rev blade pitch input. The observed performance benefits could therefore be a simple manifestation of the trim change rather than an efficient redistribution of the rotor airloads. More recently, the flight test of the BO-105 helicopter equip,ped with individual-blade-control actuators also reported trim changes whenever the two-per-rev blade pitch for noise reduction was activated. The pilot had to adjust the trim control to maintain the aircraft under a constant flight path. These two cases highlight the, importance of trim considerations in the application of active control to rotorcraft.

  3. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1994-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100 C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changed suddenly.

  4. Vector control activities. Fiscal year, 1982

    SciTech Connect

    Pickard, E.; Cooney, J.C.; McDuff, B.R.

    1983-06-01

    The goal of the TVA Vector Control Program is to protect the public from potential vectors of disease by controlling medically-important arthropod pests that are propagated on TVA lands or waters. In addition, freedom from annoying mosquitoes and other blood-sucking pests permits the development, use, and full enjoyment of the vast recreational opportunities offered by the many miles of freshwater lakes. To attain this goal the program is divided into operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems that require TVA attention and study. Specifically, activities concerning water level management of TVA lakes, dewatering projects, plant growth control, drainage and insect control programs are detailed. Further, report is made of post-impoundment surveys, soil sampling studies of Mosquite larvae and ecological mosquito management studies.

  5. Smart actuators for active vibration control

    NASA Astrophysics Data System (ADS)

    Pourboghrat, Farzad; Daneshdoost, Morteza

    1998-07-01

    In this paper, the design and implementation of smart actuators for active vibration control of mechanical systems are considered. A smart actuator is composed of one or several layers of piezo-electric materials which work both as sensors and actuators. Such a system also includes micro- electronic or power electronic amplifiers, depending on the power requirements and applications, as well as digital signal processing systems for digital control implementation. In addition, PWM type micro/power amplifiers are used for control implementation. Such amplifiers utilize electronic switching components that allow for miniaturization, thermal efficiency, cost reduction, and precision controls that are robust to disturbances and modeling errors. An adaptive control strategy is then developed for vibration damping and motion control of cantilever beams using the proposed smart self-sensing actuators.

  6. Actively Controlling Buffet-Induced Excitations

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Pototzky, Anthony S.; Henderson, Douglas A.; Galea, Stephen C.; Manokaran, Donald S.; Zimcik, David G.; Wickramasinghe, Viresh; Pitt, Dale M.; Gamble, Michael A.

    2005-01-01

    High performance aircraft, especially those with twin vertical tails, encounter unsteady buffet loads when flying at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. An international collaborative research activity among Australia, Canada and the United States, conducted under the auspices of The Technical Cooperation Program (TTCP) contributed resources toward a program that coalesced a broad range of technical knowledge and expertise into a single investigation to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration. The research team investigated the use of active structural control to alleviate the damaging structural response to these loads by applying advanced directional piezoelectric actuators, the aircraft rudder, switch mode amplifiers, and advanced control strategies on an F/A-18 aircraft empennage. Some results of the full-scale investigation are presented herein.

  7. Active control of near-field coupling in conductively coupled microelectromechanical system metamaterial devices

    NASA Astrophysics Data System (ADS)

    Pitchappa, Prakash; Manjappa, Manukumara; Ho, Chong Pei; Qian, You; Singh, Ranjan; Singh, Navab; Lee, Chengkuo

    2016-03-01

    We experimentally report a structurally reconfigurable metamaterial for active switching of near-field coupling in conductively coupled, orthogonally twisted split ring resonators (SRRs) operating in the terahertz spectral region. Out-of-plane reconfigurable microcantilevers integrated into the dark SRR geometry are used to provide active frequency tuning of dark SRR resonance. The geometrical parameters of individual SRRs are designed to have identical inductive-capacitive resonant frequency. This allows for the excitation of classical analogue of electromagnetically induced transparency (EIT) due to the strong conductive coupling between the SRRs. When the microcantilevers are curved up, the resonant frequency of dark SRR blue-shifts and the EIT peak is completely modulated while the SRRs are still conductively connected. EIT modulation contrast of ˜50% is experimentally achieved with actively switchable group delay of ˜2.5 ps. Electrical control, miniaturized size, and readily integrable fabrication process of the proposed structurally reconfigurable metamaterial make it an ideal candidate for the realization of various terahertz communication devices such as electrically controllable terahertz delay lines, buffers, and tunable data-rate channels.

  8. Matrix theory compactifications on twisted tori

    NASA Astrophysics Data System (ADS)

    Chatzistavrakidis, Athanasios; Jonke, Larisa

    2012-05-01

    We study compactifications of Matrix theory on twisted tori and noncommutative versions of them. As a first step, we review the construction of multidimensional twisted tori realized as nilmanifolds based on certain nilpotent Lie algebras. Subsequently, matrix compactifications on tori are revisited, and the previously known results are supplemented with a background of a noncommutative torus with nonconstant noncommutativity and an underlying nonassociative structure on its phase space. Next, we turn our attention to three- and six-dimensional twisted tori, and we describe consistent backgrounds of Matrix theory on them by stating and solving the conditions which describe the corresponding compactification. Both commutative and noncommutative solutions are found in all cases. Finally, we comment on the correspondence among the obtained solutions and flux compactifications of 11-dimensional supergravity, as well as on relations among themselves, such as Seiberg-Witten maps and T-duality.

  9. Twist transition of nematic hyperbolic hedgehogs.

    PubMed

    James, Richard; Fukuda, Jun-ichi

    2014-04-01

    Stability of an idealized hyperbolic hedgehog in a nematic liquid crystal against a twist transition is investigated by extending the methodology of Rüdinger and Stark [Liq. Cryst. 26, 753 (1999)], where the hedgehog is confined between two concentric spheres. In the ideal hyperbolic-hedgehog the molecular orientation is assumed to rotate proportionally with respect to the inclination angle, θ (and in the opposite sense). However, when splay, k11, and bend, k33, moduli differ this proportionality is lost and the liquid crystal deforms relative to the ideal with bend and splay. Although slight, these deformations are shown to significantly shift the transition if k11/k33 is small. By increasing the degree of confinement the twist transition can be inhibited, a characteristic both hyperbolic and radial hedgehogs have in common. The twist transition of a hyperbolic defect that accompanies a particle is found to be well predicted by the earlier stability analysis of a thick shell.

  10. Unraveling cellulose microfibrils: a twisted tale.

    PubMed

    Hadden, Jodi A; French, Alfred D; Woods, Robert J

    2013-10-01

    Molecular dynamics (MD) simulations of cellulose microfibrils are pertinent to the paper, textile, and biofuels industries for their unique capacity to characterize dynamic behavior and atomic-level interactions with solvent molecules and cellulase enzymes. While high-resolution crystallographic data have established a solid basis for computational analysis of cellulose, previous work has demonstrated a tendency for modeled microfibrils to diverge from the linear experimental structure and adopt a twisted conformation. Here, we investigate the dependence of this twisting behavior on computational approximations and establish the theoretical basis for its occurrence. We examine the role of solvent, the effect of nonbonded force field parameters [partial charges and van der Waals (vdW) contributions], and the use of explicitly modeled oxygen lone pairs in both the solute and solvent. Findings suggest that microfibril twisting is favored by vdW interactions, and counteracted by both intrachain hydrogen bonds and solvent effects at the microfibril surface.

  11. Active Flow Control Stator With Coanda Surface

    NASA Technical Reports Server (NTRS)

    Guendogdu; Vorreiter; Seume

    2010-01-01

    Active Flow Control increases the permissible aerodynamic loading. Curved surface near the trailing edge ("Coanda surface"): a) increases turning -> higher pressure ratio. b) controls boundary layer separation -> increased surge margin. Objective: Reduce the number of vanes or compressor stages. Constraints: 1. In a real compressor, the vane must still function entirely without blowing. 2. Maintain the flow exit angle of the reference stator despite the resulting increase in stator loading.

  12. Active Control Evaluation for Spacecraft (ACES)

    NASA Technical Reports Server (NTRS)

    Pearson, J.; Yuen, W.

    1986-01-01

    The Air Force goal is to develop vibration control techniques for large flexible spacecraft by addressing sensor, actuator, and control hardware and dynamic testing. The Active Control Evaluation for Spacecraft (ACES) program will address the Air Force goal by looking at two leading control techniques and implementing them on a structural model of a flexible spacecraft under laboratory testing. The first phase in the ACES program is to review and to assess the High Authority Control/Low Authority Control (HAC/LAC) and Filter accomodated Model Error Sensitivity Suppression (FAMESS) control techniques for testing on the modified VCOSS structure. Appropriate sensors and actuators will be available for use with both techniques; locations will be the same for both techniques. The control actuators will be positioned at the midpoint and free end of the structure. The laser source for the optical sensor is mounted on the feed mast. The beam will be reflected from a mirror on the offset antenna onto the detectors mounted above the shaker table bay. The next phase is to develop an analysis simulation with the control algorithms implemented for dynamics verification. The third phase is to convert the control laws into high level computer language and test them in the NASA-MSFC facility. The final phase is to compile all analytical and test results for performance comparisons.

  13. Active Control of Cryogenic Propellants in Space

    NASA Technical Reports Server (NTRS)

    Notardonato, William

    2011-01-01

    A new era of space exploration is being planned. Exploration architectures under consideration require the long term storage of cryogenic propellants in space. This requires development of active control systems to mitigate the effect of heat leak. This work summarizes current state of the art, proposes operational design strategies and presents options for future architectures. Scaling and integration of active systems will be estimated. Ideal long range spacecraft systems will be proposed with Exploration architecture benefits considered.

  14. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  15. Effects Of Twist On Ceramic Threads

    NASA Technical Reports Server (NTRS)

    Sawko, Paul M.; Tran, Huy Kim

    1989-01-01

    Report describes study of effects of yarn twist and other manufacturing parameters on strength of ceramic sewing threads. Three types of thread considered; silica, aluminoborosilicate (ABS) with 14 percent boria, and ABS with 2 percent boria. For silica thread, best twist found 300 turns per meter. Produced highest break strength at temperatures up to about 540 degree C. Overall strengths of both ABS threads higher than silica thread. Threads used to stitch insulating blankets for reusable spacraft; must resist high temperatures and high aerodynamic loads of reentry into atmosphere of Earth.

  16. Natural frequencies of twisted rotating plates

    NASA Astrophysics Data System (ADS)

    Ramamurti, V.; Kielb, R.

    1984-12-01

    A detailed comparison is presented of the predicted eigenfrequencies of twisted rotating plates as obtained by using two different shape functions. Primarily, rotating twisted plates of two different aspect ratios and two different thickness ratios are considered. The effects of rotation are included by using a "stress smoothing" technique when calculating the augmented stiffness matrix. In addition, the effects of Coriolis acceleration, contributions from membrane behaviour, setting angle and sweep angle are considered. The effects of geometric non-linearity are briefly discussed. Finally, results of a brief study of cambered plates are presented.

  17. Natural frequencies of twisted rotating plates

    NASA Technical Reports Server (NTRS)

    Ramamurti, V.; Kielb, R.

    1984-01-01

    A detailed comparison is presented of the predicted eigenfrequencies of twisted rotating plates as obtained by using two different shape functions. Primarily, rotating twisted plates of two different aspect ratios and two different thickness ratios are considered. The effects of rotation are included by using a 'stress smoothing' technique when calculating the augmented stiffness matrix. In addition, the effects of Coriolis acceleration, contributions from membrane behavior, setting angle and sweep angle are considered. The effects of geometric nonlinearity are briefly discussed. Finally, results of a brief study of cambered plates are presented.

  18. On Supermultiplet Twisting and Spin-Statistics

    NASA Astrophysics Data System (ADS)

    Hübsch, T.

    2013-10-01

    Twisting of off-shell supermultiplets in models with (1+1)-dimensional spacetime has been discovered in 1984, and was shown to be a generic feature of off-shell representations in worldline supersymmetry two decades later. It is shown herein that in all supersymmetric models with spacetime of four or more dimensions, this off-shell supermultiplet twisting, if nontrivial, necessarily maps regular (non-ghost) supermultiplets to ghost supermultiplets. This feature is shown to be ubiquitous in all fully off-shell supersymmetric models with (BV/BRST-treated) constraints.

  19. Rolling maneuver load alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.

    1992-01-01

    Rolling Maneuver Load Alleviation (RMLA) was demonstrated on the Active Flexible Wing (AFW) wind tunnel model in the LaRC Transonic Dynamics Tunnel. The design objective was to develop a systematic approach for developing active control laws to alleviate wing incremental loads during roll maneuvers. Using linear load models for the AFW wind-tunnel model which were based on experimental measurements, two RMLA control laws were developed based on a single-degree-of-freedom roll model. The RMLA control laws utilized actuation of outboard control surface pairs to counteract incremental loads generated during rolling maneuvers and roll performance. To evaluate the RMLA control laws, roll maneuvers were performed in the wind tunnel at dynamic pressures of 150, 200, and 250 psf and Mach numbers of .33, .38, and .44, respectively. Loads obtained during these maneuvers were compared to baseline maneuver loads. For both RMLA controllers, the incremental torsion moments were reduced by up to 60 percent at all dynamic pressures and performance times. Results for bending moment load reductions during roll maneuvers varied. In addition, in a multiple function test, RMLA and flutter suppression system control laws were operated simultaneously during roll maneuvers at dynamic pressures 11 percent above the open-loop flutter dynamic pressure.

  20. Piezoelectric Power Requirements for Active Vibration Control

    NASA Technical Reports Server (NTRS)

    Brennan, Matthew C.; McGowan, Anna-Maria Rivas

    1997-01-01

    This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.

  1. Closed-loop active optical system control

    NASA Astrophysics Data System (ADS)

    Sparks, T. E.

    1980-01-01

    A control system, based on a real-time lateral shear interferometer has been developed for use in control during thermal tests and static error compensation experiments. The minicomputer which controls the interferometer and provides its service functions also controls the active system, thereby giving flexibility to the algorithm. The minicomputer system contains 288 K bytes of memory and 15 M bytes of disk storage. The interferometer system employed is composed of the measuring head and its support electronics, a video display on which wavefront contour maps are generated, and a DECwriter operator console. The versatility provided by the use of a general purpose interferometer system allows for interactive control of the closed-loop process. Various arithmetic capabilities such as the addition of wavefronts, division by a constant, and fitting of wavefront data with Zernike polynomials, allow for measurements to be averaged and for removal of alignment errors before correction is performed.

  2. Energetics of DNA twisting. I. Relation between twist and cyclization probability.

    PubMed

    Shore, D; Baldwin, R L

    1983-11-15

    The twisting potential of DNA has been determined directly by a method that measures the cyclization probability or j-factor of EcoRI restriction fragments as a function of DNA twist. The cyclization probability is proportional to Kc, the equilibrium constant for cyclization of the restriction fragment via its cohesive ends (Shore et al., 1981). Here we vary the twist of the DNA by making small internal additions to or deletions from a 242 bp EcoRI restriction fragment. A series of 12 DNA molecules has been studied, which range in length from 237 to 254 bp. The cyclization probability is measured from the rates of covalent closure by phage T4 DNA ligase of two systems: (1) a linear restriction fragment in equilibrium with its cyclized form and (2) half molecules (cut by a blunt-end endonuclease) in equilibrium with joined half molecules. The striking result is that, in this DNA size range, the j-factor depends strongly on the fractional twist: the difference between the total helical twist and the nearest integer. Thus j depends in an oscillatory manner on DNA length between 237 and 254 bp with a period of about 10 bp. These data give the free energy of DNA twisting as a function of twist. The curve of j versus DNA length can be fitted to a harmonic twisting potential with a torsional constant of C = 2.4 X 10(-19) erg cm. This value is in reasonable agreement with different estimates of C made by Barkley & Zimm (1979: C = 1.8 X 10(-19) to 4.1 X 10(-19) erg cm) and is somewhat larger than the value obtained resulting from the kinetics of DNA twisting measured by fluorescence depolarization of ethidium intercalated into DNA (C = 1.4 X 10(-19) erg cm; Millar et al., 1982; Thomas et al., 1980) or from spin label studies (Hurley et al., 1982). Our experiments provide a direct measurement of the torsional free energy and they show that the DNA twisting potential is symmetric. Our experiments also indicate that the DNA helix is continuous, or nearly so, in a nicked circle

  3. Actively Controlled Shaft Seals for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.; Wolff, Paul

    1995-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed

  4. Actively controlled shaft seals for aerospace applications

    NASA Astrophysics Data System (ADS)

    Salant, Richard F.

    1995-07-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed

  5. Twist-ing cell fate: mechanistic insights into the role of twist in lineage specification/differentiation and tumorigenesis.

    PubMed

    Cakouros, D; Raices, R M; Gronthos, S; Glackin, C A

    2010-08-15

    Bone marrow-derived mesenchymal stem cells (MSC), are multipotent cells that give rise to multiple lineages including osteoblasts, adipocytes, muscle, and fibroblasts. MSCs are useful for clinical applications such as cell therapy because they can be isolated from an individual and expanded for use in tissue repair, as well as other therapeutic applications, without immune rejection. However, one of the key problems in the use of MSCs for these applications is the efficiency of these cells to engraft and fully regenerate damaged tissues. Therefore, to optimize this process, a comprehensive understanding of the key regulators of MSCs self-renewal and maintenance are critical to the success of future cell therapy as well as other clinical applications. The basic helix loop helix transcription factor, Twist, plays a master regulatory role in all of these processes and, therefore, a thorough understanding of the mechanistic insights in the role of Twist in lineage specification/differentiation and tumorigenesis is vital to the success of future clinical applications for the therapeutic use of MSCs. In this article, we highlight the basic mechanisms and signaling pathways that are important to MSC fate, maintenance, and differentiation, as well as the critical role that Twist plays in these processes. In addition, we review the known literature suggesting a critical role for Twist in the generation of cancer stem cells, as this information may contribute to a broader understanding of stem cell biology and stem-cell-based therapeutics.

  6. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    EPA Science Inventory

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  7. DNA-based control of protein activity

    PubMed Central

    Engelen, W.; Janssen, B. M. G.

    2016-01-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  8. Active Noise Control for Dishwasher noise

    NASA Astrophysics Data System (ADS)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  9. Resonant tunneling and intrinsic bistability in twisted graphene structures

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, J. F.; Dresselhaus, M. S.; Levitov, L. S.

    2016-08-01

    We predict that vertical transport in heterostructures formed by twisted graphene layers can exhibit a unique bistability mechanism. Intrinsically bistable I -V characteristics arise from resonant tunneling and interlayer charge coupling, enabling multiple stable states in the sequential tunneling regime. We consider a simple trilayer architecture, with the outer layers acting as the source and drain and the middle layer floating. Under bias, the middle layer can be either resonant or nonresonant with the source and drain layers. The bistability is controlled by geometric device parameters easily tunable in experiments. The nanoscale architecture can enable uniquely fast switching times.

  10. Twist1-positive epithelial cells retain adhesive and proliferative capacity throughout dissemination

    PubMed Central

    Shamir, Eliah R.; Coutinho, Kester; Georgess, Dan; Auer, Manfred

    2016-01-01

    ABSTRACT Dissemination is the process by which cells detach and migrate away from a multicellular tissue. The epithelial-to-mesenchymal transition (EMT) conceptualizes dissemination in a stepwise fashion, with downregulation of E-cadherin leading to loss of intercellular junctions, induction of motility, and then escape from the epithelium. This gain of migratory activity is proposed to be mutually exclusive with proliferation. We previously developed a dissemination assay based on inducible expression of the transcription factor Twist1 and here utilize it to characterize the timing and dynamics of intercellular adhesion, proliferation and migration during dissemination. Surprisingly, Twist1+ epithelium displayed extensive intercellular junctions, and Twist1– luminal epithelial cells could still adhere to disseminating Twist1+ cells. Although proteolysis and proliferation were both observed throughout dissemination, neither was absolutely required. Finally, Twist1+ cells exhibited a hybrid migration mode; their morphology and nuclear deformation were characteristic of amoeboid cells, whereas their dynamic protrusive activity, pericellular proteolysis and migration speeds were more typical of mesenchymal cells. Our data reveal that epithelial cells can disseminate while retaining competence to adhere and proliferate. PMID:27402962

  11. Active control of transmitted sound in buildings

    NASA Astrophysics Data System (ADS)

    Thompsett, Russell Harvey George

    The problem of noise from neighbours has increased dramatically over the last few years. Many of the noise complaints are due to the high level, low frequency noise from modern stereo equipment, and are often described in terms of the low frequency characteristics of the music; the repetitive, booming, bass beat. The objective of this research was to establish the feasibility of applying active noise control to alleviate this problem. The initial approach was to evaluate the possibility of exploiting the dominance of individual modes in the response of rooms at low frequency to effect global control. However, initial investigations using a modal model of the sound field revealed that this would be difficult due to the contribution of many acoustic modes excited off resonance. This conclusion was supported by measurements of acoustic room responses in typical buildings, illustrating a non-resonant characteristic. Consequently, attention was turned to the feasibility of using local active control systems to create zones of quiet by concentrating control at a specific location near the observers ears, for example in a seat headrest, or near the pillows of a bed. The lack of a reference signal in either approach requires the use of a feedback control strategy. With a typically non-resonant system, the predictability in the disturbance necessary for successful feedback control must be contained in the primary excitation, namely the music. Examples of different music styles were investigated and of those with the potential to be a nuisance surprisingly few were significantly more predictable than a random disturbance. As expected the most encouraging control performance simulations were found for modern dance music, with a strong repetitive beat. A real-time, local controller was demonstrated in the laboratory with such a disturbance signal and the properties of the quiet zone were measured. The subjective response when hearing the controller in operation was found to be

  12. Active control of multiple resistive wall modes

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Bolzonella, T.; Cecconello, M.; Drake, J. R.; Kuldkepp, M.; Manduchi, G.; Marchiori, G.; Marrelli, L.; Martin, P.; Menmuir, S.; Ortolani, S.; Rachlew, E.; Spizzo, G.; Zanca, P.

    2005-12-01

    A two-dimensional array of saddle coils at Mc poloidal and Nc toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitive agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition |n - n'| = Nc. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc × Nc = 4 × 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc × Nc = 4 × 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = -11, -10, +5, +6 are all simultaneously suppressed throughout the discharge (7 8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback.

  13. Active control of chirality in nonlinear metamaterials

    SciTech Connect

    Zhu, Yu; Chai, Zhen; Yang, Hong; Hu, Xiaoyong Gong, Qihuang

    2015-03-02

    An all-optical tunabe chirality is realized in a photonic metamaterial, the metamolecule of which consists of a nonlinear nano-Au:polycrystalline indium-tin oxide layer sandwiched between two L-shaped gold nano-antennas twisted 90° with each other. The maximum circular dichroism reached 30%. Under excitation of a 40 kW/cm{sup 2} weak pump light, the peak in the circular dichroism shifts 45 nm in the short-wavelength direction. An ultrafast response time of 35 ps is maintained. This work not only opens up the possibility for the realization of ultralow-power and ultrafast all-optical tunable chirality but also offers a way to construct ultrahigh-speed on-chip biochemical sensors.

  14. Controlling contagion processes in activity driven networks.

    PubMed

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-21

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  15. Control Systems Cyber Security Standards Support Activities

    SciTech Connect

    Robert Evans

    2009-01-01

    The Department of Homeland Security’s Control Systems Security Program (CSSP) is working with industry to secure critical infrastructure sectors from cyber intrusions that could compromise control systems. This document describes CSSP’s current activities with industry organizations in developing cyber security standards for control systems. In addition, it summarizes the standards work being conducted by organizations within the sector and provides a brief listing of sector meetings and conferences that might be of interest for each sector. Control systems cyber security standards are part of a rapidly changing environment. The participation of CSSP in the development effort for these standards has provided consistency in the technical content of the standards while ensuring that information developed by CSSP is included.

  16. Actively controlled vibration welding system and method

    DOEpatents

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  17. The Physics of Somersaulting and Twisting.

    ERIC Educational Resources Information Center

    Frohlich, Cliff

    1980-01-01

    This is a discussion of the conservation of angular momentum of the human body engaged in somersaults and twists. The principle is also applied to a cat turning over in midair. The events occur in the absence of torques. Application of the maneuvers are suggested for astronauts. (SA)

  18. Twisted Pair Of Insulated Wires Senses Moisture

    NASA Technical Reports Server (NTRS)

    Laue, Eric G.; Stephens, James B.

    1989-01-01

    Sensitivity of electronic moisture sensor to low levels of moisture increased by new electrode configuration. Moisture-sensing circuit described in "Low-Cost Humidity Sensor" (NPO-16544). New twisted pair of wires takes place of flat-plate capacitor in circuit. Configuration allows for thermal expansion and contraction of polymer while maintaining nearly constant area of contact between polymer and wires.

  19. Energy Release in Driven Twisted Coronal Loops

    NASA Astrophysics Data System (ADS)

    Bareford, M. R.; Gordovskyy, M.; Browning, P. K.; Hood, A. W.

    2016-01-01

    We investigate magnetic reconnection in twisted magnetic fluxtubes, representing coronal loops. The main goal is to establish the influence of the field geometry and various thermodynamic effects on the stability of twisted fluxtubes and on the size and distribution of heated regions. In particular, we aim to investigate to what extent the earlier idealised models, based on the initially cylindrically symmetric fluxtubes, are different from more realistic models, including the large-scale curvature, atmospheric stratification, thermal conduction and other effects. In addition, we compare the roles of Ohmic heating and shock heating in energy conversion during magnetic reconnection in twisted loops. The models with straight fluxtubes show similar distribution of heated plasma during the reconnection: it initially forms a helical shape, which subsequently becomes very fragmented. The heating in these models is rather uniformly distributed along fluxtubes. At the same time, the hot plasma regions in curved loops are asymmetric and concentrated close to the loop tops. Large-scale curvature has a destabilising influence: less twist is needed for instability. Footpoint convergence normally delays the instability slightly, although in some cases, converging fluxtubes can be less stable. Finally, introducing a stratified atmosphere gives rise to decaying wave propagation, which has a destabilising effect.

