Science.gov

Sample records for active underground coal

  1. Underground Coal Mining

    NASA Technical Reports Server (NTRS)

    Hill, G. M.

    1980-01-01

    Computer program models coal-mining production, equipment failure and equipment repair. Underground mine is represented as collection of work stations requiring service by production and repair crews alternately. Model projects equipment availability and productivity, and indicates proper balance of labor and equipment. Program is in FORTRAN IV for batch execution; it has been implemented on UNIVAC 1108.

  2. Underground Coal Gasification Program

    SciTech Connect

    Thorsness, C. B.; Britten, J. A.

    1994-12-01

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large, almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.

  3. Underground coal mining section data

    NASA Technical Reports Server (NTRS)

    Gabrill, C. P.; Urie, J. T.

    1981-01-01

    A set of tables which display the allocation of time for ten personnel and eight pieces of underground coal mining equipment to ten function categories is provided. Data from 125 full shift time studies contained in the KETRON database was utilized as the primary source data. The KETRON activity and delay codes were mapped onto JPL equipment, personnel and function categories. Computer processing was then performed to aggregate the shift level data and generate the matrices. Additional, documented time study data were analyzed and used to supplement the KETRON databased. The source data including the number of shifts are described. Specific parameters of the mines from which there data were extracted are presented. The result of the data processing including the required JPL matrices is presented. A brief comparison with a time study analysis of continuous mining systems is presented. The procedures used for processing the source data are described.

  4. Environmental benefits of underground coal gasification.

    PubMed

    Liu, Shu-qin; Liu, Jun-hua; Yu, Li

    2002-04-01

    Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO2 disposal method is put forward.

  5. Underground Coal Thermal Treatment

    SciTech Connect

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  6. Underground gasification of coal

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  7. CAVSIM. Underground Coal Gasification Program

    SciTech Connect

    Britten, J.A., Thorsness, C.B. )

    1989-03-03

    CAVSIM is a three-dimensional, axisymmetric model for resource recovery and cavity growth during underground coal gasification (UCG). CAVSIM is capable of following the evolution of the cavity from near startup to exhaustion, and couples explicitly wall and roof surface growth to material and energy balances in the underlying rubble zones. Growth mechanisms are allowed to change smoothly as the system evolves from a small, relatively empty cavity low in the coal seam to a large, almost completely rubble-filled cavity extending high into the overburden rock. The model is applicable to nonswelling coals of arbitrary seam thickness and can handle a variety of gas injection flow schedules or compositions. Water influx from the coal aquifer is calculated by a gravity drainage-permeation submodel which is integrated into the general solution. The cavity is considered to consist of up to three distinct rubble zones and a void space at the top. Resistance to gas flow injected from a stationary source at the cavity floor is assumed to be concentrated in the ash pile, which builds up around the source, and also the overburden rubble which accumulates on top of this ash once overburden rock is exposed at the cavity top. Char rubble zones at the cavity side and edges are assumed to be highly permeable. Flow of injected gas through the ash to char rubble piles and the void space is coupled by material and energy balances to cavity growth at the rubble/coal, void/coal and void/rock interfaces. One preprocessor and two postprocessor programs are included - SPALL calculates one-dimensional mean spalling rates of coal or rock surfaces exposed to high temperatures and generates CAVSIM input: TAB reads CAVSIM binary output files and generates ASCII tables of selected data for display; and PLOT produces dot matrix printer or HP printer plots from TAB output.

  8. Sixth underground coal-conversion symposium

    SciTech Connect

    Not Available

    1980-01-01

    The sixth annual underground coal conversion symposium was held at Shangri-la near Afton, Oklahoma, July 13 to 17, 1980. Sessions were developed to: Doe Field Programs, Major Industry Activity, Mathematical Modeling, Laboratory Studies, Environmental Studies, Economics, Instruments and Controls, and General Topics. Fifty-two papers from the proceedings have been entered individually into EDB and ERA. Thirteen papers had been entered previously from other sources. (LTN)

  9. 78 FR 68783 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Safety and Health Administration 30 CFR Part 75 RIN 1219-AB84 Refuge Alternatives for Underground Coal... training for miners to deploy and use refuge alternatives in underground coal mines. The U.S. Court of... in underground coal mines. On January 13, 2009, the United Mine Workers of America (UMWA)...

  10. 78 FR 48591 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... Refuge Alternatives for Underground Coal Mines; Proposed Rules #0;#0;Federal Register / Vol. 78 , No. 153... 30 CFR Part 75 RIN 1219-AB84 Refuge Alternatives for Underground Coal Mines AGENCY: Mine Safety and... alternatives in underground coal mines. The U.S. Court of Appeals for the District of Columbia Circuit...

  11. Coal bunkers in underground mines

    SciTech Connect

    Polak, J.; Zegzulka, J.

    1996-12-31

    In spite of the technical progress in the application of face technological equipment, the fluctuation of its output has been still considerable. A coal clearance system can be on one hand overloaded by production peaks and on the other hand its stoppages unfavorably influence production of faces. It has been proved that the most effective coal conveying system incorporates surge bunkers to eliminate the above mentioned problems. The surge bunkers have been used in the Czech mines since the middle of the sixties. There were 17 bunkers with an average capacity of 200 m{sup 3} in the biggest Czech coal mine basin OKD in 1967. Presently the number of bunkers has increased to 66 with a total capacity of 40,000 m{sup 3}. It represents the possibility of storing 56% of the daily OKD running of mine output. Two thirds of the number are gate bunkers with an average capacity of 540 m{sup 3} and the rest are skip ones with an average capacity of 740 m{sup 3}, situated at the shaft side.

  12. Monitoring of Underground Coal Gasification

    SciTech Connect

    Yang, X.; Wagoner, J.; Ramirez, A.

    2012-08-31

    For efficient and responsible UCG operations, a UCG process must be monitored in the following three categories: 1) process parameters such as injection and product gas flow rates, temperature, pressure and syngas content and heating value; 2) geomechanical parameters, e.g., cavity and coal seam pressures, cavity development, subsidence and ground deformation; and 3) environmental parameters, e.g., groundwater chemistry and air quality. This report focuses on UCG monitoring with geophysical techniques that can contribute to monitoring of subsurface temperature, cavity development, burn front, subsidence and deformation.

  13. 78 FR 73471 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for information...) on Refuge Alternatives for Underground Coal Mines. This extension gives interested parties additional... Alternatives for Underground Coal Mines. The RFI comment period was originally scheduled to close on October...

  14. 78 FR 58264 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for information...) on Refuge Alternatives for Underground Coal Mines. This extension gives interested parties additional... for Underground Coal Mines. The RFI comment period had been scheduled to close on October 7, 2013....

  15. Mutagenic and toxic activity of environmental effluents from underground coal gasification experiments.

    PubMed

    Timourian, H; Felton, J S; Stuermer, D H; Healy, S; Berry, P; Tompkins, M; Battaglia, G; Hatch, F T; Thompson, L H; Carrano, A V; Minkler, J; Salazar, E

    1982-01-01

    Using bacterial bioassays, we have screened for the presence of mutagens and toxins in extracts from groundwater, and in tar from product gas, at the sites of two Lawrence Livermore National Laboratory (LLNL) in situ experiments: Hoe Creek II and Hoe Creek III. The sites exhibited different potential biological hazards, suggesting that different gasification processes may represent different human health concerns. We found that mutagens are present in groundwater, persist for at least 2 yr after gasification has been terminated, and show a change in activity with time-possibly in parallel with changes in chemical composition. Preliminary evidence suggests that the mutagens in groundwater are quinoline and aniline derivatives, while the toxins in groundwater may be phenolic compounds. In tar from the product gas, the organic bases and neutrals were found to be genotoxic in both bacterial and mammalian cells; the neutral compounds appear to be the major mutagenic health hazards. Neutral compounds constitute most of the tar (85-97 wt%) and were mutagenic in both the bacterial and mammalian cell assays. Tar in the gas stream may be a problem for the aboveground environment if gas escapes through fractures in the overburden. Because it is mutagenic and induces chromosomal damage to mammalian cells, the tar may represent a disposal problem as well. However, it is difficult to assess tar quantitatively as a health hazard because its mutagenic activity is low, possibly due to contaminants in the neutral fraction that act to suppress mutagenicity.

  16. Underground coal miners' foot and boot problems.

    PubMed

    Wood, G; Marr, S; Berry, G; Nubé, V; Cole, J

    1999-11-01

    The New South Wales (NSW) Joint Coal Board Health and Safety Trust funded an investigation into foot problems reported by 400 randomly selected underground coal miners from 15 mines in NSW. Miners were interviewed and their responses were entered directly into laptop computers. Digital cameras were also used to take pictures of skin conditions and miners' posture. Observations of the skin results indicate that miners find gumboots to be hot, sweaty and uncomfortable. Skin breakdown and tinea, is frequent and disabling and responsible for absences from the workforce that are costly for both miner and employer. A more comfortable and better designed boot is needed, fabricated in waterproof leather together with socks that 'wick' the moisture away from the foot. Socks worn were of varying components and washed at irregular intervals, indicating a need for regular changes of socks and improved hygiene.

  17. LLNL Capabilities in Underground Coal Gasification

    SciTech Connect

    Friedmann, S J; Burton, E; Upadhye, R

    2006-06-07

    Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

  18. Current experiences in applied underground coal gasification

    NASA Astrophysics Data System (ADS)

    Peters, Justyn

    2010-05-01

    The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is

  19. Soviet underground coal gasification on the rocks

    SciTech Connect

    Not Available

    1980-10-13

    According to the University of California Lawrence Livermore Laboratory, the U.S.S.R. has abandoned large-scale development plans for coal-gasification projects, due to the low heating value of the gas produced at test burns at Angren, and to the cost, estimated at 132% of the standard Lurgi value, in contrast to the cost of approx. 65% of the standard Lurgi value in U.S. experimental burns. The U.S.S.R. coal-gasification effort has been in development since 1950, with a peak production of approx. 2 billion cu m/yr in 1966. The poor test burn results might have been caused by: drilling the boreholes too close to each other, which would increase drilling costs; the loss of a large amount of heat through a porous overburden; the lack of good underground diagnostics before and during a burn; and a lack of a good laboratory support program. The gas heating value was too low to warrant transportation far from the burn site, but most suitable burn sites are in remote areas. In the U.S.S.R., natural gas and open-pit lignite mining appear to be cheaper sources of energy.

  20. A study of leakage rates through mine seals in underground coal mines

    PubMed Central

    Schatzel, Steven J.; Krog, Robert B.; Mazzella, Andrew; Hollerich, Cynthia; Rubinstein, Elaine

    2015-01-01

    The National Institute for Occupational Safety and Health conducted a study on leakage rates through underground coal mine seals. Leakage rates of coal bed gas into active workings have not been well established. New seal construction standards have exacerbated the knowledge gap in our understanding of how well these seals isolate active workings near a seal line. At a western US underground coal mine, we determined seal leakage rates ranged from about 0 to 0.036 m3/s for seven 340 kPa seals. The seal leakage rate varied in essentially a linear manner with variations in head pressure at the mine seals. PMID:26322119

  1. Mass balances for underground coal gasification in steeply dipping beds

    SciTech Connect

    Lindeman, R.; Ahner, P.; Davis, B.E.

    1980-01-01

    Two different mass balances were used during the recent underground coal gasification tests conducted in steeply dipping coal beds at Rawlins, Wyoming. The combination of both mass balances proved extremely useful in interpreting the test results. One mass balance which assumed char could be formed underground required the solution of 3 simultaneous equations. The assumption of no char decouples the 3 equations in the other mass balance. Both mass balance results are compared to the test data to provide an interpretation of the underground process.

  2. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  3. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  4. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  5. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  6. 30 CFR 75.1907 - Diesel-powered equipment intended for use in underground coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... underground coal mines. 75.1907 Section 75.1907 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1907 Diesel-powered equipment intended for use in underground coal mines. (a) As...

  7. Structural implications of underground coal mining in the Mesaverde Group in the Somerset Coal Field, Delta and Gunnison Counties, Colorado

    SciTech Connect

    Christopher J. Carroll; Eric Robeck; Greg Hunt; Wendell Koontz

    2004-07-01

    Paleogene and Neogene faults and fractures on the eastern edge of the Colorado Plateau are present in Mesaverde Group coal and sandstone beds. Recent observations of coal cleat orientation in relation to faults in coal mines have significant impacts for mine planning in the area. Faults, coal cleats, and natural fractures are interpreted to show a structural evolution of the Mesaverde Group through time. This field trip included a visit to two active underground coal mines, the Bowie Resources' Bowie No. 2 Mine, and Mountain Coal's West Elk Mine. Mine geologists discussed structural styles including fault orientations and timing, cleat development, and rotation. Geologic encounters ranging from fault flooding, subsidence, mine fires, methane gas problems, and land use restrictions were also discussed. Coal cleat development and open-mode fractures in adjacent sandstones were observed on outcrops and compared to underground measurements in coal mines in the Somerset Coal Field, Colorado's most productive. Coal cleat orientations along a reverse fault in one mine showed rotation in relation to possible Neogene age displacement.

  8. Roof Rockmass Characterization in an Illinois Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Osouli, Abdolreza; Shafii, Iman

    2016-08-01

    Among all United States underground coal fields, those in Illinois have the highest rate of roof fall events due to their weak and severely moisture sensitive roof rock units. Rockmass characterization is the key initial step in designing safe and economical roof control measures in underground coal mines. In this study, a performance-based roof rockmass characterization is investigated. The geologic conditions as well as underground mine geographic specifications, roof fall analysis, mining method, utilized supplemental roof control measures, and geotechnical properties of roof rock units were considered to link the roof performance to rockmass characterization. The coal mine roof rating (CMRR) rockmass characterization method was used to evaluate the roof conditions and roof support design for an underground coal mine located in the Illinois Coal Basin. The results of several mine visit mappings, laboratory test results, and geotechnical issues and concerns are presented and discussed. The roof support designs are analyzed based on the rockmass characterization and are compared with the observed performance. This study shows that (1) CMRR index is a reasonable method for characterizing roof rockmass; (2) moisture sensitivity and bedding strengths in the horizontal direction are essential parameters for roof support design in mines with weak roof conditions; and (3) the applicability of the analysis of roof bolt system for roof support design of the studied mine is questionable.

  9. Production of Hydrogen from Underground Coal Gasification

    DOEpatents

    Upadhye, Ravindra S.

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  10. Coal face measurement system for underground use

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A measurement system was developed for the Eickhoff longwall shearer to determine the contour of the coal face as it mines coal. Contour data are obtained by an indirect measurement technique based on evaluating the motion of the shearer during mining. Starting from a known location, points along the coal face are established through a knowledge of the machines' positions and yaw movements as it moves past the coal face. The hardware and system operation procedures are described. The tests of system performance and their results are reported.

  11. 76 FR 70075 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... Mining Machines in Underground Coal Mines AGENCY: Mine Safety and Health Administration, Labor. ACTION... addressing Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines. This... Continuous Mining Machines in Underground Coal Mines. MSHA conducted hearings on October 18, October...

  12. 76 FR 63238 - Proximity Detection Systems for Continuous Mining Machines in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Part 75 RIN 1219-AB65 Proximity Detection Systems for Continuous Mining Machines in Underground Coal... Detection Systems for Continuous Mining Machines in Underground Coal Mines, published on August 31, 2011... Mining Machines in Underground Coal Mines. Due to requests from the public and to provide...

  13. 77 FR 4834 - Proposed Extension of Existing Information Collection; Refuge Alternatives for Underground Coal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration. ACTION: Notice of... Alternatives for Underground Coal Mines DATES: Submit comments on or before April 2, 2012. ADDRESSES: Comments... Alternatives for Underground Coal Mines. OMB Number: 1219-0146. Affected Public: Business or other...

  14. 76 FR 35801 - Examinations of Work Areas in Underground Coal Mines and Pattern of Violations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... and 104 RIN 1219-AB75, 1219-AB73 Examinations of Work Areas in Underground Coal Mines and Pattern of... Underground Coal Mines (Examinations of Work Areas) and for Pattern of Violations. DATES: The hearings will be... Examinations of Work Areas in Underground Coal Mines' submissions, and with ``RIN 1219-AB73'' for Pattern...

  15. 76 FR 25277 - Examinations of Work Areas in Underground Coal Mines and Pattern of Violations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... Areas in Underground Coal Mines and Pattern of Violations AGENCY: Mine Safety and Health Administration... Agency's proposed rules for Examinations of Work Areas in Underground Coal Mines (Examinations of Work... of Work Areas in Underground Coal Mines' submissions, and with ``RIN 1219-AB73'' for Pattern...

  16. A life-cycle description of underground coal mining

    NASA Technical Reports Server (NTRS)

    Lavin, M. L.; Borden, C. S.; Duda, J. R.

    1978-01-01

    An initial effort to relate the major technological and economic variables which impact conventional underground coal mining systems, in order to help identify promising areas for advanced mining technology is described. The point of departure is a series of investment analyses published by the United States Bureau of Mines, which provide both the analytical framework and guidance on a choice of variables.

  17. Psycho-social aspects of productivity in underground coal mining

    SciTech Connect

    Akin, G.

    1981-10-01

    The psychosocial aspects of productivity in underground coal mining were investigated. The following topics were studied: (1) labor productivity in deep mines and the explanations for productivity changes; (2) current concepts and research on psychosocial factors in productivity; (3) a survey of experiments in productivity improvement (4) the impact of the introduction of new technology on the social system and the way that it accomplishes production (5) a clinical study of a coal mining operation, model described how production is actually accomplished by workers at the coal face; and (6) implications and recommendations for new technology design, implementation and ongoing management.

  18. Resource targets for advanced underground coal extraction systems

    NASA Technical Reports Server (NTRS)

    Hoag, J. H.; Whipple, D. W.; Habib-Agahi, H.; Lavin, M. L.

    1982-01-01

    Resource targets appropriate for federal sponsorship of research and development of advanced underground coal mining systems are identified. A comprehensive examination of conventional and unconventional coals with particular attention to exceptionally thin and thick seams, steeply dipping beds, and multiple seam geometry was made. The results indicate that the resource of primary importance is flat lying bituminous coal of moderate thickness, under moderate cover, and located within the lower 48 states. Resources of secondary importance are the flat lying multiple seams and thin seams (especially those in Appalachia). Steeply dipping coals, abandoned pillars, and exceptionally thick western coals may be important in some regions of subregions, but the limited tonnage available places them in a position of tertiary importance.

  19. A Fiber Bragg Grating-Based Monitoring System for Roof Safety Control in Underground Coal Mining

    PubMed Central

    Zhao, Yiming; Zhang, Nong; Si, Guangyao

    2016-01-01

    Monitoring of roof activity is a primary measure adopted in the prevention of roof collapse accidents and functions to optimize and support the design of roadways in underground coalmines. However, traditional monitoring measures, such as using mechanical extensometers or electronic gauges, either require arduous underground labor or cannot function properly in the harsh underground environment. Therefore, in this paper, in order to break through this technological barrier, a novel monitoring system for roof safety control in underground coal mining, using fiber Bragg grating (FBG) material as a perceived element and transmission medium, has been developed. Compared with traditional monitoring equipment, the developed, novel monitoring system has the advantages of providing accurate, reliable, and continuous online monitoring of roof activities in underground coal mining. This is expected to further enable the prevention of catastrophic roof collapse accidents. The system has been successfully implemented at a deep hazardous roadway in Zhuji Coal Mine, China. Monitoring results from the study site have demonstrated the advantages of FBG-based sensors over traditional monitoring approaches. The dynamic impacts of progressive face advance on roof displacement and stress have been accurately captured by the novel roadway roof activity and safety monitoring system, which provided essential references for roadway support and design of the mine. PMID:27775657

  20. A Fiber Bragg Grating-Based Monitoring System for Roof Safety Control in Underground Coal Mining.

    PubMed

    Zhao, Yiming; Zhang, Nong; Si, Guangyao

    2016-10-21

    Monitoring of roof activity is a primary measure adopted in the prevention of roof collapse accidents and functions to optimize and support the design of roadways in underground coalmines. However, traditional monitoring measures, such as using mechanical extensometers or electronic gauges, either require arduous underground labor or cannot function properly in the harsh underground environment. Therefore, in this paper, in order to break through this technological barrier, a novel monitoring system for roof safety control in underground coal mining, using fiber Bragg grating (FBG) material as a perceived element and transmission medium, has been developed. Compared with traditional monitoring equipment, the developed, novel monitoring system has the advantages of providing accurate, reliable, and continuous online monitoring of roof activities in underground coal mining. This is expected to further enable the prevention of catastrophic roof collapse accidents. The system has been successfully implemented at a deep hazardous roadway in Zhuji Coal Mine, China. Monitoring results from the study site have demonstrated the advantages of FBG-based sensors over traditional monitoring approaches. The dynamic impacts of progressive face advance on roof displacement and stress have been accurately captured by the novel roadway roof activity and safety monitoring system, which provided essential references for roadway support and design of the mine.

  1. Science and Technology Gaps in Underground Coal Gasification

    SciTech Connect

    Upadhye, R; Burton, E; Friedmann, J

    2006-06-27

    Underground coal gasification (UCG) is an appropriate technology to economically access the energy resources in deep and/or unmineable coal seams and potentially to extract these reserves through production of synthetic gas (syngas) for power generation, production of synthetic liquid fuels, natural gas, or chemicals. India is a potentially good area for underground coal gasification. India has an estimated amount of about 467 billion British tons (bt) of possible reserves, nearly 66% of which is potential candidate for UCG, located at deep to intermediate depths and are low grade. Furthermore, the coal available in India is of poor quality, with very high ash content and low calorific value. Use of coal gasification has the potential to eliminate the environmental hazards associated with ash, with open pit mining and with greenhouse gas emissions if UCG is combined with re-injection of the CO{sub 2} fraction of the produced gas. With respect to carbon emissions, India's dependence on coal and its projected rapid rise in electricity demand will make it one of the world's largest CO{sub 2} producers in the near future. Underground coal gasification, with separation and reinjection of the CO{sub 2} produced by the process, is one strategy that can decouple rising electricity demand from rising greenhouse gas contributions. UCG is well suited to India's current and emerging energy demands. The syngas produced by UCG can be used to generate electricity through combined cycle. It can also be shifted chemically to produce synthetic natural gas (e.g., Great Plains Gasification Plant in North Dakota). It may also serve as a feedstock for methanol, gasoline, or diesel fuel production and even as a hydrogen supply. Currently, this technology could be deployed in both eastern and western India in highly populated areas, thus reducing overall energy demand. Most importantly, the reduced capital costs and need for better surface facilities provide a platform for rapid

  2. Imaging the Underground Coal Gasification Zone with Microgravity Surveys

    NASA Astrophysics Data System (ADS)

    Kotyrba, Andrzej; Kortas, Łukasz; Stańczyk, Krzysztof

    2015-06-01

    The paper describes results of microgravity measurements made on the surface over an underground geo reactor where experimental coal gasification was performed in a shallow seam of coal. The aim of the research was to determine whether, and to what extent, the microgravity method can be used to detect and image a coal gasification zone, especially caverns where the coal was burnt out. In theory, the effects of coal gasification process create caverns and cracks, e.g., zones of altered bulk density. Before the measurements, theoretical density models of completely and partially gasified coal were analysed. Results of the calculations of gravity field response showed that in both cases on the surface over the gasification zone there should be local gravimetric anomalies. Over the geo reactor, two series of gravimetric measurements prior to and after gasification were conducted. Comparison of the results of two measurement series revealed the presence of gravimetric anomalies that could be related to the cavern formation process. Data from these measurements were used to verify theoretical models. After the experiment, a small cavern was detected at the depth of the coal seam by the test borehole drilled in one of the anomalous areas.

  3. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Interests in underground or surface coal... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks,...

  4. 77 FR 58170 - Proposed Renewal of Existing Information Collection; Fire Protection (Underground Coal Mines)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... (Underground Coal Mines) AGENCY: Mine Safety and Health Administration, Labor. ACTION: Request for public... (facsimile). SUPPLEMENTARY INFORMATION: I. Background Fire protection standards for underground coal mines....1100 requires that each coal mine be provided with suitable firefighting equipment adapted for the...

  5. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Interests in underground or surface coal... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks,...

  6. The genotoxic risk of underground coal miners from Turkey.

    PubMed

    Donbak, Lale; Rencuzogullari, Eyyup; Yavuz, Ayse; Topaktas, Mehmet

    2005-12-30

    A cytogenetic monitoring study was carried out on a group of workers from a bituminous coal mine in Zonguldak province of Turkey, to investigate the genotoxic risk of occupational exposure to coal mine dust. Cytogenetic analysis, namely sister chromatid exchanges (SCEs), chromosomal aberrations (CAs) and micronucleus (MN) tests were performed on a strictly selected group of 39 workers and compared to 34 controls matched for gender, age, and habit. Smoking and age were considered as modulating factors. Both SCE and CA frequencies in coal miners appeared significantly higher than in controls. Similarly, there was a significant increase in the frequency of total micronuclei in exposed group as compared to control group. The effect of smoking on the level of SCE and MN was significant in the control group. A positive correlation between the age and the level of SCE was also found in controls. The frequencies of both SCE and CA were significantly enhanced with the years of exposure. The results of this study demonstrated that occupational exposure to coal mine dust leads to a significant induction of cytogenetic damage in peripheral lymphocytes of workers engaged in underground coal mining.

  7. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings....

  8. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings....

  9. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings....

  10. Overall requirements for an advanced underground coal extraction system

    SciTech Connect

    Goldsmith, M.; Lavin, M.L.

    1980-10-15

    This report presents overall requirements on underground mining systems suitable for coal seams exploitable in the year 2000, with particular relevance to the resources of Central Appalachia. These requirements may be summarized as follows: (1) Production Cost: demonstrate a return on incremental investment of 1.5 to 2.5 times the value required by a low-risk capital project. (2) Miner Safety: achieve at least a 50% reduction in deaths and disabling injuries per million man-hours. (3) Miner Health: meet the intent of all applicable regulations, with particular attention to coal dust, carcinogens, and mutagens; and with continued emphasis on acceptable levels of noise and vibration, lighting, humidity and temperature, and adequate work space. (4) Environmental Impact: maintain the value of mined and adjacent lands at the pre-mining value following reclamation; mitigation of off-site impacts should not cost more than the procedures used in contemporary mining. (5) Coal Conservation: the recovery of coal from the seam being mined should be at least as good as the best available contemporary technology operating in comparable conditions. No significant trade-offs between production cost and other performance indices were found.

  11. 77 FR 56717 - Specifications for Medical Examinations of Underground Coal Miners

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-13

    ...This final rule modifies the Department of Health and Human Services (HHS) regulations for medical examinations of underground coal miners. Existing regulations established specifications for providing, interpreting, classifying, and submitting film-based roentgenograms (now commonly called chest radiographs or X-rays) of underground coal miners. The revised standards modify the requirements......

  12. Surface movement above an underground coal longwall mine after closure

    NASA Astrophysics Data System (ADS)

    Vervoort, André

    2016-09-01

    The surface movement in an area of about 22 km2 above the underground coal mine of Houthalen was analyzed based on Interferometry with Synthetic Aperture Radar (InSAR) measurements. After its closure in 1992, a residual subsidence was observed over a period of several years, followed by an uplift of the surface above and around the past longwall panels, whereby the rate of movement was, in absolute terms, of the same order for the two types of movements. The processes behind these movements are different. The process of subsidence is caused by the caving of the roof above the mined-out area and is mainly a mechanical stress-deformation process, including time-dependent aspects. However, the process of uplift is most probably caused by the swelling of the clay minerals in the argillaceous rocks in the coal strata after the flooding of the underground workings. Hence, the areas in which there is the greatest risk of damage to the surface infrastructure are not the same for the hazards linked to subsidence and uplift. For example, the zone in which the maximum uplift occurs clearly is at a different location from that of the zone with the maximum residual subsidence. There is no clear sign that the amount of mining underneath affects the residual subsidence, and there is no indication that the process of uplift is linked directly to the mining characteristics. It is more likely that uplift as the result of flooding is initiated at, or close to, the vertical shafts.

  13. Hydrogeochemical characteristics of a flooded underground coal mine groundwater system

    NASA Astrophysics Data System (ADS)

    Gomo, M.; Vermeulen, D.

    2014-04-01

    Hydrogeochemical processes have an important influence on evolution of the groundwater chemistry and its quality. An investigation was conducted to assess the hydrogeochemical processes in a flooded underground coal mine located in a typical Karoo Basin of Southern Africa. The study utilises scatter plots, PHREEQC hydrogeochemical model and the expanded Durov diagram as complimentary tools to analyse the groundwater chemistry. 144 Samples were collected from 16 piezometers drilled into the flooded underground coal mine during a three year monitoring period (2000-2002). Field results indicate that the groundwater system is characterised by a Ca-SO4 main hydrochemical groundwater type that evolved from acid mine drainage (AMD) buffering by calcite and dolomite carbonate minerals. The carbonate AMD buffering process is hindering the leaching of metals into the flooded mine groundwater system. Hardness in at least 85% of the samples exceeded 1200 mg/L as CaCO3 and the groundwater was classified as excessively hard. Modelling results using PHREEQC suggests that increase of Ca2+ and SO42- concentration that evolve from carbonate AMD buffering process can only occur up to certain point until which the aqueous solubility of these ions becomes indirectly limited by gypsum saturation.

  14. Influence of Geological Structure on Coal and Gas Outburst Occurrences in Turkish Underground Coal Mines

    NASA Astrophysics Data System (ADS)

    Esen, Olgun; Özer, Samet Can; Fişne, Abdullah

    2015-04-01

    Coal and gas outbursts are sudden and violent releases of gas and in company with coal that result from a complex function of geology, stress regime with gas pressure and gas content of the coal seam. The phenomena is referred to as instantaneous outbursts and have occurred in virtually all the major coal producing countries and have been the cause of major disasters in the world mining industry. All structures from faults to joints and cleats may supply gas or lead to it draining away. Most geological structures influence the way in which gas can drain within coal seams. From among all the geological factors two groups can be distinguished: parameters characterising directly the occurrence and geometry of the coal seams; parameters characterising the tectonic disturbances of the coal seams and neighbouring rocks. Also dykes may act as gas barriers. When the production of the coal seam is advanced in mine working areas, these barriers are failed mostly in the weak and mylonitized zones. Geology also plays a very important role in the outburst process. Coal seams of complex geological structure including faults, folds, and fractured rocks are liable to outbursts if coal seams and neighbouring rocks have high gas content level. The purpose of the study is to enlighten the coal industry in Turkey to improving mine safety in underground coal production and decrease of coal and gas outburst events due to increasing depth of mining process. In Turkey; the years between 1969 and 2013, the number of 90 coal and gas outbursts took place in Zonguldak Hard Coal Basin in both Kozlu and Karadon Collieries. In this study the liability to coal and gas outburst of the coal seams are investigated by measuring the strength of coal and the rock pressure. The correlation between these measurements and the event locations shows that the geological structures resulted in 52 events out of 90 events; 19 events close to the fault zones, 25 events thorough the fault zones and 8 events in

  15. Siting of prison complex above abandoned underground coal mine

    SciTech Connect

    Marino, G.G.

    1998-10-01

    This paper discusses in detail the process undertaken to mitigate the effects of any future mine subsidence on prison structures proposed above old abandoned underground workings. The site for a proposed prison complex purchased by the state of Indiana was located in west-central Indiana and was undermined by an old abandoned room and pillar mine. Based on a study of the mine map and subsurface verification of the extent of mining it was determined that all prison buildings and important structures could be placed above solid coal to the north. However, one masonry building was located within the potential draw zone of mine works that still contained significant mine voids. Based on empirical data the subsidence potential was estimated and the building was designed accordingly to be mine subsidence resistant. It was decided that a phase 2 prison complex should be constructed adjacent to and just south of the phase 1 complex. This complex would be directly above the underground workings. Subsequently, an extensive subsurface investigation program was undertaken to (1) ascertain whether or not mine areas where buildings would be located were already collapsed and thus only nominal, if any, subsidence could occur in the future and (2) verify the presence of solid coal areas within the mine as indicated on the mine map. Based on all the site information gathered subsidence profiles were developed from an empirical database of subsidence events in the Illinois coal basin. As a result of this work many structures on the site required no or nominal subsidence considerations. However, for others that could be affected potentially by future subsidence movement preliminary subsidence resistant designs were completed using the expected level of potential subsidence movement.

  16. Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.

    2009-04-01

    Underground coal gasification (UCG) represents a strategy targeting at syngas production for fuel or power generation from in-situ coal seams. It is a promising technique for exploiting coal deposits as an energy source at locations not allowing conventional mining under economic conditions. Although the underlying concept has already been suggested in 1868 and has been later on implemented in a number of field trials and even at a commercial scale, UCG is still facing technological barriers, impeding its widespread application. Field UCG operations rely on injection wells enabling the ignition of the target seam and the supply with oxidants (air, O2) inducing combustion (oxidative conditions). The combustion process delivers the enthalpy required for endothermic hydrogen production under reduction prone conditions in some distance to the injection point. The produced hydrogen - usually accompanied by organic and inorganic carbon species, e.g. CH4, CO, and CO2 - can then be retrieved through a production well. In contrast to gasification of mined coal in furnaces, it is difficult to measure the combustion temperature directly during UCG operations. It is already known that geochemical parameters such as the relative production gas composition as well as its stable isotope signature are related to the combustion temperature and, consequently, can be used as temperature proxies. However, so far the general applicability of such relations has not been proven. In order to get corresponding insights with respect to coals of significantly different rank and origin, four powdered coal samples covering maturities ranging from Ro= 0.43% (lignite) to Ro= 3.39% (anthracite) have been gasified in laboratory experiments. The combustion temperature has been varied between 350 and 900 ˚ C, respectively. During gasification, the generated gas has been captured in a cryo-trap, dried and the carbon containing gas components have been catalytically oxidized to CO2. Thereafter, the

  17. Wireless device for activation of an underground shock wave absorber

    NASA Astrophysics Data System (ADS)

    Chikhradze, M.; Akhvlediani, I.; Bochorishvili, N.; Mataradze, E.

    2011-10-01

    The paper describes the mechanism and design of the wireless device for activation of energy absorber for localization of blast energy in underground openings. The statistics shows that the greatest share of accidents with fatal results associate with explosions in coal mines due to aero-methane and/or air-coal media explosion. The other significant problem is terrorist or accidental explosions in underground structures. At present there are different protective systems to reduce the blast energy. One of the main parts of protective Systems is blast Identification and Registration Module. The works conducted at G. Tsulukidze Mining Institute of Georgia enabled to construct the wireless system of explosion detection and mitigation of shock waves. The system is based on the constant control on overpressure. The experimental research continues to fulfill the system based on both threats, on the constant control on overpressure and flame parameters, especially in underground structures and coal mines. Reaching the threshold value of any of those parameters, the system immediately starts the activation. The absorber contains a pyrotechnic device ensuring the discharge of dispersed water. The operational parameters of wireless device and activation mechanisms of pyrotechnic element of shock wave absorber are discussed in the paper.

  18. Preburn versus postburn mineralogical and geochemical characteristics of overburden and coal at the Hanna, Wyoming underground coal gasification site

    SciTech Connect

    Oliver, R.L.; Youngberg, A.D.

    1983-12-01

    Hundreds of mineralogic and geochemical tests were done under US Department of Energy contracts on core samples taken from the Hanna underground coal gasification site. These tests included x-ray diffraction studies of minerals in coal ash, overburden rocks, and heat-altered rocks; x-ray fluorescence analyses of oxides in coal ash and heat-altered rocks; semi-quantitative spectrographic analyses of elements in coal, overburden, and heat-altered rocks; chemical analyses of elements and compounds in coal, overburden, and heat-altered rocks and ASTM proximate and ultimate analyses of coal and heat-altered coal. These data sets were grouped, averaged, and analyzed to provide preburn and postburn mineralogic and geochemical characteristics of rock units at the site. Where possible, the changes in characteristics from the preburn to the postburn state are related to underground coal gasification processes. 11 references, 13 figures, 8 tables.

  19. Proceedings of the ninth annual underground coal gasification symposium

    SciTech Connect

    Wieber, P.R.; Martin, J.W.; Byrer, C.W.

    1983-12-01

    The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

  20. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    SciTech Connect

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  1. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks, bonds... employee may benefit from his or her holding in or salary from coal mining operation. Direct...

  2. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks, bonds... employee may benefit from his or her holding in or salary from coal mining operation. Direct...

  3. 30 CFR 75.1721 - Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated coal mines, notification by the operator... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous §...

  4. Women and men coal miners: coping with gender integration underground

    SciTech Connect

    Yount, K.R.

    1986-01-01

    The central purpose of this research is to initiate a theoretical understanding of the integration of women into traditionally-male, physical-labor jobs. The primary sources of data consist of in depth interviews with women and men underground coal miners and company personnel, and field notes collected during participant observation work in mining communities. Part I addresses the relationship between conditions of production and modes of interaction in underground mines. Personality traits conceived as aspects of masculinity are traced to efforts to cope with the stressors of engaging in physical labor in a work setting characterized by lack of work autonomy, a high degree of threat, and a high degree of interdependence for task accomplishment. Part II focuses on situational and individual factors affecting the integration of women in the workplace. Although most women miners are satisfied with their work, a gender based division of labor has arisen in which women are concentrated in low-prestige laborer positions. The processes involved in undermining a woman's work reputation and self-concept are summarized and forms of discrimination that recreate aspects of the female sterotype and lead to the development of sex segregation in the workplace are to the development of sex segregation in the workplace are discussed.

