Science.gov

Sample records for active twist control

  1. Acoustic Aspects of Active-Twist Rotor Control

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Wilbur, Matthew L.

    2002-01-01

    The use of an Active Twist Rotor system to provide both vibration reduction and performance enhancement has been explored in recent analytical and experimental studies. Effects of active-twist control on rotor noise, however, had not been determined. During a recent wind tunnel test of an active-twist rotor system, a set of acoustic measurements were obtained to assess the effects of active-twist control on noise produced by the rotor, especially blade-vortex interaction (BVI) noise. It was found that for rotor operating conditions where BVI noise is dominant, active-twist control provided a reduction in BVI noise level. This BVI noise reduction was almost, but not quite, as large as that obtained in a similar test using HHC. However, vibration levels were usually adversely affected at operating conditions favoring minimum BVI noise. Conversely, operating conditions favoring minimum vibration levels affected BVI noise levels, but not always adversely.

  2. Active-Twist Rotor Control Applications for UAVs

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Wilkie, W. Keats

    2004-01-01

    The current state-of-the-art in active-twist rotor control is discussed using representative examples from analytical and experimental studies, and the application to rotary-wing UAVs is considered. Topics include vibration and noise reduction, rotor performance improvement, active blade tracking, stability augmentation, and rotor blade de-icing. A review of the current status of piezoelectric fiber composite actuator technology, the class of piezoelectric actuators implemented in active-twist rotor systems, is included.

  3. The control of twisting somersaults.

    PubMed

    Yeadon, Maurice R; Hiley, Michael J

    2014-04-11

    In the takeoff and early flight phase of a twisting somersault, joint coordination is based on feed-forward control whereas in the late stages of the flight phase configuration adjustments are made using feedback control to ensure accurate completion of the movement and appropriate landing orientation. The aim of this study was to use a computer simulation model of aerial movement to investigate the extent to which arm and hip movements can control twist and somersault rotation in the flight phase of a twisting somersault. Two mechanisms were considered for the control of twist in simulated target trampoline movements with flight times of 1.4s. In the first case a single symmetrical arm adduction correction was made using delayed feedback control based on the difference between the twist rate in a perturbed simulation and the twist rate in a target movement comprising a forward somersault with 1½ twists. Final corrections were made using symmetrical arm abduction and hip flexion to adjust the twist and somersault angles. In the second case continual asymmetrical arm adduction/abduction adjustments were used to remove the tilt from a perturbed full twisting backward somersault using delayed feedback control based on twist angle and angular velocity. The first method was able to cope with perturbations to a forward somersault with 1½ twists providing the feedback time delay was less than 200 ms. The second method was able to correct a perturbed full twisting backward somersault providing the feedback time delay was less than 125 ms. PMID:24576588

  4. Means for controlling aerodynamically induced twist

    NASA Technical Reports Server (NTRS)

    Elber, W. (Inventor)

    1982-01-01

    A control mechanism which provides active compensation for aerodynamically induced twist deformation of high aspect ratio wings consists of a torque tube, internal to each wing and rigidly attached near the tip of each wing, which is moved by an actuator located in the aircraft fuselage. As changes in the aerodynamic loads on the wings occur the torque tube is rotated to compensate for the induced wing twist.

  5. Aerodynamic Design Study of an Advanced Active Twist Rotor

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K.; Wilbur, Matthew L.; Yeager, William T., Jr.

    2003-01-01

    An Advanced Active Twist Rotor (AATR) is currently being developed by the U.S. Army Vehicle Technology Directorate at NASA Langley Research Center. As a part of this effort, an analytical study was conducted to determine the impact of blade geometry on active-twist performance and, based on those findings, propose a candidate aerodynamic design for the AATR. The process began by creating a baseline design which combined the dynamic design of the original Active Twist Rotor and the aerodynamic design of a high lift rotor concept. The baseline model was used to conduct a series of parametric studies to examine the effect of linear blade twist and blade tip sweep, droop, and taper on active-twist performance. Rotor power requirements and hub vibration were also examined at flight conditions ranging from hover to advance ratio = 0.40. A total of 108 candidate designs were analyzed using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) code. The study concluded that the vibration reduction capabilities of a rotor utilizing controlled, strain-induced twisting are enhanced through the incorporation of blade tip sweep, droop, and taper into the blade design, while they are degraded by increasing the nose-down linear blade twist. Based on the analysis of rotor power, hub vibration, and active-twist response, a candidate aerodynamic design for the AATR consisting of a blade with approximately 10 degrees of linear blade twist and a blade tip design with 30 degree sweep, 10 degree droop, and 2.5:1 taper ratio over the outer five percent of the blade is proposed.

  6. Control load envelope shaping by live twist

    NASA Technical Reports Server (NTRS)

    Tarzanin, F. J., Jr.; Mirick, P. H.

    1974-01-01

    Rotor control systems experience a rapid load growth resulting from retreating blade stall during flight conditions of high blade loading or airspeeds. An investigation was undertaken to determine the effect of changing blade torsional properties over the rotor flight envelope. The results of this study show that reducing the blade stiffness to introduce more blade live twist significantly reduces the large retreating blade control loads, while expanding the flight envelope and reducing retreating blade stall loads.

  7. A demonstration of passive blade twist control using extension-twist coupling

    NASA Technical Reports Server (NTRS)

    Lake, Renee C.; Nixon, Mark W.; Wilbur, Matthew L.; Singleton, Jeffrey D.; Mirick, Paul H.

    1992-01-01

    The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist coupling are presented. A set of low twist model-scale helicopter rotor blades was manufactured with a view towards demonstrating the passive blade twist control concept. Hover testing of the blades was conducted to measure the change in blade twist as a function of rotor speed. The blades were spun through the 0-800 rpm range, with a corresponding sweep of collective pitch to determine the effect on the blade elastic twist. Hover data were obtained for both a ballasted and unballasted blade configuration in atmospheric conditions, where maximum twist changes of 2.54 and 5.24 degrees were respectively observed. These results compared well with those from a finite element analysis of the blade, which yielded maximum twists of 3.01 and 5.61 degrees for the unballasted and ballasted blade configurations, respectively. The aerodynamic-induced effects on the blade elastic twist, determined by testing a ballasted blade configuration in a near-vacuum condition, were found to be minimal with a maximum twist difference of 0.17 degrees observed between the two test environments. The effect of collective pitch sweep on the elastic twist was minimal.

  8. Aeroelastic Analysis of the NASA/ARMY/MIT Active Twist Rotor

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Wilbur, Matthew L.; Mirick, Paul H.; Cesnik, Carlos E. S.; Shin, Sangloon

    1999-01-01

    Aeroelastic modeling procedures used in the design of a piezoelectric controllable twist helicopter rotor wind tunnel model are described. Two aeroelastic analysis methods developed for active twist rotor studies, and used in the design of the model blade, are described in this paper. The first procedure uses a simple flap-torsion dynamic representation of the active twist blade, and is intended for rapid and efficient control law and design optimization studies. The second technique employs a commercially available comprehensive rotor analysis package, and is used for more detailed analytical studies. Analytical predictions of hovering flight twist actuation frequency responses are presented for both techniques. Forward flight fixed system nP vibration suppression capabilities of the model active twist rotor system are also presented. Frequency responses predicted using both analytical procedures agree qualitatively for all design cases considered, with best correlation for cases where uniform blade properties are assumed.

  9. Aeromechanical Evaluation of Smart-Twisting Active Rotor

    NASA Technical Reports Server (NTRS)

    Lim, Joon W.; Boyd, D. Douglas, Jr.; Hoffman, Frauke; van der Wall, Berend G.; Kim, Do-Hyung; Jung, Sung N.; You, Young H.; Tanabe, Yasutada; Bailly, Joelle; Lienard, Caroline; Delrieux, Yves

    2014-01-01

    An investigation of Smart-Twisting Active Rotor (STAR) was made to assess potential benefits of the current active twist rotor concept for performance improvement, vibration reduction, and noise alleviation. The STAR rotor is a 40% Mach-scaled, Bo105 rotor with an articulated flap-lag hinge at 3.5%R and no pre-cone. The 0-5 per rev active twist harmonic inputs were applied for various flight conditions including hover, descent, moderate to high speed level flights, and slowed rotor high advance ratio. For the analysis, the STAR partners used multiple codes including CAMRAD II, S4, HOST, rFlow3D, elsA, and their associated software. At the high thrust level in hover, the 0 per rev active twist with 80% amplitude increased figure of merit (FM) by 0.01-0.02 relative to the baseline. In descent, the largest BVI noise reduction was on the order of 2 to 5 dB at the 3 per rev active twist. In the high speed case (mu = 0.35), the 2 per rev actuation was found to be the most effective in achieving a power reduction as well as a vibration reduction. At the 2 per rev active twist, total power was reduced by 0.65% at the 60 deg active twist phase, and vibration was reduced by 47.6% at the 45 deg active twist phase. The use of the 2 per rev active twist appears effective for vibration reduction. In the high advance ratio case (mu = 0.70), the 0 per rev actuation appeared to have negligible impact on performance improvement. In summary, computational simulations successfully demonstrated that the current active twist concept provided a significant reduction of the maximum BVI noise in descent, a significant reduction of the vibration in the high speed case, a small improvement on rotor performance in hover, and a negligible impact on rotor performance in forward flight.

  10. Optimization of an Active Twist Rotor Blade Planform for Improved Active Response and Forward Flight Performance

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K; Wilbur, Matthew L.

    2014-01-01

    A study was conducted to identify the optimum blade tip planform for a model-scale active twist rotor. The analysis identified blade tip design traits which simultaneously reduce rotor power of an unactuated rotor while leveraging aeromechanical couplings to tailor the active response of the blade. Optimizing the blade tip planform for minimum rotor power in forward flight provided a 5 percent improvement in performance compared to a rectangular blade tip, but reduced the vibration control authority of active twist actuation by 75 percent. Optimizing for maximum blade twist response increased the vibration control authority by 50 percent compared to the rectangular blade tip, with little effect on performance. Combined response and power optimization resulted in a blade tip design which provided similar vibration control authority to the rectangular blade tip, but with a 3.4 percent improvement in rotor performance in forward flight.

  11. Twist1 activity thresholds define multiple functions in limb development

    PubMed Central

    Krawchuk, Dayana; Weiner, Shoshana J.; Chen, You-Tzung; Lu, Benson; Costantini, Frank; Behringer, Richard R.; Laufer, Ed

    2010-01-01

    Summary The basic helix-loop-helix transcription factor Twist1 is essential for normal limb development. Twist1−/− embryos die at midgestation. However, studies on early limb buds found that Twist1−/− mutant limb mesenchyme has an impaired response to FGF signaling from the apical ectodermal ridge, which disrupts the feedback loop between the mesenchyme and AER, and reduces and shifts anteriorly Shh expression in the zone of polarizing activity. We have combined Twist1 null, hypomorph and conditional alleles to generate a Twist1 allelic series that survives to birth. As Twist1 activity is reduced, limb skeletal defects progress from preaxial polydactyly to girdle reduction combined with hypoplasia, aplasia or mirror symmetry of all limb segments. With reduced Twist1 activity there is striking and progressive upregulation of ectopic Shh expression in the anterior of the limb, combined with an anterior shift in the posterior Shh domain, which is expressed at normal intensity, and loss of the posterior AER. Consequently limb outgrowth is initially impaired, before an ectopic anterior Shh domain expands the AER, promoting additional growth and repatterning. Reducing the dosage of FGF targets of the Etv gene family, which are known repressors of Shh expression in the anterior limb mesenchyme, strongly enhances the anterior skeletal phenotype. Conversely this and other phenotypes are suppressed by reducing the dosage of the Twist1 antagonist Hand2. Our data support a model whereby multiple Twist1 activity thresholds contribute to early limb bud patterning, and suggest how particular combinations of skeletal defects result from differing amounts of Twist1 activity. PMID:20732316

  12. Supramolecular sensing: Enzyme activity with a twist

    NASA Astrophysics Data System (ADS)

    Amabilino, David B.

    2015-04-01

    A supramolecular polymer comprising stacked artificial chromophores to which zinc(II) complexes are appended is able to respond to enzymatic hydrolysis in aqueous solution. The assembly of molecules can twist reversibly and quickly in response to changes in the type of adenosine phosphate present.

  13. Projection Moire Interferometry for Rotorcraft Applications: Deformation Measurements of Active Twist Rotor Blades

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Soto, Hector L.; South, Bruce W.

    2002-01-01

    Projection Moire Interferometry (PMI) has been used during wind tunnel tests to obtain azimuthally dependent blade bending and twist measurements for a 4-bladed Active Twist Rotor (ATR) system in simulated forward flight. The ATR concept offers a means to reduce rotor vibratory loads and noise by using piezoelectric active fiber composite actuators embedded in the blade structure to twist each blade as they rotate throughout the rotor azimuth. The twist imparted on the blades for blade control causes significant changes in blade loading, resulting in complex blade deformation consisting of coupled bending and twist. Measurement of this blade deformation is critical in understanding the overall behavior of the ATR system and the physical mechanisms causing the reduction in rotor loads and noise. PMI is a non-contacting, video-based optical measurement technique capable of obtaining spatially continuous structural deformation measurements over the entire object surface within the PMI system field-of-view. When applied to rotorcraft testing, PMI can be used to measure the azimuth-dependent blade bending and twist along the full span of the rotor blade. This paper presents the PMI technique as applied to rotorcraft testing, and provides results obtained during the ATR tests demonstrating the PMI system performance. PMI measurements acquired at select blade actuation conditions generating minimum and maximum rotor loads are provided to explore the interrelationship between rotor loads, blade bending, and twist.

  14. Hover Testing of the NASA/Army/MIT Active Twist Rotor Prototype Blade

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Wilkie, W. Keats; Cesnik, Carlos E. S.; Shin, Sangloon

    2000-01-01

    Helicopter rotor individual blade control promises to provide a mechanism for increased rotor performance and reduced rotorcraft vibrations and noise. Active material methods, such as piezoelectrically actuated trailing-edge flaps and strain-induced rotor blade twisting, provide a means of accomplishing individual blade control without the need for hydraulic power in the rotating system. Recent studies have indicated that controlled strain induced blade twisting can be attained using piezoelectric active fiber composite technology. In order to validate these findings experimentally, a cooperative effort between NASA Langley Research Center, the Army Research Laboratory, and the MIT Active Materials and Structures Laboratory has been developed. As a result of this collaboration an aeroelastically-scaled active-twist model rotor blade has been designed and fabricated for testing in the heavy gas environment of the Langley Transonic Dynamics Tunnel (TDT). The results of hover tests of the active-twist prototype blade are presented in this paper. Comparisons with applicable analytical predictions of active-twist frequency response in hovering flight are also presented.

  15. Vibratory Loads Reduction Testing of the NASA/Army/MIT Active Twist Rotor

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew; Mirick, Paul H.; Yeager, William T., Jr.; Langston, Chester W.; Cesnik, Carlos E. S.; Shin, SangJoon

    2001-01-01

    Recent studies have indicated that controlled strain-induced blade twisting can be attained using piezoelectric active fiber composite technology, and that such advancement may provide a mechanism for reduced rotorcraft vibrations and increased rotor performance. In order to validate these findings experimentally, a cooperative effort between the NASA Langley Research Center, the Army Research Laboratory, and the MIT Active Materials and Structures Laboratory has been developed. As a result of this collaboration a four-bladed, aeroelastically-scaled, active-twist model rotor has been designed and fabricated for testing in the heavy gas test medium of the NASA Langley Transonic Dynamics Tunnel. Initial wind tunnel testing has been conducted to assess the impact of active blade twist on both fixed- and rotating-system vibratory loads in forward flight. The active twist control was found to have a pronounced effect on all system loads and was shown to generally offer reductions in fixed-system loads of 60% to 95%, depending upon flight condition, with 1.1 to 1.4 of dynamic blade twist observed. A summary of the systems developed and the vibratory loads reduction results obtained are presented in this paper.

  16. Multicyclic Controllable Twist Rotor Data Analysis

    NASA Technical Reports Server (NTRS)

    Wei, F. S.; Weisbrich, A. L.

    1979-01-01

    Rsults provide functional relationship between rotor performance, blade vibratory loads and dual control settings and indicate that multicyclic control produced significant reductions in blade flatwise bending moments and blade root actuator control loads. Higher harmonic terms of servo flap deflection were found to be most pronounced in flatwise bending moment, transmission vertical vibration and pitch link vibratory load equations. The existing test hardware represents a satisfactory configuration for demonstrating MCTR technology and defining a data base for additional wind tunnel testing.

  17. A new concept for active bistable twisting structures

    NASA Astrophysics Data System (ADS)

    Schultz, Marc R.

    2005-05-01

    A novel type of morphing structure capable of a large change in shape with a small energy input is discussed in this paper. The considered structures consist of two curved shells that are joined in a specific manner to form a bistable airfoil-like structure. The two stable shapes have a difference in axial twist, and the structure may be transformed between the stable shapes by a simple snap-through action. The benefit of a bistable structure of this type is that, if the stable shapes are operational shapes, power is needed only to transform the structure from one shape to another. The discussed structures could be used in aerodynamic applications such as morphing wings, or as aerodynamic control surfaces. The investigation discussed in this paper considers both experiment and finite-element analysis. Several graphite-epoxy composite and one steel device were created as proof-of-concept models. To demonstrate active control of these structures, piezocomposite actuators were applied to one of the composite structures and used to transform the structure between stable shapes. The analysis was used to compare the predicted shapes with the experimental shapes, and to study how changes to the geometric input values affected the shape and operational characteristics of the structures. The predicted shapes showed excellent agreement with the experimental shapes, and the results of the parametric study suggest that the shapes and the snap-through characteristics can be easily tailored to meet specific needs.

  18. Unwinding motion of a twisted active region filament

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Kong, D. F.; Liu, J. H.; Xu, C. L.

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  19. The Effect of Tip Geometry on Active-Twist Rotor Response

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Sekula, Martin K.

    2005-01-01

    A parametric examination of the effect of tip geometry on active-twist rotor system response is conducted. Tip geometry parameters considered include sweep, taper, anhedral, nonlinear twist, and the associated radial initiation location for each of these variables. A detailed study of the individual effect of each parameter on active-twist response is presented, and an assessment offered of the effect of combining multiple tip shape parameters. Tip sweep is shown to have the greatest affect on active-twist response, significantly decreasing the response available. Tip taper and anhedral are shown to increase moderately the active-twist response, while nonlinear twist is shown to have a minimal effect. A candidate tip shape that provides active-twist response equivalent to or greater than a rectangular planform blade is presented.

  20. Twist1 Controls a Cell-Specification Switch Governing Cell Fate Decisions within the Cardiac Neural Crest

    PubMed Central

    Vincentz, Joshua W.; Firulli, Beth A.; Lin, Andrea; Spicer, Douglas B.; Howard, Marthe J.; Firulli, Anthony B.

    2013-01-01

    Neural crest cells are multipotent progenitor cells that can generate both ectodermal cell types, such as neurons, and mesodermal cell types, such as smooth muscle. The mechanisms controlling this cell fate choice are not known. The basic Helix-loop-Helix (bHLH) transcription factor Twist1 is expressed throughout the migratory and post-migratory cardiac neural crest. Twist1 ablation or mutation of the Twist-box causes differentiation of ectopic neuronal cells, which molecularly resemble sympathetic ganglia, in the cardiac outflow tract. Twist1 interacts with the pro-neural factor Sox10 via its Twist-box domain and binds to the Phox2b promoter to repress transcriptional activity. Mesodermal cardiac neural crest trans-differentiation into ectodermal sympathetic ganglia-like neurons is dependent upon Phox2b function. Ectopic Twist1 expression in neural crest precursors disrupts sympathetic neurogenesis. These data demonstrate that Twist1 functions in post-migratory neural crest cells to repress pro-neural factors and thereby regulate cell fate determination between ectodermal and mesodermal lineages. PMID:23555309

  1. Proximal Blade Twist Feedback Control for Heliogyro Solar Sails

    NASA Astrophysics Data System (ADS)

    Smith, Sarah Mitchell

    A heliogyro spacecraft is a specific type of solar sail that generates thrust from the reflection of solar photons. It consists of multiple long (200 to 600 meters), thin blades, similar to a helicopter. The heliogyro's blades remain in tension by spinning around the central hub of the spacecraft. The individual blades are pitched collectively or cyclically to produce the desired maneuver profile. The propellant-free heliogyro is a long-duration sustainable spacecraft whose maneuverability allows it to attain previously inaccessible orbits for traditional spacecraft. The blades are constructed from thin Mylar sheets, approximately 2.5 ?m thick, which have very little inherent damping making it necessary to include some other way of attenuating blade vibration caused by maneuvering. The most common approach is to incorporate damping through the root pitch actuator. However, due to the small root pitch control torques required, on the order of 2 ?Nm, compared to the large friction torques associated with a root pitch actuator, it is challenging to design a root control system that takes friction into account and can still add damping to the blade. The purpose of this research is to address the limitations of current control designs for a heliogyro spacecraft and to develop a physically realizable root pitch controller that effectively damps the torsional structural modes of a single heliogyro blade. Classical control theory in conjunction with impedance control techniques are used to design a position-source root pitch controller to dominate friction with high gains, wrapped with an outer loop that adds damping to the blade by sensing differential twist outboard of the blade root. First, modal parameter characterization experiments were performed on a small-scale heliogyro blade in a high vacuum chamber to determine a damping constant to be used in the membrane ladder finite element model of the blade. The experimental damping ratio of the lowest frequency torsional

  2. Period-control and chaos-anti-control of a semiconductor laser using the twisted fiber

    NASA Astrophysics Data System (ADS)

    Yan, Sen-Lin

    2016-09-01

    A novel semiconductor laser system is presented based on a twisted fiber. To study the period-control and chaos-anti-control of the laser system, we design a type of optic path as a control setup using the combination of the twisted fiber and the polarization controller while we present a physical dynamics model of the delayed dual-feedback laser containing the twisted fiber effect. We give an analysis of the effect of the twisted fiber on the laser. We use the effects of the delayed phase and the rotation angle of the twisted fiber and the characteristics of the system to achieve control of the laser. The laser is deduced to a stable state, a double-periodic state, a period-6 state, a period-8 state, a period-9 state, a multi-period state, beat phenomenon, and so on. The periodic laser can be anti-controlled to chaos. Some chaos-anti-control area is found. The laser system is very useful for the study of chaos-control of the laser setup and the applications of some physics effects.

  3. TWIST modulates prostate cancer cell-mediated bone cell activity and is upregulated by osteogenic induction.

    PubMed

    Yuen, Hiu-Fung; Kwok, Wai-Kei; Chan, Ka-Kui; Chua, Chee-Wai; Chan, Yuen-Piu; Chu, Ying-Ying; Wong, Yong-Chuan; Wang, Xianghong; Chan, Kwok-Wah

    2008-08-01

    TWIST, a helix-loop-helix transcription factor, is highly expressed in many types of human cancer. We have previously found that TWIST confers prostate cancer cells with an enhanced metastatic potential through promoting epithelial-mesenchymal transition (EMT) and a high TWIST expression in human prostate cancer is associated with an increased metastatic potential. The predilection of prostate cancer cells to metastasize to bone may be due to two interplaying mechanisms (i) by increasing the rate of bone remodeling and (ii) by undergoing osteomimicry. We further studied the role of TWIST in promoting prostate cancer to bone metastasis. TWIST expression in PC3, a metastatic prostate cancer cell line, was silenced by small interfering RNA and we found that conditioned medium from PC3 with lower TWIST expression had a lower activity on stimulating osteoclast differentiation and higher activity on stimulating osteoblast mineralization. In addition, we found that these effects were, at least partly, associated with TWIST-induced expression of dickkopf homolog 1 (DKK-1), a factor that promotes osteolytic metastasis. We also examined TWIST and RUNX2 expressions during osteogenic induction of an organ-confined prostate cancer cell, 22Rv1. We observed increased TWIST and RUNX2 expressions upon osteogenic induction and downregulation of TWIST through short hairpin RNA reduced the induction level of RUNX2. In summary, our results suggest that, in addition to EMT, TWIST may also promote prostate cancer to bone metastasis by modulating prostate cancer cell-mediated bone remodeling via regulating the expression of a secretory factor, DKK-1, and enhancing osteomimicry of prostate cancer cells, probably, via RUNX2.

  4. Adaptive dual-layer super-twisting control and observation

    NASA Astrophysics Data System (ADS)

    Edwards, Christopher; Shtessel, Yuri

    2016-09-01

    In this paper, a super-twisting-like structure with adaptive gains is proposed. The structure is parameterised by two scalar gains, both of which adapt, and by an additional time-varying term. The magnitudes of the adaptive terms are allowed to both increase and decrease as appropriate so that they are as small as possible, in the sense that they do not unnecessarily over-bound the uncertainty, and yet are large enough to sustain a sliding motion. In the paper, a new time varying gain is incorporated into the traditional super-twisting architecture. The proposed adaption law has a dual-layer structure which is formally analyzed using Lyapunov techniques. The additional term has the effect of simplifying the stability analysis whilst guaranteeing the second-order sliding mode properties of the traditional super-twisting scheme.

  5. Further Examination of the Vibratory Loads Reduction Results from the NASA/ARMY/MIT Active Twist Rotor Test

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Sekula, Martin K.

    2002-01-01

    The vibration reduction capabilities of a model rotor system utilizing controlled, strain-induced blade twisting are examined. The model rotor blades, which utilize piezoelectric active fiber composite actuators, were tested in the NASA Langley Transonic Dynamics Tunnel using open-loop control to determine the effect of active-twist on rotor vibratory loads. The results of this testing have been encouraging, and have demonstrated that active-twist rotor designs offer the potential for significant load reductions in future helicopter rotor systems. Active twist control was found to use less than 1% of the power necessary to operate the rotor system and had a pronounced effect on both rotating- and fixed-system loads, offering reductions in individual harmonic loads of up to 100%. A review of the vibration reduction results obtained is presented, which includes a limited set of comparisons with results generated using the second-generation version of the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics (CAMRAD II) rotorcraft comprehensive analysis.

  6. Twist Model Development and Results From the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew; Allen, Michael J.

    2005-01-01

    Understanding the wing twist of the active aeroelastic wing F/A-18 aircraft is a fundamental research objective for the program and offers numerous benefits. In order to clearly understand the wing flexibility characteristics, a model was created to predict real-time wing twist. A reliable twist model allows the prediction of twist for flight simulation, provides insight into aircraft performance uncertainties, and assists with computational fluid dynamic and aeroelastic issues. The left wing of the aircraft was heavily instrumented during the first phase of the active aeroelastic wing program allowing deflection data collection. Traditional data processing steps were taken to reduce flight data, and twist predictions were made using linear regression techniques. The model predictions determined a consistent linear relationship between the measured twist and aircraft parameters, such as surface positions and aircraft state variables. Error in the original model was reduced in some cases by using a dynamic pressure-based assumption and by using neural networks. These techniques produced excellent predictions for flight between the standard test points and accounted for nonlinearities in the data. This report discusses data processing techniques and twist prediction validation, and provides illustrative and quantitative results.

  7. Coupled CFD/CSD Computation of Airloads of an Active-Twist Rotor

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K

    2013-01-01

    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code for blade trim and aeroelastic effects is presented for a second-generation Active-Twist Rotor. Mesh and temporal sensitives of computed airloads are evaluated. In the final paper, computed airloads will be compared with wind tunnel data for the Active-Twist Rotor test that is currently underway.

  8. Evolution of Magnetic Field Twist and Tilt in Active Region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Ravindra, B.; Venkatakrishnan, P.; Tiwari, Sanjiv Kumar

    2011-07-01

    Magnetic twist of the active region has been measured over a decade using photospheric vector field data, chromospheric H_alpha data, and coronal loop data. The twist and tilt of the active regions have been measured at the photospheric level with the vector magnetic field measurements. The active region NOAA 10930 is a highly twisted emerging region. The same active region produced several flares and has been extensively observed by Hinode. In this paper, we will show the evolution of twist and tilt in this active region leading up to the two X-class flares. We find that the twist initially increases with time for a few days with a simultaneous decrease in the tilt until before the X3.4 class flare on December 13, 2006. The total twist acquired by the active region is larger than one complete winding before the X3.4 class flare and it decreases in later part of observations. The injected helicity into the corona is negative and it is in excess of 10^43 Mx^2 before the flares.

  9. Spin-Orbit Twisted Spin Waves: Group Velocity Control

    NASA Astrophysics Data System (ADS)

    Perez, F.; Baboux, F.; Ullrich, C. A.; D'Amico, I.; Vignale, G.; Karczewski, G.; Wojtowicz, T.

    2016-09-01

    We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC), Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave. The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel applications in spin-wave routing devices and for the realization of lenses for spin waves.

  10. Initial Aerodynamic and Acoustic Study of an Active Twist Rotor Using a Loosely Coupled CFD/CSD Method

    NASA Technical Reports Server (NTRS)

    Boyd, David D. Jr.

    2009-01-01

    Preliminary aerodynamic and performance predictions for an active twist rotor for a HART-II type of configuration are performed using a computational fluid dynamics (CFD) code, OVERFLOW2, and a computational structural dynamics (CSD) code, CAMRAD -II. These codes are loosely coupled to compute a consistent set of aerodynamics and elastic blade motions. Resultant aerodynamic and blade motion data are then used in the Ffowcs-Williams Hawkins solver, PSU-WOPWOP, to compute noise on an observer plane under the rotor. Active twist of the rotor blade is achieved in CAMRAD-II by application of a periodic torsional moment couple (of equal and opposite sign) at the blade root and tip at a specified frequency and amplitude. To provide confidence in these particular active twist predictions for which no measured data is available, the rotor system geometry and computational set up examined here are identical to that used in a previous successful Higher Harmonic Control (HHC) computational study. For a single frequency equal to three times the blade passage frequency (3P), active twist is applied across a range of control phase angles at two different amplitudes. Predicted results indicate that there are control phase angles where the maximum mid-frequency noise level and the 4P non -rotating hub vibrations can be reduced, potentially, both at the same time. However, these calculated reductions are predicted to come with a performance penalty in the form of a reduction in rotor lift-to-drag ratio due to an increase in rotor profile power.

  11. Development of an Active Twist Rotor for Wind: Tunnel Testing (NLPN97-310

    NASA Technical Reports Server (NTRS)

    Cesnik, Carlos E. S.; Shin, SangJoon; Hagood, Nesbitt W., IV

    1998-01-01

    The development of the Active Twist Rotor prototype blade for hub vibration and noise reduction studies is presented in this report. Details of the modeling, design, and manufacturing are explored. The rotor blade is integrally twisted by direct strain actuation. This is accomplished by distributing embedded piezoelectric fiber composites along the span of the blade. The development of the analysis framework for this type of active blade is presented. The requirements for the prototype blade, along with the final design results are also presented. A detail discussion on the manufacturing aspects of the prototype blade is described. Experimental structural characteristics of the prototype blade compare well with design goals, and preliminary bench actuation tests show lower performance than originally predicted. Electrical difficulties with the actuators are also discussed. The presented prototype blade is leading to a complete fully articulated four-blade active twist rotor system for future wind tunnel tests.

  12. Twisted optical-fiber-based acousto-optic tunable filter controlled by the flexural acoustic polarization

    NASA Astrophysics Data System (ADS)

    Park, Hyun Chul; Lee, Kwang Jo

    2015-08-01

    The spectral characteristics of twisted fiber-based acousto-optic filters are theoretically investigated. The influences of three types of flexural acoustic polarization states — linear, circular, and elliptical polarizations — on filter spectra are studied under realistic experimental conditions: a fiber length of 5 - 20 cm and a circumferential fiber twist angle of < 12 π. We will analytically show that either a single- or a dual-resonance filter spectrum is achievable depending on the input polarization state of applied acoustic waves and that the spectral position of each resonance peak can be scanned continuously and linearly in the wavelength domain by using the fiber twist. The feasible spectral tuning range of the resonances is calculated to > 80 nm for a twist angle of 12 π. We will describe how the transmission of each resonance peak can also be selectively tuned by adjusting the ellipticity of the input acoustic polarization from linear to circular. The results illustrate that our approach exploiting a combination of the fiber twist and acoustic polarization management offers an excellent route to the spectral shaping of all-fiber acousto-optic devices in that the transmission of multiple resonances, as well as their spectral positions, are readily and individually controllable in a single device configuration. In addition, we also propose a novel cosine apodization method to suppress the undesirable sidelobe spectra occurring between the dual resonance peaks. The technique is based on a cosine modulation of the AO coupling strength along the fiber, which is achieved by using a combination of the fiber's circumferential twist and the linear acoustic polarization. The proposed scheme is useful to minimize the crosstalk occurring between adjacent resonance peaks. We highlight that our approach is directly applicable to matched filtering as robust, adaptable, stable, and versatile optical filters.

  13. Aggregation-Induced-Emission-Active Macrocycle Exhibiting Analogous Triply and Singly Twisted Möbius Topologies.

    PubMed

    Wang, Erjing; He, Zikai; Zhao, Engui; Meng, Luming; Schütt, Christian; Lam, Jacky W Y; Sung, Herman H Y; Williams, Ian D; Huang, Xuhui; Herges, Rainer; Tang, Ben Zhong

    2015-08-10

    Molecules with Möbius topology have drawn increasing attention from scientists in a variety of fields, such as organic chemistry, inorganic chemistry, and material science. However, synthetic difficulties and the lack of functionality impede their fundamental understanding and practical applications. Here, we report the facile synthesis of an aggregation-induced-emission (AIE)-active macrocycle (TPE-ET) and investigate its analogous triply and singly twisted Möbius topologies. Because of the twisted and flexible nature of the tetraphenylethene units, the macrocycle adjusts its conformations so as to accommodate different guest molecules in its crystals. Moreover, theoretical studies including topological and electronic calculations reveal the energetically favorable interconversion process between triply and singly twisted topologies. PMID:26177730

  14. Application of Out-of-Plane Warping to Control Rotor Blade Twist

    NASA Technical Reports Server (NTRS)

    VanWeddingen, Yannick; Bauchau, Olivier; Kottapalli, Sesi; Ozbay, Serkan; Mehrotra, Yogesh

    2012-01-01

    The goal of this ongoing study is to develop and demonstrate the feasibility of a blade actuation system to dynamically change the twist, and/or the camber, of an airfoil section and, consequently, alter the in-flight aerodynamic loading on the blade for efficient flight control. The required analytical and finite element tools are under development to enable an accurate and comprehensive aeroelastic assessment of the current Full-Blade Warping and 3D Warping Actuated Trailing Edge Flap concepts. The feasibility of the current concepts for swashplateless rotors and higher harmonic blade control is also being investigated. In particular, the aim is to complete the following objectives, some of which have been completed (as noted below) and others that are currently ongoing: i) Develop a Vlasov finite element model and validate against the ABAQUS shell models (completed). ii) Implement the 3D warping actuation concept within the comprehensive analysis code DYMORE. iii) Perform preliminary aeroelastic simulations of blades using DYMORE with 3D warping actuation: a) Investigate the blade behavior under 1 per/rev actuation. Determine whether sufficient twist can be generated and sustained to achieve primary blade control. b) Investigate the behavior of a trailing edge flap configuration under higher harmonic excitations. Determine how much twist can be obtained at the harmonics 2-5 per/rev. iv) Determine actuator specifications such as the power required, load and displacements, and identify the stress and strain distributions in the actuated blades. In general, the completion of Item ii) above will give an additional research capability in rotorcraft dynamics analyses, i.e., the capability to calculate the rotor blade twist due to warping, something that is not currently available in any of the existing comprehensive rotorcraft analyses.

  15. Drag-based composite super-twisting sliding mode control law design for Mars entry guidance

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenhua; Yang, Jun; Li, Shihua; Guo, Lei

    2016-06-01

    In this paper, the drag-based trajectory tracking guidance problem is investigated for Mars entry vehicle subject to uncertainties. A composite super twisting sliding mode control method based on finite-time disturbance observer is proposed for guidance law design. The proposed controller not only eliminates the effects of matched and mismatched disturbances due to uncertainties of atmospheric models and vehicle aerodynamics but also guarantees the continuity of control action. Numerical simulations are carried out on the basis of Mars Science Laboratory mission, where the results show that the proposed methods can improve the Mars entry guidance precision as compared with some existing guidance methods including PID and ADRC.

  16. Evolution of twist-shear and dip-shear in flaring active region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Gosain, Sanjay; Venkatakrishnan, P.

    2011-08-01

    We study the evolution of magnetic shear angle in a flare productive active region NOAA 10930. The magnetic shear angle is defined as the deviation in the orientation of the observed magnetic field vector with respect to the potential field vector. The shear angle is measured in horizontal as well as vertical plane. The former is computed by taking the difference between the azimuth angles of the observed and potential field and is called the twist-shear, while the latter is computed by taking the difference between the inclination angles of the observed and potential field and is called the dip-shear. The evolution of the two shear angles is then tracked over a small region located over the sheared penumbra of the delta sunspot in NOAA 10930. We find that, while the twist-shear shows an increasing trend after the flare the dip-shear shows a significant drop after the flare.

  17. The Evolution of the Net Twist Current and the Net Shear Current in Active Region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Suthar, Yogita; Venkatakrishnan, P.; Ravindra, B.; Jaaffrey, S. N. A.

    2014-07-01

    The electric current exists because of the non-potential magnetic field in solar active regions. We present the evolution of net current in the solar active region NOAA 10930 as the sum of shear current and twist current by using 27 high-resolution vector magnetograms obtained with Hinode/SOT-SP during 9 - 15 December 2006. This active region was highly eruptive and produced a large number of flares ranging from B to X class. We derived local distribution of shear and twist current densities in this active region and studied the evolution of net shear current (NSC) and net twist current (NTC) in the N-polarity and S-polarity regions separately. We found the following: i) The twist current density was dominant in the umbrae. ii) The footpoint of the emerging flux rope showed a dominant twist current. iii) The shear current density and twist current density appeared in alternate bands around the umbrae. iv) On the scale of the active region, NTC was always larger than NSC. v) Both NTC and NSC decreased after the onset of an X3.4 class flare that occurred on 13 December 2006.

  18. Redundant or separate entities?—roles of Twist1 and Twist2 as molecular switches during gene transcription

    PubMed Central

    Franco, Hector L.; Casasnovas, José; Rodríguez-Medina, José R.; Cadilla, Carmen L.

    2011-01-01

    Twist1 and Twist2 are highly conserved members of the Twist subfamily of bHLH proteins responsible for the transcriptional regulation of the developmental programs in mesenchymal cell lineages. The regulation of such processes requires that Twist1 and Twist2 function as molecular switches to activate and repress target genes by employing several direct and indirect mechanisms. Modes of action by these proteins include direct DNA binding to conserved E-box sequences and recruitment of coactivators or repressors, sequestration of E-protein modulators, and interruption of proper activator/repressor function through protein–protein interactions. Regulatory outcomes of Twist1 and Twist2 are themselves controlled by spatial-temporal expression, phosphoregulation, dimer choice and cellular localization. Although these two proteins are highly conserved and exhibit similar functions in vitro, emerging literature have demonstrated different roles in vivo. The involvement of Twist1 and Twist2 in a broad spectrum of regulatory pathways highlights the importance of understanding their roles in normal development, homeostasis and disease. Here we focus on the mechanistic models of transcriptional regulation and summarize the similarities and differences between Twist1 and Twist2 in the context of myogenesis, osteogenesis, immune system development and cancer. PMID:20935057

  19. Adaptive sliding mode controller based on super-twist observer for tethered satellite system

    NASA Astrophysics Data System (ADS)

    Keshtkar, Sajjad; Poznyak, Alexander

    2016-09-01

    In this work, the sliding mode control based on the super-twist observer is presented. The parameters of the controller as well as the observer are admitted to be time-varying and depending on available current measurements. In view of that, the considered controller is referred to as an adaptive one. It is shown that the deviations of the generated state estimates from real state values together with a distance of the closed-loop system trajectories to a desired sliding surface reach a μ-zone around the origin in finite time. The application of the suggested controller is illustrated for the orientation of a tethered satellite system in a required position.

  20. Control of discrete time systems based on recurrent Super-Twisting-like algorithm.

    PubMed

    Salgado, I; Kamal, S; Bandyopadhyay, B; Chairez, I; Fridman, L

    2016-09-01

    Most of the research in sliding mode theory has been carried out to in continuous time to solve the estimation and control problems. However, in discrete time, the results in high order sliding modes have been less developed. In this paper, a discrete time super-twisting-like algorithm (DSTA) was proposed to solve the problems of control and state estimation. The stability proof was developed in terms of the discrete time Lyapunov approach and the linear matrix inequalities theory. The system trajectories were ultimately bounded inside a small region dependent on the sampling period. Simulation results tested the DSTA. The DSTA was applied as a controller for a Furuta pendulum and for a DC motor supplied by a DSTA signal differentiator.

  1. Control of discrete time systems based on recurrent Super-Twisting-like algorithm.

    PubMed

    Salgado, I; Kamal, S; Bandyopadhyay, B; Chairez, I; Fridman, L

    2016-09-01

    Most of the research in sliding mode theory has been carried out to in continuous time to solve the estimation and control problems. However, in discrete time, the results in high order sliding modes have been less developed. In this paper, a discrete time super-twisting-like algorithm (DSTA) was proposed to solve the problems of control and state estimation. The stability proof was developed in terms of the discrete time Lyapunov approach and the linear matrix inequalities theory. The system trajectories were ultimately bounded inside a small region dependent on the sampling period. Simulation results tested the DSTA. The DSTA was applied as a controller for a Furuta pendulum and for a DC motor supplied by a DSTA signal differentiator. PMID:27476801

  2. Interactions between Twist and other core epithelial–mesenchymal transition factors are controlled by GSK3-mediated phosphorylation

    PubMed Central

    Lander, Rachel; Nasr, Talia; Ochoa, Stacy D.; Nordin, Kara; Prasad, Maneeshi S.; LaBonne, Carole

    2014-01-01

    A subset of transcription factors classified as neural crest ‘specifiers’ are also core epithelial–mesenchymal transition regulatory factors, both in the neural crest and in tumour progression. The bHLH factor Twist is among the least well studied of these factors. Here we demonstrate that Twist is required for cranial neural crest formation and fate determination in Xenopus. We further show that Twist function in the neural crest is dependent upon its carboxy-terminal WR domain. The WR domain mediates physical interactions between Twist and other core epithelial–mesenchymal transition factors, including Snail1 and Snail2, which are essential for proper function. Interaction with Snail1/2, and Twist function more generally, is regulated by GSK-3-β-mediated phosphorylation of conserved sites in the WR domain. Together, these findings elucidate a mechanism for coordinated control of a group of structurally diverse factors that function as a regulatory unit in both developmental and pathological epithelial–mesenchymal transitions. PMID:23443570

  3. Twisting bilayer graphene superlattices.

    PubMed

    Lu, Chun-Chieh; Lin, Yung-Chang; Liu, Zheng; Yeh, Chao-Hui; Suenaga, Kazu; Chiu, Po-Wen

    2013-03-26

    Bilayer graphene is an intriguing material in that its electronic structure can be altered by changing the stacking order or the relative twist angle, yielding a new class of low-dimensional carbon system. Twisted bilayer graphene can be obtained by (i) thermal decomposition of SiC; (ii) chemical vapor deposition (CVD) on metal catalysts; (iii) folding graphene; or (iv) stacking graphene layers one atop the other, the latter of which suffers from interlayer contamination. Existing synthesis protocols, however, usually result in graphene with polycrystalline structures. The present study investigates bilayer graphene grown by ambient pressure CVD on polycrystalline Cu. Controlling the nucleation in early stage growth allows the constituent layers to form single hexagonal crystals. New Raman active modes are shown to result from the twist, with the angle determined by transmission electron microscopy. The successful growth of single-crystal bilayer graphene provides an attractive jumping-off point for systematic studies of interlayer coupling in misoriented few-layer graphene systems with well-defined geometry.

  4. Maternal Inheritance of Twist and Analysis of MAPK Activation in Embryos of the Polychaete Annelid Platynereis dumerilii

    PubMed Central

    Pfeifer, Kathrin; Schaub, Christoph; Domsch, Katrin; Dorresteijn, Adriaan; Wolfstetter, Georg

    2014-01-01

    In this study, we aimed to identify molecular mechanisms involved in the specification of the 4d (mesentoblast) lineage in Platynereis dumerilii. We employ RT-PCR and in situ hybridization against the Platynereis dumerilii twist homolog (Pdu-twist) to reveal mesodermal specification within this lineage. We show that Pdu-twist mRNA is already maternally distributed. After fertilization, ooplasmatic segregation leads to relocation of Pdu-twist transcripts into the somatoblast (2d) lineage and 4d, indicating that the maternal component of Pdu-twist might be an important prerequisite for further mesoderm specification but does not represent a defining characteristic of the mesentoblast. However, after the primordial germ cells have separated from the 4d lineage, zygotic transcription of Pdu-twist is exclusively observed in the myogenic progenitors, suggesting that mesodermal specification occurs after the 4d stage. Previous studies on spiral cleaving embryos revealed a spatio-temporal correlation between the 4d lineage and the activity of an embryonic organizer that is capable to induce the developmental fates of certain micromeres. This has raised the question if specification of the 4d lineage could be connected to the organizer activity. Therefore, we aimed to reveal the existence of such a proposed conserved organizer in Platynereis employing antibody staining against dpERK. In contrast to former observations in other spiralian embryos, activation of MAPK signaling during 2d and 4d formation cannot be detected which questions the existence of a conserved connection between organizer function and specification of the 4d lineage. However, our experiments unveil robust MAPK activation in the prospective nephroblasts as well as in the macromeres and some micromeres at the blastopore in gastrulating embryos. Inhibition of MAPK activation leads to larvae with a shortened body axis, defects in trunk muscle spreading and improper nervous system condensation, indicating a

  5. Force and twist dependence of RepC nicking activity on torsionally-constrained DNA molecules

    PubMed Central

    Pastrana, Cesar L.; Carrasco, Carolina; Akhtar, Parvez; Leuba, Sanford H.; Khan, Saleem A.; Moreno-Herrero, Fernando

    2016-01-01

    Many bacterial plasmids replicate by an asymmetric rolling-circle mechanism that requires sequence-specific recognition for initiation, nicking of one of the template DNA strands and unwinding of the duplex prior to subsequent leading strand DNA synthesis. Nicking is performed by a replication-initiation protein (Rep) that directly binds to the plasmid double-stranded origin and remains covalently bound to its substrate 5′-end via a phosphotyrosine linkage. It has been proposed that the inverted DNA sequences at the nick site form a cruciform structure that facilitates DNA cleavage. However, the role of Rep proteins in the formation of this cruciform and the implication for its nicking and religation functions is unclear. Here, we have used magnetic tweezers to directly measure the DNA nicking and religation activities of RepC, the replication initiator protein of plasmid pT181, in plasmid sized and torsionally-constrained linear DNA molecules. Nicking by RepC occurred only in negatively supercoiled DNA and was force- and twist-dependent. Comparison with a type IB topoisomerase in similar experiments highlighted a relatively inefficient religation activity of RepC. Based on the structural modeling of RepC and on our experimental evidence, we propose a model where RepC nicking activity is passive and dependent upon the supercoiling degree of the DNA substrate. PMID:27488190

  6. Twisting solar coronal jet launched at the boundary of an active region

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Guo, Y.; Moreno-Insertis, F.; Aulanier, G.; Yelles Chaouche, L.; Nishizuka, N.; Harra, L. K.; Thalmann, J. K.; Vargas Dominguez, S.; Liu, Y.

    2013-11-01

    Aims: A broad jet was observed in a weak magnetic field area at the edge of active region NOAA 11106 that also produced other nearby recurring and narrow jets. The peculiar shape and magnetic environment of the broad jet raised the question of whether it was created by the same physical processes of previously studied jets with reconnection occurring high in the corona. Methods: We carried out a multi-wavelength analysis using the EUV images from the Atmospheric Imaging Assembly (AIA) and magnetic fields from the Helioseismic and Magnetic Imager (HMI) both on-board the Solar Dynamics Observatory, which we coupled to a high-resolution, nonlinear force-free field extrapolation. Local correlation tracking was used to identify the photospheric motions that triggered the jet, and time-slices were extracted along and across the jet to unveil its complex nature. A topological analysis of the extrapolated field was performed and was related to the observed features. Results: The jet consisted of many different threads that expanded in around 10 minutes to about 100 Mm in length, with the bright features in later threads moving faster than in the early ones, reaching a maximum speed of about 200 km s-1. Time-slice analysis revealed a striped pattern of dark and bright strands propagating along the jet, along with apparent damped oscillations across the jet. This is suggestive of a (un)twisting motion in the jet, possibly an Alfvén wave. Bald patches in field lines, low-altitude flux ropes, diverging flow patterns, and a null point were identified at the basis of the jet. Conclusions: Unlike classical λ or Eiffel-tower-shaped jets that appear to be caused by reconnection in current sheets containing null points, reconnection in regions containing bald patches seems to be crucial in triggering the present jet. There is no observational evidence that the flux ropes detected in the topological analysis were actually being ejected themselves, as occurs in the violent phase of

  7. Direct Observation and Control of Ultrafast Photoinduced Twisted Intramolecular Charge Transfer (TICT) in Triphenyl-Methane Dyes

    PubMed Central

    Li, Guifeng; Magana, Donny; Dyer, R. Brian

    2012-01-01

    Femtosecond time-resolved infrared spectroscopy was employed to study intramolecular charge transfer in triphenylmethane dyes, including malachite green (MG), malachite green carbinol base (MGCB), and leucomalachite green (LMG). A local excited state (LE) and a twisted intramolecular charge-transfer (TICT) state have been observed directly in MG. Furthermore, solvent-controlled TICT measurements in a series of linear alcohols indicate that the transition time (4–11 ps) from LE to TICT is strongly dependent on alcohol viscosity, which is due to rotational hindrance of dimethylaniline in high-viscosity solvents. For LMG, no TICT is observed due to steric hindrance caused by the sp3-hybridized central carbon atom. However, for MGCB, TICT is rescued by the addition of the electron-donating hydroxyl group to the bridge. These results for MG and its analogues provide new insight regarding the dynamics and mechanism of twisted intramolecular charge transfer (TICT) in triphenylmethane dyes. PMID:23009668

  8. Light's twist

    PubMed Central

    Padgett, Miles

    2014-01-01

    That light travels in straight lines is a statement of the obvious. However, the energy and momentum flow within light beams can twist to form vortices such as eddies in a stream. These twists carry angular momentum, which can make microscopic objects spin, be used to encode extra information in communication systems, enable the design of novel imaging systems and allow new tests of quantum mechanics. PMID:25484612

  9. Prp19 facilitates invasion of hepatocellular carcinoma via p38 mitogen-activated protein kinase/Twist1 pathway

    PubMed Central

    Zhu, Ji-Min; Yu, Qian; Xue, Ru-Yi; Fang, Ying; Zhang, Yi-An; Chen, Yan-Jie; Liu, Tao-Tao; Dong, Ling; Shen, Xi-Zhong

    2016-01-01

    Pre-mRNA processing factor 19 (Prp19) is involved in many cellular events including pre-mRNA processing and DNA damage response. However, the pathological role of Prp19 in hepatocellular carcinoma (HCC) is still elusive. Here, we reported that Prp19 was increased in most HCC tissues and HCC cell lines, and its overexpression in HCC tissues was positively correlated with vascular invasion, tumor capsule breakthrough and poor prognosis. Prp19 potentiated migratory and invasive abilities of HCC cells in vitro and in vivo. Furthermore Prp19 facilitated Twist1-induced epithelial-mesenchymal transition. Mechanistic insights revealed that Prp19 directly binded with TGF-β-activated kinase1 (TAK1) and promoted the activation of p38 mitogen-activated protein kinase (MAPK), preventing Twist1 from degradation. Finally Prp19/p38 MAPK/Twist1 axis was attested in nude mice xenografts and HCC patient specimens. This work implies that the gain of Prp19 is a critical event during the progression of HCC, making it a promising target for malignancies with aberrant Prp19 expression. PMID:26959880

  10. Correction of contrast in projection systems by means of phase-controlled prism coatings and band-shifted twist compensators

    NASA Astrophysics Data System (ADS)

    Rosenbluth, Alan E.; Lu, Minhua; Yang, Kei H.; Ho, Kenneth; Singh, Rama N.; Nakasogi, Teruhiro

    2000-04-01

    Projectors that use LCOS lightvalves face special contrast requirements. Most configurations for reflective light valves employ tilted beam-dividing coatings that see both bright and dark polarization states. The optics must then be designed to eliminate polarization mixing at these coatings, which ordinarily arises when the S and P planes for different rays are non-parallel. We show how phase- controlled coatings can exploit the double-pass symmetry of the Plumbicon tri-prism geometry to correct this effect, reducing cross-polarized reflectivity to approximately 1E-3 when the light valve is mirror-like in black-state. Though contrast in different rays varies as a function of both ray skew component and coating angle of incidence, we show that for NA control in the optics. Scatter depolarization at the edges of pixel electrodes is enhanced in these light valves, because the inherent twist causes the backplane polarization to be rotated out of alignment with pixel edges. We show that all of these contrast degradation mechanisms can be addressed by incorporating into the light valve a compensating layer having opposite birefringence to the black-state TN active layer. Moreover, when the compensating layer and driven layer are blue-shifted to a shorter LC thickness than would ordinarily be appropriate for the wavelength band of interest, a highly achromatic response is obtained at all gray levels.

  11. Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons.

    PubMed

    Srivastava, Sudhanshu; Santos, Aaron; Critchley, Kevin; Kim, Ki-Sub; Podsiadlo, Paul; Sun, Kai; Lee, Jaebeom; Xu, Chuanlai; Lilly, G Daniel; Glotzer, Sharon C; Kotov, Nicholas A

    2010-03-12

    The collective properties of nanoparticles manifest in their ability to self-organize into complex microscale structures. Slow oxidation of tellurium ions in cadmium telluride (CdTe) nanoparticles results in the assembly of 1- to 4-micrometer-long flat ribbons made of several layers of individual cadmium sulfide (CdS)/CdTe nanocrystals. Twisting of the ribbons with an equal distribution of left and right helices was induced by illumination with visible light. The pitch lengths (250 to 1500 nanometers) varied with illumination dose, and the twisting was associated with the relief of mechanical shear stress in assembled ribbons caused by photooxidation of CdS. Unusual shapes of multiparticle assemblies, such as ellipsoidal clouds, dog-bone agglomerates, and ribbon bunches, were observed as intermediate stages. Computer simulations revealed that the balance between attraction and electrostatic repulsion determines the resulting geometry and dimensionality of the nanoparticle assemblies.

  12. A New Technique For Measuring The Twist Of Photospheric Active Regions Without Recourse To The Force-Free-Field Equation: Reconfirming The Hemispheric Helicity Trend

    NASA Astrophysics Data System (ADS)

    Nandy, Dibyendu; Calhoun, A.; Windschitl, J.; Canfield, R. C.; Linton, M. G.