  20. UHE neutrinos: higher twists, scales, saturation

    SciTech Connect

    Fiore, R.; Zoller, V. R.

    2011-07-15

    It is shown that in the ultra-high energy neutrino interactions the higher twist corrections brought about by the non-conservation of the top-bottom current dramatically change the longitudinal structure function, F{sub L}. To the Double Leading Log Approximation simple and numerically accurate formulas for F{sub L} and {sigma}{sup {nu}N} are derived.

  1. Optogenetic feedback control of neural activity

    PubMed Central

    Newman, Jonathan P; Fong, Ming-fai; Millard, Daniel C; Whitmire, Clarissa J; Stanley, Garrett B; Potter, Steve M

    2015-01-01

    Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner. DOI: http://dx.doi.org/10.7554/eLife.07192.001 PMID:26140329

  2. Active vibration control using DEAP actuators

    NASA Astrophysics Data System (ADS)

    Sarban, Rahimullah; Jones, Richard W.

    2010-04-01

    Dielectric electro-active polymer (DEAP) is a new type of smart material, which has the potential to be used to provide effective actuation for a wide range of applications. The properties of DEAP material place it somewhere between those of piezoceramics and shape memory alloys. Of the range of DEAP-based actuators that have been developed those having a cylindrical configuration are among the most promising. This contribution introduces the use of a tubular type DEAP actuator for active vibration control purposes. Initially the DEAP-based tubular actuator to be used in this study, produced by Danfoss PolyPower A/S, is introduced along with the static and dynamic characteristics. Secondly an electromechanical model of the tubular actuator is briefly reviewed and its ability to model the actuator's hysteresis characteristics for a range of periodic input signals at different frequencies demonstrated. The model will be used to provide hysteresis compensation in future vibration isolation studies. Experimental active vibration control using the actuator is then examined, specifically active vibration isolation of a 250 g mass subject to shaker generated 'ground vibration'. An adaptive feedforward control strategy is used to achieve this. The ability of the tubular actuator to reject both tonal and broadband random vibratory disturbances is then demonstrated.

  3. Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables

    NASA Astrophysics Data System (ADS)

    Kanazawa, Koichi; Koike, Yuji; Metz, Andreas; Pitonyak, Daniel; Schlegel, Marc

    2016-03-01

    We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relations for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN →h X . With the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.

  4. Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables

    DOE PAGES

    Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji; ...

    2016-03-14

    We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relationsmore » for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.« less

  5. Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables

    SciTech Connect

    Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji; Metz, Andreas; Schlegel, Marc

    2016-03-14

    We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relations for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.

  6. Distributed Energy Communications & Controls, Lab Activities - Summary

    SciTech Connect

    Rizy, D Tom

    2010-01-01

    The purpose is to develop controls for inverter-based renewable and non-renewable distributed energy systems to provide local voltage, power and power quality support for loads and the power grid. The objectives are to (1) develop adaptive controls for inverter-based distributed energy (DE) systems when there are multiple inverters on the same feeder and (2) determine the impact of high penetration high seasonal energy efficiency ratio (SEER) air conditioning (A/C) units on power systems during sub-transmission faults which can result in an A/C compressor motor stall and assess how inverter-based DE can help to mitigate the stall event. The Distributed Energy Communications & Controls Laboratory (DECC) is a unique facility for studying dynamic voltage, active power (P), non-active power (Q) and power factor control from inverter-based renewable distributed energy (DE) resources. Conventionally, inverter-based DE systems have been designed to provide constant, close to unity power factor and thus not provide any voltage support. The DECC Lab interfaces with the ORNL campus distribution system to provide actual power system testing of the controls approach. Using mathematical software tools and the DECC Lab environment, we are developing and testing local, autonomous and adaptive controls for local voltage control and P & Q control for inverter-based DE. We successfully tested our active and non-active power (P,Q) controls at the DECC laboratory along with voltage regulation controls. The new PQ control along with current limiter controls has been tested on our existing inverter test system. We have tested both non-adaptive and adaptive control modes for the PQ control. We have completed several technical papers on the approaches and results. Electric power distribution systems are experiencing outages due to a phenomenon known as fault induced delayed voltage recovery (FIDVR) due to air conditioning (A/C) compressor motor stall. Local voltage collapse from FIDVR is

  7. Edge states in twisted bilayer graphene: quantum spin Hall and electron-hole bilayers

    NASA Astrophysics Data System (ADS)

    Sanchez-Yamagishi, Javier D.; Luo, Jason; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo

    2015-03-01

    Twisted bilayer graphene offers a unique platform for studying 1d edge states in a bilayer 2-dimensional electron gas. Despite being spaced by only 0.34 nm, a large interlayer twist decouples the layers in the bulk, while opening the door for interesting interactions at the edges. To probe this physics, we study the electronic transport through quantum Hall edge modes in twisted bilayer graphene devices. Using dual electrostatic gates, we independently control the filling factor of each layer to form different combinations of bilayer edge states while measuring their conductance. The most dramatic transport effects are observed when the layers are doped to have edge states of opposite chiralities, resulting in coexisting electron- and hole-like states. We will present evidence that, in this regime, the twisted bilayer graphene can form a quantum spin Hall state where edge states in each layer counter-propagate in opposite directions with opposite spin polarizations. This bilayer realization offers a flexible system to study quantum spin Hall edge transport as well as to build more complex 1d circuits. We will also discuss the possibility for fractional generalizations of this edge physics and our measurements of the fractional QHE in twisted bilayer graphene.

  8. Non-destructive evaluation of longitudinal uniformity for twisted Bi2223 tapes using scanning Hall-probe microscopy

    NASA Astrophysics Data System (ADS)

    Inada, R.; Makihara, T.; Araki, Y.; Baba, S.; Nakamura, Y.; Oota, A.; Sakamoto, S.; Li, C. S.; Zhang, P. X.

    2010-11-01

    In general, shorter filament twisting should be required for substantial AC loss reduction of Bi2223 tapes under an AC external field. However, the longitudinal uniformity of both transport property and wire structure of a tightly twisted tape could be easily deteriorated. To qualify the uniformity of twisted tape, simple and non-destructive evaluation techniques should be urgently required. In this study, we non-destructively measured the remanent magnetic field distributions for twisted Bi2223 tapes using scanning Hall-probe microscopy (SHM) with an active area of 50 μm × 50 μm. Twist pitch lengths of the tapes used for the measurements were 10 mm and 6 mm. After the tape was fixed on the sample holder at 77 K and zero fields, the magnetic field in perpendicular to the broader face of the tape was applied by a rectangular permanent magnet moving along a tape length. After removing the field, the distributions of remanent field Brz in perpendicular to tape surface were measured by SHM at a fixed distance of 0.5 mm away from a tape surface. For tightly twisted tape with twist pitch length of 6 mm, the longitudinal uniformity of Brz and transport critical current Ic were degraded remarkably and the local positions at which Brz greatly drops were well corresponding to low Ic region. It was also confirmed that the defects in filaments caused by tight twisting strongly affect on the intensity and shape of Brz profiles. The results suggest that SHM has the potential for simple and non-destructive characterization to qualify the longitudinal uniformity of twisted tapes.

  9. Lightweight active controlled primary mirror technology demonstrator

    NASA Astrophysics Data System (ADS)

    Mazzinghi, P.; Bratina, V.; Ferruzzi, D.; Gambicorti, L.; Simonetti, F.; Zuccaro Marchi, A.; Salinari, P.; Lisi, F.; Olivier, M.; Bursi, A.; Gallieni, D.; Biasi, R.; Pereira, J.

    2007-10-01

    This paper describes the design, manufacturing and test of a ground demonstrator of an innovative technology able to realize lightweight active controlled space-borne telescope mirror. This analysis is particularly devoted to applications for a large aperture space telescope for advanced LIDAR, but it can be used for any lightweight mirror. For a space-borne telescope the mirror weight is a fundamental parameter to be minimized (less than 15 Kg/m2), while maximizing the optical performances (optical quality better than λ/3). In order to guarantee these results, the best selected solution is a thin glass primary mirror coupled to a stiff CFRP (Carbon Fiber Reinforced Plastic) panel with a surface active control system. A preliminary design of this lightweight structure highlighted the critical areas that were deeply analyzed by the ground demonstrator: the 1 mm thick mirror survivability on launch and the actuator functional performances with low power consumption. To preserve the mirror glass the Electrostatic Locking technique was developed and is here described. The active optics technique, already widely used for ground based telescopes, consists of a metrology system (wave front sensor, WFS), a control algorithm and a system of actuators to slightly deform the primary mirror and/or displace the secondary, in a closed-loop control system that applies the computed corrections to the mirror's optical errors via actuators. These actuators types are properly designed and tested in order to guarantee satisfactory performances in terms of stroke, force and power consumption. The realized and tested ground demonstrator is a square CFRP structure with a flat mirror on the upper face and an active actuator beneath it. The test campaign demonstrated the technology feasibility and robustness, supporting the next step toward the large and flat surface with several actuators.

  10. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  11. Active Thermal Control System Development for Exploration

    NASA Technical Reports Server (NTRS)

    Westheimer, David

    2007-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  12. Active control of electric potential of spacecraft

    NASA Technical Reports Server (NTRS)

    Goldstein, R.

    1977-01-01

    Techniques are discussed for controlling the potential of a spacecraft by means of devices which release appropriate charged particles from the spacecraft to the environment. Attention is given to electron emitters, ion emitters, a basic electron emitter arrangement, techniques for sensing electric field or potential, and flight experiments on active potential control. It is recommended to avoid differential charging on spacecraft surfaces because it can severely affect the efficacy of emitters. Discharging the frame of a spacecraft with dielectric surfaces involves the risk of stressing the dielectric material excessively. The spacecraft should, therefore, be provided with grounded conductive surfaces. It is pointed out that particles released by control systems can return to the spacecraft.

  13. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Sepe, Raymond B.; Rey, Daniel; Saarmaa, Erik; Crawley, Edward F.

    1993-01-01

    The Middeck Active Control Experiment (MACE) is a NASA In-Step and Control Structure Interaction (CSI) Office funded Shuttle middeck experiment. The objective is to investigate the extent to which closed-loop behavior of flexible spacecraft in zero-gravity (0-g) can be predicted. This prediction becomes particularly difficult when dynamic behavior during ground testing exhibits extensive suspension and direct gravity coupling. On-orbit system identification and control reconfiguration is investigated to improve performance which would otherwise be limited due to errors in prediction. The program is presently in its preliminary design phase with launch expected in the summer of 1994. The MACE test article consists of three attitude control torque wheels, a two axis gimballing payload, inertial sensors and a flexible support structure. With the acquisition of a second payload, this will represent a multiple payload platform with significant structural flexibility. This paper presents on-going work in the areas of modelling and control of the MACE test article in the zero and one-gravity environments. Finite element models, which include suspension and gravity effects, and measurement models, derived from experimental data, are used as the basis for Linear Quadratic Gaussian controller designs. Finite element based controllers are analytically used to study the differences in closed-loop performance as the test article transitions between the 0-g and 1-g environments. Measurement based controllers are experimentally applied to the MACE test article in the 1-g environment and achieve over an order of magnitude improvement in payload pointing accuracy when disturbed by a broadband torque disturbance. The various aspects of the flight portion of the experiment are also discussed.

  14. Dislocation structures in high angle 001 twist boundaries in magnesium oxide

    NASA Astrophysics Data System (ADS)

    Sun, C. P.

    1980-12-01

    A systematic transmission electron microscope (TEM) investigation of possible secondary grain boundary dislocation (GBD) structures in 001 high angle twist boundaries in MgO was carried out using bicrystals of controlled geometry. Techniques were developed to fabricate an extensive series of MgO bicrystals containing 001 twist boundaries with twist angle, theta, covering the entire possible range, 0 theta less than or equal to 45 deg. Tables of MgO single crystals with cleaved 100 faces were welded together by hot pressing. The TEM specimens were prepared by a combination of mechanical and chemical jet polishing using phosphoric acid. Weak beam microscopy was used extensively since this technique is capable of producing a characteristic narrow defect image width, and hence allows complicated GBD networks to be resolved more readily than by use of conventional microscopy.

  15. Prediction and measurement of composite tube twist and bending due to thermal loading

    NASA Astrophysics Data System (ADS)

    Bluth, A. Marcel; Tucker, James R.; Thompson, Troy

    2013-09-01

    Composite materials are applied in precision optical metering structures because of their low thermal expansion properties in concert with high specific stiffness. Twisting and bending of long composite tubes, such as the secondary mirror support structure for the JWST telescope, requires control and verification. A stochastic modeling method was applied that simulates the manufacturing process variability and estimates ranges for expected twist and bend over the tube length from ambient to cryogenic temperatures. A development strut for the JWST secondary mirror support structure was fabricated and a metrology system was designed and implemented that measured the bend and twist response from ambient to 30 K. Modeling methods and predictions are outlined. The test metrology and results are summarized, along with a comparison between test and prediction.

  16. Phase twisted modes and current reversals in a lattice model of waveguide arrays with nonlinear coupling

    SciTech Connect

    Oester, Michael; Johansson, Magnus

    2005-02-01

    We consider a lattice model for waveguide arrays embedded in nonlinear Kerr media. Inclusion of nonlinear coupling results in many phenomena involving complex, phase-twisted, stationary modes. The norm (Poynting power) current of stable plane-wave solutions can be controlled in magnitude and direction, and may be reversed without symmetry-breaking perturbations. Also stable localized phase-twisted modes with zero current exist, which for particular parameter values may be compact and expressed analytically. The model also describes coupled Bose-Einstein condensates.

  17. Multiply-Twisted Helices of Various Inter-Round Couplings

    NASA Astrophysics Data System (ADS)

    Ugajin, R.; Watanabe, Y.; Mori, Y.

    Multiply-twisted helices in which a helical chain of components, i.e. atoms or nanoclusters, is twisted, producing a doubly-twisted helix, which if itself is twisted produces a triply-twisted helix, and so on, are characterized by inter-round couplings, through which electrons in the structure transit between adjacent rounds. The multiply-twisted helix of inter-round couplings via a chain of sites and that of inter-round couplings through a single site are compared with that of the direct inter-round couplings previously reported by R. Ugajin [J. Nanosci. Nanotechnol. 1, 227 (2001)]. Monte Carlo simulations of classical spins suggest that the multiply-twisted helix of inter-round couplings through a single site, in which the Curie temperature of ferromagnetic transition is robust against the change of a basal helix, might be critical among these three types.

  18. Current sensing using circularly birefringent twisted solid-core photonic crystal fiber.

    PubMed

    Beravat, R; Wong, G K L; Xi, X M; Frosz, M H; St J Russell, P

    2016-04-01

    Continuously twisted solid-core photonic crystal fiber (PCF) exhibits pure circular birefringence (optical activity), making it ideal for current sensors based on the Faraday effect. By numerical analysis, we identify the PCF geometry for which the circular birefringence (which scales linearly with twist rate) is a maximum. For silica-air PCF, this occurs at a shape parameter (diameter-to-spacing ratio of the hollow channels) of 0.37 and a scale parameter (spacing-to-wavelength) of 1.51. This result is confirmed experimentally by testing a range of different structures. To demonstrate the effectiveness of twisted PCF as a current sensor, a length of fiber is placed on the axis of a 7.6 cm long solenoid, and the Faraday rotation is measured at different values of dc current. The system is then used to chart the wavelength dependence of the Verdet constant.

  19. Middeck Active Control Experiment (MACE), phase A

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Deluis, Javier; Miller, David W.

    1989-01-01

    A rationale to determine which structural experiments are sufficient to verify the design of structures employing Controlled Structures Technology was derived. A survey of proposed NASA missions was undertaken to identify candidate test articles for use in the Middeck Active Control Experiment (MACE). The survey revealed that potential test articles could be classified into one of three roles: development, demonstration, and qualification, depending on the maturity of the technology and the mission the structure must fulfill. A set of criteria was derived that allowed determination of which role a potential test article must fulfill. A review of the capabilities and limitations of the STS middeck was conducted. A reference design for the MACE test article was presented. Computing requirements for running typical closed-loop controllers was determined, and various computer configurations were studied. The various components required to manufacture the structure were identified. A management plan was established for the remainder of the program experiment development, flight and ground systems development, and integration to the carrier. Procedures for configuration control, fiscal control, and safety, reliabilty, and quality assurance were developed.

  20. Research on chemotherapy efficacy of twist gene on cervical cancer cells to paclitaxel.

    PubMed

    Sun, Zhenchang; Zhang, Dan; Cui, Yingying; Cheng, Liangxing; Cao, Jingyu; Wu, Xiaolong

    2014-09-01

    The silent Twist gene may increase the sensitivity of cervical cancer cells chemotherapy to paclitaxel, thus was a new idea to improve the efficacy of cancer chemotherapy. The aim was to explore chemotherapy sensitivity of silent Twist gene increased cervical cancer cells to paclitaxel through study the proliferation and apoptosis of cervical cancer Twist gene after paclitaxel treatment. Cervical carcinoma Caski cells and Hela cells was cultured in vitro, mRNA gene expression was detected by using semi-quantitative, fluorescence quantitative PCR, and transferred to Caski cells transiently, and affected with paclitaxel solution of five kinds of different concentrations of 0.001, 0.01, 0.1, 1, 10 umol/L respectively. Then the results of <0.05). Every 12h after 36 h, the expression inhibition rate in two groups of Caski cells that has transfected this study was Twist gene expression in Caski cells was higher than in Hela cells, which was of significant difference (p siRNA1 and siRNA2 were 20.3%, 38.2%, 33%, 24%, 68.6%, 50.8% respectively. After 48 h in five different concentrations of paclitaxel effect, the cell growth inhibition rate of group siRNA2 with the best transfection efficiency was obviously higher than that of negative control group and blank control group, and the growth inhibition rates showed concentration dependence (p<0.05). It can be concluded that Twist gene in Caski cell was of high expression and the silent Twist gene could inhibit Caski cell proliferation and promote its apoptosis, thus to improve the chemotherapy sensitivity of Caski cells.

  1. Magnetic Field Twisting by Intergranular Downdrafts

    NASA Astrophysics Data System (ADS)

    Taroyan, Youra; Williams, Thomas

    2016-10-01

    The interaction of an intergranular downdraft with an embedded vertical magnetic field is examined. It is demonstrated that the downdraft may couple to small magnetic twists leading to an instability. The descending plasma exponentially amplifies the magnetic twists when it decelerates with depth due to increasing density. Most efficient amplification is found in the vicinity of the level, where the kinetic energy density of the downdraft reaches equipartition with the magnetic energy density. Continual extraction of energy from the decelerating plasma and growth in the total azimuthal energy occurs as a consequence of the wave-flow coupling along the downdraft. The presented mechanism may drive vortices and torsional motions that have been detected between granules and in simulations of magnetoconvection.

  2. Twisted black hole is Taub-NUT

    NASA Astrophysics Data System (ADS)

    Ong, Yen Chin

    2017-01-01

    Recently a purportedly novel solution of the vacuum Einstein field equations was discovered: it supposedly describes an asymptotically flat twisted black hole in 4-dimensions whose exterior spacetime rotates in a peculiar manner—the frame dragging in the northern hemisphere is opposite from that of the southern hemisphere, which results in a globally vanishing angular momentum. Furthermore it was shown that the spacetime has no curvature singularity. We show that the geometry of this black hole spacetime is nevertheless not free of pathological features. In particular, it harbors a rather drastic conical singularity along the axis of rotation. In addition, there exist closed timelike curves due to the fact that the constant r and constant t surfaces are not globally Riemannian. In fact, none of these are that surprising since the solution is just the Taub-NUT geometry. As such, despite the original claim that the twisted black hole might have observational consequences, it cannot be.

  3. Understanding the brain by controlling neural activity

    PubMed Central

    Krug, Kristine; Salzman, C. Daniel; Waddell, Scott

    2015-01-01

    Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been combined with electrical devices, targeted genetically encoded tools and neurochemical approaches to manipulate information processing in the brain. The ability to control brain activity in these ways not only deepens our understanding of brain function but also provides new avenues for clinical intervention, particularly in conditions where brain processing has gone awry. PMID:26240417

  4. Control concepts for active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Siegwart, Roland; Vischer, D.; Larsonneur, R.; Herzog, R.; Traxler, Alfons; Bleuler, H.; Schweitzer, G.

    1992-01-01

    Active Magnetic Bearings (AMB) are becoming increasingly significant for various industrial applications. Examples are turbo-compressors, centrifuges, high speed milling and grinding spindles, vibration isolation, linear guides, magnetically levitated trains, vacuum and space applications. Thanks to the rapid progress and drastic cost reduction in power- and micro-electronics, the number of AMB applications is growing very rapidly. Industrial uses of AMBs leads to new requirements for AMB-actuators, sensor systems, and rotor dynamics. Especially desirable are new and better control concepts to meet demand such as low cost AMB, high stiffness, high performance, high robustness, high damping up to several kHz, vibration isolation, force-free rotation, and unbalance cancellation. This paper surveys various control concepts for AMBs and discusses their advantages and disadvantages. Theoretical and experimental results are presented.

  5. Active Displacement Control of Active Magnetic Bearing System

    NASA Astrophysics Data System (ADS)

    Kertész, Milan; Kozakovič, Radko; Magdolen, Luboš; Masaryk, Michal

    2014-12-01

    The worldwide energy production nowadays is over 3400 GW while storage systems have a capacity of only 90 GW [1]. There is a good solution for additional storage capacity in flywheel energy storage systems (FES). The main advantage of FES is its relatively high efficiency especially with using the active magnetic bearing system. Therefore there exist good reasons for appropriate simulations and for creating a suitable magneto-structural control system. The magnetic bearing, including actuation, is simulated in the ANSYS parametric design language (APDL). APDL is used to create the loops of transient simulations where boundary conditions (BC) are updated based upon a "gap sensor" which controls the nodal position values of the centroid of the shaft and the current density inputs onto the copper windings.

  6. Twist-boat conformation in graphene oxides.

    PubMed

    Samarakoon, Duminda K; Wang, Xiao-Qian

    2011-01-01

    We have investigated the structural, electronic, and vibrational properties of graphene oxide based on first-principles density-functional calculations. A twist-boat conformation is identified as the energetically most favorable nonmetallic configuration for fully oxidized graphene. The calculated Raman G-band blue shift is in very good agreement with experimental observations. Our results provide important insight into structural and electronic characteristics that are useful for further development of graphene-based nanodevices.

  7. On rectangular HOMFLY for twist knots

    NASA Astrophysics Data System (ADS)

    Kononov, Ya.; Morozov, A.

    2016-11-01

    As a new step in the study of rectangularly-colored knot polynomials, we reformulate the prescription [A. Morozov, arXiv:1606.06015v8] for twist knots in the double-column representations R = [rr] in terms of skew Schur polynomials. These, however, are mysteriously shifted from the standard topological locus, which makes further generalization to arbitrary R = [rs] not quite straightforward.

  8. Ferromagnetic nanoparticles suspensions in twisted nematic

    NASA Astrophysics Data System (ADS)

    Cîrtoaje, Cristina; Petrescu, Emil; Stan, Cristina; Creangă, Dorina

    2016-05-01

    Ferromagnetic nanoparticles insertions in nematic liquid crystals (NLC) in twisted configuration are studied and a theoretical model is proposed to explain the results. Experimental observation revealed that nanoparticles tend to overcrowd in long strings parallel to the rubbing direction of the alignment substrate of the LC cell. Their behavior under external field was studied and their interaction with their nematic host is described using elastic continuum theory.

  9. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)

    2015-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  10. Active noise control for infant incubators.

    PubMed

    Yu, Xun; Gujjula, Shruthi; Kuo, Sen M

    2009-01-01

    This paper presents an active noise control system for infant incubators. Experimental results show that global noise reduction can be achieved for infant incubator ANC systems. An audio-integration algorithm is presented to introduce a healthy audio (intrauterine) sound with the ANC system to mask the residual noise and soothe the infant. Carbon nanotube based transparent thin film speaker is also introduced in this paper as the actuator for the ANC system to generate the destructive secondary sound, which can significantly save the congested incubator space and without blocking the view of doctors and nurses.

  11. Twist transition of nematic hyperbolic hedgehogs

    NASA Astrophysics Data System (ADS)

    James, Richard; Fukuda, Jun-ichi

    2014-04-01

    Stability of an idealized hyperbolic hedgehog in a nematic liquid crystal against a twist transition is investigated by extending the methodology of Rüdinger and Stark [Liq. Cryst. 26, 753 (1999), 10.1080/026782999204840], where the hedgehog is confined between two concentric spheres. In the ideal hyperbolic-hedgehog the molecular orientation is assumed to rotate proportionally with respect to the inclination angle, θ (and in the opposite sense). However, when splay, k11, and bend, k33, moduli differ this proportionality is lost and the liquid crystal deforms relative to the ideal with bend and splay. Although slight, these deformations are shown to significantly shift the transition if k11/k33 is small. By increasing the degree of confinement the twist transition can be inhibited, a characteristic both hyperbolic and radial hedgehogs have in common. The twist transition of a hyperbolic defect that accompanies a particle is found to be well predicted by the earlier stability analysis of a thick shell.

  12. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry

    NASA Technical Reports Server (NTRS)

    Wang, N.; Ingber, D. E.

    1995-01-01

    We recently developed a magnetic twisting cytometry technique that allows us to apply controlled mechanical stresses to specific cell surface receptors using ligand-coated ferromagnetic microbeads and to simultaneously measure the mechanical response in living cells. Using this technique, we have previously shown the following: (i) beta 1 integrin receptors mediate mechanical force transfer across the cell surface and to the cytoskeleton, whereas other transmembrane receptors (e.g., scavenger receptors) do not; (ii) cytoskeletal stiffness increases in direct proportion to the level of stress applied to integrins; and (iii) the slope of this linear stiffening response differs depending on the shape of the cell. We now show that different integrins (beta 1, alpha V beta 3, alpha V, alpha 5, alpha 2) and other transmembrane receptors (scavenger receptor, platelet endothelial cell adhesion molecule) differ in their ability to mediate force transfer across the cell surface. In addition, the linear stiffening behavior previously observed in endothelial cells was found to be shared by other cell types. Finally, we demonstrate that dynamic changes in cell shape that occur during both cell spreading and retraction are accompanied by coordinate changes in cytoskeletal stiffness. Taken together, these results suggest that the magnetic twisting cytometry technique may be a powerful and versatile tool for studies analyzing the molecular basis of transmembrane mechanical coupling to the cytoskeleton as well as dynamic relations between changes in cytoskeletal structure and alterations in cell form and function.