  5. Viability of underground coal gasification in the 'deep coals' of the Powder River Basin, Wyoming

    SciTech Connect

    2007-06-15

    The objective of this work is to evaluate the PRB coal geology, hydrology, infrastructure, environmental and permitting requirements and to analyze the possible UCG projects which could be developed in the PRB. Project economics on the possible UCG configurations are presented to evaluate the viability of UCG. There are an estimated 510 billion tons of sub-bituminous coal in the Powder River Basin (PRB) of Wyoming. These coals are found in extremely thick seams that are up to 200 feet thick. The total deep coal resource in the PRB has a contained energy content in excess of twenty times the total world energy consumption in 2002. However, only approximately five percent of the coal resource is at depths less than 500 feet and of adequate thickness to be extracted by open pit mining. The balance is at depths between 500 and 2,000 feet below the surface. These are the PRB 'deep coals' evaluated for UCG in this report. The coal deposits in the Powder River Basin of Wyoming are thick, laterally continuous, and nearly flat lying. These deposits are ideal for development by Underground Coal Gasification. The thick deep coal seams of the PRB can be harvested using UCG and be protective of groundwater, air resources, and with minimum subsidence. Protection of these environmental values requires correct site selection, site characterization, impact definition, and impact mitigation. The operating 'lessons learned' of previous UCG operations, especially the 'Clean Cavity' concepts developed at Rocky Mountain 1, should be incorporated into the future UCG operations. UCG can be conducted in the PRB with acceptable environmental consequences. The report gives the recommended development components for UCG commercialization. 97 refs., 31 figs., 57 tabs., 1 app.

  6. Assessment of underground coal gasification in bituminous coals. Volume I. Executive summary. Final report

    SciTech Connect

    1981-01-01

    This report describes the bituminous coal resources of the United States, identifies those resources which are potentially amenable to Underground Coal Gasification (UCG), identifies products and markets in the vicinity of selected target areas, identifies UCG concepts, describes the state of the art of UCG in bituminous coal, and presents three R and D programs for development of the technology to the point of commercial viability. Of the 670 billion tons of bituminous coal remaining in-place as identified by the National Coal Data System, 32.2 billion tons or 4.8% of the total are potentially amenable to UCG technology. The identified amenable resource was located in ten states: Alabama, Colorado, Illinois, Kentucky, New Mexico, Ohio, Oklahoma, Utah, Virginia, and West Virginia. The principal criteria which eliminated 87.3% of the resource was the minimum thickness (42 inches). Three R and D programs were developed using three different concepts at two different sites. Open Borehole, Hydraulic Fracture, and Electrolinking concepts were developed. The total program costs for each concept were not significantly different. The study concludes that much of the historical information based on UCG in bituminous coals is not usable due to the poor siting of the early field tests and a lack of adequate diagnostic equipment. This information gap requires that much of the early work be redone in view of the much improved understanding of the role of geology and hydrology in the process and the recent development of analytical tools and methods.

  7. Groundwater Management During Intermediate-to-Deep Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Lavis, Shaun; Stanley, Edward; Mostade, Marc; Turner, Matthew

    2010-05-01

    Underground coal gasification (UCG) is a safe, economic way to extract energy from coal with significant environmental benefits compared with other coal-based energy production methods. However, in the wrong hands, UCG can adversely impact groundwater systems in two ways: 1) by contamination with inorganic and organic compounds; and 2) groundwater depletion. The hydrogeological conditions of UCG are highly site-specific and so the risks to groundwater have to be evaluated on a case-by-case basis. Site selection plays a fundamental role in managing these risks and it is possible to identify the general characteristics that will minimise risks of environmental impacts. However, large volumes of water, much of which will come from groundwater, are consumed during UCG projects, leading to possible significant groundwater depletion at such settings. Insufficient water supplies will impact the quality of the syngas produced by UCG because coal conversion efficiencies will decrease. Furthermore, depletion of groundwater levels may extend beyond the UCG site boundary, with consequent implications for regulatory regimes and any off-site groundwater users. Additional artificial water supplies may therefore be required, although the manner in which the water is delivered to the UCG system will also likely have an impact on syngas quality. Large volumes of water delivered via the injection well will likely impact gasification efficiency because 1) large amounts of heat will be used to vaporise the water leading to suppression of the reactor temperature and inhibition of (endothermic) gasification reactions; and 2) the "steam jacket" originally present around the UCG reactor will be absent, which will lead to further heat loss from the system. Additional water may therefore have to be supplied via the surrounding strata and/or coal seam, thus mimicking the natural conditions prior to groundwater depletion. Much of the hydrogeological modelling to date has focussed on a single

  8. Investigation of relationship between barometric pressure and coal and gas outburst events in underground coal mining

    NASA Astrophysics Data System (ADS)

    Yönet, Sinem; Esen, Olgun; Fişne, Abdullah

    2015-04-01

    Coal and gas outburst is a serious risk which occurs during the mine production. This accident results both ejection of high volumes of gas and high amount of coal into the mine production area, and death of mining workers for many years in Turkey. Outburst of gas, coal and rock can be defined as sudden release of coal and rock accompanied by large quantities of gas into the working face or other mine workings. It is a phenomena that influenced by geological structure such as folds, joints of rocks or coal seams, is also still investigated for many years. Zonguldak Coal Basin is the main part of the Upper Carboniferous bituminous coal basin of Turkey. Much of the bituminous coal mining has thus been concentrated in the Zonguldak Basin which is located on the Black Sea coast. The coal field has been disturbed by tectonic activity, first by Hercynian and later by Alpine orogenesis resulting in folding and faulting of strata. This formation has a complex structural geology which consists mostly fault zones, anticlinal and syncline strata and because of this a large amount of methane gases are adsorbed or accumulated in strata or in coal fractures, pores and micropores. There are 5 Collieries exists in Zonguldak Coalfield and coal and gas outbursts were occurred only in two collieries such as Karadon and Kozlu Mines. In addition at a number of 90 coal and gas outburst events were experienced in these collieries. Based on the analysis of data, oscillation at barometric pressure and temperature values at the location of Kozlu and Karadon Mines were seen when coal and gas outburst events were occurred. In this study, barometric pressure and temperature changes are investigated at Kozlu and Karadon Mines. Also the relationship between the variation at temperature with barometric pressure and coal and gas outbursts are evaluated. It can be understand that this investigation depends to field observations and macroscopic considerations and on the purpose of predicting the

  9. Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect.

    PubMed

    Kapusta, Krzysztof; Stańczyk, Krzysztof

    2015-02-01

    The effect of coal rank on the composition and toxicity of water effluents resulting from two underground coal gasification experiments with distinct coal samples (lignite and hard coal) was investigated. A broad range of organic and inorganic parameters was determined in the sampled condensates. The physicochemical tests were supplemented by toxicity bioassays based on the luminescent bacteria Vibrio fischeri as the test organism. The principal component analysis and Pearson correlation analysis were adopted to assist in the interpretation of the raw experimental data, and the multiple regression statistical method was subsequently employed to enable predictions of the toxicity based on the values of the selected parameters. Significant differences in the qualitative and quantitative description of the contamination profiles were identified for both types of coal under study. Independent of the coal rank, the most characteristic organic components of the studied condensates were phenols, naphthalene and benzene. In the inorganic array, ammonia, sulphates and selected heavy metals and metalloids were identified as the dominant constituents. Except for benzene with its alkyl homologues (BTEX), selected polycyclic aromatic hydrocarbons (PAHs), zinc and selenium, the values of the remaining parameters were considerably greater for the hard coal condensates. The studies revealed that all of the tested UCG condensates were extremely toxic to V. fischeri; however, the average toxicity level for the hard coal condensates was approximately 56% higher than that obtained for the lignite. The statistical analysis provided results supporting that the toxicity of the condensates was most positively correlated with the concentrations of free ammonia, phenols and certain heavy metals.

  10. Rock mass response to the decline in underground coal mining

    SciTech Connect

    Holub, K.

    2006-01-15

    Geomechanical problems of mining in the Ostrava-Karvina Coal Basin were studied on the basis of longterm experience gained from seismological observations. They could serve as reasonable models of rock-mass response to temporary reduction and gradual decline in mining activities and mine closure.

  11. Overall requirements for an advanced underground coal extraction system. [environment effects, miner health and safety, production cost, and coal conservation

    NASA Technical Reports Server (NTRS)

    Goldsmith, M.; Lavin, M. L.

    1980-01-01

    Underground mining systems suitable for coal seams expoitable in the year 2000 are examined with particular relevance to the resources of Central Appalachia. Requirements for such systems may be summarized as follows: (1) production cost; (2)miner safety; (3) miner health; (4) environmental impact; and (5) coal conservation. No significant trade offs between production cost and other performance indices were found.

  12. The potential for underground coal gasification in Indiana. Final report to the Indiana Center for Coal Technology Research (CCTR)

    SciTech Connect

    John Rupp; Evgeny Shafirovich; Arvind Varma; Maria Mastalerz; Agnieszka Drobniak

    2009-03-15

    The preliminary feasability assessment analyses the potential for underground coal gasification within Indiana. A review of existing worldwide operations and geological requirements demonstrates that the application of UCG practices in Indiana has very significant potential benefits, but careful analysis of the specific geological conditions, physical and chemical properties of coals, water resources, coupled with an assessment of the state-of-the-art technologies must be conducted to identify potential UCG sites and to determine the feasibility of employing this technology in Indiana. Of particular importance is the relatively small number of active and successful operators of UCG projects around the world and that collaborations with one or two among them could be beneficial for all concerned. There are significant opportunities for economic development that will provide dividends for first movers in the Illinois basin. The report recommends nine 'promising zones' for UCG in two large coal deposits (the Springfield and Seelyville coal beds) in Knox, Gibson, Vanderburgh, Warrick and Posey counties. 69 refs., 10 figs., 6 tabs., 1 app.

  13. 43 CFR 20.402 - Interests in underground or surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... mining operations. 20.402 Section 20.402 Public Lands: Interior Office of the Secretary of the Interior... Certain Employees of the Department § 20.402 Interests in underground or surface coal mining operations... coal mining operations means ownership or part ownership by an employee of lands, stocks,...

  14. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route "Coal Mine" (SW Poland).

    PubMed

    Tchorz-Trzeciakiewicz, Dagmara Eulalia; Parkitny, Tomasz

    2015-11-01

    The surveys of radon concentrations in the Underground Tourist Route "Coal Mine" were carried out using passive and active measurement techniques. Passive methods with application of Solid State Nuclear Track Detectors LR115 were used at 4 points in years 2004-2007 and at 21 points in year 2011. These detectors were exchanged at the beginning of every season in order to get information about seasonal and spatial changes of radon concentrations. The average radon concentration noted in this facility was 799 Bq m(-3) and is consistent with radon concentrations noted in Polish coal mines. Seasonal variations, observed in this underground tourist route, were as follows: the highest radon concentrations were noted during summers, the lowest during winters, during springs and autumns intermediate but higher in spring than in autumn. The main external factor that affected seasonal changes of radon concentrations was the seasonal variation of outside temperature. No correlation between seasonal variations of radon concentrations and seasonal average atmospheric pressures was found. Spatial variations of radon concentrations corresponded with air movements inside the Underground Tourist Route "Coal Mine". The most vivid air movements were noted along the main tunnel in adit and at the place located near no blinded (in the upper part) shaft. Daily variations of radon concentrations were recorded in May 2012 using RadStar RS-230 as the active measurement technique. Typical daily variations of radon concentrations followed the pattern that the highest radon concentrations were recorded from 8-9 a.m. to 7-8 p.m. and the lowest during nights. The main factor responsible for hourly variations of radon concentrations was the daily variation of outside temperatures. No correlations were found between radon concentration and other meteorological parameters such as atmospheric pressure, wind velocity or precipitation. Additionally, the influence of human factor on radon

  15. Results from the third LLL underground coal gasification experiment at Hoe Creek

    SciTech Connect

    Hill, R.W.; Thorsness, C.B.; Cena, R.J.; Aiman, W.R.; Stephens, D.R.

    1980-05-20

    A major objective of the US Energy Program is the development of processes to produce clean fuels from coal. Underground coal gasification is one of the most promising of these processes. If successful, underground coal gasification (UCG) would quadruple the proven reserves of the US coal. Cost for products produced from UCG are projected to be 65 to 75% of those from conventional coal conversion. Finally, UCG appears to possess environmental advantages since no mining is involved and there are less solid wastes produced. In this paper we describe results from the Hoe Creek No. 3 underground coal gasification test. The experiment employed a drilled channel between process wells spaced 130' apart. The drilled channel was enlarged by reverse combustion prior to forward gasification. The first week of forward gasification was carried out using air injection, during which 250 tons of coal were consumed yielding an average dry product gas heating value of 114 Btu/scf. Following this phase, steam and oxygen were injected (generally a 50-50 mixture) for 47 days, during which 3945 tons of coal were consumed at an average rate of 84 tons of coal per day and an average dry gas heating value of 217 Btu/scf. The average gas composition during the steam-oxygen phase was 37% H/sub 2/, 5% CH/sub 4/, 11% CO, and 44% CO/sub 2/. Gas recovery was approximately 82% during the test, and the average thermochemical efficiency was near 65%.

  16. Underground Coal Mining: Relationship between Coal Dust Levels and Pneumoconiosis, in Two Regions of Colombia, 2014.

    PubMed

    Torres Rey, Carlos Humberto; Ibañez Pinilla, Milciades; Briceño Ayala, Leonardo; Checa Guerrero, Diana Milena; Morgan Torres, Gloria; Groot de Restrepo, Helena; Varona Uribe, Marcela

    2015-01-01

    In Colombia, coal miner pneumoconiosis is considered a public health problem due to its irreversibility, high cost on diagnosis, and lack of data related to its prevalence in the country. Therefore, a cross-sectional study was carried out in order to determine the prevalence of pneumoconiosis in underground coal mining workers in two regions of Colombia. The results showed a 35.9% prevalence of pneumoconiosis in the study group (42.3% in region 1 and 29.9% in region 2). An association was found between a radiologic diagnosis of pneumoconiosis and a medium risk level of exposure to carbon dust (OR: 2.901, 95% CI: 0.937, 8.982), medium size companies (OR: 2.301, 95% CI: 1.260-4.201), length of mining work greater than 25 years (OR: 3.222, 95% CI: 1.806-5.748), and a history of smoking for more than one year (OR: 1.479, 95% CI: 0.938-2.334). These results establish the need to generate an intervention strategy aimed at preventing the identified factors, as well as a timely identification and effective treatment of pneumoconiosis in coal miners, in which the commitment of the General Health and Social Security System and the workers compensation system is ensured.

  17. Underground Coal Mining: Relationship between Coal Dust Levels and Pneumoconiosis, in Two Regions of Colombia, 2014

    PubMed Central

    Torres Rey, Carlos Humberto; Ibañez Pinilla, Milciades; Briceño Ayala, Leonardo; Checa Guerrero, Diana Milena; Morgan Torres, Gloria; Groot de Restrepo, Helena; Varona Uribe, Marcela

    2015-01-01

    In Colombia, coal miner pneumoconiosis is considered a public health problem due to its irreversibility, high cost on diagnosis, and lack of data related to its prevalence in the country. Therefore, a cross-sectional study was carried out in order to determine the prevalence of pneumoconiosis in underground coal mining workers in two regions of Colombia. The results showed a 35.9% prevalence of pneumoconiosis in the study group (42.3% in region 1 and 29.9% in region 2). An association was found between a radiologic diagnosis of pneumoconiosis and a medium risk level of exposure to carbon dust (OR: 2.901, 95% CI: 0.937, 8.982), medium size companies (OR: 2.301, 95% CI: 1.260–4.201), length of mining work greater than 25 years (OR: 3.222, 95% CI: 1.806–5.748), and a history of smoking for more than one year (OR: 1.479, 95% CI: 0.938–2.334). These results establish the need to generate an intervention strategy aimed at preventing the identified factors, as well as a timely identification and effective treatment of pneumoconiosis in coal miners, in which the commitment of the General Health and Social Security System and the workers compensation system is ensured. PMID:26366418

  18. Research of Characteristics of the Low Voltage Power Line in Underground Coal Mine

    NASA Astrophysics Data System (ADS)

    Wei, Shaoliang; Qin, Shiqun; Gao, Wenchang; Cheng, Fengyu; Cao, Zhongyue

    The power line communications (PLCs) can count on existing electrical connections reaching each corner in the locations where such applications are required, so signal transmission over power lines is nowadays gaining more and more interest for applications like internet. The research of characteristics of the low voltage power line is the fundamental and importance task. This work presents a device to test the characteristics of the low voltage power line. The low voltage power line channel characteristics overground and the channel characteristics underground were tested in using this device. Experiments show that, the characteristics are different between the PLCs channel underground coal mine and the PLC channel overground. Different technology should be adopted to structure the PLCs channel model underground coal mine and transmit high speed digital signal. But how to use the technology better to the high-speed digital communication under coal mine is worth of further studying.

  19. 77 FR 43721 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... Safety and Health Administration 30 CFR Part 75 RIN 1219-AB75 Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety Standards AGENCY: Mine Safety and Health... requirements contained in the final rule on Examinations of Work Areas in Underground Coal Mines for...

  20. Coal Activities for Secondary Students.

    ERIC Educational Resources Information Center

    American Coal Foundation, Washington, DC.

    This collection of lesson plans designed for teachers of 4th- through 12th-grade students utilizes an assortment of teaching strategies for topics related to coal and the coal industry. Activities cover the following topics: coal formation; coal identification; "the geologist's dilemma" (a supply and demand activity); geologic time and…

  1. A Look into Miners' Health in Prevailing Ambience of Underground Coal Mine Environment

    NASA Astrophysics Data System (ADS)

    Dey, N. C.; Pal, S.

    2012-04-01

    Environmental factors such as noise, vibration, illumination, humidity, temperature and air velocity, etc. do play a major role on the health, comfort and efficient performance of underground coal miners at work. Ergonomics can help to promote health, efficiency and well being of miners and to make best use of their capabilities within the ambit of underground coal mine environment. Adequate work stretch and work-rest scheduling have to be determined for every category of miners from work physiology point of view so as to keep better health of the miners in general and to have their maximum efficiency at work in particular.

  2. Prevalence and associated factors of depressive symptoms among Chinese underground coal miners.

    PubMed

    Liu, Li; Wang, Lie; Chen, Jie

    2014-01-01

    Although underground coal miners are quite susceptible to depressive symptoms due to a highly risky and stressful working environment, few studies have focused on this issue. The purpose of the study was to evaluate the prevalence of depressive symptoms and to explore its associated factors in this population. A cross-sectional survey was conducted in a coal-mining population in northeast China. A set of self-administered questionnaires was distributed to 2500 underground coal miners (1,936 effective respondents). Depressive symptoms, effort-reward imbalance (ERI), overcommitment (OC), perceived physical environment (PPE), work-family conflict (WFC), and some demographic and working characteristics were measured anonymously. The prevalence of depressive symptoms was 62.8%, and the mean level was 20.00 (9.99). Hierarchical linear regression showed that marital status, education, monthly income, and weekly working time were significantly associated with depressive symptoms. A high level of depressive symptoms was significantly associated with high ERI, PPE, WFC, and OC. Accordingly, most Chinese underground coal miners probably have depressive symptoms that are mainly predicted by some occupational psychosocial factors. Efforts should be made to develop strategies to reduce ERI and OC, improve physical working environment, and care for workers' family well-being, thereby mitigating the risk of depression among Chinese underground coal miners.

  3. Investigation of dust levels in different areas of underground coal mines.

    PubMed

    Onder, Mustafa; Onder, Seyhan; Akdag, Tuncay; Ozgun, Firat

    2009-01-01

    Dust concentration levels in underground coal mines are of primary importance and have to be controlled to prevent pulmonary disease in miners. Different mining areas are exposed to different dust levels and to minimize the probability of occupational respiratory disease of coal miners, it is necessary to evaluate dust concentration in the different working areas. This study aimed to evaluate dust concentration levels in different areas of underground coal mines. Data obtained from the measurements in 1978-2006 were evaluated with the analysis of variance (ANOVA) and the Tukey-Kramer procedure. It was concluded that production areas had higher dust concentration levels; thus, production workers may have respiratory disorders related to exposure to coal dust in their work environment.

  4. Characterization of a potential underground coal gasification site in the state of Washington

    SciTech Connect

    Bartel, L. C.; Dobecki, T. L.; Stone, R.

    1980-01-01

    Sandia Laboratories, Lawrence Livermore Laboratory, and the Laramie Energy Technology Center participated in a Department of Energy funded program to select and characterize a potential underground coal gasification test site in the State of Washington. A site in the Centralia-Chehalis coal district, satisfying certain criteria, was selected for characterization. The characterization procedures included surface and borehole techniques and hydrology tests. Geologic structure and coal seam structure and continuity were determined using surface geophysical prospecting (seismic and electromagnetic surveys) and borehole geophysical (logging and cross-borehole, in-seam seismic) techniques. A complete suite of geophysical logs was taken in eight exploratory boreholes to determine lithology and properties of the coal and surrounding strata. Coal cores taken from four different exploratory boreholes were analyzed to determine coal quality. Results of the characterization show that the coal seam of interest is approximately 47 ft thick at a depth of 570 to 600 ft at the site. The seam is characterized by high ash content, relatively low overall heating value, and a low permeability. The site appears suitable for conducting an underground coal gasification test.

  5. Radio Active Waste Management: Underground Repository Method

    SciTech Connect

    Rudrapati Sandesh Kumar; Payal Shirvastava

    2002-07-01

    Finding a solution for nuclear waste is a key issue, not only for the protection of the environment but also for the future of the nuclear industry. Ten years from now, when the first decisions for the replacement of existing nuclear power plants will have to be made, The general public will require to know the solution for nuclear waste before accepting new nuclear plants. In other words, an acceptable solution for the management of nuclear waste is a prerequisite for a renewal of nuclear power. Most existing wastes are being stored in safe conditions waiting for permanent solution, with some exceptions in the former Eastern Bloc. Temporary surface or shallow storage is a well known technique widely used all over the world. A significant research effort has been made by the author of this paper in the direction of underground repository. The underground repository appears to be a good solution. Trying to transform dangerous long lived radionuclides into less harmful short lived or stable elements is a logical idea. It is indeed possible to incinerate or transmute heavy atoms of long lived elements in fast breeder reactors or even in pressurised or boiling water reactors. There are also new types of reactors which could be used, namely accelerator driven systems. High level and long lived wastes (spent fuel and vitrified waste) contain a mixture of high activity (heat producing) short lived nuclides and low activity long lived alpha emitting nuclides. To avoid any alteration due to temperature of the engineered or geological barrier surrounding the waste underground, it is necessary to store the packages on the surface for several decades (50 years or more) to allow a sufficient temperature decrease before disposing of them underground. In all cases, surface (or shallow) storage is needed as a temporary solution. This paper gives a detailed and comprehensive view of the Deep Geological Repository, providing a pragmatic picture of the means to make this method, a

  6. 78 FR 35975 - Proposed Information Collection; Comment Request; Safety Standards for Underground Coal Mine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... Underground Coal Mine Ventilation--Belt Entry Used as an Intake Air Course To Ventilate Working Sections and... and approved by the district manager in the mine ventilation plan and operators must follow a number... operator must include in a ventilation plan a justification that the use of air from a belt entry...

  7. 75 FR 20918 - High-Voltage Continuous Mining Machine Standard for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF LABOR Mine Safety and Health Administration 30 CFR Parts 18 and 75 RIN 1219-AB34 High-Voltage Continuous Mining Machine Standard for Underground Coal Mines Correction In rule document 2010-7309 beginning on page...

  8. Distributed optical fiber temperature sensor applied in underground coal gasification system

    NASA Astrophysics Data System (ADS)

    Wang, Jianfeng; Hu, Chuanlong; Zhang, Zaixuan; Gong, Huaping; Jin, Yongxing; Shen, Changyu

    2010-12-01

    Distributed optical fiber temperature sensor (DTS) for underground coal gasification (UCG) system using is studied in this paper. By measuring temperature of reacting mine gasification process can be controlled. Calibration of DTS and experiment result are introduced. The results show that, DTS can play an important role in UCG systems.

  9. 75 FR 57849 - Maintenance of Incombustible Content of Rock Dust in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ...- Hands-on training for miners in the use of self-contained self-rescue (SCSR) devices (52 FR 24373, June 30, 1987); Training and mine evacuation procedures for underground coal mines (67 FR 76658, Dec. 12... emergency evacuations (71 FR 12252, Mar. 9, 2006); and Sealing of abandoned areas (72 FR 28797, May 22,...

  10. Requirements for the conceptual design of advanced underground coal extraction systems

    NASA Technical Reports Server (NTRS)

    Gangal, M. D.; Lavin, M. L.

    1981-01-01

    Conceptual design requirements are presented for underground coal mining systems having substantially improved performance in the areas of production cost and miner safety. Mandatory performance levels are also set for miner health, environmental impact, and coal recovery. In addition to mandatory design goals and constraints, a number of desirable system characteristics are identified which must be assessed in terms of their impact on production cost and their compatibility with other system elements. Although developed for the flat lying, moderately thick seams of Central Appalachia, these requirements are designed to be easily adaptable to other coals.

  11. Critical parameters for coarse coal underground slurry haulage systems

    NASA Technical Reports Server (NTRS)

    Maynard, D. P.

    1981-01-01

    Factors are identified which must be considered in meeting the requirements of a transportation system for conveying, in a pipeline, the coal mined by a continuous mining machine to a storage location neat the mine entrance or to a coal preparation plant located near the surface. For successful operation, the slurry haulage the system should be designed to operated in the turbulent flow regime at a flow rate at least 30% greater than the deposition velocity (slurry flow rate at which the solid particles tend to settle in the pipe). The capacity of the haulage system should be compatible with the projected coal output. Partical size, solid concentration, density, and viscosity of the suspension are if importance as well as the selection of the pumps, pipes, and valves. The parameters with the greatest effect on system performance ar flow velocity, pressure coal particle size, and solids concentration.

  12. 78 FR 48593 - Refuge Alternatives for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... and Health (NIOSH) to conduct research and tests concerning the use of refuge chambers in underground... Psychological Factors, and Additional Requests for Information. Continued development of refuge equipment and... applicant or a third- party must test the refuge alternative or component. The applicant, usually...

  13. Geology of the Hanna Formation, Hanna Underground Coal Gasification Site, Hanna, Wyoming

    SciTech Connect

    Oliver, R.L.; Youngberg, A.D.

    1984-01-01

    The Hanna Underground Coal Gasification (UCG) study area consists of the SW1/4 of Section 29 and the E1/2SE1/4 of Section 30 in Township 22 North, Range 81 West, Wyoming. Regionally, this is located in the coal-bearing Hanna Syncline of the Hanna Basin in southeast Wyoming. The structure of the site is characterized by beds dipping gently to the northeast. An east-west fault graben complex interrupts this basic trend in the center of the area. The target coal bed of the UCG experiments was the Hanna No. 1 coal in the Hanna Formation. Sedimentary rocks comprising the Hanna Formation consist of a sequence of nonmarine shales, sandstones, coals and conglomerates. The overburden of the Hanna No. 1 coal bed at the Hanna UCG site was divided into four broad local stratigraphic units. Analytical studies were made on overburden and coal samples taken from cores to determine their mineralogical composition. Textural and mineralogical characteristics of sandstones from local stratigraphic units A, B, and C were analyzed and compared. Petrographic analyses were done on the coal including oxides, forms of sulfur, pyrite types, maceral composition, and coal rank. Semi-quantitative spectrographic and analytic geochemical analyses were done on the overburden and coal and relative element concentrations were compared. Trends within each stratigraphic unit were also presented and related to depositional environments. The spectrographic analysis was also done by lithotype. 34 references, 60 figures, 18 tables.

  14. Geologic considerations in underground coal mining system design

    NASA Technical Reports Server (NTRS)

    Camilli, F. A.; Maynard, D. P.; Mangolds, A.; Harris, J.

    1981-01-01

    Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucy is analyzed using both the developed baseline mine concept and the traditional geologic investigative approach.

  15. 76 FR 11187 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... Coal Mines for Violations of Mandatory Health or Safety Standards AGENCY: Mine Safety and Health... in Underground Coal Mines for Violations of Mandatory Health or Safety Standards. It proposed... coal mines. This extension gives commenters an additional 30 days to comment on the proposed...

  16. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR...

  17. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR...

  18. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Bonding requirements for underground coal mines and long-term coal-related surface facilities and structures. 800.17 Section 800.17 Mineral Resources... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS BOND AND INSURANCE REQUIREMENTS FOR...

  19. Geologic considerations in underground coal mining system design

    SciTech Connect

    Camilli, F.A.; Maynard, D.P.; Mangolds, A.; Harris, J.

    1981-10-01

    Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucky, is next analyzed, using both the new baseline mine concept and traditional geologic investigative approach. The baseline mine concept presented is intended as a framework, providing a consistent basis for further analyses to be subsequently conducted in other geographic regions. The baseline mine concept is intended as a tool to give system designers a more realistic feel of the mine environment and will hopefully lead to acceptable alternatives for advanced coal extraction system.

  20. Economic baselines for current underground coal mining technology

    NASA Technical Reports Server (NTRS)

    Mabe, W. B.

    1979-01-01

    The cost of mining coal using a room pillar mining method with continuous miner and a longwall mining system was calculated. Costs were calculated for the years 1975 and 2000 time periods and are to be used as economic standards against which advanced mining concepts and systems will be compared. Some assumptions were changed and some internal model stored data was altered from the original calculations procedure chosen, to obtain a result that more closely represented what was considered to be a standard mine. Coal seam thicknesses were varied from one and one-half feet to eight feet to obtain the cost of mining coal over a wide range. Geologic conditions were selected that had a minimum impact on the mining productivity.

  1. A review of the factors influencing the physicochemical characteristics of underground coal gasification

    SciTech Connect

    Yang, L.H.

    2008-07-01

    In this article, the physicochemical characteristics of the oxidation zone, the reduction zone, and the destructive distillation and dry zone in the process of underground coal gasification (UCG) were explained. The effect of such major factors as temperature, coal type, water-inrush or -intake rate, the quantity and quality of wind blasting, the thickness of coal seams, operational pressure, the length, and the section of gasification gallery on the quality of the underground gas and their interrelationship were discussed. Research showed that the temperature conditions determined the underground gas compositions; the appropriate water-inrush or -intake rate was conducive to the improvement in gas heat value; the properties of the gasification agent had an obvious effect on the compositions and heat value of the product gas. Under the cyclically changing pressure, heat losses decreased by 60%, with the heat efficiency and gasification efficiency being 1.4 times and 2 times those of constant pressure, respectively. The test research further proved that the underground gasifier with a long channel and a big cross-section, to a large extent, improved the combustion-gasification conditions.

  2. Numerical modeling of open pit (OP) to underground (UG) transition in coal mining

    NASA Astrophysics Data System (ADS)

    Nguyen, Phu Minh Vuong; Niedbalski, Zbigniew

    2016-09-01

    The primary objective of the present paper is an attempt at evaluating the influence of sub-level caving operations on the slope stability of a still-functioning open pit coal mine in Vietnam. Initially, various methods of predicting the impact of underground mining on surface stability are discussed. Those theoretical considerations were later utilized in the process of constructing a Flac-2D-software-based numerical model for calculating the influence of underground operation on the deformation and possible loss of stability of an open pit slope. The numerical analysis proved that the values of open pit slope displacements were affected mainly by underground exploitation depth, direction of operation (i.e., from one slope to the other) and the distance from the slope plane. Real geomechanical strata parameters from the Vietnamese coal basin of Cam Pha were used in the modeling process. The paper is, therefore, a critical review of the hitherto proposed methods of predicting the impact of underground operation (UG) on open pit mining (OP), illustrated with selected examples of case studies on OP-UG interaction, followed by an original experiment based on numerical modeling method. This is first such study for the genuine conditions of the coal mining in Vietnam. The obtained results, however, should not be generalized due to a highly specific character of the analyzed phenomenon of mining-induced surface deformation. The practical implications of the study may occur extremely useful in the case of an UG-OP transition. Such a transition is often necessary for both technical and economical reasons, as in some coal basins open pit operations at greater depths occur unfeasible, which calls for a proper selection of parameters for a planned underground operation.

  3. VRLane: a desktop virtual safety management program for underground coal mine

    NASA Astrophysics Data System (ADS)

    Li, Mei; Chen, Jingzhu; Xiong, Wei; Zhang, Pengpeng; Wu, Daozheng

    2008-10-01

    VR technologies, which generate immersive, interactive, and three-dimensional (3D) environments, are seldom applied to coal mine safety work management. In this paper, a new method that combined the VR technologies with underground mine safety management system was explored. A desktop virtual safety management program for underground coal mine, called VRLane, was developed. The paper mainly concerned about the current research advance in VR, system design, key techniques and system application. Two important techniques were introduced in the paper. Firstly, an algorithm was designed and implemented, with which the 3D laneway models and equipment models can be built on the basis of the latest mine 2D drawings automatically, whereas common VR programs established 3D environment by using 3DS Max or the other 3D modeling software packages with which laneway models were built manually and laboriously. Secondly, VRLane realized system integration with underground industrial automation. VRLane not only described a realistic 3D laneway environment, but also described the status of the coal mining, with functions of displaying the run states and related parameters of equipment, per-alarming the abnormal mining events, and animating mine cars, mine workers, or long-wall shearers. The system, with advantages of cheap, dynamic, easy to maintenance, provided a useful tool for safety production management in coal mine.

  4. Evaluation of electricity generation from underground coal fires and waste banks

    SciTech Connect

    Chiasson, A.D.; Yavuzturk, C.; Walrath, D.E.

    2007-06-15

    A temperature response factors model of vertical thermal energy extraction boreholes is presented to evaluate electricity generation from underground coal fires and waste banks. Sensitivity and life-cycle cost analyses are conducted to assess the impact of system parameters on the production of 1 MW of electrical power using a theoretical binary-cycle power plant. Sensitivity analyses indicate that the average underground temperature has the greatest impact on the exiting fluid temperatures from the ground followed by fluid flow rate and ground thermal conductivity. System simulations show that a binary-cycle power plant may be economically feasible at ground temperatures as low as 190 {sup o}C.

  5. Underground coal operators install several new longwall mining systems

    SciTech Connect

    Fiscor, S.

    2008-02-15

    Several new names appear in the annual US Longwall Census, but the population remains the same: 52 although the number of longwall mines dropped from 40 to 47. CONSOL Energy remains the leader with 12 faces. Robert E. Murray owns 8 longwall mines followed by Arch Coal with 5 and Foundation Coal with 3. West Virginia has 13 longwalls followed by 9 in Pennsylvania, 7 in Utah and 6 in Alabama. The article describes CONSOL Energy's operations. A detailed table gives for each longwall installation, the ownership, seam height, cutting height, panel width and length, overburden, number of gate entries, depth of cut, model of equipment used (shearer, haulage system, roof support, face conveyor, stage loader, crusher, electrical controls and voltage to face). 2 tabs.

  6. Assessment of the chemical, microbiological and toxicological aspects of post-processing water from underground coal gasification.

    PubMed

    Pankiewicz-Sperka, Magdalena; Stańczyk, Krzysztof; Płaza, Grażyna A; Kwaśniewska, Jolanta; Nałęcz-Jawecki, Grzegorz

    2014-10-01

    The purpose of this paper is to provide a comprehensive characterisation (including chemical, microbiological and toxicological parameters) of water after the underground coal gasification (UCG) process. This is the first report in which these parameters were analysed together to assess the environmental risk of the water generated during the simulation of the underground coal gasification (UCG) process performed by the Central Mining Institute (Poland). Chemical analysis of the water indicated many hazardous chemical compounds, including benzene, toluene, ethylbenzene, xylene, phenols and polycyclic aromatic hydrocarbons (PAHs). Additionally, large quantities of inorganic compounds from the coal and ashes produced during the volatilisation process were noted. Due to the presence of refractory and inhibitory compounds in the post-processing water samples, the microbiological and toxicological analyses revealed the high toxicity of the UCG post-processing water. Among the tested microorganisms, mesophilic, thermophilic, psychrophilic, spore-forming, anaerobic and S-oxidizing bacteria were identified. However, the number of detected microorganisms was very low. The psychrophilic bacteria dominated among tested bacteria. There were no fungi or Actinomycetes in any of the water samples. Preliminary study revealed that hydrocarbon-oxidizing bacteria were metabolically active in the water samples. The samples were very toxic to the biotests, with the TU50 reaching 262. None of biotests was the most sensitive to all samples. Cytotoxicity and genotoxicity testing of the water samples in Vicia uncovered strong cytotoxic and clastogenic effects. Furthermore, TUNEL indicated that all of the water samples caused sporadic DNA fragmentation in the nuclei of the roots.

  7. Review of toxicity studies performed on an underground coal gasification condensate water

    SciTech Connect

    Barker, F.P.

    1987-09-01

    Three studies related to the toxicity of underground coal gasification (UCG) waters have bee conducted: (1) toxicity study of UCG water and its fractions as determined by the Microtox test, (2) toxicity study of biotreated UCG water as determined by the Microtox test, and (3) toxicity study of UCG water to macroinvertebrates. The results of these studies are summarized herein. The gas condensate water from the UCG process is extremely toxic as determined by assays with photoluminescent bacteria (Microtox), benthic (bottom-dwelling) macroinvertebrates (mayflies), and Daphnia magna (water flea). Microtox bioassays reveal that the toxic components of the water reside in both the organophilic and hydrophilic fractions, although the organophilic fraction is notably more toxic. A sequential treatment process reduced the toxicity of the UCG water, as measured by the Microtox test. Solvent extraction (to remove phenols) followed by ammonia stripping yielded a less toxic water. Additional treatment by activated sludge further reduced toxicity. Finally, the addition of powdered activated carbon to the activated sludge yielded the least toxic water. A bioassay technique was developed for lotic (running water) macroinvertebrates (Drunella doddsi and Iron longimanus). The toxicity results were compared with results from the traditional test animal, Daphnia magna. Short-term exposures to the UCG waters were more toxic to Daphnia magna than to Drunella doddsi or Iron longimanus, although the toxicity values begin to merge with longer test exposure. The greater toxicity seems to be related to a thinner exoskeleton. 26 refs., 2 figs., 6 tabs.