    2007-05-01

    The twist component of magnetic helicity in solar active regions is known to be an important indicator of sub-photospheric flux tube dynamics and solar eruptive activity. Traditionally, estimates of the parameter alpha -- appearing in the force-free-field equation -- has been used to infer the twist of photospheric active regions. However, the photosphere is not force-free and this has lead to recent concerns on the validity of using the alpha parameter for determining photospheric active region twist. We have devised a new flux-tube-fitting technique for determining the twist of active regions without recourse to the force-free-field equation. This method assumes that the underlying active region flux system is cylindrically symmetric and uniformly twisted. By using this new technique, on a statistically compelling number of photospheric active region vector magnetograms, we re-confirm the hemispheric helicity rule independent of the force-free-field assumption. This research has been supported in parts by a NASA Living With a Star grant NNG05GE47G. A.C. and J.W. were supported by a NSF Research Experience for Undergraduates grant ATM-0243923 to Montana State University. M.G.L. acknowledges support from NASA and the Office of Naval Research.

  13. Theoretical stability and control characteristics of wings with various amounts of taper and twist

    NASA Technical Reports Server (NTRS)

    Pearson, Henry A; Jones, Robert T

    1938-01-01

    Stability derivatives have been computed for twisted wings of different plan forms that include variations in both the wing taper and the aspect ratio. Taper ratios of 1.0, 0,50, and 0.25 are considered for each of three aspect ratios: 6, 10, and 16. The specific derivatives for which results are given are the rolling-moment and the yawing-moment derivatives with respect to (a) rolling velocity, (b) yawing velocity, and (c) angle of sideslip. These results are given in such a form that the effect of any initial symmetrical wing twist (such as may be produced by flaps) on the derivatives may easily be taken into account. In addition to the stability derivatives, results are included for determining the theoretical rolling moment due to aileron deflection and a series of influence lines is given by which the loading across the span may be determined for any angle-of-attack distribution that may occur on the wing plan forms considered. The report also includes incidental references to the application of the results.

  14. Synthesis of Medium-Bridged Twisted Lactams via Cation–π Control of Regiochemistry of Intramolecular Schmidt Reaction

    PubMed Central

    Szostak, Michal; Yao, Lei; Aubé, Jeffrey

    2010-01-01

    Medium-bridged twisted amides can be synthesized by the intramolecular Schmidt reaction of 2-azidoalkyl ketones. In these reactions, the regiochemistry of the Schmidt reaction is diverted into a typically disfavored pathway by the presence of an aromatic group at the α-position adjacent to the ketone, which stabilizes the predominantly reactive conformation of the azidohydrin intermediate by engaging in a non-bonded cation–π interaction with the positively charged diazonium cation. This results in the rarely observed rearrangement of the C-C bond distal to the azidoalkyl chain. This reaction pathway also requires the azide-containing tether to be situated in the axial orientation in the key azidohydrin intermediate. Examination of the effect of substitution of aromatic rings on the regiochemistry of the Schmidt reaction shows an increase in the migratory selectivity with more electron-rich aromatic groups. The selectivity is lower when an electron withdrawing substituent is placed on the aromatic ring. The ability of cation–π interactions to act as a controlling element decreases when Lewis acids coordinate to substituents on the aromatic ring. The developed version of the Schmidt reaction provides a direct access to a family of medium-bridged twisted amides with [4.3.1] bicyclic system, compounds which are very difficult to access using other currently available methods. PMID:20095596

  15. A method for controlling the synthesis of stable twisted two-dimensional conjugated molecules.

    PubMed

    Li, Yongjun; Jia, Zhiyu; Xiao, Shengqiang; Liu, Huibiao; Li, Yuliang

    2016-01-01

    Thermodynamic stabilization (π-electron delocalization through effective conjugation) and kinetic stabilization (blocking the most-reactive sites) are important considerations when designing stable polycyclic aromatic hydrocarbons displaying tunable optoelectronic properties. Here, we demonstrate an efficient method for preparing a series of stable two-dimensional (2D) twisted dibenzoterrylene-acenes. We investigated their electronic structures and geometries in the ground state through various experiments assisted by calculations using density functional theory. We find that the length of the acene has a clear effect on the photophysical, electrochemical, and magnetic properties. These molecules exhibit tunable ground-state structures, in which a stable open-shell quintet tetraradical can be transferred to triplet diradicals. Such compounds are promising candidates for use in nonlinear optics, field effect transistors and organic spintronics; furthermore, they may enable broader applications of 2D small organic molecules in high-performance electronic and optical devices. PMID:27181692

  16. Theoretical stability and control characteristics of wings with various amounts of taper and twist

    NASA Technical Reports Server (NTRS)

    Pearson, H. A.; Jones, R. T.

    1976-01-01

    Stability derivatives have been computed for twisted wings of different planforms that include variations in both the wing taper and the aspect ratio. Taper ratios of 1.0, 0.50, and 0.25 are considered for each of three aspect ratios: 6, 10, and 16. The specific derivatives for which results are given are the rolling moment and the yawing moment derivatives with respect to rolling velocity, yawing velocity, and angle of sideslip. In addition to the stability derivatives, results are included for determining the theoretical rolling moment due to aileron deflection and a series of influence lines is given by which the loading across the span may be determined for any angle-of-attack distribution that may occur on the wing planforms considered.

  17. A method for controlling the synthesis of stable twisted two-dimensional conjugated molecules

    PubMed Central

    Li, Yongjun; Jia, Zhiyu; Xiao, Shengqiang; Liu, Huibiao; Li, Yuliang

    2016-01-01

    Thermodynamic stabilization (π-electron delocalization through effective conjugation) and kinetic stabilization (blocking the most-reactive sites) are important considerations when designing stable polycyclic aromatic hydrocarbons displaying tunable optoelectronic properties. Here, we demonstrate an efficient method for preparing a series of stable two-dimensional (2D) twisted dibenzoterrylene-acenes. We investigated their electronic structures and geometries in the ground state through various experiments assisted by calculations using density functional theory. We find that the length of the acene has a clear effect on the photophysical, electrochemical, and magnetic properties. These molecules exhibit tunable ground-state structures, in which a stable open-shell quintet tetraradical can be transferred to triplet diradicals. Such compounds are promising candidates for use in nonlinear optics, field effect transistors and organic spintronics; furthermore, they may enable broader applications of 2D small organic molecules in high-performance electronic and optical devices. PMID:27181692

  18. Electrically controlled relaxation at twist deformation of a dual-frequency nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Vasil'Ev, V. N.; Konshina, E. A.; Fedorov, M. A.; Amosova, L. P.

    2010-06-01

    The relaxation of a dual-frequency liquid crystal at the twist effect and the influence of the external electrical circuit parameters on the relaxation process in the case of a large initial inclination angle (44) of the director are studied. It is found that oscillation arising at the trailing edge of the modulator’s electro-optic response considerably increases the time of relaxation due to the action of a high-frequency electric field. The influence of the electric field on the relaxation time is stronger, the thinner the liquid crystal layer. It is experimentally shown that the duration of the interval between the removal of low-frequency voltage from and the application of high-frequency voltage to the modulator affects the relaxation time.

  19. Twist: a molecular target in cancer therapeutics.

    PubMed

    Khan, Md Asaduzzaman; Chen, Han-chun; Zhang, Dianzheng; Fu, Junjiang

    2013-10-01

    Twist, the basic helix-loop-helix transcription factor, is involved in the process of epithelial to mesenchymal transitions (EMTs), which play an essential role in cancer metastasis. Overexpression of Twist or its promoter methylation is a common scenario in metastatic carcinomas. Twist is activated by a variety of signal transduction pathways, including Akt, signal transducer and activator of transcription 3, mitogen-activated protein kinase, Ras, and Wnt signaling. Activated Twist upregulates N-cadherin and downregulates E-cadherin, which are the hallmarks of EMT. Moreover, Twist plays an important role in some physiological processes involved in metastasis, like angiogenesis, invadopodia, extravasation, and chromosomal instability. Twist also protects cancer cells from apoptotic cell death. In addition, Twist is responsible for the stemness of cancer cells and the generation of drug resistance. Recently, targeting Twist has gained significant interests in cancer therapeutics. The inactivation of Twist by small RNA technology or chemotherapeutic approach has been proved successful. Moreover, several inhibitors which are antagonistic to the upstream or downstream molecules of Twist signaling pathways have also been identified. Development of potential treatment strategies by targeting Twist has a great promise in cancer therapeutics.

  20. Twisted baskets.

    PubMed

    Hermann, Keith; Pratumyot, Yaowalak; Polen, Shane; Hardin, Alex M; Dalkilic, Erdin; Dastan, Arif; Badjić, Jovica D

    2015-02-23

    A preparative procedure for obtaining a pair of twisted molecular baskets, each comprising a chiral framework with either right ((P)-1syn) or left ((M)-1syn) sense of twist and six ester groups at the rim has been developed and optimized. The racemic (P/M)-1syn can be obtained in three synthetic steps from accessible starting materials. The resolution of (P/M)-1syn is accomplished by its transesterification with (1R,2S,5R)-(-)-menthol in the presence of a Ti(IV) catalyst to give diastereomeric 8(P) and 8(M). It was found that dendritic-like cavitands 8(P) and 8(M), in CD2Cl2, undergo self-inclusion ((1)H NMR spectroscopy) with a menthol moiety occupying the cavity of each host. Importantly, the degree of inclusion of the menthol group was ((1)H NMR spectroscopy) found to be greater in the case of 8(P) than 8(M). Accordingly, it is suggested that different folding characteristic of 8(P) and 8(M) ought to affect the physicochemical characteristics of the hosts to permit their effective separation by column chromatography. The absolute configuration of 8(P)/8(M), encompassing right- and left-handed "cups", was determined with the exciton chirality method and also verified in silico (DFT: B3LYP/TZVP). Finally, the twisted baskets are strongly fluorescent due to three naphthalene chromophores, having a high fluorescence quantum yield within the rigid framework of 8(P)/8(M). PMID:25604262

  1. Adaptive continuous twisting algorithm

    NASA Astrophysics Data System (ADS)

    Moreno, Jaime A.; Negrete, Daniel Y.; Torres-González, Victor; Fridman, Leonid

    2016-09-01

    In this paper, an adaptive continuous twisting algorithm (ACTA) is presented. For double integrator, ACTA produces a continuous control signal ensuring finite time convergence of the states to zero. Moreover, the control signal generated by ACTA compensates the Lipschitz perturbation in finite time, i.e. its value converges to the opposite value of the perturbation. ACTA also keeps its convergence properties, even in the case that the upper bound of the derivative of the perturbation exists, but it is unknown.

  2. Twisted intramolecular charge transfer and its contribution to the NLO activity of Diglycine Picrate: a vibrational spectroscopic study.

    PubMed

    Alen, S; Sajan, D; Umadevi, T; Němec, Ivan; Baburaj, M S; Bena Jothy, V; Selin Joy, B H

    2015-01-25

    Single crystals of Diglycine Picrate (DGLP) were grown by slow evaporation technique and the vibrational spectral analysis is carried out using FT Raman and FT-IR spectroscopy, supported by Density Functional Theoretical (DFT) computations to derive equilibrium geometry, vibrational wavenumbers and first hyperpolarizability. The vibrational spectra confirm the existence of NH3(+) in DGLP. The influence of Twisted Intramolecular Charge Transfer (TICT) caused by the strong ionic ground state hydrogen bonding between charged species making DGLP crystal to have the non-centrosymmetric structure has been discussed. The Natural Bond Orbital (NBO) analysis confirms the occurrence of strong intermolecular N-H⋯O hydrogen bond. The HOMO-LUMO energy gap and the first order hyperpolarizability were calculated and it supports the nonlinear optical activity of the Diglycine Picrate crystal.

  3. Force-free field modeling of twist and braiding-induced magnetic energy in an active-region corona

    SciTech Connect

    Thalmann, J. K.

    2014-01-01

    The theoretical concept that braided magnetic field lines in the solar corona may dissipate a sufficient amount of energy to account for the brightening observed in the active-region (AR) corona has only recently been substantiated by high-resolution observations. From the analysis of coronal images obtained with the High Resolution Coronal Imager, first observational evidence of the braiding of magnetic field lines was reported by Cirtain et al. (hereafter CG13). We present nonlinear force-free reconstructions of the associated coronal magnetic field based on Solar Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms. We deliver estimates of the free magnetic energy associated with a braided coronal structure. Our model results suggest (∼100 times) more free energy at the braiding site than analytically estimated by CG13, strengthening the possibility of the AR corona being heated by field line braiding. We were able to appropriately assess the coronal free energy by using vector field measurements and we attribute the lower energy estimate of CG13 to the underestimated (by a factor of 10) azimuthal field strength. We also quantify the increase in the overall twist of a flare-related flux rope that was noted by CG13. From our models we find that the overall twist of the flux rope increased by about half a turn within 12 minutes. Unlike another method to which we compare our results, we evaluate the winding of the flux rope's constituent field lines around each other purely based on their modeled coronal three-dimensional field line geometry. To our knowledge, this is done for the first time here.

  4. Certainty equivalence adaptation combined with super-twisting sliding-mode control

    NASA Astrophysics Data System (ADS)

    Barth, A.; Reichhartinger, M.; Wulff, K.; Horn, M.; Reger, J.

    2016-09-01

    In this paper, a Lyapunov-based control concept is presented that combines variable structure and adaptive control. The considered system class consists of nonlinear single input systems which are affected by matched structured and unstructured uncertainties. Resorting to the certainty equivalence principle, the controller exploits advantages of both the sliding-mode and the adaptive control methodology. It is demonstrated that the gains of the discontinuous control action may be reduced remarkably when compared with pure sliding-mode-based approaches. The efficiency of the presented concept is demonstrated in detail, using results of numerical simulations.

  5. Anisotropic piezoelectric twist actuation of helicopter rotor blades: Aeroelastic analysis and design optimization

    NASA Astrophysics Data System (ADS)

    Wilkie, William Keats

    1997-12-01

    An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority

  6. Super-twisting sliding mode differentiation for improving PD controllers performance of second order systems.

    PubMed

    Salgado, Ivan; Chairez, Isaac; Camacho, Oscar; Yañez, Cornelio

    2014-07-01

    Designing a proportional derivative (PD) controller has as main problem, to obtain the derivative of the output error signal when it is contaminated with high frequency noises. To overcome this disadvantage, the supertwisting algorithm (STA) is applied in closed-loop with a PD structure for multi-input multi-output (MIMO) second order nonlinear systems. The stability conditions were analyzed in terms of a strict non-smooth Lyapunov function and the solution of Riccati equations. A set of numerical test was designed to show the advantages of implementing PD controllers that used STA as a robust exact differentiator. The first numerical example showed the stabilization of an inverted pendulum. The second example was designed to solve the tracking problem of a two-link robot manipulator.

  7. ARTEMIN Promotes De Novo Angiogenesis in ER Negative Mammary Carcinoma through Activation of TWIST1-VEGF-A Signalling

    PubMed Central

    Banerjee, Arindam; Wu, Zheng-Sheng; Qian, Peng-Xu; Kang, Jian; Liu, Dong-Xu; Zhu, Tao; Lobie, Peter E.

    2012-01-01

    The neurotrophic factor ARTEMIN (ARTN) has been reported to possess a role in mammary carcinoma progression and metastasis. Herein, we report that ARTN modulates endothelial cell behaviour and promotes angiogenesis in ER-mammary carcinoma (ER-MC). Human microvascular endothelial cells (HMEC-1) do not express ARTN but respond to exogenously added, and paracrine ARTN secreted by ER-MC cells. ARTN promoted endothelial cell proliferation, migration, invasion and 3D matrigel tube formation. Angiogenic behaviour promoted by ARTN secreted by ER-MC cells was mediated by AKT with resultant increased TWIST1 and subsequently VEGF-A expression. In a patient cohort of ER-MC, ARTN positively correlated with VEGF-A expression as measured by Spearman’s rank correlation analysis. In xenograft experiments, ER-MC cells with forced expression of ARTN produced tumors with increased VEGF-A expression and increased microvessel density (CD31 and CD34) compared to tumors formed by control cells. Functional inhibition of ARTN by siRNA decreased the angiogenic effects of ER-MC cells. Bevacizumab (a humanized monoclonal anti-VEGF-A antibody) partially inhibited the ARTN mediated angiogenic effects of ER-MC cells and combined inhibition of ARTN and VEGF-A by the same resulted in further significant decrease in the angiogenic effects of ER-MC cells. Thus, ARTN stimulates de novo tumor angiogenesis mediated in part by VEGF-A. ARTN therefore co-ordinately regulates multiple aspects of tumor growth and metastasis. PMID:23185544

  8. Sterically-controlled intermolecular Friedel-Crafts acylation with twisted amides via selective N-C cleavage under mild conditions.

    PubMed

    Liu, Yongmei; Meng, Guangrong; Liu, Ruzhang; Szostak, Michal

    2016-05-21

    Highly chemoselective Friedel-Crafts acylation with twisted amides under mild conditions is reported for the first time. The reaction shows high functional group tolerance, obviating the need for preformed sensitive organometallic reagents and expensive transition metal catalysts. The high reactivity of amides is switched on by ground-state steric distortion to disrupt the amide bond nN→πCO* resonance as a critical design feature. Conceptually, this new acid-promoted mechanism of twisted amides provides direct access to bench-stable acylating reagents under mild, metal-free conditions. PMID:27139813

  9. Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.

    2015-01-01

    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.

  10. The twisted top

    NASA Astrophysics Data System (ADS)

    Thiffeault, Jean-Luc; Morrison, P. J.

    2001-05-01

    We describe a new type of top, the twisted top, obtained by appending a cocycle to the Lie-Poisson bracket for the charged heavy top, thus breaking its semidirect product structure. The twisted top has an integrable case that corresponds to the Lagrange (symmetric) top. We give a canonical description of the twisted top in terms of Euler angles. We also show by a numerical calculation of the largest Lyapunov exponent that the Kovalevskaya case of the twisted top is chaotic.

  11. Polarization twist in perovskite ferrielectrics.

    PubMed

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-09-02

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of 'polarization twist', which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms.

  12. Polarization twist in perovskite ferrielectrics.

    PubMed

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-01-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of 'polarization twist', which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824

  13. Cable-Twisting Machine

    NASA Technical Reports Server (NTRS)

    Kurnett, S.

    1982-01-01

    New cable-twisting machine is smaller and faster than many production units. Is useful mainly in production of short-run special cables. Already-twisted cable can be fed along axis of machine. Faster operation than typical industrial cable-twisting machines possible by using smaller spools of wire.

  14. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures

    NASA Astrophysics Data System (ADS)

    Mishchenko, A.; Tu, J. S.; Cao, Y.; Gorbachev, R. V.; Wallbank, J. R.; Greenaway, M. T.; Morozov, V. E.; Morozov, S. V.; Zhu, M. J.; Wong, S. L.; Withers, F.; Woods, C. R.; Kim, Y.-J.; Watanabe, K.; Taniguchi, T.; Vdovin, E. E.; Makarovsky, O.; Fromhold, T. M.; Fal'Ko, V. I.; Geim, A. K.; Eaves, L.; Novoselov, K. S.

    2014-10-01

    Recent developments in the technology of van der Waals heterostructures made from two-dimensional atomic crystals have already led to the observation of new physical phenomena, such as the metal-insulator transition and Coulomb drag, and to the realization of functional devices, such as tunnel diodes, tunnel transistors and photovoltaic sensors. An unprecedented degree of control of the electronic properties is available not only by means of the selection of materials in the stack, but also through the additional fine-tuning achievable by adjusting the built-in strain and relative orientation of the component layers. Here we demonstrate how careful alignment of the crystallographic orientation of two graphene electrodes separated by a layer of hexagonal boron nitride in a transistor device can achieve resonant tunnelling with conservation of electron energy, momentum and, potentially, chirality. We show how the resonance peak and negative differential conductance in the device characteristics induce a tunable radiofrequency oscillatory current that has potential for future high-frequency technology.

  15. Twisted Van der Waals Systems

    NASA Astrophysics Data System (ADS)

    Gani, Satrio; Rossi, Enrico

    Van der Waals systems formed by two-dimensional (2D) crystals and nanostructures possess electronic properties that make them extremely interesting for basic science and for possible technological applications. By tuning the relative angle (the twist angle) between the layers, or nanostructures, forming the Van der Waals systems experimentalists have been able to control the stacking configuration of such systems. We study the dependence on the twist angle of the electronic properties of two classes of Van der Waals systems: double layers formed by two, one-atom thick, layers of a metal dichalcogenide such as molybdenum disulfide (MoS2), and graphene nanoribbons on a hexagonal boron nitride substrate. We present results that show how, for both classes of systems, the electronic properties can be strongly tuned via the twist angle. Work supported by ACS-PRF-53581-DNI5 and NSF-DMR-1455233.

  16. Twist within a somersault.

    PubMed

    Mikl, Joanne; Rye, David C

    2016-02-01

    The twisting somersault is a key skill in diving and gymnastics. The components of twist and somersault are defined with respect to anatomical axes, and combinations of multiples of half rotations of twist and somersault define specific twisting somersault skills. To achieve a twisting somersault skill twist must be continuous; otherwise oscillations in twist while somersaulting may be observed. The posture-dependent inertial properties of the athlete and the initial conditions determine if continuous or oscillating twist is observed. The paper derives equations for the amount of somersault required per half twist, or per twist oscillation, without making assumptions about the relative magnitudes of the moments of inertia. From these equations the skills achievable may be determined. The error associated with the common assumption that the medial and transverse principal moments of inertia are equal is explored. It is concluded that the error grows as the number of twists per somersault decreases, when the medial and transverse moments of inertia diverge, and when the longitudinal moment of inertia approaches either the medial or transverse moment of inertia. Inertial property data for an example athlete are used to illustrate the various rotational states that can occur.

  17. Twist within a somersault.

    PubMed

    Mikl, Joanne; Rye, David C

    2016-02-01

    The twisting somersault is a key skill in diving and gymnastics. The components of twist and somersault are defined with respect to anatomical axes, and combinations of multiples of half rotations of twist and somersault define specific twisting somersault skills. To achieve a twisting somersault skill twist must be continuous; otherwise oscillations in twist while somersaulting may be observed. The posture-dependent inertial properties of the athlete and the initial conditions determine if continuous or oscillating twist is observed. The paper derives equations for the amount of somersault required per half twist, or per twist oscillation, without making assumptions about the relative magnitudes of the moments of inertia. From these equations the skills achievable may be determined. The error associated with the common assumption that the medial and transverse principal moments of inertia are equal is explored. It is concluded that the error grows as the number of twists per somersault decreases, when the medial and transverse moments of inertia diverge, and when the longitudinal moment of inertia approaches either the medial or transverse moment of inertia. Inertial property data for an example athlete are used to illustrate the various rotational states that can occur. PMID:26583967

  18. The Invariant Twist of Magnetic Fields in the Relativistic Jets of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, Ioannis; Christodoulou, Dimitris M.; Kazanas, Demosthenes; Gabuzda, Denise C.

    2009-01-01

    The origin of cosmic magnetic (B) fields remains an open question. It is generally believed that very weak primordial B fields are amplified by dynamo processes, but it appears unlikely that the amplification proceeds fast enough to account for the fields presently observed in galaxies and galaxy clusters. In an alternative scenario, cosmic B fields are generated near the inner edges of accretion disks in Active Galactic Nuclei (AGNs) by azimuthal electric currents due to the difference between the plasma electron and ion velocities that arises when the electrons are retarded by interactions with photons. While dynamo processes show no preference for the polarity of the (presumably random) seed field that they amplify, this alternative mechanism uniquely relates the polarity of the poloidal B field to the angular velocity of the accretion disk, resulting in a unique direction for the toroidal B field induced by disk rotation. Observations of the toroidal fields of 29 AGN jets revealed by parsec-scale Faraday rotation measurements show a clear asymmetry that is consistent with this model, with the probability that this asymmetry came about by chance being less than 1 %. This lends support to the hypothesis that the Universe is seeded by B fields that are generated in AGN via this mechanism

  19. "Oliver Twist": A Teacher's Guide.

    ERIC Educational Resources Information Center

    Cashion, Carol; Fischer, Diana

    This teacher's guide for public television's 3-part adaptation of Charles Dickens's "Oliver Twist" provides information that will help enrich students' viewing of the series, whether or not they read the novel. The guide includes a wide range of discussion and activity ideas; there is also a series Web site and a list of Web resources.…

  20. Down regulation of Akirin-2 increases chemosensitivity in human glioblastomas more efficiently than Twist-1

    PubMed Central

    Krossa, Sebastian; Schmitt, Anne Dorothée; Hattermann, Kirsten; Fritsch, Jürgen; Scheidig, Axel J.; Mehdorn, Hubertus Maximilian; Held-Feindt, Janka

    2015-01-01

    The Twist-1 transcription factor and its interacting protein Akirin-2 regulate apoptosis. We found that in glioblastomas, highly malignant brain tumors, Akirin-2 and Twist-1 were expressed in glial fibrillary acidic protein positive tumor regions as well as in tumor endothelial cells and infiltrating macrophages / microglia. Temozolomide (TMZ) induced the expression of both molecules, partly shifting their nuclear to cytosolic localization. The knock-down (kd) of Akirin-2 increased the activity of cleaved (c)Caspase-3/-7, the amounts of cCaspases-3, -7 and cPARP-1 and resulted in an increased number of apoptotic cells after TMZ exposure. Glioblastoma cells containing decreased amounts of Akirin-2 after kd contained increased amounts of cCaspase-3 as determined by the ImageStreamx Mark II technology. For Twist-1, similar results were obtained with the exception that the combination of TMZ treatment and Twist-1 kd failed to significantly reduce chemoresistance compared with controls. This could be attributed to a cell population containing only slightly increased cCaspase-3 together with decreased Twist-1 levels, which was clearly larger than the respective population observed under Akirin-2 kd. Our results showed that, compared with Twist-1, Akirin-2 is the more promising target for RNAi strategies antagonizing Twist-1/Akirin-2 facilitated glioblastoma cell survival. PMID:26036627

  1. Twist does a twist to the reactivity: stoichiometric and catalytic oxidations with twisted tetramethyl-IBX.

    PubMed

    Moorthy, Jarugu Narasimha; Senapati, Kalyan; Parida, Keshaba Nanda; Jhulki, Samik; Sooraj, Kunnikuruvan; Nair, Nisanth N

    2011-12-01

    The methyl groups in TetMe-IBX lower the activation energy corresponding to the rate-determining hypervalent twisting (theoretical calculations), and the steric relay between successive methyl groups twists the structure, which manifests in significant solubility in common organic solvents. Consequently, oxidations of alcohols and sulfides occur at room temperature in common organic solvents. In situ generation of the reactive TetMe-IBX from its precursor iodo-acid, i.e., 3,4,5,6-tetramethyl-2-iodobenzoic acid, in the presence of oxone as a co-oxidant facilitates the oxidation of diverse alcohols at room temperature.

  2. A comparison of baseline aerodynamic performance of optimally-twisted versus non-twisted HAWT blades

    SciTech Connect

    Simms, D A; Robinson, M C; Hand, M M; Fingersh, L J

    1995-01-01

    NREL has completed the initial twisted blade field tests of the ``Unsteady Aerodynamics Experiment.`` This test series continues systematic measurements of unsteady aerodynamic phenomena prevalent in stall-controlled horizontal axis wind turbines (HAWTs). The blade twist distribution optimizes power production at a single angle of attack along the span. Abrupt transitions into and out of stall are created due to rapid changes in inflow. Data from earlier experiments have been analyzed extensively to characterize the steady and unsteady response of untwisted blades. In this report, a characterization and comparison of the baseline aerodynamic performance of the twisted versus non-twisted blade sets will be presented for steady flow conditions.

  3. Emergence of Twisted Flux in Prominence Observations

    NASA Astrophysics Data System (ADS)

    Okamoto, T. J.; Tsuneta, S.; Berger, T. E.; Lites, B. W.

    2012-05-01

    The emergence of twisted flux is a key process for supply of magnetic flux into the corona as well as solar dynamic activities such as sunspot formation and trigger of coronal mass ejections. In particular, there are numerous discussions about the role and necessity of twisted flux emergence for origin of prominences. However, the difficulty to measure vector magnetic fields has not allowed us to investigate the detailed relationship between emerging twisted flux and prominence. Hinode has changed the situation. The Spectro-Polarimeter aboard Hinode has high sensitivity to weaker magnetic fields of fine structures, and provides opportunities to detect weak horizontal magnetic fields. As a result, we have obtained signatures of twisted flux emergence associated with prominences: The observational features are "broadening and narrowing of a region dominated by horizontal magnetic field" and "rotating direction of horizontal field" on the photosphere. Moreover, the data show the interaction between the emerging twisted flux and granules, and that the flux rope has high intrinsic strength 650 G, while the flux density is as low as 100 G. Theoretical research with numerical simulation on the basis of these results is active. In addition, we investigate activities of a coronal cavity overlying a prominence on the limb, and suggest the existence of twisted flux rope to explain the activities of prominence and the coronal cavity comprehensively. Here we introduce both these observational and theoretical results, and discuss the details about emerging twisted flux.

  4. Active multistable twisting device

    NASA Technical Reports Server (NTRS)

    Schultz, Marc R. (Inventor)

    2008-01-01

    Two similarly shaped, such as rectangular, shells are attached to one another such that they form a resulting thin airfoil-like structure. The resulting device has at least two stable equilibrium shapes. The device can be transformed from one shape to another with a snap-through action. One or more actuators can be used to effect the snap-through; i.e., transform the device from one stable shape to another. Power to the actuators is needed only to transform the device from one shape to another.

  5. Wire harness twisting aid

    NASA Technical Reports Server (NTRS)

    Casey, E. J.; Commadore, C. C.; Ingles, M. E.

    1980-01-01

    Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.

  6. Perversions with a twist

    NASA Astrophysics Data System (ADS)

    Silva, Pedro E. S.; Trigueiros, Joao L.; Trindade, Ana C.; Simoes, Ricardo; Dias, Ricardo G.; Godinho, Maria Helena; de Abreu, Fernao Vistulo

    2016-03-01

    Perversions connecting two helices with symmetric handedness are a common occurrence in nature, for example in tendrils. These defects can be found in our day life decorating ribbon gifts or when plants use tendrils to attach to a support. Perversions arise when clamped elastic filaments coil into a helical shape but have to conserve zero overall twist. We investigate whether other types of perversions exist and if they display different properties. Here we show mathematically and experimentally that a continuous range of different perversions can exist and present different geometries. Experimentally, different perversions were generated using micro electrospun fibres. Our experimental results also confirm that these perversions behave differently upon release and adopt different final configurations. These results also demonstrate that it is possible to control on demand the formation and shape of microfilaments, in particular, of electrospun fibres by using ultraviolet light.

  7. Perversions with a twist.

    PubMed

    Silva, Pedro E S; Trigueiros, Joao L; Trindade, Ana C; Simoes, Ricardo; Dias, Ricardo G; Godinho, Maria Helena; de Abreu, Fernao Vistulo

    2016-01-01

    Perversions connecting two helices with symmetric handedness are a common occurrence in nature, for example in tendrils. These defects can be found in our day life decorating ribbon gifts or when plants use tendrils to attach to a support. Perversions arise when clamped elastic filaments coil into a helical shape but have to conserve zero overall twist. We investigate whether other types of perversions exist and if they display different properties. Here we show mathematically and experimentally that a continuous range of different perversions can exist and present different geometries. Experimentally, different perversions were generated using micro electrospun fibres. Our experimental results also confirm that these perversions behave differently upon release and adopt different final configurations. These results also demonstrate that it is possible to control on demand the formation and shape of microfilaments, in particular, of electrospun fibres by using ultraviolet light. PMID:27025549

  8. Perversions with a twist

    PubMed Central

    Silva, Pedro E. S.; Trigueiros, Joao L.; Trindade, Ana C.; Simoes, Ricardo; Dias, Ricardo G.; Godinho, Maria Helena; de Abreu, Fernao Vistulo

    2016-01-01

    Perversions connecting two helices with symmetric handedness are a common occurrence in nature, for example in tendrils. These defects can be found in our day life decorating ribbon gifts or when plants use tendrils to attach to a support. Perversions arise when clamped elastic filaments coil into a helical shape but have to conserve zero overall twist. We investigate whether other types of perversions exist and if they display different properties. Here we show mathematically and experimentally that a continuous range of different perversions can exist and present different geometries. Experimentally, different perversions were generated using micro electrospun fibres. Our experimental results also confirm that these perversions behave differently upon release and adopt different final configurations. These results also demonstrate that it is possible to control on demand the formation and shape of microfilaments, in particular, of electrospun fibres by using ultraviolet light. PMID:27025549

  9. Polarization twist in perovskite ferrielectrics

    PubMed Central

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-01-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of ‘polarization twist’, which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824

  10. Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides

    NASA Astrophysics Data System (ADS)

    Görl, Daniel; Zhang, Xin; Stepanenko, Vladimir; Würthner, Frank

    2015-05-01

    New synthetic methodologies for the formation of block copolymers have revolutionized polymer science within the last two decades. However, the formation of supramolecular block copolymers composed of alternating sequences of larger block segments has not been realized yet. Here we show by transmission electron microscopy (TEM), 2D NMR and optical spectroscopy that two different perylene bisimide dyes bearing either a flat (A) or a twisted (B) core self-assemble in water into supramolecular block copolymers with an alternating sequence of (AmBB)n. The highly defined ultralong nanowire structure of these supramolecular copolymers is entirely different from those formed upon self-assembly of the individual counterparts, that is, stiff nanorods (A) and irregular nanoworms (B), respectively. Our studies further reveal that the as-formed supramolecular block copolymer constitutes a kinetic self-assembly product that transforms into thermodynamically more stable self-sorted homopolymers upon heating.

  11. Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides

    PubMed Central

    Görl, Daniel; Zhang, Xin; Stepanenko, Vladimir; Würthner, Frank

    2015-01-01

    New synthetic methodologies for the formation of block copolymers have revolutionized polymer science within the last two decades. However, the formation of supramolecular block copolymers composed of alternating sequences of larger block segments has not been realized yet. Here we show by transmission electron microscopy (TEM), 2D NMR and optical spectroscopy that two different perylene bisimide dyes bearing either a flat (A) or a twisted (B) core self-assemble in water into supramolecular block copolymers with an alternating sequence of (AmBB)n. The highly defined ultralong nanowire structure of these supramolecular copolymers is entirely different from those formed upon self-assembly of the individual counterparts, that is, stiff nanorods (A) and irregular nanoworms (B), respectively. Our studies further reveal that the as-formed supramolecular block copolymer constitutes a kinetic self-assembly product that transforms into thermodynamically more stable self-sorted homopolymers upon heating. PMID:25959777

  12. Instabilities of twisted strings

    NASA Astrophysics Data System (ADS)

    Forgács, Péter; Lukács, Árpád

    2009-12-01

    A linear stability analysis of twisted flux-tubes (strings) in an SU(2) semilocal theory — an Abelian-Higgs model with two charged scalar fields with a global SU(2) symmetry — is carried out. Here the twist refers to a relative phase between the two complex scalars (with linear dependence on, say, the z coordinate), and importantly it leads to a global current flowing along the the string. Such twisted strings bifurcate with the Abrikosov-Nielsen-Olesen (ANO) solution embedded in the semilocal theory. Our numerical investigations of the small fluctuation spectrum confirm previous results that twisted strings exhibit instabilities whose amplitudes grow exponentially in time. More precisely twisted strings with a single magnetic flux quantum admit a continuous family of unstable eigenmodes with harmonic z dependence, indexed by a wavenumber kin[-km, km]. Carrying out a perturbative semi-analytic analysis of the bifurcation, it is found that the purely numerical results are very well reproduced. This way one obtains not only a good qualitative description of the twisted solutions themselves as well as of their instabilities, but also a quantitative description of the numerical results. Our semi-analytic results indicate that in close analogy to the known instability of the embedded ANO vortex a twisted string is also likely to expand in size caused by the spreading out of its magnetic flux.

  13. Twist effect and sensing of few mode polymer fibre Bragg gratings

    NASA Astrophysics Data System (ADS)

    Yan, Binbin; Luo, Yanhua; Bhowmik, Kishore; Rajan, Ginu; Ji, Minning; Wen, Jianxiang; Peng, Gang-Ding

    2016-01-01

    For the development of the twist sensor based on few mode polymer optical fibre (POF) gratings, we investigated the twist effect of few mode (FM) POF Bragg gratings with large twist, and found the twist effect on reflection is highly mode dependent-insignificant on the fundamental mode and considerable on higher order modes, which seems closely related to the symmetry of modal field. In addition, Bragg wavelengths of both the fundamental mode and higher modes red-shift with the twisting and blue-shift with the twist releasing, and they almost display the similar response trend without any mode dependence. Further analysis found that the red-shift of the Bragg wavelength should be attributed to the redistribution of the pre-strain applied upon the POF, activated by twist. Finally, based on the reflection response to the twist, one kind of twist sensing scheme with few mode POF gratings has been demonstrated, showing great potential as a twist sensor.

  14. Twisted partially pure spinors

    NASA Astrophysics Data System (ADS)

    Herrera, Rafael; Tellez, Ivan

    2016-08-01

    Motivated by the relationship between orthogonal complex structures and pure spinors, we define twisted partially pure spinors in order to characterize spinorially subspaces of Euclidean space endowed with a complex structure.

  15. Twisting Neutron Waves

    NASA Astrophysics Data System (ADS)

    Pushin, Dmitry

    Most waves encountered in nature can be given a ``twist'', so that their phase winds around an axis parallel to the direction of wave propagation. Such waves are said to possess orbital angular momentum (OAM). For quantum particles such as photons, atoms, and electrons, this corresponds to the particle wavefunction having angular momentum of Lℏ along its propagation axis. Controlled generation and detection of OAM states of photons began in the 1990s, sparking considerable interest in applications of OAM in light and matter waves. OAM states of photons have found diverse applications such as broadband data multiplexing, massive quantum entanglement, optical trapping, microscopy, quantum state determination and teleportation, and interferometry. OAM states of electron beams have been used to rotate nanoparticles, determine the chirality of crystals and for magnetic microscopy. Here I discuss the first demonstration of OAM control of neutrons. Using neutron interferometry with a spatially incoherent input beam, we show the addition and conservation of quantum angular momenta, entanglement between quantum path and OAM degrees of freedom. Neutron-based quantum information science heretofore limited to spin, path, and energy degrees of freedom, now has access to another quantized variable, and OAM modalities of light, x-ray, and electron beams are extended to a massive, penetrating neutral particle. The methods of neutron phase imprinting demonstrated here expand the toolbox available for development of phase-sensitive techniques of neutron imaging. Financial support provided by the NSERC Create and Discovery programs, CERC and the NIST Quantum Information Program is acknowledged.

  16. Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Shin, SangJoon; Cesnik, Carlos E. S.

    2001-01-01

    Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration

  17. 1Application of Fluorescence Resonance Energy Transfer and Magnetic Twisting Cytometry to Quantitate Mechano-Chemical Signaling Activities in a Living Cell

    PubMed Central

    Na, Sungsoo; Wang, Ning

    2009-01-01

    Mechanotransduction is the process by which living cells sense mechanical forces and then convert them into biochemical signaling. Recently we showed that mechanical stress is transduced from the cell surface to remote cytoplasmic sites within 0.3 s, which is at least 40 to 50 times faster than soluble factor-induced signal transduction, and the sites of mechanotransduction colocalize with sites where mechanical stress causes microtubule displacement. These results suggest that mechanotransduction employs mechanisms different from those of soluble factor-induced signal transduction. Here we describe a protocol that utilizes fluorescence resonance energy transfer (FRET) and a magnetic twisting cytometry (MTC) device to capture rapid mechano-chemical signaling activities in living cells. PMID:18728305

  18. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    PubMed Central

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134

  19. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    NASA Astrophysics Data System (ADS)

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  20. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation.

    PubMed

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  1. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation.

    PubMed

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134

  2. Twisted superconducting semilocal strings

    NASA Astrophysics Data System (ADS)

    Forgács, Péter; Reuillon, Sébastien; Volkov, Mikhail S.

    2006-09-01

    A new class of twisted, current carrying, stationary, straight string solutions having finite energy per unit length is constructed numerically in an extended Abelian Higgs model with global SU(2) symmetry. The new solutions correspond to deformations of the embedded Abrikosov Nielsen Olesen (ANO) vortices by a twist—a relative coordinate dependent phase between the two Higgs fields. The twist induces a global current flowing through the string, and the deformed solutions bifurcate with the ANO vortices in the limit of vanishing current. For each value of the winding number n=1,2,… (determining the magnetic flux through the plane orthogonal to the string) there are n distinct, two-parametric families of solutions. One of the continuously varying parameters is the twist, or the corresponding current, the other one can be chosen to be the momentum of the string. For fixed values of the momentum and twist, the n distinct solutions have different energies and can be viewed as a lowest energy “fundamental” string and its n-1 “excitations” characterized by different values of their “polarization”. The latter is defined as the ratio of the angular momentum of the vortex and its momentum. In their rest frame the twisted vortices have lower energy than the embedded ANO vortices and could be of considerable importance in various physical systems (from condensed matter to cosmic strings).

  3. Twisted waveguide accelerating structure.

    SciTech Connect

    Kang, Y. W.

    2000-08-15

    A hollow waveguide with a uniform cross section may be used for accelerating charged particles if the phase velocity of an accelerating mode is equal to or less than the free space speed of light. Regular straight hollow waveguides have phase velocities of propagating electromagnetic waves greater than the free-space speed of light. if the waveguide is twisted, the phase velocities of the waveguide modes become slower. The twisted waveguide structure has been modeled and computer simulated in 3-D electromagnetic solvers to show the slow-wave properties for the accelerating mode.

  4. Twisted Yangians of small rank

    NASA Astrophysics Data System (ADS)

    Guay, Nicolas; Regelskis, Vidas; Wendlandt, Curtis

    2016-04-01

    We study quantized enveloping algebras called twisted Yangians associated with the symmetric pairs of types CI, BDI, and DIII (in Cartan's classification) when the rank is small. We establish isomorphisms between these twisted Yangians and the well known Olshanskii's twisted Yangians of types AI and AII, and also with the Molev-Ragoucy reflection algebras associated with symmetric pairs of type AIII. We also construct isomorphisms with twisted Yangians in Drinfeld's original presentation.

  5. Self-Portraits with a Twist

    ERIC Educational Resources Information Center

    DeMarco, Frederick

    2010-01-01

    This article describes an art activity on self-portraiture inspired by artist Tim Hawkinson. Hawkinson created a sculpture titled "Emoter" in which his face, moved by motors, twisted and contorted based on random signals from a TV. This art activity incorporates technology into the art room, brings the work of practicing artists alive, and is a…

  6. A Transformation Called "Twist"

    ERIC Educational Resources Information Center

    Hwang, Daniel

    2010-01-01

    The transformations found in secondary mathematics curriculum are typically limited to stretches and translations (e.g., ACARA, 2010). Advanced students may find the transformation, twist, to be of further interest. As most available resources are written for professional-level readers, this article is intended to be an introduction accessible to…

  7. Holographically generated twisted nematic liquid crystal gratings

    SciTech Connect

    Choi, Hyunhee; Wu, J.W.; Chang, Hye Jeong; Park, Byoungchoo

    2006-01-09

    A reflection holographic method is introduced to fabricate an electro-optically tunable twisted nematic (TN) liquid crystal (LC) grating, forgoing the geometrical drawing. The photoisomerization process occurring on the LC alignment layers of an LC cell in the reflection holographic configuration gives a control over the twist angle, and the grating spacing is determined by the slant angle of reflection holographic configuration. The resulting diffraction grating is in a structure of a reverse TN LC, permitting a polarization-independent diffraction efficiency. The electro-optic tunability of the diffraction efficiency is also demonstrated.

  8. Twisted aspirin crystals.

    PubMed

    Cui, Xiaoyan; Rohl, Andrew L; Shtukenberg, Alexander; Kahr, Bart

    2013-03-01

    Banded spherulites of aspirin have been crystallized from the melt in the presence of salicylic acid either generated from aspirin decomposition or added deliberately (2.6-35.9 mol %). Scanning electron microscopy, X-ray diffraction analysis, and optical polarimetry show that the spherulites are composed of helicoidal crystallites twisted along the <010> growth directions. Mueller matrix imaging reveals radial oscillations in not only linear birefringence, but also circular birefringence, whose origin is explained through slight (∼1.3°) but systematic splaying of individual lamellae in the film. Strain associated with the replacement of aspirin molecules by salicylic acid molecules in the crystal structure is computed to be large enough to work as the driving force for the twisting of crystallites. PMID:23425247

  9. Twisting Graphene into Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kit, Oleg O.; Tallinen, Tuomas; Mahadevan, L.; Timonen, Jussi; Koskinen, Pekka

    2012-02-01

    Carbon nanotubes are usually described as being rolled up from graphene sheets; this process, however, have never been realized experimentally. We showed that graphene can indeed be transformed into nanotube by twisting [1]. Further, we showed that tube formation can be well-explained within classical theory of elasticity---in fact the very mechanism of tube formation can be observed by twisting a strap from one's backpack (try now!). Furthermore, we showed that nanotube chirality may not only be predicted, but can also be controlled externally. The quantum molecular dynamic simulations at T=300K were achieved thanks to the revised periodic boundary conditions (RPBC) approach [2-3]. The structures similar to simulated have been recently observed experimentally [4]. This novel rote for nanotube formation opens new opportunities in nanomaterial manipulation not restricted to carbon alone. In the presentation, I will describe tube formation, as well as outline the easy and efficient technique for distorted nanostructures simulation, the RPBC approach. [4pt] [1] O. O. Kit et al. arXiv:1108.0048[0pt] [2] P. Koskinen & O. O. Kit PRL 105, 106401 (2010)[0pt] [3] O. O. Kit, L. Pastewka, P. Koskinen PRB 84, 155431 (2011)[0pt] [4] A. Chuvilin et al. Nature Materials 10, 687 (2011)

  10. Twisting of sheet metals

    NASA Astrophysics Data System (ADS)

    Pham, C. H.; Thuillier, S.; Manach, P. Y.

    2013-12-01

    Twisting of metallic sheets is one particular mode of springback that occurs after drawing of elongated parts, i.e. with one dimension much larger than the two others. In this study, a dedicated device for drawing of elongated part with a U-shaped section has been designed on purpose, in order to obtain reproducible data. Very thin metallic sheet, of thickness 0.15 mm, has been used, so that the maximum length of the part is 100 mm. Two different orientations of the part with respect to the tools have been chosen: either aligned with the tools, or purposefully misaligned by 2°. Several samples were drawn for each configuration, leading to the conclusion that almost no twisting occurs in the first case whereas a significant one can be measured for the second one. In a second step, 2D and 3D numerical simulations within the implicit framework for drawing and springback were carried out. A mixed hardening law associated to von Mises yield criterion represents accurately the mechanical behavior of the material. This paper highlights a comparison of numerical predictions with experiments, e.g. the final shape of the part and the twisting parameter.

  11. Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis.

    PubMed

    Sharff, A J; Rodseth, L E; Spurlino, J C; Quiocho, F A

    1992-11-10

    The periplasmic maltodextrin binding protein of Escherichia coli serves as an initial receptor for the active transport of and chemotaxis toward maltooligosaccharides. The three-dimensional structure of the binding protein complexed with maltose has been previously reported [Spurlino, J. C., Lu, G.-Y., & Quiocho, F. A. (1991) J. Biol. Chem. 266, 5202-5219]. Here we report the structure of the unliganded form of the binding protein refined to 1.8-A resolution. This structure, combined with that for the liganded form, provides the first crystallographic evidence that a major ligand-induced conformational change occurs in a periplasmic binding protein. The unliganded structure shows a rigid-body "hinge-bending" between the two globular domains by approximately 35 degrees, relative to the maltose-bound structure, opening the sugar binding site groove located between the two domains. In addition, there is an 8 degrees twist of one domain relative to the other domain. The conformational changes observed between this structure and the maltose-bound structure are consistent with current models of maltose/maltodextrin transport and maltose chemotaxis and solidify a mechanism for receptor differentiation between the ligand-free and ligand-bound forms in signal transduction.

  12. An H-Infinity Approach to Control Synthesis with Load Minimization for the F/A-18 Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Lind, Rick

    1999-01-01

    The F/A-18 Active Aeroelastic Wing research aircraft will demonstrate technologies related to aeroservoelastic effects such as wing twist and load minimization. This program presents several challenges for control design that are often not considered for traditional aircraft. This paper presents a control design based on H-infinity synthesis that simultaneously considers the multiple objectives associated with handling qualities, actuator limitations, and loads. A point design is presented to demonstrate a controller and the resulting closed-loop properties.

  13. Active control of convection

    SciTech Connect

    Bau, H.H.

    1995-12-31

    Using stability theory, numerical simulations, and in some instances experiments, it is demonstrated that the critical Rayleigh number for the bifurcation (1) from the no-motion (conduction) state to the motion state and (2) from time-independent convection to time-dependent, oscillatory convection in the thermal convection loop and Rayleigh-Benard problems can be significantly increased or decreased. This is accomplished through the use of a feedback controller effectuating small perturbations in the boundary data. The controller consists of sensors which detect deviations in the fluid`s temperature from the motionless, conductive values and then direct actuators to respond to these deviations in such a way as to suppress the naturally occurring flow instabilities. Actuators which modify the boundary`s temperature/heat flux are considered. The feedback controller can also be used to control flow patterns and generate complex dynamic behavior at relatively low Rayleigh numbers.

  14. TWISTED RIBBON FUEL ELEMENT

    DOEpatents

    Breden, C.R.; Schultz, A.B.

    1961-06-01

    A reactor core formed of bundles of parallel fuel elements in the form of ribbons is patented. The fuel ribbons are twisted about their axes so as to have contact with one another at regions spaced lengthwise of the ribbons and to be out of contact with one another at locations between these spaced regions. The contact between the ribbons is sufficient to allow them to be held together in a stable bundle in a containing tube without intermediate support, while permitting enough space between the ribbon for coolant flowing.

  15. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  16. Twisted Ribbons: Theory, Experiment and Applications

    NASA Astrophysics Data System (ADS)

    Chopin, Julien; Davidovitch, Benjamin; Silva, Flavio A.; Toledo Filho, Romildo D.; Kudrolli, Arshad

    2014-03-01

    We investigate, experimentally and theoretically, the buckling and wrinkling instabilities of a pre-stretched ribbon upon twisting and propose strategies for the fabrication of structured yarns. Our experiment consists in a thin elastic sheet in the form of a ribbon which is initially stretched by a fixed load and then subjected to a twist by rotating the ends through a prescribed angle. We show that a wide variety of shapes and instabilities can be obtained by simply varying the applied twist and tension. The observed structures which include helicoids with and without longitudinal and transverse wrinkles, and spontaneous creases, can be organized in a phase diagram with the tension and twist angle as control parameters [J. Chopin and A. Kudrolli, PRL (2013)]. Using a far-from-threshold analysis and a slender body approximation, we provide a comprehensive understanding of the longitudinal and transverse instabilities and show that several regimes emerge depending on subtle combinations of loading and geometrical parameters. Further, we show that the wrinkling instabilities can be manipulated to fabricate structured yarns which may be used to encapsulate amorphous materials or serve as efficient reinforcements for cement-based composites. COPPETEC / CNPq - Science Without Border Program

  17. Effect of torsional twist on 2nd order non-linear optical activity of anthracene and pyrene tricyanofuran derivatives.

    PubMed

    Planells, Miquel; Pizzotti, Maddalena; Nichol, Gary S; Tessore, Francesca; Robertson, Neil

    2014-11-14

    Tricyanofuran (TCF) derivatives attached to both anthracene and pyrene moieties were synthesised and characterised by optical, electrochemical and computational techniques. Both compounds exhibited similar absorption profile as well as electrochemical behaviour, however the pyrene derivative showed 20-fold higher non-linear optical activity measured by the EFISH technique. This huge difference has been assigned to (i) a lower molar absorption and (ii) a higher torsion angle for the anthracene derivative, confirmed by both experimental X-ray diffraction and DFT calculations. Furthermore, we note that the μβ1.907 value of -1700 × 10(-48) esu recorded for the pyrene derivative in CHCl3/pyridine is remarkable for a NLO chromophore lacking a classical push-pull structure. PMID:25264846

  18. Calculus of twisted vertex operators

    PubMed Central

    Lepowsky, J.

    1985-01-01

    Starting from an arbitrary isometry of an arbitrary even lattice, twisted and shifted vertex operators are introduced. Under commutators, these operators provide realizations of twisted affine Lie algebras. This construction, generalizing a number of known ones, is based on a self-contained “calculus.” PMID:16593635

  19. TWIST1 Integrates Endothelial Responses to Flow in Vascular Dysfunction and Atherosclerosis

    PubMed Central

    Mahmoud, Marwa M.; Kim, Hyejeong Rosemary; Xing, Rouyu; Hsiao, Sarah; Mammoto, Akiko; Chen, Jing; Serbanovic-Canic, Jovana; Feng, Shuang; Bowden, Neil P.; Maguire, Richard; Ariaans, Markus; Francis, Sheila E.; Weinberg, Peter D.; van der Heiden, Kim; Jones, Elizabeth A.; Chico, Timothy J.A.; Ridger, Victoria

    2016-01-01

    Rationale: Blood flow–induced shear stress controls endothelial cell (EC) physiology during atherosclerosis via transcriptional mechanisms that are incompletely understood. The mechanosensitive transcription factor TWIST is expressed during embryogenesis, but its role in EC responses to shear stress and focal atherosclerosis is unknown. Objective: To investigate whether TWIST regulates endothelial responses to shear stress during vascular dysfunction and atherosclerosis and compare TWIST function in vascular development and disease. Methods and Results: The expression and function of TWIST1 was studied in EC in both developing vasculature and during the initiation of atherosclerosis. In zebrafish, twist was expressed in early embryonic vasculature where it promoted angiogenesis by inducing EC proliferation and migration. In adult porcine and murine arteries, TWIST1 was expressed preferentially at low shear stress regions as evidenced by quantitative polymerase chain reaction and en face staining. Moreover, studies of experimental murine carotid arteries and cultured EC revealed that TWIST1 was induced by low shear stress via a GATA4-dependent transcriptional mechanism. Gene silencing in cultured EC and EC-specific genetic deletion in mice demonstrated that TWIST1 promoted atherosclerosis by inducing inflammation and enhancing EC proliferation associated with vascular leakiness. Conclusions: TWIST expression promotes developmental angiogenesis by inducing EC proliferation and migration. In addition to its role in development, TWIST is expressed preferentially at low shear stress regions of adult arteries where it promotes atherosclerosis by inducing EC proliferation and inflammation. Thus, pleiotropic functions of TWIST control vascular disease and development. PMID:27245171

  20. Active Control of Environmental Noise

    NASA Astrophysics Data System (ADS)

    Wright, S. E.; Vuksanovic, B.