  13. TWISTED MAGNETIC FLUX TUBES IN THE SOLAR WIND

    SciTech Connect

    Zaqarashvili, Teimuraz V.; Vörös, Zoltán; Narita, Yasuhito; Bruno, Roberto

    2014-03-01

    Magnetic flux tubes in the solar wind can be twisted as they are transported from the solar surface, where the tubes are twisted due to photospheric motions. It is suggested that the twisted magnetic tubes can be detected as the variation of total (thermal+magnetic) pressure during their passage through the observing satellite. We show that the total pressure of several observed twisted tubes resembles the theoretically expected profile. The twist of the isolated magnetic tube may explain the observed abrupt changes of magnetic field direction at tube walls. We have also found some evidence that the flux tube walls can be associated with local heating of the plasma and elevated proton and electron temperatures. For the tubes aligned with the Parker spiral, the twist angle can be estimated from the change of magnetic field direction. Stability analysis of twisted tubes shows that the critical twist angle of the tube with a homogeneous twist is 70°, but the angle can further decrease due to the motion of the tube with respect to the solar wind stream. The tubes with a stronger twist are unstable to the kink instability, therefore they probably cannot reach 1 AU.

  14. Energetics and structural properties of twist grain boundaries in Cu

    NASA Technical Reports Server (NTRS)

    Karimi, Majid

    1992-01-01

    Structural and energetics properties of atoms near a grain boundary are of great importance from theoretical and experimental standpoints. From various experimental work it is concluded that diffusion at low temperatures at polycrystalline materials take place near grain boundary. Experimental and theoretical results also indicate changes of up to 70 percent in physical properties near a grain boundary. The Embedded Atom Method (EAM) calculations on structural properties of Au twist grain boundaries are in quite good agreement with their experimental counterparts. The EAM is believed to predict reliable values for the single vacancy formation energy as well as migration energy. However, it is not clear whether the EAM functions which are fitted to the bulk properties of a perfect crystalline solid can produce reliable results on grain boundaries. One of the objectives of this work is to construct the EAM functions for Cu and use them in conjunction with the molecular static simulation to study structures and energetics of atoms near twist grain boundaries in Cu. This provides tests of the EAM functions near a grain boundary. In particular, we determine structure, single vacancy formation energy, migration energy, single vacancy activation energy, and interlayer spacing as a function of distance from grain boundary. Our results are compared with the available experimental and theoretical results from grain boundaries and bulk.

  15. Satellite cascade attitude control via fuzzy PD controller with active force control under momentum dumping

    NASA Astrophysics Data System (ADS)

    Ismail, Z.; Varatharajoo, R.

    2016-10-01

    In this paper, fuzzy proportional-derivative (PD) controller with active force control (AFC) scheme is studied and employed in the satellite attitude control system equipped with reaction wheels. The momentum dumping is enabled via proportional integral (PI) controller as the system is impractical without momentum dumping control. The attitude controllers are developed together with their governing equations and evaluated through numerical treatment with respect to a reference satellite mission. From the results, it is evident that the three axis attitudes accuracies can be improved up to ±0.001 degree through the fuzzy PD controller with AFC scheme for the attitude control. In addition, the three-axis wheel angular momentums are well maintained during the attitude control tasks.

  16. Tyrosine kinase receptor c-ros-oncogene 1 mediates TWIST-1 regulation of human mesenchymal stem cell lineage commitment.

    PubMed

    Camp, Esther; Anderson, Peter J; Zannettino, Andrew C W; Gronthos, Stan

    2017-01-01

    The TWIST-1 gene encodes a basic helix-loop-helix (bHLH) transcription factor important in mediating skeletal and head mesodermal tissue development. Bone marrow-derived mesenchymal stem/stromal cells (BMSC), express high levels of TWIST-1, which is down regulated during ex vivo expansion. Cultured BMSC over-expressing TWIST-1 display decreased capacity for osteogenic differentiation and an enhanced capacity to undergo adipogenesis, suggesting that TWIST-1 is a mediator of lineage commitment. However, little is known regarding the mechanism(s) by which TWIST-1 mediates cell fate determination. In this study, microarray analysis was used to identify a novel downstream TWIST-1 target, tyrosine kinase receptor c-ros-oncogene 1 (C-ROS-1), which was down regulated in TWIST-1 over-expressing BMSC. Chromatin immunoprecipitation analysis showed that TWIST-1 directly bound to two E-box binding sites on the proximal C-ROS-1 promoter. Knock-down of C-ROS-1 in human BMSC and cranial bone cells resulted in a decreased capacity for osteogenic differentiation in vitro. Conversely, suppression of C-ROS-1 in BMSC resulted in an enhanced capacity to undergo adipogenesis. Furthermore, reduced C-ROS-1 levels led to activation of different components of the PI3K/AKT/mTORC1 signalling pathway during osteogenic and adipogenic differentiation. Collectively, these data suggest that C-ROS-1 is involved in BMSC fate switching between osteogenesis and adipogenesis, mediated via PI3K/AKT/mTORC1 signalling.

  17. Thermally induced twist in graphite-epoxy tubes

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Rousseau, C. Q.; Tompkins, S. S.

    1988-01-01

    This paper discusses an analytical and experimental study to investigate the thermally induced twist in laminated angle-ply graphite-epoxy tubes. Attention is focused on balanced laminates which, contrary to intuition, exhibit twist when the temperature is changed. The twisting is due to the fact that a lamina with ( a + phi) orientation and a lamina with (a - phi) orientation must be at slightly different radial positions in the twist. The lamina with the greater radial position determines the sense of the twist. Classical lamination theory does not predict this phenomenon, and so as more sophisticated theory must be employed. This paper outlines such as theory, which is based on an generalized plane-deformation elasticity analysis, and presents experimental data to confirm the predictions of the theory. A brief description of the experimental apparatus and procedure used to measure twist is presented.

  18. Measuring mechanical strain and twist using helical photonic crystal fiber.

    PubMed

    Xi, Xiaoming; Wong, Gordon K L; Weiss, Thomas; Russell, Philip St J

    2013-12-15

    Solid-core photonic crystal fiber (PCF) with a permanent helical twist exhibits dips in its transmission spectrum at certain wavelengths. These are associated with the formation of orbital angular momentum states in the cladding. Here we investigate the tuning of these states with mechanical torque and axial tension. The dip wavelengths are found to scale linearly with both axial strain and mechanical twist rate. Analysis shows that the tension-induced shift in resonance wavelength is determined both by the photoelastic effect and by the change in twist rate, while the torsion-induced wavelength shift depends only on the change in twist rate. Twisted PCF can act as an effective optically monitored torque-tension transducer, twist sensor, or strain gauge.

  19. The Role of Twisted Magnetic Flux Tubes in Topological Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Nightingale, R. W.

    2008-12-01

    More and more twisted magnetic flux tubes are being identified in the solar active regions of solar cycle 23 utilizing imagery from high resolution satellite instrumentation, such as TRACE, Hinode, and SOHO/MDI. The twisted flux tubes carry energy and helicity via the Poynting Flux from below the photosphere up into the corona, where much of it is stored in the non-potentiality of the fields, many times visible in the form of sigmoidal and anti-sigmoidal shapes, until dissipation occurs mostly following eruptive events. The twisted flux tubes are easily observed and measured in TRACE whitelight in cross section as sunspots at the photosphere, which rotate about their umbral centers. The first results presented at the 2007 Fall AGU from a statistical study on the number of rotating sunspots showed that almost all of the measurable sunspots during the solar maximum year of 2000 were rotating. Here we extend the study to include halo coronal mass ejections (CMEs) observed by SOHO/LASCO, of which 80% are associated with rotating sunspots and twisted magnetic flux tubes in 2000. Many of the CMEs, consisting of very energetic particles normally captured within a magnetic cloud of twisted flux tubes, accelerate out into the heliosphere where the Earth and its magnetic fields can encounter them, causing large geomagnetic events, such as geomagnetic storms, Solar Particle Events (SPEs), and other space weather effects. The amount of twist, or helicity, and its directionality may play important roles in solar eruptions and in the CME's interaction with the magnetosphere. Within the next year the Solar Dynamics Observatory (SDO) will launch and the HMI and AIA instruments will be available to observe the rotating sunspots and twisted magnetic flux tubes in greater detail than is currently being done to improve our understanding of these processes. Examples of such events and topological features will be shown and discussed with respect to the role that twisted magnetic flux

  20. Amplitude Scaling of Active Separation Control

    NASA Technical Reports Server (NTRS)

    Stalnov, Oksana; Seifert, Avraham

    2010-01-01

    Three existing and two new excitation magnitude scaling options for active separation control at Reynolds numbers below one Million. The physical background for the scaling options was discussed and their relevance was evaluated using two different sets of experimental data. For F+ approx. 1, 2D excitation: a) The traditional VR and C(mu) - do not scale the data. b) Only the Re*C(mu) is valid. This conclusion is also limited for positive lift increment.. For F+ > 10, 3D excitation, the Re corrected C(mu), the St corrected velocity ratio and the vorticity flux coefficient, all scale the amplitudes equally well. Therefore, the Reynolds weighted C(mu) is the preferred choice, relevant to both excitation modes. Incidence also considered, using Ue from local Cp.

  1. Space Station Active Thermal Control System modeling

    NASA Technical Reports Server (NTRS)

    Hye, Abdul; Lin, Chin H.

    1988-01-01

    The Space Station Active Thermal Control System (ATCS) has been modeled using modified SINDA/SINFLO programs to solve two-phase Thermo-fluid problems. The modifications include changes in several subroutines to incorporate implicit solution which allows larger time step as compared to that for explicit solutions. Larger time step saves computer time but involves larger computational error. Several runs were made using various time steps for the ATCS model. It has been found that for a reasonable approach, three times larger time step as compared to that used in explicit method is a good value which will reduce the computer time by approximately 50 percent and still maintain the accuracy of the output data to within 90 percent of the explicit values.

  2. Ribosome-dependent activation of stringent control

    PubMed Central

    Gordiyenko, Yuliya; Ramakrishnan, V.

    2016-01-01

    In order to survive, bacteria continually sense, and respond to, environmental fluctuations. Stringent control represents a key bacterial stress response to nutrient starvation1,2 that leads to a rapid and comprehensive reprogramming of metabolic and transcriptional patterns3. In general, transcription of genes for growth and proliferation are down-regulated, while those important for survival and virulence are favored4. Amino acid starvation is sensed by depletion of the aminoacyl-tRNA pools5, which results in accumulation of ribosomes stalled with non-aminoacylated (uncharged) tRNA in the ribosomal A-site6,7. RelA is recruited to stalled ribosomes, and activated to synthesize a hyperphosphorylated guanosine analog, (p)ppGpp8, which acts as a pleiotropic second messenger. However, structural information for how RelA recognizes stalled ribosomes and discriminates against aminoacylated tRNAs is missing. Here, we present the electron cryo-microscopy (cryo-EM) structure of RelA bound to the bacterial ribosome stalled with uncharged tRNA. The structure reveals that RelA utilizes a distinct binding site compared to the translational factors, with a multi-domain architecture that wraps around a highly distorted A-site tRNA. The TGS domain of RelA binds the CCA tail to orient the free 3’ hydroxyl group of the terminal adenosine towards a β-strand, such that an aminoacylated tRNA at this position would be sterically precluded. The structure supports a model where association of RelA with the ribosome suppresses auto-inhibition to activate synthesis of (p)ppGpp and initiate the stringent response. Since stringent control is responsible for the survival of pathogenic bacteria under stress conditions, and contributes to chronic infections and antibiotic tolerance, RelA represents a good target for the development of novel antibacterial therapeutics. PMID:27279228

  3. Active Shielding and Control of Environmental Noise

    NASA Technical Reports Server (NTRS)

    Tsynkov, S. V.

    2001-01-01

    In the framework of the research project supported by NASA under grant # NAG-1-01064, we have studied the mathematical aspects of the problem of active control of sound, i.e., time-harmonic acoustic disturbances. The foundations of the methodology are described in our paper [1]. Unlike. many other existing techniques, the approach of [1] provides for the exact volumetric cancellation of the unwanted noise on a given predetermined region airspace, while leaving unaltered those components of the total acoustic field that are deemed as friendly. The key finding of the work is that for eliminating the unwanted component of the acoustic field in a given area, one needs to know relatively little; in particular, neither the locations nor structure nor strength of the exterior noise sources need to be known. Likewise, there is no need to know the volumetric properties of the supporting medium across which the acoustic signals propagate, except, maybe, in a narrow area of space near the perimeter of the protected region. The controls are built based solely on the measurements performed on the perimeter of the domain to be shielded; moreover, the controls themselves (i.e., additional sources) are concentrated also only on or near this perimeter. Perhaps as important, the measured quantities can refer to the total acoustic field rather than to its unwanted component only, and the methodology can automatically distinguish between the two. In [1], we have constructed the general solution for controls. The apparatus used for deriving this general solution is closely connected to the concepts of generalized potentials and boundary projections of Calderon's type. For a given total wave field, the application of a Calderon's projection allows one to definitively tell between its incoming and outgoing components with respect to a particular domain of interest, which may have arbitrary shape. Then, the controls are designed so that they suppress the incoming component for the domain

  4. Nematic twist cell: Strong chirality induced at the surfaces

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Chieh; Nemitz, Ian R.; Pendery, Joel S.; Schubert, Christopher P. J.; Lemieux, Robert P.; Rosenblatt, Charles

    2013-04-01

    A nematic twist cell having a thickness gradient was filled with a mixture containing a configurationally achiral liquid crystal (LC) and chiral dopant. A chiral-based linear electrooptic effect was observed on application of an ac electric field. This "electroclinic effect" varied monotonically with d, changing sign at d =d0 where the chiral dopant exactly compensated the imposed twist. The results indicate that a significant chiral electrooptic effect always exists near the surfaces of a twist cell containing molecules that can be conformationally deracemized. Additionally, this approach can be used to measure the helical twisting power (HTP) of a chiral dopant in a liquid crystal.

  5. TWIST1 associates with NF-κB subunit RELA via carboxyl-terminal WR domain to promote cell autonomous invasion through IL8 production

    PubMed Central

    2012-01-01

    Background Metastasis is the primary cause of death for cancer patients. TWIST1, an evolutionarily conserved basic helix-loop-helix (bHLH) transcription factor, is a strong promoter of metastatic spread and its expression is elevated in many advanced human carcinomas. However, the molecular events triggered by TWIST1 to motivate dissemination of cancer cells are largely unknown. Results Here we show that TWIST1 induces the production of interleukin 8 (IL8), which activates matrix metalloproteinases and promotes invasion of breast epithelial and cancer cells. In this novel mechanism, TWIST1-mediated IL8 transcription is induced through the TWIST1 carboxy-terminal WR (Trp-Arg) domain instead of the classic DNA binding bHLH domain. Co-immunoprecipitation analyses revealed that the WR domain mediates the formation of a protein complex comprised of TWIST1 and the nuclear factor-kappaB (NF-κB) subunit RELA (p65/NF-κB3), which synergistically activates the transcriptional activity of NF-κB. This activation leads to increased DNA binding affinity of RELA to the IL8 promoter and thus induces the expression of the cytokine. Blockage of IL8 signaling by IL8 neutralizing antibodies or receptor inhibition reduced the invasiveness of both breast epithelial and cancer cells, indicating that TWIST1 induces autonomous cell invasion by establishing an IL8 antocrine loop. Conclusions Our data demonstrate that the TWIST1 WR domain plays a critical role in TWIST1-induced IL8 expression through interactions with and activation of NF-κB. The produced IL8 signals through an autocrine loop and promotes extracellular matrix degradation to enable cell invasion across the basement membrane. PMID:22891766

  6. New photochemical tools for controlling neuronal activity

    PubMed Central

    Kramer, Richard H.; Fortin, Doris L.; Trauner, Dirk

    2009-01-01

    Neurobiology has entered a new era in which optical methods are challenging electrophysiological techniques for their value in measuring and manipulating neuronal activity. This change is occurring largely because of the development of new photochemical tools, some synthesized by chemists and some provided by nature. This review is focused on the three types of photochemical tools for neuronal control that have emerged in recent years. Caged neurotransmitters, including caged glutamate, are synthetic molecules that enable highly localized activation of neurotransmitter receptors in response to light. Natural photosensitive proteins, including channelrhodopsin-2 and halorhodopsin, can be exogenously expressed in neurons and enable rapid photocontrol of action potential firing. Synthetic small-molecule photoswitches can bestow light-sensitivity on native or exogenously expressed proteins, including K+ channels and glutamate receptors, allowing photocontrol of action potential firing and synaptic events. At a rapid pace, these tools are being improved and new tools are being introduced, thanks to molecular biology and synthetic chemistry. The three families of photochemical tools have different capabilities and uses, but they all share in enabling precise and non-invasive exploration of neural function with light. PMID:19828309

  7. Spin Squeezing: Transforming One-Axis Twisting into Two-Axis Twisting

    SciTech Connect

    Liu, Y. C.; Jin, G. R.; Xu, Z. F.; You, L.

    2011-07-01

    Squeezed spin states possess unique quantum correlation or entanglement and are significantly promising for advancing quantum information processing and quantum metrology. In recent back-to-back publications [C. Gross et al., Nature (London) 464, 1165 (2010) and Max F. Riedel et al., Nature (London) 464, 1170 (2010)], reduced spin fluctuations are observed leading to spin squeezing at -8.2 and -2.5 dB, respectively, in two-component atomic condensates exhibiting one-axis-twisting interactions. The noise reduction limit for the one-axis twisting scales as {proportional_to}1/N{sup 2/3}, which for a condensate with N{approx}10{sup 3} atoms is about 100 times below the standard quantum limit. We present a scheme using repeated Rabi pulses capable of transforming the one-axis-twisting spin squeezing into the two-axis-twisting type, leading to Heisenberg limited noise reduction {proportional_to}1/N or an extra tenfold improvement for N{approx}10{sup 3}.

  8. Interaction of twisted curved flux tubes

    NASA Astrophysics Data System (ADS)

    Selwa, Malgorzata; Parnell, Clare; Priest, Eric

    Most solar eruptions are initiated from sigmoidal structures. We perform 3D MHD numerical experiments of the interaction of force-free dipolar flux tubes. The magnetic configuration is initialized as either a potential or a force-free dipole with a constant density. Next we perturb the dipoles by twisting or rotating them leading to reconnection in a resistive MHD regime. We compare the connectivity, energetics and topological features in both models, vary the contact angle of the dipoles and check if the initial configuration (sigmoidal or not) affects flares and eruption initiation leading to faster and stronger reconnection.

  9. Twisting and Writhing with George Ellery Hale

    NASA Astrophysics Data System (ADS)

    Canfield, Richard C.

    2013-07-01

    Early in his productive career in astronomy, George Ellery Hale developed innovative instrumentation that allowed him to image the magnetically-dominated solar chromosphere. Among the solar phenomena he discovered were sunspot vortices, which he attributed to storms akin to cyclones in our own atmosphere. Much more recently, physicists discovered a quantity that is very well conserved in ideal magnetohydrodynamics: magnetic helicity. Our contemporary understanding of Hale's vortices as a consequence of large-scale twist in sunspot magnetic fields hinges on this conservation. I will review the crucial role that this property plays in the hemispheric and solar cycle dependences of Hales vortices, as well as solar flares and CMEs.

  10. Superlubricity in quasicrystalline twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Koren, Elad; Duerig, Urs

    2016-05-01

    The unique atomic positions in quasicrystals lead to peculiar self-similarity and fractal-like structural morphology. Accordingly, many of the material properties are supposed to manifest exceptional characteristics. In this Rapid Communication, we explain through numerical simulations the fundamental and peculiar aspects of quasicrystals wearless friction manifested in a 30° twisted bilayer graphene system. In particular, the sliding force exhibits a fractal structure with distinct area correlations due to the natural mixture between both periodic and aperiodic lateral modulations. In addition, zero power scaling of the sliding force with respect to the contact area is demonstrated for a geometric sequence of dodecagonal elements.

  11. Non-destructive identification of twisted light.

    PubMed

    Li, Pengyun; Wang, Bo; Song, Xinbing; Zhang, Xiangdong

    2016-04-01

    The non-destructive identification of the orbital angular momentum (OAM) is essential to various applications in the optical information processing. Here, we propose and demonstrate experimentally an efficient method to identify non-destructively the OAM by using a modified Mach-Zehnder interferometer. Our schemes are applicable not only to the case with integer charges, but also to optical vortices with noninteger charges. Our Letter presents the first experimental demonstration of the non-destructive identification of twisted light with integer or noninteger topological charges, which has potential applications in the OAM-based data transmission for optical communications.

  12. Modes of a twisted optical cavity

    SciTech Connect

    Habraken, Steven J. M.; Nienhuis, Gerard

    2007-03-15

    An astigmatic optical resonator consists of two astigmatic mirrors facing each other. The resonator is twisted when the symmetry axes of the mirrors are nonparallel. We present an algebraic method to obtain the complete set of the paraxial eigenmodes of such a resonator. Basic ingredients are the complex eigenvectors of the four-dimensional transfer matrix that describes the transformation of a ray of light over a roundtrip of the resonator. The relation between the fundamental mode and the higher-order modes is expressed in terms of raising operators in the spirit of the ladder operators of the quantum harmonic oscillator.

  13. Shape selection of twist-nematic-elastomer ribbons

    PubMed Central

    Sawa, Yoshiki; Ye, Fangfu; Urayama, Kenji; Takigawa, Toshikazu; Gimenez-Pinto, Vianney; Selinger, Robin L. B.; Selinger, Jonathan V.

    2011-01-01

    How microscopic chirality is reflected in macroscopic scale to form various chiral shapes, such as straight helicoids and spiral ribbons, and how the degree of macroscopic chirality can be controlled are a focus of studies on the shape formation of many biomaterials and supramolecular systems. This article investigates both experimentally and theoretically how the chiral arrangement of liquid crystal mesogens in twist-nematic-elastomer films induces the formation of helicoids and spiral ribbons because of the coupling between the liquid crystalline order and the elasticity. It is also shown that the pitch of the formed ribbons can be tuned by temperature variation. The results of this study will facilitate the understanding of physics for the shape formation of chiral materials and the designing of new structures on basis of microscopic chirality. PMID:21464276

  14. Flicker in a twisted nematic spatial light modulator

    NASA Astrophysics Data System (ADS)

    Calderón-Hermosillo, Yuliana; García-Márquez, Jorge; Espinosa-Luna, Rafael; Ochoa, Noé Alcalá; López, Víctor; Aguilar, Alberto; Noé-Arias, Enrique; Alayli, Yasser

    2013-06-01

    Liquid Crystal on Silicon (LCoS) Spatial Light Modulators (SLM) are widely used for their capability to control beams howbeit fluctuations in phase and amplitude. It is then necessary to understand the negative effects of these fluctuations, also known as flicker, and the means to mitigate them. The flicker is observed either as high frequency variations of polarization, attenuation or high phase fluctuations on the wave front modulated by the LCoS device. Here, we compare the flicker behavior in a twisted nematic (TN) LCoS-SLM for different polarization schemes and temperatures. The quantitative evaluation shows that flicker is effectively reduced only by chilling the LCoS panel to temperatures just below 0 °C but, the LCoS modulation capability is also affected.

  15. System identification and control of the JPL active structure

    NASA Technical Reports Server (NTRS)

    Fanson, J. L.; Lurie, B. J.; O'Brien, J. F.; Chu, C.-C.; Smith, R. S.

    1991-01-01

    This paper describes recent advances in structural quieting technology as applied to active truss structures intended for high precision space based optics applications. Collocated active damping control loops are designed in order to impedance match piezoelectric active members to the structure. Noncollocated control loops are also studied in relation to controlling lightly damped structures.

  16. New findings of twisted-wing parasites (Strepsiptera) in Alaska

    USGS Publications Warehouse

    Mcdermott, Molly

    2016-01-01

    Strepsipterans are a group of insects with a gruesome life history and an enigmatic evolutionary past. Called ‘twisted-wing parasites’, they are minute parasitoids with a very distinct morphology (Figure 1). Alternatively thought to be related to ichneumon wasps, Diptera (flies), Coleoptera (beetles), and even Neuroptera (net-winged insects) (Pohl and Beutel, 2013); the latest genetic and morphological data support the sister order relationship of Strepsiptera and Coleoptera (Niehuis et al., 2012). Strepsipterans are highly modified, males having two hind wings and halteres instead of front wings or elytra. Unlike most parasitoids, they develop inside active, living insects who are sexually sterilized but not killed until or after emergence (Kathirithamby et al., 2015).

  17. Aerodynamic Control using Distributed Active Bleed

    NASA Astrophysics Data System (ADS)

    Kearney, John; Glezer, Ari

    2015-11-01

    The global aerodynamic loads on a stationary and pitching airfoil at angles of attack beyond the static and dynamic stall margins, respectively are controlled in wind tunnel experiments using regulated distributed bleed driven by surface pressure differences. High-speed PIV and proper orthogonal decomposition of the vorticity flux on the static airfoil show that the bleed engenders trains of discrete vortices that advect along the surface and are associated with a local instability that is manifested by a time-averaged bifurcation of the vorticity layer near the bleed outlets and alters the vorticity flux over the airfoil and thereby the aerodynamic loads. Active bleed is used on a dynamically pitching airfoil (at reduced frequencies up to k = 0.42) to modulate the evolution of vorticity concentrations during dynamic stall. Time-periodic bleed improved the pitch stability by reducing adverse pitching moment (``negative damping'') that can precipitate structural instabilities. At the same time, the maintains the cycle-average loads to within 5% of the base flow levels by segmenting the vorticity layer during upstroke and promoting early flow attachment during downstroke segments of the pitch cycle. Supported by Georgia Tech VLRCOE.