  8. High resolution seismic survey (of the) Rawlins, Wyoming underground coal gasification area. Final report

    SciTech Connect

    Youngberg, A.D.; Berkman, E.; Orange, A.S.

    1983-01-01

    In October 1982, a high resolution seismic survey was conducted at the Gulf Research and Development Company's underground coal gasification test site near Rawlins, Wyoming. The objectives of the survey were to utilize high resolution seismic technology to locate and characterize two underground coal burn zones. Seismic data acquisition and processing parameters were specifically designed to emphasize reflections at the shallow depths of interest. A three-dimensional grid of data was obtained over the Rawlins burn zones. Processing included time varying filters, trace composition, and two-dimensional areal stacking of the data in order to identify burn zone anomalies. An anomaly was discernable resulting from the rubble-collapse cavity associated with the burn zone which was studied in detail at the Rawlins 1 and 2 test sites. 21 refs., 20 figs.

  9. Factors associated with disabling injuries in underground coal mines. [USA; bituminous mines

    SciTech Connect

    Not Available

    1982-06-01

    This study compared conditions, practices, and attitudes at underground bituminous coal mines having low injury incidence rates with those found at mines having high injury incidence rates. Several characteristics common to many of the low incidence rate mines that differentiate them from those having high incidence rates were identified. (1) Training programs: adequate and relevant training materials; qualified instructors; restricted classroom size to encourage student participation; and tailored to meet individual miner needs. (2) Management/labor relations tend to have a positive impact upon a mine's accident and injury experience when: both management and labor have a positive attitude toward safety and health; open lines of communication permit management and labor to jointly reconcile problems affecting safety and health; representatives of labor become actively involved in issues concerning safety, health and production; and management and labor identify and accept their joint responsibility for correcting unsafe conditions and practices. (3) Safety and health conditions are improved when: standard operating procedures are established, understood, and implemented; management equitably enforces established policies concerning absenteeism, job assignments, and standard operating procedures; formal safety and health programs are communicated to all employees and subsequently implemented by management and labor; safety department has top management support in terms of funds, manpower, and the authority necessary to implement the safety and health program; mine plans are thoroughly reviewed by management, labor, and MSHA to insure that such plans incorporate measures to adequately control the physical environment of a coal mine; and MSHA inspection activity is most effective when the inspectors encourage increased cooperative interaction between themselves, mine management, and labor.

  10. Advancing apparatus for coal-mining machine in underground mine

    SciTech Connect

    Schupphaus, H.

    1984-05-29

    A coal-mining machine is advanced along a face conveyor by providing a rack extending along the conveyor and a plurality of advancing units. Each advancing unit includes a hydraulic motor to rotate a drive wheel while meshing with the teeth of the gear rack. The advancing units arranged side-by-side along the mining machine have curved end faces to abut against one another. Runners are provided on the advancing units at the opposite ends of the mining machine which extend partially around the rack for guiding and maintaining the drive wheel engaged with the teeth of the rack.

  11. Coal reserves and resources as well as potentials for underground coal gasification in connection with carbon capture and storage (CCS)

    NASA Astrophysics Data System (ADS)

    Ilse, Jürgen

    2010-05-01

    . However, these otherwise unprofitable coal deposits can be mined economically by means of underground coal gasification, during which coal is converted into a gaseous product in the deposit. The synthesis gas can be used for electricity generation, as chemical base material or for the production of petrol. This increases the usability of coal resources tremendously. At present the CCS technologies (carbon capture and storage) are a much discussed alternative to other CO2 abatement techniques like efficiency impovements. The capture and subsequent storage of CO2 in the deposits created by the actual underground gasification process seem to be technically feasible.

  12. Underground

    ERIC Educational Resources Information Center

    Vrchota, Janet

    1974-01-01

    At a time when the future of New York's subway system looked bleak, new underground zoning legislation (the first ever) has been enacted. This new law requires buildings constructed near a subway station to provide transit easement space to allow public access to the subway through the building property. (MA)

  13. Rapid Qualitative Risk Assessment for Contaminant Leakage From Coal Seams During Underground Coal Gasification and CO2 Injection

    SciTech Connect

    Friedmann, S J

    2004-07-02

    One of the major risks associated with underground coal gasification is contamination of local aquifers with a variety of toxic compounds. It is likely that the rate, volume, extent, and concentrations of contaminant plumes will depend on the local permeability field near the point of gasification. This field depends heavily on the geological history of stratigraphic deposition and the specifics of stratigraphic succession. Some coals are thick and isolated, whereas others are thinner and more regionally expressed. Some coals are overlain by impermeable units, such as marine or lacustrine shales, whereas others are overlain by permeable zones associated with deltaic or fluvial successions. Rapid stratigraphic characterization of the succession provides first order information as to the general risk of contaminant escape, which provides a means of ranking coal contaminant risks by their depositional context. This risk categorization could also be used for ranking the relative risk of CO{sub 2} escape from injected coal seams. Further work is needed to verify accuracy and provide some quantification of risks.

  14. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Bonding requirements for underground coal mines... OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR BONDING AND INSURANCE... COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS § 800.17 Bonding requirements...

  15. 30 CFR 800.17 - Bonding requirements for underground coal mines and long-term coal-related surface facilities and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Bonding requirements for underground coal mines... OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR BONDING AND INSURANCE... COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS § 800.17 Bonding requirements...

  16. Mining injuries in Serbian underground coal mines -- a 10-year study.

    PubMed

    Stojadinović, Saša; Svrkota, Igor; Petrović, Dejan; Denić, Miodrag; Pantović, Radoje; Milić, Vitomir

    2012-12-01

    Mining, especially underground coal mining, has always been a dangerous occupation. Injuries, unfortunately, even those resulting in death, are one of the major occupational risks that all miners live with. Despite the fact that all workers are aware of the risk, efforts must be and are being made to increase the safety of mines. Injury monitoring and data analysis can provide us with valuable data on the causes of accidents and enable us to establish a correlation between the conditions in the work environment and the number of injuries, which can further lead to proper preventive measures. This article presents the data on the injuries in Serbian coal mines during a 10-year period (2000-2009). The presented results are only part of an ongoing study whose aim is to assess the safety conditions in Serbian coal mines and classify them according to that assessment.

  17. Engineering and economical aspects of selection of coal conveying system in Czech underground mines

    SciTech Connect

    Polak, J.; Drozdek, K.

    1995-12-31

    Coal, rock and material conveying and men-riding presently represent the critical activities of the mining process. Coal when cut out in the face is continually transported towards the expedition from a mine. The selection of coal conveying system from face to the skip complex or directly to the surface depends mainly on the quantity of coal conveyed, the hauling distance, the local and time concentration of production and the lifetime of a system. Possibilities of belt conveying and combined belt conveying and locomotive haulage, used in Czech coal mines, are analyzed from the point of view of technological advantages and disadvantages and compared according to the economic parameters.

  18. LLNL Underground-Coal-Gasification Project. Quarterly progress report, July-September 1981

    SciTech Connect

    Stephens, D.R.; Clements, W.

    1981-11-09

    We have continued our laboratory studies of forward gasification in small blocks of coal mounted in 55-gal drums. A steam/oxygen mixture is fed into a small hole drilled longitudinally through the center of the block, the coal is ignited near the inlet and burns toward the outlet, and the product gases come off at the outlet. Various diagnostic measurements are made during the course of the burn, and afterward the coal block is split open so that the cavity can be examined. Development work continues on our mathematical model for the small coal block experiments. Preparations for the large block experiments at a coal outcrop in the Tono Basin of Washington State have required steadily increasing effort with the approach of the scheduled starting time for the experiments (Fall 1981). Also in preparation is the deep gasification experiment, Tono 1, planned for another site in the Tono Basin after the large block experiments have been completed. Wrap-up work continues on our previous gasification experiments in Wyoming. Results of the postburn core-drilling program Hoe Creek 3 are presented here. Since 1976 the Soviets have been granted four US patents on various aspects of the underground coal gasification process. These patents are described here, and techniques of special interest are noted. Finally, we include ten abstracts of pertinent LLNL reports and papers completed during the quarter.

  19. Chemometric Study of the Ex Situ Underground Coal Gasification Wastewater Experimental Data.

    PubMed

    Smoliński, Adam; Stańczyk, Krzysztof; Kapusta, Krzysztof; Howaniec, Natalia

    2012-11-01

    The main goal of the study was the analysis of the parameters of wastewater generated during the ex situ underground coal gasification (UCG) experiments on lignite from Belchatow, and hard coal from Ziemowit and Bobrek coal mines, simulated in the ex situ reactor. The UCG wastewater may pose a potential threat to the groundwater since it contains high concentrations of inorganic (i.e., ammonia nitrogen, nitrites, chlorides, free and bound cyanides, sulfates and trace elements: As, B, Cr, Zn, Al, Cd, Co, Mn, Cu, Mo, Ni, Pb, Hg, Se, Ti, Fe) and organic (i.e., phenolics, benzene and their alkyl derivatives, and polycyclic aromatic hydrocarbons) contaminants. The principal component analysis and hierarchical clustering analysis enabled to effectively explore the similarities and dissimilarities between the samples generated in lignite and hard coal oxygen gasification process in terms of the amounts and concentrations of particular components. The total amount of wastewater produced in lignite gasification process was higher than the amount generated in hard coal gasification experiments. The lignite gasification wastewater was also characterized by the highest contents of acenaphthene, phenanthrene, anthracene, fluoranthene, and pyrene, whereas hard coal gasification wastewater was characterized by relatively higher concentrations of nitrites, As, Cr, Cu, benzene, toluene, xylene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene.

  20. Use of foaming mud cement to terminate underground coal fires and to control subsidence of burn cavities. Final report

    SciTech Connect

    Lucero, R.F.

    1988-09-29

    Foaming Mud Cement (FMC) is a class of materials related to cellular cement studied and developed for the purpose of addressing Abandoned Mine Land problems. During the 2-year program, significant advances were made using a specific methodology that properly employed will enable the successful termination of many surface and underground coal mine fires. Fundamental but key developments attained were: the ability to effectively isolate burning coal from the available air by effectively penetrating burning coal rubble with heat-resistive FMC and encapsulating and isolation of a wide range of coal particle sizes, resulting in permanent coal-fire termination by air exclusion. The materials developed were specifically designed to terminate underground coal fires and preventing further subsidence.

  1. Instrumentation for optimizing an underground coal-gasification process

    NASA Astrophysics Data System (ADS)

    Seabaugh, W.; Zielinski, R. E.

    1982-06-01

    While the United States has a coal resource base of 6.4 trillion tons, only seven percent is presently recoverable by mining. The process of in-situ gasification can recover another twenty-eight percent of the vast resource, however, viable technology must be developed for effective in-situ recovery. The key to this technology is system that can optimize and control the process in real-time. An instrumentation system is described that optimizes the composition of the injection gas, controls the in-situ process and conditions the product gas for maximum utilization. The key elements of this system are Monsanto PRISM Systems, a real-time analytical system, and a real-time data acquisition and control system. This system provides from complete automation of the process but can easily be overridden by manual control. The use of this cost effective system can provide process optimization and is an effective element in developing a viable in-situ technology.

  2. Oral Health Status of Underground Coal Mine Workers of Ramakrishnapur, Adilabad District, Telangana, India - A Cross-Sectional Study

    PubMed Central

    Abbas, Irram; Mohammad, Shakeel Anjum; Peddireddy, Parthasarathi Reddy; Mocherla, Monica; Koppula, Yadav Rao

    2016-01-01

    Introduction Standard of living and quality of life of people has been improved by the expanding industrial activity, but at the other end it has created many occupational hazards. Coal mining is one of the major age old industries throughout the world and in India. Till date very less literature is available worldwide and in India concerning the oral health status of laborers in this field. Aim To assess the oral health status of underground coal mine workers, oral hygiene practices, alcohol and tobacco habits. Materials and Methods A cross-sectional descriptive study was conducted among the underground coal mine workers of a coal mine located in Adilabad district, Telangana, according to the criteria described in the World Health Organization (WHO) Oral Health Assessment form (2013). Statistical analysis Descriptive statistics were done. Results A total of 356 workers participated in the study. Ninety percent of the subjects were with tobacco and/or alcohol habits. Dental caries was prevalent in more than half (55.6%) of the study subjects with a mean DMFT of 2.32±2.99. About 48.3% study subjects were with untreated dental caries and 20.3% subjects were with missing teeth. DMFT ≤=6 was seen in 45.5% of subjects and 10.1% have DMFT scores ≥=7. Periodontal disease was the most prevalent condition seen in the population with 94.4% subjects having unhealthy periodontium in terms of gingival bleeding and/or periodontal pockets. About 186 (52.25%) and 145 (40.73%) of subjects were with 0-3mm and 4-5mm loss of attachment respectively. Fourteen percent of population showed dental traumatic injuries. Conclusion The findings highlighted the high caries prevalence, higher periodontal disease, traumatic injuries which requires immediate intervention. PMID:26894171

  3. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply

    NASA Astrophysics Data System (ADS)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

    2013-04-01

    Underground coal gasification allows for the utilisation of coal reserves that are economically not exploitable due to complex geological boundary conditions. The present study investigates underground coal gasification as a potential economic approach for conversion of deep-seated coals into a high-calorific synthesis gas to support the Bulgarian energy system. Coupling of underground coal gasification providing synthesis gas to fuel a combined cycle gas turbine with carbon capture and storage is considered to provide substantial benefits in supporting the Bulgarian energy system with a competitive source of energy. In addition, underground voids originating from coal consumption increase the potential for geological storage of carbon dioxide resulting from the coupled process of energy production. Cost-effectiveness, energy consumption and carbon dioxide emissions of this coupled process are investigated by application of a techno-economic model specifically developed for that purpose. Capital (CAPEX) and operational expenditure (OPEX) are derived from calculations using six dynamic sub-models describing the entire coupled process and aiming at determination of the levelised costs of electricity generation (COE). The techno-economic model is embedded into an energy system-modelling framework to determine the potential integration of the introduced low carbon energy production technology into the Bulgarian energy system and its competitiveness at the energy market. For that purpose, boundary conditions resulting from geological settings as well as those determined by the Bulgarian energy system and its foreseeable future development have to be considered in the energy system-modelling framework. These tasks comprise integration of the present infrastructure of the Bulgarian energy production and transport system. Hereby, the knowledge on the existing power plant stock and its scheduled future development are of uttermost importance, since only phasing-out power

  4. Hanna, Wyoming underground coal gasification data base. Volume 6. Hanna IVA and IVB field test research report

    SciTech Connect

    Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

    1985-08-01

    This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. The reports in this series include: The Hanna IV test was designed as the first underground coal gasification test using commercial well spacings of 100 and 150 feet between well pairs in a linear 3-well pattern. The test was initiated in late 1977 and completed in late 1979. This long duration was due to unfavorable geologic conditions (faulting) which could not be successfully overcome resulting in the test being split into Hanna IVA and Hanna IVB with about one year between the conduct of each. This report covers: (1) specific site selection and characteristics; (2) test objectives; (3) facility description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 5 refs., 19 figs., 13 tabs.

  5. Moving up down in the mine: Sex segregation in underground coal mining

    SciTech Connect

    Tallichet, S.E.

    1991-01-01

    This study employs both individualist theories of human capital and sex-role spillover and structuralist theories from the socialist feminist perspective, emphasizing the formal and informal organizational factors operating within a patriarchal capitalist society to explain job-level sex segregation among underground coal miners. Both quantitative and qualitative data on women in coal mining are used to evaluate these theories. A logistic regression analysis performed on data obtained in 1986 by the US Bureau of Mines demonstrates that while human capital variables are predictive of a miner's job rank, variation in job rank attributed to gender is even greater. For men, training and experience in mining combine to increase the probability of being in a more skilled job in a coal mine. Age and seniority are curvilinearly related to the variation in men's job rank. For women, only age accounts for their advancement such that younger, not older women who have slightly more mining experience, occupy the more skilled positions in the work place. These findings suggest that, in terms of job advancement, men enjoy a greater return on their human capital investments than women, and that factors other than those representing a miner's human capital are affecting women's positions underground more than men's.

  6. Method of producing synthesis gas by underground gasification of coal using specific well configuration

    SciTech Connect

    Gash, B.W.; Arri, L.E.; Hunt, E.B. Jr.; Parrish, D.R.

    1987-03-10

    A method is described of producing synthesis gas by the underground gasification of coal in individual noninteracting cavities formed by the gasification of the coal in a thick coal seam which is generally horizontal under an overburden and wherein loose coal and char formed from the combustion of the coal in the seam have a known angle of repose. The seam is provided with an injection well positioned at an angle with respect to the horizontal of less than the angle of repose and with a production well positioned at an angle with respect to the horizontal of greater than the angle of repose but less than 90/sup 0/. The distance between the wells decreases toward the bottom of the seam. The method comprises linking the wells, initiating combustion near the bottom of the seam and thereby producing a cavity in the seam, introducing an oxygen-containing gas mixture into the seam through the injection well, and removing combustion products through the production well.

  7. A Closed Network Queue Model of Underground Coal Mining Production, Failure, and Repair

    NASA Technical Reports Server (NTRS)

    Lohman, G. M.

    1978-01-01

    Underground coal mining system production, failures, and repair cycles were mathematically modeled as a closed network of two queues in series. The model was designed to better understand the technological constraints on availability of current underground mining systems, and to develop guidelines for estimating the availability of advanced mining systems and their associated needs for spares as well as production and maintenance personnel. It was found that: mine performance is theoretically limited by the maintainability ratio, significant gains in availability appear possible by means of small improvements in the time between failures the number of crews and sections should be properly balanced for any given maintainability ratio, and main haulage systems closest to the mine mouth require the most attention to reliability.

  8. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    PubMed

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-07-21

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  9. A Review of Mine Rescue Ensembles for Underground Coal Mining in the United States

    PubMed Central

    Kilinc, F. Selcen; Monaghan, William D.; Powell, Jeffrey B.

    2016-01-01

    The mining industry is among the top ten industries nationwide with high occupational injury and fatality rates, and mine rescue response may be considered one of the most hazardous activities in mining operations. In the aftermath of an underground mine fire, explosion or water inundation, specially equipped and trained teams have been sent underground to fight fires, rescue entrapped miners, test atmospheric conditions, investigate the causes of the disaster, or recover the dead. Special personal protective ensembles are used by the team members to improve the protection of rescuers against the hazards of mine rescue and recovery. Personal protective ensembles used by mine rescue teams consist of helmet, cap lamp, hood, gloves, protective clothing, boots, kneepads, facemask, breathing apparatus, belt, and suspenders. While improved technology such as wireless warning and communication systems, lifeline pulleys, and lighted vests have been developed for mine rescuers over the last 100 years, recent research in this area of personal protective ensembles has been minimal due to the trending of reduced exposure of rescue workers. In recent years, the exposure of mine rescue teams to hazardous situations has been changing. However, it is vital that members of the teams have the capability and proper protection to immediately respond to a wide range of hazardous situations. Currently, there are no minimum requirements, best practice documents, or nationally recognized consensus standards for protective clothing used by mine rescue teams in the United States (U.S.). The following review provides a summary of potential issues that can be addressed by rescue teams and industry to improve potential exposures to rescue team members should a disaster situation occur. However, the continued trending in the mining industry toward non-exposure to potential hazards for rescue workers should continue to be the primary goal. To assist in continuing this trend, the mining industry

  10. The oxygen cost of an escape from an underground coal mine

    SciTech Connect

    Kamon, E.

    1983-07-01

    Six 27 to 63-year-old coal miners performed an 'escape' exercise from an underground mine along a passageway that required walking and running erect or stooped, duckwalking or crawling. The miners travelled at different speeds, for each mode of locomotion. The minute pulmonary ventilation, O/sub 2/ uptake and heart ratio, recorded continuously on magnetic tape, indicated similar average and peak values for all modes of locomotion. Compared to the aerobic capacity obtained during graded treadmill test to exhaustion, the average effort of the 'escape' was performed at 64% and the peak effort at 70% of the miners' aerobic capacity for an 'escape' time of 58 min.

  11. Underground coal mine monitoring with wireless sensor networks - article no. 10

    SciTech Connect

    Li, M.; Liu, Y.H.

    2009-03-15

    Environment monitoring in coal mines is an important application of wireless sensor networks (WSNs) that has commercial potential. We discuss the design of a Structure-Aware Self-Adaptive WSN system, SASA. By regulating the mesh sensor network deployment and formulating a collaborative mechanism based on a regular beacon strategy, SASA is able to rapidly detect structure variations caused by underground collapses. We further develop a sound and robust mechanism for efficiently handling queries under instable circumstances. A prototype is deployed in a real coal mine. We present our implementation experiences as well as the experimental results. To better evaluate the scalability and reliability of SASA, we also conduct a large-scale trace-driven simulation based on real data collected from the experiments.

  12. Medium frequency propagation characteristics of different transmission lines in an underground coal mine

    PubMed Central

    Li, Jingcheng; Waynert, Joseph A.; Whisner, Bruce G.

    2015-01-01

    A medium frequency (MF) communication system operating in an underground coal mine couples its signals to a long conductor, which acts as an MF transmission line (TL) in a tunnel to permit communications among transceivers along the line. The TL is generally the longest signal path for the system, and its propagation characteristics will have a major impact on the performance of the MF communication system. In this study, the propagation characteristics of three types of MF TLs in two layouts—on the roof and on the floor of a coal mine tunnel—were obtained in an effort to understand the propagation characteristics of different TLs in different locations. The study confirmed a low MF signal loss on all of these TLs. The study also found that the TLs in different layouts had substantially different propagation characteristics. The propagation characteristics of these different TLs in different layouts are presented in the paper. PMID:26203349

  13. Medium frequency propagation characteristics of different transmission lines in an underground coal mine.

    PubMed

    Li, Jingcheng; Waynert, Joseph A; Whisner, Bruce G

    A medium frequency (MF) communication system operating in an underground coal mine couples its signals to a long conductor, which acts as an MF transmission line (TL) in a tunnel to permit communications among transceivers along the line. The TL is generally the longest signal path for the system, and its propagation characteristics will have a major impact on the performance of the MF communication system. In this study, the propagation characteristics of three types of MF TLs in two layouts-on the roof and on the floor of a coal mine tunnel-were obtained in an effort to understand the propagation characteristics of different TLs in different locations. The study confirmed a low MF signal loss on all of these TLs. The study also found that the TLs in different layouts had substantially different propagation characteristics. The propagation characteristics of these different TLs in different layouts are presented in the paper.

  14. Remanent and rock magnetic properties at the Hanna, Wyoming underground coal gasification site: Hanna II phases 2 and 3 experiment

    SciTech Connect

    Geissman, J.W.; Callian, J.; Youngberg, A.D.

    1983-09-01

    Several underground coal gasification (UCG) experiments have been conducted in the Hanna No. 1 coal seam. During the fall, 1980, the Laramie Energy Technology Center performed a post-burn field study of the Hanna II, Phases 2 and 3 experiment at the Hanna UCG site. The field work consisted of high resolution seismic, drilling, coring, and geophysical logging. The Paleomagnetism Laboratory, Department of Geology, Colorado School of Mines, contributed to the post-burn study by doing remanent and rock magnetic measurement laboratory work on the core material. Funding was provided by the Laramie Energy Technology Center. The purpose of the study was to determine the nature of the remanent magnetism of the overburden Hanna Formation and changes in the remanence and magnetic mineralogy attending underground coal gasification experiments. With this information, further estimates of the thermal and chemical conditions reached during the conversion experiment could be made. The magnetization data, together with previous petrographic observations, suggest that magnetite is being formed in a reducing process at the expense of detrital ferromagnesian silicates and possible hematite and geothite in the overburden sediments. Thermal gradients immediately above the burn cavity are difficult to estimate; changes in magnetic properties of unaltered Hanna Formation overburden are activated at temperatures as low as 300/sup 0/C. The magnetic expression of the burn cavity should be able to be modelled as being due to a thin slab overlying the cavity. Pyrometamorphosed material that has collapsed into the cavity, should have any magnetization which is randomized due to collapse and therefore should be able to be incorporated into a magnetic anomaly model. 32 references, 27 figures.

  15. Underground coal mining disasters and fatalities--United States, 1900-2006.

    PubMed

    2009-01-02

    During a 5-month period in 2006, three underground coal mining incidents in the United States resulted in the deaths of 19 miners. All three incidents received nationwide attention, particularly the Sago Mine disaster, which occurred on January 2 and resulted in the deaths of 12 miners. The other two incidents, which occurred at the Alma No. 1 Mine on January 19 and the Darby No. 1 Mine on May 20, resulted in the deaths of two miners and five miners, respectively. The occurrence of three fatal incidents in 5 months was a departure from recent trends in underground coal mining safety. Before 2006, the number of mining disasters had decreased from a high of 20 in 1909 to an average of one every 4 years during 1985--2005. Deaths resulting from the three incidents were the stimulus for the Mine Improvement and New Emergency Response Act of 2006 (MINER Act), which amended the Mine Safety and Health Act of 1977 to improve safety, health, preparedness, and emergency response in U.S. mining. This report briefly describes the three 2006 mining incidents, reviews mining disasters in the United States during 1900--2006, and traces the effect of the disasters and the 2006 incidents on mining health and safety regulations.

  16. Exhaled nitric oxide levels and lung function changes of underground coal miners in Newcastle, Australia.

    PubMed

    Liu, Xiaohui; Salter, Amy; Thomas, Paul; Leigh, James; Wang, He

    2010-01-01

    The possibility of exhaled nitric oxide (eNO) in combination with lung function as a marker of airway inflammation produced by coal mining exposure was determined presuming that workers exposed to airborne hazards would possess different concentrations of eNO and decreased lung function indices, relative to control subjects recruited from the same area. The effect of smoking was also considered. A study (exposed) group comprising 186 male subjects (aged 19-58 yr) was recruited from Newcastle coal mining companies with 86 male subjects (aged 20-64 yr) from the same area, but working outside of the coal mining location, serving as controls. The parameters examined were eNO, lung function, and variables derived from an interview-administered questionnaire survey. After adjustment for age, body weight, and smoking status, no significant differences between exposed coal mining workers and controls were found for various lung function parameters. However, the exposed group was shown to have significantly lower concentrations of eNO. In the exposed group, forced expiratory volume in 1 s (FEV(1)), forced vital capacity (FVC), and FEV(1) (%) predicted were found to be significantly different between nonsmokers and smokers. The concentrations of eNO were not significantly different between smoking and nonsmokers within the exposed group. The consideration of nonsmokers alone showed that eNO was significantly lower in the exposed group compared to the control group. The consideration of smokers alone found that eNO was significantly lower in exposed subjects. In the exposed group, no significant association was detected between eNO levels and underground work duration but a significant negative association was shown between eNO and age. Data suggest that exposure to airborne hazards in coal mining is not significantly associated with lung function changes but is correlated with decreased eNO concentrations in exposed workers. While underground work duration was not found to

  17. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research.

    PubMed

    Murphy, M M

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.

  18. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    PubMed Central

    2015-01-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining. PMID:26549926

  19. Shale Failure Mechanics and Intervention Measures in Underground Coal Mines: Results From 50 Years of Ground Control Safety Research

    NASA Astrophysics Data System (ADS)

    Murphy, M. M.

    2016-02-01

    Ground control research in underground coal mines has been ongoing for over 50 years. One of the most problematic issues in underground coal mines is roof failures associated with weak shale. This paper will present a historical narrative on the research the National Institute for Occupational Safety and Health has conducted in relation to rock mechanics and shale. This paper begins by first discussing how shale is classified in relation to coal mining. Characterizing and planning for weak roof sequences is an important step in developing an engineering solution to prevent roof failures. Next, the failure mechanics associated with the weak characteristics of shale will be discussed. Understanding these failure mechanics also aids in applying the correct engineering solutions. The various solutions that have been implemented in the underground coal mining industry to control the different modes of failure will be summarized. Finally, a discussion on current and future research relating to rock mechanics and shale is presented. The overall goal of the paper is to share the collective ground control experience of controlling roof structures dominated by shale rock in underground coal mining.

  20. The siting of a prison complex above an abandoned underground coal mine

    SciTech Connect

    Marino, G.G.

    1997-12-31

    This paper discusses in detail the process undertaken to mitigate the effects of any future mine subsidence on prison structures proposed above old abandoned underground workings. The site for a proposed prison complex purchased by the State of Indiana was located in west-central Indiana and was undermined by an old abandoned room and pillar mine. The original plan for construction consisted of one phase. Based on a study of the mine map and subsurface verification of the extent of mining it was determined that all prison buildings and important structures could be placed above solid coal to the north. One masonry building, however, was located within the potential draw zone of mine works which still contained significant mine voids. Based on empirical data the subsidence potential was estimated and the building was accordingly designed to be mine subsidence resistant. It was decided that a phase two prison complex should be constructed adjacent to and just south of the Phase I complex. This complex would be directly above the underground workings. The first stage of design was to minimize subsidence potential by positioning the exposure of significant structures to the subjacent mining assuming the mine map was sufficiently accurate. Subsequently, an extensive subsurface investigation program was then undertaken to: (1) ascertain whether or not mine areas where buildings would be located were already collapsed and thus only nominal, if any, subsidence could occur in the future; and (2) verify the presence of solid coal areas within the mine as indicated on the mine map. Based on all the site information gathered subsidence profiles were developed from an empirical data base of subsidence events in the Illinois Coal Basin. As a result of this work many structures on the site required no or nominal subsidence considerations.

  1. Radiological study of exposure levels in El Maghara underground coal mine.

    PubMed

    Amer, Hany A; Shawky, S; Hussein, Mohamed I; Abd el-Hady, M L

    2002-08-01

    Coal is largely composed of organic matter, but it is the inorganic matter in coal minerals and trace elements that have been cited as possible causes of health, environmental and technological problems associated with the use of coal. Some trace elements in coal are naturally radioactive. These radioactive elements include uranium (U), thorium (Th) and their numerous decay products, including radium (Ra) and radon (Rn). Although these elements are less chemically toxic than other coal constituents, such as arsenic, selenium or mercury, questions have been raised concerning the possible risk from radiation. In order to accurately address these questions and to predict the mobility of radioactive elements during the coal fuel cycle, it is important to determine the specific activity, distribution and form of radioactive elements in coal. The assessment of the radiation exposure from coal burning is critically dependent on the specific activity of radioactive elements in coal and in the fly ash that remains after combustion. The El-Maghara coal mine is the only producing coal mine in Egypt. It is located in the middle of the Sinai desert about 250 km north-east of Cairo, where a coal-fired power plant is intended to be built. In this study, a pre-operational radiological baseline of the site and the occupational radiation exposures due to radon progeny in the mine were determined. The specific activities of 226Ra, 232Th and 40K in soil and coal dust samples collected along the main gallery ranges were found to be 6-22.9, 9.6-47.3 and 77-489 Bq kg-1, respectively. Soil samples collected around the mine showed concentrations of 226Ra, 232Th and 40K in the ranges 2.7-20.2, 3.2-12.6 and 14.6-201 Bq kg-1, respectively. All of the mean values of radon progeny were lower than the action levels for working places recommended in the International Commission on Radiological Protection (ICRP) 65.

  2. Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data

    SciTech Connect

    Cena, R. J.; Thorsness, C. B.

    1981-08-21

    The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

  3. 30 CFR 761.200 - Interpretative rule related to subsidence due to underground coal mining in areas designated by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Interpretative rule related to subsidence due... FOR MINING AREAS DESIGNATED BY ACT OF CONGRESS § 761.200 Interpretative rule related to subsidence due... or limited. Subsidence due to underground coal mining is not included in the definition of...

  4. 30 CFR 761.200 - Interpretative rule related to subsidence due to underground coal mining in areas designated by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Interpretative rule related to subsidence due... FOR MINING AREAS DESIGNATED BY ACT OF CONGRESS § 761.200 Interpretative rule related to subsidence due... or limited. Subsidence due to underground coal mining is not included in the definition of...

  5. 30 CFR 761.200 - Interpretative rule related to subsidence due to underground coal mining in areas designated by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Interpretative rule related to subsidence due... FOR MINING AREAS DESIGNATED BY ACT OF CONGRESS § 761.200 Interpretative rule related to subsidence due... or limited. Subsidence due to underground coal mining is not included in the definition of...

  6. 30 CFR 761.200 - Interpretative rule related to subsidence due to underground coal mining in areas designated by...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Interpretative rule related to subsidence due... FOR MINING AREAS DESIGNATED BY ACT OF CONGRESS § 761.200 Interpretative rule related to subsidence due... or limited. Subsidence due to underground coal mining is not included in the definition of...

  7. 30 CFR 761.200 - Interpretative rule related to subsidence due to underground coal mining in areas designated by...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Interpretative rule related to subsidence due... FOR MINING AREAS DESIGNATED BY ACT OF CONGRESS § 761.200 Interpretative rule related to subsidence due... or limited. Subsidence due to underground coal mining is not included in the definition of...

  8. NATIONAL ASSESSMENT OF ENVIRONMENTAL AND ECONOMIC BENEFITS FROM METHANE CONTROL AND UTILIZATION TECHNOLOGIES AT U.S. UNDERGROUND COAL MINES

    EPA Science Inventory

    The report gives results of EPA research into the emission processes and control strategies associated with underground coal mines in the U.S. (NOTE: Methane is a greenhouse gas in the atmosphere which ranks behind carbon dioxide as the second largest contributor to global warmin...

  9. An explanation of large-scale coal and gas outbursts in underground coal mines: the effect of low-permeability zones on abnormally abundant gas

    NASA Astrophysics Data System (ADS)

    An, F. H.; Cheng, Y. P.

    2013-09-01

    Large-scale coal and gas outbursts post a risk of fatal disasters in underground mines. Large-scale outbursts (outburst of coal and rock greater than 500 t) in recent years in China indicate that there is abundant gas in areas of outbursts containing large amounts of potential energy. The adequate sealing properties of the roof and floor of a coal seam are required for local abundant gas around the site of an outburst, but an annular low-permeability zone in a coal seam, which prevents the loss by gas migration through the coal seam itself, is also required. The distribution of coal gas with this annular zone of low permeability is described, and it is proposed that the annular zone of low permeability creates conditions for confining the coal gas. The effect of this low-permeability zone on the gas distribution is analyzed after allowing for simplifications in the model. The results show that the permeability and length of the low-permeability zone have a great impact on the gas distribution. A steep gradient of gas pressure in the low-permeability zone and the high gas pressure in the abundant zone of gas can promote coal mass failure and coal wall deformation, thereby accelerating the coal and gas outburst. The high pressure gas in abundant zone of gas will lead to a large-scale outburst if an outburst occurs.

  10. A knowledge-based expert system for managing underground coal mines in the US

    SciTech Connect

    Grayson, R.L.; Yuan, S.; Dean, J.M.; Reddy, N.P. )

    1990-07-01

    Research by the U.S. Bureau of Mines (BOM) on the reasons why some mines are more productive than others has revealed the importance of good mine management practices. The Mine Management Support System is being developed, under the cosponsorship of the BOM and the West Virginia Energy and Water Research Center, as a knowledge-based expert system for better management of underground coal mines. Concentrating on capturing the complex body of knowledge needed to enhance efficient management of a mine, it will encompass information and preferred rules on work scheduling, work practices, regulations impinging on the accomplishment of work, responses to operating problems, and the labor-management work agreement. In this paper different components of the mine system, modeled using an object-oriented layering technique, will be displayed graphically to aid in coordinating work plans, and to present locations of equipment, supplies, and proposed subsystem components.

  11. Effect of control order on steering a simulated underground coal shuttle car.

    PubMed

    Burgess-Limerick, Robin; Zupanc, Christine; Wallis, Guy

    2013-03-01

    Most terrestrial vehicles are steered via a first-order control for vehicle heading, such as a conventional steering wheel. A joystick which provides second-order control of vehicle heading is used to steer some underground coal shuttle cars. A desktop virtual simulation of the situation was employed to compare the steering accuracy of 24 novice participants randomly assigned to either first-order or second-order joystick steering conditions. The average steering accuracy of participants assigned to the first-order joystick condition was superior, however there was considerable individual variability and some participants assigned to the second-order steering condition were able to perform the task equally and successfully. Desktop virtual simulation may be a useful component of training and competency assessment for operators of these vehicles.

  12. Injection of FGD Grout to Abate Acid Mine Drainage in Underground Coal Mines

    SciTech Connect

    Mafi, S.; Damian, M.T.; Senita, R.E.; Jewitt, W.C.; Bair, S.; Chin, Y.C.; Whitlatch, E.; Traina, S.; Wolfe, W.