    1996-02-01

    Most of the current research on active noise control is confined to restricted spaces such as earphones, active silencers, air-conditioning ducts, truck cabins and aircraft fuselages. In this paper the basic concepts of environmental noise reduction by using active noise control in unconfined spaces are explored. The approach is to develop a controlled acoustic shadow, generated by a wall of secondary sources, to reduce unwanted sound in the direction of a complaint area. The basic acoustic theory is considered, followed by computer modelling, and some results to show the effectiveness of the approach. EA Technology and Yorkshire electric in the United Kingdom are supporting this work.

  1. The design of fibre-reinforced composite blades for passive and active wind turbine rotor aerodynamic control

    NASA Astrophysics Data System (ADS)

    Karaolis, Nicos M.

    An alternative method of varying the pitch of wind turbine rotor blades is examined, which relies on the use of fiber reinforced composite materials to design the blades so as to develop elastic coupling between an applied load of a generally twisting and non-twisting nature. With such an approach, twist can be obtained either by using one of the forces experienced by the blade during operation to alter passively the blade pitch, or by internal pressurization to control actively the blade pitch by varying the pressure. The passive control option is considered in detail. First the relevant composite construction geometries that produce the desired coupling effect are identified and then a theoretical model is developed. This is also used to explore the variation in coupling and stiffness properties with the fiber orientation. Various materials are considered including glass, aramid, and carbon fiber epoxy composites. Subsequently, the structural model is confirmed experimentally by a series of tests on composite, foam-cored beams specially designed and manufactured for this purpose. It is then combined with existing aerodynamic theories in order to model the performance of horizontal and vertical axis rotors employing such blades. The effect of passively induced twist on the aerodynamic performance is examined both theoretically and experimentally. Additionally, a simplified dynamic model is developed to obtain a general idea on how built-in elastic coupling may affect the dynamic stability of a horizontal axis rotor system. The active control option is considered in general as an alternative mechanism of inducing twist. The relevant theory is derived and illustrated with examples, and the realistic practicability of this concept is discussed. To validate the theory, a composite cylindrical shell has been designed, manufactured and tested under pressure.

  2. Unique CCT repeats mediate transcription of the TWIST1 gene in mesenchymal cell lines

    SciTech Connect

    Ohkuma, Mizue; Funato, Noriko; Higashihori, Norihisa; Murakami, Masanori; Ohyama, Kimie; Nakamura, Masataka . E-mail: naka.gene@cmn.tmd.ac.jp

    2007-01-26

    TWIST1, a basic helix-loop-helix transcription factor, plays critical roles in embryo development, cancer metastasis and mesenchymal progenitor differentiation. Little is known about transcriptional regulation of TWIST1 expression. Here we identified DNA sequences responsible for TWIST1 expression in mesenchymal lineage cell lines. Reporter assays with TWIST1 promoter mutants defined the -102 to -74 sequences that are essential for TWIST1 expression in human and mouse mesenchymal cell lines. Tandem repeats of CCT, but not putative CREB and NF-{kappa}B sites in the sequences substantially supported activity of the TWIST1 promoter. Electrophoretic mobility shift assay demonstrated that the DNA sequences with the CCT repeats formed complexes with nuclear factors, containing, at least, Sp1 and Sp3. These results suggest critical implication of the CCT repeats in association with Sp1 and Sp3 factors in sustaining expression of the TWIST1 gene in mesenchymal cells.

  3. Twisted Graphene Nanostructures

    NASA Astrophysics Data System (ADS)

    Gani, Satrio; Virgus, Yudistira; Rossi, Enrico

    2015-03-01

    Recent advances in fabrication techniques have made possible the realization of graphene nanostructures with atomic precision. Some of the nanostructures realized are completely novel. We study the electronic properties of such novel graphene nanostructures when deposited on two dimensional crystals. In particular we study the case when the two dimensional crystal is graphene, or bilayer graphene. We obtain results for the nanostructure electronic spectrum and find how the spectrum is affected by the coupling between the nanostructure and the two-dimensional substrate. In particular we study how the ``twist'' angle between the graphene nanostructure and the two-dimensional crystal affects the spectrum of the nanostructure. Work supported by ONR-N00014-13-1-0321 and ACS-PRF # 53581-DNI5.

  4. Controls Considerations for Turbine Active Clearance Control

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2004-01-01

    This presentation discusses active control of turbine tip clearance from a control systems perspective. It is a subset of charts that were presented at the 2003 meeting of the International Society of Air Breathing Engines which was held August 31 through September 5 in Cleveland, Ohio. The associated reference paper is cited at the end of the presentation. The presentation describes active tip clearance control research being conducted by NASA to improve turbine engine systems. The target application for this effort is commercial aircraft engines. However, it is believed that the technologies developed as part of this research will benefit a broad spectrum of current and future turbomachinery. The first part of the presentation discusses the concept of tip clearance, problems associated with it, and the benefits of controlling it. It lays out a framework for implementing tip clearance controls that enables the implementation to progress from purely analytical to hardware-in-the-loop to fully experimental. And it briefly discusses how the technologies developed will be married to the previously described ACC Test Rig for hardware-in-the-loop demonstrations. The final portion of the presentation, describes one of the key technologies in some detail by presenting equations and results for a functional dynamic model of the tip clearance phenomena. As shown, the model exhibits many of the clearance dynamics found in commercial gas turbine engines. However, initial attempts to validate the model identified limitations that are being addressed to make the model more realistic.

  5. Right handed chiral superstructures from achiral molecules: self-assembly with a twist

    PubMed Central

    Anuradha, A; La, Duong Duc; Al Kobaisi, Mohammad; Bhosale, Sheshanath V.

    2015-01-01

    The induction and development of chiral supramolecular structures from hierarchical self-assembly of achiral compounds is closely related to the evolution of life and the chiral amplification found in nature. Here we show that the combination of achiral tetraphenylethene (TPE) an AIE-active luminophore bearing four long alkyl chains via amide linkage allows the entire process of induction and control of supramolecular chirality into well-defined uniform right-handed twisted superstructures via solvent composition and polarity, i.e. solvophobic effect. We showed that the degree of twist and the pitch of the ribbons can be controlled to one-handed helical structure via solvophobic effects. The twisted superstructure assembly was visualised by scanning electron microscope (SEM) and transmission electron microscopy (TEM), furthermore, circular dichroism (CD) confirms used to determine controlled right-handed assembly. This controlled assembly of an AIE-active molecule can be of practical value; for example, as templates for helical crystallisation, catalysis and a chiral mechanochromic luminescent superstructure formation. PMID:26493294

  6. Right handed chiral superstructures from achiral molecules: self-assembly with a twist.

    PubMed

    Anuradha; La, Duong Duc; Al Kobaisi, Mohammad; Bhosale, Sheshanath V

    2015-01-01

    The induction and development of chiral supramolecular structures from hierarchical self-assembly of achiral compounds is closely related to the evolution of life and the chiral amplification found in nature. Here we show that the combination of achiral tetraphenylethene (TPE) an AIE-active luminophore bearing four long alkyl chains via amide linkage allows the entire process of induction and control of supramolecular chirality into well-defined uniform right-handed twisted superstructures via solvent composition and polarity, i.e. solvophobic effect. We showed that the degree of twist and the pitch of the ribbons can be controlled to one-handed helical structure via solvophobic effects. The twisted superstructure assembly was visualised by scanning electron microscope (SEM) and transmission electron microscopy (TEM), furthermore, circular dichroism (CD) confirms used to determine controlled right-handed assembly. This controlled assembly of an AIE-active molecule can be of practical value; for example, as templates for helical crystallisation, catalysis and a chiral mechanochromic luminescent superstructure formation. PMID:26493294

  7. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  8. Oscillatory growth for twisting crystals.

    PubMed

    Ibaraki, Shunsuke; Ise, Ryuta; Ishimori, Koichiro; Oaki, Yuya; Sazaki, Gen; Yokoyama, Etsuro; Tsukamoto, Katsuo; Imai, Hiroaki

    2015-05-18

    We demonstrate the oscillatory phenomenon for the twisting growth of a triclinic crystal through in situ observation of the concentration field around the growing tip of a needle by high-resolution phase-shift interferometry.

  9. Actively Controlled Components. Chapter 2

    NASA Technical Reports Server (NTRS)

    Horn, W.; Hiller, S.-J.; Pfoertner, H.; Schadow, K.; Rosenfeld, T.; Garg, S.

    2009-01-01

    Active Control can help to meet future engine requirements by an active improvement of the component characteristics. The concept is based on an intelligent control logic, which senses actual operating conditions and reacts with adequate actuator action. This approach can directly improve engine characteristics as performance, operability, durability and emissions on the one hand. On the other hand active control addresses the design constrains imposed by unsteady phenomena like inlet distortion, compressor surge, combustion instability, flow separations, vibration and noise, which only occur during exceptional operating conditions. The feasibility and effectiveness of active control technologies have been demonstrated in lab-scale tests. This chapter describes a broad range of promising applications for each engine component. Significant efforts in research and development remain to implement these technologies in engine rig and finally production engines and to demonstrate today s engine generation airworthiness, safety, reliability, and durability requirements. Active control applications are in particular limited by the gap between available and advanced sensors and actuators, which allow an operation in the harsh environment in an aero engine. The operating and performance requirements for actuators and sensors are outlined for each of the gas turbine sections from inlet to nozzle.

  10. Demonstration of Active Combustion Control

    NASA Technical Reports Server (NTRS)

    Lovett, Jeffrey A.; Teerlinck, Karen A.; Cohen, Jeffrey M.

    2008-01-01

    The primary objective of this effort was to demonstrate active control of combustion instabilities in a direct-injection gas turbine combustor that accurately simulates engine operating conditions and reproduces an engine-type instability. This report documents the second phase of a two-phase effort. The first phase involved the analysis of an instability observed in a developmental aeroengine and the design of a single-nozzle test rig to replicate that phenomenon. This was successfully completed in 2001 and is documented in the Phase I report. This second phase was directed toward demonstration of active control strategies to mitigate this instability and thereby demonstrate the viability of active control for aircraft engine combustors. This involved development of high-speed actuator technology, testing and analysis of how the actuation system was integrated with the combustion system, control algorithm development, and demonstration testing in the single-nozzle test rig. A 30 percent reduction in the amplitude of the high-frequency (570 Hz) instability was achieved using actuation systems and control algorithms developed within this effort. Even larger reductions were shown with a low-frequency (270 Hz) instability. This represents a unique achievement in the development and practical demonstration of active combustion control systems for gas turbine applications.

  11. Twisted sectors from plane partitions

    NASA Astrophysics Data System (ADS)

    Datta, Shouvik; Gaberdiel, Matthias R.; Li, Wei; Peng, Cheng

    2016-09-01

    Twisted sectors arise naturally in the bosonic higher spin CFTs at their free points, as well as in the associated symmetric orbifolds. We identify the coset representations of the twisted sector states using the description of W_{∞} representations in terms of plane partitions. We confirm these proposals by a microscopic null-vector analysis, and by matching the excitation spectrum of these representations with the orbifold prediction.

  12. Active Flow Control Activities at NASA Langley

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  13. Development and Testing of Control Laws for the Active Aeroelastic Wing Program

    NASA Technical Reports Server (NTRS)

    Dibley, Ryan P.; Allen, Michael J.; Clarke, Robert; Gera, Joseph; Hodgkinson, John

    2005-01-01

    The Active Aeroelastic Wing research program was a joint program between the U.S. Air Force Research Laboratory and NASA established to investigate the characteristics of an aeroelastic wing and the technique of using wing twist for roll control. The flight test program employed the use of an F/A-18 aircraft modified by reducing the wing torsional stiffness and adding a custom research flight control system. The research flight control system was optimized to maximize roll rate using only wing surfaces to twist the wing while simultaneously maintaining design load limits, stability margins, and handling qualities. NASA Dryden Flight Research Center developed control laws using the software design tool called CONDUIT, which employs a multi-objective function optimization to tune selected control system design parameters. Modifications were made to the Active Aeroelastic Wing implementation in this new software design tool to incorporate the NASA Dryden Flight Research Center nonlinear F/A-18 simulation for time history analysis. This paper describes the design process, including how the control law requirements were incorporated into constraints for the optimization of this specific software design tool. Predicted performance is also compared to results from flight.

  14. Band-gap engineering with a twist: Formation of intercalant superlattices in twisted graphene bilayers

    NASA Astrophysics Data System (ADS)

    Symalla, Franz; Shallcross, Sam; Beljakov, Igor; Fink, Karin; Wenzel, Wolfgang; Meded, Velimir

    2015-05-01

    Graphene-based materials have long been considered as promising building blocks for a new generation of high-frequency (terahertz) electronic devices, but their use is complicated by the lack of an intrinsic band gap in graphene itself. Here we exploit synthetically controllable incommensuration of twisted graphene bilayers as a scaffold for intercalation of alkali metal ions with the periodicity of the bilayer supercell. Systematic exploration of the energy profiles of the ions as a function of position suggests that the alkali metal ions aggregate commensurately with the symmetry of the twisted bilayer. The intercalated alkali metal ions act as a source of a periodic perturbation on the level of the bilayer supercell, which permits opening and engineering of a band gap between graphene's π bands. The twist angle between the graphene layers determines the structure and disorder of the intercalant sublattice and, consequently, the magnitude of the band gap. Appropriate choices of the intercalant and twist angle thus permit band-gap engineering in graphene. We offer arguments that the impact of intercalation on the all important charge mobility of graphene will be rather small.

  15. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2014-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  16. Extended Active Disturbance Rejection Controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2016-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  17. Extended active disturbance rejection controller

    NASA Technical Reports Server (NTRS)

    Gao, Zhiqiang (Inventor); Tian, Gang (Inventor)

    2012-01-01

    Multiple designs, systems, methods and processes for controlling a system or plant using an extended active disturbance rejection control (ADRC) based controller are presented. The extended ADRC controller accepts sensor information from the plant. The sensor information is used in conjunction with an extended state observer in combination with a predictor that estimates and predicts the current state of the plant and a co-joined estimate of the system disturbances and system dynamics. The extended state observer estimates and predictions are used in conjunction with a control law that generates an input to the system based in part on the extended state observer estimates and predictions as well as a desired trajectory for the plant to follow.

  18. Twisted and tubular silica structures by anionic surfactant fibers encapsulation.

    PubMed

    Chekini, Mahshid; Guénée, Laure; Marchionni, Valentina; Sharma, Manish; Bürgi, Thomas

    2016-09-01

    Organic molecules imprinting can be used for introducing specific properties and functionalities such as chirality to mesoporous materials. Particularly organic self-assemblies can work as a scaffold for templating inorganic materials such as silica. During recent years chiral imprinting of anionic surfactant for fabrication of twisted rod-like silica structures assisted by co-structuring directing agent were thoroughly investigated. The organic self-assemblies of anionic surfactants can also be used for introducing other shapes in rod-like silica structures. Here we report the formation of amphiphilic N-miristoyl-l-alanine self-assemblies in aqueous solution upon stirring and at presence of l-arginine. These anionic surfactant self-assemblies form fibers that grow by increasing the stirring duration. The fibers were studied using transmission electron microscopy, infra-red spectroscopy and vibrational circular dichroism. Addition of silica precursor 1,2-bis(triethoxysilyl)ethylene and co-structuring directing agent N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride at different stages of fibers' growth leads to formation of different silica structures. By controlling stirring duration, we obtained twisted tubular silica structures as a result of fibers encapsulation. We decorated these structures with gold nanoparticles by different methods and measured their optical activity.

  19. Aeroelastic behavior of twist-coupled HAWT blades

    SciTech Connect

    Lobitz, D.W.; Veers, P.S.

    1998-12-31

    As the technology for horizontal axis wind turbines (HAWT) development matures, more novel techniques are required for the capture of additional amounts of energy, alleviation of loads and control of the rotor. One such technique employs the use of an adaptive blade that could sense the wind velocity or rotational speed in some fashion and accordingly modify its aerodynamic configuration to meet a desired objective. This could be achieved in either an active or passive manner, although the passive approach is much more attractive due to its simplicity and economy. As an example, a blade design might employ coupling between bending and/or extension, and twisting so that, as it bends and extends due to the action of the aerodynamic and inertial loads, it also twists modifying the aerodynamic performance in some way. These performance modifications also have associated aeroelastic effects, including effects on aeroelastic instability. To address the scope and magnitude of these effects a tool has been developed for investigating classical flutter and divergence of HAWT blades. As a starting point, an adaptive version of the uniform Combined Experiment Blade will be investigated. Flutter and divergence airspeeds will be reported as a function of the strength of the coupling and also be compared to those of generic blade counterparts.

  20. Twist-induced Magnetosphere Reconfiguration for Intermittent Pulsars

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Yu, Cong; Tong, Hao

    2016-08-01

    We propose that the magnetosphere reconfiguration induced by magnetic twists in the closed field line region can account for the mode switching of intermittent pulsars. We carefully investigate the properties of axisymmetric force-free pulsar magnetospheres with magnetic twists in closed field line regions around the polar caps. The magnetosphere with twisted closed lines leads to enhanced spin-down rates. The enhancement in spin-down rate depends on the size of the region with twisted closed lines. Typically, it is increased by a factor of ˜2, which is consistent with the intermittent pulsars’ spin-down behavior during the “off” and “on” states. We find that there is a threshold of maximal twist angle {{Δ }}{φ }{{thres}}˜ 1. The magnetosphere is stable only if the closed line twist angle is less than {{Δ }}{φ }{{thres}}. Beyond this value, the magnetosphere becomes unstable and gets untwisted. The spin-down rate would reduce to its off-state value. The quasi-periodicity in spin-down rate change can be explained by long-term activities in the star’s crust and the untwisting induced by MHD instability. The estimated duration of on-state is about 1 week, consistent with observations. Due to the MHD instability, there exists an upper limit for the spin-down ratio (f˜ 3) between the on-state and the off-state, if the Y-point remains at the light cylinder.

  1. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  2. Twist-1, a novel regulator of hematopoietic stem cell self-renewal and myeloid lineage development.

    PubMed

    Dong, Cheng-Ya; Liu, Xiao-Yan; Wang, Nan; Wang, Li-Na; Yang, Bin-Xia; Ren, Qian; Liang, Hao-Yue; Ma, Xiao-Tong

    2014-12-01

    Transcription factor Twist-1 plays essential roles in specification and differentiation of mesoderm-derived tissues. Growing evidences now link Twist-1 to the acquisition of stem-cell-like properties. However, the role of Twist-1 in hematopoietic stem cell (HSC) remains largely uncharacterized. We report that Twist-1 is more highly expressed in murine HSC and its expression declines with differentiation. To investigate Twist-1 gene function, retroviral-mediated overexpression or removal experiments are performed. Competitive repopulation studies demonstrate that enforced expression of Twist-1 in HSC-enriched Lin(-) c-Kit(+) Sca-1(+) (LKS) cells results in an increase in the size of the G(0) population, and in their reconstitution ability after the first and a second transplantation. Conversely, removal of Twist-1 in LKS cells impairs their ability to repopulate. In addition, increased Twist-1 expression causes a shift toward production of myeloid cells. Twist-1 transduction in LKS cells activates myeloid lineage-determining factors PU.1 and GATA-1 and downregulates lymphoid factor GATA-3 in vitro, suggesting that Twist-1-mediated myeloid skewing occurs in hematopoietic stem and progenitor cells (HSPCs). These findings indicate that Twist-1 is not only involved in the maintenance of HSC dormancy and self-renewal capacity but also implicated in the myeloid lineage fate choice of HSPCs. Exploration of the underlying mechanisms reveals that Runx1/c-Mpl/Tie2 regulatory pathway could possibly account for the observed effects caused by Twist-1 overexpression. Our study provides the first evidence supporting a role for Twist-1 in hematopoiesis.

  3. DNA Methylation in the Exon 1 Region and Complex Regulation of Twist1 Expression in Gastric Cancer Cells

    PubMed Central

    Sakamoto, Ayuna; Akiyama, Yoshimitsu; Shimada, Shu; Zhu, Wei-Guo; Yuasa, Yasuhito; Tanaka, Shinji

    2015-01-01

    Twist1 overexpression is frequently observed in various cancers including gastric cancer (GC). Although DNA methylation of the Twist1 gene has been reported in cancer cells, the mechanisms underlying transcriptional activation remain uncertain. In this study, we first examined epigenetic alterations of the Twist1 using Twist1 transcription-positive and -negative cell lines that are derived from our established diffuse-type GC mouse model. Treatment with a DNA demethylation agent 5-aza-dC re-activated Twist1 expression in Twist1 expression-negative GC cells. According to methylation-specific PCR and bisulfite sequencing analysis, methylation at the CpG-rich region within Twist1 coding exon 1, rather than its promoter region, was tightly linked to transcriptional silencing of the Twist1 expression in mouse GC cells. Chromatin immunoprecipitation assays revealed that active histone mark H3K4me3 was enriched in Twist1 expression-positive cells, and inactive histone mark H3K9me3 was enriched in Twist1 expression-negative cells. The expression levels of Suv39h1 and Suv39h2, histone methyltransferases for H3K9me3, were inversely correlated with Twist1 expression, and knockdown of Suv39h1 or Suv39h2 induced Twist1 expression. Moreover, Sp1 transcription factor bound to the exon 1 CpG-rich region in Twist1 expression-positive cell lines, and Twist1 expression was diminished by mithramycin, which that interferes with Sp1 binding to CpG-rich regulatory sequences. Our studies suggested that the Twist1 transcription in GC cells might be regulated through potential cooperation of DNA methylation, histone modification in complex with Sp1 binding to CpG-rich regions within the exon 1 region. PMID:26695186

  4. Performance of twist-coupled blades on variable speed rotors

    SciTech Connect

    Lobitz, D.W.; Veers, P.S.; Laino, D.J.

    1999-12-07

    The load mitigation and energy capture characteristics of twist-coupled HAWT blades that are mounted on a variable speed rotor are investigated in this paper. These blades are designed to twist toward feather as they bend with pretwist set to achieve a desirable twist distribution at rated power. For this investigation, the ADAMS-WT software has been modified to include blade models with bending-twist coupling. Using twist-coupled and uncoupled models, the ADAMS software is exercised for steady wind environments to generate C{sub p} curves at a number of operating speeds to compare the efficiencies of the two models. The ADAMS software is also used to generate the response of a twist-coupled variable speed rotor to a spectrum of stochastic wind time series. This spectrum contains time series with two mean wind speeds at two turbulence levels. Power control is achieved by imposing a reactive torque on the low speed shaft proportional to the RPM squared with the coefficient specified so that the rotor operates at peak efficiency in the linear aerodynamic range, and by limiting the maximum RPM to take advantage of the stall controlled nature of the rotor. Fatigue calculations are done for the generated load histories using a range of material exponents that represent materials from welded steel to aluminum to composites, and results are compared with the damage computed for the rotor without twist-coupling. Results indicate that significant reductions in damage are achieved across the spectrum of applied wind loading without any degradation in power production.

  5. Novel Active Combustion Control Valve

    NASA Technical Reports Server (NTRS)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  6. Active controls for ride smoothing

    NASA Technical Reports Server (NTRS)

    Conner, D. W.; Thompson, G. O.

    1976-01-01

    Active controls technology offers great promise for significantly smoothing the ride, and thus improving public and air carrier acceptance, of certain types of transport aircraft. Recent findings which support this promise are presented in the following three pertinent areas: (1) Ride quality versus degree of traveler satisfaction; (2) significant findings from a feasibility study of a ride smoothing system; and (3) potential ride problems identified for several advanced transport concepts.

  7. Berry phase transition in twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.

    2016-09-01

    The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.

  8. Extension-twist coupling optimization in composite rotor blades

    NASA Astrophysics Data System (ADS)

    Ozbay, Serkan

    2005-07-01

    For optimal rotor performance in a tiltrotor aircraft the difference in the inflow and the rotor speeds between the hover and cruise flight modes suggests different blade twist and chord distributions. The blade twist rates in current tiltrotor applications are defined based upon a compromise between the figure of merit in hover and propeller efficiency in airplane mode. However, when each operation mode is considered separately the optimum blade distributions are found to be considerably different. Passive blade twist control, which uses the inherent variation in centrifugal forces on a rotor blade to achieve optimum blade twist distributions in each flight mode through the use of extension-twist coupled composite rotor blades, has been considered for performance improvement of tiltrotor aircraft over the last two decades. The challenge for this concept is to achieve the desired twisting deformations in the rotor blade without altering the aeroelastic characteristics of the vehicle. A concept referred to as the sliding mass concept is proposed in this work in order to increase the twist change with rotor speed for a closed-cell composite rotor blade cross-section to practical levels for performance improvement in a tiltrotor aircraft. The concept is based on load path changes for the centrifugal forces by utilizing non-structural masses readily available on a conventional blade, such as the leading edge balancing mass. A multilevel optimization technique based on the simulated annealing method is applied to improve the performance of the XV15 tiltrotor aircraft. A cross-sectional analysis tool, VABS together with a multibody dynamics code, DYMORE are integrated into the optimization process. The optimization results revealed significant improvements in the power requirement in hover while preserving cruise efficiency. It is also shown that about 21% of the improvement is provided through the sliding mass concept pointing to the additional flexibility the concept

  9. Neuronal activity controls transsynaptic geometry

    PubMed Central

    Glebov, Oleg O.; Cox, Susan; Humphreys, Lawrence; Burrone, Juan

    2016-01-01

    The neuronal synapse is comprised of several distinct zones, including presynaptic vesicle zone (SVZ), active zone (AZ) and postsynaptic density (PSD). While correct relative positioning of these zones is believed to be essential for synaptic function, the mechanisms controlling their mutual localization remain unexplored. Here, we employ high-throughput quantitative confocal imaging, super-resolution and electron microscopy to visualize organization of synaptic subdomains in hippocampal neurons. Silencing of neuronal activity leads to reversible reorganization of the synaptic geometry, resulting in a increased overlap between immunostained AZ and PSD markers; in contrast, the SVZ-AZ spatial coupling is decreased. Bayesian blinking and bleaching (3B) reconstruction reveals that the distance between the AZ-PSD distance is decreased by 30 nm, while electron microscopy shows that the width of the synaptic cleft is decreased by 1.1 nm. Our findings show that multiple aspects of synaptic geometry are dynamically controlled by neuronal activity and suggest mutual repositioning of synaptic components as a potential novel mechanism contributing to the homeostatic forms of synaptic plasticity. PMID:26951792

  10. Active load control using microtabs

    NASA Astrophysics Data System (ADS)

    Yen, Dora Te-Lun

    2001-11-01

    Micro-electro-mechanical (MEM) translational tabs are introduced for enhancing and controlling the aerodynamic loading on lifting surfaces. These microtabs are mounted near the trailing edge of lifting surfaces, retract and extend approximately normal to the surface and have a maximum deployment height on the order of the boundary-layer thickness. Deployment of the device effectively modifies the camber distribution of the lifting surface and hence, the lift generated. The effect of the microtabs on lift is shown to be as powerful as conventional control surfaces with lift changes of 30%--50% in the linear range of the lift curve using a tab with a height of 1% of airfoil chord placed at 5% of chord upstream of the trailing edge on the lower surface. A multi-disciplinary approach incorporating aspects of experimental and computational aerodynamics, mechanical design and microfabrication techniques has been taken to develop and test a "proof of concept" model. Flow simulations, using a Reynolds-averaged Navier Stokes solver, have been conducted to optimize the size and placement of the devices based on trailing edge volume constraints. Numerical and experimental wind tunnel results are in good agreement, and both confirm that these micro-scale devices create macro-scale changes in aerodynamic loading. Application of this rather simple but innovative lift control system based on microfabrication techniques introduces a robust, dynamic control device and will allow for the miniaturization of conventional high lift and control systems. The result is a significant reduction in typical control system weight, complexity and cost. Also due to the minute size of these tabs, their activation and response times are much faster than that of conventional trailing edge devices. The "proof of concept" tab design, fabrication techniques, computational and experimental setup, and test results using a representative airfoil are presented in this research. (For more information, see

  11. Laminar flow in twisted ducts

    NASA Astrophysics Data System (ADS)

    Kheshgi, Haroon S.

    1993-11-01

    Fully developed flow of an incompressible Newtonian fluid through a duct in which the orientation of the cross section is twisted about an axis parallel to an imposed pressure gradient is analyzed here with the aid of the penalty/Galerkin/finite element method. When the axis of twist is located within the duct, flow approaches limits at low and high torsion, the spatial frequency τ by which the duct is twisted. For small torsion, flow is nearly rectilinear and solutions approach previous asymptotic results for an elliptical cross section. For large torsion, flow exhibits an internal layer structure: a rotating circular-cylinder core with a nearly parabolic axial velocity profile, an internal layer of thickness τ-1 along the perimeter of the largest circular cylinder that can be inscribed in the duct, and nearly quiescent flow outside of the circular cylinder. The maximum rate of swirl in the core of a square duct is found to be at moderate torsion. The primary effect of inertia is an increase in pressure with distance from the axis, due to centrifugal acceleration. When the duct is offset from the axis of twist, inertia leads to one, two, or three primary vortices without apparent bifurcation of steady states, although stability of steady flows is lost beyond detected Hopf points.

  12. Universal teleportation with a twist

    PubMed

    Braunstein; D'Ariano; Milburn; Sacchi

    2000-04-10

    We give a transfer theorem for teleportation based on twisting the entanglement measurement. This allows one to say what local unitary operation must be performed to complete the teleportation in any situation, generalizing the scheme to include overcomplete measurements, non-Abelian groups of local unitary operations (e.g., angular momentum teleportation), and the effect of nonmaximally entangled resources.

  13. Selected advanced aerodynamics and active controls technology concepts development on a derivative B-747

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The feasibility of applying wing tip extensions, winglets, and active control wing load alleviation to the Boeing 747 is investigated. Winglet aerodynamic design methods and high speed wind tunnel test results of winglets and of symmetrically deflected ailerons are presented. Structural resizing analyses to determine weight and aeroelastic twist increments for all the concepts and flutter model test results for the wing with winglets are included. Control law development, system mechanization/reliability studies, and aileron balance tab trade studies for active wing load alleviation systems are discussed. Results are presented in the form of incremental effects on L/D, structural weight, block fuel savings, stability and control, airplane price, and airline operating economics.

  14. Effects of twisted noncommutativity in multi-particle Hamiltonians

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Zhanna; Toppan, Francesco

    2013-07-01

    The non-commutativity induced by a Drinfel'd twist produces Bopp-shift-like transformations for deformed operators. In a single-particle setting the Drinfel'd twist allows to recover the non-commutativity obtained from various methods which are not based on Hopf algebras. In multi-particle sector, on the other hand, the Drinfel'd twist implies novel features. In conventional approaches to non-commutativity, deformed primitive operators are postulated to act additively. A Drinfel'd twist implies non-additive effects which are controlled by the coproduct. We stress that in our framework, the central element denoted as ħ is associated to an additive operator whose physical interpretation is that of the Particle Number operator. We illustrate all these features for a class of (abelian twist-deformed) 2D Hamiltonians. Suitable choices of the parameters lead to the Hamiltonian of the non-commutative Quantum Hall Effect, the harmonic oscillator, the quantization of the configuration space. The non-additive effects in the multi-particle sector, leading to results departing from the existing literature, are pointed out.

  15. Interfacial Atomic Structure of Twisted Few-Layer Graphene.

    PubMed

    Ishikawa, Ryo; Lugg, Nathan R; Inoue, Kazutoshi; Sawada, Hidetaka; Taniguchi, Takashi; Shibata, Naoya; Ikuhara, Yuichi

    2016-02-18

    A twist in bi- or few-layer graphene breaks the local symmetry, introducing a number of intriguing physical properties such as opening new bandgaps. Therefore, determining the twisted atomic structure is critical to understanding and controlling the functional properties of graphene. Combining low-angle annular dark-field electron microscopy with image simulations, we directly determine the atomic structure of twisted few-layer graphene in terms of a moiré superstructure which is parameterized by a single twist angle and lattice constant. This method is shown to be a powerful tool for accurately determining the atomic structure of two-dimensional materials such as graphene, even in the presence of experimental errors. Using coincidence-site-lattice and displacement-shift-complete theories, we show that the in-plane translation state between layers is not a significant structure parameter, explaining why the present method is adequate not only for bilayer graphene but also a few-layered twisted graphene.

  16. Interfacial Atomic Structure of Twisted Few-Layer Graphene

    PubMed Central

    Ishikawa, Ryo; Lugg, Nathan R.; Inoue, Kazutoshi; Sawada, Hidetaka; Taniguchi, Takashi; Shibata, Naoya; Ikuhara, Yuichi

    2016-01-01

    A twist in bi- or few-layer graphene breaks the local symmetry, introducing a number of intriguing physical properties such as opening new bandgaps. Therefore, determining the twisted atomic structure is critical to understanding and controlling the functional properties of graphene. Combining low-angle annular dark-field electron microscopy with image simulations, we directly determine the atomic structure of twisted few-layer graphene in terms of a moiré superstructure which is parameterized by a single twist angle and lattice constant. This method is shown to be a powerful tool for accurately determining the atomic structure of two-dimensional materials such as graphene, even in the presence of experimental errors. Using coincidence-site-lattice and displacement-shift-complete theories, we show that the in-plane translation state between layers is not a significant structure parameter, explaining why the present method is adequate not only for bilayer graphene but also a few-layered twisted graphene. PMID:26888259

  17. "Twisted Beam" SEE Observations of Ionospheric Heating from HAARP

    NASA Astrophysics Data System (ADS)

    Briczinski, S. J.; Bernhardt, P. A.; Siefring, C. L.; Han, S.-M.; Pedersen, T. R.; Scales, W. A.

    2015-10-01

    Nonlinear interactions of high power HF radio waves in the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaska is the world's largest heating facility, yielding effective radiated powers in the gigawatt range. New results are present from HAARP experiments using a "twisted beam" excitation mode. Analysis of twisted beam heating shows that the SEE results obtained are identical to more traditional patterns. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional "solid spot" region from a pencil beam. The ring heating pattern may be more conducive to the creation of stable artificial airglow layers because of the horizontal structure of the ring. The results of these runs include artificial layer creation and evolution as pertaining to the twisted beam pattern. The SEE measurements aid the interpretation of the twisted beam interactions in the ionosphere.

  18. Folding DNA into twisted and curved nanoscale shapes.

    PubMed

    Dietz, Hendrik; Douglas, Shawn M; Shih, William M

    2009-08-01

    We demonstrate the ability to engineer complex shapes that twist and curve at the nanoscale from DNA. Through programmable self-assembly, strands of DNA are directed to form a custom-shaped bundle of tightly cross-linked double helices, arrayed in parallel to their helical axes. Targeted insertions and deletions of base pairs cause the DNA bundles to develop twist of either handedness or to curve. The degree of curvature could be quantitatively controlled, and a radius of curvature as tight as 6 nanometers was achieved. We also combined multiple curved elements to build several different types of intricate nanostructures, such as a wireframe beach ball or square-toothed gears.

  19. Folding DNA into Twisted and Curved Nanoscale Shapes

    PubMed Central

    Dietz, Hendrik; Douglas, Shawn M.; Shih, William M.

    2009-01-01

    We demonstrate the ability to engineer complex shapes that twist and curve at the nanoscale from DNA. Through programmable self-assembly, strands of DNA are directed to form a custom-shaped bundle of tightly crosslinked double helices, arrayed in parallel to their helical axes. Targeted insertions and deletions of base pairs cause the DNA bundles to develop twist of either handedness or to curve. The degree of curvature could be quantitatively controlled, and a radius of curvature as tight as 6 nanometers was achieved. We also combined multiple curved elements to build several different types of intricate nanostructures, such as a wireframe beach ball or square-toothed gears. PMID:19661424

  20. Electrically Induced Twist in Smectic Liquid-Crystalline Elastomers.

    PubMed

    Spillmann, Christopher M; Naciri, Jawad; Ratna, B R; Selinger, Robin L B; Selinger, Jonathan V

    2016-07-01

    As an approach for electrically controllable actuators, we prepare elastomers of chiral smectic-A liquid crystals, which have an electroclinic effect, i.e., molecular tilt induced by an applied electric field. Surprisingly, our experiments find that an electric field causes a rapid and reversible twisting of the film out of the plane, with a helical sense that depends on the sign of the field. To explain this twist, we develop a continuum elastic theory based on an asymmetry between the front and back of the film. We further present finite-element simulations, which show the dynamic shape change.

  1. Twisting and Writhing with George Ellery Hale

    NASA Astrophysics Data System (ADS)

    Canfield, Richard C.

    2013-06-01

    Early in his productive career in astronomy, George Ellery Hale developed innovative solar instrumentation that allowed him to make narrow-band images. Among the solar phenomena he discovered were sunspot vortices, which he attributed to storms akin to cyclones in our own atmosphere. Using the concept of magnetic helicity, physicists and mathematicians describe the topology of magnetic fields, including twisting and writhing. Our contemporary understanding of Hale's vortices as a consequence of large-scale twist in sunspot magnetic fields hinges on a key property of helicity: conservation. I will describe the critical role that this property plays, when applied to twist and writhe, in a fundamental aspect of global solar magnetism: the hemispheric and solar cycle dependences of active region electric currents with respect to magnetic fields. With the advent of unbroken sequences of high-resolution magnetic images, such as those presently available from the Helioseismic and Magnetic Imager on Solar Dynamics Observatory, the flux of magnetic helicity through the photosphere can be observed quantitatively. As magnetic flux tubes buoy up through the convection zone, buffeted and shredded by turbulence, they break up into fragments by repeated random bifurcation. We track these rising flux fragments in the photosphere, and calculate the flux of energy and magnetic helicity there. Using a quantitative model of coronal currents, we also track connections between these fragments to calculate the energy and magnetic helicity stored at topological interfaces that are in some ways analogous to the storage of stress at faults in the Earth's crust. Comparison of these values to solar flares and interplanetary coronal mass ejections implies that this is the primary storage mechanism for energy and magnetic helicity released in those phenomena, and suggests a useful tool for quantitative prediction of geomagnetic storms.

  2. Chiral power change upon photoisomerization in twisted nematic liquid crystals.

    PubMed

    Simoncelli, Sabrina; Aramendía, Pedro F

    2015-05-01

    In this work, we use the photoisomerization of azobenzenes, a phenanthrospirooxazine, and a fulgide in a twisted nematic liquid crystalline phase to change the chiral twisting power of the system. The changes are probed by the rotatory power of linearly polarized light. Time resolved and steady state experiments are carried out. The chiral change and the photoisomerization process have similar characteristic recovery times and activation energy, thus probing that the change is induced by the modification in the chemical composition of the photochromic dopant system. The amplitude of the light twisting power change correlates with the order change in the liquid crystal (LC) but not with the modification in the absorption characteristics of the system. This indicates that the driving force of the chiral change is the microscopic order modification in the LC phase that affects the helical pitch of the phase.

  3. Endothelial TWIST1 Promotes Pathological Ocular Angiogenesis

    PubMed Central

    Li, Jie; Liu, Chi-Hsiu; Sun, Ye; Gong, Yan; Fu, Zhongjie; Evans, Lucy P.; Tian, Katherine T.; Juan, Aimee M.; Hurst, Christian G.; Mammoto, Akiko; Chen, Jing

    2014-01-01

    Purpose. Pathological neovessel formation impacts many blinding vascular eye diseases. Identification of molecular signatures distinguishing pathological neovascularization from normal quiescent vessels is critical for developing new interventions. Twist-related protein 1 (TWIST1) is a transcription factor important in tumor and pulmonary angiogenesis. This study investigated the potential role of TWIST1 in modulating pathological ocular angiogenesis in mice. Methods. Twist1 expression and localization were analyzed in a mouse model of oxygen-induced retinopathy (OIR). Pathological ocular angiogenesis in Tie2-driven conditional Twist1 knockout mice were evaluated in both OIR and laser-induced choroidal neovascularization models. In addition, the effects of TWIST1 on angiogenesis and endothelial cell function were analyzed in sprouting assays of aortic rings and choroidal explants isolated from Twist1 knockout mice, and in human retinal microvascular endothelial cells treated with TWIST1 small interfering RNA (siRNA). Results. TWIST1 is highly enriched in pathological neovessels in OIR retinas. Conditional Tie2-driven depletion of Twist1 significantly suppressed pathological neovessels in OIR without impacting developmental retinal angiogenesis. In a laser-induced choroidal neovascularization model, Twist1 deficiency also resulted in significantly smaller lesions with decreased vascular leakage. In addition, loss of Twist1 significantly decreased vascular sprouting in both aortic ring and choroid explants. Knockdown of TWIST1 in endothelial cells led to dampened expression of vascular endothelial growth factor receptor 2 (VEGFR2) and decreased endothelial cell proliferation. Conclusions. Our study suggests that TWIST1 is a novel regulator of pathologic ocular angiogenesis and may represent a new molecular target for developing potential therapeutic treatments to suppress pathological neovascularization in vascular eye diseases. PMID:25414194

  4. Active Spacecraft Potential Control Investigation

    NASA Astrophysics Data System (ADS)

    Torkar, K.; Nakamura, R.; Tajmar, M.; Scharlemann, C.; Jeszenszky, H.; Laky, G.; Fremuth, G.; Escoubet, C. P.; Svenes, K.

    2016-03-01

    In tenuous plasma the floating potential of sunlit spacecraft reaches tens of volts, positive. The corresponding field disturbs measurements of the ambient plasma by electron and ion sensors and can reduce micro-channel plate lifetime in electron detectors owing to large fluxes of attracted photoelectrons. Also the accuracy of electric field measurements may suffer from a high spacecraft potential. The Active Spacecraft Potential Control (ASPOC) neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for the Magnetospheric Multiscale (MMS) mission includes new developments in the design of the emitters and the electronics. New features include the use of capillaries instead of needles, new materials for the emitters and their internal thermal insulators, an extended voltage and current range of the electronics, both for ion emission and heating purposes, and a more capable control software. This enables lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Results from on-ground testing demonstrate compliance with requirements. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. Finally, the various operating modes to adapt to changing boundary conditions are described along with the main data products.

  5. High resolution mapping of Twist to DNA in Drosophila embryos: Efficient functional analysis and evolutionary conservation.

    PubMed

    Ozdemir, Anil; Fisher-Aylor, Katherine I; Pepke, Shirley; Samanta, Manoj; Dunipace, Leslie; McCue, Kenneth; Zeng, Lucy; Ogawa, Nobuo; Wold, Barbara J; Stathopoulos, Angelike

    2011-04-01

    Cis-regulatory modules (CRMs) function by binding sequence specific transcription factors, but the relationship between in vivo physical binding and the regulatory capacity of factor-bound DNA elements remains uncertain. We investigate this relationship for the well-studied Twist factor in Drosophila melanogaster embryos by analyzing genome-wide factor occupancy and testing the functional significance of Twist occupied regions and motifs within regions. Twist ChIP-seq data efficiently identified previously studied Twist-dependent CRMs and robustly predicted new CRM activity in transgenesis, with newly identified Twist-occupied regions supporting diverse spatiotemporal patterns (>74% positive, n = 31). Some, but not all, candidate CRMs require Twist for proper expression in the embryo. The Twist motifs most favored in genome ChIP data (in vivo) differed from those most favored by Systematic Evolution of Ligands by EXponential enrichment (SELEX) (in vitro). Furthermore, the majority of ChIP-seq signals could be parsimoniously explained by a CABVTG motif located within 50 bp of the ChIP summit and, of these, CACATG was most prevalent. Mutagenesis experiments demonstrated that different Twist E-box motif types are not fully interchangeable, suggesting that the ChIP-derived consensus (CABVTG) includes sites having distinct regulatory outputs. Further analysis of position, frequency of occurrence, and sequence conservation revealed significant enrichment and conservation of CABVTG E-box motifs near Twist ChIP-seq signal summits, preferential conservation of ±150 bp surrounding Twist occupied summits, and enrichment of GA- and CA-repeat sequences near Twist occupied summits. Our results show that high resolution in vivo occupancy data can be used to drive efficient discovery and dissection of global and local cis-regulatory logic.

  6. Would You Rather (WYR), with a Sexual Health Twist!

    ERIC Educational Resources Information Center

    Rosen, Brittany; McNeill, Elisa Beth; Wilson, Kelly

    2014-01-01

    Would You Rather (WYR), with a Sexual Health Twist! teaching technique uses two youth games, "Would you rather…" and Twister®, to actively engage students in developing decision-making skills regarding human sexuality. Utilizing the "Would you rather" choices, the teacher provides a short scenario with two difficult choices.…

  7. New twist on artificial muscles

    PubMed Central

    Haines, Carter S.; Li, Na; Spinks, Geoffrey M.; Aliev, Ali E.; Di, Jiangtao; Baughman, Ray H.

    2016-01-01

    Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy. PMID:27671626

  8. "Twisted Beam" SEE Observations of Ionospheric Heating from HAARP

    NASA Astrophysics Data System (ADS)

    Briczinski, S. J.; Bernhardt, P. A.; Pedersen, T. R.; Rodriguez, S.; SanAntonio, G.

    2012-12-01

    High power HF radio waves exciting the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaksa is the world's largest heating facility, providing effective radiated powers in the gigawatt range. Experiments performed at HAARP have allowed researchers to study many non-linear effects of wave-plasma interactions. Stimulated Electromagnetic Emission (SEE) is of interest to the ionospheric community for its diagnostic purposes. Typical SEE experiments at HAARP have focused on characterizing the parametric decay of the electromagnetic pump wave into several different wave modes such as upper and lower hybrid, ion acoustic, ion-Bernstein and electron-Bernstein. These production modes have been extensively studied at HAARP using traditional beam heating patterns and SEE detection. New results are present from HAARP experiments using a "twisted beam" excitation mode. Unlike traditional heating beams used at HAARP or other heating facilities, the twisted beam attempts to impart orbital angular momentum (OAM) into the heating region. Analysis of twisted beam heating shows that the SEE results obtained are nearly identical to the modes without OAM. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional "solid spot" region. The ring heating pattern may be more conducive to the creation of artificial airglow layers. The results of these runs include artificial layer creation and evolution as pertaining to the twisted beam pattern. The SEE measurements aid the interpretation of the twisted beam interactions in the ionosphere.

  9. Raman mapping investigation of chemical vapor deposition-fabricated twisted bilayer graphene with irregular grains.

    PubMed

    Chen, Yuming; Meng, Lijuan; Zhao, Weiwei; Liang, Zheng; Wu, Xing; Nan, Haiyan; Wu, Zhangting; Huang, Shan; Sun, Litao; Wang, Jinlan; Ni, Zhenhua

    2014-10-21

    Bilayer graphene as a prototype of two-dimensional stacked material has recently attracted great attention. The twist angle between graphene layers adds another dimension to control its properties. In this study, we used Raman mapping to investigate the twist angle dependence of properties of twisted bilayer graphene (TBG) with irregular grains that was fabricated by chemical vapor deposition (CVD). Different Raman parameters including intensity, width, and position of G and 2D peaks were used to distinguish TBG with different twist angles. The statistical results from Raman imaging on the distribution of twist angle are consistent with the results from selected area election diffraction (SAED). Finally, the Raman peak at approximately 1347 cm(-1) for TBG with a large twist angle was assigned to the D-like peak, although it has similar excitation energy dependence of frequency as the defect-induced D peak. Theoretical calculation further confirmed that vacancy-like defect is not favored in the formation energy for TBG with a large twist angle as compared to monolayer graphene or TBG with other twist angles. These results will help to advance the understanding of TBG properties, especially for CVD samples with irregular grains.

  10. The emerging role of Twist proteins in hematopoietic cells and hematological malignancies

    PubMed Central

    Merindol, N; Riquet, A; Szablewski, V; Eliaou, J-F; Puisieux, A; Bonnefoy, N

    2014-01-01

    Twist1 and Twist2 (Twist1–2) are two transcription factors, members of the basic helix-loop-helix family, that have been well established as master transcriptional regulators of embryogenesis and developmental programs of mesenchymal cell lineages. Their role in oncogenesis in epithelium-derived cancer and in epithelial-to-mesenchymal transition has also been thoroughly characterized. Recently, emerging evidence also suggests a key role for Twist1–2 in the function and development of hematopoietic cells, as well as in survival and development of numerous hematological malignancies. In this review, we summarize the latest data that depict the role of Twist1–2 in monocytes, T cells and B lymphocyte activation, and in associated hematological malignancies. PMID:24769647

  11. Active control of combustion instability

    SciTech Connect

    Lang, W.; Poinsot, T.; Candel, S.

    1987-12-01

    The principle of 'antisound' is used to construct a method for the suppression of combustion instabilities. This active instability control (AIC) method uses external acoustic excitation by a loudspeaker to suppress the oscillations of a flame. The excitation signal is provided by a microphone located upstream of the flame. This signal is filtered, processed, amplified, and sent to the loudspeaker. The AIC method is validated on a laboratory combustor. It allows the suppression of all unstable modes of the burner for any operating ratio. The influence of the microphone and loudspeaker locations on the performance of the AIC system is described. For a given configuration, domains of stability, i.e., domains where the AIC system parameters provide suppression of the oscillation, are investigated. Measurements of the electric input of the loudspeaker show that the energy consumption of the AIC system is almost negligible and suggest that this method could be used for industrial combustor stabilization. Finally, a simple model describing the effects of the AIC system is developed and its results compared to the experiment.

  12. Active thermal control system evolution

    NASA Technical Reports Server (NTRS)

    Petete, Patricia A.; Ames, Brian E.

    1991-01-01

    The 'restructured' baseline of the Space Station Freedom (SSF) has eliminated many of the growth options for the Active Thermal Control System (ATCS). Modular addition of baseline technology to increase heat rejection will be extremely difficult. The system design and the available real estate no longer accommodate this type of growth. As the station matures during its thirty years of operation, a demand of up to 165 kW of heat rejection can be expected. The baseline configuration will be able to provide 82.5 kW at Eight Manned Crew Capability (EMCC). The growth paths necessary to reach 165 kW have been identified. Doubling the heat rejection capability of SSF will require either the modification of existing radiator wings or the attachment of growth structure to the baseline truss for growth radiator wing placement. Radiator performance can be improved by enlarging the surface area or by boosting the operating temperature with a heat pump. The optimal solution will require both modifications. The addition of growth structure would permit the addition of a parallel ATCS using baseline technology. This growth system would simplify integration. The feasibility of incorporating these growth options to improve the heat rejection capacity of SSF is under evaluation.

  13. Twisted complex superfluids in optical lattices.

    PubMed

    Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören

    2015-09-08

    We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a complex order parameter. This unconventional superfluid phase spontaneously breaks the time-reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent lattice sites. We discuss the entire phase diagram of the extended Bose-Hubbard model for a honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two components, we find twisted superfluid phases with strong correlations between the species already for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite degeneracy ranging continuously from a supersolid to a twisted superfluid.

  14. Twisted complex superfluids in optical lattices

    PubMed Central

    Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören

    2015-01-01

    We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a complex order parameter. This unconventional superfluid phase spontaneously breaks the time-reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent lattice sites. We discuss the entire phase diagram of the extended Bose—Hubbard model for a honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two components, we find twisted superfluid phases with strong correlations between the species already for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite degeneracy ranging continuously from a supersolid to a twisted superfluid. PMID:26345721

  15. Twisted complex superfluids in optical lattices.

    PubMed

    Jürgensen, Ole; Sengstock, Klaus; Lühmann, Dirk-Sören

    2015-01-01

    We show that correlated pair tunneling drives a phase transition to a twisted superfluid with a complex order parameter. This unconventional superfluid phase spontaneously breaks the time-reversal symmetry and is characterized by a twisting of the complex phase angle between adjacent lattice sites. We discuss the entire phase diagram of the extended Bose-Hubbard model for a honeycomb optical lattice showing a multitude of quantum phases including twisted superfluids, pair superfluids, supersolids and twisted supersolids. Furthermore, we show that the nearest-neighbor interactions lead to a spontaneous breaking of the inversion symmetry of the lattice and give rise to dimerized density-wave insulators, where particles are delocalized on dimers. For two components, we find twisted superfluid phases with strong correlations between the species already for surprisingly small pair-tunneling amplitudes. Interestingly, this ground state shows an infinite degeneracy ranging continuously from a supersolid to a twisted superfluid. PMID:26345721

  16. The Twist Box Domain is Required for Twist1-induced Prostate Cancer Metastasis

    PubMed Central

    Gajula, Rajendra P.; Chettiar, Sivarajan T.; Williams, Russell D.; Thiyagarajan, Saravanan; Kato, Yoshinori; Aziz, Khaled; Wang, Ruoqi; Gandhi, Nishant; Wild, Aaron T.; Vesuna, Farhad; Ma, Jinfang; Salih, Tarek; Cades, Jessica; Fertig, Elana; Biswal, Shyam; Burns, Timothy F.; Chung, Christine H.; Rudin, Charles M.; Herman, Joseph M.; Hales, Russell K.; Raman, Venu; An, Steven S.; Tran, Phuoc T.

    2013-01-01

    Twist1, a basic helix-loop-helix transcription factor, plays a key role during development and is a master regulator of the epithelial-mesenchymal transition (EMT) that promotes cancer metastasis. Structure-function relationships of Twist1 to cancer-related phenotypes are underappreciated, so we studied the requirement of the conserved Twist box domain for metastatic phenotypes in prostate cancer (PCa). Evidence suggests that Twist1 is overexpressed in clinical specimens and correlated with aggressive/metastatic disease. Therefore, we examined a transactivation mutant, Twist1-F191G, in PCa cells using in vitro assays which mimic various stages of metastasis. Twist1 overexpression led to elevated cytoskeletal stiffness and cell traction forces at the migratory edge of cells based on biophysical single-cell measurements. Twist1 conferred additional cellular properties associated with cancer cell metastasis including increased migration, invasion, anoikis resistance, and anchorage-independent growth. The Twist box mutant was defective for these Twist1 phenotypes in vitro. Importantly, we observed a high frequency of Twist1-induced metastatic lung tumors and extra-thoracic metastases in vivo using the experimental lung metastasis assay. The Twist box was required for PCa cells to colonize metastatic lung lesions and extra-thoracic metastases. Comparative genomic profiling revealed transcriptional programs directed by the Twist box that were associated with cancer progression, such as Hoxa9. Mechanistically, Twist1 bound to the Hoxa9 promoter and positively regulated Hoxa9 expression in PCa cells. Finally, Hoxa9 was important for Twist1-induced cellular phenotypes associated with metastasis. These data suggest that the Twist box domain is required for Twist1 transcriptional programs and PCa metastasis. PMID:23982216

  17. Regulation of the Mechanism of TWIST1 Transcription by BHLHE40 and BHLHE41 in Cancer Cells.

    PubMed

    Asanoma, Kazuo; Liu, Ge; Yamane, Takako; Miyanari, Yoko; Takao, Tomoka; Yagi, Hiroshi; Ohgami, Tatsuhiro; Ichinoe, Akimasa; Sonoda, Kenzo; Wake, Norio; Kato, Kiyoko

    2015-12-01

    BHLHE40 and BHLHE41 (BHLHE40/41) are basic helix-loop-helix type transcription factors that play key roles in multiple cell behaviors. BHLHE40/41 were recently shown to be involved in an epithelial-to-mesenchymal transition (EMT). However, the precise mechanism of EMT control by BHLHE40/41 remains unclear. In the present study, we demonstrated that BHLHE40/41 expression was controlled in a pathological stage-dependent manner in human endometrial cancer (HEC). Our in vitro assays showed that BHLHE40/41 suppressed tumor cell invasion. BHLHE40/41 also suppressed the transcription of the EMT effectors SNAI1, SNAI2, and TWIST1. We identified the critical promoter regions of TWIST1 for its basal transcriptional activity. We elucidated that the transcription factor SP1 was involved in the basal transcriptional activity of TWIST1 and that BHLHE40/41 competed with SP1 for DNA binding to regulate gene transcription. This study is the first to report the detailed functions of BHLHE40 and BHLHE41 in the suppression of EMT effectors in vitro. Our results suggest that BHLHE40/41 suppress tumor cell invasion by inhibiting EMT in tumor cells. We propose that BHLHE40/41 are promising markers to predict the aggressiveness of each HEC case and that molecular targeting strategies involving BHLHE40/41 and SP1 may effectively regulate HEC progression.