  18. Needleless electrospinning with twisted wire spinneret.

    PubMed

    Holopainen, Jani; Penttinen, Toni; Santala, Eero; Ritala, Mikko

    2015-01-16

    A needleless electrospinning setup named 'Needleless Twisted Wire Electrospinning' was developed. The polymer solution is electrospun from the surface of a twisted wire set to a high voltage and collected on a cylindrical collector around the wire. Multiple Taylor cones are simultaneously self-formed on the downward flowing solution. The system is robust and simple with no moving parts aside from the syringe pump used to transport the solution to the top of the wire. The structure and process parameters of the setup and the results on the preparation of polyvinyl pyrrolidone (PVP), hydroxyapatite (HA) and bioglass fibers with the setup are presented. PVP fiber sheets with areas of 40 × 120 cm(2) and masses up to 1.15 g were prepared. High production rates of 5.23 g h(-1) and 1.40 g h(-1) were achieved for PVP and HA respectively. The major limiting factor of the setup is drying of the polymer solution on the wire during the electrospinning process which will eventually force to interrupt the process for cleaning of the wire. Possible solutions to this problem and other ways to develop the setup are discussed. The presented system provides a simple way to increase the production rate and area of fiber sheet as compared with the conventional needle electrospinning.

  19. Quantization by cochain twists and nonassociative differentials

    SciTech Connect

    Beggs, E. J.; Majid, S.

    2010-05-15

    We show that several standard associative quantizations in mathematical physics can be expressed as cochain module-algebra twists in the spirit of Moyal products at least to O(({Dirac_h}/2{pi}){sup 3}), but to achieve this we twist not by a 2-cocycle but by a 2-cochain. This implies a hidden nonassociativity not visible in the algebra itself but present in its deeper noncommutative differential geometry, a phenomenon first seen in our previous work on semiclassicalization of differential structures. The quantizations are induced by a classical group covariance and include enveloping algebras U(g) as quantizations of g*, a Fedosov-type quantization of the sphere S{sup 2} under a Lorentz group covariance, the Mackey quantization of homogeneous spaces, and the standard quantum groups C{sub q}[G]. We also consider the differential quantization of R{sup n} for a given symplectic connection as part of our semiclassical analysis and we outline a proposal for the Dirac operator.

  20. Needleless electrospinning with twisted wire spinneret

    NASA Astrophysics Data System (ADS)

    Holopainen, Jani; Penttinen, Toni; Santala, Eero; Ritala, Mikko

    2015-01-01

    A needleless electrospinning setup named ‘Needleless Twisted Wire Electrospinning’ was developed. The polymer solution is electrospun from the surface of a twisted wire set to a high voltage and collected on a cylindrical collector around the wire. Multiple Taylor cones are simultaneously self-formed on the downward flowing solution. The system is robust and simple with no moving parts aside from the syringe pump used to transport the solution to the top of the wire. The structure and process parameters of the setup and the results on the preparation of polyvinyl pyrrolidone (PVP), hydroxyapatite (HA) and bioglass fibers with the setup are presented. PVP fiber sheets with areas of 40 × 120 cm2 and masses up to 1.15 g were prepared. High production rates of 5.23 g h-1 and 1.40 g h-1 were achieved for PVP and HA respectively. The major limiting factor of the setup is drying of the polymer solution on the wire during the electrospinning process which will eventually force to interrupt the process for cleaning of the wire. Possible solutions to this problem and other ways to develop the setup are discussed. The presented system provides a simple way to increase the production rate and area of fiber sheet as compared with the conventional needle electrospinning.

  1. Structure of twisted and buckled bilayer graphene

    NASA Astrophysics Data System (ADS)

    Jain, Sandeep K.; Juričić, Vladimir; Barkema, Gerard T.

    2017-03-01

    We study the atomic structure of twisted bilayer graphene, with very small mismatch angles (θ ∼ {0.28}0), a topic of intense recent interest. We use simulations, in which we combine a recently presented semi-empirical potential for single-layer graphene, with a new term for out-of-plane deformations, (Jain et al 2015 J. Phys. Chem. C 119 9646) and an often-used interlayer potential (Kolmogorov et al 2005 Phys. Rev. B 71 235415). This combination of potentials is computationally cheap but accurate and precise at the same time, allowing us to study very large samples, which is necessary to reach very small mismatch angles in periodic samples. By performing large scale atomistic simulations, we show that the vortices appearing in the Moiré pattern in the twisted bilayer graphene samples converge to a constant size in the thermodynamic limit. Furthermore, the well known sinusoidal behavior of energy no longer persists once the misorientation angle becomes very small (θ \\lt {1}0). We also show that there is a significant buckling after the relaxation in the samples, with the buckling height proportional to the system size. These structural properties have direct consequences on the electronic and optical properties of bilayer graphene.

  2. Holographic generation of highly twisted electron beams.

    PubMed

    Grillo, Vincenzo; Gazzadi, Gian Carlo; Mafakheri, Erfan; Frabboni, Stefano; Karimi, Ebrahim; Boyd, Robert W

    2015-01-23

    Free electrons can possess an intrinsic orbital angular momentum, similar to those in an electron cloud, upon free-space propagation. The wave front corresponding to the electron's wave function forms a helical structure with a number of twists given by the angular speed. Beams with a high number of twists are of particular interest because they carry a high magnetic moment about the propagation axis. Among several different techniques, electron holography seems to be a promising approach to shape a conventional electron beam into a helical form with large values of angular momentum. Here, we propose and manufacture a nanofabricated phase hologram for generating a beam of this kind with an orbital angular momentum up to 200ℏ. Based on a novel technique the value of orbital angular momentum of the generated beam is measured and then compared with simulations. Our work, apart from the technological achievements, may lead to a way of generating electron beams with a high quanta of magnetic moment along the propagation direction and, thus, may be used in the study of the magnetic properties of materials and for manipulating nanoparticles.

  3. How the embryonic brain tube twists

    NASA Astrophysics Data System (ADS)

    Chen, Zi; Guo, Qiaohang; Forsch, Nickolas; Taber, Larry

    2014-03-01

    During early development, the tubular brain of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This deformation is one of the major organ-level symmetry-breaking events in development. Available evidence suggests that bending is caused by differential growth, but the mechanism for torsion remains poorly understood. Since the heart almost always loops in the same direction that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is virtually nonexistent, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. In addition, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model is used to interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''.

  4. Landau quantization and Fermi velocity renormalization in twisted graphene bilayers

    NASA Astrophysics Data System (ADS)

    Yin, Long-Jing; Qiao, Jia-Bin; Wang, Wen-Xiao; Zuo, Wei-Jie; Yan, Wei; Xu, Rui; Dou, Rui-Fen; Nie, Jia-Cai; He, Lin

    2015-11-01

    Currently there is a lively discussion concerning Fermi velocity renormalization in twisted bilayers and several contradicted experimental results are reported. Here we study electronic structures of the twisted bilayers by scanning tunneling microscopy (STM) and spectroscopy (STS). The interlayer coupling strengths between the adjacent bilayers are measured according to energy separations of two pronounced low-energy van Hove singularities (VHSs) in the STS spectra. We demonstrate that there is a large range of values for the interlayer interaction not only in different twisted bilayers, but also in twisted bilayers with the same rotation angle. Below the VHSs, the observed Landau quantization in the twisted bilayers is identical to that of massless Dirac fermions in graphene monolayer, which allows us to measure the Fermi velocity directly. Our result indicates that the Fermi velocity of the twisted bilayers depends remarkably on both the twisted angles and the interlayer coupling strengths. This removes the discrepancy about the Fermi velocity renormalization in the twisted bilayers and provides a consistent interpretation of all current data.

  5. Designing Polyamide Inhibitors of TWIST 1 for Prosenescence Therapy

    DTIC Science & Technology

    2014-09-01

    Page 1 AWARD NUMBER: W81XWH-13-1-0182 TITLE: Designing Polyamide Inhibitors of TWIST 1 for...S) 12 . DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT...Pyrrole-Imidazole Polyamides ; TWIST1; KRAS; non-small cell lung cancer (NSCLC); senescence 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  6. LaRC controls activity for LSST

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.

    1980-01-01

    Math models were developed for various types of large flexible structures. These models were used to study the uncontrolled dynamic characteristics of the structures in orbit and to devise control concepts in order to control their orientation and geometrical shape. Reduced order decoupled control of the 100 meter long free free beam were studied. The inplane orientation and shape of the beam was controlled in a decoupled manner with as few actuators as possible. Using two controllers, near each end of the beam, to produce a 0.01 radian pitch change, perfect decoupled control was achieved for the rigid body pitch theta mode and the first flexible mode A sub 1.

  7. Landau damping of Langmuir twisted waves with kappa distributed electrons

    SciTech Connect

    Arshad, Kashif Aman-ur-Rehman; Mahmood, Shahzad

    2015-11-15

    The kinetic theory of Landau damping of Langmuir twisted modes is investigated in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the Langmuir twisted waves in a nonthermal plasma. The strong damping effects of the Langmuir twisted waves at wavelengths approaching Debye length are also obtained by using an exact numerical method and are illustrated graphically. The damping rates of the planar Langmuir waves are found to be larger than the twisted Langmuir waves in plasmas which shows opposite behavior as depicted in Fig. 3 by J. T. Mendoça [Phys. Plasmas 19, 112113 (2012)].

  8. A twisted disk equation that describes warped galaxy disks

    NASA Technical Reports Server (NTRS)

    Barker, K.

    1994-01-01

    Warped H1 gas layers in the outer regions of spiral galaxies usually display a noticeably twisted structure. This structure is thought to arise primarily as a result of differential precession in the H1 disk as it settles toward a 'preferred orientation' in an underlying dark halo potential well that is not spherically symmetric. In an attempt to better understand the structure and evolution of these twisted, warped disk structures, we have utilized the 'twist-equation' formalism. Specifically, we have generalized the twist equation to allow the treatment of non-Keplerian disks and from it have derived the steady-state structure of twisted disks that develop from free precession in a nonspherical, logarithmic halo potential. This generalized equation can also be used to examine the time-evolutionary behavior of warped galaxy disks.

  9. Active controllers and the time duration to learn a task

    NASA Technical Reports Server (NTRS)

    Repperger, D. W.; Goodyear, C.

    1986-01-01

    An active controller was used to help train naive subjects involved in a compensatory tracking task. The controller is called active in this context because it moves the subject's hand in a direction to improve tracking. It is of interest here to question whether the active controller helps the subject to learn a task more rapidly than the passive controller. Six subjects, inexperienced to compensatory tracking, were run to asymptote root mean square error tracking levels with an active controller or a passive controller. The time required to learn the task was defined several different ways. The results of the different measures of learning were examined across pools of subjects and across controllers using statistical tests. The comparison between the active controller and the passive controller as to their ability to accelerate the learning process as well as reduce levels of asymptotic tracking error is reported here.

  10. Active Control of Complex Physical Systems: An Overview

    DTIC Science & Technology

    1992-09-01

    release; distribution is unlimited. 13. ABSTRACT (Maxtmum 200 words) Active control of complex systems imposes unique requirements for physical models and...months after the meeting, SPrinte In USA. Acceslon For NTIS CRA&W DTIC TAB Unlannounced ] Active Control of Complex Physical Systems Justificatton An...control strategies. Physical models This work on the active control of which are adequate to predict the influence of specific physical systems has been

  11. Implementation and application of a novel 2D magnetic twisting cytometry based on multi-pole electromagnet.

    PubMed

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-06-01

    We implemented a novel 2D magnetic twisting cytometry (MTC) based on a previously reported multi-pole high permeability electromagnet, in which both the strength and direction of the twisting field can be controlled. Thanks to the high performance twisting electromagnet and the heterodyning technology, the measurement frequency has been extended to the 1 kHz range. In order to obtain high remanence of the ferromagnetic beads, a separate electromagnet with feedback control was adopted for the high magnetic field polarization. Our setup constitutes the first instrument which can be operated both in MTC mode and in magnetic tweezers (MT) mode. In this work, the mechanical properties of HL-1 cardiomyocytes were characterized in MTC mode. Both anisotropy and log-normal distribution of cell stiffness were observed, which agree with our previous results measured in MT mode. The response from these living cells at different frequencies can be fitted very well by the soft glassy rheology model.

  12. Effect of DNA Hairpin Loops on the Twist of Planar DNA Origami Tiles

    PubMed Central

    Li, Zhe; Wang, Lei; Yan, Hao; Liu, Yan

    2012-01-01

    The development of scaffolded DNA origami, a technique in which a long single-stranded viral genome is folded into arbitrary shapes by hundreds of short synthetic oligonucleotides, represents an important milestone in DNA nanotechnology. Recent findings have revealed that two-dimensional (2D)DNA origami structures based on the original design parameters adopt a global twist with respect to the tile plane, which may be because the conformation of the constituent DNA (10.67 bp/turn) deviates from the natural B-type helical twist (10.4 bp/turn). Here we aim to characterize the effects of DNA hairpin loops on the overall curvature of the tile and explore their ability to control, and ultimately eliminate any unwanted curvature. A series of dumbbell-shaped DNA loops were selectively displayed on the surface of DNA origami tiles with the expectation that repulsive interactions among the neighboring dumbbell loops and between the loops and the DNA origami tile would influence the structural features of the underlying tiles. A systematic, atomic force microscopy (AFM) study of how the number and position of the DNA loops influenced the global twist of the structure was performed, and several structural models to explain the results were proposed. The observations unambiguously revealed that the first generation of rectangular shaped origami tiles adopt a conformation in which the upper right (corner 2) and bottom left (corner 4) corners bend upward out of the plane, causing linear superstructures attached by these corners to form twisted ribbons. Our experimental observations are consistent with the twist model predicted by the DNA mechanical property simulation software CanDo. Through the systematic design and organization of various numbers of dumbbell loops on both surfaces of the tile, a nearly planar rectangular origami tile was achieved. PMID:22126326

  13. Quasi-modal vibration control by means of active control bearings

    NASA Technical Reports Server (NTRS)

    Nonami, K.; Fleming, D. P.

    1986-01-01

    This paper investigates a design method of an active control bearing system with only velocity feedback. The study provides a new quasi-modal control method for a control system design of an active control bearing system in which feedback coefficients are determined on the basis of a modal analysis. Although the number of sensors and actuators is small, this quasi-modal control method produces a control effect close to an ideal modal control.

  14. Chirality of Single-Handed Twisted Titania Tubular Nanoribbons Prepared Through Sol-gel Transcription.

    PubMed

    Wang, Sibing; Zhang, Chuanyong; Li, Yi; Li, Baozong; Yang, Yonggang

    2015-08-01

    Single-handed twisted titania tubular nanoribbons were prepared through sol-gel transcription using a pair of enantiomers. Handedness was controlled by that of the template. The obtained samples were characterized using field-emission electron microscopy, transmission electron microscopy, diffuse reflectance circular dichroism (DRCD), and X-ray diffraction. The DRCD spectra indicated that the titania nanotubes exhibit optical activity. Although the tubular structure was destroyed after being calcined at 700 °C for 2.0 h, DRCD signals were still identified. However, the DRCD signals disappeared after being calcined at 1000 °C for 2.0 h. The optical activity of titania was proposed to be due to chiral defects. Previous results showed that straight titania tubes could be used as asymmetric autocatalysts, indicating that titania exhibit chirality at the angstrom level. Herein, it was found that they also exhibit DRCD signals, indicating that there are no obvious relationships between morphology at the nano level and chirality at the angstrom level. The nanotube chirality should originate from the chiral defects on the nanotube inner surface. The Fourier transform infrared spectra indicated that the chirality of the titania was transferred from the gelators through the hydrogen bonding between N-H and Ti-OH.

  15. Evolution of Dip-shear and Twist-shear during X-class flare in NOAA 11158

    NASA Astrophysics Data System (ADS)

    Gosain, Sanjay

    2012-07-01

    We study the evolution of dip-shear and twist shear in a region close to flaring site in NOAA 11158. This active region emerged as a complex delta active region complex with a pair of twisted rotating sunspots in the middle. The X-2.2 class flare took place near the Polarity Inversion Line (PIL). We find that after the flare there was an increase in twist shear and a decrease in dip-shear close to the PIL. The results are similar to that obtained by Gosain and Venkatakrishnan (ApJ 720, L137, 2010) during X-class flare in NOAA 10930 during 13 December 2006. It seems that there is a general tendency for dip shear to increase before the flare and show a subsequent decrease after the flare and so it can be exploited as a potential flare predictor.

  16. Do twisted laser beams evoke nuclear hyperpolarization?

    NASA Astrophysics Data System (ADS)

    Schmidt, A. B.; Andrews, D. L.; Rohrbach, A.; Gohn-Kreuz, C.; Shatokhin, V. N.; Kiselev, V. G.; Hennig, J.; von Elverfeldt, D.; Hövener, J.-B.

    2016-07-01

    The hyperpolarization of nuclear spins promises great advances in chemical analysis and medical diagnosis by substantially increasing the sensitivity of nuclear magnetic resonance (NMR). Current methods to produce a hyperpolarized sample, however, are arduous, time-consuming or costly and require elaborate equipment. Recently, a much simpler approach was introduced that holds the potential, if harnessed appropriately, to revolutionize the production of hyperpolarized spins. It was reported that high levels of hyperpolarization in nuclear spins can be created by irradiation with a laser beam carrying orbital angular momentum (twisted light). Aside from these initial reports however, no further experimental verification has been presented. In addition, this effect has so far evaded a critical theoretical examination. In this contribution, we present the first independent attempt to reproduce the effect. We exposed a sample of immersion oil or a fluorocarbon liquid that was placed within a low-field NMR spectrometer to Laguerre-Gaussian and Bessel laser beams at a wavelength of 514.5 nm and various topological charges. We acquired 1H and 19F NMR free induction decay data, either during or alternating with the irradiation that was parallel to B0. We observed an irregular increase in NMR signal in experiments where the sample was exposed to beams with higher values of the topological charge. However, at no time did the effect reach statistical significance of 95%. Given the measured sensitivity of our setup, we estimate that a possible effect did not exceed a hyperpolarization (at 5 mT) of 0.14-6%, depending on the assumed hyperpolarized volume. It should be noted though, that there were some differences between our setup and the previous implementation of the experiment, which may have inhibited the full incidence of this effect. To approach a theoretical description of this effect, we considered the interaction of an electron with a plane wave, which is known to be

  17. Twist-joints and double twist-joints in RNA structure.

    PubMed

    Boutorine, Yury I; Steinberg, Sergey V

    2012-12-01

    Analysis of available RNA crystal structures has allowed us to identify a new family of RNA arrangements that we call double twist-joints, or DTJs. Each DTJ is composed of a double helix that contains two bulges incorporated into different strands and separated from each other by 2 or 3 bp. At each bulge, the double helix is over-twisted, while the unpaired nucleotides of both bulges form a complex network of stacking and hydrogen-bonding with nucleotides of helical regions. In total, we identified 14 DTJ cases, which can be combined in three groups based on common structural characteristics. One DTJ is found in a functional center of the ribosome, another DTJ mediates binding of the pre-tRNA to the RNase P, and two more DTJs form the sensing domains in the glycine riboswitch.

  18. 40 CFR 194.41 - Active institutional controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... controls and their effectiveness in terms of preventing or reducing radionuclide releases shall be... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Active institutional controls. 194.41... Assurance Requirements § 194.41 Active institutional controls. (a) Any compliance application shall...

  19. Active parallel redundancy for electronic integrator-type control circuits

    NASA Technical Reports Server (NTRS)

    Peterson, R. A.

    1971-01-01

    Circuit extends concept of redundant feedback control from type-0 to type-1 control systems. Inactive channels are slaves to the active channel, if latter fails, it is rejected and slave channel is activated. High reliability and elimination of single-component catastrophic failure are important in closed-loop control systems.

  20. Terahertz twisted beams generation in plasma

    NASA Astrophysics Data System (ADS)

    Sobhani, Hassan; Vaziri (Khamedi), Mohammad; Rooholamininejad, Hossien; Bahrampour, Alireza

    2016-08-01

    The resonant vortex terahertz beam generation by the cross-focusing of two twisted coaxial laser beams is investigated. For the resonant excitation of terahertz radiation, the rippled density in plasma and the ripple wave number is suitably chosen to satisfy the phase matching condition. The nonlinear current density at terahertz frequency arises due to the spatial variation of two Laguerre-Gaussian coupled field. The terahertz intensity scales as the ponderomotive force of laser beams which imparts an oscillatory velocity to the electrons and, in fact, input Laguerre-Gaussian laser beams properties such as vortex charge number and beam waist. Various laser and plasma parameters are employed to yield vortex terahertz radiation with higher efficiency. Also, it is shown that when the beating frequency approaches plasma frequency, the amplitude of THz radiation increases.

  1. Optical Twist Induced by Plasmonic Resonance

    PubMed Central

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-01-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster. PMID:27291860

  2. Bounds on tensor wave and twisted inflation

    SciTech Connect

    Panda, Sudhakar; Sami, M.; Ward, John

    2010-11-15

    We study the bounds on tensor wave in a class of twisted inflation models, where D(4+2k)-branes are wrapped on cycles in the compact manifold and wrap the Kaluza-Klein direction in the corresponding effective field theory. While the lower bound is found to be analogous to that in type IIB models of brane inflation, the upper bound turns out to be significantly different. This is argued for a range of values for the parameter g{sub s}M satisfying the self-consistency relation and the WMAP data. Further, we observe that the wrapped D8-brane appears to be the most attractive from a cosmological perspective.

  3. Twists and turns: a scientific journey.

    PubMed

    Tilghman, Shirley M

    2014-01-01

    In this perspective I look back on the twists and turns that influenced the direction of my scientific career over the past 40 years. From my early ambition to be a chemist to my training in Philadelphia and Bethesda as a molecular biologist, I benefited enormously from generous and valuable mentoring. In my independent career in Philadelphia and Princeton, I was motivated by a keen interest in the changes in gene expression that direct the development of the mammalian embryo and inspired by the creativity and energy of my students, fellows, and research staff. After twelve years as President of Princeton University, I have happily returned to the faculty of the Department of Molecular Biology.

  4. A Solvable Twisted One-Plaquette Model

    NASA Astrophysics Data System (ADS)

    Billó, M.; D'Adda, A.

    We solve a hot twisted Eguchi-Kawai model with only timelike plaquettes in the deconfined phase, by computing the quadratic quantum fluctuations around the classical vacuum. The solution of the model has some novel features: the eigenvalues of the timelike link variable are separated in L bunches, if L is the number of links of the original lattice in the time direction, and each bunch obeys a Wigner semicircular distribution of eigenvalues. This solution becomes unstable at a critical value of the coupling constant, where it is argued that a condensation of classical solutions takes place. This can be inferred by comparison with the heat-kernel model in the Hamiltonian limit, and the related Douglas-Kazakov phase transition in QCD2. As a byproduct of our solution, we can reproduce the dependence of the coupling constant from the parameter describing the asymmetry of the lattice, and compare it to previous results by Karsch.

  5. Optical Twist Induced by Plasmonic Resonance

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-06-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster.

  6. Bioinspired twisted composites based on Bouligand structures

    NASA Astrophysics Data System (ADS)

    Pinto, F.; Iervolino, O.; Scarselli, G.; Ginzburg, D.; Meo, M.

    2016-04-01

    The coupling between structural support and protection makes biological systems an important source of inspiration for the development of advanced smart composite structures. In particular, some particular material configurations can be implemented into traditional composites in order to improve their impact resistance and the out-of-plane properties, which represents one of the major weakness of commercial carbon fibres reinforced polymers (CFRP) structures. Based on this premise, a three-dimensional twisted arrangement shown in a vast multitude of biological systems (such as the armoured cuticles of Scarabei, the scales of Arapaima Gigas and the smashing club of Odontodactylus Scyllarus) has been replicated to develop an improved structural material characterised by a high level of in-plane isotropy and a higher interfacial strength generated by the smooth stiffness transition between each layer of fibrils. Indeed, due to their intrinsic layered nature, interlaminar stresses are one of the major causes of failure of traditional CFRP and are generated by the mismatch of the elastic properties between plies in a traditional laminate. Since the energy required to open a crack or a delamination between two adjacent plies is due to the difference between their orientations, the gradual angle variation obtained by mimicking the Bouligand Structures could improve energy absorption and the residual properties of carbon laminates when they are subjected to low velocity impact event. Two different bioinspired laminates were manufactured following a double helicoidal approach and a rotational one and were subjected to a complete test campaign including low velocity impact loading and compared to a traditional quasi-isotropic panel. Fractography analysis via X-Ray tomography was used to understand the mechanical behaviour of the different laminates and the residual properties were evaluated via Compression After Impact (CAI) tests. Results confirmed that the biological

  7. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1986-01-01

    The utility of augmenting displays to aid the human operator in controlling high order complex systems is well known. Analytical evaluation of various display designs for a simple k/s sup 2 plant in a compensatory tracking task using an optimal Control Model (OCM) of human behavior is carried out. This analysis reveals that significant improvement in performance should be obtained by skillful integration of key information into the display dynamics. The cooperative control synthesis technique previously developed to design pilot-optimal control augmentation is extended to incorporate the simultaneous design of performance enhancing augmented displays. The application of the cooperative control synthesis technique to the design of augmented displays is discussed for the simple k/s sup 2 plant. This technique is intended to provide a systematic approach to design optimally augmented displays tailored for specific tasks.

  8. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1985-01-01

    The utility of augmenting displays to aid the human operator in controlling high order complex systems is well known. Analytical evaluations of various display designs for a simple k/s-squared plant in a compensatory tracking task using an Optimal Control Model (OCM) of human behavior is carried out. This analysis reveals that significant improvement in performance should be obtained by skillful integration of key information into the display dynamics. The cooperative control synthesis technique previously developed to design pilot-optimal control augmentation is extended to incorporate the simultaneous design of performance enhancing augmented displays. The application of the cooperative control synthesis technique to the design of augmented displays is discussed for the simple k/s-squared plant. This technique is intended to provide a systematic approach to design optimally augmented displays tailored for specific tasks.

  9. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1985-01-01

    A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.

  10. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Gary, Sanjay; Schmidt, David K.