    1997-07-01

    Acid Mine Drainage (AMD) from abandoned underground coal mines in Ohio is a concern for both residents and regulatory agencies. Effluent from these mines is typically characterized by low pH and high iron and sulfate concentrations and may contaminate local drinking-water supplies and streams. The objective of this project is to demonstrate the technical feasibility of injecting cementitious alkaline materials, such as Flue Gas Desulfurization (FGD) material to mitigate current adverse environmental impacts associated with AMD in a small, abandoned deep mine in Coshocton County Ohio. The Flue Gas Desulfurization material will be provided from American Electric Power`s (AEP) Conesville Plant. It will be injected as a grout mix that will use Fixated Flue Gas Desulfurization material and water. The subject site for this study is located on the border of Coshocton and Muskingum Counties, Ohio, approximately 1.5 miles south-southwest of the town of Wills Creek. The study will be performed at an underground mine designated as Mm-127 in the Ohio Department of Natural Resources register, also known as the Roberts-Dawson Mine. The mine operated in the mid-1950s, during which approximately 2 million cubic feet of coal was removed. Effluent discharging from the abandoned mine entrances has low pH in the range of 2.8-3.0 that drains directly into Wills Creek Lake. The mine covers approximately 14.6 acres. It is estimated that 26,000 tons of FGD material will be provided from AEP`s Conesville Power Plant located approximately 3 miles northwest of the subject site.

  13. Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming

    SciTech Connect

    1997-10-01

    The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

  14. Citation-related reliability analysis for a pilot sample of underground coal mines.

    PubMed

    Kinilakodi, Harisha; Grayson, R Larry

    2011-05-01

    The scrutiny of underground coal mine safety was heightened because of the disasters that occurred in 2006-2007, and more recently in 2010. In the aftermath of the 2006 incidents, the U.S. Congress passed the Mine Improvement and New Emergency Response Act of 2006 (MINER Act), which strengthened the existing regulations and mandated new laws to address various issues related to emergency preparedness and response, escape from an emergency situation, and protection of miners. The National Mining Association-sponsored Mine Safety Technology and Training Commission study highlighted the role of risk management in identifying and controlling major hazards, which are elements that could come together and cause a mine disaster. In 2007 MSHA revised its approach to the "Pattern of Violations" (POV) process in order to target unsafe mines and then force them to remediate conditions in their mines. The POV approach has certain limitations that make it difficult for it to be enforced. One very understandable way to focus on removing threats from major-hazard conditions is to use citation-related reliability analysis. The citation reliability approach, which focuses on the probability of not getting a citation on a given inspector day, is considered an analogue to the maintenance reliability approach, which many mine operators understand and use. In this study, the citation reliability approach was applied to a stratified random sample of 31 underground coal mines to examine its potential for broader application. The results clearly show the best-performing and worst-performing mines for compliance with mine safety standards, and they highlight differences among different mine sizes.

  15. Returning coal waste underground. Technical progress report, October 1, 1981-December 31, 1981

    SciTech Connect

    Not Available

    1982-01-15

    The initial approach for returning coal waste underground at the No. 4 Mine will be limited to the current 1'' x 0 refuse product (132 TPH; 540 GPM) from the Wolf Creek plant at Pilgrim, Kentucky. It is possible to bypass existing units in the refuse circuits by pumping the refuse directly out of the cleaning circuits for backfilling. the refuse dryer, filter screen and static thickener will not be used when the refuse is backfilled. A necessary condition of this concept is to maintain continuous backfilling operations by providing two outlets underground and always keeping at least one unit working. To avoid settling and unstable conditions in the pipe, the percentage of solids in the refuse slurry should not exceed 45% by weight and the velocity of the slurry should be about 10 feet per second. The pumping of the 150 TPH of refuse solids (45% by weight) requires that the slurry flow at approximately 1000 GPM. The velocity will be about 10 feet per second if the inside diameter of the pipeline is six (6) inches. The backfilling process could function with an open-end outlet pipe if there was a sufficient gradient in the mine. The areas to be backfilled in the No. 4 Mine are generally flat. This condition will require the installation of bulkheads for containing the material. The slurry water, however, will be free flowing and may deterioriate the floor. The water will therefore have to be collected and pumped back to the surface.

  16. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines.

    PubMed

    Lee, Saro; Park, Inhye

    2013-09-30

    Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events.

  17. ENVIRONMENTAL IMPACT ON PHYSIOLOGICAL RESPONSES OF UNDERGROUND COAL MINERS IN THE EASTERN PART OF INDIA.

    PubMed

    Dey, Netai Chandra; Nath, Suva; Sharma, Gourab Dhara; Mallik, Avijit

    2014-12-01

    Coal in India is extracted generally by semi-mechanized and mechanized underground mining methods. The Bord and Pillar (B & P) mining method still continues to be popular where deployment of manual miners is more than that of other mining methods. The study is conducted at haulage based mine of Eastern Coalfields of West Bengal. Underground miners confront with a lot of hazards like extreme hostile environment, awkward working posture, dust, noise as well as low luminosity. It is difficult to delay the onset of fatigue. In order to study the physiological responses of trammers, various parameters like working heart rates, net cardiac cost and relative cardiac cost including recovery heart rate patterns are recorded during their work at site. Workload classification of trammers has been done following various scales of heaviness. The effect of environment on the physiological responses has been observed and suitable recommendations are made. The work tasks are bound to induce musculoskeletal problems and those problems could be better managed through rationalizing the work-rest scheduling.

  18. Quantifying of the Thermal Dynamic Characteristics of the Combustion System for Underground Coal Fire and its Impact on Environment in Xinjiang region, China

    NASA Astrophysics Data System (ADS)

    ZENG, Qiang; Tiyip, Tashpolat; Wuttke, Manfred; NIE, Jing; PU, Yan

    2015-04-01

    Underground Coal fire (UCF) is one disaster associated with coal mining activities around the world. The UCF not only burns up the coal reservoir, but also causes serious environmental problems, such as the pollution to air, the damage to soils, and the contamination to surface and underground water and consequently the health problem to human beings. In the present paper, the authors attempts to quantify the thermal dynamic characteristics of the combustion system for UCF and its impact on environment by modeling, including delineating the physical boundary of UCF zone, modeling of the capacity of the oxygen supply to UCF, modeling the intensity of heat generation from UCF and modeling the process of heat transfer within UCF and its surrounding environment. From this research, results were obtained as follows: First of all, based on the rock control theory, a model was proposed to depict the physical boundary of UCF zone which is important for coal fire research. Secondly, with analyzing the characteristics of air and smoke flow within UCF zone, an air/smoke flow model was proposed and consequently a method was put forward to calculate the capacity of oxygen supply to the UCF. Thirdly, with analyzing the characteristics of coal combustion within UCF zone, a method of calculating the intensity of heat generation from UCF, i.e., the heat source models, was established. Heat transfer with UCF zone includes the heat conductivity within UCF zone, the heat dissipation by radiation from the surface of fire zone, and the heat dissipation by convection as well as the heat loss taken away by mass transport. The authors also made an effort to depict the process of heat transfer by quantitative methods. Finally, an example of Shuixigou coal fire was given to illustrate parts of above models. Further more, UCF's impact on environment, such as the heavy metals contamination to surface soil of fire zone and the characteristics of gaseous pollutants emission from the UCF also was

  19. SPONCOM - a computer program for the prediction of the spontaneous combustion potential of an underground coal mine

    SciTech Connect

    Smith, A.C.; Rumancik, W.P.; Lazzara, C.P.

    1996-12-31

    The United States Bureau of Mines (USBM) developed SPONCOM to aid in the assessment of the spontaneous combustion risk of an underground mining operation. A prior knowledge of the spontaneous combustion risk of the coal and factors that increase that risk can be useful in the planning and development of proactive monitoring, ventilation, and prevention plans for the mining operation. Interactive data input screens prompt the user for information about the coal`s chemical and physical properties, the geologic and mining conditions encountered in the mining of the coal, and the mining practices employed. During the input process, {open_quote}expand{close_quote} screens provide the user with specific information on each input parameter. This information includes a description of the parameter and its effect on the overall spontaneous combustion risk. The program logic determines the coal`s relative spontaneous combustion potential, based on the coal`s proximate and ultimate analyses, and heating value. The program then evaluates the impact of the coal properties, geologic and mining conditions, and mining practices on the spontaneous combustion risk of the mining operation. The program output provides details on each factor that increases the risk of spontaneous combustion.

  20. Numerical and experimental study of strata behavior and land subsidence in an underground coal gasification project

    NASA Astrophysics Data System (ADS)

    Sirdesai, N. N.; Singh, R.; Singh, T. N.; Ranjith, P. G.

    2015-11-01

    Underground Coal Gasification, with enhanced knowledge of hydrogeological, geomechanical and environmental aspects, can be an alternative technique to exploit the existing unmineable reserves of coal. During the gasification process, petro-physical and geomechanical properties undergo a drastic change due to heating to elevated temperatures. These changes, caused due to the thermal anisotropy of various minerals, result in the generation of thermal stresses; thereby developing new fracture pattern. These fractures cause the overhead rock strata to cave and fill the gasification chamber thereby causing subsidence. The degree of subsidence, change in fluid transport and geomechanical properties of the rock strata, in and around the subsidence zone, can affect the groundwater flow. This study aims to predict the thermo-geomechanical response of the strata during UCG. Petro-physical and geomechanical properties are incorporated in the numerical modelling software COMSOL Multiphysics and an analytical strength model is developed to validate and further study the mechanical response and heat conduction of the host rock around the gasification chamber. Once the problems are investigated and solved, the enhanced efficiency and the economic exploitation of gasification process would help meet country's energy demand.

  1. Combined Air Sparge and Bioremediation of an Underground Coal Gasification Site

    SciTech Connect

    Covell, J.R.; Thomas, M.H.

    1996-12-01

    EG&G Technical Services of West Virginia (TSWV) Inc. is successfully remediating a former underground coal gasification (UCG) test site in northeastern Wyoming. EG&G is demonstrating the effectiveness of combined air sparge and biostimulation technology. This project is being conducted for the U.S. Department of Energy (DOE ) - Morgantown Energy Technology Center (METC), the lease holder of the site. UCG testing from 1976 through 1979 contaminated three water-bearing units at the site with benzene. Previous pump and treat operations at the site showed the presence of a persistent non-dissolved benzene source material. The Felix I coal seam is the most contaminated unit at the site and was the target unit for the initial demonstration. Air sparging was selected to strip dissolved benzene, volatilize the non- dissolved benzene source material, and to provide oxygen for increasing aerobic bacteria populations. Indigenous bacteria populations were stimulated with ammonium phosphate addition. EG&G designed the remediation system to take advantage of the hydrogeologic environment to produce a cost-effective approach to the groundwater remediation. Groundwater pumping was used to manipulate subsurface air flow, nutrient transport, and biomass management. Demonstration operations began on September 29, 1995, and were suspended on April 30, 1996 to begin demonstration expansion. Initial results of the demonstration show substantial reduction in benzene concentrations across the demonstration area. Benzene concentration reductions greater than 80% were observed two months after demonstration operations were suspended.

  2. Ground- and surface-water interactions involving an abandoned underground coal mine in Pike County, Indiana

    SciTech Connect

    Harper, D.; Olyphant, G.A.; Sjogren, D.R.

    1996-12-31

    Several highwall pits of an abandoned surface mine in the Springfield Coal Member (Pennsylvanian) are currently occupied by ponds with a total area of approximately 2.3 x 10{sup 4} m{sup 2}. These ponds are adjacent to an abandoned underground mine (Patoka Valley Coal and Coke Company No. 1 Mine) in the same coalbed. The mine underlies about 0.3 km{sup 2} and contains approximately 4 x 10{sup 5} m{sup 3} of flooded voids. Monitoring of water levels in wells that are screened in the mine and of the levels of adjacent ponds reveal that average hourly levels vary in unison across a range of less than one meter. The mean potentiometric level of the mine-aquifer, the neighboring ponds, and an artesian spring that issues through the outcrop of the coalbed, are at elevations of about 163 m above sea level. Long-term monitoring and a field experiment that involved pumping of a pond indicated that the mine was connected to two of the ponds and served to recharge, rather than discharge, the ponds. The monitoring and field experiment also allowed determination of the mine aquifers barometric efficiency (0.3) and its storativity (2 x 10{sup -3}) . A water-balance calculation indicates that the average recharge rate of the mine is about 0.1 mm/day.

  3. Geomechanical Analysis of Underground Coal Gasification Reactor Cool Down for Subsequent CO2 Storage

    NASA Astrophysics Data System (ADS)

    Sarhosis, Vasilis; Yang, Dongmin; Kempka, Thomas; Sheng, Yong

    2013-04-01

    Underground coal gasification (UCG) is an efficient method for the conversion of conventionally unmineable coal resources into energy and feedstock. If the UCG process is combined with the subsequent storage of process CO2 in the former UCG reactors, a near-zero carbon emission energy source can be realised. This study aims to present the development of a computational model to simulate the cooling process of UCG reactors in abandonment to decrease the initial high temperature of more than 400 °C to a level where extensive CO2 volume expansion due to temperature changes can be significantly reduced during the time of CO2 injection. Furthermore, we predict the cool down temperature conditions with and without water flushing. A state of the art coupled thermal-mechanical model was developed using the finite element software ABAQUS to predict the cavity growth and the resulting surface subsidence. In addition, the multi-physics computational software COMSOL was employed to simulate the cavity cool down process which is of uttermost relevance for CO2 storage in the former UCG reactors. For that purpose, we simulated fluid flow, thermal conduction as well as thermal convection processes between fluid (water and CO2) and solid represented by coal and surrounding rocks. Material properties for rocks and coal were obtained from extant literature sources and geomechanical testings which were carried out on samples derived from a prospective demonstration site in Bulgaria. The analysis of results showed that the numerical models developed allowed for the determination of the UCG reactor growth, roof spalling, surface subsidence and heat propagation during the UCG process and the subsequent CO2 storage. It is anticipated that the results of this study can support optimisation of the preparation procedure for CO2 storage in former UCG reactors. The proposed scheme was discussed so far, but not validated by a coupled numerical analysis and if proved to be applicable it could

  4. Human health and safety risks management in underground coal mines using fuzzy TOPSIS.

    PubMed

    Mahdevari, Satar; Shahriar, Kourosh; Esfahanipour, Akbar

    2014-08-01

    The scrutiny of health and safety of personnel working in underground coal mines is heightened because of fatalities and disasters that occur every year worldwide. A methodology based on fuzzy TOPSIS was proposed to assess the risks associated with human health in order to manage control measures and support decision-making, which could provide the right balance between different concerns, such as safety and costs. For this purpose, information collected from three hazardous coal mines namely Hashouni, Hojedk and Babnizu located at the Kerman coal deposit, Iran, were used to manage the risks affecting the health and safety of their miners. Altogether 86 hazards were identified and classified under eight categories: geomechanical, geochemical, electrical, mechanical, chemical, environmental, personal, and social, cultural and managerial risks. Overcoming the uncertainty of qualitative data, the ranking process is accomplished by fuzzy TOPSIS. After running the model, twelve groups with different risks were obtained. Located in the first group, the most important risks with the highest negative effects are: materials falling, catastrophic failure, instability of coalface and immediate roof, firedamp explosion, gas emission, misfire, stopping of ventilation system, wagon separation at inclines, asphyxiation, inadequate training and poor site management system. According to the results, the proposed methodology can be a reliable technique for management of the minatory hazards and coping with uncertainties affecting the health and safety of miners when performance ratings are imprecise. The proposed model can be primarily designed to identify potential hazards and help in taking appropriate measures to minimize or remove the risks before accidents can occur.

  5. Logistics background study: underground mining

    SciTech Connect

    Hanslovan, J. J.; Visovsky, R. G.

    1982-02-01

    Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

  6. Clean Coal Program Research Activities

    SciTech Connect

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  7. The Video Collaborative Localization of a Miner’s Lamp Based on Wireless Multimedia Sensor Networks for Underground Coal Mines

    PubMed Central

    You, Kaiming; Yang, Wei; Han, Ruisong

    2015-01-01

    Based on wireless multimedia sensor networks (WMSNs) deployed in an underground coal mine, a miner’s lamp video collaborative localization algorithm was proposed to locate miners in the scene of insufficient illumination and bifurcated structures of underground tunnels. In bifurcation area, several camera nodes are deployed along the longitudinal direction of tunnels, forming a collaborative cluster in wireless way to monitor and locate miners in underground tunnels. Cap-lamps are regarded as the feature of miners in the scene of insufficient illumination of underground tunnels, which means that miners can be identified by detecting their cap-lamps. A miner’s lamp will project mapping points on the imaging plane of collaborative cameras and the coordinates of mapping points are calculated by collaborative cameras. Then, multiple straight lines between the positions of collaborative cameras and their corresponding mapping points are established. To find the three-dimension (3D) coordinate location of the miner’s lamp a least square method is proposed to get the optimal intersection of the multiple straight lines. Tests were carried out both in a corridor and a realistic scenario of underground tunnel, which show that the proposed miner’s lamp video collaborative localization algorithm has good effectiveness, robustness and localization accuracy in real world conditions of underground tunnels. PMID:26426023

  8. Availability and Quality of Water from Underground Coal Mines in Johnson and Martin Counties, Kentucky

    USGS Publications Warehouse

    Mull, D.S.; Cordivio1a, Steven; Risser, Dennis W.

    1981-01-01

    This report provides water users with detailed information on the location, quantity, and quality of water available from underground coal mines in the Breathitt Formation of Pennsylvanian age in part of eastern Kentucky. The principal coal seams mined are the Van Lear in Johnson County and the Alma in Martin County. Coal mines that contained water were located by field inventory and coal-mine maps. The principal factors that affect the occurrence of water in coal mines are the size of the recharge area overlying the mine, the intensity and duration of precipitation, and the altitude of the mine relative to that of the nearest perennial stream. Ten above-drainage mines (that is, mines at higher elevations than that of the nearest perennial stream) are considered potential sources of water. Discharge from these mines ranged from 12 to 1,700 gallons per minute. The highest sustained discharge from a mine ranged from 750 to 1,200 gallons per minute. The water in coal mines is part of the hydrologic system and varies seasonally with precipitation. Annual discharge from most above-drainage mines ranged from 3 to 10 percent of annual precipitation on the 1and-surface area above the mine. Eight below-drainage mines are considered potential sources of water. Two were test-pumped at rates of 560 to 620 gallons per minute for as long as 6 hours. After test pumping the Warfield Mining No. 1 mine during September 1977 and March 1978, the recovery (or recharge) rates were significantly different. In September, the recharge rate was about 1,150 gallons per minute, but in March the recharge rate was 103,500 gallons per minute. This difference reflects the seasonal variations in the amount of water available to the ground-water system. Estimates of water stored in below-drainage mines ranged from 22 to 1,462 million gallons. This storage represents a safety factor sufficient to provide water through periods of limited recharge to the mine. Most mine water is of the calcium

  9. An explanation of large-scale coal and gas outbursts in underground coal mines: the effect of low-permeability zones on abnormally abundant gas

    NASA Astrophysics Data System (ADS)

    An, F. H.; Cheng, Y. P.

    2014-08-01

    Large-scale coal and gas outbursts pose a risk of fatal disasters in underground mines. Large-scale outbursts (outburst of coal and rock greater than 500 t) in recent years in China indicate that there is abundant gas in areas of outbursts containing large amounts of potential energy. The adequate sealing properties of the roof and floor of a coal seam are required for local abundant gas around the site of an outburst, but an annular low-permeability zone in a coal seam, which prevents the loss by gas migration through the coal seam itself, is also required. The distribution of coal gas with this annular zone of low permeability is described, and it is proposed that the annular zone of low permeability creates conditions for confining the coal gas. The effect of this low-permeability zone on the gas distribution is analyzed after allowing for simplifications in the model. The results show that the permeability and length of the low-permeability zone have a great impact on the gas distribution, and the permeability is required to be several orders of magnitude less than that of normal coal and enough length is also in demand. A steep gradient of gas pressure in the low-permeability zone and the high-pressure gas in the abundant zone of gas can promote coal mass failure and coal wall deformation, thereby accelerating the coal and gas outburst. The high-pressure gas in abundant zone of gas will lead to a large-scale outburst if an outburst occurs.

  10. 30 CFR 817.14 - Casing and sealing of underground openings: Temporary.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Casing and sealing of underground openings...-UNDERGROUND MINING ACTIVITIES § 817.14 Casing and sealing of underground openings: Temporary. (a) Each mine... application for use to return underground development waste, coal processing waste or water to...

  11. A comparison of physiological strain of carriers in underground manual coal mines in India

    SciTech Connect

    Saha, R.; Dey, N.C.; Samanta, A.; Biswas, R.

    2008-07-15

    Thirty nine healthy carriers (23-57 years of age) were investigated in underground manual coal mines in West Bengal, India during two different work spells of a single work shift. We compared physiological strain of workers <40 and {ge} 40 years of age. For both groups, mean heart rate was 124-133 beats/min, with a mean corresponding relative cardiac cost of 50-66%. Maximum aerobic capacities were estimated indirectly, following a standard step test protocol. Average oxygen consumption was 1.07-1.1 l/min, with an energy expenditure of 5.35-5.5 kcal/min among both age groups. Acceptable levels of physiological strain were well encroached, and older workers faced the maximum burden. The tasks studied were heavy to very heavy in nature. The weight of load carriage at a spontaneously chosen speed and the prevailing environmental conditions merit serious attention. There is extreme need of ergonomic interventions in reducing the postural load and musculoskeletal discomforts in this population.

  12. Gas Production Strategy of Underground Coal Gasification Based on Multiple Gas Sources

    PubMed Central

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method. PMID:25114953

  13. Unexpected hydrologic perturbation in an abandoned underground coal mine: Response to surface reclamation?

    USGS Publications Warehouse

    Harper, D.; Olyphant, G.A.; Hartke, E.J.

    1990-01-01

    A reclamation project at the abandoned Blackhawk Mine site near Terre Haute, Indiana, lasted about four months and involved the burial of coarse mine refuse in shallow (less than 9 m) pits excavated into loess and till in an area of about 16 ha. An abandoned flooded underground coal mine underlies the reclamation site at a depth of about 38 m; the total area underlain by the mine is about 10 km2. The potentiometric levels associated with the mine indicate a significant (2.7 m) and prolonged perturbation of the deeper confined groundwater system; 14 months after completing reclamation, the levels began to rise linearly (at an average rate of 0.85 cm/d) for 11 months, then fell exponentially for 25 months, and are now nearly stable. Prominent subsidence features exist near the reclamation site. Subsidence-related fractures were observed in cores from the site, and such fractures may have provided a connection between the shallower and deeper groundwater systems. ?? 1990 Springer-Verlag New York Inc.

  14. Gas production strategy of underground coal gasification based on multiple gas sources.

    PubMed

    Tianhong, Duan; Zuotang, Wang; Limin, Zhou; Dongdong, Li

    2014-01-01

    To lower stability requirement of gas production in UCG (underground coal gasification), create better space and opportunities of development for UCG, an emerging sunrise industry, in its initial stage, and reduce the emission of blast furnace gas, converter gas, and coke oven gas, this paper, for the first time, puts forward a new mode of utilization of multiple gas sources mainly including ground gasifier gas, UCG gas, blast furnace gas, converter gas, and coke oven gas and the new mode was demonstrated by field tests. According to the field tests, the existing power generation technology can fully adapt to situation of high hydrogen, low calorific value, and gas output fluctuation in the gas production in UCG in multiple-gas-sources power generation; there are large fluctuations and air can serve as a gasifying agent; the gas production of UCG in the mode of both power and methanol based on multiple gas sources has a strict requirement for stability. It was demonstrated by the field tests that the fluctuations in gas production in UCG can be well monitored through a quality control chart method.

  15. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the mine void to be filled, method of constructing underground retaining walls, influence of the... water underground, treatment of water if released to surface streams, and the effect on the...

  16. Determining the Heat Exchange Capacity of Underground Coal Mines in Ohio

    NASA Astrophysics Data System (ADS)

    Richardson, J. J.; Lopez, D. A.; Leftwich, T. E.; Wolfe, M. E.; Angle, M. P.; Fugitt, F. L.

    2013-12-01

    heat extractable per change in mine water temperature were calculated. Looking at 147 different mines located less than 1 mile from cities, this study has estimated that an average of 10^10 kJ of heat per mine is extractable. A change in mine water temperature of 1 degree Celsius was used for this calculation. The average maximum and minimum linear groundwater velocities were 0.5 and 0.3 meters/day, respectively. From the groundwater velocities, the average potential flux of heat to the mines was 10^9 kJ/year. These results show that underground coal mines in Ohio can be an important resource for GSHPs.

  17. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS UNDERGROUND MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR... the source of the hydraulic transport mediums, method of dewatering the placed backfill, retainment...

  18. Geohydrology and potential hydrologic effects of underground coal mining in the Rapid Creek Basin, Mesa County, Colorado

    USGS Publications Warehouse

    Brooks, Tom

    1986-01-01

    The U.S. Bureau of Land Management may lease additional coal tracts in the Rapid Creek basin, Colorado. Springs in this basin are used as a water supply for the town of Palisade. The geohydrology of the basin is described and the potential hydrologic effects of underground coal mining in the basin summarized. Geologic formations in the basin consists of Cretaceous sandstone and shale, Tertiary sandstone, shale, and basalt, and unconsolidated deposits of Quaternary age. Some sandstone and coal beds are permeable, although bedrock in the basin typically is a confining bed. Unconsolidated deposits contain aquifers that are the source of spring discharge. Stream discharge was measured on Rapid and Cottonwood Creeks, and inventories were made of 7 reservoirs, 25 springs, and 12 wells. Specific conductance of streams ranged from 320 to 1,050 microsiemens/cm at 25C; pH ranged from 7.8 to 8.6. Specific conductance of springs ranged from 95 to 1,050 microsiemens/cm at 25C; pH ranged from 6.8 to 8.3. Discharge from the basin includes about 18,800 acre-ft/yr as evapotranspiration, 1,300 acre-ft/yr as springflow, 1,280 acre-ft/yr as streamflow, and negligible groundwater flow in bedrock. With appropriate mining methods, underground mining would not decrease flow in basin streams or from springs. The potential effects of mining-caused subsidence might include water-pipeline damage and temporary dewatering of bedrock adjacent to coal mining. (Author 's abstract)

  19. Underground Corrosion of Activated Metals, 6-Year Exposure Analysis

    SciTech Connect

    M. K. Adler Flitton; T. S. Yoder

    2006-03-01

    The subsurface radioactive disposal site located at the Idaho National Laboratory contains neutronactivated metals from non-fuel nuclear-reactor-core components. A long-term underground corrosion test is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in the surrounding arid vadose zone environment. The test uses nonradioactive metal coupons representing the prominent neutron-activated materials buried at the disposal location, namely, Type 304L stainless steel (UNS S30403), Type 316L stainless steel (S31603), nickel-chromium alloy (UNS NO7718), beryllium, aluminum 6061-T6 (A96061), and a zirconium alloy (UNS R60804). In addition, carbon steel (the material presently used in the cask disposal liners and other disposal containers) and a duplex stainless steel (UNS S32550) are also included in the test. This paper briefly describes the ongoing test and presents the results of corrosion analysis from coupons exposed underground for 1, 3, and 6 years.

  20. Twelve Year Study of Underground Corrosion of Activated Metals

    SciTech Connect

    M. Kay Adler Flitton; Timothy S. Yoder

    2012-03-01

    The subsurface radioactive disposal facility located at the U.S. Department of Energy’s Idaho site contains neutron-activated metals from non-fuel nuclear-reactor-core components. A long-term corrosion study is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The study uses non-radioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, two types of stainless steels, welded stainless steel, welded nickel-chromium steel alloy, zirconium alloy, beryllium, and aluminum. Additionally, carbon steel (the material used in cask disposal liners and other disposal containers) and duplex stainless steel (high-integrity containers) are also included in the study. This paper briefly describes the test program and presents the corrosion rate results through twelve years of underground exposure.

  1. Effect of work boot type on work footwear habits, lower limb pain and perceptions of work boot fit and comfort in underground coal miners.

    PubMed

    Dobson, Jessica A; Riddiford-Harland, Diane L; Bell, Alison F; Steele, Julie R

    2017-04-01

    Lower limb injuries are highly prevalent in underground coal mining. Wearing gumboots with inadequate ankle support was thought to contribute to these injuries. Despite the uptake of leather lace-up boots, which provide more ankle support, no recent research could be found investigating the effect of this alternative work boot in underground coal mining. Consequently, this study aimed to determine whether boot type (gumboot, leather lace-up boot) influenced work footwear habits, foot problems, lower limb pain, lower back pain, or perceptions of work boot fit and comfort in underground coal miners. Chi-squared tests were applied to 358 surveys completed by underground coal miners to determine whether responses differed significantly (p < 0.05) according to boot-type. There were no significant between-boot differences in regards to the presence of foot problems, lower limb pain or lower back pain. However, the types of foot problems and locations of foot pain differed according to boot type. Gumboot wearers were also more likely to state that their work boot comfort was either 'uncomfortable' or 'indifferent', their work boot fit was 'poor' and their current boot did not provide enough support. The introduction of more structured leather lace-up boots appears to have positively influenced the support and fit provided by mining work boots, although foot problems, lower limb pain and lower back pain continue to be reported. Further investigation is recommended to identify which specific boot design features caused these observed differences in work boot fit, comfort and locations of foot pain and how these design features can be manipulated to create an underground coal mining work boot that is comfortable and reduces the high incidence of foot problems and lower limb pain suffered by underground coal miners.

  2. Coal.

    ERIC Educational Resources Information Center

    Brant, Russell A.; Glass, Gary B.

    1983-01-01

    Principle work of 23 state geological surveys is summarized. Work includes mapping/estimating coal resources, centralizing data in National Coal Resources Data System through cooperative programs, exploration drilling, and others. Comments on U.S. Geological Survey activities, coal-related conferences/meetings, and industry research activities are…

  3. A Critical Study on the Underground Environment of Coal Mines in India-an Ergonomic Approach

    NASA Astrophysics Data System (ADS)

    Dey, Netai Chandra; Sharma, Gourab Dhara

    2013-04-01

    Ergonomics application on underground miner's health plays a great role in controlling the efficiency of miners. The job stress in underground mine is still physically demanding and continuous stress due to certain posture or movement of miners during work leads to localized muscle fatigue creating musculo-skeletal disorders. A good working environment can change the degree of job heaviness and thermal stress (WBGT values) can directly have the effect on stretch of work of miners. Out of many unit operations in underground mine, roof bolting keeps an important contribution with regard to safety of the mine and miners. Occupational stress of roof bolters from ergonomic consideration has been discussed in the paper.

  4. A risk-based decision support framework for selection of appropriate safety measure system for underground coal mines.

    PubMed

    Samantra, Chitrasen; Datta, Saurav; Mahapatra, Siba Sankar

    2017-03-01

    In the context of underground coal mining industry, the increased economic issues regarding implementation of additional safety measure systems, along with growing public awareness to ensure high level of workers safety, have put great pressure on the managers towards finding the best solution to ensure safe as well as economically viable alternative selection. Risk-based decision support system plays an important role in finding such solutions amongst candidate alternatives with respect to multiple decision criteria. Therefore, in this paper, a unified risk-based decision-making methodology has been proposed for selecting an appropriate safety measure system in relation to an underground coal mining industry with respect to multiple risk criteria such as financial risk, operating risk, and maintenance risk. The proposed methodology uses interval-valued fuzzy set theory for modelling vagueness and subjectivity in the estimates of fuzzy risk ratings for making appropriate decision. The methodology is based on the aggregative fuzzy risk analysis and multi-criteria decision making. The selection decisions are made within the context of understanding the total integrated risk that is likely to incur while adapting the particular safety system alternative. Effectiveness of the proposed methodology has been validated through a real-time case study. The result in the context of final priority ranking is seemed fairly consistent.

  5. Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I

    SciTech Connect

    1982-01-31

    The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

  6. The influence of seam height on lost-time injury and fatality rates at small underground bituminous coal mines.

    PubMed

    Peters, R H; Fotta, B; Mallett, L G

    2001-11-01

    Due to variations in the thickness of U.S. coal seams, there is great variability in the height of the roof where underground miners work. Restrictions imposed by low seam heights have important safety consequences. As the height of their workplace decreases, miners must stoop, duck walk, or crawl, and their vision, posture, and mobility become increasingly restricted. Low seam height also places important restrictions on the design of mobile equipment and other mining machinery. Using the employment and injury data reported to the Mine Safety and Health Administration (MSHA) from 1990 to 1996, small underground bituminous coal mines with less than 50 employees were stratified by average coal seam height according to the following categories: low (< or =42"), medium (43"-60"), and high (> or =61"). Injury rates for both nonfatal days lost and fatality cases were examined by seam height and leading type of injury incidents. The leading types of incidents associated with fatalities were roof falls and powered haulage equipment. In comparison to high-seam mines, miners working in low or medium seams are at higher risk of being killed by powered haulage equipment, roof bolting machines, and falls of unsupported roof. The leading types of incidents associated with nonfatal injuries were handling materials and powered haulage. As mining height decreases, miners are at increasingly higher risk of having a nonfatal injury from incidents involving roof bolting machines, load-haul-dump equipment, personnel carriers, and powered haulage conveyors. As mining height increases, miners are at increasingly higher risk of having a nonfatal injury from slips and falls and incidents involving shuttle cars and roof and rib falls. Knee injuries are a particularly severe problem in low-seam mines. The rate of injuries to miners while crawling or kneeling is 10 times higher in low seams than in high seams.

  7. Hydrology of the North Fork of the Right Fork of Miller Creek, Carbon County, Utah, before, during, and after underground coal mining

    USGS Publications Warehouse

    Slaughter, C.B.; Freethey, G.W.; Spangler, L.E.

    1995-01-01

    From 1988-92 the U.S. Geological Survey, in cooperation with the Utah Division of Oil, Gas, and Mining, studied the effects of underground coal mining and the resulting subsidence on the hydrologic system near the North Fork of the Right Fork of Miller Creek, Carbon County, Utah. The subsidence caused open fractures at land surface, debris slides, and rockfalls in the canyon above the mined area. Land surface subsided and moved several feet horizontally. The perennial stream and a tributary upstream from the mined area were diverted below the ground by surface fractures where the overburden thickness above the Wattis coal seam is 300 to 500 feet. The reach downstream was dry but flow resumed where the channel traversed the Star Point Sandstone, which forms the aquifer below the coal seams where ground-water discharge provides new base flow. Concentrations of dissolved constituents in the stream water sampled just downstream from the mined area increased from about 300 mg/L (milligrams per liter) to more than 1,500 mg/L, and the water changed from primarily a magnesium calcium bicarbonate to primarily a magnesium sulfate type. Monitored water levels in two wells completed in the perched aquifer(s) above the mine indicate that fractures from subsidence- related deformation drained the perched aquifer in the Blackhawk Formation. The deformation also could have contributed to the decrease in discharge of three springs above the mined area, but discharge from other springs in the area did not change ubstantially; thus, the relation between subsidence and spring discharge, if any, is not clear. No significant changes in the chemical character of water discharging from springs were detected, but the dissolved-solids concentration in water collected from a perched sandstone aquifer overlying the mined coal seams increased during mining activity.

  8. Regional-scale geomechanical impact assessment of underground coal gasification by coupled 3D thermo-mechanical modeling

    NASA Astrophysics Data System (ADS)

    Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG

  9. 30 CFR 817.14 - Casing and sealing of underground openings: Temporary.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... conducts the underground mining activities. (b) Each exploration hole, other drill hole or borehole, shaft... application for use to return underground development waste, coal processing waste or water to underground workings, or to be used to monitor ground water conditions, shall be temporarily sealed until actual use....

  10. 30 CFR 817.14 - Casing and sealing of underground openings: Temporary.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... conducts the underground mining activities. (b) Each exploration hole, other drill hole or borehole, shaft... application for use to return underground development waste, coal processing waste or water to underground workings, or to be used to monitor ground water conditions, shall be temporarily sealed until actual use....

  11. 30 CFR 817.14 - Casing and sealing of underground openings: Temporary.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conducts the underground mining activities. (b) Each exploration hole, other drill hole or borehole, shaft... application for use to return underground development waste, coal processing waste or water to underground workings, or to be used to monitor ground water conditions, shall be temporarily sealed until actual use....

  12. 30 CFR 817.14 - Casing and sealing of underground openings: Temporary.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conducts the underground mining activities. (b) Each exploration hole, other drill hole or borehole, shaft... application for use to return underground development waste, coal processing waste or water to underground workings, or to be used to monitor ground water conditions, shall be temporarily sealed until actual use....

  13. Results of Phase 1 postburn drilling and coring, Rocky Mountain 1 Underground Coal Gasification Site, Hanna Basin, Wyoming

    SciTech Connect

    Lindblom, S.R.; Covell, J.R.; Oliver, R.L.

    1990-09-01

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) test consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in the Western Research Institute's (WRI) annual project plan for 1988--1989. The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed in the summer of 1989 and served to partially accomplish all seven objectives. In relation to the seven objectives, WRI determined that (1) the ELW cavity extends farther to the west and the CRIP cavity was located 5--10 feet farther to the south than anticipated; (2) roof collapse was contained within unit A in both modules; (3) samples of all major rock types were recovered; (4) insufficient data were obtained to characterize the outflow channels, but cavity stratigraphy was well defined; (5) bore holes near the CRIP points and ignition point did not exhibit characteristics significantly different from other bore holes in the cavities; (6) a fault zone was detected between VIW=1 and VIW-2 that stepped down to the east; and (7) PW-1 was only 7--12 feet below the top of the coal seam in the eastern part of the ELW module area; and CIW-1 was located 18--20 feet below the top of the coal seam in the CRIP module area. 7 refs., 7 figs., 1 tab.

  14. Low severity conversion of activated coal

    SciTech Connect

    Hirschon, A.S.; Ross, D.S.