  18. Developing Internal Controls through Activities

    ERIC Educational Resources Information Center

    Barnes, F. Herbert

    2009-01-01

    Life events can include the Tuesday afternoon cooking class with the group worker or the Saturday afternoon football game, but in the sense that Fritz Redl thought of them, these activities are only threads in a fabric of living that includes all the elements of daily life: playing, working, school-based learning, learning through activities,…

  19. Orbiter active thermal control system description

    NASA Technical Reports Server (NTRS)

    Laubach, G. E.

    1975-01-01

    A brief description of the Orbiter Active Thermal Control System (ATCS) including (1) major functional requirements of heat load, temperature control and heat sink utilization, (2) the overall system arrangement, and (3) detailed description of the elements of the ATCS.

  20. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition

    PubMed Central

    Khan, Md. Asaduzzaman; Tania, Mousumi; Wei, Chunli; Mei, Zhiqiang; Fu, Shelly; Cheng, Jingliang; Xu, Jianming; Fu, Junjiang

    2015-01-01

    Proteins that promote epithelial to mesenchymal transition (EMT) are associated with cancer metastasis. Inhibition of EMT regulators may be a promising approach in cancer therapy. In this study, Thymoquinone (TQ) was used to treat cancer cell lines to investigate its effects on EMT-regulatory proteins and cancer metastasis. We show that TQ inhibited cancer cell growth, migration and invasion in a dose-dependent manner. At the molecular level, TQ treatment decreased the transcriptional activity of the TWIST1 promoter and the mRNA expression of TWIST1, an EMT-promoting transcription factor. Accordingly, TQ treatment also decreased the expression of TWIST1-upregulated genes such as N-Cadherin and increased the expression of TWIST1-repressed genes such as E-Cadherin, resulting in a reduction of cell migration and invasion. TQ treatment also inhibited the growth and metastasis of cancer cell-derived xenograft tumors in mice but partially attenuated the migration and invasion in TWIST1-overexpressed cell lines. Furthermore, we found that TQ treatment enhanced the promoter DNA methylation of the TWIST1 gene in BT 549 cells. Together, these results demonstrate that TQ treatment inhibits TWIST1 promoter activity and decreases its expression, leading to the inhibition of cancer cell migration, invasion and metastasis. These findings suggest TQ as a potential small molecular inhibitor of cancer growth and metastasis. PMID:26023736

  1. Regulation of p21 by TWIST2 contributes to its tumor-suppressor function in human acute myeloid leukemia.

    PubMed

    Zhang, X; Ma, W; Cui, J; Yao, H; Zhou, H; Ge, Y; Xiao, L; Hu, X; Liu, B-H; Yang, J; Li, Y-Y; Chen, S; Eaves, C J; Wu, D; Zhao, Y

    2015-06-01

    TWIST2 has a dual function in tumors. Its implication in the initiation and metastasis of various solid tumors is well established, and its tumor-suppressor role in murine osteosarcoma cells has been reported recently. However, the function of TWIST2 and its underlying mechanisms in human normal and malignant hematopoiesis remain unclear. In the present study, we found that TWIST2 directly regulated p21 in human hematopoietic cells and whose silence promoted cell proliferation and cell cycle progression. Hypermethylation of TWIST2 occurred to 23 out of the 75 adult acute myeloid leukemia (AML) patients and resulted in the impaired expression of both TWIST2 and p21. Conversely, TWIST2 overexpression inhibited the growth of AML cells partially through its direct activation of p21 with intact HLH (helix-loop-helix) domain. The microarray data and gene expression validation showed that TWIST2 was sufficient to activate known tumor-suppressor genes, whereas suppress known oncogenes, which further supported its inhibitory effect against AML cells. Taken together, our data have identified a novel TWIST2-p21 axis that modulates the cell cycle of both normal and leukemic cells and demonstrated that the direct regulation of p21 by TWIST2 has a role in its tumor-suppressor function in AML.

  2. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1992-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: program objectives; program features; flight experiment features; current activities; MACE development model lab testing; MACE test article deployed on STS middeck; and development model testing.

  3. STOUT SMEARING FOR TWISTED FERMIONS.

    SciTech Connect

    SCHOLZ,W.; JANSEN, K.; McNEILE, C.; MONTVAY, I.; RICHARDS, C.; URBACH, C.; WENGER, U.

    2007-07-30

    The effect of Stout smearing is investigated in numerical simulations with twisted mass Wilson quarks. The phase transition near zero quark mass is studied on 12{sup 3} x 24, 16{sup 3} x 32 and 24{sup 3} x 48 lattices at lattice spacings a {approx_equal} 0.1-0.125 fm. The phase structure of Wilson fermions with twisted mass ({mu}) has been investigated in [1,2]. As it is explained there, the observed first order phase transition limits the minimal pion mass which can be reached in simulations at a given lattice spacing: m{sub k}{sup min} {approx_equal} {theta}(a). The phase structure is schematically depicted in the left panel of Fig. I . The phase transition can be observed in simulations with twisted mass fermions, for instance, as a ''jump'' or even metastabilities in the average plaquette value as a function of the hopping parameter ({kappa}). One possibility to weaken the phase transition and therefore allow for lighter pion masses at a given lattice spacing is to use an improved gauge action like the DBW2, Iwasaki, or tree-level Symanzik (tlSym) improved gauge action instead of the simple Wilson gauge action. This has been successfully demonstrated in [3,4,5]. Here we report on our attempts to use a smeared gauge field in the fermion lattice Dirac operator to further reduce the strength of the phase transition. This is relevant in simulations with N{sub f} = 2 + 1 + 1 (u,d,s,c) quark flavors [6] where the first order phase transition becomes stronger compared to N{sub f} = 2 simulations. The main impact of the above mentioned improved gauge actions on the gauge fields occurring in simulations is to suppress short range fluctuations (''dislocations'') and the associated ''exceptionally small'' eigenvalues of the fermion matrix. The same effect is expected from smearing the gauge field links in the fermion action. The cumulated effect of the improved gauge action and smeared links should allow for a smaller pion mass at a given lattice spacing and volume. Our

  4. Stress effects in twisted highly birefringent fibers

    NASA Astrophysics Data System (ADS)

    Wolinski, Tomasz R.

    1994-03-01

    Hydrostatic pressure and uniaxial longitudinal strain effects in twisted highly birefringent optical fibers have been investigated from the point of the Marcuse mode-coupling theory. The problem is analyzed in terms of local normal modes of the ideal fiber and in the limit of weak twist, where large linear birefringence dominates over twist effect, and therefore twist coupling between local modes is not effective. The authors present the results of birefringence measurements in highly birefringent bow-tie fibers influenced simultaneously by hydrostatic pressure up to 100 MPa and twisting the result for highly birefringent elliptical-core fibers influenced by uniaxial longitudinal strain up to 4000 (mu) (epsilon) and twisting effect. The birefringence measurement method is based on twist-induced effects and has been successfully applied in a stress environment. The experiment was conducted with a specially designed stress generating device that makes it possible to simultaneously generate various mechanical perturbations such as hydrostatic and radial pressure, axial strain and twist, allowing study of their influence on mode propagation in optical fibers. A comparison with theoretical results as well as with pervious experimental data on stress influence on the beat length parameter in highly birefringent fibers is also provided.

  5. Twisting of glycosidic bonds by hydrolases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Patterns of scissile bond twisting have been found in crystal structures of glycoside hydrolases (GHs) that are complexed with substrates and inhibitors. To estimate the increased potential energy in the substrates that results from this twisting, we have plotted torsion angles for the scissile bond...

  6. Two-parameter twisted quantum affine algebras

    NASA Astrophysics Data System (ADS)

    Jing, Naihuan; Zhang, Honglian

    2016-09-01

    We establish Drinfeld realization for the two-parameter twisted quantum affine algebras using a new method. The Hopf algebra structure for Drinfeld generators is given for both untwisted and twisted two-parameter quantum affine algebras, which include the quantum affine algebras as special cases.

  7. Recent advances in active noise control

    NASA Astrophysics Data System (ADS)

    Guicking, D.

    Advances in the field of active noise control over the last few years are reviewed. Some commercially available products and their technical applications are described, with particular attention given to broadband duct noise silencers, broadband active headphones, waveform synthesis, and LMS controllers. Recent theoretical and experimental research activities are then reviewed. These activities are concerned with duct noise, structural sound, interior spaces, algorithms, echo cancellation, and miscellaneous applications.

  8. Optical angular properties of twisted-nematic liquid-crystal cells with twist angles of less than 90 degrees

    NASA Astrophysics Data System (ADS)

    Palmer, Stephen

    1996-05-01

    I analyze the optical angular properties of twisted-nematic liquid-crystal cells that operate in the normally white mode with twist angles of less than 90 degrees. It is demonstrated that, although a reduction of the twist angle produces an increase in the asymmetry of the birefringence generated by a single cell when in the active phase, the positioning of two cells such that the face-to-face rub directions are crossed gives rise to a large amount of cell compensation, giving an enhanced field of view. The effect of the polarizer arrangement is investigated, and it is shown that the configuration required in order to maximize the overall optical transmittance when in the inactive phase also maintains the asymmetry displayed by the single cell when stimulated by voltages lying below that of the saturation voltage. Although employment of this polarizer design together with a lowering of the twist angle degrades cell contrast, a fast optical shutter from the light to the dark state based on a double-cell construction possessing improved optical angular properties is introduced. Such systems find applications in automatically darkening welding filter visors for which it is critical to combine both a fast response time to the protective state together with a large viewing cone.

  9. The Middeck Active Control Experiment (MACE): Identification for robust control

    NASA Technical Reports Server (NTRS)

    Karlov, Valery I.

    1992-01-01

    Viewgraphs on identification for robust control for the Middeck Active Control Experiment (MACE) are presented. Topics covered include: identification for robust control; three levels of identification; basic elements of the approach; advantages of 'post-ID' model of uncertainty; advantages of optimization; and practical realization.

  10. Deciphering the molecular mechanisms underlying the binding of the TWIST1/E12 complex to regulatory E-box sequences.

    PubMed

    Bouard, Charlotte; Terreux, Raphael; Honorat, Mylène; Manship, Brigitte; Ansieau, Stéphane; Vigneron, Arnaud M; Puisieux, Alain; Payen, Léa

    2016-06-20

    The TWIST1 bHLH transcription factor controls embryonic development and cancer processes. Although molecular and genetic analyses have provided a wealth of data on the role of bHLH transcription factors, very little is known on the molecular mechanisms underlying their binding affinity to the E-box sequence of the promoter. Here, we used an in silico model of the TWIST1/E12 (TE) heterocomplex and performed molecular dynamics (MD) simulations of its binding to specific (TE-box) and modified E-box sequences. We focused on (i) active E-box and inactive E-box sequences, on (ii) modified active E-box sequences, as well as on (iii) two box sequences with modified adjacent bases the AT- and TA-boxes. Our in silico models were supported by functional in vitro binding assays. This exploration highlighted the predominant role of protein side-chain residues, close to the heart of the complex, at anchoring the dimer to DNA sequences, and unveiled a shift towards adjacent ((-1) and (-1*)) bases and conserved bases of modified E-box sequences. In conclusion, our study provides proof of the predictive value of these MD simulations, which may contribute to the characterization of specific inhibitors by docking approaches, and their use in pharmacological therapies by blocking the tumoral TWIST1/E12 function in cancers. PMID:27151200

  11. Deciphering the molecular mechanisms underlying the binding of the TWIST1/E12 complex to regulatory E-box sequences

    PubMed Central

    Bouard, Charlotte; Terreux, Raphael; Honorat, Mylène; Manship, Brigitte; Ansieau, Stéphane; Vigneron, Arnaud M.; Puisieux, Alain; Payen, Léa

    2016-01-01

    The TWIST1 bHLH transcription factor controls embryonic development and cancer processes. Although molecular and genetic analyses have provided a wealth of data on the role of bHLH transcription factors, very little is known on the molecular mechanisms underlying their binding affinity to the E-box sequence of the promoter. Here, we used an in silico model of the TWIST1/E12 (TE) heterocomplex and performed molecular dynamics (MD) simulations of its binding to specific (TE-box) and modified E-box sequences. We focused on (i) active E-box and inactive E-box sequences, on (ii) modified active E-box sequences, as well as on (iii) two box sequences with modified adjacent bases the AT- and TA-boxes. Our in silico models were supported by functional in vitro binding assays. This exploration highlighted the predominant role of protein side-chain residues, close to the heart of the complex, at anchoring the dimer to DNA sequences, and unveiled a shift towards adjacent ((-1) and (-1*)) bases and conserved bases of modified E-box sequences. In conclusion, our study provides proof of the predictive value of these MD simulations, which may contribute to the characterization of specific inhibitors by docking approaches, and their use in pharmacological therapies by blocking the tumoral TWIST1/E12 function in cancers. PMID:27151200

  12. Student Activity Funds: Procedures & Controls.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles E.

    Student activity funds may create educational opportunities for students, but they frequently create problems for business administrators. The first part of this work reviews the types of organizational issues and transactions an organized student group is likely to encounter, including establishing a constitution, participant roles,…

  13. Transcriptional targets of TWIST1 in the cranial mesoderm regulate cell-matrix interactions and mesenchyme maintenance.

    PubMed

    Bildsoe, Heidi; Fan, Xiaochen; Wilkie, Emilie E; Ashoti, Ator; Jones, Vanessa J; Power, Melinda; Qin, Jing; Wang, Junwen; Tam, Patrick P L; Loebel, David A F

    2016-10-01

    TWIST1, a basic helix-loop-helix transcription factor is essential for the development of cranial mesoderm and cranial neural crest-derived craniofacial structures. We have previously shown that, in the absence of TWIST1, cells within the cranial mesoderm adopt an abnormal epithelial configuration via a process reminiscent of a mesenchymal to epithelial transition (MET). Here, we show by gene expression analysis that loss of TWIST1 in the cranial mesoderm is accompanied by a reduction in the expression of genes that are associated with cell-extracellular matrix interactions and the acquisition of mesenchymal characteristics. By comparing the transcriptional profiles of cranial mesoderm-specific Twist1 loss-of-function mutant and control mouse embryos, we identified a set of genes that are both TWIST1-dependent and predominantly expressed in the mesoderm. ChIP-seq was used to identify TWIST1-binding sites in an in vitro model of a TWIST1-dependent mesenchymal cell state, and the data were combined with the transcriptome data to identify potential target genes. Three direct transcriptional targets of TWIST1 (Ddr2, Pcolce and Tgfbi) were validated by ChIP-PCR using mouse embryonic tissues and by luciferase assays. Our findings reveal that the mesenchymal properties of the cranial mesoderm are likely to be regulated by a network of TWIST1 targets that influences the extracellular matrix and cell-matrix interactions, and collectively they are required for the morphogenesis of the craniofacial structures. PMID:27546376

  14. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells

    NASA Technical Reports Server (NTRS)

    Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)

    2001-01-01

    A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.

  15. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1991-01-01

    Actively controlled mechanical seals have recently been developed for industrial use. This study investigates the feasibility of using such seals for aerospace applications. In a noncontacting mechanical seal, the film thickness depends on the geometry of the seal interface. The amount of coning, which is a measure of the radial convergence or divergence of the seal interface, has a primary effect on the film thickness. Active control of the film thickness is established by controlling the coning with a piezoelectric material. A mathematical model has been formulated to predict the performance of an actively controlled mechanical seal.

  16. Folded supersymmetry with a twist

    DOE PAGES

    Cohen, Timothy; Craig, Nathaniel; Lou, Hou Keong; Pinner, David

    2016-03-30

    Folded supersymmetry (f-SUSY) stabilizes the weak scale against radiative corrections from the top sector via scalar partners whose gauge quantum numbers differ from their Standard Model counterparts. This non-trivial pairing of states can be realized in extra-dimensional theories with appropriate supersymmetry-breaking boundary conditions. We present a class of calculable f-SUSY models that are parametrized by a non-trivial twist in 5D boundary conditions and can accommodate the observed Higgs mass and couplings. Although the distinctive phenomenology associated with the novel folded states should provide strong evidence for this mechanism, the most stringent constraints are currently placed by conventional supersymmetry searches. Asmore » a result, these models remain minimally fine-tuned in light of LHC8 data and provide a range of both standard and exotic signatures accessible at LHC13.« less

  17. Field Test Results from a 10 kW Wind Turbine with Active Flow Control

    NASA Astrophysics Data System (ADS)

    Rice, Thomas; Bychkova, Veronika; Taylor, Keith; Clingman, Dan; Amitay, Michael

    2015-11-01

    Active flow control devices including synthetic jets and dynamic vortex generators were tested on a 10 kW wind turbine at RPI. Previous work has shown that load oscillations caused by dynamic stall could be modified through the use of active flow control by injecting momentum into the flow field near the leading edge of a dynamically pitching model. In this study, this work has been extended to its logical conclusion, field-testing active flow control on a real wind turbine. The blades in the current study have a 0.28m chord and 3.05m span, no twist or taper, and were retrofitted with six synthetic jets on one blade and ten dynamic vortex generators on a second blade. The third blade of this turbine was not modified, in order to serve as a control. Strain gauges were installed on each blade to measure blades' deflection. A simple closed loop control was demonstrated and preliminary results indicate reduced vibrational amplitude. Future testing will be conducted on a larger scale, 600kW machine at NREL, incorporating information collected during this study.

  18. Methods and apparatus for twist bend coupled (TCB) wind turbine blades

    DOEpatents

    Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee

    2006-10-10

    A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.

  19. Role and mechanism of Twist1 in modulating the chemosensitivity of FaDu cells.

    PubMed

    Lu, Sumei; Yu, Liang; Mu, Yakui; Ma, Juke; Tian, Jiajun; Xu, Wei; Wang, Haibo

    2014-07-01

    Multidrug resistance (MDR) is one of the most important obstacles affecting the efficacy of chemotherapy treatments for numerous types of cancer. In the present study, we have demonstrated the possible function of Twist1 in the chemosensitivity of head and neck squamous cell carcinoma (HNSCC) and have identified that its mechanism maybe associated with MDR1/P-gp regulation. To investigate this, the hypopharyngeal cancer cell line, FaDu, and its MDR cell line induced by taxol, FaDu/T, were employed. Stable transfectants targeted to Twist1 overexpression and Twist1 silencing based on FaDu were also conducted. Morphological observation, flow cytometry, reverse transcription-polymerase chain reaction (RT-PCR), western blotting and laser scanning confocal microscope detection were utilized to detect the associations between Twist1 and the chemosensitivity of FaDu cells. Our results demonstrated that Twist1 and MDR1/P-gp were upregulated in FaDu/T cells in a MDR dose-dependent manner. The anti-apoptotic capabilities of FaDu/T cells were enhanced during MDR progression, with apoptosis-related proteins (Bcl-2, Bax, activated caspase-3 and caspase-9) changing to resist apoptosis. Twist1 overexpression decreased the sensitivity of cells to taxol as revealed by a significant increase in MDR1/P-gp and IC50 (P<0.05). This overexpression also enhanced the resistance to apoptosis, with apoptotic proteins changing to resist cell death, and inhibited Ca2+ release induced by taxol (P<0.05). Detections in Twist1 silencing cells also confirmed this result. This study provided evidence that alterations of Twist1 expression modulates the chemosensitivity of FaDu cells to taxol. Therefore, Twist1 knockdown may be a promising treatment regimen for advanced hypopharyngeal carcinoma patients with MDR.

  20. Simulating Topological Defects in Twisted Fiber Bundles

    NASA Astrophysics Data System (ADS)

    Bruss, Isaac R.; Grason, Gregory M.

    2012-02-01

    Twisted bundles are a common motif found in naturally occurring structures of self-assembled fibers, such as collagen and fibrin. By understanding the general principles governing such organizations, new synthetic materials--from the nano to the macroscale--may also be realized. Recently, continuum elasticity theory has been applied to describe generic twisted fiber bundles. This has revealed a relation between a bundle's twist and the presence of topological defects in the cross-sectional packing of the fibers. Here we employ numerical simulations to examine this interdependence. We model a bundle's cross-section as beads confined to a plane. The interactions between beads is governed by a modified Lennard-Jones potential that accounts for the effects of twist. We observe configurations that range from perfect hexagonal packing for cases of no twist, to defect populated structures above a critical amount of twist. For small bundles of less than ˜100 beads, there exists a discrete spectrum of energy ground states corresponding to integer numbers of five-fold disclinations. For larger bundles, we hope to uncover what types of defect arrangements effectively screen the stresses caused by twist, and compare these to current predictions of the internal organization of collagen fibrils.

  1. DYNAMICS OF STRONGLY TWISTED RELATIVISTIC MAGNETOSPHERES

    SciTech Connect

    Parfrey, Kyle; Beloborodov, Andrei M.; Hui, Lam

    2013-09-10

    Magnetar magnetospheres are believed to be strongly twisted due to shearing of the stellar crust by internal magnetic stresses. We present time-dependent axisymmetric simulations showing in detail the evolution of relativistic force-free magnetospheres subjected to slow twisting through large angles. When the twist amplitude is small, the magnetosphere moves quasi-statically through a sequence of equilibria of increasing free energy. At some twist amplitude the magnetosphere becomes tearing-mode unstable to forming a resistive current sheet, initiating large-scale magnetic reconnection in which a significant fraction of the magnetic free energy can be dissipated. This ''critical'' twist angle is insensitive to the resistive length scale. Rapid shearing temporarily stabilizes the magnetosphere beyond the critical angle, allowing the magnetosphere of a rapidly differentially rotating star to store and dissipate more free energy. In addition to these effects, shearing the surface of a rotating star increases the spindown torque applied to the star. If shearing is much slower than rotation, the resulting spikes in spindown rate can occur on timescales anywhere from the long twisting timescale to the stellar spin period or shorter, depending both on the stellar shear distribution and the existing distribution of magnetospheric twists. A model in which energy is stored in the magnetosphere and released by a magnetospheric instability therefore predicts large changes in the measured spindown rate before soft gamma repeater giant flares.

  2. Active vibration control of lightweight floor systems

    NASA Astrophysics Data System (ADS)

    Baader, J.; Fontana, M.

    2016-04-01

    Wide-span and lightweight floors are often prone to structural vibrations due to their low resonance frequency and poor material damping. Their dynamic behaviour can be improved using passive, semi-active or active vibration control devices. The following article proposes a novel method for the controller synthesis for active vibration control. An existing passive TMD (tuned mass damper) is modelled and equipped with an actuator in order to provide more efficient damping. Using an iterative optimization approach under constraints, an optimal controller is found which minimizes a quadratic cost function in frequency domain. A simulation of an existing test bench shows that the active vibration control device is able to provide increased damping compared to the passive TMD.

  3. Twisted dust acoustic waves in dusty plasmas

    SciTech Connect

    Shukla, P. K.

    2012-08-15

    We examine linear dust acoustic waves (DAWs) in a dusty plasma with strongly correlated dust grains, and discuss possibility of a twisted DA vortex beam carrying orbital angular momentum (OAM). For our purposes, we use the Boltzmann distributed electron and ion density perturbations, the dust continuity and generalized viscoelastic dust momentum equations, and Poisson's equation to obtain a dispersion relation for the modified DAWs. The effects of the polarization force, strong dust couplings, and dust charge fluctuations on the DAW spectrum are examined. Furthermore, we demonstrate that the DAW can propagate as a twisted vortex beam carrying OAM. A twisted DA vortex structure can trap and transport dust particles in dusty plasmas.

  4. Reliable and Affordable Control Systems Active Combustor Pattern Factor Control

    NASA Technical Reports Server (NTRS)

    McCarty, Bob; Tomondi, Chris; McGinley, Ray

    2004-01-01

    Active, closed-loop control of combustor pattern factor is a cooperative effort between Honeywell (formerly AlliedSignal) Engines and Systems and the NASA Glenn Research Center to reduce emissions and turbine-stator vane temperature variations, thereby enhancing engine performance and life, and reducing direct operating costs. Total fuel flow supplied to the engine is established by the speed/power control, but the distribution to individual atomizers will be controlled by the Active Combustor Pattern Factor Control (ACPFC). This system consist of three major components: multiple, thin-film sensors located on the turbine-stator vanes; fuel-flow modulators for individual atomizers; and control logic and algorithms within the electronic control.

  5. An equilibrium double-twist model for the radial structure of collagen fibrils.

    PubMed

    Brown, Aidan I; Kreplak, Laurent; Rutenberg, Andrew D

    2014-11-14

    Mammalian tissues contain networks and ordered arrays of collagen fibrils originating from the periodic self-assembly of helical 300 nm long tropocollagen complexes. The fibril radius is typically between 25 to 250 nm, and tropocollagen at the surface appears to exhibit a characteristic twist-angle with respect to the fibril axis. Similar fibril radii and twist-angles at the surface are observed in vitro, suggesting that these features are controlled by a similar self-assembly process. In this work, we propose a physical mechanism of equilibrium radius control for collagen fibrils based on a radially varying double-twist alignment of tropocollagen within a collagen fibril. The free-energy of alignment is similar to that of liquid crystalline blue phases, and we employ an analytic Euler-Lagrange and numerical free energy minimization to determine the twist-angle between the molecular axis and the fibril axis along the radial direction. Competition between the different elastic energy components, together with a surface energy, determines the equilibrium radius and twist-angle at the fibril surface. A simplified model with a twist-angle that is linear with radius is a reasonable approximation in some parameter regimes, and explains a power-law dependence of radius and twist-angle at the surface as parameters are varied. Fibril radius and twist-angle at the surface corresponding to an equilibrium free-energy minimum are consistent with existing experimental measurements of collagen fibrils. Remarkably, in the experimental regime, all of our model parameters are important for controlling equilibrium structural parameters of collagen fibrils. PMID:25238208

  6. Active Control by Conservation of Energy Concept

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2000-01-01

    Three unrelated experiments are discussed; each was extremely sensitive to initial conditions. The initial conditions are the beginnings of the origins of the information that nonlinearity displays. Initial conditions make the phenomenon unstable and unpredictable. With the knowledge of the initial conditions, active control requires far less power than that present in the system response. The first experiment is on the control of shocks from an axisymmetric supersonic jet; the second, control of a nonlinear panel response forced by turbulent boundary layer and sound; the third, control of subharmonic and harmonics of a panel forced by sound. In all three experiments, control is achieved by redistribution of periodic energy response such that the energy is nearly preserved from a previous uncontrolled state. This type of active control improves the performance of the system being controlled.

  7. [Inactivation of failsafe programs by Twist oncoproteins and tumor progression].

    PubMed

    Puisieux, A

    2008-01-01

    Multicellular organisms have developed innate defense mechanisms to prevent the expansion of abnormal cells with significant proliferative potential. The two major safeguard mechanisms are premature senescence, which is characterized by definitive cell cycle arrest, and apoptosis, the most common form of programmed cell death. In normal and premalignant cells, the control of these processes is coupled to the regulation of cell proliferation, mainly through the p16 (Ink4A) -Rb and ARF-p53 intracellular signaling pathways. Hence, in benign tumors, aberrant mitogenic activity is counterbalanced by the induction of these oncosuppressive pathways, leading to either apoptosis or senescence which both limit tumor outgrowth. Progression towards malignant and potentially metastatic tumors requires the inhibition of these failsafe programs. Based on our work on Twist oncoproteins, we propose a presentation of recent data on cellular mechanisms by which cancer cells override the surveillance machinery and escape senescence and apoptosis, and we will describe the biological impact of this process on tumor metastasis. PMID:19061727

  8. Active control of buildings during earthquakes

    NASA Technical Reports Server (NTRS)

    Vance, Vicki L.

    1993-01-01

    The objective of this report is to provide an overview of the different types of control systems used in buildings, to discuss the problems associated with current active control mechanisms, and to show the cost-effectiveness of applying active control to buildings. In addition, a small case study investigates the feasibility and benefits of using embedded actuators in buildings. Use of embedded actuators could solve many of the current problems associated with active control by providing a wider bandwidth of control, quicker speed of response, increased reliability and reduced power requirement. Though embedded actuators have not been developed for buildings, they have previously been used in space structures. Many similarities exist between large civil and aerospace structures indicating that direct transfer of concepts between the two disciplines may be possible. In particular, much of the Controls-Structures Interaction (CSI) technology currently being developed could be beneficially applied to civil structures. While several buildings with active control systems have been constructed in Japan, additional research and experimental verification are necessary before active control systems become widely accepted and implemented.

  9. A Significantly Twisted Spirocyclic Phosphine Oxide as a Universal Host for High-Efficiency Full-Color Thermally Activated Delayed Fluorescence Diodes.

    PubMed

    Li, Jing; Ding, Dongxue; Tao, Youtian; Wei, Ying; Chen, Runfeng; Xie, Linghai; Huang, Wei; Xu, Hui

    2016-04-01

    A universal thermally activated delayed fluorescence (TADF) host, 4'-diphenylphosphinoylspiro[fluorene-9,9'-xanthene] (SFXSPO), is constructed with a highly distorted and asymmetric configuration and disordered molecular packing in its solid state. SFXSPO successfully endows its full-color TADF diodes with state-of-the-art performance, e.g., the record external quantum efficiency of 22.5% and 19.1% and internal quantum efficiency of ≈100% for its yellow TADF diodes and single-host full-TADF nearly-white-emitting devices, respectively.

  10. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1991-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: science program objectives and rationale; science requirements; capturing the essential physics; science development approach; development model hardware; development model test plan; and flight hardware and operations.

  11. Mathematical Modeling of Yarn Dynamics in a Generalized Twisting System

    NASA Astrophysics Data System (ADS)

    Yin, R.; Tao, X. M.; Xu, B. G.

    2016-04-01

    Twisting is an important process to form a continuous yarn from short fibres and to determine the structure and properties of the resultant yarn. This paper proposes a new theoretical model of yarn dynamics in a generalized twisting system, which deals with two important phenomena simultaneously, that is, twist generation and twist propagation. Equations of yarn motion are established and the boundary value problems are numerically solved by Newton-Raphson method. The simulation results are validated by experiments and a good agreement has been demonstrated for the system with a moving rigid cylinder as the twisting element. For the first time, influences of several parameters on the twisting process have been revealed in terms of twist efficiency of the moving rigid cylinder, propagation coefficients of twist trapping and congestion. It was found that the wrap angle and yarn tension have large influence on the twisting process, and the yarn torsional rigidity varies with the twisting parameters.

  12. Mathematical Modeling of Yarn Dynamics in a Generalized Twisting System

    PubMed Central

    Yin, R.; Tao, X. M.; Xu, B. G.

    2016-01-01

    Twisting is an important process to form a continuous yarn from short fibres and to determine the structure and properties of the resultant yarn. This paper proposes a new theoretical model of yarn dynamics in a generalized twisting system, which deals with two important phenomena simultaneously, that is, twist generation and twist propagation. Equations of yarn motion are established and the boundary value problems are numerically solved by Newton-Raphson method. The simulation results are validated by experiments and a good agreement has been demonstrated for the system with a moving rigid cylinder as the twisting element. For the first time, influences of several parameters on the twisting process have been revealed in terms of twist efficiency of the moving rigid cylinder, propagation coefficients of twist trapping and congestion. It was found that the wrap angle and yarn tension have large influence on the twisting process, and the yarn torsional rigidity varies with the twisting parameters. PMID:27079187

  13. Active control of turbomachine discrete tones

    NASA Astrophysics Data System (ADS)

    Fleeter, Sanford

    This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.

  14. New twisted intermetallic compound superconductor: A concept

    NASA Technical Reports Server (NTRS)

    Coles, W. D.; Brown, G. V.; Laurence, J. C.

    1972-01-01

    Method for processing Nb3Sn and other intermetallic compound superconductors produces a twisted, stabilized wire or tube which can be used to wind electromagnetics, armatures, rotors, and field windings for motors and generators as well as other magnetic devices.

  15. Deformed and twisted black holes with NUTs

    NASA Astrophysics Data System (ADS)

    Krtouš, Pavel; Kubizňák, David; Frolov, Valeri P.; Kolář, Ivan

    2016-06-01

    We construct a new class of vacuum black hole solutions whose geometry is deformed and twisted by the presence of NUT charges. The solutions are obtained by ‘unspinning’ the general Kerr-NUT-(A)dS spacetimes, effectively switching off some of their rotation parameters. The resulting geometry has a structure of warped space with the Kerr-like Lorentzian part warped to a Euclidean metric of a deformed and/or twisted sphere, with the deformation and twist characterized by the ‘Euclidean NUT’ parameters. In the absence of NUTs, the solution reduces to a well known Kerr-(A)dS black hole with several rotations switched off. New geometries inherit the original symmetry of the Kerr-NUT-(A)dS family, namely, they possess the full Killing tower of hidden and explicit symmetries. As expected, for vanishing NUT, twist, and deformation parameters, the symmetry is further enlarged.

  16. Nonsense mutations of the bHLH transcription factor TWIST2 found in Setleis Syndrome patients cause dysregulation of periostin

    PubMed Central

    Franco, Hector L.; Casasnovas, Jose J.; Leon, Ruth G.; Friesel, Robert; Ge, Yongchao; Desnick, Robert J.; Cadilla, Carmen L.

    2011-01-01

    Setleis Syndrome (OMIM ID: 227260) is a rare autosomal recessive disease characterized by abnormal facial development. Recently, we have reported that two nonsense mutations (c.486C>T [Q119X] and c.324C>T [Q65X]) of the basic helix-loop-helix (bHLH) transcription factor TWIST2 cause Setleis Syndrome. Here we show that periostin, a cell adhesion protein involved in connective tissue development and maintenance, is down-regulated in Setleis Syndrome patient fibroblast cells and that periostin positively responds to manipulations in TWIST2 levels, suggesting that TWIST2 is a transactivator of periostin. Functional analysis of the TWIST2 mutant form (Q119X) revealed that it maintains the ability to localize to the nucleus, forms homo and heterodimers with the ubiquitous bHLH protein E12, and binds to dsDNA. Reporter gene assays using deletion constructs of the human periostin promoter also reveal that TWIST2 can activate this gene more specifically than Twist1, while the Q119X mutant results in no significant transactivation. Chromatin immunoprecipitation assays show that both wild-type TWIST2 and the Q119X mutant bind the periostin promoter, however only wild-type TWIST2 is associated with higher levels of histone acetylation across the 5′-regulatory region of periostin. Taken together, these data suggest that the C-terminal domain of TWIST2, which is missing in the Q119X mutant form of TWIST2, is responsible for proper transactivation of the periostin gene. Improper regulation of periostin by the mutant form of TWIST2 could help explain some of the soft tissue abnormalities seen in these patients therefore providing a genotype-phenotype relationship for Setleis Syndrome. PMID:21801849

  17. Active and adaptive flow control of twin-tail buffet and applications

    NASA Astrophysics Data System (ADS)

    Yang, Zhi

    2002-01-01

    Modern fighter aircraft with dual vertical tails are operated at high angles of attack. The vortex generated by leading edge extension (LEX) breaks down before reaching the two vertical tails. The wake of highly unsteady, turbulent flow causes unbalanced broadband aerodynamic loading on the tails and may produce severe buffet on the tails and lead to tail fatigue failure. Flow suction along the vortex cores (FSVC) is investigated as an active control method for tail-buffet alleviation. Suction tubes have been tilted at different angles to study the control effectiveness of suction tubes orientation. Flow field response, aerodynamic loading and aeroelastic results are compared with the no-control case. These flow modifications produce lower tip bending and rotation angle deflections and accelerations. Moreover, the root bending and twisting moments are reduced in comparison with the no-control case. However, there was no shift in the frequencies at which the peaks of the power spectral density (PSD) responses occurred. The primary effect of the FSVC methods is the amplitude reduction of the aeroelastic responses up to 30%. A parametric investigation is conducted and the best control effectiveness is obtained with the suction tubes tilted at -10°. Next, the twin-tail buffet alleviation is addressed by using adaptive flow control, and an adaptive active control method is developed. Control ports, whose locations are determined according to the locations of a range of high-pressure difference, are placed within a small area on the tail surfaces. Flow suction and blowing are applied through these control ports in order to equalize the pressures on the two surfaces of the tail. Mass flow rate through each port is proportional to the pressure difference across the tail at the location of this port. Comparing the flow field and aeroelastic response with the no-control case, the normal-force and twisting-moment distributions are substantially decreased along with the

  18. Twist promotes reprogramming of glucose metabolism in breast cancer cells through PI3K/AKT and p53 signaling pathways.

    PubMed

    Yang, Li; Hou, Yixuan; Yuan, Jie; Tang, Shifu; Zhang, Hailong; Zhu, Qing; Du, Yan-e; Zhou, Mingli; Wen, Siyang; Xu, Liyun; Tang, Xi; Cui, Xiaojiang; Liu, Manran

    2015-09-22

    Twist, a key regulator of epithelial-mesenchymal transition (EMT), plays an important role in the development of a tumorigenic phenotype. Energy metabolism reprogramming (EMR), a newly discovered hallmark of cancer cells, potentiates cancer cell proliferation, survival, and invasion. Currently little is known about the effects of Twist on tumor EMR. In this study, we found that glucose consumption and lactate production were increased and mitochondrial mass was decreased in Twist-overexpressing MCF10A mammary epithelial cells compared with vector-expressing MCF10A cells. Moreover, these Twist-induced phenotypic changes were augmented by hypoxia. The expression of some glucose metabolism-related genes such as PKM2, LDHA, and G6PD was also found to be upregulated. Mechanistically, activated β1-integrin/FAK/PI3K/AKT/mTOR and suppressed P53 signaling were responsible for the observed EMR. Knockdown of Twist reversed the effects of Twist on EMR in Twist-overexpressing MCF10A cells and Twist-positive breast cancer cells. Furthermore, blockage of the β1-integrin/FAK/PI3K/AKT/mTOR pathway by siRNA or specific chemical inhibitors, or rescue of p53 activation can partially reverse the switch of glucose metabolism and inhibit the migration of Twist-overexpressing MCF10A cells and Twist-positive breast cancer cells. Thus, our data suggest that Twist promotes reprogramming of glucose metabolism in MCF10A-Twist cells and Twist-positive breast cancer cells via activation of the β1-integrin/FAK/PI3K/AKT/mTOR pathway and inhibition of the p53 pathway. Our study provides new insight into EMR. PMID:26342198

  19. Twist promotes reprogramming of glucose metabolism in breast cancer cells through PI3K/AKT and p53 signaling pathways.

    PubMed

    Yang, Li; Hou, Yixuan; Yuan, Jie; Tang, Shifu; Zhang, Hailong; Zhu, Qing; Du, Yan-e; Zhou, Mingli; Wen, Siyang; Xu, Liyun; Tang, Xi; Cui, Xiaojiang; Liu, Manran

    2015-09-22

    Twist, a key regulator of epithelial-mesenchymal transition (EMT), plays an important role in the development of a tumorigenic phenotype. Energy metabolism reprogramming (EMR), a newly discovered hallmark of cancer cells, potentiates cancer cell proliferation, survival, and invasion. Currently little is known about the effects of Twist on tumor EMR. In this study, we found that glucose consumption and lactate production were increased and mitochondrial mass was decreased in Twist-overexpressing MCF10A mammary epithelial cells compared with vector-expressing MCF10A cells. Moreover, these Twist-induced phenotypic changes were augmented by hypoxia. The expression of some glucose metabolism-related genes such as PKM2, LDHA, and G6PD was also found to be upregulated. Mechanistically, activated β1-integrin/FAK/PI3K/AKT/mTOR and suppressed P53 signaling were responsible for the observed EMR. Knockdown of Twist reversed the effects of Twist on EMR in Twist-overexpressing MCF10A cells and Twist-positive breast cancer cells. Furthermore, blockage of the β1-integrin/FAK/PI3K/AKT/mTOR pathway by siRNA or specific chemical inhibitors, or rescue of p53 activation can partially reverse the switch of glucose metabolism and inhibit the migration of Twist-overexpressing MCF10A cells and Twist-positive breast cancer cells. Thus, our data suggest that Twist promotes reprogramming of glucose metabolism in MCF10A-Twist cells and Twist-positive breast cancer cells via activation of the β1-integrin/FAK/PI3K/AKT/mTOR pathway and inhibition of the p53 pathway. Our study provides new insight into EMR.

  20. Twist promotes reprogramming of glucose metabolism in breast cancer cells through PI3K/AKT and p53 signaling pathways

    PubMed Central

    Yuan, Jie; Tang, Shifu; Zhang, Hailong; Zhu, Qing; Du, Yan-e; Zhou, Mingli; Wen, Siyang; Xu, Liyun; Tang, Xi; Cui, Xiaojiang; Liu, Manran

    2015-01-01

    Twist, a key regulator of epithelial-mesenchymal transition (EMT), plays an important role in the development of a tumorigenic phenotype. Energy metabolism reprogramming (EMR), a newly discovered hallmark of cancer cells, potentiates cancer cell proliferation, survival, and invasion. Currently little is known about the effects of Twist on tumor EMR. In this study, we found that glucose consumption and lactate production were increased and mitochondrial mass was decreased in Twist-overexpressing MCF10A mammary epithelial cells compared with vector-expressing MCF10A cells. Moreover, these Twist-induced phenotypic changes were augmented by hypoxia. The expression of some glucose metabolism-related genes such as PKM2, LDHA, and G6PD was also found to be upregulated. Mechanistically, activated β1-integrin/FAK/PI3K/AKT/mTOR and suppressed P53 signaling were responsible for the observed EMR. Knockdown of Twist reversed the effects of Twist on EMR in Twist-overexpressing MCF10A cells and Twist-positive breast cancer cells. Furthermore, blockage of the β1-integrin/FAK/PI3K/AKT/mTOR pathway by siRNA or specific chemical inhibitors, or rescue of p53 activation can partially reverse the switch of glucose metabolism and inhibit the migration of Twist-overexpressing MCF10A cells and Twist-positive breast cancer cells. Thus, our data suggest that Twist promotes reprogramming of glucose metabolism in MCF10A-Twist cells and Twist-positive breast cancer cells via activation of the β1-integrin/FAK/PI3K/AKT/mTOR pathway and inhibition of the p53 pathway. Our study provides new insight into EMR. PMID:26342198

  1. Active load control techniques for wind turbines.

    SciTech Connect

    van Dam, C.P.; Berg, Dale E.; Johnson, Scott J.

    2008-07-01

    This report provides an overview on the current state of wind turbine control and introduces a number of active techniques that could be potentially used for control of wind turbine blades. The focus is on research regarding active flow control (AFC) as it applies to wind turbine performance and loads. The techniques and concepts described here are often described as 'smart structures' or 'smart rotor control'. This field is rapidly growing and there are numerous concepts currently being investigated around the world; some concepts already are focused on the wind energy industry and others are intended for use in other fields, but have the potential for wind turbine control. An AFC system can be broken into three categories: controls and sensors, actuators and devices, and the flow phenomena. This report focuses on the research involved with the actuators and devices and the generated flow phenomena caused by each device.

  2. Student Activity Funds: Procedures and Controls.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles E.

    2000-01-01

    An effective internal-control system can help school business administrators meet the challenges of accounting for student activity funds. Such a system should include appropriate policies and procedures, identification of key control points, self-assessments, audit trails, and internal and external audits. (MLH)

  3. Mission control activity during STS-61 EVA

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Flight controller Susan P. Rainwater observes as two astronauts work through a lengthy period of extravehicular activity (EVA) in the cargo bay of the Earth-looking Space Shuttle Endeavour. Rainwater's EVA console was one of Mission Control's busiest during this eleven-day Hubble Space Telescope (HST) servicing mission in Earth orbit.

  4. Actively Controlled Magnetic Vibration-Isolation System

    NASA Technical Reports Server (NTRS)

    Grodsinky, Carlos M.; Logsdon, Kirk A.; Wbomski, Joseph F.; Brown, Gerald V.

    1993-01-01

    Prototype magnetic suspension system with active control isolates object from vibrations in all six degrees of freedom at frequencies as low as 0.01 Hz. Designed specifically to protect instruments aboard spacecraft by suppressing vibrations to microgravity levels; basic control approach used for such terrestrial uses as suppression of shocks and other vibrations in trucks and railroad cars.

  5. A smart soft actuator using a single shape memory alloy for twisting actuation

    NASA Astrophysics Data System (ADS)

    Shim, Jae-Eul; Quan, Ying-Jun; Wang, Wei; Rodrigue, Hugo; Song, Sung-Hyuk; Ahn, Sung-Hoon

    2015-12-01

    Recently, robots have become a topic of interest with regard to their functionality as they need to complete a large number of diverse tasks in a variety of environments. When using traditional mechanical components, many parts are needed to realize complex deformations, such as motors, hinges, and cranks. To produce complex deformations, this work introduces a smart soft composite torsional actuator using a single shape memory alloy (SMA) wire without any additional elements. The proposed twisting actuator is composed of a torsionally prestrained SMA wire embedded at the center of a polydimethylsiloxane matrix that twists by applying an electric current upon joule heating of the SMA wire. This report shows the actuator design, fabrication method, and results for the twisting angle and actuation moment. Results show that a higher electric current helps reach the maximum twisting angle faster, but that if the current is too low or too high, it will not be able to reach its maximum deformation. Also, both the twisting angle and the twisting moment increase with a large applied twisting prestrain, but this increase has an asymptotic behavior. However, results for both the width and the thickness of the actuator show that a larger width and thickness reduce the maximum actuation angle of the actuator. This paper also presents a new mechanism for an SMA-actuated active catheter using only two SMA wires with a total length of 170 mm to bend the tip of the catheter in multiple directions. The fabricated active catheter’s maximum twisting angle is 270°, and the maximum bending curvature is 0.02 mm-1.

  6. Digitally controlling the 'twist' of light

    NASA Astrophysics Data System (ADS)

    Dudley, A.; Forbes, A.

    2014-08-01

    An overview of the work done within the Mathematical Optics group at the CSIR's National Laser Centre will be presented. We will focus on our work done in laser beam shaping with the use of digital holograms for the generation of superimposed optical fields which carry orbital angular momentum (OAM) and the development of OAM measurement techniques. Since OAM offers a potentially infinite-dimensional state space, much interest has been generated in its measurement for higher-dimensional quantum information processing to be realised. We generate superpositions of higher-order Bessel beams and show that even though we can create a field which carries no overall OAM, we can still witness an angular rotation in the intensity profile of the beam. We also develop a new OAM measurement technique by means of digital holograms.

  7. [Septal Activation and Control of Limbic Structures].

    PubMed

    Fedotova, I R; Frolov, A A

    2015-01-01

    Coherent activation of limbic system structures as the main function of theta-rhythm is widely discussed in the literature. However until now does not exist the common view on its generation in these brain structures. The model of septal theta-rhythmic activation and control of limbic structures is suggested basing on the literature and own experimental data.

  8. miR-148a is upregulated by Twist1 and T-bet and promotes Th1-cell survival by regulating the proapoptotic gene Bim.

    PubMed

    Haftmann, Claudia; Stittrich, Anna-Barbara; Zimmermann, Jakob; Fang, Zhuo; Hradilkova, Kristyna; Bardua, Markus; Westendorf, Kerstin; Heinz, Gitta A; Riedel, René; Siede, Julia; Lehmann, Katrin; Weinberger, Esther E; Zimmel, David; Lauer, Uta; Häupl, Thomas; Sieper, Joachim; Backhaus, Marina; Neumann, Christian; Hoffmann, Ute; Porstner, Martina; Chen, Wei; Grün, Joachim R; Baumgrass, Ria; Matz, Mareen; Löhning, Max; Scheffold, Alexander; Wittmann, Jürgen; Chang, Hyun-Dong; Rajewsky, Nikolaus; Jäck, Hans-Martin; Radbruch, Andreas; Mashreghi, Mir-Farzin

    2015-04-01

    Repeatedly activated T helper 1 (Th1) cells present during chronic inflammation can efficiently adapt to the inflammatory milieu, for example, by expressing the transcription factor Twist1, which limits the immunopathology caused by Th1 cells. Here, we show that in repeatedly activated murine Th1 cells, Twist1 and T-bet induce expression of microRNA-148a (miR-148a). miR-148a regulates expression of the proapoptotic gene Bim, resulting in a decreased Bim/Bcl2 ratio. Inhibition of miR-148a by antagomirs in repeatedly activated Th1 cells increases the expression of Bim, leading to enhanced apoptosis. Knockdown of Bim expression by siRNA in miR-148a antagomir-treated cells restores viability of the Th1 cells, demonstrating that miR-148a controls survival by regulating Bim expression. Thus, Twist1 and T-bet not only control the differentiation and function of Th1 cells, but also their persistence in chronic inflammation.

  9. Control of nucleus accumbens activity with neurofeedback.

    PubMed

    Greer, Stephanie M; Trujillo, Andrew J; Glover, Gary H; Knutson, Brian

    2014-08-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as "neurofeedback." In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive aroused affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function.

  10. Control of nucleus accumbens activity with neurofeedback

    PubMed Central

    Greer, Stephanie M.; Trujillo, Andrew J.; Glover, Gary H.; Knutson, Brian

    2014-01-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be presented as “neurofeedback.” In an fMRI-based neurofeedback experiment designed to elicit NAcc activity, we found that subjects could increase their own NAcc activity, and that display of neurofeedback significantly enhanced their ability to do so. Subjects were not as capable of decreasing their NAcc activity, however, and enhanced control did not persist after subsequent removal of neurofeedback. Further analyses suggested that individuals who recruited positive arousal affect were better able to increase NAcc activity in response to neurofeedback, and that NAcc neurofeedback also elicited functionally correlated activity in the medial prefrontal cortex. Together, these findings suggest that humans can modulate their own NAcc activity and that fMRI-based neurofeedback may augment their efforts. The observed association between positive arousal and effective NAcc control further supports an anticipatory affect account of NAcc function. PMID:24705203

  11. Active vibration control of civil structures

    SciTech Connect

    Farrar, C.; Baker, W.; Fales, J.; Shevitz, D.

    1996-11-01

    This is a final report of a one year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Active vibration control (AVC) of structural and mechanical systems is one of the rapidly advancing areas of engineering research. The multifaceted nature of AVC covers many disciplines, such as sensors and instrumentation, numerical modeling, experimental mechanics, and advanced power systems. This work encompassed a review of the literature on active control of structures focusing both on active control hardware and on control algorithms, a design of an isolation systems using magneto-rheological fluid-filled (MRF) dampers and numerical simulations to study the enhanced vibration mitigation effects of this technology.

  12. Vector control activities: Fiscal Year, 1986

    SciTech Connect

    Not Available

    1987-04-01

    The program is divided into two major components - operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems requiring TVA attention and study. Nonchemical methods of control are emphasized and are supplemented with chemical measures as needed. TVA also cooperates with various concerned municipalities in identifying blood-sucking arthropod pest problems and demonstrating control techniques useful in establishing abatement programs, and provides technical assistance to other TVA programs and organizations. The program also helps Land Between The Lakes (LBL) plan and conduct vector control operations and tick control research. Specific program control activities and support studies are discussed.

  13. Implementation of active magnetic bearing digital controller

    NASA Astrophysics Data System (ADS)

    Liu, Hu; Fang, Jiancheng; Liu, Gang

    2006-11-01

    An active magnetic bearing digital controller is presented. This system is based on high-speed floating-point digital signal processor (DSP) and field programmable gate array (FPGA). The active vibration control algorithms are coded in C language where is possible to reduce the probabilities of software errors occurring and to reduce the debugging time for those errors and are executed by the high-speed floating-point DSP. This paper describes the implementation of the controller. The proposed digital control system can meet the requirement of enough throughput which is difficult using a single fixed-pointing DSP, realize integration of magnetic bearings controller and have the merits of easily to maintain and be applied in other magnetic bearings systems. The system has been applied successfully in several actual magnetic bearings systems at Beijing University of Aeronautics and Astronautics and the experimental results verify its feasibility.

  14. CFD Modeling for Active Flow Control

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.

    2001-01-01

    This presentation describes current work under UEET Active Flow Control CFD Research Tool Development. The goal of this work is to develop computational tools for inlet active flow control design. This year s objectives were to perform CFD simulations of fully gridded vane vortex generators, micro-vortex genera- tors, and synthetic jets, and to compare flowfield results with wind tunnel tests of simple geometries with flow control devices. Comparisons are shown for a single micro-vortex generator on a flat plate, and for flow over an expansion ramp with sidewall effects. Vortex core location, pressure gradient and oil flow patterns are compared between experiment and computation. This work lays the groundwork for evaluating simplified modeling of arrays of devices, and provides the opportunity to test simple flow control device/sensor/ control loop interaction.

  15. Active vibration control in microgravity environment

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.

    1987-01-01

    The low gravity environment of the space station is suitable for experiments or manufacturing processes which require near zero gravity. An experiment was fabricated to test the validity of the active control process and to verify the flow and control parameters identified in a theoretical model. Zero gravity is approximated in the horizontal plane using a low friction air bearing table. An analog control system was designed to activate calibrated air jets when displacement of the test mass is sensed. The experiment demonstrates that an air jet control system introduces an effective damping factor to control oscillatory response. The amount of damping as well as the flow parameters, such as pressure drop across the valve and flow rate of air, are verified by the analytical model.

  16. Geometric Constraints and the Anatomical Interpretation of Twisted Plant Organ Phenotypes

    PubMed Central

    Weizbauer, Renate; Peters, Winfried S.; Schulz, Burkhard

    2011-01-01

    The study of plant mutants with twisting growth in axial organs, which normally grow straight in the wild-type, is expected to improve our understanding of the interplay among microtubules, cellulose biosynthesis, cell wall structure, and organ biomechanics that control organ growth and morphogenesis. However, geometric constraints based on symplastic growth and the consequences of these geometric constraints concerning interpretations of twisted-organ phenotypes are currently underestimated. Symplastic growth, a fundamental concept in plant developmental biology, is characterized by coordinated growth of adjacent cells based on their connectivity through cell walls. This growth behavior implies that in twisting axial organs, all cell files rotate in phase around the organ axis, as has been illustrated for the Arabidopsis spr1 and twd1 mutants in this work. Evaluating the geometry of such organs, we demonstrate that a radial gradient in cell elongation and changes in cellular growth anisotropy must occur in twisting organs out of geometric necessity alone. In-phase rotation of the different cell layers results in a decrease of length and angle toward organ axis from the outer cell layers inward. Additionally, the circumference of each cell layer increases in twisting organs, which requires compensation through radial expansion or an adjustment of cell number. Therefore, differential cell elongation and growth anisotropy cannot serve as arguments for or against specific hypotheses regarding the molecular cause of twisting growth. We suggest instead, that based on mathematical modeling, geometric constraints in twisting organs are indispensable for the explanation of the causal connection of molecular and biomechanical processes in twisting as well as normal organs. PMID:22645544

  17. Active control of robot manipulator compliance

    NASA Technical Reports Server (NTRS)

    Nguyen, C. C.; Pooran, F. J.