    1987-01-01

    A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/(s squared) plant, and then to an F-15 type aircraft in a multichannel task. Utilizing the closed-loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.

  11. Twisted hierarchies associated with the generalized sine-Gordon equation

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Wu, Derchyi

    2011-09-01

    Twisted U- and twisted U/K-hierarchies are soliton hierarchies introduced by Terng to find higher flows of the generalized sine-Gordon equation. Twisted O(J,J)/O(J)× O(J)-hierarchies are among the most important classes of twisted hierarchies. In this paper, we derive explicit interesting first and higher flows of twisted O(J,J)/O(J)× O(J)-hierarchies, justify that the one-dimensional systems of twisted O(J,J)/O(J)× O(J)-hierarchies for J = Iq, n - q(1 ⩽ q ⩽ n - 1), called the generalized sinh-Gordon equations, are the Gauss-Codazzi equations for n-dimensional timelike submanifolds with constant sectional curvature 1 and index q in pseudo-Euclidean (2n - 1)-dimensional space {R}^{2n-1}_{2q-1} with index 2q - 1. Furthermore, a unified treatment of the inverse scattering theory for twisted O(J,J)/O(J)× O(J)-hierarchies is provided.

  12. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  13. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    The main objective is to determine the feasibility of utilizing controllable mechanical seals for aerospace applications. A potential application was selected as a demonstration case: the buffer gas seal in a LOX (liquid oxygen) turbopump. Currently, floating ring seals are used in this application. Their replacement with controllable mechanical seals would result in substantially reduced leakage rates. This would reduce the required amount of stored buffer gas, and therefore increase the vehicle payload. For such an application, a suitable controllable mechanical seal was designed and analyzed.

  14. Acceleration-augmented LQG control of an active magnetic bearing

    NASA Astrophysics Data System (ADS)

    Feeley, Joseph J.

    A linear-quadratic-gaussian (LQG) regulator controller design for an acceleration-augmented active magnetic bearing (AMB) is outlined. Acceleration augmentation is a key feature in providing improved dynamic performance of the controller. The optimal control formulation provides a convenient method of trading-off fast transient response and force attenuation as control objectives.

  15. Acceleration-Augmented LQG Control of an Active Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Feeley, Joseph J.

    1993-01-01

    A linear-quadratic-gaussian (LQG) regulator controller design for an acceleration-augmented active magnetic bearing (AMB) is outlined. Acceleration augmentation is a key feature in providing improved dynamic performance of the controller. The optimal control formulation provides a convenient method of trading-off fast transient response and force attenuation as control objectives.

  16. PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...

  17. Active control of flexural vibrations in beams

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.

    1987-01-01

    The feasibility of using piezoelectric actuators to control the flexural oscillations of large structures in space is investigated. Flexural oscillations are excited by impulsive loads. The vibratory response can degrade the pointing accuracy of cameras and antennae, and can cause high stresses at structural node points. Piezoelectric actuators have the advantage of exerting localized bending moments. In this way, vibration is controlled without exciting rigid body modes. The actuators are used in collocated sensor/driver pairs to form a feedback control system. The sensor produces a voltage that is proportional to the dynamic stress at the sensor location, and the driver produces a force that is proportional to the voltage applied to it. The analog control system amplifies and phase shifts the sensor signal to produce the voltage signal that is applied to the driver. The feedback control is demonstrated to increase the first mode damping in a cantilever beam by up to 100 percent, depending on the amplifier gain. The damping efficiency of the control system when the piezoelectrics are not optimally positioned at points of high stress in the beam is evaluated.

  18. Digitally Controlled ’Programmable’ Active Filters.

    DTIC Science & Technology

    1985-12-01

    Mitra, S. K., Analysis and Synthesis of Linear Active .. Networks, Wiley, New York, 1969. * 6. Sedra , A. S. and Smith , K. C., "A Second-Generation...Current Conveyor and its Applications," IEEE Trans. Circuit Theory, Vol. CT-17, pp. 132-134, 1970. 7. Sedra , A. S., "A New Approach to Active Network...CT-18, pp. 358-361, May 1971. 27. Hamilton, T. A., and Sedra , A. S., "Some New IJ Configurations for Active Filters," IEEE Trans. Circuit Tehory, Vol

  19. Active Noise and Vibration Control Literature Survey: Controller Technologies

    DTIC Science & Technology

    1999-11-01

    control exclusively, but mathematical languages ( Matlab [The MathWorks, 1999], Matrix [Integrated Systems Inc, 1999) and, more recently, languages using...more efficient design process" [The Math Works, 1999]. Matlab and Simulink are powerful tools for dynamic systems identification. So, it is possible...to quickly obtain a numerical model of the physical system with Matlab . Moreover, Simulink enables the user to easily and quickly transpose the

  20. Development of twisted high-temperature superconductor composite conductors

    SciTech Connect

    Christopherson, C.J.; Riley, G.N. Jr.

    1995-04-24

    Multifilamentary high-temperature superconductor (HTS) composite conductors have been developed for alternating current (ac) applications. A twisted HTS conductor containing the Bi-2223 phase fabricated using a modified powder-in-tube technique is reported. Transport critical current densities of 13 800 and 10 900 A/cm {sup 2} (77 K, self-field, 1 {mu}V/cm) have been achieved for twisted tape and wire conductors with twist pitches of 3.7 and 3.6 mm, respectively. These conductors are strongly linked and are thus suitable for use in ac applications.

  1. Development of twisted high-temperature superconductor composite conductors

    NASA Astrophysics Data System (ADS)

    Christopherson, C. J.; Riley, G. N., Jr.

    1995-04-01

    Multifilamentary high-temperature superconductor (HTS) composite conductors have been developed for alternating current (ac) applications. A twisted HTS conductor containing the Bi-2223 phase fabricated using a modified powder-in-tube technique is reported. Transport critical current densities of 13 800 and 10 900 A/cm 2 (77 K, self-field, 1 μV/cm) have been achieved for twisted tape and wire conductors with twist pitches of 3.7 and 3.6 mm, respectively. These conductors are strongly linked and are thus suitable for use in ac applications.

  2. Twisted conformal algebra related to κ -Minkowski space

    NASA Astrophysics Data System (ADS)

    Meljanac, Stjepan; Pachoł, Anna; Pikutić, Danijel

    2015-11-01

    Twisted deformations of the conformal symmetry in the Hopf algebraic framework are constructed. The first one is obtained by a Jordanian twist built up from dilatation and momenta generators. The second is the lightlike κ -deformation of the Poincaré algebra extended to the conformal algebra, obtained by a twist corresponding to the extended Jordanian r -matrix. The κ -Minkowski spacetime is covariant quantum space under both of these deformations. The extension of the conformal algebra by the noncommutative coordinates is presented in two cases. The differential realizations for κ -Minkowski coordinates, as well as their left-right dual counterparts, are also included.

  3. Tri-bimaximal mixing from twisted Friedberg-Lee symmetry

    NASA Astrophysics Data System (ADS)

    Araki, Takeshi; Takahashi, Ryo

    2009-10-01

    We investigate the Friedberg-Lee (FL) symmetry and its promotion to include the μ- τ symmetry, and call this the twisted FL symmetry. Based on the twisted FL symmetry, two possible schemes are presented toward the realistic neutrino mass spectrum and the tri-bimaximal mixing. In the first scheme, we suggest the semi-uniform translation of the FL symmetry. The second one is based on the S 3 permutation family symmetry. The breaking terms, which are twisted FL symmetric, are introduced. Some viable models in each scheme are also presented.

  4. Topological suppression of optical tunneling in a twisted annular fiber

    SciTech Connect

    Ornigotti, M.; Valle, G. Della; Gatti, D.; Longhi, S.

    2007-08-15

    A classical wave-optics analog of topological (Aharonov-Bohm) suppression of tunneling in a double-well potential on a ring threaded by a magnetic flux is proposed. The optical system consists of a uniformly twisted optical fiber with a structured annular core, in which the fiber twist mimics the role of the magnetic flux in the corresponding quantum-mechanical problem. Light waves trapped in the annular core of the fiber experience an additional topological (Aharonov-Bohm) phase, which may lead to the destruction of optical tunneling at certain values of the twist rate.

  5. Assembly and Folding of Twisted Baskets in Organic Solvents.

    PubMed

    Pratumyot, Yaowalak; Chen, Shigui; Hu, Lei; Polen, Shane M; Hadad, Christopher M; Badjić, Jovica D

    2016-09-02

    A synthetic method for obtaining enantiopure and twisted baskets of type (P)-3 is described. These chiral cavitands were found to fold quinoline gates, at the rim of their twisted platform, in acetonitrile and give molecular capsules that assemble into large unilamellar vesicles. In a less polar dichloromethane, however, cup-shaped (P)-3 packed into vesicles but with the quinoline gates in an unfolded orientation. The ability of twisted baskets to form functional nanostructured materials could be of interest for building stereoselective sensors and catalysts.

  6. Bandpass filter with adjustable bandwidth based on a press-induced long-period twisted holey-fiber grating.

    PubMed

    Torres-Gómez, I; Martínez-Ríos, A; Ceballos-Herrera, D E; Mejía-Beltrán, E; Selvas-Aguilar, R

    2007-12-01

    A bandpass filter with adjustable bandwidth based on a press-induced long-period grating in a twisted holey fiber is presented. By twisting the holey fiber prior to the application of periodic pressure, each rejection band of the nontwisted induced long-period grating is split into two shifted rejection bands that move further apart as the twist ratio increases. This feature results in a wide bandpass filter with controllable bandwidth. A bandpass filter at 1523 nm with adjustable bandwidth from 15 to 65 nm with near-linear response and insertion loss lower than 0.7 dB is demonstrated. Additionally, the bandpass filter can be tuned over 100 nm.

  7. TWIST1 drives cisplatin resistance and cell survival in an ovarian cancer model, via upregulation of GAS6, L1CAM, and Akt signalling

    PubMed Central

    Roberts, Cai M.; Tran, Michelle A.; Pitruzzello, Mary C.; Wen, Wei; Loeza, Joana; Dellinger, Thanh H.; Mor, Gil; Glackin, Carlotta A.

    2016-01-01

    Epithelial ovarian cancer (EOC) is the most deadly gynaecologic malignancy due to late onset of symptoms and propensity towards drug resistance. Epithelial-mesenchymal transition (EMT) has been linked to the development of chemoresistance in other cancers, yet little is known regarding its role in EOC. In this study, we sought to determine the role of the transcription factor TWIST1, a master regulator of EMT, on cisplatin resistance in an EOC model. We created two Ovcar8-derived cell lines that differed only in their TWIST1 expression. TWIST1 expression led to increased tumour engraftment in mice, as well as cisplatin resistance in vitro. RNA sequencing analysis revealed that TWIST1 expression resulted in upregulation of GAS6 and L1CAM and downregulation of HMGA2. Knockdown studies of these genes demonstrated that loss of GAS6 or L1CAM sensitized cells to cisplatin, but that loss of HMGA2 did not give rise to chemoresistance. TWIST1, in part via GAS6 and L1CAM, led to higher expression and activation of Akt upon cisplatin treatment, and inhibition of Akt activation sensitized cells to cisplatin. These results suggest TWIST1- and EMT-driven increase in Akt activation, and thus tumour cell proliferation, as a potential mechanism of drug resistance in EOC. PMID:27876874

  8. Chiral carbonaceous nanotubes containing twisted carbonaceous nanoribbons, prepared by the carbonization of chiral organic self-assemblies.

    PubMed

    Huo, Hongjing; Li, Yi; Yuan, Yuan; Lin, Shuwei; Li, Baozong; Wang, Mingliang; Yang, Yonggang

    2014-10-01

    Single-handed helical silica nanotubes containing chiral organic self-assemblies were prepared by using a supramolecular templating approach. After carbonization and the removal of the silica, single-handed helical carbonaceous nanotubes that contained twisted carbonaceous nanoribbons were obtained. It is believed that the nanotubes formed as a result of the adsorption of low-molecular-weight gelators. The twisted nanoribbons were formed because of the carbonization of the organic self-assemblies. The samples were characterized by using field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and circular dichroism. For the samples carbonized at 900 °C for 3.0 h, a partially graphitized structure was identified. The circular dichroism (CD) spectra indicated that the twisted nanoribbons exhibited optical activity. The CD spectrum was simulated by using time-dependent density functional theory. The results suggested that the CD signals originated from the chiral stacking of aromatic rings.

  9. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1993-01-01

    An electronically controlled mechanical seal for use as the purge gas seal in a liquid oxygen turbo pump has been fabricated and tested under transient operating conditions. The thickness of the lubricating film is controlled by adjusting the coning of the carbon face. This is accomplished by applying a voltage to a piezoelectric actuator to which the carbon face is bonded. The seal has been operated with a closed-loop control system that utilizes either the leakage rate or the seal face temperature as the feedback. Both speed and pressure transients have been imposed on the seal. The transient tests have demonstrated that the seal is capable of maintaining low leakage rates while limiting the face temperatures.

  10. Broadband radiation modes: estimation and active control.

    PubMed

    Berkhoff, Arthur P

    2002-03-01

    In this paper we give a formulation of the most efficiently radiating vibration patterns of a vibrating body, the radiation modes, in the time domain. The radiation modes can be used to arrive at efficient weighting schemes for an array of sensors in order to reduce the controller dimensionality. Because these particular radiation modes are optimum in a broadband sense, they are termed broadband radiation modes. Methods are given to obtain these modes from measured data. The broadband radiation modes are used for the design of an actuator array in a feedback control system to reduce the sound power radiated from a plate. Three methods for the design of the actuator are compared, taking into account the reduction of radiated sound power in the controlled frequency range, but also the possible increase of radiated sound power in the uncontrolled frequency range.

  11. Active Control of Magnetically Levitated Bearings

    SciTech Connect

    BARNEY, PATRICK S.; LAUFFER, JAMES P.; REDMOND, JAMES M.; SULLIVAN, WILLIAM N.

    2001-03-01

    This report summarizes experimental and test results from a two year LDRD project entitled Real Time Error Correction Using Electromagnetic Bearing Spindles. This project was designed to explore various control schemes for levitating magnetic bearings with the goal of obtaining high precision location of the spindle and exceptionally high rotational speeds. As part of this work, several adaptive control schemes were devised, analyzed, and implemented on an experimental magnetic bearing system. Measured results, which indicated precision positional control of the spindle was possible, agreed reasonably well with simulations. Testing also indicated that the magnetic bearing systems were capable of very high rotational speeds but were still not immune to traditional structural dynamic limitations caused by spindle flexibility effects.

  12. Testing mixed action approaches to meson spectroscopy with twisted mass sea quarks

    NASA Astrophysics Data System (ADS)

    Berlin, J.; Palao, D.; Wagner, M.

    We explore and compare three mixed action setups with Wilson twisted mass sea quarks and different valence quark actions: (1) Wilson twisted mass, (2) Wilson twisted mass + clover and (3) Wilson + clover. Our main goal is to reduce lattice discretization errors in mesonic spectral quantities, in particular to reduce twisted mass parity and isospin breaking.

  13. ACOSS Twelve (Active Control of Space Structures)

    DTIC Science & Technology

    1982-12-01

    Analysis 10 1-VII Controller Robustness Investigation 12 I 1-VIII Robustness Definitions 12 1-lX Loop Transfer Recover on 2-Mode Example 15 I- X ...Results 2-V Correlation of Test and Analysis 67 2-VI Model Sensitivity 67 x 6. 1.0 ANALYTICAL RESEARCH FOR CONTROL METHODOLOGY DEVELOPMENT (TASK 1.0...include more modes than previously considered. The three I ’kA",PSD location Ix, V. 1I( ?.Is, 1 12 IV, Z) x * V. i Z is. 1 9. 9 (Y. 21 a I?. Iz 1

  14. Active Flap Control of the SMART Rotor for Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Hall, Steven R.; Anand, R. Vaidyanathan; Straub, Friedrich K.; Lau, Benton H.

    2009-01-01

    Active control methodologies were applied to a full-scale active flap rotor obtained during a joint Boeing/ DARPA/NASA/Army test in the Air Force National Full-Scale Aerodynamic Complex 40- by 80-foot anechoic wind tunnel. The active flap rotor is a full-scale MD 900 helicopter main rotor with each of its five blades modified to include an on-blade piezoelectric actuator-driven flap with a span of 18% of radius, 25% of chord, and located at 83% radius. Vibration control demonstrated the potential of active flaps for effective control of vibratory loads, especially normal force loads. Active control of normal force vibratory loads using active flaps and a continuous-time higher harmonic control algorithm was very effective, reducing harmonic (1-5P) normal force vibratory loads by 95% in both cruise and approach conditions. Control of vibratory roll and pitch moments was also demonstrated, although moment control was less effective than normal force control. Finally, active control was used to precisely control blade flap position for correlation with pretest predictions of rotor aeroacoustics. Flap displacements were commanded to follow specific harmonic profiles of 2 deg or more in amplitude, and the flap deflection errors obtained were less than 0.2 deg r.m.s.

  15. Pulley With Active Antifriction Actuator And Control

    NASA Technical Reports Server (NTRS)

    Ih, Che-Hang C.; Vivian, Howard C.

    1994-01-01

    Torque actuator and associated control system minimizes effective friction of rotary bearing. Motor exerts compensating torque in response to feedback from external optical sensor. Compensation torque nearly cancels frictional torque of shaft bearings. Also useful in reducing bearing friction in gyro-scopes, galvanometers, torquemeters, accelerometers, earth-motion detectors, and balances.

  16. Selective Activation and Disengagement of Moral Control.

    ERIC Educational Resources Information Center

    Bandura, Albert

    1990-01-01

    Analyzes psychological mechanisms by which moral control is selectively disengaged from inhumane conduct in ordinary and unusual circumstances. Explores the symptoms of moral exclusion as described in the literature. Presents categories that unify theory on moral exclusion and contribute practical classifications for use in empirical studies. (JS)

  17. Active Flow Control with Thermoacoustic Actuators

    DTIC Science & Technology

    2014-01-31

    dielectric barrier discharge ( DBD ) plasma actuators [4], or combustion powered actuators [5]. Compared to passive flow control techniques, such as vortex...space nor adding significant weight, which is similar to how DBD plasma actuators can be installed. 3 The sound generation mechanism, known as

  18. Limited Investigation of Active Feel Control Stick System (Active Stick)

    DTIC Science & Technology

    2009-06-01

    at VCORNER .............. 15 Figure 12: Pitch Rate Response to 1.5 g Commanded Force PTI at VHI ......................... 16 Figure 13: Pitch Angle...Response to 1.5 g Commanded Force PTI at VHI ...................... 17 Figure 14: Flight Control System Stick Attributes at VLO...23 Figure 19: Cooper-Harper Ratings for Head Down Display Task ( VHI ) ......................... 24 Figure 20: Fine

  19. Recent advances in active control of aircraft cabin noise

    NASA Astrophysics Data System (ADS)

    Mathur, Gopal; Fuller, Christopher

    2002-11-01

    Active noise control techniques can provide significant reductions in aircraft interior noise levels without the structural modifications or weight penalties usually associated with passive techniques, particularly for low frequency noise. Our main objective in this presentation is to give a review of active control methods and their applications to aircraft cabin noise reduction with an emphasis on recent advances and challenges facing the noise control engineer in the practical application of these techniques. The active noise control method using secondary acoustic sources, e.g., loudspeakers, as control sources for tonal noise reduction is first discussed with results from an active noise control flight test demonstration. An innovative approach of applying control forces directly to the fuselage structure using piezoelectric actuators, known as active structural acoustic control (ASAC), to control cabin noise is then presented. Experimental results from laboratory ASAC tests conducted on a full-scale fuselage and from flight tests on a helicopter will be discussed. Finally, a hybrid active/passive noise control approach for achieving significant broadband noise reduction will be discussed. Experimental results of control of broadband noise transmission through an aircraft structure will be presented.

  20. Renormalization of quark propagator, vertex functions, and twist-2 operators from twisted-mass lattice QCD at Nf=4

    NASA Astrophysics Data System (ADS)

    Blossier, Benoît.; Brinet, Mariane; Guichon, Pierre; Morénas, Vincent; Pène, Olivier; Rodríguez-Quintero, Jose; Zafeiropoulos, Savvas

    2015-06-01

    We present a precise nonperturbative determination of the renormalization constants in the mass independent RI'-MOM scheme. The lattice implementation uses the Iwasaki gauge action and four degenerate dynamical twisted-mass fermions. The gauge configurations are provided by the ETM Collaboration. Renormalization constants for scalar, pseudoscalar, vector and axial operators, as well as the quark propagator renormalization, are computed at three different values of the lattice spacing, two volumes and several twisted-mass parameters. The method we developed allows for a precise cross-check of the running, thanks to the particular proper treatment of hypercubic artifacts. Results for the twist-2 operator O44 are also presented.

  1. B{sub K}-parameter from N{sub f}=2 twisted mass lattice QCD

    SciTech Connect

    Constantinou, M.; Panagopoulos, H.; Skouroupathis, A.; Stylianou, F.; Dimopoulos, P.; Frezzotti, R.; Rossi, G. C.; Gimenez, V.; Lubicz, V.; Papinutto, M.

    2011-01-01

    We present an unquenched N{sub f}=2 lattice computation of the B{sub K} parameter which controls K{sup 0}-K{sup 0} oscillations. A partially quenched setup is employed with two maximally twisted dynamical (sea) light Wilson quarks, and valence quarks of both the maximally twisted and the Osterwalder-Seiler variety. Suitable combinations of these two kinds of valence quarks lead to a lattice definition of the B{sub K} parameter which is both multiplicatively renormalizable and O(a) improved. Employing the nonperturbative RI-MOM scheme, in the continuum limit and at the physical value of the pion mass we get B{sub K}{sup RGI}=0.729{+-}0.030, a number well in line with the existing quenched and unquenched determinations.

  2. Temperature tuning of lasing emission from dye-doped liquid crystal at intermediate twisted phase

    NASA Astrophysics Data System (ADS)

    Liao, Kuan-Cheng; Lin, Ja-Hon; Jian, Li-Hao; Chen, Yao-Hui; Wu, Jin-Jei

    2015-07-01

    Temperature tuning of lasing emission from dye-doped cholesteric liquid crystal (CLC) at intermediate twisted phase has been demonstrated in this work. With heavily doping of 42.5% chiral molecules into the nematic liquid crystals, the shifts of photonic bandgap versus temperature is obviously as thermal controlling of the sample below the certain value. By the differential scanning calorimetr measuremet, we demonstrate the phase transition from the CLC to the smectic phase when the temperature is lowered to be about 15°C. Between CLC and smectic phase, the liquid crystal mixtures are operated at intermediate twisted phase that can be used the temperature related refractive mirror. After pump by the Q-switched Nd:YAG laser, the lasing emission from this dye doped LC mixtures has been demonstrated whose emission wavelength can be tuned from 566 to 637 nm with 1.4°C variation.

  3. Building Large-Domain Twisted Bilayer Graphene with van Hove Singularity.

    PubMed

    Tan, Zhenjun; Yin, Jianbo; Chen, Cheng; Wang, Huan; Lin, Li; Sun, Luzhao; Wu, Jinxiong; Sun, Xiao; Yang, Haifeng; Chen, Yulin; Peng, Hailin; Liu, Zhongfan

    2016-07-26

    Twisted bilayer graphene (tBLG) with van Hove Singularity (VHS) has exhibited novel twist-angle-dependent chemical and physical phenomena. However, scalable production of high-quality tBLG is still in its infancy, especially lacking the angle controlled preparation methods. Here, we report a facile approach to prepare tBLG with large domain sizes (>100 μm) and controlled twist angles by a clean layer-by-layer transfer of two constituent graphene monolayers. The whole process without interfacial polymer contamination in two monolayers guarantees the interlayer interaction of the π-bond electrons, which gives rise to the existence of minigaps in electronic structures and the consequent formation of VHSs in density of state. Such perturbation on band structure was directly observed by angle-resolved photoemission spectroscopy with submicrometer spatial resolution (micro-ARPES). The VHSs lead to a strong light-matter interaction and thus introduce ∼20-fold enhanced intensity of Raman G-band, which is a characteristic of high-quality tBLG. The as-prepared tBLG with strong light-matter interaction was further fabricated into high-performance photodetectors with selectively enhanced photocurrent generation (up to ∼6 times compared with monolayer in our device).

  4. Twist2 Is Upregulated in Early Stages of Repair Following Acute Kidney Injury

    PubMed Central

    Grunz-Borgmann, Elizabeth A.; Nichols, LaNita A.; Wang, Xinhui; Parrish, Alan R.

    2017-01-01

    The aging kidney is a marked by a number of structural and functional changes, including an increased susceptibility to acute kidney injury (AKI). Previous studies from our laboratory have shown that aging male Fischer 344 rats (24 month) are more susceptible to apoptosis-mediated injury than young counterparts. In the current studies, we examined the initial injury and early recovery phases of mercuric chloride-induced AKI. Interestingly, the aging kidney had decreased serum creatinine compared to young controls 1 day following mercuric chloride injury, but by day 4, serum creatinine was significantly elevated, suggesting that the aging kidney did not recover from injury. This conclusion is supported by the findings that serum creatinine and kidney injury molecule-1 (Kim-1) gene expression remain elevated compared to young controls at 10 days post-injury. To begin to elucidate mechanism(s) underlying dysrepair in the aging kidney, we examined the expression of Twist2, a helix-loop-helix transcription factor that may mediate renal fibrosis. Interestingly, Twist2 gene expression was elevated following injury in both young and aged rats, and Twist2 protein expression is elevated by mercuric chloride in vitro. PMID:28208580

  5. Twist2 Is Upregulated in Early Stages of Repair Following Acute Kidney Injury.

    PubMed

    Grunz-Borgmann, Elizabeth A; Nichols, LaNita A; Wang, Xinhui; Parrish, Alan R

    2017-02-10

    The aging kidney is a marked by a number of structural and functional changes, including an increased susceptibility to acute kidney injury (AKI). Previous studies from our laboratory have shown that aging male Fischer 344 rats (24 month) are more susceptible to apoptosis-mediated injury than young counterparts. In the current studies, we examined the initial injury and early recovery phases of mercuric chloride-induced AKI. Interestingly, the aging kidney had decreased serum creatinine compared to young controls 1 day following mercuric chloride injury, but by day 4, serum creatinine was significantly elevated, suggesting that the aging kidney did not recover from injury. This conclusion is supported by the findings that serum creatinine and kidney injury molecule-1 (Kim-1) gene expression remain elevated compared to young controls at 10 days post-injury. To begin to elucidate mechanism(s) underlying dysrepair in the aging kidney, we examined the expression of Twist2, a helix-loop-helix transcription factor that may mediate renal fibrosis. Interestingly, Twist2 gene expression was elevated following injury in both young and aged rats, and Twist2 protein expression is elevated by mercuric chloride in vitro.