    1990-01-01

    The results suggest that coal contains regions with structural components significantly reactive under the hydrothermal environment. Although the specific mechanism for this process remains to be developed, this activity is reminiscent of findings in studies of accelerated maturation of oil shale, where hydrothermal treatment (hydrous pyrolysis) leads to the production of petroleum hydrocarbons. In line with what has been seen in the oil shale work, the pretreatment-generated hydrocarbons and phenols appear to represent a further or more complete maturation of some fraction of the organic material within the coal. These observations could have an impact in two areas. The first is in the area of coal structure, where immature, reactive regions have not been included in the structures considered at present. The second area of interest is the more practical one of conversions to coal liquids and pyrolytic tars. It seems clear that the hydrothermal pretreatment changes the coal in some manner that favorably affects the product quality substantially and, as in the CO/water liquefaction case, favorably affects the yields. The conversions of coals of lower rank, i.e., less mature coals, could particularly benefit in terms of both product quality and product quantity. The second portion of this project also shows important benefits to coal conversion technology. It deals with synthesizing catalysts designed to cleave the weak links in the coal structure and then linking these catalysts with the pretreatment methods in Task 2. The results show that highly dispersed catalysts can effectively be used to increase the yields of soluble material. An important aspect of highly dispersed catalysts are that they can effectively catalyze coal conversion even in poor liquefaction solvents, thus making them very attractive in processes such as coprocessing where inexpensive liquefaction media such as resids are used.

  15. 76 FR 35968 - Maintenance of Incombustible Content of Rock Dust in Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... reflectance to measure the relative concentration ratio of coal dust (black) to rock dust (white/grey) in a..., Combustible Materials and Rock Dusting. Dated: June 15, 2011. Joseph A. Main, Assistant Secretary of Labor...

  16. Chemical process modelling of Underground Coal Gasification (UCG) and evaluation of produced gas quality for end use

    NASA Astrophysics Data System (ADS)

    Korre, Anna; Andrianopoulos, Nondas; Durucan, Sevket

    2015-04-01

    Underground Coal Gasification (UCG) is an unconventional method for recovering energy from coal resources through in-situ thermo-chemical conversion to gas. In the core of the UCG lays the coal gasification process which involves the engineered injection of a blend of gasification agents into the coal resource and propagating its gasification. Athough UCG technology has been known for some time and considered a promising method for unconventional fossil fuel resources exploitation, there are limited modelling studies which achieve the necessary accuracy and realistic simulation of the processes involved. This paper uses the existing knowledge for surface gasifiers and investigates process designs which could be adapted to model UCG. Steady state simulations of syngas production were developed using the Advanced System for Process ENgineering (Aspen) Plus software. The Gibbs free energy minimisation method was used to simulate the different chemical reactor blocks which were combined using a FORTRAN code written. This approach facilitated the realistic simulation of the gasification process. A number of model configurations were developed to simulate different subsurface gasifier layouts considered for the exploitation of underground coal seams. The two gasifier layouts considered here are the linked vertical boreholes and the controlled retractable injection point (CRIP) methods. Different stages of the UCG process (i.e. initialisation, intermediate, end-phase) as well as the temperature level of the syngas collection point in each layout were found to be the two most decisive and distinctive parameters during the design of the optimal model configuration for each layout. Sensitivity analyses were conducted to investigate the significance of the operational parameters and the performance indicators used to evaluate the results. The operational parameters considered were the type of reagents injected (i.e. O2, N2, CO2, H2O), the ratio between the injected reagents

  17. Mortality among US underground coal miners: A 23-year follow-up

    SciTech Connect

    Attfield, M.D.; Kuempel, E.D.

    2008-03-15

    The mortality experience over 22-24 years of 8,899 working coal miners initially medically examined in 1969-1971 at 31 U.S. coal mines was evaluated. A cohort life-table analysis was undertaken on underlying causes of death, and proportional hazards models were fitted to both underlying, and underlying and contributing causes of death. Elevated mortality from nonviolent causes, nonmalignant respiratory disease (NMRD), and accidents was observed, but lung cancer and stomach cancer mortality were not elevated. Smoking, pneumoconiosis, coal rank region, and cumulative coal mine dust exposure were all predictors of mortality from nonviolent causes and NMRD. Mortality from nonviolent causes and NMRD was related to dust exposure within the complete cohort and also for the never smoker subgroup. Dust exposure relative risks for mortality were similar for pneumoconiosis, NMRD, and chronic airways obstruction. The findings confirm and enlarge upon previous results showing that exposure to coal mine dust leads to increased mortality, even in the absence of smoking.

  18. CO2 Storage in Shallow Underground and Surface Coal Mines: Challenges and Opportunities

    SciTech Connect

    Romanov, V.N.; Ackman, T.E.; Soong, Yee; Kleinmann, R.L.

    2009-02-01

    The looming global energy and environmental crises underscore a pressing need for the revision of current energy policies. The dominating albeit somewhat optimistic public perception is that hundreds of years worth of coal available for power generation will offset the decline of oil and gas reserves. Although use of coal accounts for half of U.S. electricity generation and for a quarter of world energy consumption, it has been perceived until recently as unwelcomed by environmentalists and legislators. For coal power generation to be properly considered, CO2 and other greenhouse gas (GHG) generation and deposition must be addressed to assuage global climate change concerns. Capturing and sequestering CO2 emissions is one of the principal modes of carbon management. Herein we will suggest a novel process that includes capturing GHG in abundant materials, which can be facilitated by controlled sequential heating and cooling of these solids. By taking advantage of the properties of waste materials generated during coal production and the exhaust heat generated by the power plants, such an approach permits the integration of the entire CO2 cycle, from generation to deposition. Coupling coal extraction/preparation with power generation facilities would improve the economics of “zero-emission” power plants due to the proximity of all the involved facilities.

  19. Recovery of rhenium from sulfuric acid solutions with activated coals

    SciTech Connect

    Troshkina, I.D.; Naing, K.Z.; Ushanova, O.N.; P'o, V.; Abdusalomov, A.A.

    2006-09-15

    Equilibrium and kinetic characteristics of rhenium sorption from sulfuric acid solutions (pH 2) by activated coals produced from coal raw materials (China) were studied. Constants of the Henry equation describing isotherms of rhenium sorption by activated coals were calculated. The effective diffusion coefficients of rhenium in the coals were determined. The dynamic characteristics of rhenium sorption and desorption were determined for the activated coal with the best capacity and kinetic characteristics.

  20. Analysis of the organic contaminants in the condensate produced in the in situ underground coal gasification process.

    PubMed

    Smoliński, Adam; Stańczyk, Krzysztof; Kapusta, Krzysztof; Howaniec, Natalia

    2013-01-01

    Addressing the environmental risks related to contamination of groundwater with the phenolics, benzene, toluene, ethyl benzene, xylene (BTEX) and polycyclic aromatic hydrocarbons (PAHs), which might be potentially released from the underground coal gasification (UCG) under adverse hydrogeological and/or operational conditions, is crucial in terms of wider implementation of the process. The aim of this study was to determine the main organic pollutants present in the process condensate generated during the UCG trial performed on hard coal seam in the Experimental Mine 'Barbara', Poland; 8,933 L of condensate was produced in 813 h of experiment duration (including 456 h of the post-process stage) with average phenolics, BTEX and PAH concentrations of 576,000, 42.3 and 1,400.5 μg/L, respectively. The Hierarchical Clustering Analysis was used to explore the differences and similarities between the samples. The sample collected during the first 48 h of the process duration was characterized by the lowest phenanthrene, anthracene, fluoranthene and pyrene contents, high xylene content and the highest concentrations of phenolics, benzene, toluene and ethyl benzene. The samples collected during the stable operation of the UCG process were characterized by higher concentrations of naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, while in the samples acquired in the post-process stage the lowest concentrations of benzene, toluene, naphthalene, acenaphthene and fluorene were observed.

  1. 77 FR 25205 - Proposed Extension of Existing Information Collection; Roof Control Plans for Underground Coal Mines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... requested data can be provided in the desired format, reporting burden (time and financial resources) is... to the roof conditions and mining system of each coal mine be first approved by the Secretary of... Secretary. This information collection addresses the recordkeeping associated with: 75.215--Longwall...

  2. Flooded Underground Coal Mines: A Significant Source of Inexpensive Geothermal Energy

    SciTech Connect

    Watzlaf, G.R.; Ackman, T.E.

    2007-04-01

    Many mining regions in the United States contain extensive areas of flooded underground mines. The water within these mines represents a significant and widespread opportunity for extracting low-grade, geothermal energy. Based on current energy prices, geothermal heat pump systems using mine water could reduce the annual costs for heating to over 70 percent compared to conventional heating methods (natural gas or heating oil). These same systems could reduce annual cooling costs by up to 50 percent over standard air conditioning in many areas of the country. (Formatted full-text version is released by permission of publisher)

  3. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain...

  4. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain...

  5. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal recovery. 817.59 Section 817.59 Mineral... PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.59 Coal... conservation of the coal, while utilizing the best technology currently available to maintain...

  6. Horizontal hydraulic conductivity estimates for intact coal barriers between closed underground mines

    SciTech Connect

    Mccoy, K.J.; Donovan, J.J.; Leavitt, B.R.

    2006-08-15

    Unmined blocks of coal, called barriers, separate and restrict horizontal leakage between adjacent bituminous coal mines. Understanding the leakage rate across such barriers is important in planning mine closure and strongly affects recharge calculations for postmining flooding. This study presents upper-limit estimates for hydraulic conductivity (K) of intact barriers in two closed mines at moderate depth (75-300 m) in the Pittsburgh coal basin. The estimates are based on pumping rates from these mines for the years ranging from 1992 to 2000. The two mines do not approach the outcrop and are sufficiently deep that vertical infiltration is thought to be negligible. Similarly, there are no saturated zones on the pumped mines' side of shared barriers with other mines, and therefore pumping is the only outflow. Virtually all of the pumping is attributed to leakage across or over the top of barriers shared with upgradient flooded mines. The length of shared barriers totals 24 km for the two mines, and the barriers range in thickness from 15 to 50 m. K values calculated independently for each of the 9 years of the pumping record ranged from 0.037 m/d to 0.18 m/d using an isotropic model of barrier flow. Using an anisotropic model for differential K in the face cleat (K{sub f}) and butt cleat (K{sub b}) directions, results range from 0.074 to 0.34 m/d for K{sub f} and from 0.022 to 0.099 m/d for K{sub b}.

  7. CO2 Storage in Shallow Underground and Surface Coal Mines: Challenges and Opportunities

    SciTech Connect

    Romanov, Vyacheslav N.; Ackman, Terry E.; Soong, Yee; Kleinman, Robert L.

    2009-02-01

    For coal to be a viable energy source, its excessive CO2 emissions must be curtailed. Sequestration of CO2 and other greenhouse gases is a possibility, but success therein is preceded by a significant number of challenges. Perhaps the most onerous is the tradeoff between using deep mines that would better trap CO2 against using shallower options that are more economical to access. In confronting this issue, a group of U.S. Department of Energy researchers argue that recent advances in the understanding of materials afforded by nanoscale mechanistic models point in a promising direction to develop better sequestration technologies.

  8. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines

    PubMed Central

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-01-01

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization. PMID:26343660

  9. Multi-Sensor Detection with Particle Swarm Optimization for Time-Frequency Coded Cooperative WSNs Based on MC-CDMA for Underground Coal Mines.

    PubMed

    Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao

    2015-08-27

    In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.

  10. In vivo measurements of 210Pb in skull and knee geometries as an indicator of cumulative 222Rn exposure in a underground coal mine in Brazil.

    PubMed

    Dantas, A L A; Dantas, B M; Lipsztein, J L; Spitz, H B

    2007-01-01

    Cumulative exposure to radon can be evaluated by measuring 210Pb in bone. The skull and knee are two convenient parts of the skeleton for in vivo measuring 210Pb because these regions of the body present a high concentration of bone, the detectors are easily positioned and the likelihood of cross contribution from other organs or tissues is low. A radiological survey of non-uranium mines in Brazil indicated that an underground coal mine in Paraná, located in the south of Brazil, exhibited a high radon concentration. In vivo measurements of 32 underground coal miners were performed in the IRD-CNEN Whole Body Counter shielded room using an array of four high-resolution germanium detectors. Estimations of 210Pb in the total skeleton were determined from direct in vivo measurements of 210Pb in the head and knees. In vivo measurements of 210Pb in 6 out of 32 underground coal miners ranged from 80 to 164 Bq, suggesting that these workers were significantly exposed to 222Rn.

  11. Underground coal gasification: Development of theory, laboratory experimentation, interpretation, and correlation with the Hanna field tests: Final report

    SciTech Connect

    Gunn, R.D.; Krantz, W.B.

    1987-03-01

    The following report is a description of a 7 year effort to develop a theoretical understanding of the underground coal gasification process. The approach used is one of the mathematical model development from known chemical and principles, simplification of the models to isolate important effects, and through validation of models to isolate important effects, and through validation of models with laboratory experiments and field test data. Chapter I contains only introductory material. Chapter II describes the development of two models for reverse combustion: a combustion model and a linearized model for combustion front instability. Both models are required for realistic field predictions. Chapter III contains a discussion of a successful forward gasification model. Chapter IV discusses the spalling-enhanced-drying model is applicable to prediction of cavity growth and subsidence. Chapter VI decribes the correct use of energy and material balances for the analysis of UCG field test data. Chapter VII shows how laboratory experiments were used to validate the models for reverse combustion and forward gasification. It is also shown that laboratory combustion tube experiments can be used to simulate gas compositions expected from field tests. Finally, Chapter VII presents results from a comprehensive economic analysis of UCG involving 1296 separate cases. 37 refs., 49 figs., 12 tabs.

  12. Statistical evaluation of hydrologic conditions in the vicinity of abandoned underground coal mines around Cannelburg, Indiana

    USGS Publications Warehouse

    Harper, D.; Olyphant, G.A.

    1993-01-01

    A statistical analysis of daily water-level changes in an abandoned coal mine indicates that precipitation affects the potentiometric level of the mine, independent of associated atmospheric pressure changes and changes in the water level of an overlying aquifer. The independent statistical effect of precipitation (0.99 cm of water-level change per centimeter of rainfall) is interpreted to reflect either lateral percolation from the coalbed's subcrop (1.2 km from the mine) or rapid recharge through mine-associated pathways, such as poorly plugged shafts, boreholes, or subsidence fractures. The relationship between water-level changes in the mine's voids and changes in the overlying aquifer is also statistically significant, but the regression coefficient (0.04) is an order of magnitude smaller than that for precipitation, indicating that vertical percolation (which is represented by covariance of the two aquifers) through undisturbed overburden may be less effective than the recharge associated with precipitation that bypasses the overburden. An equivalent analysis of water-level changes in an underlying unmined coalbed indicated that precipitation had a weaker direct effect (regression coefficient of 0.34, compared with 0.99), although it was still the dominant independent variable. In contrast, the effect of water-level changes in an overlying aquifer (the flooded mine itself) was relatively stronger (regression coefficient of 0.15, compared with 0.04), indicating that vertical percolation through interburden is more important at depth. ?? 1993.

  13. Development and application of the Safe Performance Index as a risk-based methodology for identifying major hazard-related safety issues in underground coal mines

    NASA Astrophysics Data System (ADS)

    Kinilakodi, Harisha

    The underground coal mining industry has been under constant watch due to the high risk involved in its activities, and scrutiny increased because of the disasters that occurred in 2006-07. In the aftermath of the incidents, the U.S. Congress passed the Mine Improvement and New Emergency Response Act of 2006 (MINER Act), which strengthened the existing regulations and mandated new laws to address the various issues related to a safe working environment in the mines. Risk analysis in any form should be done on a regular basis to tackle the possibility of unwanted major hazard-related events such as explosions, outbursts, airbursts, inundations, spontaneous combustion, and roof fall instabilities. One of the responses by the Mine Safety and Health Administration (MSHA) in 2007 involved a new pattern of violations (POV) process to target mines with a poor safety performance, specifically to improve their safety. However, the 2010 disaster (worst in 40 years) gave an impression that the collective effort of the industry, federal/state agencies, and researchers to achieve the goal of zero fatalities and serious injuries has gone awry. The Safe Performance Index (SPI) methodology developed in this research is a straight-forward, effective, transparent, and reproducible approach that can help in identifying and addressing some of the existing issues while targeting (poor safety performance) mines which need help. It combines three injury and three citation measures that are scaled to have an equal mean (5.0) in a balanced way with proportionate weighting factors (0.05, 0.15, 0.30) and overall normalizing factor (15) into a mine safety performance evaluation tool. It can be used to assess the relative safety-related risk of mines, including by mine-size category. Using 2008 and 2009 data, comparisons were made of SPI-associated, normalized safety performance measures across mine-size categories, with emphasis on small-mine safety performance as compared to large- and

  14. Do we have to consider temperature-dependent material properties in large-scale environmental impact assessments of underground coal gasification?

    NASA Astrophysics Data System (ADS)

    Otto, Christopher; Kempka, Thomas

    2015-04-01

    Underground coal gasification (UCG) can increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce environmental impacts such as ground subsidence associated with groundwater pollution due to generation of hydraulic connectivities between the UCG reactor and adjacent aquifers. These changes overburden conductivity may introduce potential migration pathways for UCG contaminants such as organic (phenols, benzene, PAHs and heterocyclics) and inorganic (ammonia, sulphates, cyanides, and heavy metals) pollutants. Mitigation of potential environmental UCG impacts can be achieved by improving the understanding of coupled thermo-hydro-mechanical processes in the rocks surrounding the UCG reactor. In the present study, a coupled thermo-mechanical model has been developed to carry out a parameter sensitivity analysis and assess permeability changes derived from volumetric strain increments in the UCG reactor overburden. Our simulation results demonstrate that thermo-mechanical rock behavior is mainly influenced by the thermal expansion coefficient, tensile strength and elastic modulus of the surrounding rock. A comparison of temperature-dependent and temperature-independent simulation results indicates high variations in the distribution of total displacements in the UCG reactor vicinity related to thermal stress, but only negligible differences in permeability changes. Hence, temperature-dependent thermo-mechanical parameters have to be considered in the assessment of near-field UCG impacts, while far-field models can achieve a higher computational efficiency by using temperature-independent thermo-mechanical parameters. Considering the findings of the present study in the large-scale assessment of

  15. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted...

  16. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted...

  17. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted...

  18. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted...

  19. Underground mining and deep geologic disposal - Two compatible and complementary activities

    SciTech Connect

    Rempe, N.T.

    1995-12-31

    Active and mature underground mining districts offer conditions favorable to deep geologic disposal because their geology is known in more detail, the feasibility of underground excavations has already been demonstrated, mining leaves distinctive footprints and records that alert subsequent generations to the anthropogenic alterations of the underground environment, and subsequent exploration and production proceeds with great care and accuracy to locate and generally to avoid old mine workings. Compatibility of mining with deep geologic waste disposal has been proven by decades of experience with safe storage and disposal in former mines and in the mined-out areas of still active mining operations. Mineral extraction around an intended repository reduces the incentive for future disturbance. Incidental features of mineral exploration and extraction such as lost circulation zones, allochthonous backfill, and permanent surface markers can deter future intrusion into a repository. Thus exploration and production of mineral resources should be compatible with, and complementary to, deep geologic waste disposal.

  20. Activated, coal-based carbon foam

    DOEpatents

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  1. Activated, coal-based carbon foam

    SciTech Connect

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2009-06-09

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  2. STUDY OF ACTIVATION OF COAL CHAR

    SciTech Connect

    E.M. Suuberg; I. Kulaots; I Aarna; M. Callejo; A. Hsu

    2003-12-31

    This is the final report on a project whose aim is to explore in a fundamental manner the factors that influence the development of porosity in coal chars during the process of activation. It is known that choices of starting coal, activating agent and conditions can strongly influence the nature of an activated carbon produced from a coal. This project has been concerned mainly with the process of physical activation, which in fact involves the gasification of a char produced from a coal by oxidizing gases. This is of interest for two reasons. One is that there is commercial interest in production of activated carbons from coal, and therefore, in the conditions that can best be used in producing these materials. Much is already known about this, but there is a great deal that is in the realm of ''trade secret'' or just ''industry lore''. The second reason for interest in these processes is that they shed light on how porosity develops during any gasification process involving oxidizing gases. This has implications for understanding the kinetics and the role that ''surface area'' may play in determining kinetics. In earlier reports from this project, several conclusions had been reached upon which the present results rest. There is an often-cited difference in use of nitrogen and carbon dioxide as molecular probes of carbon porosity when using vapor adsorption techniques. Carbon dioxide is often ''preferred'' since it is argued that it offers greater access to fine microporosity, due to the higher temperature of carbon dioxide as opposed to nitrogen measurements. The early phases of this work revealed that the extreme differences are observed only in chars which are not much activated, and that by a few weight percent burnoff, the difference was negligible, provided a consistent theoretical equation was used in calculating uptake or ''surface area''. In another phase of this study, it was noted in a preliminary way how the use of different oxidizing environments

  3. Insight into hydroxides-activated coals: chemical or physical activation?

    SciTech Connect

    Alcaniz-Monge, J.; Illan-Gomez, M.J.

    2008-02-15

    The objective of this paper is to get an insight into the chemical activation mechanism using KOH and NaOH as activated agents. Three coals have been selected as carbon precursors. It was found that KOH and NaOH develop a similar narrow microporosity, independently of the coal rank, whereas only KOH generates supermicroporosity. Temperature-programmed desorption experiments, carried out with impregnated anthracite, show differences on the gas evolved during the activated carbon preparation using the two activating agents. Thus, whereas hydrogen profiles are quite similar for both activated agents, the CO and H{sub 2}O profiles are different. It is remarkable the high amount of H{sub 2}O evolved at the maximum treatment temperature for both activating agents. The results obtained to allow conclusion that the chemical activation is due to a combination of different process driving the development of material porosity.

  4. 30 CFR 922.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-underground mining activities. 922.817 Section 922.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  5. 30 CFR 912.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-underground mining activities. 912.817 Section 912.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  6. 30 CFR 921.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-underground mining activities. 921.817 Section 921.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH...

  7. 30 CFR 933.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-underground mining activities. 933.817 Section 933.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  8. 30 CFR 941.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-underground mining activities. 941.817 Section 941.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  9. 30 CFR 933.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-underground mining activities. 933.817 Section 933.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  10. 30 CFR 912.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-underground mining activities. 912.817 Section 912.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  11. 30 CFR 922.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-underground mining activities. 922.817 Section 922.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  12. 30 CFR 903.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-Underground mining activities. 903.817 Section 903.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  13. 30 CFR 933.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-underground mining activities. 933.817 Section 933.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  14. 30 CFR 905.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-Underground mining activities. 905.817 Section 905.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  15. 30 CFR 942.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-Underground mining activities. 942.817 Section 942.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  16. 30 CFR 922.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-underground mining activities. 922.817 Section 922.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  17. 30 CFR 941.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-underground mining activities. 941.817 Section 941.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  18. 30 CFR 933.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-underground mining activities. 933.817 Section 933.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  19. 30 CFR 921.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-underground mining activities. 921.817 Section 921.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH...

  20. 30 CFR 937.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-underground mining activities. 937.817 Section 937.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  1. 30 CFR 937.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-underground mining activities. 937.817 Section 937.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  2. 30 CFR 939.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-underground mining activities. 939.817 Section 939.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  3. 30 CFR 905.817 - Peformance standards-Underground mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Peformance standards-Underground mining activities. 905.817 Section 905.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  4. 30 CFR 947.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-underground mining activities. 947.817 Section 947.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  5. 30 CFR 937.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-underground mining activities. 937.817 Section 937.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  6. 30 CFR 922.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-underground mining activities. 922.817 Section 922.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  7. 30 CFR 933.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-underground mining activities. 933.817 Section 933.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  8. 30 CFR 941.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-underground mining activities. 941.817 Section 941.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  9. 30 CFR 947.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-underground mining activities. 947.817 Section 947.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  10. 30 CFR 939.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-underground mining activities. 939.817 Section 939.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  11. 30 CFR 912.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-underground mining activities. 912.817 Section 912.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  12. 30 CFR 903.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-Underground mining activities. 903.817 Section 903.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  13. 30 CFR 942.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-Underground mining activities. 942.817 Section 942.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  14. 30 CFR 947.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-underground mining activities. 947.817 Section 947.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  15. 30 CFR 903.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-Underground mining activities. 903.817 Section 903.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  16. 30 CFR 942.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-Underground mining activities. 942.817 Section 942.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  17. 30 CFR 942.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-Underground mining activities. 942.817 Section 942.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  18. 30 CFR 921.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-underground mining activities. 921.817 Section 921.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH...

  19. 30 CFR 905.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-Underground mining activities. 905.817 Section 905.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  20. 30 CFR 947.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-underground mining activities. 947.817 Section 947.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  1. 30 CFR 910.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-underground mining activities. 910.817 Section 910.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  2. 30 CFR 912.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-underground mining activities. 912.817 Section 912.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  3. 30 CFR 905.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-Underground mining activities. 905.817 Section 905.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  4. 30 CFR 903.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-Underground mining activities. 903.817 Section 903.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  5. 30 CFR 941.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-underground mining activities. 941.817 Section 941.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  6. 30 CFR 921.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-underground mining activities. 921.817 Section 921.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH...

  7. 30 CFR 939.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-underground mining activities. 939.817 Section 939.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  8. 30 CFR 922.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-underground mining activities. 922.817 Section 922.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  9. 30 CFR 903.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-Underground mining activities. 903.817 Section 903.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  10. 30 CFR 939.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-underground mining activities. 939.817 Section 939.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  11. 30 CFR 947.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-underground mining activities. 947.817 Section 947.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  12. 30 CFR 939.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-underground mining activities. 939.817 Section 939.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  13. 30 CFR 910.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-underground mining activities. 910.817 Section 910.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  14. 30 CFR 910.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-underground mining activities. 910.817 Section 910.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  15. 30 CFR 910.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-underground mining activities. 910.817 Section 910.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  16. 30 CFR 905.817 - Peformance standards-Underground mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Peformance standards-Underground mining activities. 905.817 Section 905.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  17. 30 CFR 941.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-underground mining activities. 941.817 Section 941.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  18. 30 CFR 910.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-underground mining activities. 910.817 Section 910.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  19. 30 CFR 942.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards-Underground mining activities. 942.817 Section 942.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  20. 30 CFR 912.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards-underground mining activities. 912.817 Section 912.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  1. 30 CFR 937.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards-underground mining activities. 937.817 Section 937.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  2. 30 CFR 937.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards-underground mining activities. 937.817 Section 937.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE...

  3. 30 CFR 921.817 - Performance standards-underground mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards-underground mining activities. 921.817 Section 921.817 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH...

  4. 30 CFR 75.343 - Underground shops.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground shops. 75.343 Section 75.343... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.343 Underground shops. (a) Underground shops shall be equipped with an automatic fire suppression system meeting the requirements of §...

  5. The Relationship between Elemental Carbon and Diesel Particulate Matter in Underground Metal/Nonmetal Mines in the United States and Coal Mines in Australia

    PubMed Central

    Noll, James; Gilles, Stewart; Wu, Hsin Wei; Rubinstein, Elaine

    2015-01-01

    In the United States, total carbon (TC) is used as a surrogate for determining diesel particulate matter (DPM) compliance exposures in underground metal/nonmetal mines. Since TC can be affected by interferences and elemental carbon (EC) is not, one method used to estimate the TC concentration is to multiply the EC concentration from the personal sample by a conversion factor to avoid the influence of potential interferences. Since there is no accepted single conversion factor for all metal/nonmetal mines, one is determined every time an exposure sample is taken by collecting an area sample that represents the TC/EC ratio in the miner's breathing zone and is away from potential interferences. As an alternative to this procedure, this article investigates the relationship between TC and EC from DPM samples to determine if a single conversion factor can be used for all metal/nonmetal mines. In addition, this article also investigates how well EC represents DPM concentrations in Australian coal mines since the recommended exposure limit for DPM in Australia is an EC value. When TC was predicted from EC values using a single conversion factor of 1.27 in 14 US metal/nonmetal mines, 95% of the predicted values were within 18% of the measured value, even at the permissible exposure limit (PEL) concentration of 160 μg/m3 TC. A strong correlation between TC and EC was also found in nine underground coal mines in Australia. PMID:25380085

  6. Design optimization in underground coal systems. Volume VIII. The roof truss: an analysis with applications to mine design. Final technical report

    SciTech Connect

    Not Available

    1981-02-28

    The purpose of this research effort was to optimize the application of the roof truss for use in supporting coal mine roofs. Model analysis using two-dimensinal, body-loaded, photoelastic models was supplemented with field data and testing. A detailed literature review was also undertaken. The detailed analysis of photoelastic models of roof trusses was pursued by varying a number of the truss parameters - center-span installation angles and blocking-point configuration. In obtaining reduced deflection, the best support was achieved employing an angle of installation of 90/sup 0/. However, due to roof failute considerations, the recommended angle of installation was 45/sup 0/. Blocking points were shown to have an effect on roof-support capacity as well as truss span, and field tests indicated that the installation of a roof truss actually raised the roof. Also, from field measurements, it was shown that all sections of the arch carried the same load. The use of the roof truss as a major support principle and device in underground coal mines was confined. The installation angle should be 45/sup 0/ in any specified roof span. Blocking is an essential part of the arch installation and should be carefully implemented to insure maximum efficiency of the arch. It was concluded that: the truss installation of 45/sup 0/ produces maximum benefit when the overall stability of the roof is considered; the two-dimensional, body-loaded photoelastic model may be used to analyze underground structures; in underground installations, all components of the roof truss structure sustain the same load; and uplift of the roof may be achieved during installation of the roof truss system.

  7. Underground Test Area Activity Communication/Interface Plan, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect

    Farnham, Irene; Rehfeldt, Kenneth

    2016-10-01

    The purpose of this plan is to provide guidelines for effective communication and interfacing between Underground Test Area (UGTA) Activity participants, including the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and its contractors. This plan specifically establishes the following: • UGTA mission, vision, and core values • Roles and responsibilities for key personnel • Communication with stakeholders • Guidance in key interface areas • Communication matrix

  8. 75 FR 81165 - Examinations of Work Areas in Underground Coal Mines for Violations of Mandatory Health or Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... required to be applied, it shall be distributed upon the top, floor, and sides of all underground areas of... with respect to transportation of men and materials shall be provided. Sec. 75.1722(a). Gears... inlets; and similar exposed moving machine parts which may be contacted by persons, and which may...

  9. Characterization of activated carbon prepared from chicken waste and coal

    SciTech Connect

    Yan Zhang; Hong Cui; Riko Ozao; Yan Cao; Bobby I.-T. Chen; Chia-Wei Wang; Wei-Ping Pan

    2007-12-15

    Activated carbons (ACs) were prepared from chicken waste (CW) and coal (E-coal) blended at the ratios of 100:0, 80:20, 50:50, 20:80, and 0:100. The process included carbonization in flowing gaseous nitrogen (300 mL min{sup -1}) at ca. 430{sup o}C for 60 min and successive steam activation (0.1 mL min{sup -1} water injection with a flow of N{sub 2} at 100 mL min{sup -1}) at 650{sup o}C for 30 min. Chicken waste is low in sulfur content but is high in volatile matter (about 55 wt %), and ACs with higher specific surface area were more successfully obtained by mixing with coal. The specific surface area of the CW/Coal blend AC can be estimated by SSA{sub BET} = -65.8x{sup 2} + 158x + 168, where SSA{sub BET} is the specific surface area in m{sup 2} g{sup -1} as determined by the BET method using CO{sub 2} as the adsorbent, where x is the coal fraction by weight in the CW/coal blend ranging from 0.0 to 1.0 (e.g., x = 0.0 signifies the blend contains no coal and x = 1.0 signifies the blend consists of 100% coal). 26 refs., 7 figs., 3 tabs.

  10. The influence of particle size distribution on dose conversion factors for radon progeny in the underground excavations of hard coal mine.

    PubMed

    Skubacz, Krystian; Wojtecki, Łukasz; Urban, Paweł

    2016-10-01

    In Polish underground mines, hazards caused by enhanced natural radioactivity occur. The sources of radiation exposure are short-lived radon decay products, mine waters containing radium (226)Ra and (228)Ra and the radioactive sediments that can precipitate out of these waters. For miners, the greatest exposure is usually due to short-lived radon decay products. The risk assessment is based on the measurement of the total potential alpha energy concentration (PAEC) and the evaluation of the related dose by using the dose conversion factor as recommended by relevant legal requirements. This paper presents the results of measurements of particle size distributions of ambient aerosols in an underground hard coal mine, the assessment of the radioactive particle size distribution of the short-lived radon decay products and the corresponding values of dose conversion factors. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometers to about 20 μm. The study therefore included practically the whole class of respirable particles. The results showed that the high concentration of ultrafine and fine aerosols measured can significantly affect the value of the dose conversion factors, and consequently the corresponding committed effective dose, to which the miners can be exposed.

  11. Elemental analysis of combustion products by neutron activation

    SciTech Connect

    Heft, R.E.; Koszykowski, R.F.

    1980-01-01

    This paper gives a brief description of the neutron activation analysis method, which is being used to determine the elemental profile of combustion products from coal-fired power plants, oil shale retorting, and underground coal gasification. (DLC)

  12. Oxidative Activity of Heated Coal Affected by Antypirogens

    NASA Astrophysics Data System (ADS)

    Torosyan, V. F.; Torosyan, E. S.; Borovikov, I. F.; Yakutova, V. A.

    2016-04-01

    The effect of antypirogens on chemical activity of heated coal is studied. It is proved that ammonium sulfate, calcium phosphate, calcium chloride, calcium nitrate and acid fluoride are the most effective antypirogens.

  13. USGS international activities in coal resources

    USGS Publications Warehouse

    ,

    1999-01-01

    During the last 30 years the U.S. Geological Survey (USGS) has been engaged in coal exploration and characterization in more that 30 foreign countries, including India, Pakistan, China, Turkey, several Eastern European countries, Russia, and other former Soviet Union countries. Through this work, the USGS has developed an internationally recognized capability for assessing coal resources and defining their geochemical and physical characteristics. More recently, these data have been incorporated into digital databases and Geographic Information System (GIS) digital map products. The USGS has developed a high level of expertise in assessing the technological, economic, environmental, and human health impacts of coal occurrences and utilization based on comprehensive characterization of representative coal samples.

  14. Early Earth Science Activities in the Sanford Underground Science and Engineering Laboratory at Homestake

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Glaser, S. D.; Moore, J. R.; Hart, K.; King, G.; Regan, T.; Bang, S. S.; Sani, R. K.; Roggenthen, W. M.

    2007-12-01

    On July 10, 2007, the former Homestake Mine, Lead, South Dakota, was selected as the development site for the Deep Underground Science and Engineering Laboratory, to become the Sanford Underground Science and Engineering Laboratory at Homestake. Work on refurbishment and certification of the Ross Shaft began in August 2007 to effect pumping of water that had reached the 5000 level in late July. Completion of this work will allow a physics and geosciences laboratory to be constructed on the 4,850 ft level (1,478 m from the surface). Concurrent with reentry operations, several earth science research activities have been initiated. These early activities are as follows: (1) Seismic monitoring system: Accelerometers will be installed in surface boreholes and underground drifts as they become available as a result of the reentry work. (2) Evaluation of the 300 level (91 m), which has multiple locations for horizontal access, is ongoing. This near- surface level, with varying overburden thicknesses, offers excellent opportunities to investigate the "critical zone" in terms of hydrology, ecology, and geochemistry, yielding measurements of both moisture and carbon fluxes to evaluate fluid exchanges with the atmosphere. (3) Water and soil samples were collected in the Ross Shaft as part of the first reentry work. Molecular survey of microbial diversity showed the presence of mesophilic and thermophilic cellulose-degrading microorganisms. (4) Supercritical carbon dioxide injection experiments are being planned that will take advantage of three pairs of existing, nearly vertical, open 8-inch (0.2 m) boreholes that are easily accessible from the Ross Shaft. The candidate holes are located between the 1550 and the 2900 levels and are between 90 to 180 m in length (5) Monitoring of the response of the water during the dewatering operations will be facilitated by the use of existing boreholes. Ultimately, the dewatering operation provide access to the 8000 level (depth of 2,438 m

  15. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal mine waste: Burning and burned waste utilization. 817.87 Section 817.87 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal...

  16. Steroidal glycosides from the underground parts of Yucca glauca and their cytotoxic activities.

    PubMed

    Yokosuka, Akihito; Suzuki, Tomoka; Tatsuno, Satoru; Mimaki, Yoshihiro

    2014-05-01

    Six steroidal glycosides and 14 known compounds were isolated from the underground parts of Yucca glauca (Agavaceae). Their structures were determined from extensive spectroscopic analysis, including analysis of two-dimensional NMR data, and from chemical transformations. The compounds were also evaluated for cytotoxic activities against HL-60 human leukemia cells and A549 human lung adenocarcinoma cells. Four spirostanol glycosides and three furostanol glycosides exhibited cytotoxic activities against both HL-60 and A549 cells. Two of the compounds induced apoptosis in HL-60 cells.

  17. Overburden characterization and post-burn study at the Hanna, Wyoming underground coal gasification site: stratigraphy, depositional environments and mineralogy, Hanna Formation

    SciTech Connect

    Craig, G.N. II; Burns, L.K.; Ethridge, F.G.; Laughter, T.; Youngberg, A.D.