    1986-01-01

    Work performed at Catholic University on the research grant entitled Active Control of Robot Manipulator Compliance, supported by NASA/Goddard space Flight Center during the period of May 15th, 1986 to November 15th, 1986 is described. The modelling of the two-degree-of-freedom robot is first presented. Then the complete system including the robot and the hybrid controller is simulated on an IBM-XT Personal Computer. Simulation results showed that proper adjustments of controller gains enable the robot to perform successful operations. Further research should focus on developing a guideline for the controller gain design to achieve system stability.

  18. van Hove Singularity Enhanced Photochemical Reactivity of Twisted Bilayer Graphene.

    PubMed

    Liao, Lei; Wang, Huan; Peng, Han; Yin, Jianbo; Koh, Ai Leen; Chen, Yulin; Xie, Qin; Peng, Hailin; Liu, Zhongfan

    2015-08-12

    Twisted bilayer graphene (tBLG) exhibits van Hove singularities (VHSs) in the density of states that can be tuned by changing the twist angle (θ), sparking various novel physical phenomena. Much effort has been devoted to investigate the θ-dependent physical properties of tBLG. Yet, the chemical properties of tBLG with VHSs, especially the chemical reactivity, remain unexplored. Here we report the first systematic study on the chemistry of tBLG through the photochemical reaction between graphene and benzoyl peroxide. Twisted bilayer graphene exhibits θ-dependent reactivity, and remarkably enhanced reactivity is obtained when the energy of incident laser matches with the energy interval of the VHSs of tBLG. This work provides an insight on the chemistry of tBLG, and the successful enhancement of chemical reactivity derived from VHS is highly beneficial for the controllable chemical modification of tBLG as well as the development of tBLG based devices.

  19. Highly twisted double-helix carbon nanotube yarns.

    PubMed

    Shang, Yuanyuan; Li, Yibin; He, Xiaodong; Du, Shanyi; Zhang, Luhui; Shi, Enzheng; Wu, Shiting; Li, Zhen; Li, Peixu; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Cao, Anyuan

    2013-02-26

    The strength and flexibility of carbon nanotubes (CNTs) allow them to be constructed into a variety of innovated architectures with fascinating properties. Here, we show that CNTs can be made into a highly twisted yarn-derived double-helix structure by a conventional twist-spinning process. The double-helix is a stable and hierarchical configuration consisting of two single-helical yarn segments, with controlled pitch and unique mechanical properties. While one of the yarn components breaks early under tension due to the highly twisted state, the second yarn produces much larger tensile strain and significantly prolongs the process until ultimate fracture. In addition, these elastic and conductive double-helix yarns show simultaneous and reversible resistance change in response to a wide range of input sources (mechanical, photo, and thermal) such as applied strains or stresses, light illumination, and environmental temperature. Our results indicate that it is possible to create higher-level, more complex architectures from CNT yarns and fabricate multifunctional nanomaterials with potential applications in many areas. PMID:23289799

  20. A robotic finger driven by twisted and coiled polymer actuator

    NASA Astrophysics Data System (ADS)

    Cho, Kyeong Ho; Song, Min Geun; Jung, Hosang; Park, Jungwoo; Moon, Hyungpil; Koo, Ja Choon; Nam, Jae-Do; Choi, Hyouk Ryeol

    2016-04-01

    Previous studies reported that a twisted and coiled polymer actuator (TCA) generates strong force and large stroke by heating. Nylon 6,6 is known to be the most suitable polymer material for TCA because it has high thermal expansion ratio, high softening point and high toughness which is able to sustain gigantic twisting. In order to find the optimal structure of TCA fabricated with silver-coated nylon sewing threads, an equipment for twist-insertion (structuralization), composed of single DC motor, a slider fabricated by 3D printer and a body frame, is developed. It can measure the behaviors of TCAs as well as fabricate TCAs with desired characteristics by structuralizing fibers with controlled rotation per minutes (RPM) and turns. Comparing performances of diverse structures of TCAs, the optimal structure for TCA is found. For the verification of the availability of the optimal TCA, a TCA-driven biomimetic finger is developed. Finally, we successfully demonstrate the flexion/extension of the finger by using the actuation of TCAs.

  1. Modeling piston-ring dynamics, blowby, and ring-twist effects

    SciTech Connect

    Tian, T.; Noordzij, L.B.; Wong, V.W.; Heywood, J.B.

    1996-12-31

    A ring-dynamics and gas-flow model has been developed to study ring/groove contact, blowby, and the influence of ring static twist, keystone ring/groove configurations, and other piston and ring parameters. The model is developed for a ring pack with three rings. The dynamics of the top two rings and the gas pressures in the regions above the oil control ring are simulated. Distributions of oil film thickness and surface roughness on the groove and ring surfaces are assumed in the model to calculate the forces generated by the ring/groove contact. Ring static and dynamic twists are considered as well as different keystone ring/groove configurations. Ring dynamics and gas flows are coupled in the formulation and an implicit scheme is implemented, enabling the model to resolve detailed events such as ring flutter. Studies on a spark ignition engine found that static twist or, more generally speaking, the relative angle between rings and their grooves, has great influence on ring/groove contact characteristics, ring stability, and blowby. Ring flutter is found to occur for the second ring with a negative static twist under normal operating conditions and for the top ring with a negative static twist under high-speed/low-load operating conditions. Studies on a diesel engine show that different keystone ring/groove configurations result in different twist behaviors of the ring that may affect the wear pattern of the keystone ring running surfaces.

  2. Trefoil factor 3 peptide regulates migration via a Twist-dependent pathway in gastric cell.

    PubMed

    Zheng, Qianqian; Gao, Jian; Li, Honglin; Guo, Wendong; Mao, Qi; Gao, Enhui; Zhu, Ya-qin

    2013-08-16

    Trefoil factor 3 (TFF3) is a member of the TFF-domain peptide family and essential in regulating cell migration and maintaining mucosal integrity in gastrointestinal tract. However, the role of TFF3 and its downstream regulating mechanisms in cancer cell migration remain unclear. We previously reported that TFF3 prolonged the up-regulation of Twist protein to modulate IL-8 secretion in intestinal epithelial cells. In this study, we investigated the role of Twist protein in TFF3-induced migration of SGC7901 cells. While Twist was activated by TFF3, siRNA-mediated knockdown of Twist abolished TFF3-induced cell migration. Furthermore, the migration related marker CK-8 as well as ZO-1 and MMP-9 was also regulated by TFF3 via a Twist-dependent mechanism. Our study suggests that Twist, as an important potential downstream effector, plays a key role in TFF3-modulated metastasis in gastric cancer and can be a promising therapeutic target against intestinal-type gastric cancer.

  3. Simulation studies for multichannel active vibration control

    NASA Astrophysics Data System (ADS)

    Prakash, Shashikala; Balasubramaniam, R.; Praseetha, K. K.

    2003-10-01

    Traditional approach to vibration control uses passive techniques, which are relatively large, costly and ineffective at low frequencies. Active Vibration Control (AVC) is used to overcome these problems & in AVC additional sources (secondary) are used to cancel vibration from primary source based on the principle of superposition theorem Since the characteristics of the vibration source and environment are time varying, the AVC system must be adaptive. Adaptive systems have the ability to track time varying disturbances and provide optimal control over a much broader range of conditions than conventional fixed control systems. In multi channel AVC vibration fields in large dimensions are controlled & is more complicated. Therefore to actively control low frequency vibrations on large structures, multi channel AVC requires a control system that uses multiple secondary sources to control the vibration field simultaneously at multiple error sensor locations. The error criterion that can be directly measured is the sum of squares of outputs of number of sensors. The adaptive algorithm is designed to minimize this & the algorithm implemented is the "Multiple error LMS algorithm." The best known applications of multiple channel FXLMS algorithm is in real time AVC and system identification. More wider applications are in the control of propeller induced noise in flight cabin interiors. In the present paper the results of simulation studies carried out in MATLAB as well as on TMS320C32 DSP processor will be brought out for a two-channel case.

  4. Active control of buckling of flexible beams

    NASA Technical Reports Server (NTRS)

    Baz, A.; Tampe, L.

    1989-01-01

    The feasibility of using the rapidly growing technology of the shape memory alloys actuators in actively controlling the buckling of large flexible structures is investigated. The need for such buckling control systems is becoming inevitable as the design trends of large space structures have resulted in the use of structural members that are long, slender, and very flexible. In addition, as these truss members are subjected mainly to longitudinal loading they become susceptible to structural instabilities due to buckling. Proper control of such instabilities is essential to the effective performance of the structures as stable platforms for communication and observation. Mathematical models are presented that simulate the dynamic characteristics of the shape memory actuator, the compressive structural members, and the associated active control system. A closed-loop computer-controlled system is designed, based on the developed mathematical models, and implemented to control the buckling of simple beams. The performance of the computer-controlled system is evaluated experimentally and compared with the theoretical predictions to validate the developed models. The obtained results emphasize the importance of buckling control and suggest the potential of the shape memory actuators as attractive means for controlling structural deformation in a simple and reliable way.

  5. Actively controlled shaft seals for aerospace applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.

    1994-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100 C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changed suddenly.

  6. Vector control activities. Fiscal year, 1982

    SciTech Connect

    Pickard, E.; Cooney, J.C.; McDuff, B.R.

    1983-06-01

    The goal of the TVA Vector Control Program is to protect the public from potential vectors of disease by controlling medically-important arthropod pests that are propagated on TVA lands or waters. In addition, freedom from annoying mosquitoes and other blood-sucking pests permits the development, use, and full enjoyment of the vast recreational opportunities offered by the many miles of freshwater lakes. To attain this goal the program is divided into operations and support studies. The support studies are designed to improve the operational effectiveness and efficiency of the control program and to identify other vector control problems that require TVA attention and study. Specifically, activities concerning water level management of TVA lakes, dewatering projects, plant growth control, drainage and insect control programs are detailed. Further, report is made of post-impoundment surveys, soil sampling studies of Mosquite larvae and ecological mosquito management studies.

  7. Actively Controlling Buffet-Induced Excitations

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Pototzky, Anthony S.; Henderson, Douglas A.; Galea, Stephen C.; Manokaran, Donald S.; Zimcik, David G.; Wickramasinghe, Viresh; Pitt, Dale M.; Gamble, Michael A.

    2005-01-01

    High performance aircraft, especially those with twin vertical tails, encounter unsteady buffet loads when flying at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. An international collaborative research activity among Australia, Canada and the United States, conducted under the auspices of The Technical Cooperation Program (TTCP) contributed resources toward a program that coalesced a broad range of technical knowledge and expertise into a single investigation to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration. The research team investigated the use of active structural control to alleviate the damaging structural response to these loads by applying advanced directional piezoelectric actuators, the aircraft rudder, switch mode amplifiers, and advanced control strategies on an F/A-18 aircraft empennage. Some results of the full-scale investigation are presented herein.

  8. Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites

    NASA Astrophysics Data System (ADS)

    Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu

    2011-01-01

    The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately.

  9. Active Flow Control Stator With Coanda Surface

    NASA Technical Reports Server (NTRS)

    Guendogdu; Vorreiter; Seume

    2010-01-01

    Active Flow Control increases the permissible aerodynamic loading. Curved surface near the trailing edge ("Coanda surface"): a) increases turning -> higher pressure ratio. b) controls boundary layer separation -> increased surge margin. Objective: Reduce the number of vanes or compressor stages. Constraints: 1. In a real compressor, the vane must still function entirely without blowing. 2. Maintain the flow exit angle of the reference stator despite the resulting increase in stator loading.

  10. Active control of near-field coupling in conductively coupled microelectromechanical system metamaterial devices

    NASA Astrophysics Data System (ADS)

    Pitchappa, Prakash; Manjappa, Manukumara; Ho, Chong Pei; Qian, You; Singh, Ranjan; Singh, Navab; Lee, Chengkuo

    2016-03-01

    We experimentally report a structurally reconfigurable metamaterial for active switching of near-field coupling in conductively coupled, orthogonally twisted split ring resonators (SRRs) operating in the terahertz spectral region. Out-of-plane reconfigurable microcantilevers integrated into the dark SRR geometry are used to provide active frequency tuning of dark SRR resonance. The geometrical parameters of individual SRRs are designed to have identical inductive-capacitive resonant frequency. This allows for the excitation of classical analogue of electromagnetically induced transparency (EIT) due to the strong conductive coupling between the SRRs. When the microcantilevers are curved up, the resonant frequency of dark SRR blue-shifts and the EIT peak is completely modulated while the SRRs are still conductively connected. EIT modulation contrast of ˜50% is experimentally achieved with actively switchable group delay of ˜2.5 ps. Electrical control, miniaturized size, and readily integrable fabrication process of the proposed structurally reconfigurable metamaterial make it an ideal candidate for the realization of various terahertz communication devices such as electrically controllable terahertz delay lines, buffers, and tunable data-rate channels.

  11. Active disturbance rejection controller for chemical reactor

    SciTech Connect

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I.

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  12. Active Control of Cryogenic Propellants in Space

    NASA Technical Reports Server (NTRS)

    Notardonato, William

    2011-01-01

    A new era of space exploration is being planned. Exploration architectures under consideration require the long term storage of cryogenic propellants in space. This requires development of active control systems to mitigate the effect of heat leak. This work summarizes current state of the art, proposes operational design strategies and presents options for future architectures. Scaling and integration of active systems will be estimated. Ideal long range spacecraft systems will be proposed with Exploration architecture benefits considered.

  13. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  14. Mesoscale mechanics of twisting carbon nanotube yarns.

    PubMed

    Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J

    2015-03-12

    Fabricating continuous macroscopic carbon nanotube (CNT) yarns with mechanical properties close to individual CNTs remains a major challenge. Spinning CNT fibers and ribbons for enhancing the weak interactions between the nanotubes is a simple and efficient method for fabricating high-strength and tough continuous yarns. Here we investigate the mesoscale mechanics of twisting CNT yarns using full atomistic and coarse grained molecular dynamics simulations, considering concurrent mechanisms at multiple length-scales. To investigate the mechanical response of such a complex structure without losing insights into the molecular mechanism, we applied a multiscale strategy. The full atomistic results are used for training a coarse grained model for studying larger systems consisting of several CNTs. The mesoscopic model parameters are updated as a function of the twist angle, based on the full atomistic results, in order to incorporate the atomistic scale deformation mechanisms in larger scale simulations. By bridging across two length scales, our model is capable of accurately predicting the mechanical behavior of twisted yarns while the atomistic level deformations in individual nanotubes are integrated into the model by updating the parameters. Our results focused on studying a bundle of close packed nanotubes provide novel mechanistic insights into the spinning of CNTs. Our simulations reveal how twisting a bundle of CNTs improves the shear interaction between the nanotubes up to a certain level due to increasing the interaction surface. Furthermore, twisting the bundle weakens the intertube interactions due to excessive deformation in the cross sections of individual CNTs in the bundle. PMID:25732328

  15. Non-Abelian vortices with a twist

    NASA Astrophysics Data System (ADS)

    Forgács, Péter; Lukács, Árpád; Schaposnik, Fidel A.

    2015-06-01

    Non-Abelian flux-tube (string) solutions carrying global currents are found in the bosonic sector of four-dimensional N =2 supersymmetric gauge theories. The specific model considered here possesses U(2 ) local×SU(2 ) global symmetry, with two scalar doublets in the fundamental representation of SU(2). We construct string solutions that are stationary and translationally symmetric along the x3 direction, and they are characterized by a matrix phase between the two doublets, referred to as "twist." Consequently, twisted strings have nonzero (global) charge, momentum, and in some cases even angular momentum per unit length. The planar cross section of a twisted string corresponds to a rotationally symmetric, charged non-Abelian vortex, satisfying first-order Bogomolny-type equations and second-order Gauss constraints. Interestingly, depending on the nature of the matrix phase, some of these solutions even break cylindrical symmetry in R3. Although twisted vortices have higher energy than the untwisted ones, they are expected to be linearly stable since one can keep their charge (or twist) fixed with respect to small perturbations.

  16. Twisted electron-acoustic waves in plasmas

    NASA Astrophysics Data System (ADS)

    Aman-ur-Rehman, Ali, S.; Khan, S. A.; Shahzad, K.

    2016-08-01

    In the paraxial limit, a twisted electron-acoustic (EA) wave is studied in a collisionless unmagnetized plasma, whose constituents are the dynamical cold electrons and Boltzmannian hot electrons in the background of static positive ions. The analytical and numerical solutions of the plasma kinetic equation suggest that EA waves with finite amount of orbital angular momentum exhibit a twist in its behavior. The twisted wave particle resonance is also taken into consideration that has been appeared through the effective wave number qeff accounting for Laguerre-Gaussian mode profiles attributed to helical phase structures. Consequently, the dispersion relation and the damping rate of the EA waves are significantly modified with the twisted parameter η, and for η → ∞, the results coincide with the straight propagating plane EA waves. Numerically, new features of twisted EA waves are identified by considering various regimes of wavelength and the results might be useful for transport and trapping of plasma particles in a two-electron component plasma.

  17. Mesoscale mechanics of twisting carbon nanotube yarns

    NASA Astrophysics Data System (ADS)

    Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J.

    2015-03-01

    Fabricating continuous macroscopic carbon nanotube (CNT) yarns with mechanical properties close to individual CNTs remains a major challenge. Spinning CNT fibers and ribbons for enhancing the weak interactions between the nanotubes is a simple and efficient method for fabricating high-strength and tough continuous yarns. Here we investigate the mesoscale mechanics of twisting CNT yarns using full atomistic and coarse grained molecular dynamics simulations, considering concurrent mechanisms at multiple length-scales. To investigate the mechanical response of such a complex structure without losing insights into the molecular mechanism, we applied a multiscale strategy. The full atomistic results are used for training a coarse grained model for studying larger systems consisting of several CNTs. The mesoscopic model parameters are updated as a function of the twist angle, based on the full atomistic results, in order to incorporate the atomistic scale deformation mechanisms in larger scale simulations. By bridging across two length scales, our model is capable of accurately predicting the mechanical behavior of twisted yarns while the atomistic level deformations in individual nanotubes are integrated into the model by updating the parameters. Our results focused on studying a bundle of close packed nanotubes provide novel mechanistic insights into the spinning of CNTs. Our simulations reveal how twisting a bundle of CNTs improves the shear interaction between the nanotubes up to a certain level due to increasing the interaction surface. Furthermore, twisting the bundle weakens the intertube interactions due to excessive deformation in the cross sections of individual CNTs in the bundle.

  18. Piezoelectric Power Requirements for Active Vibration Control

    NASA Technical Reports Server (NTRS)

    Brennan, Matthew C.; McGowan, Anna-Maria Rivas

    1997-01-01

    This paper presents a method for predicting the power consumption of piezoelectric actuators utilized for active vibration control. Analytical developments and experimental tests show that the maximum power required to control a structure using surface-bonded piezoelectric actuators is independent of the dynamics between the piezoelectric actuator and the host structure. The results demonstrate that for a perfectly-controlled system, the power consumption is a function of the quantity and type of piezoelectric actuators and the voltage and frequency of the control law output signal. Furthermore, as control effectiveness decreases, the power consumption of the piezoelectric actuators decreases. In addition, experimental results revealed a non-linear behavior in the material properties of piezoelectric actuators. The material non- linearity displayed a significant increase in capacitance with an increase in excitation voltage. Tests show that if the non-linearity of the capacitance was accounted for, a conservative estimate of the power can easily be determined.

  19. Actively Controlled Shaft Seals for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Salant, Richard F.; Wolff, Paul

    1995-01-01

    This study experimentally investigates an actively controlled mechanical seal for aerospace applications. The seal of interest is a gas seal, which is considerably more compact than previous actively controlled mechanical seals that were developed for industrial use. In a mechanical seal, the radial convergence of the seal interface has a primary effect on the film thickness. Active control of the film thickness is established by controlling the radial convergence of the seal interface with a piezoelectric actuator. An actively controlled mechanical seal was initially designed and evaluated using a mathematical model. Based on these results, a seal was fabricated and tested under laboratory conditions. The seal was tested with both helium and air, at rotational speeds up to 3770 rad/sec, and at sealed pressures as high as 1.48 x 10(exp 6) Pa. The seal was operated with both manual control and with a closed-loop control system that used either the leakage rate or face temperature as the feedback. The output of the controller was the voltage applied to the piezoelectric actuator. The seal operated successfully for both short term tests (less than one hour) and for longer term tests (four hours) with a closed-loop control system. The leakage rates were typically 5-15 slm (standard liters per minute), and the face temperatures were generally maintained below 100C. When leakage rate was used as the feedback signal, the setpoint leakage rate was typically maintained within 1 slm. However, larger deviations occurred during sudden changes in sealed pressure. When face temperature was used as the feedback signal, the setpoint face temperature was generally maintained within 3 C, with larger deviations occurring when the sealed pressure changes suddenly. the experimental results were compared to the predictions from the mathematical model. The model was successful in predicting the trends in leakage rate that occurred as the balance ratio and sealed pressure changed

  20. Neural predictive control for active buffet alleviation

    NASA Astrophysics Data System (ADS)

    Pado, Lawrence E.; Lichtenwalner, Peter F.; Liguore, Salvatore L.; Drouin, Donald

    1998-06-01

    The adaptive neural control of aeroelastic response (ANCAR) and the affordable loads and dynamics independent research and development (IRAD) programs at the Boeing Company jointly examined using neural network based active control technology for alleviating undesirable vibration and aeroelastic response in a scale model aircraft vertical tail. The potential benefits of adaptive control includes reducing aeroelastic response associated with buffet and atmospheric turbulence, increasing flutter margins, and reducing response associated with nonlinear phenomenon like limit cycle oscillations. By reducing vibration levels and thus loads, aircraft structures can have lower acquisition cost, reduced maintenance, and extended lifetimes. Wind tunnel tests were undertaken on a rigid 15% scale aircraft in Boeing's mini-speed wind tunnel, which is used for testing at very low air speeds up to 80 mph. The model included a dynamically scaled flexible fail consisting of an aluminum spar with balsa wood cross sections with a hydraulically powered rudder. Neural predictive control was used to actuate the vertical tail rudder in response to strain gauge feedback to alleviate buffeting effects. First mode RMS strain reduction of 50% was achieved. The neural predictive control system was developed and implemented by the Boeing Company to provide an intelligent, adaptive control architecture for smart structures applications with automated synthesis, self-optimization, real-time adaptation, nonlinear control, and fault tolerance capabilities. It is designed to solve complex control problems though a process of automated synthesis, eliminating costly control design and surpassing it in many instances by accounting for real world non-linearities.

  1. Dielectric elastomer actuators for active microfluidic control

    NASA Astrophysics Data System (ADS)

    McCoul, David; Murray, Coleman; Di Carlo, Dino; Pei, Qibing

    2013-04-01

    Dielectric elastomers with low modulus and large actuation strain have been investigated for applications in which they serve as "active" microfluidic channel walls. Anisotropically prestrained acrylic elastomer membranes are bonded to cover open trenches formed on a silicone elastomer substrate. Actuation of the elastomer membranes increases the cross-sectional area of the resulting channels, in turn controlling hydraulic flow rate and pressure. Bias voltage increases the active area of the membranes, allowing intrachannel pressure to alter channel geometry. The channels have also demonstrated the ability to actively clear a blockage. Applications may include adaptive microfilters, micro-peristaltic pumps, and reduced-complexity lab-on-a-chip devices.

  2. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    EPA Science Inventory

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  3. Active control of automotive fan noise

    NASA Astrophysics Data System (ADS)

    Gerard, Anthony; Berry, Alain; Masson, Patrice

    2002-11-01

    Active control for globally reducing the noise radiated by automotive axial engine cooling fans is investigated. First, an aeroacoutic model of the fan is combined with acoustic directivity measurements to derive a distribution of equivalent dipole sources on the fan surface. The results reveal that the fan behaves like a distributed dipole at blade passage tones when the upstream flow through the fan is spatially nonuniform. Numerical simulations of active noise control in the free field have been carried out using the previous aeroacoustic model of the fan and a dipole secondary source in front of the fan. The numerical results show that a single dipole control source is effective in globally controlling the sound radiation of the fan at the blade passage frequency and its first harmonic. Last, an experimental investigation of active control is presented. It consists of a SISO feedforward configuration with either a LMS algorithm (for FIR filters) or a back-retropopagation algorithm (for neural networks) using the Simulink/Dspace environment for real-time implementation.

  4. DNA-based control of protein activity

    PubMed Central

    Engelen, W.; Janssen, B. M. G.

    2016-01-01

    DNA has emerged as a highly versatile construction material for nanometer-sized structures and sophisticated molecular machines and circuits. The successful application of nucleic acid based systems greatly relies on their ability to autonomously sense and act on their environment. In this feature article, the development of DNA-based strategies to dynamically control protein activity via oligonucleotide triggers is discussed. Depending on the desired application, protein activity can be controlled by directly conjugating them to an oligonucleotide handle, or expressing them as a fusion protein with DNA binding motifs. To control proteins without modifying them chemically or genetically, multivalent ligands and aptamers that reversibly inhibit their function provide valuable tools to regulate proteins in a noncovalent manner. The goal of this feature article is to give an overview of strategies developed to control protein activity via oligonucleotide-based triggers, as well as hurdles yet to be taken to obtain fully autonomous systems that interrogate, process and act on their environments by means of DNA-based protein control. PMID:26812623

  5. Active Noise Control for Dishwasher noise

    NASA Astrophysics Data System (ADS)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  6. Helicoids, wrinkles, and loops in twisted ribbons.

    PubMed

    Chopin, Julien; Kudrolli, Arshad

    2013-10-25

    We investigate the instabilities of a flat elastic ribbon subject to twist under tension and develop an integrated phase diagram of the observed shapes and transitions. We find that the primary buckling mode switches from being localized longitudinally along the length of the ribbon to transverse above a triple point characterized by a crossover tension that scales with ribbon elasticity and aspect ratio. Far from threshold, the longitudinally buckled ribbon evolves continuously into a self-creased helicoid with focusing of the curvature along the triangular edges. Further twist causes an anomalous transition to loops compared with rods due to the self-rigidity induced by the creases. When the ribbon is twisted under high tension, transverse wrinkles are observed due to the development of compressive stresses with higher harmonics for greater width-to-length ratios. Our results can be used to develop functional structures using a wide range of elastic materials and length scales.

  7. Active control of transmitted sound in buildings

    NASA Astrophysics Data System (ADS)

    Thompsett, Russell Harvey George

    The problem of noise from neighbours has increased dramatically over the last few years. Many of the noise complaints are due to the high level, low frequency noise from modern stereo equipment, and are often described in terms of the low frequency characteristics of the music; the repetitive, booming, bass beat. The objective of this research was to establish the feasibility of applying active noise control to alleviate this problem. The initial approach was to evaluate the possibility of exploiting the dominance of individual modes in the response of rooms at low frequency to effect global control. However, initial investigations using a modal model of the sound field revealed that this would be difficult due to the contribution of many acoustic modes excited off resonance. This conclusion was supported by measurements of acoustic room responses in typical buildings, illustrating a non-resonant characteristic. Consequently, attention was turned to the feasibility of using local active control systems to create zones of quiet by concentrating control at a specific location near the observers ears, for example in a seat headrest, or near the pillows of a bed. The lack of a reference signal in either approach requires the use of a feedback control strategy. With a typically non-resonant system, the predictability in the disturbance necessary for successful feedback control must be contained in the primary excitation, namely the music. Examples of different music styles were investigated and of those with the potential to be a nuisance surprisingly few were significantly more predictable than a random disturbance. As expected the most encouraging control performance simulations were found for modern dance music, with a strong repetitive beat. A real-time, local controller was demonstrated in the laboratory with such a disturbance signal and the properties of the quiet zone were measured. The subjective response when hearing the controller in operation was found to be

  8. Active control of multiple resistive wall modes

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Bolzonella, T.; Cecconello, M.; Drake, J. R.; Kuldkepp, M.; Manduchi, G.; Marchiori, G.; Marrelli, L.; Martin, P.; Menmuir, S.; Ortolani, S.; Rachlew, E.; Spizzo, G.; Zanca, P.

    2005-12-01

    A two-dimensional array of saddle coils at Mc poloidal and Nc toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitive agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition |n - n'| = Nc. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc × Nc = 4 × 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc × Nc = 4 × 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = -11, -10, +5, +6 are all simultaneously suppressed throughout the discharge (7 8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback.

  9. Twisted bi-layer graphene: microscopic rainbows.

    PubMed

    Campos-Delgado, J; Algara-Siller, G; Santos, C N; Kaiser, U; Raskin, J-P

    2013-10-11

    Blue, pink, and yellow colorations appear from twisted bi-layer graphene (tBLG) when transferred to a SiO2 /Si substrate (SiO2 = 100 nm-thick). Raman and electron microscope studies reveal that these colorations appear for twist angles in the 9-15° range. Optical contrast simulations confirm that the observed colorations are related to the angle-dependent electronic properties of tBLG combined with the reflection that results from the layered structure tBLG/100 nm-thick SiO2 /Si. PMID:23606323

  10. Control Systems Cyber Security Standards Support Activities

    SciTech Connect

    Robert Evans

    2009-01-01

    The Department of Homeland Security’s Control Systems Security Program (CSSP) is working with industry to secure critical infrastructure sectors from cyber intrusions that could compromise control systems. This document describes CSSP’s current activities with industry organizations in developing cyber security standards for control systems. In addition, it summarizes the standards work being conducted by organizations within the sector and provides a brief listing of sector meetings and conferences that might be of interest for each sector. Control systems cyber security standards are part of a rapidly changing environment. The participation of CSSP in the development effort for these standards has provided consistency in the technical content of the standards while ensuring that information developed by CSSP is included.

  11. Actively controlled vibration welding system and method

    DOEpatents

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  12. Active control of chirality in nonlinear metamaterials

    SciTech Connect

    Zhu, Yu; Chai, Zhen; Yang, Hong; Hu, Xiaoyong Gong, Qihuang

    2015-03-02

    An all-optical tunabe chirality is realized in a photonic metamaterial, the metamolecule of which consists of a nonlinear nano-Au:polycrystalline indium-tin oxide layer sandwiched between two L-shaped gold nano-antennas twisted 90° with each other. The maximum circular dichroism reached 30%. Under excitation of a 40 kW/cm{sup 2} weak pump light, the peak in the circular dichroism shifts 45 nm in the short-wavelength direction. An ultrafast response time of 35 ps is maintained. This work not only opens up the possibility for the realization of ultralow-power and ultrafast all-optical tunable chirality but also offers a way to construct ultrahigh-speed on-chip biochemical sensors.

  13. Optogenetic feedback control of neural activity

    PubMed Central

    Newman, Jonathan P; Fong, Ming-fai; Millard, Daniel C; Whitmire, Clarissa J; Stanley, Garrett B; Potter, Steve M

    2015-01-01

    Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner. DOI: http://dx.doi.org/10.7554/eLife.07192.001 PMID:26140329

  14. Resonant tunneling and intrinsic bistability in twisted graphene structures

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, J. F.; Dresselhaus, M. S.; Levitov, L. S.

    2016-08-01

    We predict that vertical transport in heterostructures formed by twisted graphene layers can exhibit a unique bistability mechanism. Intrinsically bistable I -V characteristics arise from resonant tunneling and interlayer charge coupling, enabling multiple stable states in the sequential tunneling regime. We consider a simple trilayer architecture, with the outer layers acting as the source and drain and the middle layer floating. Under bias, the middle layer can be either resonant or nonresonant with the source and drain layers. The bistability is controlled by geometric device parameters easily tunable in experiments. The nanoscale architecture can enable uniquely fast switching times.

  15. Twist1-positive epithelial cells retain adhesive and proliferative capacity throughout dissemination

    PubMed Central

    Shamir, Eliah R.; Coutinho, Kester; Georgess, Dan; Auer, Manfred

    2016-01-01

    ABSTRACT Dissemination is the process by which cells detach and migrate away from a multicellular tissue. The epithelial-to-mesenchymal transition (EMT) conceptualizes dissemination in a stepwise fashion, with downregulation of E-cadherin leading to loss of intercellular junctions, induction of motility, and then escape from the epithelium. This gain of migratory activity is proposed to be mutually exclusive with proliferation. We previously developed a dissemination assay based on inducible expression of the transcription factor Twist1 and here utilize it to characterize the timing and dynamics of intercellular adhesion, proliferation and migration during dissemination. Surprisingly, Twist1+ epithelium displayed extensive intercellular junctions, and Twist1– luminal epithelial cells could still adhere to disseminating Twist1+ cells. Although proteolysis and proliferation were both observed throughout dissemination, neither was absolutely required. Finally, Twist1+ cells exhibited a hybrid migration mode; their morphology and nuclear deformation were characteristic of amoeboid cells, whereas their dynamic protrusive activity, pericellular proteolysis and migration speeds were more typical of mesenchymal cells. Our data reveal that epithelial cells can disseminate while retaining competence to adhere and proliferate. PMID:27402962

  16. Unsteady aerodynamic modeling and active aeroelastic control

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1977-01-01

    Unsteady aerodynamic modeling techniques are developed and applied to the study of active control of elastic vehicles. The problem of active control of a supercritical flutter mode poses a definite design goal stability, and is treated in detail. The transfer functions relating the arbitrary airfoil motions to the airloads are derived from the Laplace transforms of the linearized airload expressions for incompressible two dimensional flow. The transfer function relating the motions to the circulatory part of these loads is recognized as the Theodorsen function extended to complex values of reduced frequency, and is termed the generalized Theodorsen function. Inversion of the Laplace transforms yields exact transient airloads and airfoil motions. Exact root loci of aeroelastic modes are calculated, providing quantitative information regarding subcritical and supercritical flutter conditions.

  17. Active control of locomotion facilitates nonvisual navigation.

    PubMed

    Philbeck, J W; Klatzky, R L; Behrmann, M; Loomis, J M; Goodridge, J

    2001-02-01

    In some navigation tasks, participants are more accurate if they view the environment beforehand. To characterize the benefits associated with visual previews, 32 blindfolded participants were guided along simple paths and asked to walk unassisted to a specified destination (e.g., the origin). Paths were completed without vision, with or without a visual preview of the environment. Previews did not necessarily improve nonvisual navigation. When previewed landmarks stood near the origin or at off-path locations, they provided little benefit; by contrast, when they specified intermediate destinations (thereby increasing the degree of active control), performance was greatly enhanced. The results suggest that the benefit of a visual preview stems from the information it supplies for actively controlled locomotion. Accuracy in reaching the final destination, however, is strongly contingent upon the destination's location during the preview.

  18. On Twisting Real Spectral Triples by Algebra Automorphisms

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Martinetti, Pierre

    2016-08-01

    We systematically investigate ways to twist a real spectral triple via an algebra automorphism and in particular, we naturally define a twisted partner for any real graded spectral triple. Among other things, we investigate consequences of the twisting on the fluctuations of the metric and possible applications to the spectral approach to the Standard Model of particle physics.

  19. On Twisting Real Spectral Triples by Algebra Automorphisms

    NASA Astrophysics Data System (ADS)

    Landi, Giovanni; Martinetti, Pierre

    2016-11-01

    We systematically investigate ways to twist a real spectral triple via an algebra automorphism and in particular, we naturally define a twisted partner for any real graded spectral triple. Among other things, we investigate consequences of the twisting on the fluctuations of the metric and possible applications to the spectral approach to the Standard Model of particle physics.

  20. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  1. Active Thermal Control System Development for Exploration

    NASA Technical Reports Server (NTRS)

    Westheimer, David

    2007-01-01

    All space vehicles or habitats require thermal management to maintain a safe and operational environment for both crew and hardware. Active Thermal Control Systems (ATCS) perform the functions of acquiring heat from both crew and hardware within a vehicle, transporting that heat throughout the vehicle, and finally rejecting that energy into space. Almost all of the energy used in a space vehicle eventually turns into heat, which must be rejected in order to maintain an energy balance and temperature control of the vehicle. For crewed vehicles, Active Thermal Control Systems are pumped fluid loops that are made up of components designed to perform these functions. NASA has been actively developing technologies that will enable future missions or will provide significant improvements over the state of the art technologies. These technologies have are targeted for application on the Crew Exploration Vehicle (CEV), or Orion, and a Lunar Surface Access Module (LSAM). The technologies that have been selected and are currently under development include: fluids that enable single loop ATCS architectures, a gravity insensitive vapor compression cycle heat pump, a sublimator with reduced sensitivity to feedwater contamination, an evaporative heat sink that can operate in multiple ambient pressure environments, a compact spray evaporator, and lightweight radiators that take advantage of carbon composites and advanced optical coatings.

  2. Distributed control system for active mirrors

    NASA Astrophysics Data System (ADS)

    Rodriguez-Ramos, Luis F.; Williams, Mark R.; Castro, Javier; Cruz, A.; Gonzalez, Juan C.; Mack, Brian; Martin, Carlos; Pescador, German; Sanchez, Vicente; Sosa, Nicolas A.

    1994-06-01

    This paper presents the IAC (Instituto de Astrofisica de Canaries, Spain) proposal of a distributed control system intended for the active support of a 8 m mirror. The system incorporates a large number of compact `smart' force actuators, six force definers, and a mirror support computer (MSC) for interfacing with the telescope control system and for general housekeeping. We propose the use of a network for the interconnection of the actuators, definers and the MSC, which will minimize the physical complexity of the interface between the mirror support system and the MSC. The force actuator control electronics are described in detail, as is the system software architecture of the actuator and the MSC. As the network is a key point for the system, we also detail the evaluation of three candidates, before electing the CAN bus.

  3. Twisted Pair Of Insulated Wires Senses Moisture

    NASA Technical Reports Server (NTRS)

    Laue, Eric G.; Stephens, James B.

    1989-01-01

    Sensitivity of electronic moisture sensor to low levels of moisture increased by new electrode configuration. Moisture-sensing circuit described in "Low-Cost Humidity Sensor" (NPO-16544). New twisted pair of wires takes place of flat-plate capacitor in circuit. Configuration allows for thermal expansion and contraction of polymer while maintaining nearly constant area of contact between polymer and wires.

  4. Rotational disorder in twisted bilayer graphene.

    PubMed

    Beechem, Thomas E; Ohta, Taisuke; Diaconescu, Bogdan; Robinson, Jeremy T

    2014-02-25

    Conventional means of stacking two-dimensional (2D) crystals inevitably leads to imperfections. To examine the ramifications of these imperfections, rotational disorder and strain are quantified in twisted bilayer graphene (TBG) using a combination of Raman spectroscopic and low-energy electron diffraction imaging. The twist angle between TBG layers varies on the order of 2° within large (50-100 μm) single-crystalline grains, resulting in changes of the emergent Raman response by over an order of magnitude. Rotational disorder does not evolve continuously across the large grains but rather comes about by variations in the local twist angles between differing contiguous subgrains, ∼ 1 μm in size, that themselves exhibit virtually no twist angle variation (ΔΘ ∼ 0.1°). Owing to weak out-of-plane van der Waals bonding between azimuthally rotated graphene layers, these subgrains evolve in conjunction with the 0.3% strain variation observed both within and between the atomic layers. Importantly, the emergent Raman response is altered, but not removed, by these extrinsic perturbations. Interlayer interactions are therefore resilient to strain and rotational disorder, a fact that gives promise to the prospect of designer 2D solid heterostructures created via transfer processes.

  5. Dual frequency twist Cassegrain tracking antenna

    NASA Astrophysics Data System (ADS)

    Karlsson, R.; Karnevi, S.

    1983-10-01

    The development and test results of a dual-frequency twist Cassegrain antenna is presented. In an already existing X-band antenna design a higher-frequency band (Ka) has been integrated without degrading the performance in the X-band. The purpose of this was to obtain a narrower beam for low-flying target application.

  6. The Physics of Somersaulting and Twisting.

    ERIC Educational Resources Information Center

    Frohlich, Cliff

    1980-01-01

    This is a discussion of the conservation of angular momentum of the human body engaged in somersaults and twists. The principle is also applied to a cat turning over in midair. The events occur in the absence of torques. Application of the maneuvers are suggested for astronauts. (SA)

  7. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Sepe, Raymond B.; Rey, Daniel; Saarmaa, Erik; Crawley, Edward F.

    1993-01-01

    The Middeck Active Control Experiment (MACE) is a NASA In-Step and Control Structure Interaction (CSI) Office funded Shuttle middeck experiment. The objective is to investigate the extent to which closed-loop behavior of flexible spacecraft in zero-gravity (0-g) can be predicted. This prediction becomes particularly difficult when dynamic behavior during ground testing exhibits extensive suspension and direct gravity coupling. On-orbit system identification and control reconfiguration is investigated to improve performance which would otherwise be limited due to errors in prediction. The program is presently in its preliminary design phase with launch expected in the summer of 1994. The MACE test article consists of three attitude control torque wheels, a two axis gimballing payload, inertial sensors and a flexible support structure. With the acquisition of a second payload, this will represent a multiple payload platform with significant structural flexibility. This paper presents on-going work in the areas of modelling and control of the MACE test article in the zero and one-gravity environments. Finite element models, which include suspension and gravity effects, and measurement models, derived from experimental data, are used as the basis for Linear Quadratic Gaussian controller designs. Finite element based controllers are analytically used to study the differences in closed-loop performance as the test article transitions between the 0-g and 1-g environments. Measurement based controllers are experimentally applied to the MACE test article in the 1-g environment and achieve over an order of magnitude improvement in payload pointing accuracy when disturbed by a broadband torque disturbance. The various aspects of the flight portion of the experiment are also discussed.

  8. Twist induces epithelial-mesenchymal transition and cell motility in breast cancer via ITGB1-FAK/ILK signaling axis and its associated downstream network.

    PubMed

    Yang, Jiajia; Hou, Yixuan; Zhou, Mingli; Wen, Siyang; Zhou, Jian; Xu, Liyun; Tang, Xi; Du, Yan-e; Hu, Ping; Liu, Manran

    2016-02-01

    Twist, a highly conserved basic Helix-Loop-Helix transcription factor, functions as a major regulator of epithelial-mesenchymal transition (EMT) and tumor metastasis. In different cell models, signaling pathways such as TGF-β, MAPK/ERK, WNT, AKT, JAK/STAT, Notch, and P53 have also been shown to play key roles in the EMT process, yet little is known about the signaling pathways regulated by Twist in tumor cells. Using iTRAQ-labeling combined with 2D LC-MS/MS analysis, we identified 194 proteins with significant changes of expression in MCF10A-Twist cells. These proteins reportedly play roles in EMT, cell junction organization, cell adhesion, and cell migration and invasion. ECM-receptor interaction, MAPK, PI3K/AKT, P53 and WNT signaling were found to be aberrantly activated in MCF10A-Twist cells. Ingenuity Pathways Analysis showed that integrin β1 (ITGB1) acts as a core regulator in linking integrin-linked kinase (ILK), Focal-adhesion kinase (FAK), MAPK/ERK, PI3K/AKT, and WNT signaling. Increased Twist and ITGB1 are associated with breast tumor progression. Twist transcriptionally regulates ITGB1 expression. Over-expression of ITGB1 or Twist in MCF10A led to EMT, activation of FAK/ILK, MAPK/ERK, PI3K/AKT, and WNT signaling. Knockdown of Twist or ITGB1 in BT549 and Hs578T cells decreased activity of FAK, ILK, and their downstream signaling, thus specifically impeding EMT and cell invasion. Knocking down ILK or inhibiting FAK, MAPK/ERK, or PI3K/AKT signaling also suppressed Twist-driven EMT and cell invasion. Thus, the Twist-ITGB1-FAK/ILK pathway and their downstream signaling network dictate the Twist-induced EMT process in human mammary epithelial cells and breast cancer cells. PMID:26693891

  9. Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables

    NASA Astrophysics Data System (ADS)

    Kanazawa, Koichi; Koike, Yuji; Metz, Andreas; Pitonyak, Daniel; Schlegel, Marc

    2016-03-01

    We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relations for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN →h X . With the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.

  10. Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables

    DOE PAGES

    Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji; Metz, Andreas; Schlegel, Marc

    2016-03-14

    We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relationsmore » for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.« less

  11. Middeck Active Control Experiment (MACE), phase A

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Deluis, Javier; Miller, David W.

    1989-01-01

    A rationale to determine which structural experiments are sufficient to verify the design of structures employing Controlled Structures Technology was derived. A survey of proposed NASA missions was undertaken to identify candidate test articles for use in the Middeck Active Control Experiment (MACE). The survey revealed that potential test articles could be classified into one of three roles: development, demonstration, and qualification, depending on the maturity of the technology and the mission the structure must fulfill. A set of criteria was derived that allowed determination of which role a potential test article must fulfill. A review of the capabilities and limitations of the STS middeck was conducted. A reference design for the MACE test article was presented. Computing requirements for running typical closed-loop controllers was determined, and various computer configurations were studied. The various components required to manufacture the structure were identified. A management plan was established for the remainder of the program experiment development, flight and ground systems development, and integration to the carrier. Procedures for configuration control, fiscal control, and safety, reliabilty, and quality assurance were developed.

  12. Local flow control for active building facades

    NASA Astrophysics Data System (ADS)

    Kaligotla, Srikar; Chen, Wayne; Glauser, Mark

    2010-11-01

    Existing building facade designs are for a passive and an impermeable shell to prevent migration of outdoor air into the building and to control heat transfers between the exterior environment and the building interior. An active facade that can respond in real time to changing environmental conditions like wind speed and direction, pollutant load, temperature, humidity and light can lower energy use and maximize occupant comfort. With an increased awareness of cost and environmental effects of energy use, cross or natural ventilation has become an attractive method to lower energy use. Separated flow regions around such buildings are undesirable due to high concentration of pollutants, especially if the vents or dynamic windows for cross ventilation are situated in these regions. Outside pollutant load redistribution through vents can be regulated via flow separation control to minimize transport of pollutants into the building. Flow separation has been substantially reduced with the application of intelligent flow control tools developed at Syracuse University for flow around "silo" (turret) like structures. Similar flow control models can be introduced into buildings with cross ventilation for local external flow separation control. Initial experiments will be performed for turbulent flow over a rectangular block (scaled to be a mid-rise building) that has been configured with dynamic vents and unsteady suction actuators in a wind tunnel at various wind speeds.

  13. Active optics control development at the LBT

    NASA Astrophysics Data System (ADS)

    Ashby, David S.; Biddick, Christopher; Hill, John M.

    2014-07-01

    The Large Binocular Telescope (LBT) is built around two 8.4 m-diameter primary mirrors placed with a centerline separation of 14.4 m in a common altitude/azimuth mount. Each side of the telescope can utilize a deployable prime focus instrument; alternatively, the beam can be directed to a Gregorian instrument by utilizing a deployable secondary mirror. The direct-Gregorian beam can be intercepted and redirected to several bent-Gregorian instruments by utilizing a deployable tertiary mirror. Two of the available bent-Gregorian instruments are interferometers, capable of coherently combining the beams from the two sides of the telescope. Active optics can utilize as many as 26 linearly independent degrees of freedom to position the primary, secondary and tertiary mirrors to control optical collimation while the telescope operates in its numerous observing modes. Additionally, by applying differential forces at 160 locations on each primary mirror, active optics controls the primary mirror figure. The authors explore the challenges associated with collimation and primary mirror figure control at the LBT and outline the ongoing related development aimed at optimizing image quality and preparing the telescope for interferometric operations.

  14. Prediction and measurement of composite tube twist and bending due to thermal loading

    NASA Astrophysics Data System (ADS)

    Bluth, A. Marcel; Tucker, James R.; Thompson, Troy

    2013-09-01

    Composite materials are applied in precision optical metering structures because of their low thermal expansion properties in concert with high specific stiffness. Twisting and bending of long composite tubes, such as the secondary mirror support structure for the JWST telescope, requires control and verification. A stochastic modeling method was applied that simulates the manufacturing process variability and estimates ranges for expected twist and bend over the tube length from ambient to cryogenic temperatures. A development strut for the JWST secondary mirror support structure was fabricated and a metrology system was designed and implemented that measured the bend and twist response from ambient to 30 K. Modeling methods and predictions are outlined. The test metrology and results are summarized, along with a comparison between test and prediction.

  15. Phase twisted modes and current reversals in a lattice model of waveguide arrays with nonlinear coupling

    SciTech Connect

    Oester, Michael; Johansson, Magnus

    2005-02-01

    We consider a lattice model for waveguide arrays embedded in nonlinear Kerr media. Inclusion of nonlinear coupling results in many phenomena involving complex, phase-twisted, stationary modes. The norm (Poynting power) current of stable plane-wave solutions can be controlled in magnitude and direction, and may be reversed without symmetry-breaking perturbations. Also stable localized phase-twisted modes with zero current exist, which for particular parameter values may be compact and expressed analytically. The model also describes coupled Bose-Einstein condensates.

  16. Resonant Tunneling and Intrinsic Bistability in Twisted Graphene Structures

    NASA Astrophysics Data System (ADS)

    Rodriguez-Nieva, Joaquin; Dresselhaus, Mildred; Levitov, Leonid

    2015-03-01

    Bistable systems exhibit several distinct macroscopic states and can switch between them upon variation of some control parameter. Nonvolatile electronic systems that exhibit intrinsic bistability and fast switching times are desirable for low-power memory and logic. Experimental realizations of such systems, however, are scarce. We propose a novel mechanism for intrinsic bistability in van der Waals heterostructures formed by twisted graphene monolayers. Bistability in these systems originates from resonant tunneling and charge coupling between different graphene layers. These characteristics, governed by Dirac-like spectrum and Moiré periodicity of the tunneling Hamiltonian, allow multiple stable states in the sequential tunneling regime. In the bistability region, an intermediate electrically decoupled graphene layer can, for the same external bias, be either in a resonant or non-resonant state with respect to the top/bottom layer. Features of interest, such as resonant tunneling, negative differential resistance and bistability, are controlled by parameters easily accessible in experiments, namely the twist angle and interlayer conductances. We estimate the power required to retain this state, switching times, and assess volatility of such intrinsically bistable systems.

  17. Gas turbine engine active clearance control

    NASA Technical Reports Server (NTRS)

    Deveau, Paul J. (Inventor); Greenberg, Paul B. (Inventor); Paolillo, Roger E. (Inventor)

    1985-01-01

    Method for controlling the clearance between rotating and stationary components of a gas turbine engine are disclosed. Techniques for achieving close correspondence between the radial position of rotor blade tips and the circumscribing outer air seals are disclosed. In one embodiment turbine case temperature modifying air is provided in flow rate, pressure and temperature varied as a function of engine operating condition. The modifying air is scheduled from a modulating and mixing valve supplied with dual source compressor air. One source supplies relatively low pressure, low temperature air and the other source supplies relatively high pressure, high temperature air. After the air has been used for the active clearance control (cooling the high pressure turbine case) it is then used for cooling the structure that supports the outer air seal and other high pressure turbine component parts.

  18. Control concepts for active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Siegwart, Roland; Vischer, D.; Larsonneur, R.; Herzog, R.; Traxler, Alfons; Bleuler, H.; Schweitzer, G.

    1992-01-01

    Active Magnetic Bearings (AMB) are becoming increasingly significant for various industrial applications. Examples are turbo-compressors, centrifuges, high speed milling and grinding spindles, vibration isolation, linear guides, magnetically levitated trains, vacuum and space applications. Thanks to the rapid progress and drastic cost reduction in power- and micro-electronics, the number of AMB applications is growing very rapidly. Industrial uses of AMBs leads to new requirements for AMB-actuators, sensor systems, and rotor dynamics. Especially desirable are new and better control concepts to meet demand such as low cost AMB, high stiffness, high performance, high robustness, high damping up to several kHz, vibration isolation, force-free rotation, and unbalance cancellation. This paper surveys various control concepts for AMBs and discusses their advantages and disadvantages. Theoretical and experimental results are presented.

  19. Understanding the brain by controlling neural activity

    PubMed Central

    Krug, Kristine; Salzman, C. Daniel; Waddell, Scott

    2015-01-01

    Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been combined with electrical devices, targeted genetically encoded tools and neurochemical approaches to manipulate information processing in the brain. The ability to control brain activity in these ways not only deepens our understanding of brain function but also provides new avenues for clinical intervention, particularly in conditions where brain processing has gone awry. PMID:26240417

  20. Active Displacement Control of Active Magnetic Bearing System

    NASA Astrophysics Data System (ADS)

    Kertész, Milan; Kozakovič, Radko; Magdolen, Luboš; Masaryk, Michal

    2014-12-01

    The worldwide energy production nowadays is over 3400 GW while storage systems have a capacity of only 90 GW [1]. There is a good solution for additional storage capacity in flywheel energy storage systems (FES). The main advantage of FES is its relatively high efficiency especially with using the active magnetic bearing system. Therefore there exist good reasons for appropriate simulations and for creating a suitable magneto-structural control system. The magnetic bearing, including actuation, is simulated in the ANSYS parametric design language (APDL). APDL is used to create the loops of transient simulations where boundary conditions (BC) are updated based upon a "gap sensor" which controls the nodal position values of the centroid of the shaft and the current density inputs onto the copper windings.

  1. Active Aircraft Pylon Noise Control System

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J (Inventor); Elmiligui, Alaa A. (Inventor)

    2015-01-01

    An active pylon noise control system for an aircraft includes a pylon structure connecting an engine system with an airframe surface of the aircraft and having at least one aperture to supply a gas or fluid therethrough, an intake portion attached to the pylon structure to intake a gas or fluid, a regulator connected with the intake portion via a plurality of pipes, to regulate a pressure of the gas or fluid, a plenum chamber formed within the pylon structure and connected with the regulator, and configured to receive the gas or fluid as regulated by the regulator, and a plurality of injectors in communication with the plenum chamber to actively inject the gas or fluid through the plurality of apertures of the pylon structure.

  2. Nanomechanics of Actively Controlled Deployable Optics

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.

    2000-01-01

    This document is the interim, annual report for the research grant entitled "Nanomechanics of Actively Controlled Deployed Optics." It is supported by NASA Langley Research Center Cooperative Agreement NCC-1 -281. Dr. Mark S. Lake is the technical monitor of the research program. This document reports activities for the year 1998, beginning 3/11/1998, and for the year 1999. The objective of this report is to summarize the results and the status of this research. This summary appears in Section 2.0. Complete details of the results of this research have been reported in several papers, publications and theses. Section 3.0 lists these publications and, when available, presents their abstracts. Each publication is available in electronic form from a web site identified in Section 3.0.