  6. Active Control Technique Evaluation for Spacecraft (ACES)

    DTIC Science & Technology

    1988-06-16

    Due to Test Results 3-9 3.5 Representative Data 3-11 3.6 Control Model 3-21 4.0 Simulation 4-1 5.0 HAC/LAC 5-1 5.1 Theory 5-1...5.1.1 HAC Theory 5-1 5.1.2 LAC Theory 5-4 5.1.3 HAC/LAC Combined Control 5-6 5.1.4 HAC/LAC Applied to ACES 5-7 5.2 Model Selection and...5-39 5-50 6.0 Positivity 6-1 6-1 6-9 6-9 6-17 6-31 5.4 Observation 5.5 Test Results 5.6 Conclusions 6.1 Theory 6.2 Model

  7. 14. DETAIL OF GUSSET WITH CURVE ANGLE IRON AND TWISTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL OF GUSSET WITH CURVE ANGLE IRON AND TWISTED STRIPS, FORMING SUN RAY PATTERN. LATTICE RAILING AT LOWER RIGHT. - River Road Bridge, Spanning Spring Creek in Spring Creek Township, Hallton, Elk County, PA

  8. 6. DETAIL OF GUSSET WITH CURVE ANGLE IRON AND TWISTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF GUSSET WITH CURVE ANGLE IRON AND TWISTED STRIPS, FORMING SUN RAY PATTERN. LATTICE RAILING AT LOWER RIGHT. - River Road Bridge, Spanning Spring Creek in Spring Creek Township, Hallton, Elk County, PA

  9. Packing with a twist: from Wrinkles to Scrolls

    NASA Astrophysics Data System (ADS)

    Kudrolli, Arshad; Chopin, Julien

    2012-02-01

    We discuss an experimental investigation of a thin elastic sheet in the form of a ribbon with clamped boundary conditions at both ends which is then subjected to a twist by rotating the ends through a prescribed angle. We find that a wrinkling instability appears even at a small twist angle which depends on the aspect ratio of the ribbon, its bending modulus and initial tension. Using x-ray tomography, we show that the pattern of this first instability has an impact on the folding at larger twist angles which can result in ordered configurations including Fermat scrolls. Still further twisting results in a highly compressive packing as in wringing a towel without application of direct radial compression. Implications for developing yarns with novel mechanical and transport properties [Lima, et al., Science 331, 51 (2011)] will be discussed.

  10. AC loss measurements of twisted and untwisted BSCCO multifilamentary tapes

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenan; Amemiya, Naoyuki; Nishioka, Takamasa; Oh, Sang-Soo

    2005-01-01

    AC losses in twisted and untwisted BSCCO multifilamentary superconducting tapes with Ag matrix developed in DAPAS program were measured by an electrical method. Magnetization and transport losses were measured by a pick-up coil and by a voltage taps. Total AC loss during simultaneous application of AC transport current and an AC transverse magnetic field was given by the sum of the magnetization and transport losses measured during this simultaneous application. The magnetization loss without transport current of untwisted and twisted tapes was measured first to evaluate the effect of twisting to decouple filaments. Then, the total AC loss of the twisted tape was measured in transverse magnetic fields with various amplitudes and orientations, while the amplitude of the transport current was fixed. The measured total AC loss in a parallel transverse magnetic field was compared with some theoretical models to study the detailed characteristics of the measured total AC loss of the sample.

  11. Applying twisted boundary conditions for few-body nuclear systems

    NASA Astrophysics Data System (ADS)

    Körber, Christopher; Luu, Thomas

    2016-05-01

    We describe and implement twisted boundary conditions for the deuteron and triton systems within finite volumes using the nuclear lattice EFT formalism. We investigate the finite-volume dependence of these systems with different twist angles. We demonstrate how various finite-volume information can be used to improve calculations of binding energies in such a framework. Our results suggests that with appropriate twisting of boundaries, infinite-volume binding energies can be reliably extracted from calculations using modest volume sizes with cubic length L ≈8 -14 fm. Of particular importance is our derivation and numerical verification of three-body analogs of "i-periodic" twist angles that eliminate the leading-order finite-volume effects to the three-body binding energy.

  12. Transmission characteristics of a twisted nematic liquid-crystal layer

    NASA Technical Reports Server (NTRS)

    Grinberg, J.; Jacobson, A. D.

    1976-01-01

    An approximate analytical expression is calculated for the transmission of thin twisted nematic layers situated between a polarizer/analyzer pair. The approximation assumes that the twist angle of the nematic liquid crystal is smaller than the maximum retardation of the cell. The direction of the incident light is assumed to be parallel to the normal of the electrode. This configuration is analyzed for a general arrangement of polarizer and analyzer; the general result is evaluated for the case of the polarizer parallel and analyzer perpendicular to the liquid-crystal optical axis on the input and output electrodes, respectively. The results show that in the case of a thin twisted nematic layer the transmission depends on the thickness of the layer, on the birefringence of the liquid crystal, and on the wavelength of the light. This is a departure from the well-known independence of the transmission on these parameters for a thick twisted nematic layer.

  13. DNA Twist Stability Changes with Magnesium(2 + ) Concentration

    NASA Astrophysics Data System (ADS)

    Broekmans, Onno D.; King, Graeme A.; Stephens, Greg J.; Wuite, Gijs J. L.

    2016-06-01

    To understand DNA elasticity at high forces (F >30 pN ), its helical nature must be taken into account, as a coupling between twist and stretch. The prevailing model, the wormlike chain, was previously extended to include this twist-stretch coupling. Motivated by DNA's charged nature, and the known effects of ionic charges on its elasticity, we set out to systematically measure the impact of buffer ionic conditions on twist-stretch coupling. After developing a robust fitting approach, we show, using our new data set, that DNA's helical twist is stabilized at high concentrations of the magnesium divalent cation. DNA's persistence length and stretch modulus are, on the other hand, relatively insensitive to the applied range of ionic strengths.

  14. Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)

    SciTech Connect

    Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

    2006-06-01

    This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

  15. Whittaker modules for the twisted Heisenberg-Virasoro algebra

    SciTech Connect

    Liu Dong; Wu Yuezhu; Zhu Linsheng

    2010-02-15

    We define Whittaker modules for the twisted Heisenberg-Virasoro algebra and obtain several results from the classical setting, including a classification of simple Whittaker modules by central characters.

  16. Solar Material Twists on Sun’s Surface

    NASA Video Gallery

    Solar material twists above the sun’s surface in this close-up captured by NASA’s Solar Dynamics Observatory on June 7-8, 2016, showcasing the turbulence caused by combative magnetic forces on the ...

  17. Hybrid Architecture Active Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Hyde, Tupper

    2010-01-01

    A method was developed for performing relatively high-speed wavefront sensing and control to overcome thermal instabilities in a segmented primary mirror telescope [e.g., James Webb Space Telescope (JWST) at L2], by using the onboard fine guidance sensor (FGS) to minimize expense and complexity. This FGS performs centroiding on a bright star to feed the information to the pointing and control system. The proposed concept is to beam split the image of the guide star (or use a single defocused guide star image) to perform wavefront sensing using phase retrieval techniques. Using the fine guidance sensor star image for guiding and fine phasing eliminates the need for other, more complex ways of achieving very accurate sensing and control that is needed for UV-optical applications. The phase retrieval occurs nearly constantly, so passive thermal stability over fourteen days is not required. Using the FGS as the sensor, one can feed segment update information to actuators on the primary mirror that can update the primary mirror segment fine phasing with this frequency. Because the thermal time constants of the primary mirror are very slow compared to this duration, the mirror will appear extremely stable during observations (to the level of accuracy of the sensing and control). The sensing can use the same phase retrieval techniques as the JWST by employing an additional beam splitter, and having each channel go through a weak lens (one positive and one negative). The channels can use common or separate detectors. Phase retrieval can be performed onboard. The actuation scheme would include a coarse stage able to achieve initial alignment of several millimeters of range (similar to JWST and can use a JWST heritage sensing approach in the science camera) and a fine stage capable of continual updates.

  18. Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial.

    PubMed

    Xu, He-Xiu; Wang, Guang-Ming; Qi, Mei Qing; Cai, Tong; Cui, Tie Jun

    2013-10-21

    We propose a kind of chiral metamaterial inspired from the fractal concept. The Hilbert fractal perturbation in the twisted split ring resonator element results in compact metamaterial and breaking mirror symmetry, which readily forms chirality over triple bands. The discrepancy between co-polarization conversion and cross-polarization conversion over multiple bands can be explored for multifunctional devices. A multiband circular polarizer is then numerically and experimentally studied in the X band based on the bilayered twisted Hilbert resonator with mutual 90° rotation. The ability of transforming linearly polarized incident waves to circularly polarized waves is unambiguously demonstrated with high conversion efficiency and large polarization extinction ratio of more than 20 dB across dual bands. Moreover, exceptionally strong optical activity and circular dichroism are also observed.

  19. On the prevalence of small-scale twist in the solar chromosphere and transition region.

    PubMed

    De Pontieu, B; van der Voort, L Rouppe; McIntosh, S W; Pereira, T M D; Carlsson, M; Hansteen, V; Skogsrud, H; Lemen, J; Title, A; Boerner, P; Hurlburt, N; Tarbell, T D; Wuelser, J P; De Luca, E E; Golub, L; McKillop, S; Reeves, K; Saar, S; Testa, P; Tian, H; Kankelborg, C; Jaeggli, S; Kleint, L; Martinez-Sykora, J

    2014-10-17

    The solar chromosphere and transition region (TR) form an interface between the Sun's surface and its hot outer atmosphere. There, most of the nonthermal energy that powers the solar atmosphere is transformed into heat, although the detailed mechanism remains elusive. High-resolution (0.33-arc second) observations with NASA's Interface Region Imaging Spectrograph (IRIS) reveal a chromosphere and TR that are replete with twist or torsional motions on sub-arc second scales, occurring in active regions, quiet Sun regions, and coronal holes alike. We coordinated observations with the Swedish 1-meter Solar Telescope (SST) to quantify these twisting motions and their association with rapid heating to at least TR temperatures. This view of the interface region provides insight into what heats the low solar atmosphere.

  20. On the prevalence of small-scale twist in the solar chromosphere and transition region

    NASA Astrophysics Data System (ADS)

    De Pontieu, B.; Rouppe van der Voort, L.; McIntosh, S. W.; Pereira, T. M. D.; Carlsson, M.; Hansteen, V.; Skogsrud, H.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt, N.; Tarbell, T. D.; Wuelser, J. P.; De Luca, E. E.; Golub, L.; McKillop, S.; Reeves, K.; Saar, S.; Testa, P.; Tian, H.; Kankelborg, C.; Jaeggli, S.; Kleint, L.; Martinez-Sykora, J.

    2014-10-01

    The solar chromosphere and transition region (TR) form an interface between the Sun’s surface and its hot outer atmosphere. There, most of the nonthermal energy that powers the solar atmosphere is transformed into heat, although the detailed mechanism remains elusive. High-resolution (0.33-arc second) observations with NASA’s Interface Region Imaging Spectrograph (IRIS) reveal a chromosphere and TR that are replete with twist or torsional motions on sub-arc second scales, occurring in active regions, quiet Sun regions, and coronal holes alike. We coordinated observations with the Swedish 1-meter Solar Telescope (SST) to quantify these twisting motions and their association with rapid heating to at least TR temperatures. This view of the interface region provides insight into what heats the low solar atmosphere.

  1. Advanced Study for Active Noise Control in Aircraft (ASANCA)

    NASA Technical Reports Server (NTRS)

    Borchers, Ingo U.; Emborg, Urban; Sollo, Antonio; Waterman, Elly H.; Paillard, Jacques; Larsen, Peter N.; Venet, Gerard; Goeransson, Peter; Martin, Vincent

    1992-01-01

    Aircraft interior noise and vibration measurements are included in this paper from ground and flight tests. In addition, related initial noise calculations with and without active noise control are conducted. The results obtained to date indicate that active noise control may be an effective means for reducing the critical low frequency aircraft noise.

  2. An electronic control for an electrohydraulic active control landing gear for the F-4 aircraft

    NASA Technical Reports Server (NTRS)

    Ross, I.

    1982-01-01

    A controller for an electrohydraulic active control landing gear was developed for the F-4 aircraft. A controller was modified for this application. Simulation results indicate that during landing and rollout over repaired bomb craters the active gear effects a force reduction, relative to the passive gear, or approximately 70%.

  3. An active noise control algorithm for controlling multiple sinusoids.

    PubMed

    Lee, S M; Lee, H J; Yoo, C H; Youn, D H; Cha, I W

    1998-07-01

    The filtered-x LMS algorithm and its modified versions have been successfully applied in suppressing acoustic noise such as single and multiple tones and broadband random noise. This paper presents an adaptive algorithm based on the filtered-x LMS algorithm which may be applied in attenuating tonal acoustic noise. In the proposed method, the weights of the adaptive filter and estimation of the phase shift due to the acoustic path from a loudspeaker to a microphone are computed simultaneously for optimal control. The algorithm possesses advantages over other filtered-x LMS approaches in three aspects: (1) each frequency component is processed separately using an adaptive filter with two coefficients, (2) the convergence parameter for each sinusoid can be selected independently, and (3) the computational load can be reduced by eliminating the convolution process required to obtain the filtered reference signal. Simulation results for a single-input/single-output (SISO) environment demonstrate that the proposed method is robust to the changes of the acoustic path between the actuator and the microphone and outperforms the filtered-x LMS algorithm in simplicity and convergence speed.

  4. Flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1975-01-01

    Application of the aerodynamic energy approach to some problems of flutter suppression and gust alleviation were considered. A simple modification of the control-law is suggested for achieving the required pitch control in the use of a leading edge - trailing edge activated strip. The possible replacement of the leading edge - trailing edge activated strip by a trailing edge - tab strip is also considered as an alternate solution. Parameters affecting the performance of the activated leading edge - trailing edge strip were tested on the Arava STOL Transport and the Westwind Executive Jet Transport and include strip location, control-law gains and a variation in the control-law itself.

  5. TIMP-1 via TWIST1 Induces EMT Phenotypes in Human Breast Epithelial Cells

    PubMed Central

    D’Angelo, Rosemarie Chirco; Liu, Xu-Wen; Najy, Abdo J.; Jung, Young Suk; Won, Joshua; Chai, Karl X.; Fridman, Rafael; Kim, Hyeong-Reh Choi

    2014-01-01

    Tissue inhibitor of metalloproteinase-1 (TIMP1) regulates intracellular signaling networks for inhibition of apoptosis. Tetraspanin (CD63), a cell surface binding partner for TIMP-1, was previously shown to regulate integrin-mediated survival pathways in the human breast epithelial cell line MCF10A. In the current study, we show that TIMP-1 expression induces phenotypic changes in cell morphology, cell adhesion, cytoskeletal remodeling, and motility, indicative of an epithelial-mesenchymal transition (EMT). This is evidenced by loss of the epithelial cell adhesion molecule E-cadherin with an increase in the mesenchymal markers vimentin, N-cadherin, and fibronectin. Signaling through TIMP-1, but not TIMP-2, induces the expression of TWIST1, an important EMT transcription factor known to suppress E-cadherin transcription, in a CD63-dependent manner. RNAi-mediated knockdown of TWIST1 rescued E-cadherin expression in TIMP-1 overexpressing cells, demonstrating a functional significance of TWIST1 in TIMP-1 mediated EMT. Furthermore, analysis of TIMP-1 structural mutants reveals that TIMP-1 interactions with CD63 that activate cell survival signaling and EMT do not require the MMP-inhibitory domain of TIMP-1. Taken together, these data demonstrate that TIMP-1 binding to CD63 activates intracellular signal transduction pathways, resulting in EMT-like changes in breast epithelial cells, independent of its MMP-inhibitory function. PMID:24895412

  6. Heat transfer enhancement through a square duct fitted with twisted tape inserts

    NASA Astrophysics Data System (ADS)

    Patil, S. V.; Vijaybabu, P. V.

    2012-10-01

    Experimental investigations of friction factor and heat transfer characteristics of a square duct fitted with twisted tapes of different twist ratios have been reported at nearly uniform wall temperature conditions. The experimental results indicate that the friction factor and Nusselt number increases with decreasing twist ratio. The maximum heat transfer enhancement was observed for a minimum twist ratio. The thermohydraulic performance analysis is made to identify potential benefits of using a twisted tape.

  7. The Algebra of Formal Twisted Pseudodifferential Symbols and a Noncommutative Residue

    NASA Astrophysics Data System (ADS)

    Zadeh, Farzad Fathi; Khalkhali, Masoud

    2010-10-01

    Motivated by Connes-Moscovici’s notion of a twisted spectral triple, we define an algebra of formal twisted pseudodifferential symbols with respect to a twisting of the base algebra. We extend the Adler-Manin trace and the logarithmic cocycle on the algebra of pseudodifferential symbols to our twisted setting. We also give a general method to construct twisted pseudodifferential symbols on crossed product algebras.

  8. Controllability and hippocampal activation during pain expectation in fibromyalgia syndrome.

    PubMed

    González-Roldán, Ana María; Bomba, Isabelle C; Diesch, Eugen; Montoya, Pedro; Flor, Herta; Kamping, Sandra

    2016-12-01

    To examine the role of perceived control in pain perception, fibromyalgia patients and healthy controls participated in a reaction time experiment under different conditions of pain controllability. No significant differences between groups were found in pain intensity and unpleasantness ratings. However, during the expectation of uncontrollable pain, patients compared to controls showed higher hippocampal activation. In addition, hippocampal activity during the pain expectation period predicted activation of the posterior cingulate cortex (PCC), precuneus and hippocampus during pain stimulation in fibromyalgia patients. The increased activation of the hippocampus during pain expectation and subsequent activation of the PCC/precuneus during the lack of control phase points towards an influence of pain perception through heightening of alertness and anxiety responses to pain in fibromyalgia patients.

  9. A reduced energy supply strategy in active vibration control

    NASA Astrophysics Data System (ADS)

    Ichchou, M. N.; Loukil, T.; Bareille, O.; Chamberland, G.; Qiu, J.

    2011-12-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings.

  10. Elements of active vibration control for rotating machinery

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz

    1990-01-01

    The success or failure of active vibration control is determined by the availability of suitable actuators, modeling of the entire system including all active elements, positioning of the actuators and sensors, and implementation of problem-adapted control concepts. All of these topics are outlined and their special problems are discussed in detail. Special attention is given to efficient modeling of systems, especially for considering the active elements. Finally, design methods for and the application of active vibration control on rotating machinery are demonstrated by several real applications.

  11. Control surface spanwise placement in active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Burken, J. J.

    1989-01-01

    All flutter suppression systems require sensors to detect the movement of the lifting surface and to activate a control surface according to a synthesized control law. Most of the work performed to date relates to the development of control laws based on predetermined locations of sensors and control surfaces. These locations of sensors and control surfaces are determined either arbitrarily, or by means of a trial and error procedure. The aerodynamic energy concept indicates that the sensors should be located within the activated strip. Furthermore, the best chordwise location of a sensor activating a T.E. control surface is around the 65 percent chord location. The best chordwise location for a sensor activating a L.E. surface is shown to lie upstream of the wing (around 20 percent upstream of the leading edge), or alternatively, two sensors located along the same chord should be used.

  12. A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Xia, F.; Albritton, N. G.; Hung, J. Y.; Nelms, R. M.

    1996-01-01

    A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials.

  13. Optimal Control of Active Recoil Mechanisms

    DTIC Science & Technology

    1977-02-01

    forces from 25 to 2.5% for lower zones and cavitation was avoided for zone 8. Tachometer feedback was shown to be effective for low zones. The...concept of feedback control system coupled with optimization procedure to design recoil mechanisms was demonstrated to be an efficient and very effective ...122o •nl260 .01300 .01340 .01380 • ouzo #01460 •01500 •01540 •01580 •0162" .0166 i 309o,6 504P.6 9964.5 10075,9 39121.5 75397.3

  14. Twist decomposition of Drell-Yan structure functions: phenomenological implications

    NASA Astrophysics Data System (ADS)

    Brzemiński, Dawid; Motyka, Leszek; Sadzikowski, Mariusz; Stebel, Tomasz

    2017-01-01

    The forward Drell-Yan process in pp scattering at the LHC at √{S} = 14 TeV is considered. We analyze the Drell-Yan structure functions assuming the dominance of a Compton-like emission of a virtual photon from a fast quark scattering off the small x gluons. The color dipole framework is applied to perform quantitatively the twist decomposition of all the Drell-Yan structure functions. Two models of the color dipole scattering are applied: the Golec-Biernat-Wüsthoff model and the dipole cross section obtained from the Balitsky-Fadin-Kuraev-Lipatov evolution equation. The two models have essentially different higher twist content and the gluon transverse momentum distribution and lead to different significant effects beyond the collinear leading twist description. It is found that the gluon transverse momentum effects are significant in the Drell-Yan structure functions for all Drell-Yan pair masses M, and the higher twist effects become important for M ≲ 10GeV. It is found that the structure function W TT related to the A 2 angular coefficient and the Lam-Tung observable A 0 - A 2 are particularly sensitive to the gluon k T effects and to the higher twist effects. A procedure is suggested how to disentangle the higher twist effects from the gluon transverse momentum effects.

  15. Active control of compressible flows on a curved surface

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Parikh, P.; Bayliss, A.; Turkel, E.

    1985-01-01

    The effect of localized, time periodic surface heating and cooling over a curved surface is studied. This is a mechanism for the active control of unstable disturbances by phase cancellation and reinforcement. It is shown that the pressure gradient induced by the curvature significantly enhances the effectiveness of this form of active control. In particular, by appropriate choice of phase, active surface heating can completely stabilize and unstable wave.

  16. Active control of compressible flows on a curved surface

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Bayliss, A.; Parikh, P.; Turkel, E.

    1985-01-01

    The effect of localized, time periodic surface heating and cooling over a curved surface is studied. This is a mechanism for the active control of unstable disturbances by phase cancellation and reinforcement. It is shown that the pressure gradient induced by the curvature significantly enhances the effectiveness of this form of active control. In particular, by appropriate choice of phase, active surface heating can completely stabilize an unstable wave.

  17. Twisted light transmission over 143 km

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Handsteiner, Johannes; Fink, Matthias; Fickler, Robert; Ursin, Rupert; Malik, Mehul; Zeilinger, Anton

    2016-11-01

    Spatial modes of light can potentially carry a vast amount of information, making them promising candidates for both classical and quantum communication. However, the distribution of such modes over large distances remains difficult. Intermodal coupling complicates their use with common fibers, whereas free-space transmission is thought to be strongly influenced by atmospheric turbulence. Here, we show the transmission of orbital angular momentum modes of light over a distance of 143 km between two Canary Islands, which is 50× greater than the maximum distance achieved previously. As a demonstration of the transmission quality, we use superpositions of these modes to encode a short message. At the receiver, an artificial neural network is used for distinguishing between the different twisted light superpositions. The algorithm is able to identify different mode superpositions with an accuracy of more than 80% up to the third mode order and decode the transmitted message with an error rate of 8.33%. Using our data, we estimate that the distribution of orbital angular momentum entanglement over more than 100 km of free space is feasible. Moreover, the quality of our free-space link can be further improved by the use of state-of-the-art adaptive optics systems.

  18. Resonant Raman spectroscopy of twisted multilayer graphene

    NASA Astrophysics Data System (ADS)

    Wu, Jiang-Bin; Zhang, Xin; Ijäs, Mari; Han, Wen-Peng; Qiao, Xiao-Fen; Li, Xiao-Li; Jiang, De-Sheng; Ferrari, Andrea C.; Tan, Ping-Heng

    2014-11-01

    Graphene and other two-dimensional crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientation have different optical and electronic properties. Probing and understanding the interface coupling is thus of primary importance for fundamental science and applications. Here we study twisted multilayer graphene flakes with multi-wavelength Raman spectroscopy. We find a significant intensity enhancement of the interlayer coupling modes (C peaks) due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. The interlayer coupling results in a Davydov splitting of the C peak in systems consisting of two equivalent graphene multilayers. This allows us to directly quantify the interlayer interaction, which is much smaller compared with Bernal-stacked interfaces. This paves the way to the use of Raman spectroscopy to uncover the interface coupling of two-dimensional hybrids and heterostructures.

  19. Twisted light transmission over 143 km.

    PubMed

    Krenn, Mario; Handsteiner, Johannes; Fink, Matthias; Fickler, Robert; Ursin, Rupert; Malik, Mehul; Zeilinger, Anton

    2016-11-29

    Spatial modes of light can potentially carry a vast amount of information, making them promising candidates for both classical and quantum communication. However, the distribution of such modes over large distances remains difficult. Intermodal coupling complicates their use with common fibers, whereas free-space transmission is thought to be strongly influenced by atmospheric turbulence. Here, we show the transmission of orbital angular momentum modes of light over a distance of 143 km between two Canary Islands, which is 50× greater than the maximum distance achieved previously. As a demonstration of the transmission quality, we use superpositions of these modes to encode a short message. At the receiver, an artificial neural network is used for distinguishing between the different twisted light superpositions. The algorithm is able to identify different mode superpositions with an accuracy of more than 80% up to the third mode order and decode the transmitted message with an error rate of 8.33%. Using our data, we estimate that the distribution of orbital angular momentum entanglement over more than 100 km of free space is feasible. Moreover, the quality of our free-space link can be further improved by the use of state-of-the-art adaptive optics systems.