    1982-03-01

    Several underground coal gasification (UCG) experiments have been conducted in the Hanna No. 1 coal seam. During the fall of 1980 the Laramie Energy Technology Center performed a post-burn field study of the Hanna II, Phases 2 and 3 experiment at the Hanna UCG site. The field work consisted of high resolution seismic, drilling, coring, and geophysical logging. The Department of Earth Resources, Colorado State University, contributed to the post-burn study by doing laboratory work on the cores and geophysical logs. The purpose of the laboratory work was to provide an estimate of the temperatures and chemical conditions reached during the conversion experiment by studying the mineralogical and textural characteristics of thermally altered and ulaltered overburden. In the vicinity of the burn cavity, overburden rocks have been subjected to high temperature pyrometamorphism during the Hanna II Phases 2 and 3 UCG experiments. Paralava rocks, buchites and paralava breccias containing glass and various high temperature minerals such as oligoclase, clinopyroxene, ferrocordierite, mullite, cristobalite, magnetite, and tridymite formed. Textures of some of these minerals suggest crystallization directly from a melt. Mineralogy and melting relations of the paralavas, ash fusion temperatures, and thermocouple measurements made during the experiment suggest that tempratures in excess of 1200/sup 0/C were attained. Rock color and the presence of reduced iron bearing minerals and blebs of native iron indicate that the experimental burn and the product gases in the area of paralava formation were reducing.

  18. Assessment and evaluation of noise controls on roof bolting equipment and a method for predicting sound pressure levels in underground coal mining

    NASA Astrophysics Data System (ADS)

    Matetic, Rudy J.

    Over-exposure to noise remains a widespread and serious health hazard in the U.S. mining industries despite 25 years of regulation. Every day, 80% of the nation's miners go to work in an environment where the time weighted average (TWA) noise level exceeds 85 dBA and more than 25% of the miners are exposed to a TWA noise level that exceeds 90 dBA, the permissible exposure limit (PEL). Additionally, MSHA coal noise sample data collected from 2000 to 2002 show that 65% of the equipment whose operators exceeded 100% noise dosage comprise only seven different types of machines; auger miners, bulldozers, continuous miners, front end loaders, roof bolters, shuttle cars (electric), and trucks. In addition, the MSHA data indicate that the roof bolter is third among all the equipment and second among equipment in underground coal whose operators exceed 100% dosage. A research program was implemented to: (1) determine, characterize and to measure sound power levels radiated by a roof bolting machine during differing drilling configurations (thrust, rotational speed, penetration rate, etc.) and utilizing differing types of drilling methods in high compressive strength rock media (>20,000 psi). The research approach characterized the sound power level results from laboratory testing and provided the mining industry with empirical data relative to utilizing differing noise control technologies (drilling configurations and types of drilling methods) in reducing sound power level emissions on a roof bolting machine; (2) distinguish and correlate the empirical data into one, statistically valid, equation, in which, provided the mining industry with a tool to predict overall sound power levels of a roof bolting machine given any type of drilling configuration and drilling method utilized in industry; (3) provided the mining industry with several approaches to predict or determine sound pressure levels in an underground coal mine utilizing laboratory test results from a roof bolting

  19. Low severity conversion of activated coal. Final report

    SciTech Connect

    Hirschon, A.S.; Ross, D.S.

    1990-01-01

    The results suggest that coal contains regions with structural components significantly reactive under the hydrothermal environment. Although the specific mechanism for this process remains to be developed, this activity is reminiscent of findings in studies of accelerated maturation of oil shale, where hydrothermal treatment (hydrous pyrolysis) leads to the production of petroleum hydrocarbons. In line with what has been seen in the oil shale work, the pretreatment-generated hydrocarbons and phenols appear to represent a further or more complete maturation of some fraction of the organic material within the coal. These observations could have an impact in two areas. The first is in the area of coal structure, where immature, reactive regions have not been included in the structures considered at present. The second area of interest is the more practical one of conversions to coal liquids and pyrolytic tars. It seems clear that the hydrothermal pretreatment changes the coal in some manner that favorably affects the product quality substantially and, as in the CO/water liquefaction case, favorably affects the yields. The conversions of coals of lower rank, i.e., less mature coals, could particularly benefit in terms of both product quality and product quantity. The second portion of this project also shows important benefits to coal conversion technology. It deals with synthesizing catalysts designed to cleave the weak links in the coal structure and then linking these catalysts with the pretreatment methods in Task 2. The results show that highly dispersed catalysts can effectively be used to increase the yields of soluble material. An important aspect of highly dispersed catalysts are that they can effectively catalyze coal conversion even in poor liquefaction solvents, thus making them very attractive in processes such as coprocessing where inexpensive liquefaction media such as resids are used.

  20. Steroidal glycosides from the underground parts of Dracaena thalioides and their cytotoxic activity.

    PubMed

    Tang, Liying; Wang, Zhuju; Wu, Hongwei; Yokosuka, Akihito; Mimaki, Yoshihiro

    2014-11-01

    Six spirostanol glycosides (1-6) and 12 known compounds (7-18) were isolated from the underground parts of Dracaena thalioides (Agavaceae). Their structures were determined by spectroscopic analysis, including 2D NMR spectroscopic data, and chemical transformations. The isolated compounds were evaluated for cytotoxic activity against HL-60 human leukemia cells. Compounds 1, 3-6, and 8-18 showed cytotoxicity against HL-60 cells, of which 10, a bisdesmosidic spirostanol derivative, showed potent cytotoxicity against HL-60 cells with an IC50 value of 0.38μM and induced apoptosis in HL-60 cells.

  1. Psychophysical investigations of discomfort and disability glare from underground coal mine illumination systems. Open File Report, May 1980-July 1983

    SciTech Connect

    Whitehead, K.L.; Lindahl, P.; Vincent, R.; Crouch, C.

    1983-10-01

    A literature search was conducted to identify current light-control technology and hardware that may be applicable on underground lighting systems to minimize disability and discomfort glare. No research dealing specifically with mine lighting was found, but abstracts on research considered potentially applicable are included in the report. Information on several commercial light-control products for use in controlling glare are also included. Vision tests conducted on 137 mine personnel to determine their discomfort and disability glare sensitivity indicate their sensitivity to disability glare is about the same as the general population.

  2. 75 FR 48325 - Agency Information Collection Activities: Proposed Collection; Comment Request; Underground...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... Storage Tanks: Technical and Financial Requirements, and State Program Approval Procedures (Renewal), EPA...: U.S. Environmental Protection Agency, EPA Docket Center, Underground Storage Tanks Docket, Mail Code... Agency, EPA Docket Center, Underground Storage Tanks Docket, 1200 Pennsylvania Avenue, NW.,...

  3. 77 FR 47668 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Underground...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... from shale in underground metal and nonmetal I-A and I-B mines (those that operate in a combustible ore... shale mines. The standard requires that, prior to ignition of underground retorts, mine operators...

  4. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    NASA Astrophysics Data System (ADS)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis

  5. Geomorphology of coal seam fires

    NASA Astrophysics Data System (ADS)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires

  6. DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES

    SciTech Connect

    Yoginder P. Chugh

    2002-10-01

    The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research into the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.

  7. Relationship of roof falls in underground coal mines to fractures mapped on ERTS-1 imagery. [Indiana and Illinois

    NASA Technical Reports Server (NTRS)

    Wier, C. E.; Wobber, F. J.; Russell, O. R.; Amato, R. V.; Leshendok, T. V.

    1974-01-01

    ERTS imagery is of unique value for mapping of certain fractures that are not identifiable on aircraft imagery. Because color infrared and ERTS imagery complement each other both sources of data were used to map fractures in western Indiana and eastern Illinois. In the Kings Station Mine, Gibson County, Indiana, most roof falls reported had occurred in areas where mapped fractures were closely spaced and intersecting. Using this information as a basis for extrapolation, roof fall hazard maps were prepared for other mine sites. Various coal resources programs related to energy and environment also were conducted.

  8. Underground coal gasification with extended CO2 utilization as economic and carbon neutral approach to address energy and fertilizer supply shortages in Bangladesh

    NASA Astrophysics Data System (ADS)

    Nakaten, Natalie; Islam, Rafiqul; Kempka, Thomas

    2014-05-01

    The application of underground coal gasification (UCG) with proven carbon mitigation techniques may provide a carbon neutral approach to tackle electricity and fertilizer supply shortages in Bangladesh. UCG facilitates the utilization of deep-seated coal seams, not economically exploitable by conventional coal mining. The high-calorific synthesis gas produced by UCG can be used for e.g. electricity generation or as chemical raw material for hydrogen, methanol and fertilizer production. Kempka et al. (2010) carried out an integrated assessment of UCG operation, demonstrating that about 19 % of the CO2 produced during UCG may be mitigated by CO2 utilization in fertilizer production. In the present study, we investigated an extension of the UCG system by introducing excess CO2 storage in the gas deposit of the Bahkrabad gas field (40 km east of Dhaka, Bangladesh). This gas field still holds natural gas resources of 12.8 million tons of LNG equivalent, but is close to abandonment due to a low reservoir pressure. Consequently, applying enhanced gas recovery (EGR) by injection of excess carbon dioxide from the coupled UCG-urea process may mitigate carbon emissions and support natural gas production from the Bahkrabad gas field. To carry out an integrated techno-economic assessment of the coupled system, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014) to consider the urea and EGR processes. Reservoir simulations addressing EGR in the Bakhrabad gas field by utilization of excess carbon dioxide from the UCG process were carried out to account for the induced pressure increase in the reservoir, and thus additional gas recovery potentials. The Jamalganj coal field in Northwest Bangladesh provides favorable geological and infrastructural conditions for a UCG operation at coal seam depths of 640 m to 1,158 m. Excess CO2 can be transported via existing pipeline networks to the Bahkrabad gas field (about 300 km distance from the coal deposit) to be

  9. Modelling of Underground Coal Gasification Process Using CFD Methods / Modelowanie Procesu Podziemnego Zgazowania Węgla Kamiennego Z Zastosowaniem Metod CFD

    NASA Astrophysics Data System (ADS)

    Wachowicz, Jan; Łączny, Jacek Marian; Iwaszenko, Sebastian; Janoszek, Tomasz; Cempa-Balewicz, Magdalena

    2015-09-01

    The results of model studies involving numerical simulation of underground coal gasification process are presented. For the purpose of the study, the software of computational fluid dynamics (CFD) was selected for simulation of underground coal gasification. Based on the review of the literature, it was decided that ANSYS-Fluent will be used as software for the performance of model studies. The ANSYS- -Fluent software was used for numerical calculations in order to identify the distribution of changes in the concentration of syngas components as a function of duration of coal gasification process. The nature of the calculations was predictive. A geometric model has been developed based on construction data of the georeactor used during the researches in Experimental Mine "Barbara" and Coal Mine "Wieczorek" and it was prepared by generating a numerical grid. Data concerning the georeactor power supply method and the parameters maintained during the process used to define the numerical model. Some part of data was supplemented based on the literature sources. The main assumption was to base the simulation of the georeactor operation on a mathematical models describing reactive fluid flow. Components of the process gas and the gasification agent move along the gasification channel and simulate physicochemical phenomena associated with the transfer of mass and energy as well as chemical reactions (together with the energy effect). Chemical reactions of the gasification process are based on a kinetic equation which determines the course of a particular type of equation of chemical coal gasification. The interaction of gas with the surrounding coal layer has also been described as a part of the model. The description concerned the transport of thermal energy. The coal seam and the mass rock are treated as a homogeneous body. Modelling studies assumed the coal gasification process is carried out with the participation of separately oxygen and air as a gasification agent

  10. Steroidal glycosides from the underground parts of Allium ursinum L. and their cytostatic and antimicrobial activity.

    PubMed

    Sobolewska, Danuta; Janeczko, Zbigniew; Kisiel, Wanda; Podolak, Irma; Galanty, Agnieszka; Trojanowska, Danuta

    2006-01-01

    The aim of this study was the isolation and structural elucidation of steroidal glycosides from the underground parts of ramson Allium ursinum L. The structures of the isolated compounds were established based upon chromatographic methods and 1D- and 2D-NMR, MS and IR analyses. The mixture of two steroidal saponins: (25R)-spirost-5-en-3b-ol tetrasaccharide and (25R)-spirost-5, 25(27)-dien-3b-ol tetrasaccharide, along with a 3-hydroxypregna-5,16-dien-20-one glycoside were identified. The results of in vitro cytotoxic activity of the mixture of spirostanol saponins against cell lines melanoma B16 and sarcoma XC and human fibroblasts HSF are also reported. The spirostanol saponins mixture was investigated to determine its in vitro antimicrobal activity against Trichophyton mentagrophytes and Microsporum canis.

  11. Theoretical analysis of the coupling effect for the seepage field, stress field, and temperature field in underground coal gasification

    SciTech Connect

    Yang, L.H.

    2005-10-01

    In this article, the derivative control equations of the simultaneous mathematical models on the temperature field, stress field of coal and rock mass, and the seepage field of retort gases in the gasification panel were established. The finite element form of the three-fields coupling problem for gas-solid solutions by means of a six-node triangular element was deduced. The numerical analysis software for three-fields coupling was developed. Combined with the calculation example, the mechanism of the thermodynamic effect was illustrated. The impact of the heating effect on the measured value and the simulated value of the seepage field, stress field, and displacement field was discussed and analyzed at length.

  12. New cholestane glycosides and sterols from the underground parts of Chamaelirium luteum and their cytotoxic activity.

    PubMed

    Yokosuka, Akihito; Takagi, Kenichi; Mimaki, Yoshihiro

    2013-07-01

    Six new cholestane glycosides (1, 5, 6, 10, 12, and 13) and two new sterols (9 and 11), along with five known compounds (2-4, 7, and 8), were isolated from the underground parts of Chamaelirium luteum (Liliaceae). The structures of these new compounds were determined by spectroscopic analysis and the results of hydrolytic cleavage. The isolated compounds and aglycones were evaluated for their cytotoxic activity against HL-60 human leukemia cells. Compounds 6a, 10a, 12a, 13, and 13a were cytotoxic to HL-60 cells, with IC50 values of 12.8, 9.8, 15.3, 6.2, and 10.2 µM, respectively.

  13. Underground air returns as active transportation pathways for radon gas entry into homes.

    PubMed

    Kearfott, K J; Metzger, R L; Holbert, K E

    1992-12-01

    Levels of elevated 222Rn in homes can fail to correlate with measured radium concentrations in soils and surrounding rocks for reasons which can include water sources, building materials, and unusual variations in climate or building construction. Several homes were identified in the Phoenix, AZ metropolitan area with soil radium concentrations of < 0.074 Bq g-1 (2.0 pCi g-1) which had elevated radon concentrations unexplained by geological sources alone. Continuous monitoring of eight houses under different conditions of cooling system usage revealed a definite role of the underground air returns as active transport pathways contributing to the enhancement of the indoor concentration of 222Rn in six of the houses. The ratio of indoor 222Rn concentrations on days when the cooling system was operated continuously compared to days the system was off ranged from essentially one up to a factor exceeding 10.

  14. A coupled, pore-scale model for methanogenic microbial activity in underground hydrogen storage

    NASA Astrophysics Data System (ADS)

    Ebigbo, Anozie; Golfier, Fabrice; Quintard, Michel

    2013-11-01

    Underground hydrogen storage (UHS) as a means of energy storage is an efficient way of compensating for seasonal fluctuations in the availability of energy. One important factor which influences this technology is the activity of methanogenic microorganisms capable of utilising hydrogen and carbon dioxide for metabolism and leading to a change in the stored gas composition. A coupled, pore-scale model is presented which aids in the investigation of the mechanisms that govern the conversion of hydrogen to methane, i.e. advective hydrogen flow, its diffusion into microbial biofilms of multiple species, and its consumption within these biofilms. The model assumes that spherical grains are coated by a film of residual water and treats the biofilm development within each film in a quasi one-dimensional manner. A sample simulation using the presented model illustrates the biofilm growth process in these films as well as the competition between three different microbial species: methanogens, acetogens, and acetotrophs.

  15. 30 CFR 75.811 - High-voltage underground equipment; grounding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage underground equipment; grounding... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.811 High-voltage underground equipment; grounding. Frames, supporting structures...

  16. 76 FR 51970 - Agency Information Collection Activities; Proposed Collection; Comment Request; Underground...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... Drinking Water/Drinking Water Protection Division/Underground Injection Control Program, Mailcode: 4606M... Safe Drinking Water Act established a Federal and State regulatory system to protect underground sources of drinking water (USDWs) from contamination by injected fluids. Injected fluids include...

  17. 75 FR 58374 - Agency Information Collection Activities; Proposed Collection; Comment Request; Underground...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Storage Tank: Information Request Letters, Pacific Southwest Region (Region IX); EPA ICR No. 2405.01, OMB... action are owners and operators of RCRA-regulated underground storage tanks within EPA Region IX, i.e... Indian communities. ] Title: Underground Storage Tanks: Information Request Letters, Pacific...

  18. Effects of coal mine subsidence in the Sheridan, Wyoming, area

    USGS Publications Warehouse

    Dunrud, C. Richard; Osterwald, Frank W.

    1980-01-01

    Analyses of the surface effects of past underground coal mining in the Sheridan, Wyoming, area suggest that underground mining of strippable coal deposits may damage the environment more over long periods of time than would modern surface mining, provided proper restoration procedures are followed after surface mining. Subsidence depressions and pits are a continuing hazard to the environment and to man's activities in the Sheridan, Wyo., area above abandoned underground mines in weak overburden less than about 60 m thick and where the overburden is less than about 10-15 times the thickness of coal mined. In addition, fires commonly start by spontaneous ignition when water and air enter the abandoned mine workings via subsidence cracks and pits. The fires can then spread to unmined coal as they create more cavities, more subsidence, and more cracks and pits through which air can circulate. In modern surface mining operations the total land surface underlain by minable coal is removed to expose the coal. The coal is removed, the overburden and topsoil are replaced, and the land is regraded and revegetated. The land, although disturbed, can be more easily restored and put back into use than can land underlain by abandoned underground mine workings in areas where the overburden is less than about 60 m thick or less than about 10-15 times the thickness of coal mined. The resource recovery of modern surface mining commonly is much greater than that of underground mining procedures. Although present-day underground mining technology is advanced as compared to that of 25-80 years ago, subsidence resulting from underground mining of thick coal beds beneath overburden less than about 60 m thick can still cause greater damage to surface drainage, ground water, and vegetation than can properly designed surface mining operations. This report discusses (11 the geology and surface and underground effects of former large-scale underground coal mining in a 50-km 2 area 5-20 km

  19. Underground mineral extraction

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B.

    1980-01-01

    A method was developed for extracting underground minerals such as coal, which avoids the need for sending personnel underground and which enables the mining of steeply pitched seams of the mineral. The method includes the use of a narrow vehicle which moves underground along the mineral seam and which is connected by pipes or hoses to water pumps at the surface of the Earth. The vehicle hydraulically drills pilot holes during its entrances into the seam, and then directs sideward jets at the seam during its withdrawal from each pilot hole to comminute the mineral surrounding the pilot hole and combine it with water into a slurry, so that the slurried mineral can flow to a location where a pump raises the slurry to the surface.

  20. Underground Corrosion of Activated Metals in an Arid Vadose Zone Environment

    SciTech Connect

    Adler Flitton, M.K; Mizia, R.E.; Bishop, C.W.

    2001-10-24

    The subsurface radioactive disposal site located at the Idaho National Engineering and Environmental Laboratory contains neutron-activated metals from nonfuel nuclear-reactor- core components. A long-term corrosion test is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The tests use nonradioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, Type 304L stainless steel, Type 315L stainless steel, nickel-chromium alloy (UNS NO7718), beryllium, aluminum 6061-T6, and a zirconium alloy, (UNS R60804). In addition, carbon steel (the material presently used in the cask disposal liners and other disposal containers) and a duplex stainless steel (UNS S32550) (the proposed material for the high- integrity disposal containers) are also included in the test program. This paper briefly describes the test program and presents the early corrosion rate results after 1 year and 3 years of underground exposure.

  1. Underground Corrosion of Activated Metals in an Arid Vadose Zone Environment

    SciTech Connect

    Adler Flitton, Mariana Kay; Mizia, Ronald Eugene; Bishop, Carolyn Wagoner

    2002-04-01

    The subsurface radioactive disposal site located at the Idaho National Engineering and Environmental Laboratory contains neutron-activated metals from nonfuel nuclear-reactor- core components. A long-term corrosion test is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The tests use nonradioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, Type 304L stainless steel, Type 315L stainless steel, nickel-chromium alloy (UNS NO7718), beryllium, aluminum 6061-T6, and a zirconium alloy, (UNS R60804). In addition, carbon steel (the material presently used in the cask disposal liners and other disposal containers) and a duplex stainless steel (UNS S32550) (the proposed material for the high- integrity disposal containers) are also included in the test program. This paper briefly describes the test program and presents the early corrosion rate results after 1 year and 3 years of underground exposure.

  2. Noise-based body-wave seismic tomography in an active underground mine.

    NASA Astrophysics Data System (ADS)

    Olivier, G.; Brenguier, F.; Campillo, M.; Lynch, R.; Roux, P.

    2014-12-01

    Over the last decade, ambient noise tomography has become increasingly popular to image the earth's upper crust. The seismic noise recorded in the earth's crust is dominated by surface waves emanating from the interaction of the ocean with the solid earth. These surface waves are low frequency in nature ( < 1 Hz) and not usable for imaging smaller structures associated with mining or oil and gas applications. The seismic noise recorded at higher frequencies are typically from anthropogenic sources, which are short lived, spatially unstable and not well suited for constructing seismic Green's functions between sensors with conventional cross-correlation methods. To examine the use of ambient noise tomography for smaller scale applications, continuous data were recorded for 5 months in an active underground mine in Sweden located more than 1km below surface with 18 high frequency seismic sensors. A wide variety of broadband (10 - 3000 Hz) seismic noise sources are present in an active underground mine ranging from drilling, scraping, trucks, ore crushers and ventilation fans. Some of these sources generate favorable seismic noise, while others are peaked in frequency and not usable. In this presentation, I will show that the noise generated by mining activity can be useful if periods of seismic noise are carefully selected. Although noise sources are not temporally stable and not evenly distributed around the sensor array, good estimates of the seismic Green's functions between sensors can be retrieved for a broad frequency range (20 - 400 Hz) when a selective stacking scheme is used. For frequencies below 100 Hz, the reconstructed Green's functions show clear body-wave arrivals for almost all of the 153 sensor pairs. The arrival times of these body-waves are picked and used to image the local velocity structure. The resulting 3-dimensional image shows a high velocity structure that overlaps with a known ore-body. The material properties of the ore-body differ from

  3. 78 FR 28242 - Proposed Information Collection; Cleanup Program for Accumulations of Coal and Float Coal Dusts...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Coal and Float Coal Dusts, Loose Coal, and Other Combustibles AGENCY: Mine Safety and Health... program for accumulations of coal and float coal dusts, loose coal, and other combustibles in underground coal mines. DATES: All comments must be postmarked or received by midnight Eastern Standard Time...

  4. Preparation and evaluation of coal-derived activated carbons for removal of mercury vapor from simulated coal combustion flue fases

    USGS Publications Warehouse

    Hsi, H.-C.; Chen, S.; Rostam-Abadi, M.; Rood, M.J.; Richardson, C.F.; Carey, T.R.; Chang, R.

    1998-01-01

    Coal-derived activated carbons (CDACs) were tested for their suitability in removing trace amounts of vapor-phase mercury from simulated flue gases generated by coal combustion. CDACs were prepared in bench-scale and pilot-scale fluidized-bed reactors with a three-step process, including coal preoxidation, carbonization, and then steam activation. CDACs from high-organicsulfur Illinois coals had a greater equilibrium Hg0 adsorption capacity than activated carbons prepared from a low-organic-sulfur Illinois coal. When a low-organic-sulfur CDAC was impregnated with elemental sulfur at 600 ??C, its equilibrium Hg0 adsorption capacity was comparable to the adsorption capacity of the activated carbon prepared from the high-organicsulfur coal. X-ray diffraction and sulfur K-edge X-ray absorption near-edge structure examinations showed that the sulfur in the CDACs was mainly in organic forms. These results suggested that a portion of the inherent organic sulfur in the starting coal, which remained in the CDACs, played an important role in adsorption of Hg0. Besides organic sulfur, the BET surface area and micropore area of the CDACs also influenced Hg0 adsorption capacity. The HgCl2 adsorption capacity was not as dependent on the surface area and concentration of sulfur in the CDACs as was adsorption of Hg0. The properties and mercury adsorption capacities of the CDACs were compared with those obtained for commercial Darco FGD carbon.

  5. Underground gasification for steeply dipping coal beds: Phase III. Quarterly progress report, April 1-June 30, 1981. [Rawlins Test 2

    SciTech Connect

    Not Available

    1981-12-01

    Preparations are being made for the August start-up of Rawlins Test 2. Site construction activities began May 4 with the mobilization of the construction subcontractor. The drilling program was completed this quarter with the installation of instrumentation wells. The Experimental Basis Document, PGA Operating Manual, and DAS Operating Manual have also been completed.

  6. Underground pumped hydroelectric storage

    NASA Astrophysics Data System (ADS)

    Allen, R. D.; Doherty, T. J.; Kannberg, L. D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-velocity requirements of a greater metropolitan area with population of 1 million or more.

  7. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 2

    SciTech Connect

    Krenzien, Susan; Farnham, Irene

    2015-06-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1D, Change 1, Quality Assurance (DOE, 2013a); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). If a participant’s requirement document differs from this QAP, the stricter requirement will take precedence. NNSA/NFO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  8. Underground Test Area Activity Quality Assurance Plan Nevada National Security Site, Nevada. Revision 1

    SciTech Connect

    Farnham, Irene; Krenzien, Susan

    2012-10-01

    This Quality Assurance Plan (QAP) provides the overall quality assurance (QA) requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) activities. The requirements in this QAP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). NNSA/NSO, or designee, must review this QAP every two years. Changes that do not affect the overall scope or requirements will not require an immediate QAP revision but will be incorporated into the next revision cycle after identification. Section 1.0 describes UGTA objectives, participant responsibilities, and administrative and management quality requirements (i.e., training, records, procurement). Section 1.0 also details data management and computer software requirements. Section 2.0 establishes the requirements to ensure newly collected data are valid, existing data uses are appropriate, and environmental-modeling methods are reliable. Section 3.0 provides feedback loops through assessments and reports to management. Section 4.0 provides the framework for corrective actions. Section 5.0 provides references for this document.

  9. Underground Test Area Activity Preemptive Review Guidance Nevada National Security Site, Nevada, Revision 0

    SciTech Connect

    Farnham, Irene; Rehfeldt, Kenneth

    2016-10-01

    Preemptive reviews (PERs) of Underground Test Area (UGTA) Activity corrective action unit (CAU) studies are an important and long-maintained quality improvement process. The CAU-specific PER committees provide internal technical review of ongoing work throughout the CAU lifecycle. The reviews, identified in the UGTA Quality Assurance Plan (QAP) (Sections 1.3.5.1 and 3.2), assure work is comprehensive, accurate, in keeping with the state of the art, and consistent with CAU goals. PER committees review various products, including data, documents, software/codes, analyses, and models. PER committees may also review technical briefings including Federal Facility Agreement and Consent Order (FFACO)-required presentations to the Nevada Division of Environmental Protection (NDEP) and presentations supporting key technical decisions (e.g., investigation plans and approaches). PER committees provide technical recommendations to support regulatory decisions that are the responsibility of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and NDEP.

  10. Emissions from Coal Fires and Their Impact on the Environment

    USGS Publications Warehouse

    Kolker, Allan; Engle, Mark; Stracher, Glenn; Hower, James; Prakash, Anupma; Radke, Lawrence; ter Schure, Arnout; Heffern, Ed

    2009-01-01

    Self-ignited, naturally occurring coal fires and fires resulting from human activities persist for decades in underground coal mines, coal waste piles, and unmined coal beds. These uncontrolled coal fires occur in all coal-bearing parts of the world (Stracher, 2007) and pose multiple threats to the global environment because they emit greenhouse gases - carbon dioxide (CO2), and methane (CH4) - as well as mercury (Hg), carbon monoxide (CO), and other toxic substances (fig. 1). The contribution of coal fires to the global pool of atmospheric CO2 is little known but potentially significant. For China, the world's largest coal producer, it is estimated that anywhere between 10 million and 200 million metric tons (Mt) of coal reserves (about 0.5 to 10 percent of production) is consumed annually by coal fires or made inaccessible owing to fires that hinder mining operations (Rosema and others, 1999; Voigt and others, 2004). At this proportion of production, coal amounts lost to coal fires worldwide would be two to three times that for China. Assuming this coal has mercury concentrations similar to those in U.S. coals, a preliminary estimate of annual Hg emissions from coal fires worldwide is comparable in magnitude to the 48 tons of annual Hg emissions from all U.S. coal-fired power-generating stations combined (U.S. Environmental Protection Agency, 2002). In the United States, the combined cost of coal-fire remediation projects, completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Reclamation and Enforcement (OSM), exceeds $1 billion, with about 90% of that in two States - Pennsylvania and West Virginia (Office of Surface Mining Enforcement and Reclamation, 2008; fig. 2). Altogether, 15 States have combined cumulative OSM coal-fire project costs exceeding $1 million, with the greatest overall expense occurring in States where underground coal fires are predominant over surface fires, reflecting the greater cost of

  11. Active carbons and clean briquettes from the modified Kansk-Achinsk brown coal

    SciTech Connect

    Kuznetsov, P.N.; Kuznetsova, L.I.; Kontzevoi, A.A.; Pozharnikov, V.A.

    1996-12-31

    The effect of modification of Kansk Achinsk Brown coal by means of chemical and mechanical pretreatments as well as by hydrolyzed lignin addition on coal briquetting was studied. Coal briquettes were then pyrolyzed and steam activated at 700--800 C to prepare the active carbons. The main focus was to analyze how macromolecular structure of brown coal affect the properties of briquettes and the sorption and mechanical properties of activated carbons and to investigate the potential for the production of clean briquetted fuel and high performance carbon adsorbents through the directive modification of coal.

  12. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal recovery. 817.59 Section 817.59 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM... recovery. Underground mining activities shall be conducted so as to maximize the utilization...

  13. 30 CFR 817.59 - Coal recovery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal recovery. 817.59 Section 817.59 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM... recovery. Underground mining activities shall be conducted so as to maximize the utilization...

  14. Underground Libraries.

    ERIC Educational Resources Information Center

    Fuhlrott, Rolf

    1986-01-01

    Discussion of underground buildings constructed primarily during last two decades for various reasons (energy conservation, density of environment, preservation of landscape and historic buildings) notes advantages, disadvantages, and psychological and design considerations. Examples of underground libraries, built mainly in United States, are…

  15. 76 FR 58533 - Powder River Regional Coal Team Activities; Notice of Public Meeting in Casper, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... bidding rights in Wyoming, pursuant to 43 CFR part 3435. The RCT will also consider any coal LBAs and/or... comments or data related to existing pending applications, or any party proposing other issues to be.... 4. Coal activity since the last RCT meeting. 5. LBA presentations. 6. Potential coal bidding...

  16. Hydrologic conditions and water-quality conditions following underground coal mining in the North Fork of the Right Fork of Miller Creek drainage basin, Carbon and Emery Counties, Utah, 2004-2005

    USGS Publications Warehouse

    Wilkowske, C.D.; Cillessen, J.L.; Brinton, P.N.

    2007-01-01

    In 2004 and 2005, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, reassessed the hydrologic system in and around the drainage basin of the North Fork of the Right Fork (NFRF) of Miller Creek, in Carbon and Emery Counties, Utah. The reassessment occurred 13 years after cessation of underground coal mining that was performed beneath private land at shallow depths (30 to 880 feet) beneath the NFRF of Miller Creek. This study is a follow-up to a previous USGS study of the effects of underground coal mining on the hydrologic system in the area from 1988 to 1992. The previous study concluded that mining related subsidence had impacted the hydrologic system through the loss of streamflow over reaches of the perennial portion of the stream, and through a significant increase in dissolved solids in the stream. The previous study also reported that no substantial differences in spring-water quality resulted from longwall mining, and that no clear relationship between mining subsidence and spring discharge existed.During the summers of 2004 and 2005, the USGS measured discharge and collected water-quality samples from springs and surface water at various locations in the NFRF of Miller Creek drainage basin, and maintained a streamflow-gaging station in the NFRF of Miller Creek. This study also utilized data collected by Cyprus–Plateau Mining Corporation from 1992 through 2001.Of thirteen monitored springs, five have discharge levels that have not returned to those observed prior to August 1988, which is when longwall coal mining began beneath the NFRF of Miller Creek. Discharge at two of these five springs appears to fluctuate with wet and dry cycles and is currently low due to a drought that occurred from 1999–2004. Discharge at two other of the five springs did not increase with increased precipitation during the mid-1990s, as was observed at other monitored springs. This suggests that flowpaths to these springs may have been altered by

  17. In-Situ Treatment of Groundwater Contaminated with Underground Coal Gasification Products / Oczyszczanie In-Situ WÓD Podziemnych Zanieczyszczonych Przez Produkty Podziemnego Zgazowania WĘGLA

    NASA Astrophysics Data System (ADS)

    Suponik, Tomasz; Lutyński, Marcin

    2013-12-01

    In the paper the contaminants that may be generated in Underground Coal Gasification (UCG) process were listed and include mainly mono- and polycyclic aromatic hydrocarbons, phenols, heavy metals, cyanides, ammonium, chloride and sulphate. As a method of UCG contaminated groundwater treatment a Permeable Reactive Barrier technology was proposed. To assess the effectiveness of this technology two tests were carried out. Granulated activated carbon (GAC) and zeolite, and granulated activated carbon and scrap iron were applied in the first and second test respectively. For these materials the hydro geological parameters called reactive material parameters were determined and discussed. The results of the experiments showed that GAC seems to be the most effective material for phenols, BTX, PAH, cyanides and slightly lowers ammonia removal, while zeolites and scrap iron removed free cyanide, ammonia and heavy metals respectively. Podziemne Zgazowanie Węgla (PZW) jest alternatywną metodą pozyskiwania energii z węgla. Jest to zespół przemian termicznych i chemicznych przebiegających bezpośrednio w złożu węgla, zachodzących pomiędzy substancją organiczną a czynnikiem zgazowującym, jakim może być powietrze, tlen, para wodna, dwutlenek węgla. Poza wieloma zaletami metoda ta niesie za sobą także wiele zagrożeń, które były rozważane w ramach projektu HUGE 2 (nr RFCR-CT-2011-00002). Jednym z nich jest zagrożenie środowiska wód podziemnych produktami PZW, do których należą wielopierścieniowe węglowodory aromatyczne, BTX, fenole, metale ciężkie, cyjanki, jony amonowe, chlorki i siarczany. W celu zminimalizowania tego zagrożenia w pracy rozważono zastosowanie w obszarze reaktora PZW technologii Przepuszczalnej Bariery Reaktywnej (PRB). W technologii tej zanieczyszczenia usuwane są in-situ poprzez przepływ wód przez odpowiednio dobrany materiał reaktywny. W tablicy 1 przedstawiono podstawowe parametry bariery, które należy określić, aby

  18. Monitoring of low-energy seismic activity in Elbrus volcanic area with the use of underground seismic array

    NASA Astrophysics Data System (ADS)

    Kovalevsky, V.; Sobisevitch, A.

    2012-04-01

    Results of experiment with underground seismic array for studying low-energy seismic activity in the Elbrus volcanic area are presented. Linear seismic array of 2.5 km aperture is created in the tunnel of Baksan neutrino observatory. Horizontal tunnel of 4.3 km length is drilled in the mount Andyrchi at a distance of 20 km from Elbrus volcano. Array includes 6 three-component seismic sensors with 24-byte recorders installed with 500 m interval one from another along the tunnel. Underground seismic array is the new instrument of geophysical observatory organized for studies of geophysical processes in the Elbrus volcanic area. The observatory equipped with modern geophysical instruments including broadband tri-axial seismometers, quartz tilt-meters, magnetic variometers, geo-acoustic sensors, hi-precision distributed thermal sensors and gravimeters. The initial analysis of seismic signals recorded by seismic array allows us to detect low-energy seismic activity in the Elbrus volcanic area beginning from the distance of 3-5 km (the faults in a vicinity of mount Andyrchi) up to 15-25 km (area of Elbrus volcano). The regional micro-earthquakes with magnitude 1-2 at the distances 50-100 km was also recorded. 2.5 km aperture of the underground linear seismic array make it possible to determine with high accuracy hypocenters of local seismic events associated with geodynamic of volcanic magmatic structures and to realize seismo-emission tomography of the active zones of Elbrus volcano.

  19. Impact of government regulations on leadtimes of coal facilities. Final report

    SciTech Connect

    Singh, J.; Carboni, J.V.; Shah, D.V.; White, J.M. Jr.

    1980-08-01

    The ability of the US to increase coal use depends on the leadtimes required to bring from inception into operation: (1) new coal use facilities such as powerplants, industrial boilers, coke ovens, and coal-based synfuel plants; and (2) new coal facilities including surface mines, deep mines, coal preparation plants, and railroad lines. This study examines the effect of government regulations on the leadtimes for the following ten facilities: surface mines on federal land; surface mines - private surface/private coal; underground coal mines; coal preparation plants; railroad lines; coal-fired electric generating plants; coal-fired industrial facilities; coke plants; synthetic fuels; and transmission lines. Environmental activities consume a significant portion of critical path time for all facilities. The time spent for obtaining permits and licenses account for as much as 63% of total critical path time in the case of a new railroad line servicing a coal mine in the western US. For surface mines, permitting accounts for 33% of total project critical path; for underground mines, it is 43%. Permitting requires 26 and 42% of the critical paths for new industrial facilities and power plants, respectively. Long durations of critical environmental activities account for much of the uncertainty surrounding the approval of large coal projects. Government regulations have also affected the way companies conduct their business. Dealing with government regulations has become as important to the completion of new coal facilities as project financing, design, and construction.