  3. Current sensing using circularly birefringent twisted solid-core photonic crystal fiber.

    PubMed

    Beravat, R; Wong, G K L; Xi, X M; Frosz, M H; St J Russell, P

    2016-04-01

    Continuously twisted solid-core photonic crystal fiber (PCF) exhibits pure circular birefringence (optical activity), making it ideal for current sensors based on the Faraday effect. By numerical analysis, we identify the PCF geometry for which the circular birefringence (which scales linearly with twist rate) is a maximum. For silica-air PCF, this occurs at a shape parameter (diameter-to-spacing ratio of the hollow channels) of 0.37 and a scale parameter (spacing-to-wavelength) of 1.51. This result is confirmed experimentally by testing a range of different structures. To demonstrate the effectiveness of twisted PCF as a current sensor, a length of fiber is placed on the axis of a 7.6 cm long solenoid, and the Faraday rotation is measured at different values of dc current. The system is then used to chart the wavelength dependence of the Verdet constant. PMID:27192315

  4. Structures of Highly Twisted Amides Relevant to Amide N-C Cross-Coupling: Evidence for Ground-State Amide Destabilization.

    PubMed

    Pace, Vittorio; Holzer, Wolfgang; Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2016-10-01

    Herein, we show that acyclic amides that have recently enabled a series of elusive transition-metal-catalyzed N-C activation/cross-coupling reactions are highly twisted around the N-C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N-glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α-carbon atom. The (15) N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground-state twist as a blueprint for activation of amides toward N-C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non-planar amide bonds.

  5. Twisted, multifilament Nb3Sn superconductive ribbon

    NASA Technical Reports Server (NTRS)

    Coles, W. D.

    1972-01-01

    An experimental study of superconductor stabilization has resulted in the successful application of the concepts of filamentary structure and conductor twist to Nb3Sn ribbon. The Nb3Sn is formed in parallel, helical paths, which are continuous around the ribbon. Short lengths (12-18cm) of 1.27 cm wide superconductive ribbon were produced. The filamentary and twist characteristics are incorporated in the ribbon by means of an inert mask formed on the ribbon surface early in the fabrication process. Diffusion reaction of the niobium and tin is prevented at the filament boundaries. Described are the conductor methods of fabrication, and test results obtained. The technology required to adapt the processes for the production of long lengths of ribbon is available.

  6. Terahertz conductivity of twisted bilayer graphene.

    PubMed

    Zou, Xingquan; Shang, Jingzhi; Leaw, Jianing; Luo, Zhiqiang; Luo, Liyan; La-o-Vorakiat, Chan; Cheng, Liang; Cheong, S A; Su, Haibin; Zhu, Jian-Xin; Liu, Yanpeng; Loh, Kian Ping; Castro Neto, A H; Yu, Ting; Chia, Elbert E M

    2013-02-01

    Using terahertz time-domain spectroscopy, the real part of optical conductivity [σ(1)(ω)] of twisted bilayer graphene was obtained at different temperatures (10-300 K) in the frequency range 0.3-3 THz. On top of a Drude-like response, we see a strong peak in σ(1)(ω) at ~2.7 THz. We analyze the overall Drude-like response using a disorder-dependent (unitary scattering) model, then attribute the peak at 2.7 THz to an enhanced density of states at that energy, which is caused by the presence of a van Hove singularity arising from a commensurate twisting of the two graphene layers. PMID:23432306

  7. Magnetic Field Twisting by Intergranular Downdrafts

    NASA Astrophysics Data System (ADS)

    Taroyan, Youra; Williams, Thomas

    2016-10-01

    The interaction of an intergranular downdraft with an embedded vertical magnetic field is examined. It is demonstrated that the downdraft may couple to small magnetic twists leading to an instability. The descending plasma exponentially amplifies the magnetic twists when it decelerates with depth due to increasing density. Most efficient amplification is found in the vicinity of the level, where the kinetic energy density of the downdraft reaches equipartition with the magnetic energy density. Continual extraction of energy from the decelerating plasma and growth in the total azimuthal energy occurs as a consequence of the wave-flow coupling along the downdraft. The presented mechanism may drive vortices and torsional motions that have been detected between granules and in simulations of magnetoconvection.

  8. TWISTING, RECONNECTING MAGNETOSPHERES AND MAGNETAR SPINDOWN

    SciTech Connect

    Parfrey, Kyle; Beloborodov, Andrei M.; Hui, Lam

    2012-07-20

    We present the first simulations of evolving, strongly twisted magnetar magnetospheres. Slow shearing of the magnetar crust is seen to lead to a series of magnetospheric expansion and reconnection events, corresponding to X-ray flares and bursts. The axisymmetric simulations include rotation of the neutron star and the magnetic wind through the light cylinder. We study how the increasing twist affects the spindown rate of the star, finding that a dramatic increase in spindown occurs. Particularly spectacular are explosive events caused by the sudden opening of large amounts of overtwisted magnetic flux, which may be associated with the observed giant flares. These events are accompanied by a short period of ultrastrong spindown, resulting in an abrupt increase in spin period, such as was observed in the giant flare of SGR 1900+14.

  9. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry

    NASA Technical Reports Server (NTRS)

    Wang, N.; Ingber, D. E.

    1995-01-01

    We recently developed a magnetic twisting cytometry technique that allows us to apply controlled mechanical stresses to specific cell surface receptors using ligand-coated ferromagnetic microbeads and to simultaneously measure the mechanical response in living cells. Using this technique, we have previously shown the following: (i) beta 1 integrin receptors mediate mechanical force transfer across the cell surface and to the cytoskeleton, whereas other transmembrane receptors (e.g., scavenger receptors) do not; (ii) cytoskeletal stiffness increases in direct proportion to the level of stress applied to integrins; and (iii) the slope of this linear stiffening response differs depending on the shape of the cell. We now show that different integrins (beta 1, alpha V beta 3, alpha V, alpha 5, alpha 2) and other transmembrane receptors (scavenger receptor, platelet endothelial cell adhesion molecule) differ in their ability to mediate force transfer across the cell surface. In addition, the linear stiffening behavior previously observed in endothelial cells was found to be shared by other cell types. Finally, we demonstrate that dynamic changes in cell shape that occur during both cell spreading and retraction are accompanied by coordinate changes in cytoskeletal stiffness. Taken together, these results suggest that the magnetic twisting cytometry technique may be a powerful and versatile tool for studies analyzing the molecular basis of transmembrane mechanical coupling to the cytoskeleton as well as dynamic relations between changes in cytoskeletal structure and alterations in cell form and function.

  10. Twist transition of nematic hyperbolic hedgehogs

    NASA Astrophysics Data System (ADS)

    James, Richard; Fukuda, Jun-ichi

    2014-04-01

    Stability of an idealized hyperbolic hedgehog in a nematic liquid crystal against a twist transition is investigated by extending the methodology of Rüdinger and Stark [Liq. Cryst. 26, 753 (1999), 10.1080/026782999204840], where the hedgehog is confined between two concentric spheres. In the ideal hyperbolic-hedgehog the molecular orientation is assumed to rotate proportionally with respect to the inclination angle, θ (and in the opposite sense). However, when splay, k11, and bend, k33, moduli differ this proportionality is lost and the liquid crystal deforms relative to the ideal with bend and splay. Although slight, these deformations are shown to significantly shift the transition if k11/k33 is small. By increasing the degree of confinement the twist transition can be inhibited, a characteristic both hyperbolic and radial hedgehogs have in common. The twist transition of a hyperbolic defect that accompanies a particle is found to be well predicted by the earlier stability analysis of a thick shell.

  11. TWISTED MAGNETIC FLUX TUBES IN THE SOLAR WIND

    SciTech Connect

    Zaqarashvili, Teimuraz V.; Vörös, Zoltán; Narita, Yasuhito; Bruno, Roberto

    2014-03-01

    Magnetic flux tubes in the solar wind can be twisted as they are transported from the solar surface, where the tubes are twisted due to photospheric motions. It is suggested that the twisted magnetic tubes can be detected as the variation of total (thermal+magnetic) pressure during their passage through the observing satellite. We show that the total pressure of several observed twisted tubes resembles the theoretically expected profile. The twist of the isolated magnetic tube may explain the observed abrupt changes of magnetic field direction at tube walls. We have also found some evidence that the flux tube walls can be associated with local heating of the plasma and elevated proton and electron temperatures. For the tubes aligned with the Parker spiral, the twist angle can be estimated from the change of magnetic field direction. Stability analysis of twisted tubes shows that the critical twist angle of the tube with a homogeneous twist is 70°, but the angle can further decrease due to the motion of the tube with respect to the solar wind stream. The tubes with a stronger twist are unstable to the kink instability, therefore they probably cannot reach 1 AU.

  12. Magnetic Helicity, Tilt, and Twist

    NASA Astrophysics Data System (ADS)

    Pevtsov, Alexei A.; Berger, Mitchell A.; Nindos, Alexander; Norton, Aimee A.; van Driel-Gesztelyi, Lidia

    2014-12-01

    Since its introduction to astro- and solar physics, the concept of helicity has proven to be useful in providing critical insights into physics of various processes from astrophysical dynamos, to magnetic reconnection and eruptive phenomena. Signature of helicity was also detected in many solar features, including orientation of solar active regions, or Joy's law. Here we provide a summary of both solar phenomena and consider mutual relationship and its importance for the evolution of solar magnetic fields.

  13. An IPMC-enabled bio-inspired bending/twisting fin for underwater applications

    NASA Astrophysics Data System (ADS)

    Palmre, Viljar; Hubbard, Joel J.; Fleming, Maxwell; Pugal, David; Kim, Sungjun; Kim, Kwang J.; Leang, Kam K.

    2013-01-01

    This paper discusses the design, fabrication, and characterization of an ionic polymer-metal composite (IPMC) actuator-based bio-inspired active fin capable of bending and twisting motion. It is pointed out that IPMC strip actuators are used in the simple cantilever configuration to create simple bending (flapping-like) motion for propulsion in underwater autonomous systems. However, the resulting motion is a simple 1D bending and performance is rather limited. To enable more complex deformation, such as the flapping (pitch and heaving) motion of real pectoral and caudal fish fins, a new approach which involves molding or integrating IPMC actuators into a soft boot material to create an active control surface (called a ‘fin’) is presented. The fin can be used to realize complex deformation depending on the orientation and placement of the actuators. In contrast to previously created IPMCs with patterned electrodes for the same purpose, the proposed design avoids (1) the more expensive process of electroless plating platinum all throughout the surface of the actuator and (2) the need for specially patterning the electrodes. Therefore, standard shaped IPMC actuators such as those with rectangular dimensions with varying thicknesses can be used. One unique advantage of the proposed structural design is that custom shaped fins and control surfaces can be easily created without special materials processing. The molding process is cost effective and does not require functionalizing or ‘activating’ the boot material similar to creating IPMCs. For a prototype fin (90 mm wide × 60 mm long × 1.5 mm thick), the measured maximum tip displacement was approximately 44 mm and the twist angle of the fin exceeded 10°. Lift and drag measurements in water where the prototype fin with an airfoil profile was dragged through water at a velocity of 21 cm s-1 showed that the lift and drag forces can be affected by controlling the IPMCs embedded into the fin structure. These

  14. Amplitude Scaling of Active Separation Control

    NASA Technical Reports Server (NTRS)

    Stalnov, Oksana; Seifert, Avraham

    2010-01-01

    Three existing and two new excitation magnitude scaling options for active separation control at Reynolds numbers below one Million. The physical background for the scaling options was discussed and their relevance was evaluated using two different sets of experimental data. For F+ approx. 1, 2D excitation: a) The traditional VR and C(mu) - do not scale the data. b) Only the Re*C(mu) is valid. This conclusion is also limited for positive lift increment.. For F+ > 10, 3D excitation, the Re corrected C(mu), the St corrected velocity ratio and the vorticity flux coefficient, all scale the amplitudes equally well. Therefore, the Reynolds weighted C(mu) is the preferred choice, relevant to both excitation modes. Incidence also considered, using Ue from local Cp.

  15. Ribosome-dependent activation of stringent control.

    PubMed

    Brown, Alan; Fernández, Israel S; Gordiyenko, Yuliya; Ramakrishnan, V

    2016-06-01

    In order to survive, bacteria continually sense, and respond to, environmental fluctuations. Stringent control represents a key bacterial stress response to nutrient starvation that leads to rapid and comprehensive reprogramming of metabolic and transcriptional patterns. In general, transcription of genes for growth and proliferation is downregulated, while those important for survival and virulence are upregulated. Amino acid starvation is sensed by depletion of the aminoacylated tRNA pools, and this results in accumulation of ribosomes stalled with non-aminoacylated (uncharged) tRNA in the ribosomal A site. RelA is recruited to stalled ribosomes and activated to synthesize a hyperphosphorylated guanosine analogue, (p)ppGpp, which acts as a pleiotropic secondary messenger. However, structural information about how RelA recognizes stalled ribosomes and discriminates against aminoacylated tRNAs is missing. Here we present the cryo-electron microscopy structure of RelA bound to the bacterial ribosome stalled with uncharged tRNA. The structure reveals that RelA utilizes a distinct binding site compared to the translational factors, with a multi-domain architecture that wraps around a highly distorted A-site tRNA. The TGS (ThrRS, GTPase and SpoT) domain of RelA binds the CCA tail to orient the free 3' hydroxyl group of the terminal adenosine towards a β-strand, such that an aminoacylated tRNA at this position would be sterically precluded. The structure supports a model in which association of RelA with the ribosome suppresses auto-inhibition to activate synthesis of (p)ppGpp and initiate the stringent response. Since stringent control is responsible for the survival of pathogenic bacteria under stress conditions, and contributes to chronic infections and antibiotic tolerance, RelA represents a good target for the development of novel antibacterial therapeutics. PMID:27279228

  16. Active Control of Wind Tunnel Noise

    NASA Technical Reports Server (NTRS)

    Hollis, Patrick (Principal Investigator)

    1991-01-01

    The need for an adaptive active control system was realized, since a wind tunnel is subjected to variations in air velocity, temperature, air turbulence, and some other factors such as nonlinearity. Among many adaptive algorithms, the Least Mean Squares (LMS) algorithm, which is the simplest one, has been used in an Active Noise Control (ANC) system by some researchers. However, Eriksson's results, Eriksson (1985), showed instability in the ANC system with an ER filter for random noise input. The Restricted Least Squares (RLS) algorithm, although computationally more complex than the LMS algorithm, has better convergence and stability properties. The ANC system in the present work was simulated by using an FIR filter with an RLS algorithm for different inputs and for a number of plant models. Simulation results for the ANC system with acoustic feedback showed better robustness when used with the RLS algorithm than with the LMS algorithm for all types of inputs. Overall attenuation in the frequency domain was better in the case of the RLS adaptive algorithm. Simulation results with a more realistic plant model and an RLS adaptive algorithm showed a slower convergence rate than the case with an acoustic plant as a delay plant. However, the attenuation properties were satisfactory for the simulated system with the modified plant. The effect of filter length on the rate of convergence and attenuation was studied. It was found that the rate of convergence decreases with increase in filter length, whereas the attenuation increases with increase in filter length. The final design of the ANC system was simulated and found to have a reasonable convergence rate and good attenuation properties for an input containing discrete frequencies and random noise.

  17. Active Shielding and Control of Environmental Noise

    NASA Technical Reports Server (NTRS)

    Tsynkov, S. V.

    2001-01-01

    In the framework of the research project supported by NASA under grant # NAG-1-01064, we have studied the mathematical aspects of the problem of active control of sound, i.e., time-harmonic acoustic disturbances. The foundations of the methodology are described in our paper [1]. Unlike. many other existing techniques, the approach of [1] provides for the exact volumetric cancellation of the unwanted noise on a given predetermined region airspace, while leaving unaltered those components of the total acoustic field that are deemed as friendly. The key finding of the work is that for eliminating the unwanted component of the acoustic field in a given area, one needs to know relatively little; in particular, neither the locations nor structure nor strength of the exterior noise sources need to be known. Likewise, there is no need to know the volumetric properties of the supporting medium across which the acoustic signals propagate, except, maybe, in a narrow area of space near the perimeter of the protected region. The controls are built based solely on the measurements performed on the perimeter of the domain to be shielded; moreover, the controls themselves (i.e., additional sources) are concentrated also only on or near this perimeter. Perhaps as important, the measured quantities can refer to the total acoustic field rather than to its unwanted component only, and the methodology can automatically distinguish between the two. In [1], we have constructed the general solution for controls. The apparatus used for deriving this general solution is closely connected to the concepts of generalized potentials and boundary projections of Calderon's type. For a given total wave field, the application of a Calderon's projection allows one to definitively tell between its incoming and outgoing components with respect to a particular domain of interest, which may have arbitrary shape. Then, the controls are designed so that they suppress the incoming component for the domain

  18. Sensor Development for Active Flow Control

    NASA Technical Reports Server (NTRS)

    Kahng, Seun K.; Gorton, Susan A.; Mau, Johnney C.; Soto, Hector L.; Hernandez, Corey D.

    2001-01-01

    Presented are the developmental efforts for MEMS sensors for a closed-loop active flow control in a low-speed wind tunnel evaluation. The MEMS sensors are designed in-house and fabricated out of house, and the shear sensors are a thermal type that are collocated with temperature and pressure sensors on a flexible polyimide sheet, which conforms to surfaces of a simple curvature. A total of 6 sensors are located within a 1.5 by 3 mm area as a cluster with each sensor being 300 pm square. The thickness of this sensor cluster is 75 pm. Outputs from the shear sensors have been compared with respect to those of the Preston tube for evaluation of the sensors on a flat plate. Pressure sensors are the absolute type and have recorded pressure measurements within 0.05 percent of the tunnel ESP pressure sensor readings. The sensors and signal conditioning electronics have been tested on both a flat plate and a ramp in Langley s 15-Inch Low-Turbulence Tunnel. The system configuration and control PC is configured with LabView, where calibration constants are stored for desired compensation and correction. The preliminary test results are presented within.

  19. Active controlled studies in antibiotic drug development.

    PubMed

    Dane, Aaron

    2011-01-01

    The increasing concern of antibacterial resistance has been well documented, as has the relative lack of antibiotic development. This paradox is in part due to challenges with clinical development of antibiotics. Because of their rapid progression, untreated bacterial infections are associated with significant morbidity and mortality. As a consequence, placebo-controlled studies of new agents are unethical. Rather, pivotal development studies are mostly conducted using non-inferiority designs versus an active comparator. Further, infections because of comparator-resistant isolates must usually be excluded from the trial programme. Unfortunately, the placebo-controlled data classically used in support of non-inferiority designs are largely unavailable for antibiotics. The only available data are from the 1930s and 1940s and their use is associated with significant concerns regarding constancy and assay sensitivity. Extended public debate on this challenge has led to proposed solutions by some in which these concerns are addressed by using very conservative approaches to trial design, endpoints and non-inferiority margins, in some cases leading to potentially impractical studies. To compound this challenge, different Regulatory Authorities seem to be taking different approaches to these key issues. If harmonisation does not occur, antibiotic development will become increasingly challenging, with the risk of further decreases in the amount of antibiotic drug development. However with clarity on Regulatory requirements and an ability to feasibly conduct global development programmes, it should be possible to bring much needed additional antibiotics to patients.

  20. Actively controlled thin-shell space optics

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Flint, Eric M.; Main, John A.; Lindler, Jason E.

    2003-08-01

    Increasingly, scientific and military missions require the use of space-based optical systems. For example, new capabilities are required for imaging terrestrial like planets, for surveillance, and for directed energy applications. Given the difficulties in producing and launching large optics, it is doubtful that refinements of conventional technology will meet future needs, particularly in a cost-effective manner. To meet this need, recent research has been investigating the feasibility of a new class of ultra-lightweight think-skin optical elements that combine recent advances in lightweight thermally formed materials, active materials, and novel sensing and control architectures. If successful, the approach may lead to an order of magnitude reduction in space optics areal density, improved large scale manufacturing capability, and dramatic reductions in manufacturing and launch costs. In a recent effort, a one meter thin-film mirror like structure was fabricated. This paper provides an overview of tools used to model and simulate this structure as well as results from structural dynamic testing. In addition, progress in the area of non-contact global shape control using smart materials is presented.

  1. High performance composites with active stiffness control.

    PubMed

    Tridech, Charnwit; Maples, Henry A; Robinson, Paul; Bismarck, Alexander

    2013-09-25

    High performance carbon fiber reinforced composites with controllable stiffness could revolutionize the use of composite materials in structural applications. Here we describe a structural material, which has a stiffness that can be actively controlled on demand. Such a material could have applications in morphing wings or deployable structures. A carbon fiber reinforced-epoxy composite is described that can undergo an 88% reduction in flexural stiffness at elevated temperatures and fully recover when cooled, with no discernible damage or loss in properties. Once the stiffness has been reduced, the required deformations can be achieved at much lower actuation forces. For this proof-of-concept study a thin polyacrylamide (PAAm) layer was electrocoated onto carbon fibers that were then embedded into an epoxy matrix via resin infusion. Heating the PAAm coating above its glass transition temperature caused it to soften and allowed the fibers to slide within the matrix. To produce the stiffness change the carbon fibers were used as resistance heating elements by passing a current through them. When the PAAm coating had softened, the ability of the interphase to transfer load to the fibers was significantly reduced, greatly lowering the flexural stiffness of the composite. By changing the moisture content in PAAm fiber coating, the temperature at which the PAAm softens and the composites undergo a reduction in stiffness can be tuned. PMID:23978266

  2. Enhanced generation of myeloid lineages in hematopoietic differentiation from embryonic stem cells by silencing transcriptional repressor Twist-2.

    PubMed

    Sharabi, Andrew B; Lee, Sung-Hyung; Goodell, Margaret A; Huang, Xue F; Chen, Si-Yi

    2009-12-01

    The self-renewal and multilineage differentiation of embryonic stem cells (ESC) is largely governed by transcription factors or repressors. Extensive efforts have focused on elucidating critical factors that control the differentiation of specific cell lineages, for instance, myeloid lineages in hematopoietic development. In this study, we found that Twist-2, a basic helix-loop-helix (bHLH) transcription factor, plays a critical role in inhibiting the differentiation of ESC. Murine ES cells, in which Twist-2 expression is silenced by lentivirally delivered shRNA, exhibit an enhanced formation of primary embryoid bodies (EB) and enhanced differentiation into mesodermally derived hematopoietic colonies. Furthermore, Twist-2 silenced (LV-siTwist-2) ESC display significantly increased generation of myeloid lineages (Gr-1(+) and F4/80(+) cells) during in vitro hematopoietic differentiation. Treatment with the Toll-like receptor (TLR) 4 ligand synergistically stimulates the generation of primary EB formation as well as of hematopoietic progenitors differentiated from LV-siTwist-2 ES cells. Thus, this study reveals the critical role of the transcriptional repressor Twist-2 in regulating the development of myeloid lineage in hematopoietic differentiation from ESC. This study also suggests a potential strategy for directional differentiation of ESC by inhibiting a transcriptional repressor.

  3. Cortical control of thermoregulatory sympathetic activation.

    PubMed

    Fechir, M; Klega, A; Buchholz, H G; Pfeifer, N; Balon, S; Schlereth, T; Geber, C; Breimhorst, M; Maihöfner, C; Birklein, F; Schreckenberger, M

    2010-06-01

    Thermoregulation enables adaptation to different ambient temperatures. A complex network of central autonomic centres may be involved. In contrast to the brainstem, the role of the cortex has not been clearly evaluated. This study was therefore designed to address cerebral function during a whole thermoregulatory cycle (cold, neutral and warm stimulation) using 18-fluordeoxyglucose-PET (FDG-PET). Sympathetic activation parameters were co-registered. Ten healthy male volunteers were examined three times on three different days in a water-perfused whole-body suit. After a baseline period (32 degrees C), temperature was either decreased to 7 degrees C (cold), increased to 50 degrees C (warm) or kept constant (32 degrees C, neutral), thereafter the PET examination was performed. Cerebral glucose metabolism was increased in infrapontine brainstem and cerebellar hemispheres during cooling and warming, each compared with neutral temperature. Simultaneously, FDG uptake decreased in the bilateral anterior/mid-cingulate cortex during warming, and in the right insula during cooling and warming. Conjunction analyses revealed that right insular deactivation and brainstem activation appeared both during cold and warm stimulation. Metabolic connectivity analyses revealed positive correlations between the cortical activations, and negative correlations between these cortical areas and brainstem/cerebellar regions. Heart rate changes negatively correlated with glucose metabolism in the anterior cingulate cortex and in the middle frontal gyrus/dorsolateral prefrontal cortex, and changes of sweating with glucose metabolism in the posterior cingulate cortex. In summary, these results suggest that the cerebral cortex exerts an inhibitory control on autonomic centres located in the brainstem or cerebellum. These findings may represent reasonable explanations for sympathetic hyperactivity, which occurs, for example, after hemispheric stroke.

  4. Robust controllers for the Middeck Active Control Experiment using Popov controller synthesis

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Hall, Steven R.

    1993-01-01

    Recent work in robust control with real parameter uncertainties has focused on absolute stability and its connections to real mu theory. In particular, the research has investigated the Popov stability criterion and its associated Lur'e-Postnikov Liapunov functions. State space representations of this Popov stability analysis tests are included in an H2 design formulation to provide a powerful technique for robust controller synthesis. This synthesis approach uses a state space optimization procedure to design controllers that minimize an overbound of an H2 cost functional and satisfy stability analysis tests based on the Popov multiplier. The controller and stability multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K algorithm of mu synthesis. While previous work has demonstrated this synthesis approach on benchmark control problems, the purpose of this paper is to use Popov controller synthesis to design robust compensators for the Middeck Active Control Experiment (MACE).

  5. Thrombin induces expression of twist and cell motility via the hypoxia-inducible factor-1α translational pathway in colorectal cancer cells.

    PubMed

    Chang, Li-Hsun; Chen, Chun-Han; Huang, Der-Yi; Pai, Hui-Chen; Pan, Shiow-Lin; Teng, Che-Ming

    2011-04-01

    Deep vein thrombosis associated with advanced cancer is known as Trousseau's syndrome. We hypothesized that thrombin, an activator of protease-activated receptor (PAR)-1 and PAR-4 contributes to tumor metastasis. In this study, we demonstrated that thrombin and the PAR-1 activating peptide (AP) SFLLRN, but not the PAR-4 AP GYPGKF, induced HIF-1α activities, protein expression, and cell motility in colorectal cancer cells, and these actions were significantly inhibited by the PAR-1 antagonist SCH79797. Moreover, thrombin-induced HIF-1α activity and cell motility were blocked by inhibiting important mediators of signaling transduction, including the ERK, PI3K, and mTOR pathways. These results showed that thrombin induced HIF-1α protein expression through PAR-1 and HIF-1α translational de novo protein synthesis. Twist can regulate epithelial-mesenchymal transition (EMT) and increase tumor metastasis. However, we observed that thrombin-induced HIF-1α increased Twist mRNA and its protein level was mediated by the modulation of PAR-1 activation and the HIF-1α translational pathway. In addition, Twist could increase N-cadherin but not E-cadherin to promote tumor metastasis. Overexpression of dominant-negative HIF-1α reversed thrombin-mediated Twist and Twist-induced N-cadherin expression. Moreover, siTwist inhibited Twist-induced N-cadherin and Thrombin-induced cell motility. In conclusion, our study showed that thrombin-induced HIF-1α upregulated Twist at the transcriptional level to enhance cell motility. These findings show that thrombin upregulates Twist via HIF-1α to make tumor cells malignant and also establish a link between the coagulation disorder and cancer metastasis. PMID:20857420

  6. Optical Möbius strips and twisted ribbon cloaks.

    PubMed

    Freund, Isaac

    2014-02-15

    Optical Möbius strips that surround points of circular polarization, C points, in a generic three-dimensional optical field are cloaked by lines of twisted ribbons attached to the C points. When cloaking occurs, the observable signed twist index that counts the number of half-twists (one or three), and also measures the handedness (right or left), of a generic Möbius strip is determined by the twisted ribbon cloaks. Although some cloaks can be detached, they can never all be removed.

  7. Modelling of Nonthermal Microwave Emission from Twisted Magnetic Loops

    NASA Astrophysics Data System (ADS)

    Sharykin, I. N.; Kuznetsov, A. A.

    2016-05-01

    Microwave gyrosynchrotron radio emission generated by nonthermal electrons in twisted magnetic loops is modelled using the recently developed simulation tool GX Simulator. We consider isotropic and anisotropic pitch-angle distributions. The main scope of the work is to understand the impact of a twisted magnetic field topology on radio emission maps. We have found that nonthermal electrons inside twisted magnetic loops produce gyrosynchrotron radio emission with a particular polarisation distribution. The polarisation sign inversion line is inclined relatively to the axis of the loop. The radio emission source is more compact in the case of a less twisted loop, assuming an anisotropic pitch-angle distribution of nonthermal electrons.

  8. Twisted rudder for reducing fuel-oil consumption

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hun; Choi, Jung-Eun; Choi, Bong-Jun; Chung, Seok-Ho

    2014-09-01

    Three twisted rudders fit for large container ships have been developed; 1) the Z-twisted rudder that is an asymmetry type taking into consideration incoming flow angles of the propeller slipstream, 2) the ZB-twisted rudder with a rudder bulb added onto the Z-twisted rudder, and 3) the ZB-F twisted rudder with a rudder fin attached to the ZB-twisted rudder. The twisted rudders have been designed computationally with the hydrodynamic characteristics in a self-propulsion condition in mind. The governing equation is the Navier-Stokes equations in an unsteady turbulent flow. The turbulence model applied is the Reynolds stress. The calculation was carried out in towing and self-propulsion conditions. The sliding mesh technique was employed to simulate the flow around the propeller. The speed performances of the ship with the twisted rudders were verified through model tests in a towing tank. The twisted versions showed greater performance driven by increased hull efficiency from less thrust deduction fraction and more effective wake fraction and decreased propeller rotating speed

  9. Twisted geometries, twistors, and conformal transformations

    NASA Astrophysics Data System (ADS)

    Lângvik, Miklos; Speziale, Simone

    2016-07-01

    The twisted geometries of spin network states are described by simple twistors, isomorphic to null twistors with a timelike direction singled out. The isomorphism depends on the Immirzi parameter γ and reduces to the identity for γ =∞ . Using this twistorial representation, we study the action of the conformal group SU(2,2) on the classical phase space of loop quantum gravity, described by twisted geometry. The generators of translations and conformal boosts do not preserve the geometric structure, whereas the dilatation generator does. It corresponds to a one-parameter family of embeddings of T*SL(2,C) in twistor space, and its action preserves the intrinsic geometry while changing the extrinsic one—that is the boosts among polyhedra. We discuss the implication of this action from a dynamical point of view and compare it with a discretization of the dilatation generator of the continuum phase space, given by the Lie derivative of the group character. At leading order in the continuum limit, the latter reproduces the same transformation of the extrinsic geometry, while also rescaling the areas and volumes and preserving the angles associated with the intrinsic geometry. Away from the continuum limit, its action has an interesting nonlinear structure but is in general incompatible with the closure constraint needed for the geometric interpretation. As a side result, we compute the precise relation between the extrinsic geometry used in twisted geometries and the one defined in the gauge-invariant parametrization by Dittrich and Ryan and show that the secondary simplicity constraints they posited coincide with those dynamically derived in the toy model of [Classical Quantum Gravity 32, 195015 (2015)].

  10. Twisting and Writhing with George Ellery Hale

    NASA Astrophysics Data System (ADS)

    Canfield, Richard C.

    2013-07-01

    Early in his productive career in astronomy, George Ellery Hale developed innovative instrumentation that allowed him to image the magnetically-dominated solar chromosphere. Among the solar phenomena he discovered were sunspot vortices, which he attributed to storms akin to cyclones in our own atmosphere. Much more recently, physicists discovered a quantity that is very well conserved in ideal magnetohydrodynamics: magnetic helicity. Our contemporary understanding of Hale's vortices as a consequence of large-scale twist in sunspot magnetic fields hinges on this conservation. I will review the crucial role that this property plays in the hemispheric and solar cycle dependences of Hales vortices, as well as solar flares and CMEs.

  11. Twist Defect in an Imprinted Cholesteric Elastomer

    NASA Astrophysics Data System (ADS)

    Castro-Garay, Paola; Reyes, Juan Adrian; Corella-Madueño, Adalberto

    2009-03-01

    We have found that a chiral twist defect inserted in a cholesteric elastomer gives rise to circularly polarized localized modes of both handedness. This defect enhances the resonance mode amplitude whose handedness is opposite to the cholesteric helix for high cross-linked density. Complementarily, for low cross-linked density, the circular polarization opposite to helix cholesteric of the elastomer is decoupled with the defect mode so that the resonance mode disappears . Finally, the resonance mode of the circularly polarization of the same handedness to elastomer helix is maintained either, for high or low cross-linked density.

  12. Twist defect in an imprinted cholesteric elastomer

    NASA Astrophysics Data System (ADS)

    Castro-Garay, P.; Reyes, J. Adrian; Corella-Madueño, A.

    2009-04-01

    We have found that a chiral twist defect inserted in a cholesteric elastomer gives rise to circularly polarized localized modes of both handedness. This defect enhances the resonant mode amplitude whose handedness is opposite to that of the cholesteric helix for high cross-linked density, whereas for low cross-linked density, the same mode is decoupled with the defect and thus the resonant mode disappears. Finally, the resonant mode of the same handedness as the elastomer helix is maintained for both high and low cross-linked density.

  13. Strategy for cloaking of twisted domains

    SciTech Connect

    Schmiele, Martin; Rockstuhl, Carsten; Lederer, Falk

    2009-05-15

    We describe a strategy to cloak twisted domains where, in contrast to the usual cloaks, the outer domain does not necessarily need to possess a direct connection to the point of inflation. The strategy consists of two steps. At first, a transformation is applied to untwist the geometry. Then, a second transformation is applied to create a point-transformed cloak with vanishing scattering cross section. As an extreme, yet analytical example, we construct a cloak having the shape of a spiral. Full-wave simulations confirm that electromagnetic waves impinging on the spiral-type cloak are bent around the structure with no discernible scattering.

  14. The bacterial cytoskeleton: more than twisted filaments.

    PubMed

    Pilhofer, Martin; Jensen, Grant J

    2013-02-01

    Far from being simple 'bags' of enzymes, bacteria are richly endowed with ultrastructures that challenge and expand standard definitions of the cytoskeleton. Here we review rods, rings, twisted pairs, tubes, sheets, spirals, moving patches, meshes and composites, and suggest defining the term 'bacterial cytoskeleton' as all cytoplasmic protein filaments and their superstructures that move or scaffold (stabilize/position/recruit) other cellular materials. The evolution of each superstructure has been driven by specific functional requirements. As a result, while homologous proteins with different functions have evolved to form surprisingly divergent superstructures, those of unrelated proteins with similar functions have converged.

  15. Revisiting the which-way experiment with twisted light beams.

    PubMed

    Chen, Lixiang; Zhang, Wuhong; Cai, Kai; Zhang, Yuanying; Qi, Qianqian

    2014-10-15

    We report an experiment of which-way information and a quantum eraser based on polarization-controlled interference of two twisted light beams carrying high orbital angular momentum (OAM) up to ℓ=±50 and ±100, respectively. By changing the polarization plane of one OAM beam from 0° to 90° with respect to that of the other OAM beam, we observe the gradual disappearance of the interference petal-like patterns into the noninterference single bright rings. Subsequently, we use the eraser of a diagonal polarizer to retrieve the characteristic petal-like interference. The experimental results can be well explained in the frame of single-photon Greenberger-Horne-Zeilinger-like (GHZ-like) entanglement. Our work may be beneficial to understanding the wave-particle duality of light.

  16. Let's twist again: elasto-capillary assembly of parallel ribbons.

    PubMed

    Legrain, Antoine; Berenschot, Erwin J W; Abelmann, Leon; Bico, José; Tas, Niels R

    2016-09-14

    We show the self-assembly through twisting and bending of side by side ribbons under the action of capillary forces. Micro-ribbons made of silicon nitride are batch assembled at the wafer scale. We study their assembly as a function of their dimensions and separating distance. Model experiments are carried out at the macroscopic scale where the tension in ribbons can easily be tuned. The process is modeled considering the competition between capillary, elastic and tension forces. Theory shows a good agreement for macroscale assemblies, while the accuracy is within 30% at the micrometer scale. This simple self-assembly technique yields highly symmetric and controllable structures which could be used for batch fabrication of functional 3D micro-structures. PMID:27501147

  17. Pest control industry and vector control activities in Taiwan.

    PubMed

    Wang, C H; Lin, C H; Liao, M J

    1994-12-01

    At the end of 1993, there were 117 private pest control companies in Taiwan, with 438 technical managers and 274 technicians. Their business includes the control of mosquitoes, cockroaches, fleas, rodents, termites, houseflies, etc. Pyrethroids and some organophosphates are employed. At present, no applications of insect growth regulators or microbial agents are used by private pest control operators. During dengue epidemics they assist the government in space spraying with insecticides. The Environmental Protection Administration, Executive Yuan, R.O.C., is responsible for the training and management of pest control operators. In addition, the Administration is also in charge of affairs concerning the manufacture, import, registration and sale of environmental pesticides and microbial agents. It establishes protocols for testing the efficacy of insecticides and promotes pest control on the community level.

  18. Localized topological states in Bragg multihelicoidal fibers with twist defects

    NASA Astrophysics Data System (ADS)

    Alexeyev, C. N.; Lapin, B. P.; Milione, G.; Yavorsky, M. A.

    2016-06-01

    We have studied the influence of a twist defect in multihelicoidal Bragg fibers on the emerging of localized defect modes. We have shown that if such a fiber is excited with a Gaussian beam this leads to the appearance of a defect-localized topological state, whose topological charge coincides with the order of rotational symmetry of the fiber's refractive index. We have shown that this effect has a pronounced crossover behavior. We have also formulated a principle of creating the systems that can nestle defect-localized topologically charged modes. According to this principle, such systems have to possess topological activity, that is, the ability to change the topological charge of the incoming field, and operate in the Bragg regime.

  19. How the embryonic brain tube twists

    NASA Astrophysics Data System (ADS)

    Chen, Zi; Guo, Qiaohang; Forsch, Nickolas; Taber, Larry

    2014-03-01

    During early development, the tubular brain of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This deformation is one of the major organ-level symmetry-breaking events in development. Available evidence suggests that bending is caused by differential growth, but the mechanism for torsion remains poorly understood. Since the heart almost always loops in the same direction that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is virtually nonexistent, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. In addition, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model is used to interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''.

  20. Terahertz conductivity of twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Chia, Elbert E. M.; Zou, Xingquan; Shang, Jingzhi; Leaw, Jianing; Luo, Zhiqiang; Luo, Liyan; Cheong, Siew Ann; Su, Haibin; Zhu, Jian-Xin; Castro Neto, A. H.; Yu, Ting

    2013-03-01

    Using terahertz time-domain spectroscopy, the real part of optical conductivity [σ1 (ω) ] of twisted bilayer graphene was obtained at different temperatures (10 - 300 K) in the frequency range 0.3 - 3 THz. On top of a Drude-like response, we see a strong and narrow peak in σ1 (ω) at ~2.7 THz. We analyze the overall Drude-like response using a disorder-dependent (unitary scattering) model, then attribute the peak at 2.7 THz to an enhanced density of states at that energy, that is caused by the presence of van Hove singularities arising from a commensurate twisting of the two graphene layers. Singapore MOE AcRF Tier 2 (ARC 23/08), NRF-CRP (NRF-CRP4-2008-04), NNSA of the U.S. DOE at LANL (DE-AC52-06NA25396), LANL LDRD Program, NRF-CRP (R-144-000-295-281), DOE DE-FG02-08ER46512, ONR MURI N00014-09-1-1063.

  1. Needleless electrospinning with twisted wire spinneret

    NASA Astrophysics Data System (ADS)

    Holopainen, Jani; Penttinen, Toni; Santala, Eero; Ritala, Mikko

    2015-01-01

    A needleless electrospinning setup named ‘Needleless Twisted Wire Electrospinning’ was developed. The polymer solution is electrospun from the surface of a twisted wire set to a high voltage and collected on a cylindrical collector around the wire. Multiple Taylor cones are simultaneously self-formed on the downward flowing solution. The system is robust and simple with no moving parts aside from the syringe pump used to transport the solution to the top of the wire. The structure and process parameters of the setup and the results on the preparation of polyvinyl pyrrolidone (PVP), hydroxyapatite (HA) and bioglass fibers with the setup are presented. PVP fiber sheets with areas of 40 × 120 cm2 and masses up to 1.15 g were prepared. High production rates of 5.23 g h-1 and 1.40 g h-1 were achieved for PVP and HA respectively. The major limiting factor of the setup is drying of the polymer solution on the wire during the electrospinning process which will eventually force to interrupt the process for cleaning of the wire. Possible solutions to this problem and other ways to develop the setup are discussed. The presented system provides a simple way to increase the production rate and area of fiber sheet as compared with the conventional needle electrospinning.

  2. Strong CP, Flavor, and Twisted Split Fermions

    SciTech Connect

    Harnik, Roni; Perez, Gilad; Schwartz, Matthew D.; Shirman, Yuri

    2004-11-10

    We present a natural solution to the strong CP problem in the context of split fermions. By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But the strong CP phase remains zero, being essentially protected by parity in the bulk and CP on the branes. As always in models of spontaneous CP breaking, radiative corrections to theta bar from the standard model are tiny, but even higher dimension operators are not that dangerous. The twisting phenomenon was recently shown to be generic, and not to interfere with the way that split fermions naturally weaves small numbers into the standard model. It follows that out approach to strong CP is compatible with flavor, and we sketch a comprehensive model. We also look at deconstructed version of this setup which provides a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class.

  3. Needleless electrospinning with twisted wire spinneret.

    PubMed

    Holopainen, Jani; Penttinen, Toni; Santala, Eero; Ritala, Mikko

    2015-01-16

    A needleless electrospinning setup named 'Needleless Twisted Wire Electrospinning' was developed. The polymer solution is electrospun from the surface of a twisted wire set to a high voltage and collected on a cylindrical collector around the wire. Multiple Taylor cones are simultaneously self-formed on the downward flowing solution. The system is robust and simple with no moving parts aside from the syringe pump used to transport the solution to the top of the wire. The structure and process parameters of the setup and the results on the preparation of polyvinyl pyrrolidone (PVP), hydroxyapatite (HA) and bioglass fibers with the setup are presented. PVP fiber sheets with areas of 40 × 120 cm(2) and masses up to 1.15 g were prepared. High production rates of 5.23 g h(-1) and 1.40 g h(-1) were achieved for PVP and HA respectively. The major limiting factor of the setup is drying of the polymer solution on the wire during the electrospinning process which will eventually force to interrupt the process for cleaning of the wire. Possible solutions to this problem and other ways to develop the setup are discussed. The presented system provides a simple way to increase the production rate and area of fiber sheet as compared with the conventional needle electrospinning.

  4. Active flutter control for flexible vehicles, volume 1

    NASA Technical Reports Server (NTRS)

    Mahesh, J. K.; Garrard, W. L.; Stones, C. R.; Hausman, P. D.

    1979-01-01

    An active flutter control methodology based on linear quadratic gaussian theory and its application to the control of a super critical wing is presented. Results of control surface and sensor position optimization are discussed. Both frequency response matching and residualization used to obtain practical flutter controllers are examined. The development of algorithms and computer programs for flutter modeling and active control design procedures is reported.

  5. Design optimization of a twist compliant mechanism with nonlinear stiffness

    NASA Astrophysics Data System (ADS)

    Tummala, Y.; Frecker, M. I.; Wissa, A. A.; Hubbard, J. E., Jr.

    2014-10-01

    A contact-aided compliant mechanism called a twist compliant mechanism (TCM) is presented in this paper. This mechanism has nonlinear stiffness when it is twisted in both directions along its axis. The inner core of the mechanism is primarily responsible for its flexibility in one twisting direction. The contact surfaces of the cross-members and compliant sectors are primarily responsible for its high stiffness in the opposite direction. A desired twist angle in a given direction can be achieved by tailoring the stiffness of a TCM. The stiffness of a compliant twist mechanism can be tailored by varying thickness of its cross-members, thickness of the core and thickness of its sectors. A multi-objective optimization problem with three objective functions is proposed in this paper, and used to design an optimal TCM with desired twist angle. The objective functions are to minimize the mass and maximum von-Mises stress observed, while minimizing or maximizing the twist angles under specific loading conditions. The multi-objective optimization problem proposed in this paper is solved for an ornithopter flight research platform as a case study, with the goal of using the TCM to achieve passive twisting of the wing during upstroke, while keeping the wing fully extended and rigid during the downstroke. Prototype TCMs have been fabricated using 3D printing and tested. Testing results are also presented in this paper.

  6. Beyond the classical Rayleigh limit with twisted light.

    PubMed

    Tong, Zhisong; Korotkova, Olga

    2012-07-01

    It is shown that twisted stochastic light can serve as illumination that may produce images with a resolution overcoming the Rayleigh limit by an order of magnitude. This finding is illustrated for an isoplanatic axially symmetric system with low angular aperture and twisted scalar Gaussian Schell-model illumination.

  7. Analysis of twist and lean of tall towers

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A method for analytically determining the amount of twist and lean of a tall tower of equilateral triangular cross section is described. This method is also applicable to tall structures of other shapes and cross-sectional areas. A BASIC computer program that determines the angle of twist and amount of lean is provided.

  8. Guide to good practices for control area activities

    SciTech Connect

    1998-12-01

    This Guide to Good Practices is written to enhance understanding of, and provide direction for, Control Area Activities, Chapter III of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered for controlling the activities in control areas. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19. Control Area Activities is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for maintaining a formal environment in operational control areas to promote safe and efficient operations.

  9. Active parallel redundancy for electronic integrator-type control circuits

    NASA Technical Reports Server (NTRS)

    Peterson, R. A.

    1971-01-01

    Circuit extends concept of redundant feedback control from type-0 to type-1 control systems. Inactive channels are slaves to the active channel, if latter fails, it is rejected and slave channel is activated. High reliability and elimination of single-component catastrophic failure are important in closed-loop control systems.

  10. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Active Control Design Applications

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1998-01-01

    This report describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind tunnel model for active control design and analysis applications. The model is formed by combining the equations of motion for the BACT wind tunnel model with actuator models and a model of wind tunnel turbulence. The primary focus of this report is the development of the equations of motion from first principles by using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated by making use of parameters obtained from both experiment and analysis. Comparisons between experimental and analytical data obtained from the numerical model show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind tunnel model. The equations of motion developed herein have been used to aid in the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  11. Landau damping of Langmuir twisted waves with kappa distributed electrons

    SciTech Connect

    Arshad, Kashif Aman-ur-Rehman; Mahmood, Shahzad

    2015-11-15

    The kinetic theory of Landau damping of Langmuir twisted modes is investigated in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the Langmuir twisted waves in a nonthermal plasma. The strong damping effects of the Langmuir twisted waves at wavelengths approaching Debye length are also obtained by using an exact numerical method and are illustrated graphically. The damping rates of the planar Langmuir waves are found to be larger than the twisted Langmuir waves in plasmas which shows opposite behavior as depicted in Fig. 3 by J. T. Mendoça [Phys. Plasmas 19, 112113 (2012)].

  12. Twisted Fock representations of noncommutative Kähler manifolds

    NASA Astrophysics Data System (ADS)

    Sako, Akifumi; Umetsu, Hiroshi

    2016-09-01

    We introduce twisted Fock representations of noncommutative Kähler manifolds and give their explicit expressions. The twisted Fock representation is a representation of the Heisenberg like algebra whose states are constructed by applying creation operators to a vacuum state. "Twisted" means that creation operators are not Hermitian conjugate of annihilation operators in this representation. In deformation quantization of Kähler manifolds with separation of variables formulated by Karabegov, local complex coordinates and partial derivatives of the Kähler potential with respect to coordinates satisfy the commutation relations between the creation and annihilation operators. Based on these relations, we construct the twisted Fock representation of noncommutative Kähler manifolds and give a dictionary to translate between the twisted Fock representations and functions on noncommutative Kähler manifolds concretely.

  13. A twisted disk equation that describes warped galaxy disks

    NASA Technical Reports Server (NTRS)

    Barker, K.

    1994-01-01

    Warped H1 gas layers in the outer regions of spiral galaxies usually display a noticeably twisted structure. This structure is thought to arise primarily as a result of differential precession in the H1 disk as it settles toward a 'preferred orientation' in an underlying dark halo potential well that is not spherically symmetric. In an attempt to better understand the structure and evolution of these twisted, warped disk structures, we have utilized the 'twist-equation' formalism. Specifically, we have generalized the twist equation to allow the treatment of non-Keplerian disks and from it have derived the steady-state structure of twisted disks that develop from free precession in a nonspherical, logarithmic halo potential. This generalized equation can also be used to examine the time-evolutionary behavior of warped galaxy disks.

  14. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1986-01-01

    The utility of augmenting displays to aid the human operator in controlling high order complex systems is well known. Analytical evaluation of various display designs for a simple k/s sup 2 plant in a compensatory tracking task using an optimal Control Model (OCM) of human behavior is carried out. This analysis reveals that significant improvement in performance should be obtained by skillful integration of key information into the display dynamics. The cooperative control synthesis technique previously developed to design pilot-optimal control augmentation is extended to incorporate the simultaneous design of performance enhancing augmented displays. The application of the cooperative control synthesis technique to the design of augmented displays is discussed for the simple k/s sup 2 plant. This technique is intended to provide a systematic approach to design optimally augmented displays tailored for specific tasks.

  15. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Gary, Sanjay; Schmidt, David K.

    1987-01-01

    A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/(s squared) plant, and then to an F-15 type aircraft in a multichannel task. Utilizing the closed-loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.

  16. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1985-01-01

    The utility of augmenting displays to aid the human operator in controlling high order complex systems is well known. Analytical evaluations of various display designs for a simple k/s-squared plant in a compensatory tracking task using an Optimal Control Model (OCM) of human behavior is carried out. This analysis reveals that significant improvement in performance should be obtained by skillful integration of key information into the display dynamics. The cooperative control synthesis technique previously developed to design pilot-optimal control augmentation is extended to incorporate the simultaneous design of performance enhancing augmented displays. The application of the cooperative control synthesis technique to the design of augmented displays is discussed for the simple k/s-squared plant. This technique is intended to provide a systematic approach to design optimally augmented displays tailored for specific tasks.

  17. Optimal cooperative control synthesis of active displays

    NASA Technical Reports Server (NTRS)

    Garg, S.; Schmidt, D. K.

    1985-01-01

    A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts.

  18. Implementation and application of a novel 2D magnetic twisting cytometry based on multi-pole electromagnet.

    PubMed

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-06-01

    We implemented a novel 2D magnetic twisting cytometry (MTC) based on a previously reported multi-pole high permeability electromagnet, in which both the strength and direction of the twisting field can be controlled. Thanks to the high performance twisting electromagnet and the heterodyning technology, the measurement frequency has been extended to the 1 kHz range. In order to obtain high remanence of the ferromagnetic beads, a separate electromagnet with feedback control was adopted for the high magnetic field polarization. Our setup constitutes the first instrument which can be operated both in MTC mode and in magnetic tweezers (MT) mode. In this work, the mechanical properties of HL-1 cardiomyocytes were characterized in MTC mode. Both anisotropy and log-normal distribution of cell stiffness were observed, which agree with our previous results measured in MT mode. The response from these living cells at different frequencies can be fitted very well by the soft glassy rheology model. PMID:27370475

  19. Implementation and application of a novel 2D magnetic twisting cytometry based on multi-pole electromagnet

    NASA Astrophysics Data System (ADS)

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-06-01

    We implemented a novel 2D magnetic twisting cytometry (MTC) based on a previously reported multi-pole high permeability electromagnet, in which both the strength and direction of the twisting field can be controlled. Thanks to the high performance twisting electromagnet and the heterodyning technology, the measurement frequency has been extended to the 1 kHz range. In order to obtain high remanence of the ferromagnetic beads, a separate electromagnet with feedback control was adopted for the high magnetic field polarization. Our setup constitutes the first instrument which can be operated both in MTC mode and in magnetic tweezers (MT) mode. In this work, the mechanical properties of HL-1 cardiomyocytes were characterized in MTC mode. Both anisotropy and log-normal distribution of cell stiffness were observed, which agree with our previous results measured in MT mode. The response from these living cells at different frequencies can be fitted very well by the soft glassy rheology model.

  20. Implementation and application of a novel 2D magnetic twisting cytometry based on multi-pole electromagnet.

    PubMed

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-06-01

    We implemented a novel 2D magnetic twisting cytometry (MTC) based on a previously reported multi-pole high permeability electromagnet, in which both the strength and direction of the twisting field can be controlled. Thanks to the high performance twisting electromagnet and the heterodyning technology, the measurement frequency has been extended to the 1 kHz range. In order to obtain high remanence of the ferromagnetic beads, a separate electromagnet with feedback control was adopted for the high magnetic field polarization. Our setup constitutes the first instrument which can be operated both in MTC mode and in magnetic tweezers (MT) mode. In this work, the mechanical properties of HL-1 cardiomyocytes were characterized in MTC mode. Both anisotropy and log-normal distribution of cell stiffness were observed, which agree with our previous results measured in MT mode. The response from these living cells at different frequencies can be fitted very well by the soft glassy rheology model.

  1. Thermal and non-thermal emission from reconnecting twisted coronal loops

    NASA Astrophysics Data System (ADS)

    Pinto, R. F.; Gordovskyy, M.; Browning, P. K.; Vilmer, N.

    2016-01-01

    Context. Twisted magnetic fields should be ubiquitous in the solar corona, particularly in flare-producing active regions where the magnetic fields are strongly non-potential. The magnetic energy contained in such twisted fields can be released during solar flares and other explosive phenomena. It has recently been shown that reconnection in helical magnetic coronal loops results in plasma heating and particle acceleration distributed within a large volume, including the lower coronal and chromospheric sections of the loops. Hence, the magnetic reconnection and particle acceleration scenario involving magnetic helicity can be a viable alternative to the standard flare model, where particles are accelerated only in a small volume located in the upper corona. Aims: The key goal of this study is to investigate the links and observational signatures of plasma heating and particle acceleration in kink-unstable twisted coronal loops. Methods: We used a combination of magnetohydrodynamic (MHD) simulations and test-particle methods. These simulations describe the development of kink instability and magnetic reconnection in twisted coronal loops using resistive compressible MHD and incorporate atmospheric stratification and large-scale loop curvature. The resulting distributions of hot plasma let us estimate thermal X-ray emission intensities. With the electric and magnetic fields we obtained, we calculated electron trajectories using the guiding-centre approximation. These trajectories combined with the MHD plasma density distributions let us deduce synthetic hard X-ray bremsstrahlung intensities. Results: Our simulations emphasise that the geometry of the emission patterns produced by hot plasma in flaring twisted coronal loops can differ from the actual geometry of the underlying magnetic fields. In particular, the twist angles revealed by the emission threads (soft X-ray thermal emission; SXR) are consistently lower than the field-line twist present at the onset of the

  2. THE EVOLUTION OF THE TWIST SHEAR AND DIP SHEAR DURING X-CLASS FLARE OF 2006 DECEMBER 13: HINODE OBSERVATIONS

    SciTech Connect

    Gosain, Sanjay; Venkatakrishnan, P.