  20. Semi Active Control of Civil Structures, Analytical and Numerical Studies

    NASA Astrophysics Data System (ADS)

    Kerboua, M.; Benguediab, M.; Megnounif, A.; Benrahou, K. H.; Kaoulala, F.

    Structural control for civil structures was born out of a need to provide safer and more efficient designs with the reality of limited resources. The purpose of structural control is to absorb and to reflect the energy introduced by dynamic loads such as winds, waves, earthquakes, and traffic. Today, the protection of civil structures from severe dynamic loading is typically achieved by allowing the structures to be damaged. Semi-active control devices, also called "smart" control devices, assume the positive aspects of both the passive and active control devices. A semi-active control strategy is similar to the active control strategy. Only here, the control actuator does not directly apply force to the structure, but instead it is used to control the properties of a passive energy device, a controllable passive damper. Semi-active control strategies can be used in many of the same civil applications as passive and active control. One method of operating smart cable dampers is in a purely passive capacity, supplying the dampers with constant optimal voltage. The advantages to this strategy are the relative simplicity of implementing the control strategy as compared to a smart or active control strategy and that the dampers are more easily optimally tuned in- place, eliminating the need to have passive dampers with unique optimal damping coefficients. This research investigated semi-active control of civil structures for natural hazard mitigation. The research has two components, the seismic protection of buildings and the mitigation of wind-induced vibration in structures. An ideal semi-active motion equation of a composite beam that consists of a cantilever beam bonded with a PZT patch using Hamilton's principle and Galerkin's method was treated. A series R-L and a parallel R-L shunt circuits are coupled into the motion equation respectively by means of the constitutive relation of piezoelectric material and Kirchhoff's law to control the beam vibration. A

  1. Generalized internal model robust control for active front steering intervention

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zhao, Youqun; Ji, Xuewu; Liu, Yahui; Zhang, Lipeng

    2015-03-01

    Because of the tire nonlinearity and vehicle's parameters' uncertainties, robust control methods based on the worst cases, such as H ∞, µ synthesis, have been widely used in active front steering control, however, in order to guarantee the stability of active front steering system (AFS) controller, the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control. In this paper, a generalized internal model robust control (GIMC) that can overcome the contradiction between performance and stability is used in the AFS control. In GIMC, the Youla parameterization is used in an improved way. And GIMC controller includes two sections: a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters' uncertainties and some external disturbances. Simulations of double lane change (DLC) maneuver and that of braking on split- µ road are conducted to compare the performance and stability of the GIMC control, the nominal performance PID controller and the H ∞ controller. Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations, H ∞ controller is conservative so that the performance is a little low, and only the GIMC controller overcomes the contradiction between performance and robustness, which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller. Therefore, the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system, that is, can solve the instability of PID or LQP control methods and the low performance of the standard H ∞ controller.

  2. Active control system for high speed windmills

    DOEpatents

    Avery, Don E.

    1988-01-01

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.

  3. Active control system for high speed windmills

    DOEpatents

    Avery, D.E.

    1988-01-12

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  4. Combustion diagnostic for active engine feedback control

    DOEpatents

    Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  5. Active shear flow control for improved combustion

    NASA Astrophysics Data System (ADS)

    Gutmark, E.; Parr, T. P.; Hanson-Parr, D. M.; Schadow, K. C.

    1990-01-01

    The acoustical and fluid dynamic facets of an excited premixed flame were studied experimentally to evaluate possibilities for development of a stabilizing closed-loop control system. The flame was analyzed as a nonlinear system which includes different subcomponents: acoustics, fluid dynamics, and chemical reaction. Identification of the acoustical and fluid dynamics subsystems is done by analyzing the transfer function, which was obtained by driving the system with both white-noise and a frequency-sweeping sine-wave. The features obtained by this analysis are compared to results of flow visualization and hot-wire flow-field and spectral measurements. The acoustical subsystem is determined by the resonant acoustic modes of the settling chamber. These modes are subsequently filtered and amplified by the flow shear layer, whose instability characteristics are dominated by the preferred mode frequency.

  6. Control of sound radiation with active/adaptive structures

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Rogers, C. A.; Robertshaw, H. H.

    1992-01-01

    Recent research is discussed in the area of active structural acoustic control with active/adaptive structures. Progress in the areas of structural acoustics, actuators, sensors, and control approaches is presented. Considerable effort has been given to the interaction of these areas with each other due to the coupled nature of the problem. A discussion is presented on actuators bonded to or embedded in the structure itself. The actuators discussed are piezoceramic actuators and shape memory alloy actuators. The sensors discussed are optical fiber sensors, Nitinol fiber sensors, piezoceramics, and polyvinylidene fluoride sensors. The active control techniques considered are state feedback control techniques and least mean square adaptive algorithms. Results presented show that significant progress has been made towards controlling structurally radiated noise by active/adaptive means applied directly to the structure.

  7. Active control of transmission loss with smart foams.

    PubMed

    Kundu, Abhishek; Berry, Alain

    2011-02-01

    Smart foams combine the complimentary advantages of passive foam material and spatially distributed piezoelectric actuator embedded in it for active noise control applications. In this paper, the problem of improving the transmission loss of smart foams using active control strategies has been investigated both numerically and experimentally inside a waveguide under the condition of plane wave propagation. The finite element simulation of a coupled noise control system has been undertaken with three different smart foam designs and their effectiveness in cancelling the transmitted wave downstream of the smart foam have been studied. The simulation results provide insight into the physical phenomenon of active noise cancellation and explain the impact of the smart foam designs on the optimal active control results. Experimental studies aimed at implementing the real-time control for transmission loss optimization have been performed using the classical single input/single output filtered-reference least mean squares algorithm. The active control results with broadband and single frequency primary source inputs demonstrate a good improvement in the transmission loss of the smart foams. The study gives a comparative description of the transmission and absorption control problems in light of the modification of the vibration response of the piezoelectric actuator under active control.

  8. Flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1974-01-01

    The effects of active controls on the suppression of flutter and gust alleviation of two different types of subsonic aircraft (the Arava, twin turboprop STOL transport, and the Westwind twin-jet business transport) are investigated. The active controls are introduced in pairs which include, in any chosen wing strip, a leading-edge (LE) control and a trailing-edge (TE) control. Each control surface is allowed to be driven by a combined linear-rotational sensor system, located on the activated strip. The control law, which translates the sensor signals into control surface rotations, is based on the concept of aerodynamic energy. The results indicate the extreme effectiveness of the active systems in controlling flutter. A single system spanning 10% of the wing semispan made the Arava flutter-free, and a similar active system, for the Westwind aircraft, yielded a reduction of 75% in the maximum bending moment of the wing and a reduction of 90% in the acceleration of the cg of the aircraft. Results for simultaneous activation of several LE - TE systems are presented. Further work needed to bring the investigation to completion is also discussed.

  9. Various applications of Active Field Control (AFC)

    NASA Astrophysics Data System (ADS)

    Watanabe, Takayuki; Miyazaki, Hideo; Kishinaga, Shinji; Kawakami, Fukushi

    2003-10-01

    AFC is an electro-acoustic enhancement system, which has been under development at Yamaha Corporation. In this paper, several types of various AFC applications are discussed, while referring to representative projects for each application in Japan. (1) Realization of acoustics in a huge hall to classical music program, e.g., Tokyo International Forum. This venue is a multipurpose hall with approximately 5000 seats. AFC achieves loudness and reverberance equivalent to those of a hall with 2500 seats or fewer. (2) Optimization of acoustics for a variety of programs, e.g., Arkas Sasebo. AFC is used to create the optimum acoustics for each program, such as reverberance for classical concerts, acoustical support for opera singers, uniformity throughout the hall from the stage to under-balcony area, etc. (3) Control of room shape acoustical effect, e.g., Osaka Central Public Hall: In this renovation project, preservation of historically important architecture in the original form is required. AFC is installed to vary only the acoustical environment without architectural changes. (4) Assistance with crowd enthusiasm for sports entertainment, e.g., Tokyo Metropolitan Gymnasium. In this venue, which is designed as a very absorptive space for speech intelligibility, AFC is installed to enhance the atmosphere of live sports entertainment.

  10. Trunk bend and twist coordination is affected by low back pain status during running.

    PubMed

    Seay, Joseph F; Van Emmerik, Richard E A; Hamill, Joseph

    2014-01-01

    Recent literature has related differences in pelvis-trunk coordination to low back pain (LBP) status. In addition, repetitive motions involving bending and twisting have been linked to high incidence of LBP. The purpose of this study was to examine trunk sagittal motion - axial rotation ('bend and twist') coordination during locomotion in three groups of runners classified by LBP status (LBP: current low back pain; RES: resolved low back pain and CTR: control group with no history of LBP). Trunk kinematic data were collected as running speed was systematically increased on a treadmill. Within-segment coordination between trunk sagittal and transverse planes of motion (trunk lean and axial rotation, respectively) was calculated using continuous relative phase (CRP), and coordination variability was defined as the between stride cycle standard deviation of CRP (CRPvar). Bend-twist coordination was more in-phase for the LBP group than CTR (p = 0.010) regardless of running speed. No differences in CRPvar were found between the groups. The results from our coordination (CRP) analysis were sensitive to LBP status and suggest that multi-plane interactions of the trunk should be considered in the assessment of LBP. This analysis also has potential for athletically oriented tasks that involve multi-plane interactions of the trunk, particularly ones that contain asymmetric action, such as sweep rowing or a shot on goal in field hockey or ice hockey.

  11. The Relation of Polar Arcs to Magnetotail Twisting and IMF Direction

    NASA Astrophysics Data System (ADS)

    Kullen, A.; Janhunen, P.

    2002-12-01

    A large statistical study of polar arcs utilizing the Polar UV imager reveals a strong solar wind control of large-scale polar arcs. They occur preferably for a high solar wind energy flux during northward IMF. Different types of polar arcs are triggered by different IMF clock angle changes. Oval-aligned arcs appear often during constant IMF, moving transpolar arcs usually develop after an IMF By sign change. The relation of these two polar arc types to changes in the magnetotail topology are investigated with help of the GUMICS-4 MHD code by Janhunen. The simulations show that for northward IMF with a nonzero IMF By component the magnetotail becomes long and highly twisted at its tailward end. The closed field line region reaches in this case high into the near-Earth tail lobes and poleward of the average polar cap boundary. The poleward displaced part of the polar cap boundary is a probable location for polar arcs to occur. In the case of an IMF By sign change the tail twist rotates such that in an intermediate state near-Earth and far-tail regions are oppositely twisted. This causes a bifurcation of the closed field line region in the tail and a bridge of closed field lines in the polar cap. The over the entire polar cap moving closed bridge indicates a moving transpolar arc.

  12. Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle

    NASA Astrophysics Data System (ADS)

    Carr, Stephen; Massatt, Daniel; Fang, Shiang; Cazeaux, Paul; Luskin, Mitchell; Kaxiras, Efthimios

    2017-02-01

    The ability in experiments to control the relative twist angle between successive layers in two-dimensional (2D) materials offers an approach to manipulating their electronic properties; we refer to this approach as "twistronics." A major challenge to theory is that, for arbitrary twist angles, the resulting structure involves incommensurate (aperiodic) 2D lattices. Here, we present a general method for the calculation of the electronic density of states of aperiodic 2D layered materials, using parameter-free Hamiltonians derived from ab initio density-functional theory. We use graphene, a semimetal, and MoS2, a representative of the transition-metal dichalcogenide family of 2D semiconductors, to illustrate the application of our method, which enables fast and efficient simulation of multilayered stacks in the presence of local disorder and external fields. We comment on the interesting features of their density of states as a function of twist angle and local configuration and on how these features can be experimentally observed.

  13. Specific inactivation of Twist1 in the mandibular arch neural crest cells affects the development of the ramus and reveals interactions with Hand2

    PubMed Central

    Zhang, Yanping; Blackwell, Evan L.; McKnight, Mitchell T.; Knutsen, Gregory R.; Vu, Wendy T.; Ruest, L. Bruno

    2012-01-01

    Background The basic Helix-Loop-Helix (bHLH) transcription factor Twist1 fulfills an essential function in neural crest cell formation, migration and survival and is associated with the craniosynostic Saethre-Chotzen syndrome in humans. However, its functions during mandibular development, when it may interact with other bHLH transcription factors like Hand2, are unknown since mice homozygous for the Twist1 null mutation die in early embryogenesis. To determine the role of Twist1 during mandibular development, we used the Hand2-Cre transgene to conditionally inactivate the gene in the neural crest cells populating the mandibular pharyngeal arch. Results The mutant mice exhibited a spectrum of craniofacial anomalies, including mandibular hypoplasia, altered middle ear development, and cleft palate. It appears that Twist1 is essential for the survival of the neural crest cells involved in the development of the mandibular ramal elements. Twist1 plays a role in molar development and cusp formation by participating in the reciprocal signaling needed for the formation of the enamel knot. This gene is also needed to control the ossification of the mandible, a redundant role shared with Hand2. Conclusion Twist1, along with Hand2, is essential for the proximo-distal patterning and development of the mandible and ossification. PMID:22411303

  14. Airfoil-shaped extension-twist-coupled composite star-beams for rotor blade tip applications

    NASA Astrophysics Data System (ADS)

    Mahadev, Sthanu

    Rotorcraft blade tips provide the most effective region for aerodynamic control. Rotor blade airloads are proportional to dynamic pressure and as a consequence are typically the highest in the distal blade tip region. Therefore, blade control using aerodynamic forces and moments is most effectively accomplished over the distal region of the blade. Composite materials represent the preferred material option for modern rotor blade design, especially in the field of rotorcraft and wind energy, due to superior strength-to-weight ratio, fatigue resistance and their ability to be easily tailored to incorporate different coupling (bend-twist, extension-twist, etc.) among elastic modes of deformation within the structure. An additional form of tailoring can produce compliant mechanisms: structures that are capable of producing a deformation such that the resulting displacement field is similar to the kinematics of an actual mechanism. In prior research, a family of tailored composite structures referred to as "star-beams" and "modified star-beams" have been proposed and investigated as viable candidates for tension-torsion bar applications, including the case of extension-twist coupling, for which "star-beams" preserve the high level of coupling achievable in composite strips. The present work seeks to develop and investigate the extension of prior work to the case of an extension-twist coupled torsionally compliant integral blade tip configuration. The implementation of this structural concept ensures a smooth outer blade-lifting surface and that the smoothness is preserved throughout the desired deformation range while allowing out of plane cross-sectional warping via relative longitudinal sliding along the blade joints. This work focuses on passive control of pitch applications via extension-twist coupling as a result of changes in axial force, typically obtained as a result of change in centrifugal load with rotor speed for a constant thickness, symmetric NACA 0012

  15. Twist1-induced dissemination preserves epithelial identity and requires E-cadherin

    PubMed Central

    Shamir, Eliah R.; Pappalardo, Elisa; Jorgens, Danielle M.; Coutinho, Kester; Tsai, Wen-Ting; Aziz, Khaled; Auer, Manfred; Tran, Phuoc T.; Bader, Joel S.

    2014-01-01

    Dissemination of epithelial cells is a critical step in metastatic spread. Molecular models of dissemination focus on loss of E-cadherin or repression of cell adhesion through an epithelial to mesenchymal transition (EMT). We sought to define the minimum molecular events necessary to induce dissemination of cells out of primary murine mammary epithelium. Deletion of E-cadherin disrupted epithelial architecture and morphogenesis but only rarely resulted in dissemination. In contrast, expression of the EMT transcription factor Twist1 induced rapid dissemination of cytokeratin-positive epithelial cells. Twist1 induced dramatic transcriptional changes in extracellular compartment and cell–matrix adhesion genes but not in cell–cell adhesion genes. Surprisingly, we observed disseminating cells with membrane-localized E-cadherin and β-catenin, and E-cadherin knockdown strongly inhibited Twist1-induced single cell dissemination. Dissemination can therefore occur with retention of epithelial cell identity. The spread of cancer cells during metastasis could similarly involve activation of an epithelial motility program without requiring a transition from epithelial to mesenchymal character. PMID:24590176

  16. On-line Monitoring and Active Control for Transformer Noise

    NASA Astrophysics Data System (ADS)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  17. [Actuator placement for active sound and vibration control

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Two refereed journal publications and ten talks given at conferences, seminars, and colloquia resulted from research supported by NASA. They are itemized in this report. The two publications were entitled "Reactive Tabu and Search Sensor Selection in Active Structural Acoustic Control Problems" and "Quelling Cabin Noise in Turboprop Aircraft via Active Control." The conference presentations covered various aspects of actuator placement, including location problems, for active sound and vibration control of cylinders, of commuter jets, of propeller driven or turboprop aircraft, and for quelling aircraft cabin or interior noise.

  18. Analysis and control of unified active power filter

    NASA Astrophysics Data System (ADS)

    Muthu, Subramanian

    1999-11-01

    The combined series and shunt active filters have been proposed to alleviate the power quality problems at the demand-side power systems. However, the conventional approach for the control of the combined active filter systems have resulted in large operating capacity of the shunt active filter because reactive power compensation involves only the shunt active filter. Furthermore, the harmonic mitigation problems are handled mainly by indirect harmonic compensation schemes rather than direct harmonic isolation schemes. This thesis presents the analysis and control of Unified Active Power Filter (UAPF) and proposes a novel concept of load reactive power compensation involving both the series active filter and the shunt active filter. The thesis also applies discrete-time sliding-mode control technique to enhance the performance of the combined active filter system in terms of fast dynamic response and effective solution to harmonic mitigation problems. The thesis also presents simulation and experimental results to provide verification of the proposed UAPF concept. The involvement of series active filter for reactive power compensation is achieved by controlling the phase difference between the load voltage and the utility voltage. The complete steady-state operating characteristics of UAPF are analyzed with the identification of the different operating modes of UAPF and the analysis of active and reactive power handled by the active filter components. The performance of UAPF to meet the stringent power quality standards are realized by applying discrete-time sliding-mode control schemes for the load voltage regulation and the active power factor correction. The control algorithms are developed to track a given load voltage and line current reference signals respectively. The effect of computational delay in DSP implementation is studied extensively and the control law is designed with the consideration for the computational delay. The systematic approach for the

  19. Probing the Magnetic Causes of CMEs: Free Magnetic Energy More Important Than Either Size Or Twist

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2006-01-01

    To probe the magnetic causes of CMEs, we have examined three types of magnetic measures: size, twist and total nonpotentiality (or total free magnetic energy) of an active region. Total nonpotentiality is roughly the product of size times twist. For predominately bipolar active regions, we have found that total nonpotentiality measures have the strongest correlation with future CME productivity (approx. 75% prediction success rate), while size and twist measures each have a weaker correlation with future CME productivity (approx. 65% prediction success rate) (Falconer, Moore, & Gary, ApJ, 644, 2006). For multipolar active regions, we find that the CME-prediction success rates for total nonpotentiality and size are about the same as for bipolar active regions. We also find that the size measure correlation with CME productivity is nearly all due to the contribution of size to total nonpotentiality. We have a total nonpotentiality measure that can be obtained from a line-of-sight magnetogram of the active region and that is as strongly correlated with CME productivity as are any of our total-nonpotentiality measures from deprojected vector magnetograms. We plan to further expand our sample by using MDI magnetograms of each active region in our sample to determine its total nonpotentiality and size on each day that the active region was within 30 deg. of disk center. The resulting increase in sample size will improve our statistics and allow us to investigate whether the nonpotentiality threshold for CME production is nearly the same or significantly different for multipolar regions than for bipolar regions. In addition, we will investigate the time rates of change of size and total nonpotentiality as additional causes of CME productivity.

  20. The aircraft energy efficiency active controls technology program

    NASA Technical Reports Server (NTRS)

    Hood, R. V., Jr.

    1977-01-01

    Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.

  1. Exact special twist method for quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Dagrada, Mario; Karakuzu, Seher; Vildosola, Verónica Laura; Casula, Michele; Sorella, Sandro

    2016-12-01

    We present a systematic investigation of the special twist method introduced by Rajagopal et al. [Phys. Rev. B 51, 10591 (1995), 10.1103/PhysRevB.51.10591] for reducing finite-size effects in correlated calculations of periodic extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for finding special twist values which, at variance with previous applications of this method, reproduce the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small) numerical error. This choice of the special twist is shown to be the most accurate single-twist solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed our procedure "exact special twist" (EST). EST only needs a fully converged independent-particles or mean-field calculation within the primitive cell and a simple fit to find the special twist along a specific direction in the Brillouin zone. We first assess the performances of EST in a simple correlated model such as the three-dimensional electron gas. Afterwards, we test its efficiency within ab initio quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST displays an overall good performance in reducing finite-size errors comparable to the widely used twist average technique but at a much lower computational cost since it involves the evaluation of just one wave function. We also demonstrate that the EST method shows similar performances in the calculation of correlation functions, such as the ionic forces for structural relaxation and the pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST for correlated supercell calculations; our method will be particularly relevant when the physical problem under consideration requires large periodic cells.

  2. Active Feedback Control of a Web Flutter Using Flow Control Devices

    NASA Astrophysics Data System (ADS)

    Hayashi, Yusuke; Watanabe, Masahiro; Hara, Kensuke

    This paper develops a non-contact active feedback control of web flutter in a narrow passage by using movable plates set at inlet and outlet of the passage. The strategy of this active feedback control is based on the flow-control which cancels the exciting fluid force acting on the web, i.e., cancels the self-excited feedback mechanism. In this paper, suppression of the web flutter by the active feedback control is demonstrated experimentally. In the experiments, a web (film), as a controlled object, is subjected to air flow in a narrow passage. The web flutter occurs to the web in the translational motion over the critical flow velocity. And the web flutter is actively controlled and suppressed by the movable plate motion which changes the air flow in the passage. The critical flow velocity under controlled condition is examined with changing the controller gain and phase-shift between the web motion and the movable plate motion. As a result, it is indicated that the active feedback control increases the critical flow velocity, and suppress the web flutter effectively. Moreover, the control performance is examined experimentally, and stabilization mechanism by the active feedback control is discussed.

  3. An unexpected twist in viral capsid maturation

    SciTech Connect

    Gertsman, Ilya; Gan, Lu; Guttman, Miklos; Lee, Kelly; Speir, Jeffrey A.; Duda, Robert L.; Hendrix, Roger W.; Komives, Elizabeth A.; Johnson, John E.

    2009-04-14

    Lambda-like double-stranded (ds) DNA bacteriophage undergo massive conformational changes in their capsid shell during the packaging of their viral genomes. Capsid shells are complex organizations of hundreds of protein subunits that assemble into intricate quaternary complexes that ultimately are able to withstand over 50 atm of pressure during genome packaging. The extensive integration between subunits in capsids requires the formation of an intermediate complex, termed a procapsid, from which individual subunits can undergo the necessary refolding and structural rearrangements needed to transition to the more stable capsid. Although various mature capsids have been characterized at atomic resolution, no such procapsid structure is available for a dsDNA virus or bacteriophage. Here we present a procapsid X-ray structure at 3.65 {angstrom} resolution, termed prohead II, of the lambda-like bacteriophage HK97, the mature capsid structure of which was previously solved to 3.44 {angstrom}. A comparison of the two largely different capsid forms has unveiled an unprecedented expansion mechanism that describes the transition. Crystallographic and hydrogen/deuterium exchange data presented here demonstrate that the subunit tertiary structures are significantly different between the two states, with twisting and bending motions occurring in both helical and -sheet regions. We also identified subunit interactions at each three-fold axis of the capsid that are maintained throughout maturation. The interactions sustain capsid integrity during subunit refolding and provide a fixed hinge from which subunits undergo rotational and translational motions during maturation. Previously published calorimetric data of a closely related bacteriophage, P22, showed that capsid maturation was an exothermic process that resulted in a release of 90 kJ mol{sup -1} of energy. We propose that the major tertiary changes presented in this study reveal a structural basis for an exothermic

  4. Adaptive Current Control Method for Hybrid Active Power Filter

    NASA Astrophysics Data System (ADS)

    Chau, Minh Thuyen

    2016-09-01

    This paper proposes an adaptive current control method for Hybrid Active Power Filter (HAPF). It consists of a fuzzy-neural controller, identification and prediction model and cost function. The fuzzy-neural controller parameters are adjusted according to the cost function minimum criteria. For this reason, the proposed control method has a capability on-line control clings to variation of the load harmonic currents. Compared to the single fuzzy logic control method, the proposed control method shows the advantages of better dynamic response, compensation error in steady-state is smaller, able to online control is better and harmonics cancelling is more effective. Simulation and experimental results have demonstrated the effectiveness of the proposed control method.

  5. Active control of the tip vortex: an experimental investigation on the performance characteristics of a model turbine

    NASA Astrophysics Data System (ADS)

    Anik, E.; Abdulrahim, A.; Ostovan, Y.; Mercan, B.; Uzol, O.

    2014-06-01

    This study is part of an on-going experimental research campaign that focuses on the active control of the tip leakage/vortex characteristics of a model horizontal axis wind turbine rotor using tip injection. This paper presents both baseline (no-injection) data as well as data with tip injection, concentrating on the effects of tip injection on power and thrust variations with the Tip Speed Ratio (TSR). The experiments are conducted by placing a specially designed 3-bladed model wind turbine rotor at the exit of a 1.7 m diameter open-jet wind tunnel. The rotor blades are non-linearly twisted and tapered with NREL S826 airfoil profile all along the span. The nacelle, hub and the blades are specifically designed to allow pressurized air to pass through and get injected from the blade tips while the rotor is rotating. Baseline results show that the general trends are as expected for a small wind turbine and the maximum power coefficient is reached at around TSR=4.5. Results with injection show that the tip injection has significant effect on the power and thrust coefficients in comparison to the baseline data, especially at TSR values higher than the max CP TSR value. Both coefficients seem to be significantly increased due to tip injection and the max CP TSR value also gets shifted to a slightly higher TSR value. Tip injection seems to have no significant effect for TSR values less than 3.5.

  6. Robust control design techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  7. Mechanisms of active control for noise inside a vibrating cylinder

    NASA Technical Reports Server (NTRS)

    Lester, Harold C.; Fuller, Chris R.