  20. Ultrasound assisted, thermally activated persulfate oxidation of coal tar DNAPLs.

    PubMed

    Peng, Libin; Wang, Li; Hu, Xingting; Wu, Peihui; Wang, Xueqing; Huang, Chumei; Wang, Xiangyang; Deng, Dayi

    2016-11-15

    The feasibility of ultrasound assisted, thermally activated persulfate for effective oxidation of twenty 2-6 ringed coal tar PAHs in a biphasic tar/water system and a triphasic tar/soil/water system were investigated and established. The results indicate that ultrasonic assistance, persulfate and elevated reaction temperature are all required to achieve effective oxidation of coal tar PAHs, while the heating needed can be provided by ultrasonic induced heating as well. Further kinetic analysis reveals that the oxidation of individual PAH in the biphasic tar/water system follows the first-order kinetics, and individual PAH oxidation rate is primary determined by the mass transfer coefficients, tar/water interfacial areas, the aqueous solubility of individual PAH and its concentration in coal tar. Based on the kinetic analysis and experimental results, the contributions of ultrasound, persulfate and elevated reaction temperature to PAHs oxidation were characterized, and the effects of ultrasonic intensity and oxidant dosage on PAHs oxidation efficiency were investigated. In addition, the results indicate that individual PAH degradability is closely related to its reactivity as well, and the high reactivity of 4-6 ringed PAHs substantially improves their degradability.

  1. Preparation of activated carbons from bituminous coal pitches

    NASA Astrophysics Data System (ADS)

    Gañan, J.; González-García, C. M.; González, J. F.; Sabio, E.; Macías-García, A.; Díaz-Díez, M. A.

    2004-11-01

    High-porosity carbons were prepared from bituminous coal pitches by combining chemical and physical activation. The chemical activation process consisted of potassium hydroxide impregnation followed by carbonization in nitrogen atmosphere. The effect of the KOH impregnation ratio on the surface area and pore volumes evolution of the carbons derived from mesophase pitch was studied. The optimum KOH:pitch ratio was fixed to realize a physical activation process in order to increase the textural parameters of the KOH-activated carbons. Physical activation was performed by carbonizing the KOH-activated carbons followed by gasifying with air. The influence of the carbonization temperature and the residence time of the gasification with air were explored to optimize those preparation parameters.

  2. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Underground mining exemption from criteria...: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal deposits that would be mined by underground mining methods shall not be assessed as unsuitable where...

  3. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Underground mining exemption from criteria...: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal deposits that would be mined by underground mining methods shall not be assessed as unsuitable where...

  4. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Underground mining exemption from criteria...: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal deposits that would be mined by underground mining methods shall not be assessed as unsuitable where...

  5. 43 CFR 3461.1 - Underground mining exemption from criteria.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Underground mining exemption from criteria...: Unsuitability for Mining § 3461.1 Underground mining exemption from criteria. (a) Federal lands with coal deposits that would be mined by underground mining methods shall not be assessed as unsuitable where...

  6. 30 CFR 75.802 - Protection of high-voltage circuits extending underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection of high-voltage circuits extending... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Underground High-Voltage Distribution § 75.802 Protection of high-voltage circuits extending underground. (a) Except...

  7. Emissions by Uncontrolled Coal Fires

    NASA Astrophysics Data System (ADS)

    Terschure, A. F.; Engle, M.; Heffern, E.; Hower, J.; Kolker, A.; Prakash, A.; Radke, L.

    2010-12-01

    Thousands of self-ignited coal fires, naturally occurring coal fires, and coal fires resulting from human activities persist for decades in underground coal mines, coal waste piles, and un-mined coal beds. These uncontrolled coal fires occur in all coal-bearing parts of the world and pose multiple threats to the global environment due to emission of greenhouse gases (GHG) such as CO2, CO, CH4, and other toxic substances such as mercury (Hg). Estimates of the amount of coal that is involved globally range between 20 and 600 Mt sing simple calculations, the only published peer-reviewed estimate of CO2 and Hg emissions from coal-fires in the United States (U.S.) are between 14 to 290 Mt/yr and 0.1 to 11.5 t/yr, respectively. In comparison, the U.S. coal-fired power plant fleet -the largest known anthropogenic source of CO2 and Hg to the atmosphere in the U.S.- emits ~2.4 Gt, and ~45 t annually, respectively. This paper builds on these results and will present result of a first-of-a-kind U.S.-based field campaign combining airborne remote sensing using thermal infrared technique and ground based measurements as a first step to constraining and scaling-up the emission factors, nature and extent of coal-fire emissions of CO2 and Hg to a global scale, which will allow for these emission sources to be better accounted for in global atmospheric models.

  8. Thermal surface characteristics of coal fires 1 results of in-situ measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Kuenzer, Claudia

    2007-12-01

    Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime

  9. Implementation of Paste Backfill Mining Technology in Chinese Coal Mines

    PubMed Central

    Chang, Qingliang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application. PMID:25258737

  10. Implementation of paste backfill mining technology in Chinese coal mines.

    PubMed

    Chang, Qingliang; Chen, Jianhang; Zhou, Huaqiang; Bai, Jianbiao

    2014-01-01

    Implementation of clean mining technology at coal mines is crucial to protect the environment and maintain balance among energy resources, consumption, and ecology. After reviewing present coal clean mining technology, we introduce the technology principles and technological process of paste backfill mining in coal mines and discuss the components and features of backfill materials, the constitution of the backfill system, and the backfill process. Specific implementation of this technology and its application are analyzed for paste backfill mining in Daizhuang Coal Mine; a practical implementation shows that paste backfill mining can improve the safety and excavation rate of coal mining, which can effectively resolve surface subsidence problems caused by underground mining activities, by utilizing solid waste such as coal gangues as a resource. Therefore, paste backfill mining is an effective clean coal mining technology, which has widespread application.

  11. Polymers for subterranean containment barriers for underground storage tanks (USTs). Letter report on FY 1992 activities

    SciTech Connect

    Heiser, J.H.; Colombo, P.; Clinton, J.

    1992-12-01

    The US Department of Energy (DOE) set up the Underground Storage Tank Integrated Demonstration Program (USTID) to demonstrate technologies for the retrieval and treatment of tank waste, and closure of underground storage tanks (USTs). There are more than 250 underground storage tanks throughout the DOE complex. These tanks contain a wide variety of wastes including high level, low level, transuranic, mixed and hazardous wastes. Many of the tanks have performed beyond the designed lifetime resulting in leakage and contamination of the local geologic media and groundwater. To mitigate this problem it has been proposed that an interim subterranean containment barrier be placed around the tanks. This would minimize or prevent future contamination of soil and groundwater in the event that further tank leakages occur before or during remediation. Use of interim subterranean barriers can also provide sufficient time to evaluate and select appropriate remediation alternatives. The DOE Hanford site was chosen as the demonstration site for containment barrier technologies. A panel of experts for the USTID was convened in February, 1992, to identify technologies for placement of subterranean barriers. The selection was based on the ability of candidate grouts to withstand high radiation doses, high temperatures and aggressive tank waste leachates. The group identified and ranked nine grouting technologies that have potential to place vertical barriers and five for horizontal barriers around the tank. The panel also endorsed placement technologies that require minimal excavation of soil surrounding the tanks.

  12. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    SciTech Connect

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, the principal objective of this work was to characterize and utilize the unburned carbon in fly ash for the production of activated carbons. The unburned carbon samples were collected from different combustion systems, including pulverized utility boilers, a utility cyclone, a stoker, and a fluidized bed combustor. LOI (loss-on-ignition), proximate, ultimate, and petrographic analyses were conducted, and the surface areas of the samples were characterized by N2 adsorption isotherms at 77K. The LOIs of the unburned carbon samples varied between 21.79-84.52%. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt %), while the volatile matter contents varied between 0.45 to 24.82 wt%. The elemental analyses show that all the unburned carbon samples consist mainly of carbon with very little hydrogen, nitrogen, sulfur and oxygen In addition, the potential use of unburned carbon as precursor for activated carbon (AC) was investigated. Activated carbons with specific surface area up to 1075m{sup 2}/g were produced from the unburned carbon. The porosity of the resultant activated carbons was related to the properties of the unburned carbon feedstock and the activation conditions used. It was found that not all the unburned carbon samples are equally suited for activation, and furthermore, their potential as activated carbons precursors could be

  13. 78 FR 23951 - Powder River Regional Coal Team Activities: Notice of Public Meeting in Casper, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ... management activities in the Powder River Coal Production Region. DATES: The RCT meeting will begin at 9 a.m... Bureau of Land Management Powder River Regional Coal Team Activities: Notice of Public Meeting in Casper, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of public meeting. SUMMARY: The...

  14. Mechanochemical activation of iron ore-based catalysts for the hydrogenation of brown coal

    SciTech Connect

    Kuznetsov, P.N.; Kuznetsova, L.I.; Kartseva, N.V.; Chumakov, V.G.

    1998-12-31

    Genesis of iron based catalysts on mechanical treatment in a planetary mill was investigated. Methods for achieving satisfactory mixing of catalyst on coal were surveyed. The preferred method was to conduct mechanochemical activation in the presence of sulfur and water additives, application of activated catalyst to coal followed by drying of the contact produced.

  15. The catalytic and photocatalytic activity of coal fly ashes

    NASA Astrophysics Data System (ADS)

    Dlugi, Ralph; Güsten, Hans

    Great differences in the catalytic and photocatalytic activity of two samples of fly ash from two different coal-fired power plants have been demonstrated to exist for two reactions of environmental significance, namely, the heterogeneous SO 2 oxidation in a smog chamber and the photochemical degradation of two polynuclear aromatic hydrocarbons adsorbed onto the fly ashes. At a relative humidity (r.h.) of 80%, the reaction rate for the heterogeneous SO 2 oxidation on an acidic fly ash (pH 5.65) is ten times higher than for the oxidation on a fly ash of pH 9.3. Compared to silica gel, the 'acidic' fly ash gives rise to a faster photocatalytic degradation of anthracene and phenanthrene, while the same aromatic hydrocarbons are highly resistant to photodegradation when adsorbed on the fly ash of pH 9.3. Possible explanations and environmental consequences of the differing catalytic activity of fly ashes are discussed.

  16. 30 CFR 75.1712-6 - Underground sanitary facilities; installation and maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... in § 75.1712-7, each operator of an underground coal mine shall provide and maintain one sanitary... toilets meet the requirements of this section. Privies and combustion or incinerating toilets...

  17. Preparation of nitrogen-enriched activated carbons from brown coal

    SciTech Connect

    Robert Pietrzak; Helena Wachowska; Piotr Nowicki

    2006-05-15

    Nitrogen-enriched activated carbons were prepared from a Polish brown coal. Nitrogen was introduced from urea at 350{sup o}C in an oxidizing atmosphere both to carbonizates obtained at 500-700{sup o}C and to activated carbons prepared from them. The activation was performed at 800{sup o}C with KOH in argon. It has been observed that the carbonization temperature determines the amount of nitrogen that is incorporated (DC5U, 8.4 wt % N{sup daf}; DC6U, 6.3 wt % N{sup daf}; and DC7U, 5.4 wt % N{sup daf}). X-ray photoelectron spectroscopy (XPS) measurements have shown that nitrogen introduced both at the stage of carbonizates and at the stage of activated carbons occurs mainly as -6, -5, and imine, amine and amide groups. On the other hand, the activation of carbons enriched with nitrogen results in the formation of pyridonic nitrogen and N-Q. The introduction of nitrogen at the activated carbon stage leads to a slight decrease in surface area. It has been proven that the most effective way of preparing microporous activated carbons enriched with nitrogen to a considerable extent and having high surface area ({approximately} 3000 m{sup 2}/g) is the following: carbonization - activation - reaction with urea. 40 refs., 1 fig., 6 tabs.

  18. 30 CFR 75.1104 - Underground storage, lubricating oil and grease.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Underground storage, lubricating oil and grease... Underground storage, lubricating oil and grease. Underground storage places for lubricating oil and grease..., lubricating oil and grease kept in all underground areas in a coal mine shall be in fireproof, closed...

  19. 30 CFR 75.1104 - Underground storage, lubricating oil and grease.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground storage, lubricating oil and grease... Underground storage, lubricating oil and grease. Underground storage places for lubricating oil and grease..., lubricating oil and grease kept in all underground areas in a coal mine shall be in fireproof, closed...

  20. 30 CFR 75.1104 - Underground storage, lubricating oil and grease.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground storage, lubricating oil and grease... Underground storage, lubricating oil and grease. Underground storage places for lubricating oil and grease..., lubricating oil and grease kept in all underground areas in a coal mine shall be in fireproof, closed...

  1. 30 CFR 75.1104 - Underground storage, lubricating oil and grease.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground storage, lubricating oil and grease... Underground storage, lubricating oil and grease. Underground storage places for lubricating oil and grease..., lubricating oil and grease kept in all underground areas in a coal mine shall be in fireproof, closed...

  2. 30 CFR 75.1104 - Underground storage, lubricating oil and grease.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Underground storage, lubricating oil and grease... Underground storage, lubricating oil and grease. Underground storage places for lubricating oil and grease..., lubricating oil and grease kept in all underground areas in a coal mine shall be in fireproof, closed...

  3. Natural gas storage with activated carbon from a bituminous coal

    USGS Publications Warehouse

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  4. Underground Mathematics

    ERIC Educational Resources Information Center

    Hadlock, Charles R

    2013-01-01

    The movement of groundwater in underground aquifers is an ideal physical example of many important themes in mathematical modeling, ranging from general principles (like Occam's Razor) to specific techniques (such as geometry, linear equations, and the calculus). This article gives a self-contained introduction to groundwater modeling with…

  5. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine...

  6. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine...

  7. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine...

  8. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine...

  9. 30 CFR 49.20 - Requirements for all coal mines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Requirements for all coal mines. 49.20 Section... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.20 Requirements for all coal mines. (a) The operator of each underground coal mine shall make available two certified mine...

  10. Neutron flux measurement using activated radioactive isotopes at the Baksan underground scintillation telescope

    NASA Astrophysics Data System (ADS)

    Kochkarov, M. M.; Alikhanov, I. A.; Boliev, M. M.; Dzaparova, I. M.; Novoseltseva, R. V.; Novoseltsev, Yu. F.; Petkov, V. B.; Volchenko, V. I.; Volchenko, G. V.; Yanin, A. F.

    2016-11-01

    Preliminary results of a neutron background measurement at the Baksan underground scintillation telescope (BUST) are presented. The external planes of the BUST are fully covered with standard scintillation detectors shielding the internal planes and suppressing thus background events due to cosmogenic and local radioactivity. The shielded internal planes were used as target for the neutron flux registration. The experimental method is based on the delayed coincidences between signals from any of the BUST counters. It is assumed that the first signal is due to inelastic interaction of a neutron with the organic scintillator, while the second signal comes from the decay of an unstable radioactive isotope formed when the fast neutron interacts with the 12C nuclei. Using the Monte-Carlo method (GEANT4) we also simulated propagation of neutrons through a layer of scintillator. The experimentally found muon induced neutron flux is j =1.3 -0.3 +0.7 ×10-10cm-2s-1 for neutron energies E ≥ 22MeV, which is in a qualitative agreement with similar measurements of other underground laboratories as well as with predictions of the GEANT4.

  11. A geographical information system-based analysis of cancer mortality and population exposure to coal mining activities in West Virginia, United States of America.

    PubMed

    Hendryx, Michael; Fedorko, Evan; Anesetti-Rothermel, Andrew

    2010-05-01

    Cancer incidence and mortality rates are high in West Virginia compared to the rest of the United States of America. Previous research has suggested that exposure to activities of the coal mining industry may contribute to elevated cancer mortality, although exposure measures have been limited. This study tests alternative specifications of exposure to mining activity to determine whether a measure based on location of mines, processing plants, coal slurry impoundments and underground slurry injection sites relative to population levels is superior to a previously-reported measure of exposure based on tons mined at the county level, in the prediction of age-adjusted cancer mortality rates. To this end, we utilize two geographical information system (GIS) techniques--exploratory spatial data analysis and inverse distance mapping--to construct new statistical analyses. Total, respiratory and "other" age-adjusted cancer mortality rates in West Virginia were found to be more highly associated with the GIS-exposure measure than the tonnage measure, before and after statistical control for smoking rates. The superior performance of the GIS measure, based on where people in the state live relative to mining activity, suggests that activities of the industry contribute to cancer mortality. Further confirmation of observed phenomena is necessary with person-level studies, but the results add to the body of evidence that coal mining poses environmental risks to population health in West Virginia.

  12. Proceedings, twenty-fourth annual international Pittsburgh coal conference

    SciTech Connect

    2007-07-01

    Topics covered include: gasification technologies; coal production and preparation; combustion technologies; environmental control technologies; synthesis of liquid fuels, chemicals, materials and other non-fuel uses of coal; hydrogen from coal; advanced synthesis gas cleanup; coal chemistry, geosciences and resources; Fischer-Tropsch technology; coal and sustainability; global climate change; gasification (including underground gasification); materials, instrumentation and controls; and coal utilisation byproducts.

  13. Underground pumped hydroelectric storage

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  14. Occupational safety and health implications of increased coal utilization.

    PubMed Central

    Bridbord, K; Costello, J; Gamble, J; Groce, D; Hutchison, M; Jones, W; Merchant, J; Ortmeyer, C; Reger, R; Wagner, W L

    1979-01-01

    An area of major concern in considering increased coal production and utilization is the health and safety of increased numbers of workers who mine, process, or utilize coal. Hazards related to mining activities in the past have been especially serious, resulting in many mine related accidental deaths, disabling injuries, and disability and death from chronic lung disease. Underground coal mines are clearly less safe than surface mines. Over one-third of currently employed underground miners experience chronic lung disease. Other stresses include noise and extremes of heat and cold. Newly emphasized technologies of the use of diesel powered mining equipment and the use of longwall mining techniques may be associated with serious health effects. Workers at coal-fired power plants are also potentially at risk of occupational diseases. Occupational safety and health aspects of coal mining are understood well enough today to justify implementing necessary and technically feasible and available control measures to minimize potential problems associated with increased coal production and use in the future. Increased emphasis on safety and health training for inexperienced coal miners expected to enter the work force is clearly needed. The recently enacted Federal Mine Safety and Health Act of 1977 will provide impetus for increased control over hazards in coal mining. PMID:540621

  15. Short-term 222Rn activity concentration changes in underground spaces with limited air exchange with the atmosphere

    NASA Astrophysics Data System (ADS)

    Fijałkowska-Lichwa, L.; Przylibski, T. A.

    2011-04-01

    The authors investigated short-time changes in 222Rn activity concentration occurring yearly in two underground tourist facilities with limited air exchange with the atmosphere. One of them is Niedźwiedzia (Bear) Cave in Kletno, Poland - a natural space equipped with locks ensuring isolation from the atmosphere. The other site is Fluorite Adit in Kletno, a section of a disused uranium mine. This adit is equipped with a mechanical ventilation system, operated periodically outside the opening times (at night). Both sites are situated within the same metamorphic rock complex, at similar altitudes, about 2 km apart. The measurements conducted revealed spring and autumn occurrence of convective air movements. In Bear Cave, this process causes a reduction in 222Rn activity concentration in the daytime, i.e. when tourists, guides and other staff are present in the cave. From the point of view of radiation protection, this is the best situation. For the rest of the year, daily concentrations of 222Rn activity in the cave are very stable. In Fluorite Adit, on the other hand, significant variations in daily 222Rn activity concentrations are recorded almost all year round. These changes are determined by the periods of activity and inactivity of mechanical ventilation. Unfortunately this is inactive in the daytime, which results in the highest values of 222Rn activity concentration at the times when tourists and staff are present in the adit. Slightly lower concentrations of radon in Fluorite Adit are recorded in the winter season, when convective air movements carry a substantial amount of radon out into the atmosphere. The incorrect usage of mechanical ventilation in Fluorite Adit results in the most unfavourable conditions in terms of radiation protection. The staff working in that facility are exposed practically throughout the year to the highest 222Rn activity concentrations, both at work (in the adit) and at home (outside their working hours). Therefore, not very well

  16. Adsorption of SO2 on bituminous coal char and activated carbon fiber prepared from phenol formaldehyde

    USGS Publications Warehouse

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1996-01-01

    Carbon-based materials are used commercially to remove SO2 from coal combustion flue gases. Historically, these materials have consisted of granular activated carbons prepared from lignite or bituminous coal. Recent studies have reported that activated carbon fibers (ACFs) may have potential in this application due to their relatively high SO2 adsorption capacity. In this paper, a comparison of SO2 adsorption for both coal-based carbons and ACFs is presented, as well as ideas on carbon properties that may influence SO2 adsorption

  17. Coal mining with a liquid solvent

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Miller, C. G.

    1979-01-01

    Study suggests carbonated water can dissolve or suspend coal and carry it to surface. Mixture of carbon dioxide and water may be coal solvent that will make unmanned mining reality. When used with proposed process monitoring coal solubility with conventional strain gage, solvent is basis for rapid cost effective extraction of coal from underground seams.

  18. Underground waste barrier structure

    DOEpatents

    Saha, Anuj J.; Grant, David C.

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  19. Overburden characterization and post-burn study of the Hanna IV, underground coal gasification site, Wyoming, and comparison to other Wyoming UCG sites

    SciTech Connect

    Marcouiller, B.A.; Burns, L.K.; Ethridge, F.G.

    1984-11-01

    Analysis of 21 post-burn cores taken from the Hanna IV UCG site allows 96 m (315 ft) of overburden to be subdivided into four local stratigraphic units. The 7.6 m (25 ft) thick Hanna No. 1 coal seam is overlain by a laterally discontinuous, 3.3 m (11 ft) thick shaley mudstone (Unit A') in part of the Hanna IV site. A more widespread, 30 m (90 ft) thick well-indurated sandstone (Unit A) overlies the A' unit. Unit A is the roof rock for both of the Hanna IV cavities. Overlying Unit A is a 33 m (108 ft) thick sequence of mudstone and claystone (Unit B), and the uppermost unit at the Hanna IV site (Unit C) is a coarse-grained sandstone that ranges in thickness from 40 to 67 m (131 to 220 ft). Two elliptical cavities were formed during the two phases of the Hanna IV experiment. The larger cavity, Hanna IVa, is 45 x 15 m in plan and has a maximum height of 18 m (59 ft) from the base of the coal seam to the top of the cavity; the Hanna IVb cavity is 40 x 15 m in plan and has a maximum height of 11 m (36 ft) from the base of the coal seam to the top of the cavity. Geotechnical tests indicated that the Hanna IV overburden rocks were moderately strong to strong, based on the empirical classification of Broch and Franklin (1972), and a positive, linear correlation exists between rock strength and volume percent calcite cement. There is an inverse linear correlation between rock strength and porosity for the Hanna IV overburden rocks. 28 refs., 34 figs., 13 tabs..

  20. 30 CFR 947.784 - Underground mining permit applications-minimum requirements for reclamation and operation plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... application to conduct underground coal mining operations. (b) Any application for an underground mining... local Air Pollution Control Authorities and the Washington Clean Air Act, RCW 70.94. (c) Any...

  1. Synthesis of carbon fibers and activated carbon fibers from coal liquids

    SciTech Connect

    Fei, Y.Q.; Derbyshire, F.; Jagtoyen, M.; Kimber, G.

    1994-12-31

    The production and application of low-cost, general purpose carbon fibers and activated fibers are emerging technologies with exciting potential, although at present their cost is too high to find widespread use. Production and R and D have been limited and to data, only a small range of precursors has been studied: petroleum pitches, coal extracts and coal tar pitches. Both processing costs and the properties of the fiber products are dependent on the nature of the starting material. Commercial precursors have been limited to the pitches produced from high temperature pyrolysis or cracking processes and are similar in composition and molecular structure. Suitable coal-based precursors can be produced with a wide range of composition, and at moderate cost, by methods such as low temperature carbonization, solvent extraction, hydropyrolysis and mild coal liquefaction. It is of interest to investigate the synthesis of carbon fibers and activated carbon fibers from precursors of different origins to elucidate the influence of precursor materials on fiber formation and processing, and their structure and properties. It is also of practical importance to understand the relationships between the type of starting materials (for example, coals) and the processing methods, and the properties of fiber precursors that can be produced from them. In the present study, the authors describe the synthesis of carbon fibers and activated carbon fibers from the products of the first stage of coal liquefaction.

  2. Preliminary report on LLNL mine seismicity deployment at the Twentymile Coal Mine

    SciTech Connect

    Walter, W.R.; Hunter, S.L.; Glenn, L.A.

    1996-01-01

    This report summarizes the preliminary results of a just completed experiment at the Twentymile Coal Mine, operated by the Cyprus Amax Coal Company near Oak Creek, CO. The purpose of the experiment was to obtain local and regional seismic data from roof caves associated with long-wall mining activities and to use this data to help determine the effectiveness with which these events can be discriminated from underground nuclear explosions under a future Comprehensive Test Ban Treaty.

  3. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... storage; and (4) Maintained to prevent the accumulation of water. (c) Welding or cutting other than that... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground diesel fuel storage facilities and...-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1903 Underground diesel fuel storage facilities and...

  4. 43 CFR 3592.2 - Maps of underground workings and surface operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Maps of underground workings and surface... THAN COAL) EXPLORATION AND MINING OPERATIONS Plans and Maps § 3592.2 Maps of underground workings and surface operations. Maps of underground workings and surface operations shall be drawn to a...

  5. 43 CFR 3592.2 - Maps of underground workings and surface operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Maps of underground workings and surface... THAN COAL) EXPLORATION AND MINING OPERATIONS Plans and Maps § 3592.2 Maps of underground workings and surface operations. Maps of underground workings and surface operations shall be drawn to a...

  6. 43 CFR 3592.2 - Maps of underground workings and surface operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Maps of underground workings and surface... THAN COAL) EXPLORATION AND MINING OPERATIONS Plans and Maps § 3592.2 Maps of underground workings and surface operations. Maps of underground workings and surface operations shall be drawn to a...

  7. 43 CFR 3592.2 - Maps of underground workings and surface operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Maps of underground workings and surface... THAN COAL) EXPLORATION AND MINING OPERATIONS Plans and Maps § 3592.2 Maps of underground workings and surface operations. Maps of underground workings and surface operations shall be drawn to a...

  8. Activities of the Institute of Chemical Processing of Coal at Zabrze

    SciTech Connect

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products; production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.

  9. 30 CFR 75.340 - Underground electrical installations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., rectifiers, and water pumps shall be housed in noncombustible structures or areas or be equipped with a fire... Section 75.340 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.340...

  10. 30 CFR 75.340 - Underground electrical installations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., rectifiers, and water pumps shall be housed in noncombustible structures or areas or be equipped with a fire... Section 75.340 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.340...

  11. 30 CFR 75.340 - Underground electrical installations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., rectifiers, and water pumps shall be housed in noncombustible structures or areas or be equipped with a fire... Section 75.340 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.340...

  12. 30 CFR 75.340 - Underground electrical installations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., rectifiers, and water pumps shall be housed in noncombustible structures or areas or be equipped with a fire... Section 75.340 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.340...

  13. 30 CFR 75.340 - Underground electrical installations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., rectifiers, and water pumps shall be housed in noncombustible structures or areas or be equipped with a fire... Section 75.340 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.340...

  14. Geological 3D modeling for excavation activity in an underground marble quarry in the Apuan Alps (Italy)

    NASA Astrophysics Data System (ADS)

    Vanneschi, Claudio; Salvini, Riccardo; Massa, Giovanni; Riccucci, Silvia; Borsani, Angelo

    2014-08-01

    The three-dimensional laser scanning technique has recently become common in diverse working environments. Even in geology, where further development is needed, this technique is increasingly useful in tackling various problems such as stability investigations or geological and geotechnical monitoring. Three-dimensional laser scanning supplies detailed and complete geometrical information in short working times, as a result of the acquisition of a large number of data-points that accurately model the detected surfaces. Moreover, it is possible to combine these data with high quality photographic images so as to provide important information for geological applications, as follows. A working approach, that combines terrestrial laser scanning and traditional geological surveys, is presented. A three-dimensional model, that includes information about the geological structure in an underground quarry in the Apuan Alps, is realized. This procedure is adaptable to other geological contexts, and because of its operating speed and accuracy it is invaluable for optimal excavation, in which a proper planning of quarrying activity is vital for safety and commercial reasons.

  15. Activation of immune complement by fly ash particles from coal combustion. [Dogs

    SciTech Connect

    Hill, J.O.; Rothenberg, S.J.; Kanapilly, G.M.; Hanson, R.L.; Scott, B.R.

    1982-06-01

    The interaction of immune complement with fly ash particles from coal combustion was studied in vitro. Fly ash from different coal combustors was incubated for 1 hr with pooled normal dog serum at 37/sup 0/C. The serum supernatants were assayed for complement by a 505 hemolytic (CH/sub 50/) endpoint method. Ash produced by burning one type of coal activated complement with up to 70% of the complement activated at 10 mg ash/ml serum. This activation was concentration dependent and a linear dose-response curve was obtained. Heat treatment and surface area measurements, as well as immunofluorescence studies, suggest that the active component(s) is volatile or heat labile, found on the surface of the particles, and removed by saline or water extraction.

  16. Going Underground: A Field Investigation and Lab Activity on Karst Topography and Water Systems

    ERIC Educational Resources Information Center

    O'Dell, Gary; Gonzalez-Espada, Wilson

    2011-01-01

    Students learn science best with activities that mirror the way scientists work. This article describes how geologists investigate groundwater flow systems in areas of karst topography--geologic formations shaped by dissolving bedrock--and provides a way for students to replicate this research. Students also use electric current to model water…

  17. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires

    USGS Publications Warehouse

    Sun, Jielun; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A.

    1997-01-01

    Activated carbons for natural gas storage were produced from Illinois bituminous coals (IBC-102 and IBC-106) and scrap tires by physical activation with steam or CO2 and by chemical activation with KOH, H3PO4, or ZnCl2. The products were characterized for N2-BET area, micropore volume, bulk density, pore size distribution, and volumetric methane storage capacity (Vm/Vs). Vm/Vs values for Illinois coal-derived carbons ranged from 54 to 83 cm3/cm3, which are 35-55% of a target value of 150 cm3/cm3. Both granular and pelletized carbons made with preoxidized Illinois coal gave higher micropore volumes and larger Vm/Vs values than those made without preoxidation. This confirmed that preoxidation is a desirable step in the production of carbons from caking materials. Pelletization of preoxidized IBC-106 coal, followed by steam activation, resulted in the highest Vm/Vs value. With roughly the same micropore volume, pelletization alone increased Vm/Vs of coal carbon by 10%. Tire-derived carbons had Vm/Vs values ranging from 44 to 53 cm3/cm3, lower than those of coal carbons due to their lower bulk densities. Pelletization of the tire carbons increased bulk density up to 160%. However, this increase was offset by a decrease in micropore volume of the pelletized materials, presumably due to the pellet binder. As a result, Vm/Vs values were about the same for granular and pelletized tire carbons. Compared with coal carbons, tire carbons had a higher percentage of mesopores and macropores.

  18. Coal and Energy.

    ERIC Educational Resources Information Center

    Bryant, Reba; And Others

    This teaching unit explores coal as an energy resource. Goals, student objectives, background information, and activity options are presented for each major section. The sections are: (1) an introduction to coal (which describes how and where coal was formed and explains the types of coal); (2) the mining of coal (including the methods and ways of…

  19. Sorption of chlorophenols from aqueous solution by granular activated carbon, filter coal, pine and hardwood.

    PubMed

    Hossain, G S M; McLaughlan, R G

    2012-09-01

    Wood and coal, as low-cost sorbents, have been evaluated as an alternative to commercial granular activated carbon (GAC) for chlorophenol removal. Kinetic experiments indicated that filter coal had a significantly lower rate of uptake (approximately 10% of final uptake was achieved after three hours) than the other sorbents, owing to intra-particle diffusion limitations. The data fitted a pseudo-second-order model. Sorption capacity data showed that GAC had a high sorption capacity (294-467 mg g(-1)) compared with other sorbents (3.2-7.5 mg(g-1)). However, wood and coal had a greater sorption capacity per unit surface area than GAC. Sorption equilibrium data was best predicted using a Freundlich adsorption model. The sorption capacity for all sorbents was 2-chlorophenol < 4-chlorophenol < 2, 4-dichlorophenol, which correlates well with solute hydrophobicity, although the relative differences were much less for coal than the other sorbents. The results showed that pine, hardwood and filter coal can be used as sorbent materials for the removal of chlorophenol from water; however, kinetic considerations may limit the application of filter coal.

  20. Gravity monitoring of Tatun Volcanic Group activities and inference for underground fluid circulations

    NASA Astrophysics Data System (ADS)

    Mouyen, Maxime; Chao, Benjamin Fong; Hwang, Cheinway; Hsieh, Wen-Chi

    2016-12-01

    The Tatun Volcano Group (TVG), located on the northern coast of Taiwan adjacent to the city of Taipei, experiences active hydrothermalism but has no historical record of volcanic eruption. Yet recent studies suggest that TVG is dormant-active rather than extinct. To monitor mass transfers and to gain further understanding of this volcanic area, gravity variations have been recorded continuously since 2012 using a superconducting gravimeter, and once every few months since 2005 using absolute gravimeters. We analyze the continuous gravity time series and propose a model that best explains the gravity variations due to local groundwater redistribution. By correcting these variations, we identify gravity changes as large as 35 μGal that occurred concomitantly to fluid pressure-induced earthquakes and changes in the gas composition at Dayoukeng, one of TVG's fumaroles, over 2005-2007. We examine several fluid movements that can match the gravity observations, yet too few additional constraints exist to favor any of them. In particular, no significant ground displacements are observed when these gravity variations occurred. On the other hand, the model of gravity changes due to local groundwater redistribution can be routinely computed and removed from the ongoing time gravity measurements in order to quickly identify any unusual mass transfer occurring beneath TVG.

  1. Analytical Model of Water Flow in Coal with Active Matrix

    NASA Astrophysics Data System (ADS)

    Siemek, Jakub; Stopa, Jerzy

    2014-12-01

    This paper presents new analytical model of gas-water flow in coal seams in one dimension with emphasis on interactions between water flowing in cleats and coal matrix. Coal as a flowing system, can be viewed as a solid organic material consisting of two flow subsystems: a microporous matrix and a system of interconnected macropores and fractures. Most of gas is accumulated in the microporous matrix, where the primary flow mechanism is diffusion. Fractures and cleats existing in coal play an important role as a transportation system for macro scale flow of water and gas governed by Darcy's law. The coal matrix can imbibe water under capillary forces leading to exchange of mass between fractures and coal matrix. In this paper new partial differential equation for water saturation in fractures has been formulated, respecting mass exchange between coal matrix and fractures. Exact analytical solution has been obtained using the method of characteristics. The final solution has very simple form that may be useful for practical engineering calculations. It was observed that the rate of exchange of mass between the fractures and the coal matrix is governed by an expression which is analogous to the Newton cooling law known from theory of heat exchange, but in present case the mass transfer coefficient depends not only on coal and fluid properties but also on time and position. The constant term of mass transfer coefficient depends on relation between micro porosity and macro porosity of coal, capillary forces, and microporous structure of coal matrix. This term can be expressed theoretically or obtained experimentally. W artykule zaprezentowano nowy model matematyczny przepływu wody i gazu w jednowymiarowej warstwie węglowej z uwzględnieniem wymiany masy między systemem szczelin i matrycą węglową. Węgiel jako system przepływowy traktowany jest jako układ o podwójnej porowatości i przepuszczalności, składający się z mikroporowatej matrycy węglowej oraz z

  2. Coal combustion science

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  3. Actinobacteria Isolated from an Underground Lake and Moonmilk Speleothem from the Biggest Conglomeratic Karstic Cave in Siberia as Sources of Novel Biologically Active Compounds.

    PubMed

    Axenov-Gribanov, Denis V; Axenov-Gibanov, Denis V; Voytsekhovskaya, Irina V; Tokovenko, Bogdan T; Protasov, Eugeniy S; Gamaiunov, Stanislav V; Rebets, Yuriy V; Luzhetskyy, Andriy N; Timofeyev, Maxim A

    2016-01-01

    Actinobacteria isolated from unstudied ecosystems are one of the most interesting and promising sources of novel biologically active compounds. Cave ecosystems are unusual and rarely studied. Here, we report the isolation and characterization of ten new actinobacteria strains isolated from an ancient underground lake and moonmilk speleothem from the biggest conglomeratic karstic cave in Siberia with a focus on the biological activity of the obtained strains and the metabolite dereplication of one active strain. Streptomyces genera isolates from moonmilk speleothem demonstrated antibacterial and antifungal activities. Some of the strains were able to inhibit the growth of pathogenic Candida albicans.

  4. Actinobacteria Isolated from an Underground Lake and Moonmilk Speleothem from the Biggest Conglomeratic Karstic Cave in Siberia as Sources of Novel Biologically Active Compounds

    PubMed Central

    Tokovenko, Bogdan T.; Protasov, Eugeniy S.; Gamaiunov, Stanislav V.; Rebets, Yuriy V.; Luzhetskyy, Andriy N.; Timofeyev, Maxim A.