    2010-09-10

    The non-potentiality of solar magnetic fields is traditionally measured in terms of a magnetic shear angle, i.e., the angle between the observed and potential field azimuths. Here, we introduce another measure of the shear that has not been previously studied in solar active regions, i.e., the one that is associated with the inclination angle of the magnetic field. This form of the shear, which we call 'dip shear', can be calculated by taking the difference between the observed and the potential field inclination. In this Letter, we study the evolution of the dip shear as well as the conventional twist shear in a {delta}-sunspot using high-resolution vector magnetograms from the Hinode space mission. We monitor these shears in a penumbral region located close to a flaring site during 2006 December 12 and 13. It is found that (1) the penumbral area close to the flaring site shows a high value of the twist shear and dip shear as compared with other parts of the penumbra, (2) after the flare, the value of the dip shear drops in this region while the twist shear tends to increase, (3) the dip shear and twist shear are correlated such that pixels with a large twist shear also tend to exhibit a large dip shear, and (4) the correlation between the twist shear and dip shear is tighter after the flare. The present study suggests that monitoring the twist shear alone during the flare is not sufficient, but we need to monitor it together with the dip shear.

  3. The Evolution of the Twist Shear and Dip Shear During X-class Flare of 2006 December 13: Hinode Observations

    NASA Astrophysics Data System (ADS)

    Gosain, Sanjay; Venkatakrishnan, P.

    2010-09-01

    The non-potentiality of solar magnetic fields is traditionally measured in terms of a magnetic shear angle, i.e., the angle between the observed and potential field azimuths. Here, we introduce another measure of the shear that has not been previously studied in solar active regions, i.e., the one that is associated with the inclination angle of the magnetic field. This form of the shear, which we call "dip shear," can be calculated by taking the difference between the observed and the potential field inclination. In this Letter, we study the evolution of the dip shear as well as the conventional twist shear in a δ-sunspot using high-resolution vector magnetograms from the Hinode space mission. We monitor these shears in a penumbral region located close to a flaring site during 2006 December 12 and 13. It is found that (1) the penumbral area close to the flaring site shows a high value of the twist shear and dip shear as compared with other parts of the penumbra, (2) after the flare, the value of the dip shear drops in this region while the twist shear tends to increase, (3) the dip shear and twist shear are correlated such that pixels with a large twist shear also tend to exhibit a large dip shear, and (4) the correlation between the twist shear and dip shear is tighter after the flare. The present study suggests that monitoring the twist shear alone during the flare is not sufficient, but we need to monitor it together with the dip shear.

  4. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  5. Do twisted laser beams evoke nuclear hyperpolarization?

    PubMed

    Schmidt, A B; Andrews, D L; Rohrbach, A; Gohn-Kreuz, C; Shatokhin, V N; Kiselev, V G; Hennig, J; von Elverfeldt, D; Hövener, J-B

    2016-07-01

    The hyperpolarization of nuclear spins promises great advances in chemical analysis and medical diagnosis by substantially increasing the sensitivity of nuclear magnetic resonance (NMR). Current methods to produce a hyperpolarized sample, however, are arduous, time-consuming or costly and require elaborate equipment. Recently, a much simpler approach was introduced that holds the potential, if harnessed appropriately, to revolutionize the production of hyperpolarized spins. It was reported that high levels of hyperpolarization in nuclear spins can be created by irradiation with a laser beam carrying orbital angular momentum (twisted light). Aside from these initial reports however, no further experimental verification has been presented. In addition, this effect has so far evaded a critical theoretical examination. In this contribution, we present the first independent attempt to reproduce the effect. We exposed a sample of immersion oil or a fluorocarbon liquid that was placed within a low-field NMR spectrometer to Laguerre-Gaussian and Bessel laser beams at a wavelength of 514.5nm and various topological charges. We acquired (1)H and (19)F NMR free induction decay data, either during or alternating with the irradiation that was parallel to B0. We observed an irregular increase in NMR signal in experiments where the sample was exposed to beams with higher values of the topological charge. However, at no time did the effect reach statistical significance of 95%. Given the measured sensitivity of our setup, we estimate that a possible effect did not exceed a hyperpolarization (at 5mT) of 0.14-6%, depending on the assumed hyperpolarized volume. It should be noted though, that there were some differences between our setup and the previous implementation of the experiment, which may have inhibited the full incidence of this effect. To approach a theoretical description of this effect, we considered the interaction of an electron with a plane wave, which is known to be

  6. Do twisted laser beams evoke nuclear hyperpolarization?

    PubMed

    Schmidt, A B; Andrews, D L; Rohrbach, A; Gohn-Kreuz, C; Shatokhin, V N; Kiselev, V G; Hennig, J; von Elverfeldt, D; Hövener, J-B

    2016-07-01

    The hyperpolarization of nuclear spins promises great advances in chemical analysis and medical diagnosis by substantially increasing the sensitivity of nuclear magnetic resonance (NMR). Current methods to produce a hyperpolarized sample, however, are arduous, time-consuming or costly and require elaborate equipment. Recently, a much simpler approach was introduced that holds the potential, if harnessed appropriately, to revolutionize the production of hyperpolarized spins. It was reported that high levels of hyperpolarization in nuclear spins can be created by irradiation with a laser beam carrying orbital angular momentum (twisted light). Aside from these initial reports however, no further experimental verification has been presented. In addition, this effect has so far evaded a critical theoretical examination. In this contribution, we present the first independent attempt to reproduce the effect. We exposed a sample of immersion oil or a fluorocarbon liquid that was placed within a low-field NMR spectrometer to Laguerre-Gaussian and Bessel laser beams at a wavelength of 514.5nm and various topological charges. We acquired (1)H and (19)F NMR free induction decay data, either during or alternating with the irradiation that was parallel to B0. We observed an irregular increase in NMR signal in experiments where the sample was exposed to beams with higher values of the topological charge. However, at no time did the effect reach statistical significance of 95%. Given the measured sensitivity of our setup, we estimate that a possible effect did not exceed a hyperpolarization (at 5mT) of 0.14-6%, depending on the assumed hyperpolarized volume. It should be noted though, that there were some differences between our setup and the previous implementation of the experiment, which may have inhibited the full incidence of this effect. To approach a theoretical description of this effect, we considered the interaction of an electron with a plane wave, which is known to be

  7. Do twisted laser beams evoke nuclear hyperpolarization?

    NASA Astrophysics Data System (ADS)

    Schmidt, A. B.; Andrews, D. L.; Rohrbach, A.; Gohn-Kreuz, C.; Shatokhin, V. N.; Kiselev, V. G.; Hennig, J.; von Elverfeldt, D.; Hövener, J.-B.

    2016-07-01

    The hyperpolarization of nuclear spins promises great advances in chemical analysis and medical diagnosis by substantially increasing the sensitivity of nuclear magnetic resonance (NMR). Current methods to produce a hyperpolarized sample, however, are arduous, time-consuming or costly and require elaborate equipment. Recently, a much simpler approach was introduced that holds the potential, if harnessed appropriately, to revolutionize the production of hyperpolarized spins. It was reported that high levels of hyperpolarization in nuclear spins can be created by irradiation with a laser beam carrying orbital angular momentum (twisted light). Aside from these initial reports however, no further experimental verification has been presented. In addition, this effect has so far evaded a critical theoretical examination. In this contribution, we present the first independent attempt to reproduce the effect. We exposed a sample of immersion oil or a fluorocarbon liquid that was placed within a low-field NMR spectrometer to Laguerre-Gaussian and Bessel laser beams at a wavelength of 514.5 nm and various topological charges. We acquired 1H and 19F NMR free induction decay data, either during or alternating with the irradiation that was parallel to B0. We observed an irregular increase in NMR signal in experiments where the sample was exposed to beams with higher values of the topological charge. However, at no time did the effect reach statistical significance of 95%. Given the measured sensitivity of our setup, we estimate that a possible effect did not exceed a hyperpolarization (at 5 mT) of 0.14-6%, depending on the assumed hyperpolarized volume. It should be noted though, that there were some differences between our setup and the previous implementation of the experiment, which may have inhibited the full incidence of this effect. To approach a theoretical description of this effect, we considered the interaction of an electron with a plane wave, which is known to be

  8. PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...

  9. 15. INTERIOR OVERVIEW TO SOUTHEAST. ACTIVE CONTROL PANEL AND GENERATORS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR OVERVIEW TO SOUTHEAST. ACTIVE CONTROL PANEL AND GENERATORS AT LEFT, HISTORIC CONTROL PANEL AT RIGHT. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  10. Identification and characterization of a twist ortholog in the polychaete annelid Platynereis dumerilii reveals mesodermal expression of Pdu-twist.

    PubMed

    Pfeifer, Kathrin; Schaub, Christoph; Wolfstetter, Georg; Dorresteijn, Adriaan

    2013-09-01

    The basic helix-loop-helix transcription factor twist plays a key role during mesoderm development in Bilateria. In this study, we identified a twist ortholog in the polychaete annelid Platynereis dumerilii and analyze its expression during larval development, postlarval growth up to the adult stage, and caudal regeneration after amputation of posterior segments. At late larval stages, Pdu-twist is expressed in the mesodermal anlagen and in developing muscles. During adulthood and caudal regeneration, Pdu-twist is expressed in the posterior growth zone, in mesodermal cells within the newly forming segments and budding parapodia. Our results indicate that Pdu-twist is involved in mesoderm formation during larval development, posterior growth, and caudal regeneration. PMID:23817621

  11. Active control of flexural vibrations in beams

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.

    1987-01-01

    The feasibility of using piezoelectric actuators to control the flexural oscillations of large structures in space is investigated. Flexural oscillations are excited by impulsive loads. The vibratory response can degrade the pointing accuracy of cameras and antennae, and can cause high stresses at structural node points. Piezoelectric actuators have the advantage of exerting localized bending moments. In this way, vibration is controlled without exciting rigid body modes. The actuators are used in collocated sensor/driver pairs to form a feedback control system. The sensor produces a voltage that is proportional to the dynamic stress at the sensor location, and the driver produces a force that is proportional to the voltage applied to it. The analog control system amplifies and phase shifts the sensor signal to produce the voltage signal that is applied to the driver. The feedback control is demonstrated to increase the first mode damping in a cantilever beam by up to 100 percent, depending on the amplifier gain. The damping efficiency of the control system when the piezoelectrics are not optimally positioned at points of high stress in the beam is evaluated.

  12. Active chatter control in a milling machine

    SciTech Connect

    Dohner, J.L.; Hinnerichs, T.D.; Lauffer, J.P.

    1997-08-01

    The use of active feedback compensation to mitigate cutting instabilities in an advanced milling machine is discussed in this paper. A linear structural model delineating dynamics significant to the onset of cutting instabilities was combined with a nonlinear cutting model to form a dynamic depiction of an existing milling machine. The model was validated with experimental data. Modifications made to an existing machine model were used to predict alterations in dynamics due to the integration of active feedback compensation. From simulations, subcomponent requirements were evaluated and cutting enhancements were predicted. Active compensation was shown to enable more than double the metal removal rate over conventional milling machines. 25 refs., 10 figs., 1 tab.

  13. Twist-joints and double twist-joints in RNA structure.

    PubMed

    Boutorine, Yury I; Steinberg, Sergey V

    2012-12-01

    Analysis of available RNA crystal structures has allowed us to identify a new family of RNA arrangements that we call double twist-joints, or DTJs. Each DTJ is composed of a double helix that contains two bulges incorporated into different strands and separated from each other by 2 or 3 bp. At each bulge, the double helix is over-twisted, while the unpaired nucleotides of both bulges form a complex network of stacking and hydrogen-bonding with nucleotides of helical regions. In total, we identified 14 DTJ cases, which can be combined in three groups based on common structural characteristics. One DTJ is found in a functional center of the ribosome, another DTJ mediates binding of the pre-tRNA to the RNase P, and two more DTJs form the sensing domains in the glycine riboswitch.

  14. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy

    PubMed Central

    Tanaka, Shu; Yoshida, Hiroyuki; Kawata, Yuto; Kuwahara, Ryusuke; Nishi, Ryuji; Ozaki, Masanori

    2015-01-01

    Cholesteric blue phases are liquid crystalline phases in which the constituent rod-like molecules spontaneously form three-dimensional, helical structures. Despite theoretical predictions that they are composed of cylindrical substructures within which the liquid crystal molecules are doubly twisted, real space observation of the arrangement of such structures had not been performed. Through transmission electron microscopy of photopolymerized blue phases with controlled lattice plane orientations, we report real space observation and comparison of the lattice structures of blue phases I and II. The two systems show distinctly different contrasts, reflecting the theoretically predicted, body centred and simple cubic arrangement of the double-twist cylinders. Transmission electron microscopy also reveals different tendencies of the two blue phases to align on unidirectionally rubbed surfaces. We thus show that TEM observation of alignment-controlled, photopolymerized liquid crystals can be a powerful tool to investigate complex liquid crystalline order. PMID:26530779

  15. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Tanaka, Shu; Yoshida, Hiroyuki; Kawata, Yuto; Kuwahara, Ryusuke; Nishi, Ryuji; Ozaki, Masanori

    2015-11-01

    Cholesteric blue phases are liquid crystalline phases in which the constituent rod-like molecules spontaneously form three-dimensional, helical structures. Despite theoretical predictions that they are composed of cylindrical substructures within which the liquid crystal molecules are doubly twisted, real space observation of the arrangement of such structures had not been performed. Through transmission electron microscopy of photopolymerized blue phases with controlled lattice plane orientations, we report real space observation and comparison of the lattice structures of blue phases I and II. The two systems show distinctly different contrasts, reflecting the theoretically predicted, body centred and simple cubic arrangement of the double-twist cylinders. Transmission electron microscopy also reveals different tendencies of the two blue phases to align on unidirectionally rubbed surfaces. We thus show that TEM observation of alignment-controlled, photopolymerized liquid crystals can be a powerful tool to investigate complex liquid crystalline order.

  16. The twisted diversion: a paralyzing complication

    PubMed Central

    Hiew, Kenneth; Glendinning, Richard; Parr, Nigel; Kumar, Manal

    2013-01-01

    Ileal conduit remains a widely used urinary diversion performed after radical cystectomy. However, complications of ileal conduits remain an important concern in urological surgery. We report a rare case of an ileal conduit stricture, which can have grim complications if unobserved during the operation. Following an initial operation of radical cystectomy and ileal conduit formation in France in 2011, an 80-year-old male travelled back to the UK after 4 months of general weakness and limb paralysis. Initial blood test shows life-threatening hyperkalemia and worsened renal function. Subsequent ultrasound KUB scan and loopogram revealed obstructive uropathy. The initial management includes intravenous antibiotics and bilateral nephrostomies were inserted to aid diversion of urine. A thorough surgical exploration revealed a twisted, fibrous mesenteric band adhered to the proximal part of the ileal conduit. Only one case report of ileal conduit stenosis was described many years after the procedure. PMID:24963928

  17. Optical Twist Induced by Plasmonic Resonance.

    PubMed

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-01-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster.

  18. Optical Twist Induced by Plasmonic Resonance

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-06-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster.

  19. Optical Twist Induced by Plasmonic Resonance

    PubMed Central

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-01-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster. PMID:27291860

  20. Terahertz twisted beams generation in plasma

    NASA Astrophysics Data System (ADS)

    Sobhani, Hassan; Vaziri (Khamedi), Mohammad; Rooholamininejad, Hossien; Bahrampour, Alireza

    2016-08-01

    The resonant vortex terahertz beam generation by the cross-focusing of two twisted coaxial laser beams is investigated. For the resonant excitation of terahertz radiation, the rippled density in plasma and the ripple wave number is suitably chosen to satisfy the phase matching condition. The nonlinear current density at terahertz frequency arises due to the spatial variation of two Laguerre-Gaussian coupled field. The terahertz intensity scales as the ponderomotive force of laser beams which imparts an oscillatory velocity to the electrons and, in fact, input Laguerre-Gaussian laser beams properties such as vortex charge number and beam waist. Various laser and plasma parameters are employed to yield vortex terahertz radiation with higher efficiency. Also, it is shown that when the beating frequency approaches plasma frequency, the amplitude of THz radiation increases.

  1. Optical Twist Induced by Plasmonic Resonance.

    PubMed

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-01-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster. PMID:27291860

  2. Broadband radiation modes: Estimation and active control

    NASA Astrophysics Data System (ADS)

    Berkhoff, Arthur P.

    2002-03-01

    In this paper we give a formulation of the most efficiently radiating vibration patterns of a vibrating body, the radiation modes, in the time domain. The radiation modes can be used to arrive at efficient weighting schemes for an array of sensors in order to reduce the controller dimensionality. Because these particular radiation modes are optimum in a broadband sense, they are termed broadband radiation modes. Methods are given to obtain these modes from measured data. The broadband radiation modes are used for the design of an actuator array in a feedback control system to reduce the sound power radiated from a plate. Three methods for the design of the actuator are compared, taking into account the reduction of radiated sound power in the controlled frequency range, but also the possible increase of radiated sound power in the uncontrolled frequency range.

  3. Bioinspired twisted composites based on Bouligand structures

    NASA Astrophysics Data System (ADS)

    Pinto, F.; Iervolino, O.; Scarselli, G.; Ginzburg, D.; Meo, M.

    2016-04-01

    The coupling between structural support and protection makes biological systems an important source of inspiration for the development of advanced smart composite structures. In particular, some particular material configurations can be implemented into traditional composites in order to improve their impact resistance and the out-of-plane properties, which represents one of the major weakness of commercial carbon fibres reinforced polymers (CFRP) structures. Based on this premise, a three-dimensional twisted arrangement shown in a vast multitude of biological systems (such as the armoured cuticles of Scarabei, the scales of Arapaima Gigas and the smashing club of Odontodactylus Scyllarus) has been replicated to develop an improved structural material characterised by a high level of in-plane isotropy and a higher interfacial strength generated by the smooth stiffness transition between each layer of fibrils. Indeed, due to their intrinsic layered nature, interlaminar stresses are one of the major causes of failure of traditional CFRP and are generated by the mismatch of the elastic properties between plies in a traditional laminate. Since the energy required to open a crack or a delamination between two adjacent plies is due to the difference between their orientations, the gradual angle variation obtained by mimicking the Bouligand Structures could improve energy absorption and the residual properties of carbon laminates when they are subjected to low velocity impact event. Two different bioinspired laminates were manufactured following a double helicoidal approach and a rotational one and were subjected to a complete test campaign including low velocity impact loading and compared to a traditional quasi-isotropic panel. Fractography analysis via X-Ray tomography was used to understand the mechanical behaviour of the different laminates and the residual properties were evaluated via Compression After Impact (CAI) tests. Results confirmed that the biological

  4. DNA twisting flexibility and the formation of sharply looped protein-DNA complexes

    NASA Astrophysics Data System (ADS)

    Cloutier, T. E.; Widom, J.

    2005-03-01

    Gene-regulatory complexes often require that pairs of DNA-bound proteins interact by looping-out short (often 100-bp) stretches of DNA. The loops can vary in detailed length and sequence and, thus, in total helical twist, which radically alters their geometry. How this variability is accommodated structurally is not known. Here we show that the inherent twistability of 89- to 105-bp DNA circles exceeds theoretical expectation by up to 400-fold. These results can be explained only by greatly enhanced DNA flexibility, not by permanent bends. They invalidate the use of classic theories of flexibility for understanding sharp DNA looping but support predictions of two recent theories. Our findings imply an active role for DNA flexibility in loop formation and suggest that variability in the detailed helical twist of regulatory loops is accommodated naturally by the inherent twistability of the DNA. activation | gene regulation | repression

  5. An evolutionarily conserved DNA architecture determines target specificity of the TWIST family bHLH transcription factors

    PubMed Central

    Chang, Andrew T.; Liu, Yuanjie; Ayyanathan, Kasirajan; Benner, Chris; Jiang, Yike; Prokop, Jeremy W.; Paz, Helicia; Wang, Dong; Li, Hai-Ri; Fu, Xiang-Dong

    2015-01-01

    Basic helix–loop–helix (bHLH) transcription factors recognize the canonical E-box (CANNTG) to regulate gene transcription; however, given the prevalence of E-boxes in a genome, it has been puzzling how individual bHLH proteins selectively recognize E-box sequences on their targets. TWIST is a bHLH transcription factor that promotes epithelial–mesenchymal transition (EMT) during development and tumor metastasis. High-resolution mapping of TWIST occupancy in human and Drosophila genomes reveals that TWIST, but not other bHLH proteins, recognizes a unique double E-box motif with two E-boxes spaced preferentially by 5 nucleotides. Using molecular modeling and binding kinetic analyses, we found that the strict spatial configuration in the double E-box motif aligns two TWIST–E47 dimers on the same face of DNA, thus providing a high-affinity site for a highly stable intramolecular tetramer. Biochemical analyses showed that the WR domain of TWIST dimerizes to mediate tetramer formation, which is functionally required for TWIST-induced EMT. These results uncover a novel mechanism for a bHLH transcription factor to recognize a unique spatial configuration of E-boxes to achieve target specificity. The WR–WR domain interaction uncovered here sets an example of target gene specificity of a bHLH protein being controlled allosterically by a domain outside of the bHLH region. PMID:25762439

  6. Pulley With Active Antifriction Actuator And Control

    NASA Technical Reports Server (NTRS)

    Ih, Che-Hang C.; Vivian, Howard C.

    1994-01-01

    Torque actuator and associated control system minimizes effective friction of rotary bearing. Motor exerts compensating torque in response to feedback from external optical sensor. Compensation torque nearly cancels frictional torque of shaft bearings. Also useful in reducing bearing friction in gyro-scopes, galvanometers, torquemeters, accelerometers, earth-motion detectors, and balances.

  7. Selective Activation and Disengagement of Moral Control.

    ERIC Educational Resources Information Center

    Bandura, Albert

    1990-01-01

    Analyzes psychological mechanisms by which moral control is selectively disengaged from inhumane conduct in ordinary and unusual circumstances. Explores the symptoms of moral exclusion as described in the literature. Presents categories that unify theory on moral exclusion and contribute practical classifications for use in empirical studies. (JS)

  8. Simulation study of twisted crystal growth in organic thin films.

    PubMed

    Fang, Alta; Haataja, Mikko

    2015-10-01

    Many polymer and organic small-molecule thin films crystallize with microstructures that twist or curve in a regular manner as crystal growth proceeds. Here we present a phase-field model that energetically favors twisting of the three-dimensional crystalline orientation about and along particular axes, allowing morphologies such as banded spherulites, curved dendrites, and "s"- or "c"-shaped needle crystals to be simulated. When twisting about the fast-growing crystalline axis is energetically favored and spherulitic growth conditions are imposed, crystallization occurs in the form of banded spherulites composed of radially oriented twisted crystalline fibers. Due to the lack of symmetry, twisting along the normal growth direction leads to heterochiral banded spherulites with opposite twist handedness in each half of the spherulite. When twisting is instead favored about the axis perpendicular to the plane of the substrate and along the normal growth direction under diffusion-limited single-crystalline growth conditions, crystallization occurs in the form of curved dendrites with uniformly rotating branches. We show that the rate at which the branches curve affects not only the morphology but also the overall kinetics of crystallization, as the total crystallized area at a given time is maximized for a finite turning rate. PMID:26565254

  9. Genetic Control of Active Neural Circuits

    PubMed Central

    Reijmers, Leon; Mayford, Mark

    2009-01-01

    The use of molecular tools to study the neurobiology of complex behaviors has been hampered by an inability to target the desired changes to relevant groups of neurons. Specific memories and specific sensory representations are sparsely encoded by a small fraction of neurons embedded in a sea of morphologically and functionally similar cells. In this review we discuss genetics techniques that are being developed to address this difficulty. In several studies the use of promoter elements that are responsive to neural activity have been used to drive long-lasting genetic alterations into neural ensembles that are activated by natural environmental stimuli. This approach has been used to examine neural activity patterns during learning and retrieval of a memory, to examine the regulation of receptor trafficking following learning and to functionally manipulate a specific memory trace. We suggest that these techniques will provide a general approach to experimentally investigate the link between patterns of environmentally activated neural firing and cognitive processes such as perception and memory. PMID:20057936

  10. Critical Current Properties of HTS Twisted Stacked-Tape Cable in Subcooled- and Pressurized-Liquid Nitrogen

    NASA Astrophysics Data System (ADS)

    Tomita, M.; Suzuki, K.; Fukumoto, Y.; Ishihara, A.; Akasaka, T.; Kobayashi, Y.; Maeda, A.; Takayasu, M.

    2015-12-01

    A 2 m length Twisted Stacked-Tape Cable (TSTC) conductor which was fabricated by 32-YBCO-tapes (4 mm width) with a 200 mm twist pitch was investigated at various temperatures near 77 K in subcooled- and pressurized-liquid nitrogen. The critical current of the TSTC cable which was 1.45 kA at 77 K measured from 64 K to 85 K by controlling the equilibrium vapor pressure of nitrogen bath and were varied from 3.65 kA at 64 K to 0.42 kA at 85 K. The temperature dependence of cables’ critical current agrees with that of the 4 mm width YBCO tape. These results are encouraging for applications of a compact Twisted Stacked-Tape Cable application in railway systems.

  11. Hybrid Architecture Active Wavefront Sensing and Control

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Dean, Bruce; Hyde, Tupper

    2010-01-01

    A method was developed for performing relatively high-speed wavefront sensing and control to overcome thermal instabilities in a segmented primary mirror telescope [e.g., James Webb Space Telescope (JWST) at L2], by using the onboard fine guidance sensor (FGS) to minimize expense and complexity. This FGS performs centroiding on a bright star to feed the information to the pointing and control system. The proposed concept is to beam split the image of the guide star (or use a single defocused guide star image) to perform wavefront sensing using phase retrieval techniques. Using the fine guidance sensor star image for guiding and fine phasing eliminates the need for other, more complex ways of achieving very accurate sensing and control that is needed for UV-optical applications. The phase retrieval occurs nearly constantly, so passive thermal stability over fourteen days is not required. Using the FGS as the sensor, one can feed segment update information to actuators on the primary mirror that can update the primary mirror segment fine phasing with this frequency. Because the thermal time constants of the primary mirror are very slow compared to this duration, the mirror will appear extremely stable during observations (to the level of accuracy of the sensing and control). The sensing can use the same phase retrieval techniques as the JWST by employing an additional beam splitter, and having each channel go through a weak lens (one positive and one negative). The channels can use common or separate detectors. Phase retrieval can be performed onboard. The actuation scheme would include a coarse stage able to achieve initial alignment of several millimeters of range (similar to JWST and can use a JWST heritage sensing approach in the science camera) and a fine stage capable of continual updates.

  12. Fabrication of twisted nematic structure and vector grating cells by one-step exposure on photocrosslinkable polymer liquid crystals.

    PubMed

    Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2012-03-15

    We present a simple yet efficient method to automatically fabricate the twisted nematic structure by one-step exposure on an empty glass cell coated with photocrosslinkable polymer liquid crystal (PCLC) films. The resultant photoalignment directions of two substrates can be orthogonal to each other by controlling the difference between the exposure energy for upper and lower PCLC films and the twisted nematic (TN) structure can be automatically fabricated. The vector grating liquid crystalline cell with TN structure was also fabricated by means of a developed method, and the diffraction properties were well explained by the theoretical calculation on the basis of Jones calculus. PMID:22446243

  13. Interactive MRI Segmentation with Controlled Active Vision

    PubMed Central

    Karasev, Peter; Kolesov, Ivan; Chudy, Karol; Muller, Grant; Xerogeanes, John; Tannenbaum, Allen

    2013-01-01

    Partitioning Magnetic-Resonance-Imaging (MRI) data into salient anatomic structures is a problem in medical imaging that has continued to elude fully automated solutions. Implicit functions are a common way to model the boundaries between structures and are amenable to control-theoretic methods. In this paper, the goal of enabling a human to obtain accurate segmentations in a short amount of time and with little effort is transformed into a control synthesis problem. Perturbing the state and dynamics of an implicit function’s driving partial differential equation via the accumulated user inputs and an observer-like system leads to desirable closed-loop behavior. Using a Lyapunov control design, a balance is established between the influence of a data-driven gradient flow and the human’s input over time. Automatic segmentation is thus smoothly coupled with interactivity. An application of the mathematical methods to orthopedic segmentation is shown, demonstrating the expected transient and steady state behavior of the implicit segmentation function and auxiliary observer. PMID:24584213

  14. Active control for turbulent premixed flame simulations

    SciTech Connect

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.

    2004-03-26

    Many turbulent premixed flames of practical interest are statistically stationary. They occur in combustors that have anchoring mechanisms to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. As a result, typical detailed simulations are performed in simplified model configurations such as decaying isotropic turbulence or inflowing turbulence. In these configurations, the turbulence seen by the flame either decays or, in the latter case, increases as the flame accelerates toward the turbulent inflow. This limits the duration of the eddy evolutions experienced by the flame at a given level of turbulent intensity, so that statistically valid observations cannot be made. In this paper, we apply a feedback control to computationally stabilize an otherwise unstable turbulent premixed flame in two dimensions. For the simulations, we specify turbulent in flow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm. We use the simulations to study the propagation and the local chemical variability of turbulent flame chemistry.

  15. Quantum communication through a spin ring with twisted boundary conditions

    SciTech Connect

    Bose, S.; Jin, B.-Q.; Korepin, V.E.

    2005-08-15

    We investigate quantum communication between the sites of a spin ring with twisted boundary conditions. Such boundary conditions can be achieved by a magnetic flux through the ring. We find that a nonzero twist can improve communication through finite odd-numbered rings and enable high-fidelity multiparty quantum communication through spin rings (working near perfectly for rings of five and seven spins). We show that in certain cases, the twist results in the complete blockage of quantum-information flow to a certain site of the ring. This effect can be exploited to interface and entangle a flux qubit and a spin qubit without embedding the latter in a magnetic field.

  16. Assembly and Folding of Twisted Baskets in Organic Solvents.

    PubMed

    Pratumyot, Yaowalak; Chen, Shigui; Hu, Lei; Polen, Shane M; Hadad, Christopher M; Badjić, Jovica D

    2016-09-01

    A synthetic method for obtaining enantiopure and twisted baskets of type (P)-3 is described. These chiral cavitands were found to fold quinoline gates, at the rim of their twisted platform, in acetonitrile and give molecular capsules that assemble into large unilamellar vesicles. In a less polar dichloromethane, however, cup-shaped (P)-3 packed into vesicles but with the quinoline gates in an unfolded orientation. The ability of twisted baskets to form functional nanostructured materials could be of interest for building stereoselective sensors and catalysts. PMID:27513214

  17. Twisted electrostatic ion-cyclotron waves in dusty plasmas.

    PubMed

    Shukla, P K

    2013-01-01

    We show the existence of a twisted electrostatic ion-cyclotron (ESIC) wave carrying orbital angular momentum (OAM) in a magnetized dusty plasma. For our purposes, we derive a 3D wave equation for the coupled ESIC and dust ion-acoustic (DIA) waves from the hydrodynamic equations that are composed of the continuity and momentum equations, together with Poisson's equation. The 3D wave equation reveals the formation of a braided or twisted ESIC wave structure carrying OAM. The braided or twisted ESIC wave structure can trap and transport plasma particles in magnetoplasmas, such as those in Saturn's F-ring and in the forthcoming magnetized dusty plasma experiments. PMID:23410477

  18. Twisting of nanowires induced by anisotropic surface stresses

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Shan; Feng, Xi-Qiao; Wang, Gang-Feng; Yu, Shou-Wen

    2008-05-01

    Many natural and synthetic quasi-one-dimensional materials are of helical or twisting shape and understanding the physical mechanisms underlying the asymmetric shape is of both theoretical and technological significances. In this letter, we pointed out that anisotropic surface stresses present as a possible reason for the formation of some micro-/nanohelices. Using Gurtin's theory of surface elasticity, we quantitatively investigated the twisting deformation of nanowires due to anisotropic surface stresses. The present model can also elucidate the formation of some other helical materials at micro- and nanoscales, e.g., twisting lamellae in polymer spherulites, spiraled bacteria, and flagella.

  19. Topological suppression of optical tunneling in a twisted annular fiber

    SciTech Connect

    Ornigotti, M.; Valle, G. Della; Gatti, D.; Longhi, S.

    2007-08-15

    A classical wave-optics analog of topological (Aharonov-Bohm) suppression of tunneling in a double-well potential on a ring threaded by a magnetic flux is proposed. The optical system consists of a uniformly twisted optical fiber with a structured annular core, in which the fiber twist mimics the role of the magnetic flux in the corresponding quantum-mechanical problem. Light waves trapped in the annular core of the fiber experience an additional topological (Aharonov-Bohm) phase, which may lead to the destruction of optical tunneling at certain values of the twist rate.

  20. Advanced Study for Active Noise Control in Aircraft (ASANCA)

    NASA Technical Reports Server (NTRS)

    Borchers, Ingo U.; Emborg, Urban; Sollo, Antonio; Waterman, Elly H.; Paillard, Jacques; Larsen, Peter N.; Venet, Gerard; Goeransson, Peter; Martin, Vincent

    1992-01-01

    Aircraft interior noise and vibration measurements are included in this paper from ground and flight tests. In addition, related initial noise calculations with and without active noise control are conducted. The results obtained to date indicate that active noise control may be an effective means for reducing the critical low frequency aircraft noise.

  1. 40 CFR 194.41 - Active institutional controls.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification Assurance Requirements § 194.41 Active institutional controls. (a) Any compliance application shall include... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Active institutional controls....

  2. 40 CFR 194.41 - Active institutional controls.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification Assurance Requirements § 194.41 Active institutional controls. (a) Any compliance application shall include... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Active institutional controls....

  3. 40 CFR 194.41 - Active institutional controls.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification Assurance Requirements § 194.41 Active institutional controls. (a) Any compliance application shall include... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Active institutional controls....

  4. 40 CFR 194.41 - Active institutional controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification Assurance Requirements § 194.41 Active institutional controls. (a) Any compliance application shall include... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Active institutional controls....

  5. 40 CFR 194.41 - Active institutional controls.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COMPLIANCE WITH THE 40 CFR PART 191 DISPOSAL REGULATIONS Compliance Certification and Re-certification Assurance Requirements § 194.41 Active institutional controls. (a) Any compliance application shall include... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Active institutional controls....

  6. An electronic control for an electrohydraulic active control landing gear for the F-4 aircraft

    NASA Technical Reports Server (NTRS)

    Ross, I.

    1982-01-01

    A controller for an electrohydraulic active control landing gear was developed for the F-4 aircraft. A controller was modified for this application. Simulation results indicate that during landing and rollout over repaired bomb craters the active gear effects a force reduction, relative to the passive gear, or approximately 70%.

  7. A reduced energy supply strategy in active vibration control

    NASA Astrophysics Data System (ADS)

    Ichchou, M. N.; Loukil, T.; Bareille, O.; Chamberland, G.; Qiu, J.

    2011-12-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings.

  8. A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Xia, F.; Albritton, N. G.; Hung, J. Y.; Nelms, R. M.

    1996-01-01

    A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials.

  9. Langley Research Center contributions in advancing active control technology

    NASA Technical Reports Server (NTRS)

    Abel, I.; Newsom, J. R.

    1981-01-01

    The application of active control technology to reduce aeroelastic response of aircraft structures offers a potential for significant payoffs in terms of aerodynamic efficiency and weight savings. Some of the contributions of the Langley Research Center in advancing active control technology are described. Contributions are categorized into the development of appropriate analysis tools, control law synthesis methodology, and experimental investigations aimed at verifying both analysis and synthesis methodology.

  10. Semi Active Control of Civil Structures, Analytical and Numerical Studies

    NASA Astrophysics Data System (ADS)

    Kerboua, M.; Benguediab, M.; Megnounif, A.; Benrahou, K. H.; Kaoulala, F.

    Structural control for civil structures was born out of a need to provide safer and more efficient designs with the reality of limited resources. The purpose of structural control is to absorb and to reflect the energy introduced by dynamic loads such as winds, waves, earthquakes, and traffic. Today, the protection of civil structures from severe dynamic loading is typically achieved by allowing the structures to be damaged. Semi-active control devices, also called "smart" control devices, assume the positive aspects of both the passive and active control devices. A semi-active control strategy is similar to the active control strategy. Only here, the control actuator does not directly apply force to the structure, but instead it is used to control the properties of a passive energy device, a controllable passive damper. Semi-active control strategies can be used in many of the same civil applications as passive and active control. One method of operating smart cable dampers is in a purely passive capacity, supplying the dampers with constant optimal voltage. The advantages to this strategy are the relative simplicity of implementing the control strategy as compared to a smart or active control strategy and that the dampers are more easily optimally tuned in- place, eliminating the need to have passive dampers with unique optimal damping coefficients. This research investigated semi-active control of civil structures for natural hazard mitigation. The research has two components, the seismic protection of buildings and the mitigation of wind-induced vibration in structures. An ideal semi-active motion equation of a composite beam that consists of a cantilever beam bonded with a PZT patch using Hamilton's principle and Galerkin's method was treated. A series R-L and a parallel R-L shunt circuits are coupled into the motion equation respectively by means of the constitutive relation of piezoelectric material and Kirchhoff's law to control the beam vibration. A

  11. Gate Switchable Transport and Optical Anisotropy in 90° Twisted Bilayer Black Phosphorus.

    PubMed

    Cao, Ting; Li, Zhenglu; Qiu, Diana Y; Louie, Steven G

    2016-09-14

    Anisotropy describes the directional dependence of a material's properties such as transport and optical response. In conventional bulk materials, anisotropy is intrinsically related to the crystal structure and thus not tunable by the gating techniques used in modern electronics. Here we show that, in bilayer black phosphorus with an interlayer twist angle of 90°, the anisotropy of its electronic structure and optical transitions is tunable by gating. Using first-principles calculations, we predict that a laboratory-accessible gate voltage can induce a hole effective mass that is 30 times larger along one Cartesian axis than along the other axis, and the two axes can be exchanged by flipping the sign of the gate voltage. This gate-controllable band structure also leads to a switchable optical linear dichroism, where the polarization of the lowest-energy optical transitions (absorption or luminescence) is tunable by gating. Thus, anisotropy is a tunable degree of freedom in twisted bilayer black phosphorus. PMID:27556685

  12. B{sub K}-parameter from N{sub f}=2 twisted mass lattice QCD

    SciTech Connect

    Constantinou, M.; Panagopoulos, H.; Skouroupathis, A.; Stylianou, F.; Dimopoulos, P.; Frezzotti, R.; Rossi, G. C.; Gimenez, V.; Lubicz, V.; Papinutto, M.

    2011-01-01

    We present an unquenched N{sub f}=2 lattice computation of the B{sub K} parameter which controls K{sup 0}-K{sup 0} oscillations. A partially quenched setup is employed with two maximally twisted dynamical (sea) light Wilson quarks, and valence quarks of both the maximally twisted and the Osterwalder-Seiler variety. Suitable combinations of these two kinds of valence quarks lead to a lattice definition of the B{sub K} parameter which is both multiplicatively renormalizable and O(a) improved. Employing the nonperturbative RI-MOM scheme, in the continuum limit and at the physical value of the pion mass we get B{sub K}{sup RGI}=0.729{+-}0.030, a number well in line with the existing quenched and unquenched determinations.

  13. Gate Switchable Transport and Optical Anisotropy in 90° Twisted Bilayer Black Phosphorus.

    PubMed

    Cao, Ting; Li, Zhenglu; Qiu, Diana Y; Louie, Steven G

    2016-09-14

    Anisotropy describes the directional dependence of a material's properties such as transport and optical response. In conventional bulk materials, anisotropy is intrinsically related to the crystal structure and thus not tunable by the gating techniques used in modern electronics. Here we show that, in bilayer black phosphorus with an interlayer twist angle of 90°, the anisotropy of its electronic structure and optical transitions is tunable by gating. Using first-principles calculations, we predict that a laboratory-accessible gate voltage can induce a hole effective mass that is 30 times larger along one Cartesian axis than along the other axis, and the two axes can be exchanged by flipping the sign of the gate voltage. This gate-controllable band structure also leads to a switchable optical linear dichroism, where the polarization of the lowest-energy optical transitions (absorption or luminescence) is tunable by gating. Thus, anisotropy is a tunable degree of freedom in twisted bilayer black phosphorus.

  14. Temperature tuning of lasing emission from dye-doped liquid crystal at intermediate twisted phase

    NASA Astrophysics Data System (ADS)

    Liao, Kuan-Cheng; Lin, Ja-Hon; Jian, Li-Hao; Chen, Yao-Hui; Wu, Jin-Jei

    2015-07-01

    Temperature tuning of lasing emission from dye-doped cholesteric liquid crystal (CLC) at intermediate twisted phase has been demonstrated in this work. With heavily doping of 42.5% chiral molecules into the nematic liquid crystals, the shifts of photonic bandgap versus temperature is obviously as thermal controlling of the sample below the certain value. By the differential scanning calorimetr measuremet, we demonstrate the phase transition from the CLC to the smectic phase when the temperature is lowered to be about 15°C. Between CLC and smectic phase, the liquid crystal mixtures are operated at intermediate twisted phase that can be used the temperature related refractive mirror. After pump by the Q-switched Nd:YAG laser, the lasing emission from this dye doped LC mixtures has been demonstrated whose emission wavelength can be tuned from 566 to 637 nm with 1.4°C variation.

  15. Combustion diagnostic for active engine feedback control

    DOEpatents

    Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  16. Active control system for high speed windmills

    DOEpatents

    Avery, D.E.

    1988-01-12

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  17. Active control system for high speed windmills

    DOEpatents

    Avery, Don E.

    1988-01-01

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.

  18. Study of tethered satellite active attitude control

    NASA Technical Reports Server (NTRS)

    Colombo, G.

    1982-01-01

    Existing software was adapted for the study of tethered subsatellite rotational dynamics, an analytic solution for a stable configuration of a tethered subsatellite was developed, the analytic and numerical integrator (computer) solutions for this "test case' was compared in a two mass tether model program (DUMBEL), the existing multiple mass tether model (SKYHOOK) was modified to include subsatellite rotational dynamics, the analytic "test case,' was verified, and the use of the SKYHOOK rotational dynamics capability with a computer run showing the effect of a single off axis thruster on the behavior of the subsatellite was demonstrated. Subroutines for specific attitude control systems are developed and applied to the study of the behavior of the tethered subsatellite under realistic on orbit conditions. The effect of all tether "inputs,' including pendular oscillations, air drag, and electrodynamic interactions, on the dynamic behavior of the tether are included.

  19. Active shear flow control for improved combustion

    NASA Astrophysics Data System (ADS)

    Gutmark, E.; Parr, T. P.; Hanson-Parr, D. M.; Schadow, K. C.

    1990-01-01

    The acoustical and fluid dynamic facets of an excited premixed flame were studied experimentally to evaluate possibilities for development of a stabilizing closed-loop control system. The flame was analyzed as a nonlinear system which includes different subcomponents: acoustics, fluid dynamics, and chemical reaction. Identification of the acoustical and fluid dynamics subsystems is done by analyzing the transfer function, which was obtained by driving the system with both white-noise and a frequency-sweeping sine-wave. The features obtained by this analysis are compared to results of flow visualization and hot-wire flow-field and spectral measurements. The acoustical subsystem is determined by the resonant acoustic modes of the settling chamber. These modes are subsequently filtered and amplified by the flow shear layer, whose instability characteristics are dominated by the preferred mode frequency.

  20. Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour.

    PubMed

    Kocabas, Askin; Shen, Ching-Han; Guo, Zengcai V; Ramanathan, Sharad

    2012-10-11

    Animals locate and track chemoattractive gradients in the environment to find food. With its small nervous system, Caenorhabditis elegans is a good model system in which to understand how the dynamics of neural activity control this search behaviour. Extensive work on the nematode has identified the neurons that are necessary for the different locomotory behaviours underlying chemotaxis through the use of laser ablation, activity recording in immobilized animals and the study of mutants. However, we do not know the neural activity patterns in C. elegans that are sufficient to control its complex chemotactic behaviour. To understand how the activity in its interneurons coordinate different motor programs to lead the animal to food, here we used optogenetics and new optical tools to manipulate neural activity directly in freely moving animals to evoke chemotactic behaviour. By deducing the classes of activity patterns triggered during chemotaxis and exciting individual neurons with these patterns, we identified interneurons that control the essential locomotory programs for this behaviour. Notably, we discovered that controlling the dynamics of activity in just one interneuron pair (AIY) was sufficient to force the animal to locate, turn towards and track virtual light gradients. Two distinct activity patterns triggered in AIY as the animal moved through the gradient controlled reversals and gradual turns to drive chemotactic behaviour. Because AIY neurons are post-synaptic to most chemosensory and thermosensory neurons, it is probable that these activity patterns in AIY have an important role in controlling and coordinating different taxis behaviours of the animal. PMID:23000898

  1. Building Large-Domain Twisted Bilayer Graphene with van Hove Singularity.

    PubMed

    Tan, Zhenjun; Yin, Jianbo; Chen, Cheng; Wang, Huan; Lin, Li; Sun, Luzhao; Wu, Jinxiong; Sun, Xiao; Yang, Haifeng; Chen, Yulin; Peng, Hailin; Liu, Zhongfan

    2016-07-26

    Twisted bilayer graphene (tBLG) with van Hove Singularity (VHS) has exhibited novel twist-angle-dependent chemical and physical phenomena. However, scalable production of high-quality tBLG is still in its infancy, especially lacking the angle controlled preparation methods. Here, we report a facile approach to prepare tBLG with large domain sizes (>100 μm) and controlled twist angles by a clean layer-by-layer transfer of two constituent graphene monolayers. The whole process without interfacial polymer contamination in two monolayers guarantees the interlayer interaction of the π-bond electrons, which gives rise to the existence of minigaps in electronic structures and the consequent formation of VHSs in density of state. Such perturbation on band structure was directly observed by angle-resolved photoemission spectroscopy with submicrometer spatial resolution (micro-ARPES). The VHSs lead to a strong light-matter interaction and thus introduce ∼20-fold enhanced intensity of Raman G-band, which is a characteristic of high-quality tBLG. The as-prepared tBLG with strong light-matter interaction was further fabricated into high-performance photodetectors with selectively enhanced photocurrent generation (up to ∼6 times compared with monolayer in our device).

  2. Whittaker modules for the twisted Heisenberg-Virasoro algebra

    SciTech Connect

    Liu Dong; Wu Yuezhu; Zhu Linsheng

    2010-02-15

    We define Whittaker modules for the twisted Heisenberg-Virasoro algebra and obtain several results from the classical setting, including a classification of simple Whittaker modules by central characters.

  3. Formation of Twisted Elephant Trunks in the Rosette Nebula

    NASA Astrophysics Data System (ADS)

    Carlqvist, P.; Gahm, G. F.; Kristen, H.

    New observations show that dark elephant trunks in the Rosette nebula are often built up by thin filaments. In several of the trunks the filaments seem to form a twisted pattern. This pattern is hard to reconcile with current theory. We propose a new model for the formation of twisted elephant trunks in which electromagnetic forces play an important role. The model considers the behaviour of a twisted magnetic filament in a molecular cloud, where a cluster of hot stars has been recently born. As a result of stellar winds, and radiation pressure, electromagnetic forces, and inertia forces part of the filament can develop into a double helix pointing towards the stars. The double helix represents the twisted elephant trunk. A simple analogy experiment visualizes and supports the trunk model.

  4. Packing with a twist: from Wrinkles to Scrolls

    NASA Astrophysics Data System (ADS)

    Kudrolli, Arshad; Chopin, Julien

    2012-02-01

    We discuss an experimental investigation of a thin elastic sheet in the form of a ribbon with clamped boundary conditions at both ends which is then subjected to a twist by rotating the ends through a prescribed angle. We find that a wrinkling instability appears even at a small twist angle which depends on the aspect ratio of the ribbon, its bending modulus and initial tension. Using x-ray tomography, we show that the pattern of this first instability has an impact on the folding at larger twist angles which can result in ordered configurations including Fermat scrolls. Still further twisting results in a highly compressive packing as in wringing a towel without application of direct radial compression. Implications for developing yarns with novel mechanical and transport properties [Lima, et al., Science 331, 51 (2011)] will be discussed.

  5. 14. DETAIL OF GUSSET WITH CURVE ANGLE IRON AND TWISTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL OF GUSSET WITH CURVE ANGLE IRON AND TWISTED STRIPS, FORMING SUN RAY PATTERN. LATTICE RAILING AT LOWER RIGHT. - River Road Bridge, Spanning Spring Creek in Spring Creek Township, Hallton, Elk County, PA

  6. Solar Material Twists on Sun’s Surface

    NASA Video Gallery

    Solar material twists above the sun’s surface in this close-up captured by NASA’s Solar Dynamics Observatory on June 7-8, 2016, showcasing the turbulence caused by combative magnetic forces on the ...

  7. 6. DETAIL OF GUSSET WITH CURVE ANGLE IRON AND TWISTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL OF GUSSET WITH CURVE ANGLE IRON AND TWISTED STRIPS, FORMING SUN RAY PATTERN. LATTICE RAILING AT LOWER RIGHT. - River Road Bridge, Spanning Spring Creek in Spring Creek Township, Hallton, Elk County, PA

  8. Applying twisted boundary conditions for few-body nuclear systems

    NASA Astrophysics Data System (ADS)

    Körber, Christopher; Luu, Thomas

    2016-05-01

    We describe and implement twisted boundary conditions for the deuteron and triton systems within finite volumes using the nuclear lattice EFT formalism. We investigate the finite-volume dependence of these systems with different twist angles. We demonstrate how various finite-volume information can be used to improve calculations of binding energies in such a framework. Our results suggests that with appropriate twisting of boundaries, infinite-volume binding energies can be reliably extracted from calculations using modest volume sizes with cubic length L ≈8 -14 fm. Of particular importance is our derivation and numerical verification of three-body analogs of "i-periodic" twist angles that eliminate the leading-order finite-volume effects to the three-body binding energy.

  9. Charge-transfer-induced twisting of the nitro group.

    PubMed

    Mondal, Jahur A; Sarkar, Moloy; Samanta, Anunay; Ghosh, Hirendra N; Palit, Dipak K

    2007-07-19

    Excited-state relaxation dynamics of 2-amino-7-nitrofluorene (ANF) and 2-dimethylamino-7-nitrofluorene (DMANF) has been investigated in two aprotic solvents, namely acetonitrile and DMSO using femtosecond transient absorption spectroscopic technique. Following photoexcitation to the highly dipolar excited singlet (S1) state, ANF and DMANF undergo mainly two concomitant relaxation processes, namely dipolar solvation and conformational relaxation via twisting of the nitro group to an orthogonal configuration with respect to the aromatic plane. Viscosity dependence of the relaxation dynamics of the S1 states of both ANF and DMANF suggests no involvement of the twisting motion of the amino or dimethylamino group in the charge-transfer process. The twisting of the nitro group is found to be a friction affected diffusive motion, which does not associate with any further charge transfer. The results presented in this paper resolve experimentally the dynamics of the twisting motion of the nitro group for the first time. PMID:17591761

  10. Determination of Elastic Twist in Horizontal Axis Wind Turbines (HAWTs)

    SciTech Connect

    Stoddard, F.; Nelson, V.; Starcher, K.; Andrews, B.

    2006-06-01

    This report presents the results of a project at the Alternative Energy Institute (AEI) which measured and calculated the elastic twist of three representative composite horizontal-axis blades: Carter 300, Gougeon ESI 54, and UTRC 8 kW.

  11. Magneto-Acoustic Waves in Compressible Magnetically Twisted Flux Tubes

    NASA Astrophysics Data System (ADS)

    Erdélyi, Robert; Fedun, Viktor

    2010-05-01

    The oscillatory modes of a magnetically twisted compressible flux tube embedded in a compressible magnetic environment are investigated in cylindrical geometry. Solutions to the governing equations to linear wave perturbations are derived in terms of Whittaker’s functions. A general dispersion equation is obtained in terms of Kummer’s functions for the approximation of weak and uniform internal twist, which is a good initial working model for flux tubes in solar applications. The sausage, kink and fluting modes are examined by means of the derived exact dispersion equation. The solutions of this general dispersion equation are found numerically under plasma conditions representative of the solar photosphere and corona. Solutions for the phase speed of the allowed eigenmodes are obtained for a range of wavenumbers and varying magnetic twist. Our results generalise previous classical and widely applied studies of MHD waves and oscillations in magnetic loops without a magnetic twist. Potential applications to solar magneto-seismology are discussed.

  12. On the prevalence of small-scale twist in the solar chromosphere and transition region.

    PubMed

    De Pontieu, B; van der Voort, L Rouppe; McIntosh, S W; Pereira, T M D; Carlsson, M; Hansteen, V; Skogsrud, H; Lemen, J; Title, A; Boerner, P; Hurlburt, N; Tarbell, T D; Wuelser, J P; De Luca, E E; Golub, L; McKillop, S; Reeves, K; Saar, S; Testa, P; Tian, H; Kankelborg, C; Jaeggli, S; Kleint, L; Martinez-Sykora, J

    2014-10-17

    The solar chromosphere and transition region (TR) form an interface between the Sun's surface and its hot outer atmosphere. There, most of the nonthermal energy that powers the solar atmosphere is transformed into heat, although the detailed mechanism remains elusive. High-resolution (0.33-arc second) observations with NASA's Interface Region Imaging Spectrograph (IRIS) reveal a chromosphere and TR that are replete with twist or torsional motions on sub-arc second scales, occurring in active regions, quiet Sun regions, and coronal holes alike. We coordinated observations with the Swedish 1-meter Solar Telescope (SST) to quantify these twisting motions and their association with rapid heating to at least TR temperatures. This view of the interface region provides insight into what heats the low solar atmosphere. PMID:25324398

  13. 3D Loops Evolutions (Twists And Expansions) And Magnetic Fields Interactions Studied With SOHO/EIT

    NASA Astrophysics Data System (ADS)

    Portier-Fozzani, Fabrice

    1999-10-01

    I will present some results from my PHD/Thesis. With SOHO/EIT, 3D Technics such as stereovision and "vision by shape" were developped to study coronal structures evolution. To discribe loops morphology, we adapted with M. Aschwanden a torus fit which include twist evolution. On a quick magnetic flux emergence (August 5th 1997), the twist were decreasing while the loop expand. During a long time evolution (July - August 1996), flaring activities were well correlated with sudden decrease in the twist. These 2 results correspond to the evolution expected with the Parker's formula (1977). Magnetic field lines interactions were also analyzed. From multi-wavelengths observations, we had studied some morphological and topological changes which can be interpreted as interactions between open and closed field lines (ie between Coronal Holes and Active Region Loops). Then, relationship between CME/Flares formation and our different instabilities studied were analyzed in the aim to find, in the futur, good criteria concerning space weather.

  14. Robust control of an active precision truss structure

    NASA Technical Reports Server (NTRS)

    Chu, C. C.; Smith, R. S.; Fanson, J. L.