    1987-01-01

    The active control of propeller-induced noise fields inside a flexible cylinder is studied with attention given to the noise reduction mechanisms inherent in the present coupled acoustic shell model. The active noise control model consists of an infinitely long aluminum cylinder with a radius of 0.4 m and a thickness of 0.001 m. Pressure maps are shown when the two external sources are driven in-phase at a frequency corresponding to Omega = 0.22.

  8. Active noise control using a distributed mode flat panel loudspeaker.

    PubMed

    Zhu, H; Rajamani, R; Dudney, J; Stelson, K A

    2003-07-01

    A flat panel distributed mode loudspeaker (DML) has many advantages over traditional cone speakers in terms of its weight, size, and durability. However, its frequency response is uneven and complex, thus bringing its suitability for active noise control (ANC) under question. This paper presents experimental results demonstrating the effective use of panel DML speakers in an ANC application. Both feedback and feedforward control techniques are considered. Effective feedback control with a flat panel speaker could open up a whole range of new noise control applications and has many advantages over feedforward control. The paper develops a new control algorithm to attenuate tonal noise of a known frequency by feedback control. However, due to the uneven response of the speakers, feedback control is found to be only moderately effective even for this narrow-band application. Feedforward control proves to be most capable for the flat panel speaker. Using feedforward control, the sound pressure level can be significantly reduced in close proximity to an error microphone. The paper demonstrates an interesting application of the flat panel in which the panel is placed in the path of sound and effectively used to block sound transmission using feedforward control. This is a new approach to active noise control enabled by the use of flat panels and can be used to prevent sound from entering into an enclosure in the first place rather than the traditional approach of attempting to cancel sound after it enters the enclosure.

  9. Controlling neural activity in Caenorhabditis elegans to evoke chemotactic behavior

    NASA Astrophysics Data System (ADS)

    Kocabas, Askin; Shen, Ching-Han; Guo, Zengcai V.; Ramanathan, Sharad

    2013-03-01

    Animals locate and track chemoattractive gradients in the environment to find food. With its simple nervous system, Caenorhabditis elegans is a good model system in which to understand how the dynamics of neural activity control this search behavior. To understand how the activity in its interneurons coordinate different motor programs to lead the animal to food, here we used optogenetics and new optical tools to manipulate neural activity directly in freely moving animals to evoke chemotactic behavior. By deducing the classes of activity patterns triggered during chemotaxis and exciting individual neurons with these patterns, we identified interneurons that control the essential locomotory programs for this behavior. Notably, we discovered that controlling the dynamics of activity in just one interneuron pair was sufficient to force the animal to locate, turn towards and track virtual light gradients.

  10. Active vibration control using mechanical and electrical analogies

    NASA Astrophysics Data System (ADS)

    Torres-Perez, A.; Hassan, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    Mechanical-electrical analogous circuit models are widely used in electromechanical system design as they represent the function of a coupled electrical and mechanical system using an equivalent electrical system. This research uses electrical circuits to establish a discussion of simple active vibration control principles using two scenarios: an active vibration isolation system and an active dynamic vibration absorber (DVA) using a voice coil motor (VCM) actuator. Active control laws such as gain scheduling are intuitively explained using circuit analysis techniques. Active vibration control approaches are typically constraint by electrical power requirements. The electrical analogous is a fast approach for specifying power requirements on the experimental test platform which is based on a vibration shaker that provides the based excitation required for the single Degree- of-Freedom (1DoF) vibration model under study.

  11. Extension-twist coupling of composite circular tubes with application to tilt rotor blade design

    NASA Technical Reports Server (NTRS)

    Nixon, Mark W.

    1987-01-01

    This investigation was conducted to determine if twist deformation required for the design of full-scale extension-twist-coupled tilt-rotor blades can be achieved within material design limit loads, and to demonstrate the accuracy of a coupled-beam analysis in predicting twist deformations. Two extension-twist-coupled tilt-rotor blade designs were developed based on theoretically optimum aerodynamic twist distributions. The designs indicated a twist rate requirement of between .216 and .333 deg/in. Agreement between axial tests and analytical predictions was within 10 percent at design limit loads. Agreement between the torsion tests and predictions was within 11 percent.

  12. Twist phase-induced reduction in scintillation of a partially coherent beam in turbulent atmosphere.

    PubMed

    Wang, Fei; Cai, Yangjian; Eyyuboğlu, Halil T; Baykal, Yahya

    2012-01-15

    The scintillation index of a Gaussian Schell-model beam with twist phase (i.e., twisted GSM beam) in weak turbulent atmosphere is formulated with the help of a tensor method. Variations of the scintillation index of a twisted GSM beam on propagation in turbulent atmosphere are studied in detail. It is interesting to find that the scintillation index of a twisted GSM beam can be smaller than that without twist phase in weak turbulent atmosphere. Thus, modulation of the twist phase of a partially coherent beam provides a new way to reduce turbulence-induced scintillation.

  13. Eshelby twist and correlation effects in diffraction from nanocrystals

    SciTech Connect

    Leonardi, A.; Scardi, P.; Ryu, S.; Pugno, N. M.

    2015-04-28

    Molecular dynamics simulations were used to model the Eshelby dislocation inside Pd and Ir nanowires and to predict the powder diffraction pattern using the Debye scattering equation. We find that the ideal dislocation solution by Eshelby is in good agreement with the observed twist angle and deviatoric strain, even though it ignores both the splitting of the Eshelby dislocation into two partials and surface stress. Surface stress plays a significant role only for nanorods with small aspect ratio (∼1:1). We also find that Wilson's prediction on the diffraction peak broadening for the Eshelby dislocation is overestimated because it ignores the fact that the Eshelby twist relaxes the deviatoric strain. Moreover, the twist loosens the correlation along the nanorod, causing additional line profile broadening, which is read by diffraction as a decrease of coherent domain size when the total twist angle is bigger than 1.5°. Overall, our findings suggest a novel way to predict and analyze the dislocations as well as the resulting strain fields in the twisted nanocrystalline rods.

  14. Longitudinal magnetization loss in twisted multifilamentary Bi2223 tape

    NASA Astrophysics Data System (ADS)

    Amemiya, N.; Rabbers, J.-J.; Krooshoop, B. E.; ten Haken, B.; ten Kate, H.; Ayai, N.; Hayashi, K.

    2002-08-01

    Multifilamentary Bi2223 tapes are exposed to the longitudinal magnetic field as well as the transverse one in some electrical power apparatuses such as multilayer power transmission cables. Here, we define the longitudinal and transverse magnetic fields as the field components parallel and perpendicular to the tape axis, respectively. If the filament-bundle is twisted, it can couple to the AC longitudinal magnetic field to generate the longitudinal magnetization loss. Furthermore, the AC transport current flowing spirally in the twisted filament-bundle possibly influences the longitudinal magnetization. The longitudinal magnetization loss was measured in a twisted multifilamentary Bi2223 tape exposed to longitudinal magnetic field and carrying the transport current. The measured longitudinal magnetization loss in the twisted tape exposed to the longitudinal magnetic field is larger than that in another untwisted tape. Supplying the AC transport current changes the longitudinal magnetization loss in the twisted tape exposed to the AC longitudinal magnetic field. The influence of the transport current depends on the phase relation between the longitudinal magnetic field and the transport current. If their phase difference is 0°, the longitudinal magnetization loss decreases remarkably with increasing amplitude of the transport current. It means that the change in the current distribution due to the transport current results in the decrease in the power flow from the magnet power supply. But, a preliminary measurement of the transport loss shows that the total loss increases with increasing transport current.

  15. Probing Viscoelasticity of Cholesteric Liquid Crystals in a Twisting Cell

    NASA Astrophysics Data System (ADS)

    Angelo, Joseph; Moheghi, Alireza; Diorio, Nick; Jakli, Antal

    2013-03-01

    Viscoelastic properties of liquid crystals are typically studied either using Poiseuille flow, which can be produced by a pressure gradient in a capillary tube,[2] or Couette flow, which can be generated by a shear between concentric cylinders.[3] We use a different method in which we twist the liquid crystal sandwiched between two cylindrical glass plates, one of which can rotate about its center, the other of which is fixed. When the cell is twisted, there is a force proportional to the twist angle and the twist elastic constant, and inversely proportional to the pitch and sample thickness, normal to the substrates due to the change in pitch in the cholesteric liquid crystal (CLC). Measuring this force on various CLCs with known pitch we could obtain the twist elastic constants. In addition to the equilibrium force, we observed a transient force during the rotation, which is related to the flow of the material, thus allowing us to determine the Leslie viscosity component α1, which typically cannot be assessed by other methods. We expect this apparatus to be a useful tool to study the visco-elastic properties of liquid crystals. The authors acknowledge support from NSF grant DMR-0907055.

  16. Comments on twisted indices in 3d supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Closset, Cyril; Kim, Heeyeon

    2016-08-01

    We study three-dimensional {N} = 2 supersymmetric gauge theories on Σ g × S 1 with a topological twist along Σ g , a genus- g Riemann surface. The twisted supersymmetric index at genus g and the correlation functions of half-BPS loop operators on S 1 can be computed exactly by supersymmetric localization. For g = 1, this gives a simple UV computation of the 3d Witten index. Twisted indices provide us with a clean derivation of the quantum algebra of supersymmetric Wilson loops, for any Yang-Mills-Chern-Simons-matter theory, in terms of the associated Bethe equations for the theory on {{R}}^2× {S}^1 . This also provides a powerful and simple tool to study 3d {N} = 2 Seiberg dualities. Finally, we study A- and B-twisted indices for {N} = 4 supersymmetric gauge theories, which turns out to be very useful for quantitative studies of three-dimensional mirror symmetry. We also briefly comment on a relation between the S 2 × S 1 twisted indices and the Hilbert series of {N} = 4 moduli spaces.

  17. The Equivariant Cohomology Theory of Twisted Generalized Complex Manifolds

    NASA Astrophysics Data System (ADS)

    Lin, Yi

    2008-07-01

    It has been shown recently by Kapustin and Tomasiello that the mathematical notion of Hamiltonian actions on twisted generalized Kähler manifolds is in perfect agreement with the physical notion of general (2, 2) gauged sigma models with three-form fluxes. In this article, we study the twisted equivariant cohomology theory of Hamiltonian actions on H-twisted generalized complex manifolds. If the manifold satisfies the {overline{partial} partial}-lemma, we establish the equivariant formality theorem. If in addition, the manifold satisfies the generalized Kähler condition, we prove the Kirwan injectivity in this setting. We then consider the Hamiltonian action of a torus on an H-twisted generalized Calabi-Yau manifold and extend to this case the Duistermaat-Heckman theorem for the push-forward measure. As a side result, we show in this paper that the generalized Kähler quotient of a generalized Kähler vector space can never have a (cohomologically) non-trivial twisting. This gives a negative answer to a question asked by physicists whether one can construct (2, 2) gauged linear sigma models with non-trivial fluxes.

  18. THE NONLINEAR EVOLUTION OF A TWIST IN A MAGNETIC SHOCKTUBE

    SciTech Connect

    Williams, Thomas; Taroyan, Youra; Fedun, Viktor

    2016-02-01

    The interaction between a small twist and a horizontal chromospheric shocktube is investigated. The magnetic flux tube is modeled using 1.5-D magnetohydrodynamics. The presence of a supersonic yet sub-Alfvénic flow along the flux tube allows the Alfvénic pulse driven at the photospheric boundary to become trapped and amplified between the stationary shock front and photosphere. The amplification of the twist leads to the formation of slow and fast shocks. The pre-existing stationary shock is destabilized and pushed forward as it merges with the slow shock. The propagating fast shock extracts the kinetic energy of the flow and launches rapid twists of 10–15 km s{sup −1} upon each reflection. A cavity is formed between the slow and fast shocks where the flux tube becomes globally twisted within less than an hour. The resultant highly twisted magnetic flux tube is similar to those prone to kink instabilities, which may be responsible for solar eruptions. The generated torsional flux is calculated.

  19. Active control of multi-dimensional random sound in ducts

    NASA Technical Reports Server (NTRS)

    Silcox, R. J.; Elliott, S. J.

    1990-01-01

    Previous work has demonstrated how active control may be applied to the control of random noise in ducts. These implementations, however, have been restricted to frequencies where only plane waves are propagating in the duct. In spite of this, the need for this technology at low frequencies has progressed to the point where commercial products that apply these concepts are currently available. Extending the frequency range of this technology requires the extension of current single channel controllers to multi-variate control systems as well as addressing the problems inherent in controlling higher order modes. The application of active control in the multi-dimensional propagation of random noise in waveguides is examined. An adaptive system is implemented using measured system frequency response functions. Experimental results are presented illustrating attained suppressions of 15 to 30 dB for random noise propagating in multiple modes.

  20. Active flutter suppression using optical output feedback digital controllers

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A method for synthesizing digital active flutter suppression controllers using the concept of optimal output feedback is presented. A convergent algorithm is employed to determine constrained control law parameters that minimize an infinite time discrete quadratic performance index. Low order compensator dynamics are included in the control law and the compensator parameters are computed along with the output feedback gain as part of the optimization process. An input noise adjustment procedure is used to improve the stability margins of the digital active flutter controller. Sample rate variation, prefilter pole variation, control structure variation and gain scheduling are discussed. A digital control law which accommodates computation delay can stabilize the wing with reasonable rms performance and adequate stability margins.

  1. Feedforward control of sound transmission using an active acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Cheer, Jordan; Daley, Stephen; McCormick, Cameron

    2017-02-01

    Metamaterials have received significant interest in recent years due to their potential ability to exhibit behaviour not found in naturally occurring materials. This includes the generation of band gaps, which are frequency regions with high levels of wave attenuation. In the context of acoustics, these band gaps can be tuned to occur at low frequencies where the acoustic wavelength is large compared to the material, and where the performance of traditional passive noise control treatments is limited. Therefore, such acoustic metamaterials have been shown to offer a significant performance advantage compared to traditional passive control treatments, however, due to their resonant behaviour, the band gaps tend to occur over a relatively narrow frequency range. A similar long wavelength performance advantage can be achieved using active noise control, but the systems in this case do not rely on resonant behaviour. This paper demonstrates how the performance of an acoustic metamaterial, consisting of an array of Helmholtz resonators, can be significantly enhanced by the integration of an active control mechanism that is facilitated by embedding loudspeakers into the resonators. Crucially, it is then also shown how the active acoustic metamaterial significantly outperforms an equivalent traditional active noise control system. In both cases a broadband feedforward control strategy is employed to minimise the transmitted pressure in a one-dimensional acoustic control problem and a new method of weighting the control effort over a targeted frequency range is described.

  2. Advanced aerodynamics and active controls. Selected NASA research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Aerodynamic and active control concepts for application to commercial transport aircraft are discussed. Selected topics include in flight direct strike lightning research, triply redundant digital fly by wire control systems, tail configurations, winglets, and the drones for aerodynamic and structural testing (DAST) program.

  3. Applications of active adaptive noise control to jet engines

    NASA Technical Reports Server (NTRS)

    Shoureshi, Rahmat; Brackney, Larry

    1993-01-01

    During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.

  4. Electromechanical Simulation of Actively Controlled Rotordynamic Systems with Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Lin, Reng Rong; Palazzolo, A. B.; Kascak, A. F.; Montague, G.

    1991-01-01

    Theories and tests for incorporating piezoelectric pushers as actuator devices for active vibration control are discussed. It started from a simple model with the assumption of ideal pusher characteristics and progressed to electromechanical models with nonideal pushers. Effects on system stability due to the nonideal characteristics of piezoelectric pushers and other elements in the control loop were investigated.

  5. Active Flow Control Strategies Using Surface Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Kumar, Vikas; Alvi, Farrukh S.

    2010-01-01

    Evaluate the efficacy of Microjets Can we eliminate/minimize flow separation? Is the flow unsteadiness reduced? Guidelines for an active control Search for an appropriate sensor. Examine for means to develop a flow model for identifying the state of flow over the surface Guidelines toward future development of a Simple and Robust control methodology

  6. An electric control for an electrohydraulic active control aircraft landing gear

    NASA Technical Reports Server (NTRS)

    Ross, I.; Edson, R.

    1979-01-01

    An electronic controller for an electrohydraulic active control aircraft landing gear was developed. Drop tests of a modified gear from a 2722 Kg (6000 lbm) class of airplane were conducted to illustrate controller performance. The results indicate that the active gear effects a force reduction, relative to that of the passive gear, from 9 to 31 percent depending on the aircraft sink speed and the static gear pressure.

  7. Active aerodynamic control of wake-airfoil interaction noise - Experiment

    NASA Astrophysics Data System (ADS)

    Simonich, J. C.; Lavrich, P. L.; Sofrin, T. G.; Topol, D. A.

    A proof of concept experiment is conducted that shows the potential for active aerodynamic control of rotor wake/stator interaction noise in a simplified manner. A single airfoil model representing the stator was fitted with a moveable trailing edge flap controlled by a servo motor. The control system moves the motor driven flap in the correct angular displacement phase and rate to reduce the unsteady load on the airfoil during the wake interaction.

  8. An Overview of Recent Automotive Applications of Active Vibration Control

    DTIC Science & Technology

    2004-10-01

    coordinates of the deepest point. The control signal is generated as the output of the adaptive filter. 3.2 Disturbance Observer Approach This...sign reversal, as a control signal u. To generate the estimate, a disturbance observer is used. The observer is designed off-line assuming time...2003. Disturbance - observer -based active control of engine-induced vibrations in automotive vehicles. Proceedings of the 10th Annual International

  9. Active vibration control techniques for flexible space structures

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.

  10. A new approach of active compliance control via fuzzy logic control for multifingered robot hand

    NASA Astrophysics Data System (ADS)

    Jamil, M. F. A.; Jalani, J.; Ahmad, A.

    2016-07-01

    Safety is a vital issue in Human-Robot Interaction (HRI). In order to guarantee safety in HRI, a model reference impedance control can be a very useful approach introducing a compliant control. In particular, this paper establishes a fuzzy logic compliance control (i.e. active compliance control) to reduce impact and forces during physical interaction between humans/objects and robots. Exploiting a virtual mass-spring-damper system allows us to determine a desired compliant level by understanding the behavior of the model reference impedance control. The performance of fuzzy logic compliant control is tested in simulation for a robotic hand known as the RED Hand. The results show that the fuzzy logic is a feasible control approach, particularly to control position and to provide compliant control. In addition, the fuzzy logic control allows us to simplify the controller design process (i.e. avoid complex computation) when dealing with nonlinearities and uncertainties.

  11. Improving active space telescope wavefront control using predictive thermal modeling

    NASA Astrophysics Data System (ADS)

    Gersh-Range, Jessica; Perrin, Marshall D.

    2015-01-01

    Active control algorithms for space telescopes are less mature than those for large ground telescopes due to differences in the wavefront control problems. Active wavefront control for space telescopes at L2, such as the James Webb Space Telescope (JWST), requires weighing control costs against the benefits of correcting wavefront perturbations that are a predictable byproduct of the observing schedule, which is known and determined in advance. To improve the control algorithms for these telescopes, we have developed a model that calculates the temperature and wavefront evolution during a hypothetical mission, assuming the dominant wavefront perturbations are due to changes in the spacecraft attitude with respect to the sun. Using this model, we show that the wavefront can be controlled passively by introducing scheduling constraints that limit the allowable attitudes for an observation based on the observation duration and the mean telescope temperature. We also describe the implementation of a predictive controller designed to prevent the wavefront error (WFE) from exceeding a desired threshold. This controller outperforms simpler algorithms even with substantial model error, achieving a lower WFE without requiring significantly more corrections. Consequently, predictive wavefront control based on known spacecraft attitude plans is a promising approach for JWST and other future active space observatories.

  12. Flutter prediction for a wing with active aileron control

    NASA Technical Reports Server (NTRS)

    Penning, K.; Sandlin, D. R.

    1983-01-01

    A method for predicting the vibrational stability of an aircraft with an analog active aileron flutter suppression system (FSS) is expained. Active aileron refers to the use of an active control system connected to the aileron to damp vibrations. Wing vibrations are sensed by accelerometers and the information is used to deflect the aileron. Aerodynamic force caused by the aileron deflection oppose wing vibrations and effectively add additional damping to the system.

  13. Control surface spanwise placement in active flutter suppression systems

    NASA Technical Reports Server (NTRS)

    Nissim, E.; Burken, John J.

    1988-01-01

    A method is developed that determines the placement of an active control surface for maximum effectiveness in suppressing flutter. No specific control law is required by this method which is based on the aerodynamic energy concept. It is argued that the spanwise placement of the active controls should coincide with the locations where maximum energy per unit span is fed into the system. The method enables one to determine the distribution, over the different surfaces of the aircraft, of the energy input into the system as a result of the unstable fluttering mode. The method is illustrated using three numerical examples.

  14. Selected advanced aerodynamic and active control concepts development

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A summary is presented of results obtained during analysis, design and test activities on six selected technical tasks directed at exploratory improvement of fuel efficiency for new and derivative transports. The work included investigations into the potential offered by natural laminar flow, improved surface coatings and advanced high lift concepts. Similar investigations covering optimum low-energy flight path control, integrated application of active controls and evaluation of primary flight control systems reliability and maintenance are also summarized. Recommendations are included for future work needed to exploit potential advancements.

  15. Active Noise Control Experiments using Sound Energy Flu

    NASA Astrophysics Data System (ADS)

    Krause, Uli

    2015-03-01

    This paper reports on the latest results concerning the active noise control approach using net flow of acoustic energy. The test set-up consists of two loudspeakers simulating the engine noise and two smaller loudspeakers which belong to the active noise system. The system is completed by two acceleration sensors and one microphone per loudspeaker. The microphones are located in the near sound field of the loudspeakers. The control algorithm including the update equation of the feed-forward controller is introduced. Numerical simulations are performed with a comparison to a state of the art method minimising the radiated sound power. The proposed approach is experimentally validated.

  16. Impact of active controls technology on structural integrity

    NASA Technical Reports Server (NTRS)

    Noll, Thomas; Austin, Edward; Donley, Shawn; Graham, George; Harris, Terry

    1991-01-01

    This paper summarizes the findings of The Technical Cooperation Program to assess the impact of active controls technology on the structural integrity of aeronautical vehicles and to evaluate the present state-of-the-art for predicting the loads caused by a flight-control system modification and the resulting change in the fatigue life of the flight vehicle. The potential for active controls to adversely affect structural integrity is described, and load predictions obtained using two state-of-the-art analytical methods are given.

  17. UML activity diagram swimlanes in logic controller design

    NASA Astrophysics Data System (ADS)

    Grobelny, Michał; Grobelna, Iwona

    2015-12-01

    Logic controller behavior can be specified using various techniques, including UML activity diagrams and control Petri nets. Each technique has its advantages and disadvantages. Application of both specification types in one project allows to take benefits from both of them. Additional elements of UML models make it possible to divide a specification into some parts, considered from other point of view (logic controller, user or system). The paper introduces an idea to use UML activity diagrams with swimlanes to increase the understandability of design models.

  18. Fuel conservation through active control of rotor clearances

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Saunders, A. A.; Wanger, R. P.

    1980-01-01

    Under the NASA-sponsored Energy Efficient Engine (EEE) Project, technology is being developed which will significantly reduce the fuel consumption of turbofan engines for subsonic transport aircraft. One technology concept being pursued is active control of rotor tip clearances. Attention is given to rotor tip clearance considerations and an overview of preliminary study results as well as the General Electric EEE clearance control approach is presented. Finally, potential fuel savings with active control of rotor clearances for a typical EEE mission are predicted.

  19. Reading the Twisted Tail of NGC 4258

    NASA Astrophysics Data System (ADS)

    Cecil, Gerald; de Pree, Chris

    1995-12-01

    We have used the VLA A-configuration at lambda 20 cm to obtain new high-resolution (1\\farcs5) flux and polarization images of the large-scale, twisted jets in NGC 4258, a galaxy of particular interest because its nucleus houses the best observed case of an accretion disk around a supermassive black hole. We have also analyzed recently archived long-exposure ROSAT PSPC spectra of the jets. We have excluded the AGN itself, which is a highly obscured, hard-spectrum X-ray source. The jets are prominent in radio synchrotron, emission-lines, and X-rays because of their strong interaction with the dense galaxy ISM. Previously, we showed from the visible emission-line spectrum (Cecil, Morse, & Veilleux 1995, ApJ, 452, 613) that the jets are convincing examples of photoionizing shocks. The 5x deeper X-ray spectrum confirms our findings (Cecil, Wilson, & De Pree 1995, ApJ, 440, 181) that the SE jet has a thermal spectrum (kT = 0.3 keV) consistent with a ~400 km s(-1) shock. However, the NW jet exhibits a harder spectrum that suggests a higher shock velocity (kT ~ 0.5 keV) and non-thermal contribution. In both cases, the extragalactic photoelectric-absorption is small. We will discuss models of the X-ray spectrum based on the MAPPINGS II code described by Dopita & Sutherland (1995, ApJ, in press). Our radio image shows striking inversion symmetry across the nucleus, with several abrupt changes in ouflow direction. It is very unlikely that these arise from localized jet/ISM deflections; they may instead reflect past feasts of the currently starved nucleus. The jets within 25'' (800 pc) radius are projected along the spin axis of the accretion disk. The new images and spectra will be combined with existing datasets, including Fabry-Perot Hα and [O III] datacubes, to better constrain the history and driving mechanism of the outflow.

  20. Active member bridge feedback control for damping augmentation

    NASA Technical Reports Server (NTRS)

    Chen, Gun-Shing; Lurie, Boris J.

    1992-01-01

    An active damping augmentation approach using active members in a structural system is described. The problem of maximizing the vibration damping in a lightly damped structural system is considered using the analogy of impedance matching between the load and source impedances in an electrical network. The proposed active damping augmentation approach therefore consists of finding the desired active member impedances that maximize the vibration damping, and designing a feedback control in order to achieve desired active member impedances. This study uses a bridge feedback concept that feeds back a combination of signals from sensors of the axial force and relative velocity across the active member to realize the desired active member impedance. The proposed active damping augmentation approach and bridge feedback concept were demonstrated on a three-longeron softly suspended truss structure.