    1990-01-01

    A description is given of the efforts in control of an active precision truss structure experiment. The control objective is to provide vibration suppression to selected modes of the structure subject to a bandlimited disturbance and modeling errors. Based on performance requirements and an uncertainty description, several control laws using the H-infinity optimization method are synthesized. The controllers are implemented on the experimental facility. Preliminary experimental results are presented.

  15. Control techniques for millimeter-wave active arrays

    SciTech Connect

    Sjogren, L.B.; Liu, H.L.; Liu, T.; Wang, F.; Domier, C.W.; Luhmann, N.C. Jr. )

    1993-06-01

    Control techniques for millimeter-wave active arrays are considered. In addition to voltage control, optical and quasi-optical approaches are discussed as analog control techniques. Digital control techniques discussed include on/off switching arrays and designs with superimposed device and/or grid structures for multi-bit capability. A quasi-optical Q switch, capable of high peak power pulse generation, is discussed as an example application of these techniques. 31 refs., 7 figs.

  16. Imprinted control of gene activity in Drosophila.

    PubMed

    Golic, K G; Golic, M M; Pimpinelli, S

    1998-11-19

    Genetic imprinting is defined as a reversible, differential marking of genes or chromosomes that is determined by the sex of the parent from whom the genetic material is inherited [1]. Imprinting was first observed in insects where, in some species, most notably among the coccoids (scale insects and allies), the differential marking of paternally and maternally transmitted chromosome sets leads to inactivation or elimination of paternal chromosomes [2]. Imprinting is also widespread in plants and mammals [3,4], in which paternally and maternally inherited alleles may be differentially expressed. Despite imprinting having been discovered in insects, clear examples of parental imprinting are scarce in the model insect species Drosophila melanogaster. We describe a case of imprint-mediated control of gene expression in Drosophila. The imprinted gene - the white+ eye-color gene - is expressed at a low level when transmitted by males, and at a high level when transmitted by females. Thus, in common with coccoids, Drosophila is capable of generating an imprint, and can respond to that imprint by silencing the paternal allele. PMID:9822579

  17. Various applications of Active Field Control (AFC)

    NASA Astrophysics Data System (ADS)

    Watanabe, Takayuki; Miyazaki, Hideo; Kishinaga, Shinji; Kawakami, Fukushi

    2003-10-01

    AFC is an electro-acoustic enhancement system, which has been under development at Yamaha Corporation. In this paper, several types of various AFC applications are discussed, while referring to representative projects for each application in Japan. (1) Realization of acoustics in a huge hall to classical music program, e.g., Tokyo International Forum. This venue is a multipurpose hall with approximately 5000 seats. AFC achieves loudness and reverberance equivalent to those of a hall with 2500 seats or fewer. (2) Optimization of acoustics for a variety of programs, e.g., Arkas Sasebo. AFC is used to create the optimum acoustics for each program, such as reverberance for classical concerts, acoustical support for opera singers, uniformity throughout the hall from the stage to under-balcony area, etc. (3) Control of room shape acoustical effect, e.g., Osaka Central Public Hall: In this renovation project, preservation of historically important architecture in the original form is required. AFC is installed to vary only the acoustical environment without architectural changes. (4) Assistance with crowd enthusiasm for sports entertainment, e.g., Tokyo Metropolitan Gymnasium. In this venue, which is designed as a very absorptive space for speech intelligibility, AFC is installed to enhance the atmosphere of live sports entertainment.

  18. Active control of transmission loss with smart foams.

    PubMed

    Kundu, Abhishek; Berry, Alain

    2011-02-01

    Smart foams combine the complimentary advantages of passive foam material and spatially distributed piezoelectric actuator embedded in it for active noise control applications. In this paper, the problem of improving the transmission loss of smart foams using active control strategies has been investigated both numerically and experimentally inside a waveguide under the condition of plane wave propagation. The finite element simulation of a coupled noise control system has been undertaken with three different smart foam designs and their effectiveness in cancelling the transmitted wave downstream of the smart foam have been studied. The simulation results provide insight into the physical phenomenon of active noise cancellation and explain the impact of the smart foam designs on the optimal active control results. Experimental studies aimed at implementing the real-time control for transmission loss optimization have been performed using the classical single input/single output filtered-reference least mean squares algorithm. The active control results with broadband and single frequency primary source inputs demonstrate a good improvement in the transmission loss of the smart foams. The study gives a comparative description of the transmission and absorption control problems in light of the modification of the vibration response of the piezoelectric actuator under active control.

  19. Flutter suppression and gust alleviation using active controls

    NASA Technical Reports Server (NTRS)

    Nissim, E.

    1974-01-01

    The effects of active controls on the suppression of flutter and gust alleviation of two different types of subsonic aircraft (the Arava, twin turboprop STOL transport, and the Westwind twin-jet business transport) are investigated. The active controls are introduced in pairs which include, in any chosen wing strip, a leading-edge (LE) control and a trailing-edge (TE) control. Each control surface is allowed to be driven by a combined linear-rotational sensor system, located on the activated strip. The control law, which translates the sensor signals into control surface rotations, is based on the concept of aerodynamic energy. The results indicate the extreme effectiveness of the active systems in controlling flutter. A single system spanning 10% of the wing semispan made the Arava flutter-free, and a similar active system, for the Westwind aircraft, yielded a reduction of 75% in the maximum bending moment of the wing and a reduction of 90% in the acceleration of the cg of the aircraft. Results for simultaneous activation of several LE - TE systems are presented. Further work needed to bring the investigation to completion is also discussed.

  20. Active airborne contamination control using electrophoresis

    SciTech Connect

    Veatch, B.D.

    1994-06-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ``cold,`` or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications.

  1. CLP activities and control in Ireland.

    PubMed

    Walsh, Caroline

    2011-01-01

    The 10(th) December 2010 marked a new beginning for Regulation (EC) no. 1272/2008 on the classification, labelling and packaging of substances and mixtures (CLP) in Ireland with the start of its operational phase. It was on this date that the administrative and enforcement provisions for CLP were encompassed in the new Chemicals Amendment Act, 2010. In this Act, the Health and Safety Authority, known as the "the Authority" is named as Competent Authority (CA) for CLP, along with the Minister for Agriculture, Fisheries and Food, in respect of pesticides and plant protection products and the Beaumont Hospital Board with responsibility for receiving information relating to emergency health response. In practice, the Authority has been de facto CA for CLP since its publication on the 31(st) December 2008, given its role in existing classification and labelling regimes. This article focuses on the work undertaken by the Authority on CLP at a National, European and International level including its implementation, training, helpdesk, guidance, enforcement and awareness raising activities.

  2. Wireless sensor networks for active vibration control in automobile structures

    NASA Astrophysics Data System (ADS)

    Mieyeville, Fabien; Ichchou, Mohamed; Scorletti, Gérard; Navarro, David; Du, Wan

    2012-07-01

    Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control.

  3. TWIST1 and BMI1 in Cancer Metastasis and Chemoresistance

    PubMed Central

    Ren, Hong; Du, Peizhun; Ge, Zongyu; Jin, Yiting; Ding, Di; Liu, Xiuping; Zou, Qiang

    2016-01-01

    Purpose Increasing evidences revealed that cancer cells with the characteristics of epithelial-mesenchymal transition (EMT) or cancer stem cells (CSC) have high ability of progression, invasion, metastasis and chemoresistance. TWIST1 and BMI1 are crucial transcription factors required for EMT and CSC. Both TWIST1 and BMI1 are up-regulated in various cancers and have a positive correlation with poor prognosis. Although recent results showed that the two molecules function in promoting cancer metastasis and chemoresistance respectively, the correlation of TWIST1 and BMI1 is not well understood. Methods In this review, we summarize recent advance in cancer research focus on TWIST1 and BMI1 in cancer metastasis and chemoresistance, and emphasize the possible link between EMT and CSC. Results Further investigation of TWIST1 and BMI1 cooperately promote CSC proliferation due to EMT-associated effect will help to understand the mechanism of tumor cells metastasis and chemoresistance. Conclusions TWIST1 and BMI1 in cancer cells will be effective targets for treating chemoresistant metastatic lesions. PMID:27326250

  4. [Actuator placement for active sound and vibration control

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Two refereed journal publications and ten talks given at conferences, seminars, and colloquia resulted from research supported by NASA. They are itemized in this report. The two publications were entitled "Reactive Tabu and Search Sensor Selection in Active Structural Acoustic Control Problems" and "Quelling Cabin Noise in Turboprop Aircraft via Active Control." The conference presentations covered various aspects of actuator placement, including location problems, for active sound and vibration control of cylinders, of commuter jets, of propeller driven or turboprop aircraft, and for quelling aircraft cabin or interior noise.

  5. On-line Monitoring and Active Control for Transformer Noise

    NASA Astrophysics Data System (ADS)

    Liang, Jiabi; Zhao, Tong; Tian, Chun; Wang, Xia; He, Zhenhua; Duan, Lunfeng

    This paper introduces the system for on-line monitoring and active noise control towards the transformer noise based on LabVIEW and the hardware equipment including the hardware and software. For the hardware part, it is mainly focused on the composition and the role of hardware devices, as well as the mounting location in the active noise control experiment. And the software part introduces the software flow chats, the measurement and analysis module for the sound pressure level including A, B, C weighting methods, the 1/n octave spectrum and the power spectrum, active noise control module and noise data access module.

  6. The F-box protein Ppa is a common regulator of core EMT factors Twist, Snail, Slug, and Sip1.

    PubMed

    Lander, Rachel; Nordin, Kara; LaBonne, Carole

    2011-07-11

    A small group of core transcription factors, including Twist, Snail, Slug, and Sip1, control epithelial-mesenchymal transitions (EMTs) during both embryonic development and tumor metastasis. However, little is known about how these factors are coordinately regulated to mediate the requisite behavioral and fate changes. It was recently shown that a key mechanism for regulating Snail proteins is by modulating their stability. In this paper, we report that the stability of Twist is also regulated by the ubiquitin-proteasome system. We found that the same E3 ubiquitin ligase known to regulate Snail family proteins, Partner of paired (Ppa), also controlled Twist stability and did so in a manner dependent on the Twist WR-rich domain. Surprisingly, Ppa could also target the third core EMT regulatory factor Sip1 for proteasomal degradation. Together, these results indicate that despite the structural diversity of the core transcriptional regulatory factors implicated in EMT, a common mechanism has evolved for controlling their stability and therefore their function.

  7. Twisting E8 five-branes

    NASA Astrophysics Data System (ADS)

    Keurentjes, Arjan; Sethi, Savdeep

    2002-08-01

    We consider the tensor theory on coincident E8 5-branes compactified on T3. Using string theory, we predict that there must be distinct components in the moduli space of this theory. We argue that new superconformal field theories are to be found in these sectors with, for example, global G2 and F4 symmetries. In some cases, twisted E8 5-branes can be identified with small instantons in nonsimply laced gauge groups. This allows us to determine the Higgs branch for the fixed point theory. We determine the Coulomb branch by using an M theory dual description involving partially frozen singularities. Along the way, we show that a D0-brane binds to two D4-branes, but not to an Sp-type O4-plane (despite the existence of a Higgs branch). These results are used to check various string or string dualities for which, in one case (quadruple versus NVS), we present a new argument. Finally, we describe the construction of new non-BPS branes as domain walls in various heterotic or type I string theories.

  8. Dark Matter in a twisted bottle

    NASA Astrophysics Data System (ADS)

    Arbey, Alexandre; Cacciapaglia, Giacomo; Deandrea, Aldo; Kubik, Bogna

    2013-01-01

    The real projective plane is a compact, non-orientable orbifold of Euler characteristic 1 without boundaries, which can be described as a twisted Klein bottle. We shortly review the motivations for choosing such a geometry among all possible two-dimensional orbifolds, while the main part of the study will be devoted to dark matter study and limits in Universal Extra Dimensional (UED) models based on this peculiar geometry. In the following we consider such a UED construction based on the direct product of the real projective plane with the standard four-dimensional Minkowski space-time and discuss its relevance as a model of a weakly interacting Dark Matter candidate. One important difference with other typical UED models is the origin of the symmetry leading to the stability of the dark matter particle. This symmetry in our case is a remnant of the six-dimensional Minkowski space-time symmetry partially broken by the compactification. Another important difference is the very small mass splitting between the particles of a given Kaluza-Klein tier, which gives a very important role to co-annihilation effects. Finally the role of higher Kaluza-Klein tiers is also important and is discussed together with a detailed numerical description of the influence of the resonances.

  9. The aircraft energy efficiency active controls technology program

    NASA Technical Reports Server (NTRS)

    Hood, R. V., Jr.

    1977-01-01

    Broad outlines of the NASA Aircraft Energy Efficiency Program for expediting the application of active controls technology to civil transport aircraft are presented. Advances in propulsion and airframe technology to cut down on fuel consumption and fuel costs, a program for an energy-efficient transport, and integrated analysis and design technology in aerodynamics, structures, and active controls are envisaged. Fault-tolerant computer systems and fault-tolerant flight control system architectures are under study. Contracts with leading manufacturers for research and development work on wing-tip extensions and winglets for the B-747, a wing load alleviation system, elastic mode suppression, maneuver-load control, and gust alleviation are mentioned.

  10. Active controls: A look at analytical methods and associated tools

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Adams, W. M., Jr.; Mukhopadhyay, V.; Tiffany, S. H.; Abel, I.

    1984-01-01

    A review of analytical methods and associated tools for active controls analysis and design problems is presented. Approaches employed to develop mathematical models suitable for control system analysis and/or design are discussed. Significant efforts have been expended to develop tools to generate the models from the standpoint of control system designers' needs and develop the tools necessary to analyze and design active control systems. Representative examples of these tools are discussed. Examples where results from the methods and tools have been compared with experimental data are also presented. Finally, a perspective on future trends in analysis and design methods is presented.

  11. Some experiences with active control of aeroelastic response

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Abel, I.

    1981-01-01

    Flight and wind tunnel tests were conducted and multidiscipline computer programs were developed as part of investigations of active control technology conducted at the NASA Langley Research Center. Unsteady aerodynamics approximation, optimal control theory, optimal controller design, and the Delta wing and DC-10 models are described. The drones for aerodynamics and structural testing (DAST program) for evaluating procedures for aerodynamic loads prediction and the design of active control systems on wings with significant aeroelastic effects is described as well as the DAST model used in the wind tunnel tests.

  12. Timed Deletion of Twist1 in the Limb Bud Reveals Age-Specific Impacts on Autopod and Zeugopod Patterning

    PubMed Central

    Loebel, David A. F.; Hor, Angelyn C. C.; Bildsoe, Heidi K.; Tam, Patrick P. L.

    2014-01-01

    Twist1 encodes a transcription factor that plays a vital role in limb development. We have used a tamoxifen-inducible Cre transgene, Ubc-CreERT2, to generate time-specific deletions of Twist1 by inducing Cre activity in mouse embryos at different ages from embryonic (E) day 9.5 onwards. A novel forelimb phenotype of supernumerary pre-axial digits and enlargement or partial duplication of the distal radius was observed when Cre activity was induced at E9.5. Gene expression analysis revealed significant upregulation of Hoxd10, Hoxd11 and Grem1 in the anterior half of the forelimb bud at E11.5. There is also localized upregulation of Ptch1, Hand2 and Hoxd13 at the site of ectopic digit formation, indicating a posterior molecular identity for the supernumerary digits. The specific skeletal phenotypes, which include duplication of digits and distal zeugopods but no overt posteriorization, differ from those of other Twist1 conditional knockout mutants. This outcome may be attributed to the deferment of Twist1 ablation to a later time frame of limb morphogenesis, which leads to the ectopic activation of posterior genes in the anterior tissues after the establishment of anterior-posterior anatomical identities in the forelimb bud. PMID:24893291

  13. The control-freak mind: stereotypical biases are eliminated following conflict-activated cognitive control.

    PubMed

    Kleiman, Tali; Hassin, Ran R; Trope, Yaacov

    2014-04-01

    Numerous daily situations require control for successful goal attainment. An important question is whether control can adjust across situations, to create control readiness from one situation to the next. Using trial to trial control adjustment paradigms, previous research generally suggested that control adjustments are domain specific. However, this research typically used neutral stimuli (e.g., single letters) devoid of personally and socially relevant goals. We propose that personal relevance may be an important modulator of control adjustment and, hence, that personally relevant control tasks can benefit from control readiness, even if it is produced by a different task. In 2 experiments we test whether control over the expression of stereotypes, a highly meaningful and desirable goal for many, can benefit from control readiness evoked by a neutral unrelated Flanker task. Results suggest that stereotype-driven behavior is modulated by independently activated control and that personal relevance may facilitate control adjustments across domains.

  14. High-resolution inchworm linear motor based on electrostatic twisting microactuators

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Ho; Hwang, Il-Han; Jo, Kyoung-Woo; Yoon, Eui-Sung; Lee, Jong-Hyun

    2005-09-01

    A new inchworm micromotor using new electrostatic in-plane twisting microactuators has been designed, fabricated and characterized for nano-resolution manipulators. The proposed twisting mechanism was implemented employing a pair of differential electrostatic actuators with a high stiffness in the driving direction for stable positioning. The electromechanically coupled motion of the voltage-displacement relation was analyzed using a finite element method (FEM), confirming that the twisting actuator makes a tiny step movement efficiently. The proposed actuator was fabricated on a silicon-on-insulator (SOI) wafer with the device footprint of 2.2 × 2.8 mm2, and its nano-stepping characteristics were measured by an optical interferometer consisting of an integrated micromirror and optical fiber. The fabricated inchworm motor showed a minimum step displacement of 5.2 ± 3.8 nm (2σ) and 4.1 ± 2.9 nm (2σ) for cyclic motion in the +y- and the -y-directions, respectively, with the gripping voltage of 15 V and differential voltage of 1 V. As a result, the proposed inchworm micromotor could operate with a stroke of 3 µm and a bi-directional step displacement of less than 10 nm. The step displacement is the smallest value of in-plane-type micromotors so far, and its magnitude was controllable up to 120 nm/cycle by changing the differential voltage.

  15. Dynamics of twist effect in a dual-frequency nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Konshina, E. A.; Fedorov, M. A.; Rybnikova, A. E.; Amosova, L. P.; Ivanova, N. L.; Isaev, M. V.; Kostomarov, D. S.

    2009-04-01

    The dynamics of the electrooptical 90° twist effect in a dual-frequency nematic liquid crystal is investigated for wavelengths of 0.65 and 1.55μ m. It is shown that the boundary conditions of the interaction between the phases affect the optical threshold of the twist effect, the contrast, and the working voltage range. The switching time of the twist effect from the off to the on state upon a variation of the amplitude of a rectangular dc voltage pulse from 15 to 50 V changes from 1.5 to 0.3 ms for a thickness of the nematic crystal layer of about 7 μ m. The minimal time of switching from the “on” to the “off” state was 3 ms in the case when relaxation of molecules in a cell with asymmetric boundary conditions was controlled electrically. The dynamic range of transmittance variation at a wavelength of 1.55 μm extended to 30 dB.

  16. Active control of low-speed turbofan tonal noise

    NASA Astrophysics Data System (ADS)

    Sommerfeldt, Scott D.; Remington, Paul J.

    2003-10-01

    Active noise control has been proposed as a technique for reducing the tonal noise radiated from turbofan engines. The sound field in the duct of a turbofan engine is characterized by acoustic modes, which exhibit both a radial and a circumferential spatial dependence. The dominant circumferential modes are determined by the relationship between the number of rotor and stator blades. Using these concepts, an active noise control system has been developed to measure and minimize the modes in the duct of a turbofan engine. By using multiple source and sensor locations, it has also been shown that it is possible to control multiple radial modes within the engine duct. Some of the issues associated with the design of the control system will be reviewed, and results obtained using the Active Noise Control Fan (ANCF) at NASA Glenn Research Center will be presented. [Work supported by NASA.

  17. Experimental investigation of active loads control for aircraft landing gear

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.; Dreher, R. C.

    1982-01-01

    Aircraft dynamic loads and vibrations resulting from landing impact and from runway and taxiway unevenness are recognized as significant in causing fatigue damage, dynamic stress on the airframe, crew and passenger discomfort, and reduction of the pilot's ability to control the aircraft during ground operations. One potential method for improving operational characteistics of aircraft on the ground is the application of active control technology to the landing gears to reduce ground loads applied to the airframe. An experimental investigation was conducted which simulated the landing dynamics of a light airplane to determine the feasibility and potential of a series hydraulic active control main landing gear. The experiments involved a passive gear and an active control gear. Results of this investigation show that a series hydraulically controlled gear is feasible and that such a gear is very effective in reducing the loads transmitted by the gear to the airframe during ground operations.

  18. Active noise control using a distributed mode flat panel loudspeaker.

    PubMed

    Zhu, H; Rajamani, R; Dudney, J; Stelson, K A

    2003-07-01

    A flat panel distributed mode loudspeaker (DML) has many advantages over traditional cone speakers in terms of its weight, size, and durability. However, its frequency response is uneven and complex, thus bringing its suitability for active noise control (ANC) under question. This paper presents experimental results demonstrating the effective use of panel DML speakers in an ANC application. Both feedback and feedforward control techniques are considered. Effective feedback control with a flat panel speaker could open up a whole range of new noise control applications and has many advantages over feedforward control. The paper develops a new control algorithm to attenuate tonal noise of a known frequency by feedback control. However, due to the uneven response of the speakers, feedback control is found to be only moderately effective even for this narrow-band application. Feedforward control proves to be most capable for the flat panel speaker. Using feedforward control, the sound pressure level can be significantly reduced in close proximity to an error microphone. The paper demonstrates an interesting application of the flat panel in which the panel is placed in the path of sound and effectively used to block sound transmission using feedforward control. This is a new approach to active noise control enabled by the use of flat panels and can be used to prevent sound from entering into an enclosure in the first place rather than the traditional approach of attempting to cancel sound after it enters the enclosure.

  19. Robust control design techniques for active flutter suppression

    NASA Technical Reports Server (NTRS)

    Ozbay, Hitay; Bachmann, Glen R.

    1994-01-01

    In this paper, an active flutter suppression problem is studied for a thin airfoil in unsteady aerodynamics. The mathematical model of this system is infinite dimensional because of Theodorsen's function which is irrational. Several second order approximations of Theodorsen's function are compared. A finite dimensional model is obtained from such an approximation. We use H infinity control techniques to find a robustly stabilizing controller for active flutter suppression.

  20. Piezoelectric pushers for active vibration control of rotating machinery

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.; Kascak, Albert F.

    1988-01-01

    The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers have been discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Tests are currently being conducted with piezoelectric pusher-based active vibration control. Results from tests performed on NASA test rigs as preliminary verification of the related theory are presented.

  1. Controlling neural activity in Caenorhabditis elegans to evoke chemotactic behavior

    NASA Astrophysics Data System (ADS)

    Kocabas, Askin; Shen, Ching-Han; Guo, Zengcai V.; Ramanathan, Sharad

    2013-03-01

    Animals locate and track chemoattractive gradients in the environment to find food. With its simple nervous system, Caenorhabditis elegans is a good model system in which to understand how the dynamics of neural activity control this search behavior. To understand how the activity in its interneurons coordinate different motor programs to lead the animal to food, here we used optogenetics and new optical tools to manipulate neural activity directly in freely moving animals to evoke chemotactic behavior. By deducing the classes of activity patterns triggered during chemotaxis and exciting individual neurons with these patterns, we identified interneurons that control the essential locomotory programs for this behavior. Notably, we discovered that controlling the dynamics of activity in just one interneuron pair was sufficient to force the animal to locate, turn towards and track virtual light gradients.

  2. Active vibration control using mechanical and electrical analogies

    NASA Astrophysics Data System (ADS)

    Torres-Perez, A.; Hassan, A.; Kaczmarczyk, S.; Picton, P.

    2016-05-01

    Mechanical-electrical analogous circuit models are widely used in electromechanical system design as they represent the function of a coupled electrical and mechanical system using an equivalent electrical system. This research uses electrical circuits to establish a discussion of simple active vibration control principles using two scenarios: an active vibration isolation system and an active dynamic vibration absorber (DVA) using a voice coil motor (VCM) actuator. Active control laws such as gain scheduling are intuitively explained using circuit analysis techniques. Active vibration control approaches are typically constraint by electrical power requirements. The electrical analogous is a fast approach for specifying power requirements on the experimental test platform which is based on a vibration shaker that provides the based excitation required for the single Degree- of-Freedom (1DoF) vibration model under study.

  3. Active control landing gear for ground load alleviation

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.; Morris, D. L.

    1985-01-01

    Results of analytical and experimental investigations of a series-hydraulic active control landing gear show that such a gear is feasible when using existing hardware and is very effective in reducing loads, relative to those generated by a conventional (passive year) gear, transmitted to the airframe during ground operations. Analytical results obtained from an active gear, flexible aircraft, take-off and landing analysis are in good agreement with experimental data and indicate that the analysis is a valid tool for study and initial design of series-hydraulic active control landing gears. An analytical study of a series-hydraulic active control main landing gear on an operational supersonic airplane shows that the active gear has the potential for improving the dynamic response of the aircraft and significantly reducing structural fatigue damage during ground operations.

  4. Active elastic metamaterials for subwavelength wave propagation control

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Huang, G. L.

    2015-06-01

    Recent research activities in elastic metamaterials demonstrate a significant potential for subwavelength wave propagation control owing to their interior locally resonant mechanism. The growing technological developments in electro/magnetomechanical couplings of smart materials have introduced a controlling degree of freedom for passive elastic metamaterials. Active elastic metamaterials could allow for a fine control of material physical behavior and thereby induce new functional properties that cannot be produced by passive approaches. In this paper, two types of active elastic metamaterials with shunted piezoelectric materials and electrorheological elastomers are proposed. Theoretical analyses and numerical validations of the active elastic metamaterials with detailed microstructures are presented for designing adaptive applications in band gap structures and extraordinary waveguides. The active elastic metamaterial could provide a new design methodology for adaptive wave filters, high signal-to-noise sensors, and structural health monitoring applications.

  5. New design deforming controlling system of the active stressed lap

    NASA Astrophysics Data System (ADS)

    Ying, Li; Wang, Daxing

    2008-07-01

    A 450mm diameter active stressed lap has been developed in NIAOT by 2003. We design a new lap in 2007. This paper puts on emphases on introducing the new deforming control system of the lap. Aiming at the control characteristic of the lap, a new kind of digital deforming controller is designed. The controller consists of 3 parts: computer signal disposing, motor driving and force sensor signal disposing. Intelligent numeral PID method is applied in the controller instead of traditional PID. In the end, the result of new deformation are given.

  6. Semi-active control of seat suspension with MR damper

    NASA Astrophysics Data System (ADS)

    Yao, H. J.; Fu, J.; Yu, M.; Peng, Y. X.

    2013-02-01

    The vibration control of a seat suspension system with magnetorheological (MR) damper is investigated in this study. Firstly, a dynamical model of the seat suspension system with parameter uncertainties (such as mass, stiffness, damping) and actuator saturation is established. Secondly, based on Lyapunov functional theory and considering constraint conditions for damping force, the semi-active controller is designed, and the controller parameters are derived in terms of linear matrix inequalities (LMIs), which guarantees performance index. Finally, compared control strategy and the passive, skyhook control strategy, the simulation results in time and frequency domains demonstrate the proposed approach can achieve better vertical acceleration attenuation for the seat suspension system and improve ride comfort.

  7. Active control of the tip vortex: an experimental investigation on the performance characteristics of a model turbine

    NASA Astrophysics Data System (ADS)

    Anik, E.; Abdulrahim, A.; Ostovan, Y.; Mercan, B.; Uzol, O.

    2014-06-01

    This study is part of an on-going experimental research campaign that focuses on the active control of the tip leakage/vortex characteristics of a model horizontal axis wind turbine rotor using tip injection. This paper presents both baseline (no-injection) data as well as data with tip injection, concentrating on the effects of tip injection on power and thrust variations with the Tip Speed Ratio (TSR). The experiments are conducted by placing a specially designed 3-bladed model wind turbine rotor at the exit of a 1.7 m diameter open-jet wind tunnel. The rotor blades are non-linearly twisted and tapered with NREL S826 airfoil profile all along the span. The nacelle, hub and the blades are specifically designed to allow pressurized air to pass through and get injected from the blade tips while the rotor is rotating. Baseline results show that the general trends are as expected for a small wind turbine and the maximum power coefficient is reached at around TSR=4.5. Results with injection show that the tip injection has significant effect on the power and thrust coefficients in comparison to the baseline data, especially at TSR values higher than the max CP TSR value. Both coefficients seem to be significantly increased due to tip injection and the max CP TSR value also gets shifted to a slightly higher TSR value. Tip injection seems to have no significant effect for TSR values less than 3.5.

  8. Active flutter suppression using optical output feedback digital controllers

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A method for synthesizing digital active flutter suppression controllers using the concept of optimal output feedback is presented. A convergent algorithm is employed to determine constrained control law parameters that minimize an infinite time discrete quadratic performance index. Low order compensator dynamics are included in the control law and the compensator parameters are computed along with the output feedback gain as part of the optimization process. An input noise adjustment procedure is used to improve the stability margins of the digital active flutter controller. Sample rate variation, prefilter pole variation, control structure variation and gain scheduling are discussed. A digital control law which accommodates computation delay can stabilize the wing with reasonable rms performance and adequate stability margins.

  9. Probing the Magnetic Causes of CMEs: Free Magnetic Energy More Important Than Either Size Or Twist

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Gary, G. A.

    2006-01-01

    To probe the magnetic causes of CMEs, we have examined three types of magnetic measures: size, twist and total nonpotentiality (or total free magnetic energy) of an active region. Total nonpotentiality is roughly the product of size times twist. For predominately bipolar active regions, we have found that total nonpotentiality measures have the strongest correlation with future CME productivity (approx. 75% prediction success rate), while size and twist measures each have a weaker correlation with future CME productivity (approx. 65% prediction success rate) (Falconer, Moore, & Gary, ApJ, 644, 2006). For multipolar active regions, we find that the CME-prediction success rates for total nonpotentiality and size are about the same as for bipolar active regions. We also find that the size measure correlation with CME productivity is nearly all due to the contribution of size to total nonpotentiality. We have a total nonpotentiality measure that can be obtained from a line-of-sight magnetogram of the active region and that is as strongly correlated with CME productivity as are any of our total-nonpotentiality measures from deprojected vector magnetograms. We plan to further expand our sample by using MDI magnetograms of each active region in our sample to determine its total nonpotentiality and size on each day that the active region was within 30 deg. of disk center. The resulting increase in sample size will improve our statistics and allow us to investigate whether the nonpotentiality threshold for CME production is nearly the same or significantly different for multipolar regions than for bipolar regions. In addition, we will investigate the time rates of change of size and total nonpotentiality as additional causes of CME productivity.

  10. Advanced aerodynamics and active controls. Selected NASA research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Aerodynamic and active control concepts for application to commercial transport aircraft are discussed. Selected topics include in flight direct strike lightning research, triply redundant digital fly by wire control systems, tail configurations, winglets, and the drones for aerodynamic and structural testing (DAST) program.

  11. Applications of active adaptive noise control to jet engines

    NASA Technical Reports Server (NTRS)

    Shoureshi, Rahmat; Brackney, Larry

    1993-01-01

    During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.

  12. Active Flow Control Strategies Using Surface Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Kumar, Vikas; Alvi, Farrukh S.

    2010-01-01

    Evaluate the efficacy of Microjets Can we eliminate/minimize flow separation? Is the flow unsteadiness reduced? Guidelines for an active control Search for an appropriate sensor. Examine for means to develop a flow model for identifying the state of flow over the surface Guidelines toward future development of a Simple and Robust control methodology

  13. Operational Control Procedures for the Activated Sludge Process: Appendix.

    ERIC Educational Resources Information Center

    West, Alfred W.

    This document is the appendix for a series of documents developed by the National Training and Operational Technology Center describing operational control procedures for the activated sludge process used in wastewater treatment. Categories discussed include: control test data, trend charts, moving averages, semi-logarithmic plots, probability…

  14. Active flow control for Aeolian tone noise reduction

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.; Pope, D. Stuart

    1989-01-01

    This paper examines the use of active flow control for the purpose of noise reduction. As a simple demonstration of such techniques, several methods for controlling the wake and resulting noise production by a cylinder in a uniform stream are evaluated numerically.

  15. An electric control for an electrohydraulic active control aircraft landing gear

    NASA Technical Reports Server (NTRS)

    Ross, I.; Edson, R.

    1979-01-01

    An electronic controller for an electrohydraulic active control aircraft landing gear was developed. Drop tests of a modified gear from a 2722 Kg (6000 lbm) class of airplane were conducted to illustrate controller performance. The results indicate that the active gear effects a force reduction, relative to that of the passive gear, from 9 to 31 percent depending on the aircraft sink speed and the static gear pressure.

  16. Active vibration control techniques for flexible space structures

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Jayasuriya, Suhada

    1990-01-01

    Two proposed control system design techniques for active vibration control in flexible space structures are detailed. Control issues relevant only to flexible-body dynamics are addressed, whereas no attempt was made to integrate the flexible and rigid-body spacecraft dynamics. Both of the proposed approaches revealed encouraging results; however, further investigation of the interaction of the flexible and rigid-body dynamics is warranted.

  17. Homozygous Nonsense Mutations in TWIST2 Cause Setleis Syndrome

    PubMed Central

    Tukel, Turgut; Šošić, Dražen; Al-Gazali, Lihadh I.; Erazo, Mónica; Casasnovas, Jose; Franco, Hector L.; Richardson, James A.; Olson, Eric N.; Cadilla, Carmen L.; Desnick, Robert J.

    2010-01-01

    The focal facial dermal dysplasias (FFDDs) are a group of inherited developmental disorders in which the characteristic diagnostic feature is bitemporal scar-like lesions that resemble forceps marks. To date, the genetic defects underlying these ectodermal dysplasias have not been determined. To identify the gene defect causing autosomal-recessive Setleis syndrome (type III FFDD), homozygosity mapping was performed with genomic DNAs from five affected individuals and 26 members of the consanguineous Puerto Rican (PR) family originally described by Setleis and colleagues. Microsatellites D2S1397 and D2S2968 were homozygous in all affected individuals, mapping the disease locus to 2q37.3. Haplotype analyses of additional markers in the PR family and a consanguineous Arab family further limited the disease locus to ∼3 Mb between D2S2949 and D2S2253. Of the 29 candidate genes in this region, the bHLH transcription factor, TWIST2, was initially sequenced on the basis of its known involvement in murine facial development. Homozygous TWIST2 nonsense mutations, c.324C>T and c.486C>T, were identified in the affected members of the Arab and PR families, respectively. Characterization of the expressed mutant proteins, p.Q65X and p.Q119X, by electrophoretic mobility shift assays and immunoblot analyses indicated that they were truncated and unstable. Notably, Setleis syndrome patients and Twist2 knockout mice have similar facial features, indicating the gene's conserved role in mammalian development. Although human TWIST2 and TWIST1 encode highly homologous bHLH transcription factors, the finding that TWIST2 recessive mutations cause an FFDD and dominant TWIST1 mutations cause Saethre-Chotzen craniocynostosis suggests that they function independently in skin and bone development. PMID:20691403

  18. An unexpected twist in viral capsid maturation

    SciTech Connect

    Gertsman, Ilya; Gan, Lu; Guttman, Miklos; Lee, Kelly; Speir, Jeffrey A.; Duda, Robert L.; Hendrix, Roger W.; Komives, Elizabeth A.; Johnson, John E.

    2009-04-14

    Lambda-like double-stranded (ds) DNA bacteriophage undergo massive conformational changes in their capsid shell during the packaging of their viral genomes. Capsid shells are complex organizations of hundreds of protein subunits that assemble into intricate quaternary complexes that ultimately are able to withstand over 50 atm of pressure during genome packaging. The extensive integration between subunits in capsids requires the formation of an intermediate complex, termed a procapsid, from which individual subunits can undergo the necessary refolding and structural rearrangements needed to transition to the more stable capsid. Although various mature capsids have been characterized at atomic resolution, no such procapsid structure is available for a dsDNA virus or bacteriophage. Here we present a procapsid X-ray structure at 3.65 {angstrom} resolution, termed prohead II, of the lambda-like bacteriophage HK97, the mature capsid structure of which was previously solved to 3.44 {angstrom}. A comparison of the two largely different capsid forms has unveiled an unprecedented expansion mechanism that describes the transition. Crystallographic and hydrogen/deuterium exchange data presented here demonstrate that the subunit tertiary structures are significantly different between the two states, with twisting and bending motions occurring in both helical and -sheet regions. We also identified subunit interactions at each three-fold axis of the capsid that are maintained throughout maturation. The interactions sustain capsid integrity during subunit refolding and provide a fixed hinge from which subunits undergo rotational and translational motions during maturation. Previously published calorimetric data of a closely related bacteriophage, P22, showed that capsid maturation was an exothermic process that resulted in a release of 90 kJ mol{sup -1} of energy. We propose that the major tertiary changes presented in this study reveal a structural basis for an exothermic

  19. Health locus of control and participation in physical activity.

    PubMed

    Carlson, B R; Petti, K

    1989-01-01

    Abstract The purpose of this study was to determine the physical activity participation patterns of college students when defined by their Health Locus of Control orientation. One thousand thirty-three college-aged students completed the Wellness Activity Profile, a questionnaire that yielded data on Health Locus of Control and self-reported frequency of participation in physical activities. Discriminant analyses indicated that the combination of physical activities associated with internally and externally oriented students were different for both males and females. Participation in high caloric expenditure activities was more frequent among internal subjects (Male: bicycling, volleyball, other individual sports, and snorkel/scuba diving; Female: basketball, weight training, tennis, fast walking/jogging/running, and judo/karate), while low caloric expenditure activities were associated with an external orientation (Male: baseball/softball, sailing, fishing, golf, and other recreational sports; Female: track and field jumping and fishing).

  20. Improving active space telescope wavefront control using predictive thermal modeling

    NASA Astrophysics Data System (ADS)

    Gersh-Range, Jessica; Perrin, Marshall D.

    2015-01-01

    Active control algorithms for space telescopes are less mature than those for large ground telescopes due to differences in the wavefront control problems. Active wavefront control for space telescopes at L2, such as the James Webb Space Telescope (JWST), requires weighing control costs against the benefits of correcting wavefront perturbations that are a predictable byproduct of the observing schedule, which is known and determined in advance. To improve the control algorithms for these telescopes, we have developed a model that calculates the temperature and wavefront evolution during a hypothetical mission, assuming the dominant wavefront perturbations are due to changes in the spacecraft attitude with respect to the sun. Using this model, we show that the wavefront can be controlled passively by introducing scheduling constraints that limit the allowable attitudes for an observation based on the observation duration and the mean telescope temperature. We also describe the implementation of a predictive controller designed to prevent the wavefront error (WFE) from exceeding a desired threshold. This controller outperforms simpler algorithms even with substantial model error, achieving a lower WFE without requiring significantly more corrections. Consequently, predictive wavefront control based on known spacecraft attitude plans is a promising approach for JWST and other future active space observatories.

  1. Selected advanced aerodynamic and active control concepts development

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A summary is presented of results obtained during analysis, design and test activities on six selected technical tasks directed at exploratory improvement of fuel efficiency for new and derivative transports. The work included investigations into the potential offered by natural laminar flow, improved surface coatings and advanced high lift concepts. Similar investigations covering optimum low-energy flight path control, integrated application of active controls and evaluation of primary flight control systems reliability and maintenance are also summarized. Recommendations are included for future work needed to exploit potential advancements.

  2. Active Noise Control Experiments using Sound Energy Flu

    NASA Astrophysics Data System (ADS)

    Krause, Uli

    2015-03-01

    This paper reports on the latest results concerning the active noise control approach using net flow of acoustic energy. The test set-up consists of two loudspeakers simulating the engine noise and two smaller loudspeakers which belong to the active noise system. The system is completed by two acceleration sensors and one microphone per loudspeaker. The microphones are located in the near sound field of the loudspeakers. The control algorithm including the update equation of the feed-forward controller is introduced. Numerical simulations are performed with a comparison to a state of the art method minimising the radiated sound power. The proposed approach is experimentally validated.

  3. UML activity diagram swimlanes in logic controller design

    NASA Astrophysics Data System (ADS)

    Grobelny, Michał; Grobelna, Iwona

    2015-12-01

    Logic controller behavior can be specified using various techniques, including UML activity diagrams and control Petri nets. Each technique has its advantages and disadvantages. Application of both specification types in one project allows to take benefits from both of them. Additional elements of UML models make it possible to divide a specification into some parts, considered from other point of view (logic controller, user or system). The paper introduces an idea to use UML activity diagrams with swimlanes to increase the understandability of design models.

  4. Fuel conservation through active control of rotor clearances

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Saunders, A. A.; Wanger, R. P.

    1980-01-01

    Under the NASA-sponsored Energy Efficient Engine (EEE) Project, technology is being developed which will significantly reduce the fuel consumption of turbofan engines for subsonic transport aircraft. One technology concept being pursued is active control of rotor tip clearances. Attention is given to rotor tip clearance considerations and an overview of preliminary study results as well as the General Electric EEE clearance control approach is presented. Finally, potential fuel savings with active control of rotor clearances for a typical EEE mission are predicted.

  5. Impact of active controls technology on structural integrity

    NASA Technical Reports Server (NTRS)

    Noll, Thomas; Austin, Edward; Donley, Shawn; Graham, George; Harris, Terry

    1991-01-01

    This paper summarizes the findings of The Technical Cooperation Program to assess the impact of active controls technology on the structural integrity of aeronautical vehicles and to evaluate the present state-of-the-art for predicting the loads caused by a flight-control system modification and the resulting change in the fatigue life of the flight vehicle. The potential for active controls to adversely affect structural integrity is described, and load predictions obtained using two state-of-the-art analytical methods are given.

  6. Remote Control of T Cell Activation Using Magnetic Janus Particles.

    PubMed

    Lee, Kwahun; Yi, Yi; Yu, Yan

    2016-06-20

    We report a strategy for using magnetic Janus microparticles to control the stimulation of T cell signaling with single-cell precision. To achieve this, we designed Janus particles that are magnetically responsive on one hemisphere and stimulatory to T cells on the other side. By manipulating the rotation and locomotion of Janus particles under an external magnetic field, we could control the orientation of the particle-cell recognition and thereby the initiation of T cell activation. This study demonstrates a step towards employing anisotropic material properties of Janus particles to control single-cell activities without the need of complex magnetic manipulation devices.

  7. Flutter prediction for a wing with active aileron control

    NASA Technical Reports Server (NTRS)

    Penning, K.; Sandlin, D. R.

    1983-01-01

    A method for predicting the vibrational stability of an aircraft with an analog active aileron flutter suppression system (FSS) is expained. Active aileron refers to the use of an active control system connected to the aileron to damp vibrations. Wing vibrations are sensed by accelerometers and the information is used to deflect the aileron. Aerodynamic force caused by the aileron deflection oppose wing vibrations and effectively add additional damping to the system.

  8. Active structural control by fuzzy logic rules: An introduction

    SciTech Connect

    Tang, Yu; Wu, Kung C.

    1996-12-31

    A zeroth level introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single- degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  9. Active structural control by fuzzy logic rules: An introduction

    SciTech Connect

    Tang, Y.

    1995-07-01

    An introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single-degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.

  10. Active inference and robot control: a case study

    PubMed Central

    Nizard, Ange; Friston, Karl; Pezzulo, Giovanni

    2016-01-01

    Active inference is a general framework for perception and action that is gaining prominence in computational and systems neuroscience but is less known outside these fields. Here, we discuss a proof-of-principle implementation of the active inference scheme for the control or the 7-DoF arm of a (simulated) PR2 robot. By manipulating visual and proprioceptive noise levels, we show under which conditions robot control under the active inference scheme is accurate. Besides accurate control, our analysis of the internal system dynamics (e.g. the dynamics of the hidden states that are inferred during the inference) sheds light on key aspects of the framework such as the quintessentially multimodal nature of control and the differential roles of proprioception and vision. In the discussion, we consider the potential importance of being able to implement active inference in robots. In particular, we briefly review the opportunities for modelling psychophysiological phenomena such as sensory attenuation and related failures of gain control, of the sort seen in Parkinson's disease. We also consider the fundamental difference between active inference and optimal control formulations, showing that in the former the heavy lifting shifts from solving a dynamical inverse problem to creating deep forward or generative models with dynamics, whose attracting sets prescribe desired behaviours. PMID:27683002

  11. Flexible task-specific control using active vision

    NASA Astrophysics Data System (ADS)

    Firby, Robert J.; Swain, Michael J.

    1992-04-01

    This paper is about the interface between continuous and discrete robot control. We advocate encapsulating continuous actions and their related sensing strategies into behaviors called situation specific activities, which can be constructed by a symbolic reactive planner. Task- specific, real-time perception is a fundamental part of these activities. While researchers have successfully used primitive touch and sonar sensors in such situations, it is more problematic to achieve reasonable performance with complex signals such as those from a video camera. Active vision routines are suggested as a means of incorporating visual data into real time control and as one mechanism for designating aspects of the world in an indexical-functional manner. Active vision routines are a particularly flexible sensing methodology because different routines extract different functional attributes from the world using the same sensor. In fact, there will often be different active vision routines for extracting the same functional attribute using different processing techniques. This allows an agent substantial leeway to instantiate its activities in different ways under different circumstances using different active vision routines. We demonstrate the utility of this architecture with an object tracking example. A control system is presented that can be reconfigured by a reactive planner to achieve different tasks. We show how this system allows us to build interchangeable tracking activities that use either color histogram or motion based active vision routines.

  12. Shape control and compartmentalization in active colloidal cells

    PubMed Central

    Spellings, Matthew; Engel, Michael; Klotsa, Daphne; Sabrina, Syeda; Drews, Aaron M.; Nguyen, Nguyen H. P.; Bishop, Kyle J. M.; Glotzer, Sharon C.

    2015-01-01

    Small autonomous machines like biological cells or soft robots can convert energy input into control of function and form. It is desired that this behavior emerges spontaneously and can be easily switched over time. For this purpose we introduce an active matter system that is loosely inspired by biology and which we term an active colloidal cell. The active colloidal cell consists of a boundary and a fluid interior, both of which are built from identical rotating spinners whose activity creates convective flows. Similarly to biological cell motility, which is driven by cytoskeletal components spread throughout the entire volume of the cell, active colloidal cells are characterized by highly distributed energy conversion. We demonstrate that we can control the shape of the active colloidal cell and drive compartmentalization by varying the details of the boundary (hard vs. flexible) and the character of the spinners (passive vs. active). We report buckling of the boundary controlled by the pattern of boundary activity, as well as formation of core–shell and inverted Janus phase-separated configurations within the active cell interior. As the cell size is increased, the inverted Janus configuration spontaneously breaks its mirror symmetry. The result is a bubble–crescent configuration, which alternates between two degenerate states over time and exhibits collective migration of the fluid along the boundary. Our results are obtained using microscopic, non–momentum-conserving Langevin dynamics simulations and verified via a phase-field continuum model coupled to a Navier–Stokes equation. PMID:26253763

  13. Mitigation of chatter instabilities in milling by active structural control

    NASA Astrophysics Data System (ADS)

    Dohner, Jeffrey L.; Lauffer, James P.; Hinnerichs, Terry D.; Shankar, Natarajan; Regelbrugge, Mark; Kwan, Chi-Man; Xu, Roger; Winterbauer, Bill; Bridger, Keith

    2004-01-01

    This paper documents the experimental validation of an active control approach for mitigating chatter in milling. To the authors knowledge, this is the first successful hardware demonstration of this approach. This approach is very different from many existing approaches that avoid instabilities by varying process parameters to seek regions of stability or by altering the regenerative process. In this approach, the stability lobes of the machine and tool are actively raised. This allows for machining at spindle speeds that are more representative of those used in existing machine tools. An active control system was implemented using actuators and sensors surrounding a spindle and tool. Due to the complexity of controlling from a stationary co-ordinate system and sensing from a rotating system, a telemetry system was used to transfer structural vibration data from the tool to a control processor. Closed-loop experiments produced up to an order of magnitude improvement in metal removal rate.

  14. Mechanisms of active control in cylindrical fuselage structures

    NASA Technical Reports Server (NTRS)

    Silcox, R. J.; Lester, H. C.; Fuller, C. R.

    1987-01-01

    This paper summarizes ongoing efforts to understand and exploit active control techniques for low frequency noise suppression in aerospace applications. Analytical models are utilized in an effort to understand the mechanisms that govern noise transmission into acoustic spaces enclosed by lightweight structures and to examine the results of experimental implementations of active control schemes. Emphasis is placed on attaining global noise reductions using a minimum number of actuators rather than localized control over many subregions. This program has demonstrated the effect of synchrophasing and interface modal filtering, in limiting the modal density within the acoustic space, and how strong reactive effects may occur in two dimensional geometries. Finally, the performance of active control systems utilizing acoustic and vibration actuators is evaluated. Suppressions of 10 to 30 dB are demonstrated in practice, and performance is discussed in relation to the physical mechanisms and parameters of the system.

  15. Experimental evaluation of active-member control of precision structures

    NASA Technical Reports Server (NTRS)

    Fanson, James; Blackwood, Gary; Chu, Cheng-Chih

    1989-01-01

    The results of closed loop experiments that use piezoelectric active-members to control the flexible motion of a precision truss structure are described. These experiments are directed toward the development of high-performance structural systems as part of the Control/Structure Interaction (CSI) program at JPL. The focus of CSI activity at JPL is to develop the technology necessary to accurately control both the shape and vibration levels in the precision structures from which proposed large space-based observatories will be built. Structural error budgets for these types of structures will likely be in the sub-micron regime; optical tolerances will be even tighter. In order to achieve system level stability and local positioning at this level, it is generally expected that some form of active control will be required.

  16. Active Inference, homeostatic regulation and adaptive behavioural control

    PubMed Central

    Pezzulo, Giovanni; Rigoli, Francesco; Friston, Karl

    2015-01-01

    We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a synthesis these classical processes and cast them as successive hierarchical contextualisations of sensorimotor constructs, using the generative models that underpin Active Inference. This dissolves any apparent mechanistic distinction between the optimization processes that mediate classical control or learning. Furthermore, we generalize the scope of Active Inference by emphasizing interoceptive inference and homeostatic regulation. The ensuing homeostatic (or allostatic) perspective provides an intuitive explanation for how priors act as drives or goals to enslave action, and emphasises the embodied nature of inference. PMID:26365173

  17. Active Inference, homeostatic regulation and adaptive behavioural control.

    PubMed

    Pezzulo, Giovanni; Rigoli, Francesco; Friston, Karl

    2015-11-01

    We review a theory of homeostatic regulation and adaptive behavioural control within the Active Inference framework. Our aim is to connect two research streams that are usually considered independently; namely, Active Inference and associative learning theories of animal behaviour. The former uses a probabilistic (Bayesian) formulation of perception and action, while the latter calls on multiple (Pavlovian, habitual, goal-directed) processes for homeostatic and behavioural control. We offer a synthesis these classical processes and cast them as successive hierarchical contextualisations of sensorimotor constructs, using the generative models that underpin Active Inference. This dissolves any apparent mechanistic distinction between the optimization processes that mediate classical control or learning. Furthermore, we generalize the scope of Active Inference by emphasizing interoceptive inference and homeostatic regulation. The ensuing homeostatic (or allostatic) perspective provides an intuitive explanation for how priors act as drives or goals to enslave action, and emphasises the embodied nature of inference. PMID:26365173

  18. Active structural vibration control: Robust to temperature variations

    NASA Astrophysics Data System (ADS)

    Gupta, Vivek; Sharma, Manu; Thakur, Nagesh

    2012-11-01

    d-form augmented piezoelectric constitutive equations which take into account temperature dependence of piezoelectric strain coefficient (d31) and permittivity (∈33), are converted into e-form. Using e-form constitutive equations, a finite element model of a smart two dimensional plate instrumented with piezoelectric patches is derived. Equations of motion are derived using Hamilton's variational principle. Coupled equations of motion are uncoupled using modal analysis. Modal state vectors are estimated using the Kalman observer. The first mode of smart cantilevered plate is actively controlled using negative first modal velocity feedback at various temperatures. Total control effort required to do so is calculated using the electro-mechanical impedance method. The temperature dependence of sensor voltage, control voltage, control effort and Kalman observer equations is shown analytically. Simulation results are presented using MATLAB. Variations in (i) peak sensor voltage, (ii) actual and estimated first modal velocities, (iii) peak control voltage, (iv) total control effort and (v) settling time with respect to temperature are presented. Active vibration control performance is not maintained at temperature away from reference temperature when the temperature dependence of piezoelectric stress coefficient ‘e31' and permittivity ‘∈33' is not included in piezoelectric constitutive equations. Active control of vibrations becomes robust to temperature variations when the temperature dependence of ‘e31' and ‘∈33' is included in piezoelectric constitutive equations.

  19. Active flutter suppression - Control system design and experimental validation

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Srinathkumar, S.

    1991-01-01

    The synthesis and experimental validation of an active flutter suppression controller for the Active Flexible Wing wind-tunnel model is presented. The design is accomplished with traditional root locus and Nyquist methods using interactive computer graphics tools and with extensive use of simulation-based analysis. The design approach uses a fundamental understanding of the flutter mechanism to formulate a simple controller structure to meet stringent design specifications. Experimentally, the flutter suppression controller succeeded in simultaneous suppression of two flutter modes, significantly increasing the flutter dynamic pressure despite errors in flutter dynamic pressure and flutter frequency in the mathematical model. The flutter suppression controller was also successfully operated in combination with a roll maneuver controller to perform flutter suppression during rapid rolling maneuvers.

  20. Non-Euclidean geometry of twisted filament bundle packing

    PubMed Central

    Bruss, Isaac R.; Grason, Gregory M.

    2012-01-01

    Densely packed and twisted assemblies of filaments are crucial structural motifs in macroscopic materials (cables, ropes, and textiles) as well as synthetic and biological nanomaterials (fibrous proteins). We study the unique and nontrivial packing geometry of this universal material design from two perspectives. First, we show that the problem of twisted bundle packing can be mapped exactly onto the problem of disc packing on a curved surface, the geometry of which has a positive, spherical curvature close to the center of rotation and approaches the intrinsically flat geometry of a cylinder far from the bundle center. From this mapping, we find the packing of any twisted bundle is geometrically frustrated, as it makes the sixfold geometry of filament close packing impossible at the core of the fiber. This geometrical equivalence leads to a spectrum of close-packed fiber geometries, whose low symmetry (five-, four-, three-, and twofold) reflect non-Euclidean packing constraints at the bundle core. Second, we explore the ground-state structure of twisted filament assemblies formed under the influence of adhesive interactions by a computational model. Here, we find that the underlying non-Euclidean geometry of twisted fiber packing disrupts the regular lattice packing of filaments above a critical radius, proportional to the helical pitch. Above this critical radius, the ground-state packing includes the presence of between one and six excess fivefold disclinations in the cross-sectional order. PMID:22711799