    2016-01-01

    Actinobacteria isolated from unstudied ecosystems are one of the most interesting and promising sources of novel biologically active compounds. Cave ecosystems are unusual and rarely studied. Here, we report the isolation and characterization of ten new actinobacteria strains isolated from an ancient underground lake and moonmilk speleothem from the biggest conglomeratic karstic cave in Siberia with a focus on the biological activity of the obtained strains and the metabolite dereplication of one active strain. Streptomyces genera isolates from moonmilk speleothem demonstrated antibacterial and antifungal activities. Some of the strains were able to inhibit the growth of pathogenic Candida albicans. PMID:26901168

  5. CdS loaded on coal based activated carbon nanofibers with enhanced photocatalytic property

    NASA Astrophysics Data System (ADS)

    Guo, Jixi; Guo, Mingxi; Jia, Dianzeng; Song, Xianli; Tong, Fenglian

    2016-08-01

    The coal based activated carbon nanofibers (CBACFs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and acid treated coal. Cadmium sulfide (CdS) nanoparticles loaded on CBACFs were fabricated by solvothermal method. The obtained samples were characterized by FESEM, TEM, and XRD. The results reveal that the CdS nanoparticles are homogeneously dispersed on the surfaces of CBACFs. The CdS/CBACFs nanocomposites exhibited higher photoactivity for photodegradation of methyl blue (MB) under visible light irradiation than pure CdS nanoparticles. CBACFs can be used as low cost support materials for the preparation of nanocomposites with high photocatalytic activity.

  6. Resource Recovery of Flooded Underground Mine Workings

    EPA Science Inventory

    Butte, Montana has been the site of hard rock mining activities for over a century. Over 400 hundred underground mines were developed and over 10,000 miles of underground mine workings were created. During active mining, groundwater was removed from the workings by large-scale pu...

  7. Resource Recovery from Flooded Underground Mines

    EPA Science Inventory

    Butte, Montana has been the site of hard rock mining activities for over a century. Over 400 hundred underground mines were developed and over 10,000 miles of underground mine workings were created. During active mining, groundwater was removed from the workings by large-scale pu...

  8. Trace element analysis of coal by neutron activation

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  9. Trace element analysis of coal by neutron activation.

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  10. Production of activated char from Illinois coal for flue gas cleanup

    USGS Publications Warehouse

    Lizzio, A.A.; DeBarr, J.A.; Kruse, C.W.

    1997-01-01

    Activated chars were produced from Illinois coal and tested in several flue gas cleanup applications. High-activity chars that showed excellent potential for both SO2 and NOx removal were prepared from an Illinois No. 2 bituminous coal. The SO2 (120 ??C) and NOx (25 ??C) removal performance of one char compared favorably with that of a commercial activated carbon (Calgon Centaur). The NOx removal performance of the same char at 120 ??C exceeded that of the Centaur carbon by more than 1 order of magnitude. Novel char preparation methods were developed including oxidation/thermal desorption and hydrogen treatments, which increased and preserved, respectively, the active sites for SO2 and NOx adsorption. The results of combined SO2/NOx removal tests, however, suggest that SO2 and NOx compete for similar adsorption sites and SO2 seems to be more strongly adsorbed than NO. A low-activity, low-cost char was also developed for cleanup of incinerator flue gas. A three-step method involving coal preoxidation, pyrolysis, and CO2 activation was used to produce the char from Illinois coal. Five hundred pounds of the char was tested on a slipstream of flue gas from a commercial incinerator in Germany. The char was effective in removing >97% of the dioxins and furans present in the flue gas; mercury levels were below detectable limits.

  11. Coal mining activities change plant community structure due to air pollution and soil degradation.

    PubMed

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  12. Final report on passive and active low-frequency electromagnetic spectroscopy for airborne detection of underground facilities

    SciTech Connect

    SanFilipo, Bill

    2000-04-01

    The objective of this program is to perform research to advance the science in the application of both passive and active electromagnetic measurement techniques for the detection and spatial delineation of underground facilities. Passive techniques exploit the electromagnetic fields generated by electrical apparatus within the structure, including generators, motors, power distribution circuitry, as well as communications hardware and similar electronics equipment. Frequencies monitored are generally in the audio range (60-20,000 Hz), anticipating strong sources associated with normal AC power (i.e., 50 or 60 Hz and associated harmonics), and low frequency power from broad-band sources such as switching circuits. Measurements are made using receiver induction coils wired to electronics that digitize and record the voltage induced by the time varying magnetic fields. Active techniques employ electromagnetic field transmitters in the form of AC current carrying loops also in the audio frequency range, and receiving coils that measure the resultant time varying magnetic fields. These fields are perturbed from those expected in free space by any conductive material in the vicinity of the coils, including the ground, so that the total measured field is comprised of the primary free-space component and the secondary scattered component. The latter can be further delineated into an average background field (uniform conductive half-space earth) and anomalous field associated with heterogeneous zones in the earth, including both highly conductive objects such as metallic structures as well as highly resistive structures such as empty voids corresponding to rooms or tunnels. Work performed during Phase I included the development of the prototype GEM-2H instrumentation, collection of data at several test sites in the passive mode and a single site in the active mode, development of processing and interpretation software. The technical objectives of Phase II were to: (1

  13. Evaluation of anti-inflammatory activity and standardisation of hydro-methanol extract of underground tuber of Dioscorea alata.

    PubMed

    Dey, Priyankar; Roy Chowdhuri, Sumedha; Sarkar, Mousumi Poddar; Chaudhuri, Tapas Kumar

    2016-08-01

    Context The underground edible tuber of Dioscorea alata L. (Dioscoreaceae) is a functional food with high nutritive value and therapeutic potential. The tuber is known to possess anti-inflammatory properties in traditional medicine. Objective The present study explores the anti-inflammatory activity and standardisation of D. alata tuber hydromethanol extract. Materials and methods Hydromethanol extract (70%) of D. alata tuber was chemically characterised using HPLC and GC-MS techniques. Murine lymphocytes were cultured for 48 h with six different concentrations (0-80 μg/mL) of the extract. The expression of nitric oxide (NO), TNF-α, COX-1, COX-2, and PGE2 were evaluated using colorimetric and ELISA methods. Results Dioscorea alata extract inhibited the expression of NO and TNF-α with an IC50 value of 134.51 ± 6.75 and 113.30 ± 7.44 μg/mL, respectively. The IC50 values for inhibition of total COX, COX-1, COX-2 activities and PGE2 level were 41.96 ± 3.07, 141.41 ± 8.99, 32.50 ± 1.69, and 186.34 ± 15.36 μg/mL, respectively. Inhibition of PGE2 level and COX-2 activity was positively correlated (R(2) = 0.9393). Gallic acid (GA), 4-hydroxy benzoic acid (4HBA), syringic acid (SYA), p-coumaric acid (PCA), and myricetin (MY) were identified and quantified using HPLC. GC-MS analysis revealed the presence of 13 different phytocompounds such as hexadecanoic acid, methyl stearate, cinnamyl cinnamate, and squalene. Conclusion The D. alata extract significantly down-regulated the pro-inflammatory signals in a gradual manner compared with control (0 μg/mL). Different bioactive phytocompounds individually possessing anti-inflammatory activities contributed to the overall bioactivity of the D. alata tuber extract.

  14. The effect of coal type and pyrolysis temperature on the electrochemical activity of coal at a solid carbon anode in molten carbonate media

    NASA Astrophysics Data System (ADS)

    Allen, J. A.; Glenn, M.; Donne, S. W.

    2015-04-01

    A systematic assessment of the electrochemical activity of two different parent coal types, pyrolysed at temperatures between 500 and 900 °C higher heating temperature (HHT), is presented in this work. Analysis shows that certain coal chars are catalytically activated in molten carbonate media at 600 °C, however activity does not appear to follow trends established for ashless carbon sources. It is seen here that it is not possible to predict activity based solely on electrical resistance, surface functionalization, or the BET surface area of pyrolysed coals. Instead, it is suggested that coal ash type, abundance and distribution plays a pivotal role in activating the coal char to allow fast electrochemical oxidation through a catalytically enhanced pathway. Activation from ash influence is discussed to result from wetting of the molten carbonate media with the carbon surface (change in polarity of electrode surface), through ash mediated oxide adsorption and transfer to carbon particles, or possibly through another catalytic pathway not yet able to be predicted from current results.

  15. Occurrence and activity of iron- and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils.

    PubMed

    Olson, G J; McFeters, G A; Temple, K L

    1981-03-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron- and sulfur-oxidizing bacteria. Spoils examined were of three types: (a) acidic pyrite-rich waste coal, (b) oxidation halo material, and (c) alkaline material, which was the most widespread type. Bacterial numbers, sulfur oxidation, and(14)CO2 uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulfur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH, indicating that bacterial pyrite oxidation occurred where groundwaters contacted either replaced spoils or coal that contained pyrite or other metal sulfides. Bacterial activity may contribute to trace metal and sulfate leaching in the area.

  16. Underground at Black Diamond Mines

    SciTech Connect

    Higgins, C.T.

    1989-10-01

    Although California is noted for its mining history and annually leads the nation in total monetary value of minerals produced, there a few opportunities for the public to tour underground mines. One reason is that nearly all mining in the state today is done above ground in open pits. Another reason is that active underground mines are not commonly favorable to public tours. There is one place, Black Diamond Mines Regional Preserve, where the public can safely tour a formerly active underground mine. Black Diamond Mines Regional Preserve is a 3,600-acre parkland about 5 miles southwest of Antioch in Contra Costa County. The Preserve was established in the early 1970s and is administered by the East Bay Regional Park District. Black Diamond Mines Preserve is noteworthy for its mining history as well as its natural history, both of which are briefly described here.

  17. Vitrified underground structures

    DOEpatents

    Murphy, Mark T.; Buelt, James L.; Stottlemyre, James A.; Tixier, Jr., John S.

    1992-01-01

    A method of making vitrified underground structures in which 1) the vitrification process is started underground, and 2) a thickness dimension is controlled to produce substantially planar vertical and horizontal vitrified underground structures. Structures may be placed around a contaminated waste site to isolate the site or may be used as aquifer dikes.

  18. Kinetic modeling of the adsorption of basic dyes onto steam-activated bituminous coal

    SciTech Connect

    El Qada, E.N.; Allen, S.J.; Walker, G.M.

    2007-07-15

    The principal aim of this work is to investigate the mechanism of basic dye (methylene blue (MB) and basic red (BR)) adsorption onto activated carbons produced from steam-activated bituminous coal. The rate of adsorption onto various activated carbons, produced in small laboratory-scale and pilot-industrial-scale processes, was investigated under a variety of conditions. The kinetic data from these investigations were correlated to a number of adsorption models in an attempt to elucidate the mechanism of the adsorption processes. The adsorption mechanism was found to follow pseudo-second-order and intraparticle-diffusion models, with external mass transfer predominating in the first 5 min of the experiment. Filtrasorb 400 (Chemviron Carbon) exhibited the highest adsorption rate for the removal of basic dyes followed by activated carbons produced by our research group: PAC1 (activated carbon produced from Venezuelan bituminous coal in small laboratory scale using physical activation technique) and PAC2 (activated carbon produced by the steam activation of New Zealand bituminous coal on a pilot-industrial scale).

  19. Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Rountree, Steven Derek

    2014-03-01

    The Kimballton Underground Research Facility (KURF) is an operating deep underground research facility with six active projects, and greater than 50 trained researchers. KURF is 30 minutes from the Virginia Tech (VT) campus in an operating limestone mine with drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' × 20 +' the current lab is 35' × 22' × 100'), and 1700' of overburden (1450m.w.e.). The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ~0.004 muons per square meter, per second, per steradian. The current users are funded by NSF, DOE, and NNSA. Current user group: 1) mini-LENS (VT, Louisiana State University, BNL); 2) Double Beta Decay to Excited States (Duke University); 3) HPGe Low-Background Screening (University of North Carolina (UNC), VT); 4) MALBEK (UNC); 5&6) Watchman - 5) Radionuclide Detector and 6) MARS detector (LLNL, SNL, UC-Davis, UC-Berkeley, UH, Hawaii Pacific, UC-Irvine, VT).

  20. 77 FR 64097 - Supplemental Environmental Impact Statement to the 2011 Final EIS for the Leasing and Underground...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... Underground Mining of the Greens Hollow Federal Coal Lease Tract (UTU-84102) AGENCY: Forest Service, USDA... (EIS) and Record of Decision to the 2011 Final EIS For the Leasing and Undeground Mining of the Greens... 3400. Coal in the tract would be accessed and recovered using underground longwall mining methods,...

  1. Results of a European interlaboratory comparison on CO2 sorption on activated carbon and coals

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Busch, Andreas; Krooss, Bernhard; de Weireld, Guy; Billemont, Pierre; van Hemert, Patrick; Wolf, Karl-Heinz

    2013-04-01

    For the assessment of CO2 storage in coal seams or enhanced coalbed methane production (ECBM), the sorption properties of natural coals are important parameters. Since more and more laboratories worldwide are concerned with measurements of gas sorption on coal it is indispensable to establish quality standards for such experiments. The first two interlaboratory studies on CO2 sorption on coal (Goodman et al. 2004, 2007) revealed a poor agreement of sorption isotherms among the participating laboratories, particularly in the high-pressure range. During the MOVECBM (http://www.movecbm.eu/) project funded by the European Commission (6th framework), an interlaboratory comparison of CO2 sorption on selected coals and activated carbon was initiated. Measurements were performed on dry samples at 45° C using the manometric and the gravimetric method. up to a final pressure of 15 MPa. The first set of high-pressure sorption measurements was performed on a Filtrasorb 400 activated carbon sample in order to minimise heterogeneity effects and to optimize the experimental procedures for the individual (manometric or gravimetric) methods (Gensterblum et al. 2009). Since comparability for the activated carbon was excellent, the measurements were continued using natural coals of various rank (anthracite, bituminous coal and lignite) to study the influence of heterogeneities and varying starting conditions on the CO2 sorption properties (Gensterblum et al. 2010). Compared to the poor reproducibility observed in previous interlaboratory studies (Goodman et al., 2004, 2007) this European study showed excellent agreement (<5 % deviation) among the participating laboratories with good repeatability. The sorption data and technical information on the different experimental setups have been used to investigate errors and potential pitfalls in the assessment of high-pressure CO2 sorption isotherms. References Gensterblum Y., P. van Hemert, P. Billemont, A. Busch, B.M. Krooss, G. de

  2. Automatic three-dimensional underground mine mapping

    SciTech Connect

    Huber, D.F.; Vandapel, N.

    2006-01-15

    For several years, our research group has been developing methods for automated modeling of three-dimensional environments. In September 2002, we were given the opportunity to demonstrate our mapping capability in an underground coal mine. The opportunity arose as a result of the Quecreek mine accident, in which an inaccurate map caused miners to breach an abandoned, water-filled mine, trapping them for several days. Our field test illustrates the feasibility and potential of high-resolution 3D mapping of an underground coal mine using a cart-mounted 3D laser scanner In this paper we present our experimental setup, the automatic 3D modeling method used, and the results of the field test.

  3. 4-MCHM sorption to and desorption from granular activated carbon and raw coal.

    PubMed

    Jeter, T Scott; Sarver, Emily A; McNair, Harold M; Rezaee, Mohammad

    2016-08-01

    4-Methylcyclohexanemethanol (4-MCHM) is a saturated higher alicyclic primary alcohol that is used in the froth flotation process for cleaning coal. In early 2014, a large spill of crude chemical (containing primarily 4-MCHM) to the Elk River near Charleston, WV contaminated the local water supply. Carbon filters at the affected water treatment facility quickly became saturated, and the contaminated water was distributed to nearby homes and businesses. Sorption of 4-MCHM to granular activated carbon (GAC) was studied in the laboratory using head space (HS) analysis via gas chromatography with a flame ionization detector (GC-FID). Sorption to raw coal was also investigated, since this material may be of interest as a sorbent in the case of an on-site spill. As expected, sorption to both materials increased with decreased particle size and with increased exposure time; although exposure time proved to be much more important in the case of GAC than for coal. Under similar conditions, GAC sorbed more 4-MCHM than raw coal (e.g., 84.9 vs. 63.1 mg/g, respectively, for 20 × 30 mesh particles exposed to 860 mg/L 4-MCHM solution for 24 h). Desorption from both materials was additionally evaluated. Interestingly, desorption of 4-MCHM on a mass per mass basis was also higher for GAC than for raw coal. Overall, results indicated that GAC readily sorbs 4-MCHM but can also readily release a portion of the chemical, whereas coal sorbs somewhat less 4-MCHM but holds it tightly.

  4. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL...

  5. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL...

  6. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL...

  7. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL...

  8. 30 CFR 75.1709 - Accumulations of methane and coal dust on surface coal-handling facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Accumulations of methane and coal dust on surface coal-handling facilities. 75.1709 Section 75.1709 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL...

  9. Occupational airborne contamination in south Brazil: 1. Oxidative stress detected in the blood of coal miners.

    PubMed

    Avila Júnior, S; Possamai, F P; Budni, P; Backes, P; Parisotto, E B; Rizelio, V M; Torres, M A; Colepicolo, P; Wilhelm Filho, D

    2009-11-01

    Reactive oxygen species and nitrogen species have been implicated in the pathogenesis of coal dust-induced toxicity. The present study investigated several oxidative stress biomarkers (Contents of lipoperoxidation = TBARS, reduced = GSH, oxidized = GSSG and total glutathione = TG, alpha-tocopherol, and the activities of glutathione S-transferase = GST, glutathione reductase = GR, glutathione peroxidase = GPx, catalase = CAT and superoxide dismutase = SOD), in the blood of three different groups (n = 20 each) exposed to airborne contamination associated with coal mining activities: underground workers directly exposed, surface workers indirectly exposed, residents indirectly exposed (subjects living near the mines), and controls (non-exposed subjects). Plasma TBARS were increased and whole blood TG and GSH levels were decreased in all groups compared to controls. Plasma alpha-tocopherol contents showed approximately half the values in underground workers compared to controls. GST activity was induced in workers and also in residents at the vicinity of the mining plant, whilst CAT activity was induced only in mine workers. SOD activity was decreased in all groups examined, while GPx activity showed decreased values only in underground miners, and GR did not show any differences among the groups. The results showed that subjects directly and indirectly exposed to coal dusts face an oxidative stress condition. They also indicate that people living in the vicinity of the mine plant are in health risk regarding coal mining-related diseases.

  10. Adsorption of SO2 on bituminous coal char and activated carbon fiber

    USGS Publications Warehouse

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1997-01-01

    The SO2 adsorption behaviors of activated carbons produced from Illinois coal and of commercially prepared activated carbon fibers (ACFs) were compared. There was no relation between surface area of coal-based carbons and SO2 adsorption, whereas adsorption of SO2 on the series of ACFs was inversely proportional to N2 BET surface area. Higher surface area ACFs had wider pores and adsorbed less SO2; thus, pore size distribution is thought to play a significant role in SO2 adsorption for these materials. Oxidation with HNO3 and/or H2SO4, followed by heat treatment at 700−925°C to remove carbon−oxygen complexes, resulted in increased SO2 adsorption for both coal chars and ACFs. This behavior was explained by an increase in the available number of free sites, previously occupied by oxygen and now available for SO2 adsorption. The use of nitrogen-containing functional groups on ACFs of proper pore size shows promise for further increasing SO2 adsorption capacities. Knowledge of the relationship among the number of free sites, pore size, and surface chemistry on corresponding SO2 adsorption should lead to the development of more efficient adsorbents prepared from either coal or ACFs.

  11. Underground communications and tracking technology advances

    SciTech Connect

    Fiscor, S.

    2007-03-15

    As the June 2009 deadline set by the MINER Act grows near, several technologies have emerged as possible options for communicating and tracking underground coal miners in the event of an emergency or disaster. NIOSH is currently deciding how best to invest $10 million assigned by Congress under an Emergency Supplementary Appropriations Act (ESA) to research and develop mine safety technology. Medium and ultra high frequency (UHF) systems seem to be leading the pack with radio frequency identification (RFID) tags serving as the tracking system. Wireless mesh systems can serve as a communications infrastructure and they can do much more. Even more technologies continue to emerge, such as inertial navigation tracking systems. Mines are discovering the wonders of modern voice and data communications underground. Still no one know if it is economically practical to design a system that will function after a coal mine explosion. From the nineteen systems submitted to MSHA's request for information (RFI), six systems were selected that represented most of the technologies that had been proposed: the Rajant Breadcrumb, Innovative Wireless, Concurrent Technologies/Time Domain, Transtek, Gamma Services, and the Kutta Consulting systems. They were tested at CONSOL Energy's McElroy mine in April 2006. MSHA felt that all of those systems needed a significant amount of work before they were ready for use in a underground coal mining environment. The agency continues to work with these, and other manufacturers, to assist in arranging for field demonstration and then to gain MSHA approval.

  12. Characteristics of coal mine ventilation air flows.

    PubMed

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  13. Coals and coal-bearing rocks of the Hanna Coal Field, Wyoming

    SciTech Connect

    Glass, G.B.; Roberts, J.T.

    1980-01-01

    Renewed interest in Wyoming's vast coal deposits began in the late 1960's as power plant demands for inexpensive, low sulfur coals increased. Because of this demand, Wyoming's coal companies have set new production records every year since 1972. Table 1 summarizes annual production for the last 19 years on a county basis. Wyoming's 1978 tonnage set yet another record at 58.2 million tons. With this tonnage, Wyoming remains the largest coal-producing state in the Rocky Mountains and the fourth largest in the nation. Coal production in Wyoming was dominated by underground mining until 1954. In that year, strip mining tonnage barely exceeded that of the underground mines. Since then, however, strip mining has become the dominant mining method and now accounts for about 99 percent of Wyoming's annual production. Conversely, underground mining has slipped to approximately one percent of the annual tonnage mined. In 1978, twenty-one coal mining companies produced 58.2 million tons of coal. These companies operated 22 strip mines and 3 underground mines.

  14. Occupational exposures during routine activities in coal-fueled power plants

    SciTech Connect

    Mona J. Bird; David L. MacIntosh; Phillip L. Williams

    2004-06-15

    Limited information is available on occupational exposures during routine, nonoutage work activities in coal-fueled power plants. This study evaluated occupational exposures to the principal contaminants in the facilities, including respirable dust (coal dust), arsenic, noise, asbestos, and heat stress. The data were collected over a 3-month period, during the summer of 2001, in 5 representative power plants of a large southeastern power-generating company. From 4 of the 5 facilities, 392 air samples and 302 noise samples were collected with approximately 50 respirable coal dust, 32 arsenic, 15 asbestos, and 70 noise samples from each of the 4 plants. One of the previously surveyed facilities was also evaluated for heat stress, and 1 additional coal-fueled power plant was surveyed for a total of 20 personal heat stress samples. Of the nearly 400 air samples collected, only 1 exceeded the allowable occupational exposure value. For the noise samples, 55 were equal to or greater than the Occupational Safety and Health Administration (OSHA) 8-hour hearing conservation program level of 85 dBA, and 12 were equal to or greater than the OSHA 8-hour permissible exposure level of 90 dBA. The data concluded that some work sites were above the heat stress ceiling values recommended by the National Institute for Occupational Safety and Health (NIOSH). Four of the 20 employees personally monitored exceeded the recommended limits for heart rate or body core temperature.

  15. Underground coal mine instrumentation and test

    NASA Technical Reports Server (NTRS)

    Burchill, R. F.; Waldron, W. D.

    1976-01-01

    The need to evaluate mechanical performance of mine tools and to obtain test performance data from candidate systems dictate that an engineering data recording system be built. Because of the wide range of test parameters which would be evaluated, a general purpose data gathering system was designed and assembled to permit maximum versatility. A primary objective of this program was to provide a specific operating evaluation of a longwall mining machine vibration response under normal operating conditions. A number of mines were visited and a candidate for test evaluation was selected, based upon management cooperation, machine suitability, and mine conditions. Actual mine testing took place in a West Virginia mine.

  16. Evidence for Methyl-Compound-Activated Life in Coal Bed System 2 km Below Sea Floor

    NASA Astrophysics Data System (ADS)

    Trembath-reichert, E.; Morono, Y.; Dawson, K.; Wanger, G.; Bowles, M.; Heuer, V.; Hinrichs, K. U.; Inagaki, F.; Orphan, V. J.

    2014-12-01

    IODP Expedition 337 set the record for deepest marine scientific drilling down to 2.4 kmbsf. This cruise also had the unique opportunity to retrieve deep cores from the Shimokita coal bed system in Japan with the aseptic and anaerobic conditions necessary to look for deep life. Onboard scientists prepared nearly 1,700 microbiology samples shared among five different countries to study life in the deep biosphere. Samples spanned over 1 km in sampling depths and include representatives of shale, sandstone, and coal lithologies. Findings from previous IODP and deep mine expeditions suggest the genetic potential for methylotrophy in the deep subsurface, but it has yet to be observed in incubations. A subset of Expedition 337 anoxic incubations were prepared with a range of 13C-methyl substrates (methane, methylamine, and methanol) and maintained near in situ temperatures. To observe 13C methyl compound metabolism over time, we monitored the δ13C of the dissolved inorganic carbon (by-product of methyl compound metabolism) over a period of 1.5 years. Elemental analysis (EA), ion chromatograph (IC), 13C volatile fatty acid (VFA), and mineral-associated microscopy data were also collected to constrain initial and endpoint conditions in these incubations. Our geochemical evidence suggests that the coal horizon incubated with 13C-methane showed the highest activity of all methyl incubations. This provides the first known observation of methane-activated metabolism in the deep biosphere, and suggests there are not only active cells in the deeply buried terrigenous coal bed at Shimokita, but the presence of a microbial community activated by methylotrophic compounds.

  17. Underground laboratories in Asia

    NASA Astrophysics Data System (ADS)

    Lin, Shin Ted; Yue, Qian

    2015-08-01

    Deep underground laboratories in Asia have been making huge progress recently because underground sites provide unique opportunities to explore the rare-event phenomena for the study of dark matter searches, neutrino physics and nuclear astrophysics as well as the multi-disciplinary researches based on the low radioactive environments. The status and perspectives of Kamioda underground observatories in Japan, the existing Y2L and the planned CUP in Korea, India-based Neutrino Observatory (INO) in India and China JinPing Underground Laboratory (CJPL) in China will be surveyed.

  18. 40 CFR 147.52 - State-administered program-Hydraulic Fracturing of Coal Beds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... be inspected at the Environmental Protection Agency, Region 4, Water Management Division, Ground... (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND INJECTION CONTROL...-.04, Protection of Underground Sources of Drinking Water during the Hydraulic Fracturing of Coal...

  19. Instrumental activation analysis of coal and fly ash with thermal and epithermal neutrons and short-lived nuclides

    USGS Publications Warehouse

    Steinnes, E.; Rowe, J.J.

    1976-01-01

    Instrumental neutron activation analysis is applied to the determination of about 25 elements in coals and fly ash by means of nuclides with half-lives of less than 48 h ; thermal and epithermal irradiations are used. The results indicate that epithermal activation is preferable for twelve of the elements (Ga, As, Br, Sr, In, Cs, Ba, La, Sm, Ho, W and U). Data for SRM 1632 (coal) and SRM 1633 (fly ash) compare favorably with the results obtained by other investigators. ?? 1976.

  20. The Process of Separating Bovine Serum Albumin Using Hydroxyapatite and Active Babassu Coal (Orbignya martiana)

    PubMed Central

    Zuñiga, Abraham Damian Giraldo; Sousa, Rita de Cássia Superbi; Zacchi Scolforo, Carmelita

    2016-01-01

    Bovine serum albumin is one of the major serum proteins; it plays an important role as a result of its functional and nutritional properties which have bioactive peptides. Adsorption method was used to separate protein, which involves hydroxyapatite, synthetic hydroxyapatite, and active babassu coal. Initially, characterization was carried out using the zeta potential of the adsorbents. Kinetic pseudo-first- and pseudo-second-order models were applied. For isotherms, equilibrium data studies were carried out using the Langmuir and Freundlich models, in addition to determining the efficiency of adsorptive process. The results of the zeta potential showed loads ranging from +6.9 to −42.8 mV. The kinetic data were better represented in the pseudo-second-order model with chemisorption characteristics. The adsorption capacity of the adsorbents decreased as pH increased, indicating that the electrostatic bonds and some functional groups of active babassu coal contributed to the reduction of adsorption, especially oxygen linked to carbon atoms. The value of pH 4.0 showed the best results of adsorption, being obtained as the maximum adsorption capacity (qm) and yield (%) (where qm = 87.95 mg g−1 and 74.2%; 68.26 mg g−1 and 68.6%; and 36.18 mg g−1, 37.4%) of hydroxyapatite, synthetic hydroxyapatite, and active babassu coal, respectively. PMID:27376149

  1. Adsorption of iodine from COIL waste gas on soaked coal-based activated carbon

    NASA Astrophysics Data System (ADS)

    Zhou, Junbo; Hao, Shan; Gao, Liping

    2014-04-01

    The chemical oxygen-iodine laser (COIL) has wide application prospects in military, industrial and medical treatment fields as a second generation gas chemical laser to follow the first HF/DF chemical laser. However, a COIL releases large amounts of gas, such as helium, oxygen, chlorine and iodine. Chlorides have a serious corrosive effect on the system, especially iodine vapor crystallization, which seriously endangers the normal use of vacuum systems, and radioactive methyl iodide, which is hazardous to operators and pollutes the environment. The use of soaked coal-based activated carbon as an adsorbent for removing methyl iodine is proposed, while it is proposed that coal-based activated carbon is an effective adsorbent for removing stable iodine. The research conducted in this work shows that iodine residues are less than 0.5 μg ml-1 after the adsorption treatment and the decontamination factor of the coal-based activated carbon for removing stable iodine is more than 1000. Using this method can achieve the purpose of removing harmful iodine, satisfy the requirements for engineering applications, and also be applied to other nuclear power plant flue gas treatments.

  2. Reducing float coal dust

    PubMed Central

    Patts, J.R.; Colinet, J.F.; Janisko, S.J.; Barone, T.L.; Patts, L.D.

    2016-01-01

    Controlling float coal dust in underground coal mines before dispersal into the general airstream can reduce the risk of mine explosions while potentially achieving a more effective and efficient use of rock dust. A prototype flooded-bed scrubber was evaluated for float coal dust control in the return of a continuous miner section. The scrubber was installed inline between the face ventilation tubing and an exhausting auxiliary fan. Airborne and deposited dust mass measurements were collected over three days at set distances from the fan exhaust to assess changes in float coal dust levels in the return due to operation of the scrubber. Mass-based measurements were collected on a per-cut basis and normalized on the basis of per ton mined by the continuous miner. The results show that average float coal dust levels measured under baseline conditions were reduced by more than 90 percent when operating the scrubber. PMID:28018004

  3. A study of the electrochemical activity of coals

    SciTech Connect

    Garilov, Yu.V.; Alesandrov, I.V.; Kamneva, A.I.; Kossov, I.I.

    1983-01-01

    The applicability of electrochemical methods of investigation for the evaluation of the real chemical activity of solid combustible minerals in the process of autoxidation has been shown. Information is given on redox equivalents of caustobioliths.

  4. Study of the properties of mine waste in the midwestern coal fields. Phase I report

    SciTech Connect

    1980-07-04

    In an effort to assist the coal industry in complying with the applicable regulations, to design safe and environmentally acceptable disposal systems, and to encourage secondary use of coal mine waste, the US Department of Energy has initiated research programs to develop coal mine waste disposal and use technology. This study of the properties of mine wastes in the Midwestern coal fields has been limited to the waste materials obtained from underground coal mines and preparation plants attached to both underground and surface mines. The program has been divided into two phases. In Phase I, the 20 most important properties relevant to safe disposal, reclamation, underground disposal, and secondary uses have been identified. An inventory of the significant waste disposal sites in the Midwestern coal fields has been prepared. The site locations have been plotted on USGS maps. Estimates of coal production and coal mine waste production during the next 2 decades have been prepared and are presented in this report. Also, all available information obtained from a search of existing literature on physical and chemical properties, including analysis results of the general runoff from the refuse disposal areas, has been collected and is presented. In order to fill the gaps in information, 20 sites have been identified for drilling and sampling to determine the various physical and chemical properties. They have been selected on the basis of the distribution and quantity of waste at the existing locations (both abandoned and active), the future trends in production and likely locations of waste disposal areas, their geographical and geological distribution, and ease of accessibility for drilling and sampling.

  5. The Black Underground: Fugitives from Slavery

    ERIC Educational Resources Information Center

    Quarles, Benjamin

    1969-01-01

    A brief account of the activities prior to the American Civil War of those who assisted black slaves in their flight from the South to the Northern States and Canada by an underground railroad movement. (RJ)

  6. Evaluation of a signaling and warning system for underground mines. Report of investigations/1997

    SciTech Connect

    Conti, R.S.; Yewen, R.G.

    1997-05-01

    Underground mines rely on alarm systems, such as stench gas, audible or visual alarms, pager phones, telephones, and messengers to warn miners of a fire or other emergency. These systems are often slow, unreliable, and limited in mine coverage. This report describes the evaluation of a wireless signaling and warning system for underground mines. This system is applicable to both coal and noncoal mines. The work was conducted by the National Institute for Occupational Safety and Health in cooperation with TeleMagnetic Signalling Systems (TSS) under Cooperative Research and Development Agreement No. BOM-CRDA-6200-0119. A TSS wireless ultra-low frequency electromagnetic signaling system was installed at the Experimental Mine at Lake Lynn Laboratory near Fairchance, Fayette County, PA. A commercial smoke sensor was interfaced to a remote portable transmitter, and the alarm of the sensor was used to trigger the central evacuation and paging transmitter system during experimental mine fires. The underground/surface receivers flashed cap lamps and activated remote devices, such as strobe lights, within 30 to 40 s after the encoded signal was received. Evaluation results showed full-mine coverage of the electromagnetic field and that the encoded signal was received at the farthest point underground and on the surface perimeter.

  7. Basic mechanisms leading to focal emphysema in coal workers' pneumoconiosis

    SciTech Connect

    Rom, W.N. )

    1990-10-01

    Coal miners develop focal emphysema characterized by dilatation of second- and third-order respiratory bronchioles with coal mine dust-laden macrophages infiltrating the wall. A reticulin network with small amounts of collagen and atrophy of smooth muscle occurs. To evaluate the mechanisms of lung injury associated with this lesion, 17 long-term non- or ex-smoking West Virginia underground coal miners underwent bronchoalveolar lavage (BAL) and were compared to healthy nonsmoker and smoker controls. The coal miners had evidence of an alveolar macrophage-neutrophil alveolitis with a significant increase in neutrophils/microliter of epithelial lining fluid and an increased gallium lung scan index (206 +/- 26 units). Alveolar macrophages lavaged from coal miners spontaneously released exaggerated amounts of superoxide anion and hydrogen peroxide in vitro compared to nonsmoking controls. Coal workers had significantly elevated levels of neutrophil elastase in BAL fluid complexed with alpha 1-antitrypsin (P less than 0.01) and normal levels of alpha 1-antitrypsin. An accumulation of activated, dust-laden inflammatory cells with increased release of oxidants and elastase may contribute to the development of focal emphysema identified at postmortem in miners with coal workers' pneumoconiosis.

  8. Effect of powdered activated carbon technology on short-cut nitrogen removal for coal gasification wastewater.

    PubMed

    Zhao, Qian; Han, Hongjun; Xu, Chunyan; Zhuang, Haifeng; Fang, Fang; Zhang, Linghan

    2013-08-01

    A combined process consisting of a powdered activated carbon technology (PACT) and short-cut biological nitrogen removal reactor (SBNR) was developed to enhance the removal efficiency of the total nitrogen (TN) from the effluent of an upflow anaerobic sludge bed (UASB) reactor, which was used to treat coal gasification wastewater (CGW). The SBNR performance was improved with the increasing of COD and TP removal efficiency via PACT. The average removal efficiencies of COD and TP in PACT were respectively 85.80% and 90.30%. Meanwhile, the NH3-N to NO2-N conversion rate was achieved 86.89% in SBNR and the total nitrogen (TN) removal efficiency was 75.54%. In contrast, the AOB in SBNR was significantly inhibited without PACT or with poor performance of PACT in advance, which rendered the removal of TN. Furthermore, PAC was demonstrated to remove some refractory compounds, which therefore improved the biodegradability of the coal gasification wastewater.

  9. A Facility Goes Underground.

    ERIC Educational Resources Information Center

    Grant, Norman

    1980-01-01

    Ohio's Sinclair Community College met the challenge of building a campus in an urban area with limited space by connecting the system with underground tunnels. This underground complex has made a comprehensive physical education, recreation, and intercollegiate program available to students and the community. (CJ)

  10. Determination of 30 elements in coal and fly ash by thermal and epithermal neutron-activation analysis

    USGS Publications Warehouse

    Rowe, J.J.; Steinnes, E.

    1977-01-01

    Thirty elements are determined in coal and fly ash by instrumental neutron-activation analysis using both thermal and epithermal irradiation. Gamma-ray spectra were recorded 7 and 20 days after the irradiations. The procedure is applicable to the routine analysis of coals and fly ash. Epithermal irradiation was found preferable for the determination of Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, Cs, Ba, Sm, Tb, Hf, Ta, W, Th and U, whereas thermal irradiation was best for Sc, Cr, Fe, Co, La, Ce, Nd, Eu, Yb and Lu. Results for SRM 1632 (coal) and SRM 1633 (fly ash) agree with those of other investigators. ?? 1977.

  11. Exploratory research on mutagenic activity of coal-related materials

    SciTech Connect

    Warshawsky, D.; Schoeny, R. S.

    1980-01-01

    The following samples were found to be mutagenic for strains TA1538, TA98 and TA100 Salmonella typhimurium: ETTM-10, ETTM-11, ETTM-15, ETTM-16, and ETTM-17. ETTM-13 was marginally mutagenic for TA1537. ETTM-14 was slightly mutagenic for TA1537, TA1538, and TA98. Mutagenicity by all samples was demonstrated only in the presence of hepatic enzyme extracts (S9) which provided metabolic activation. ETTM-11 was shown to be the most mutagenic sample assayed thus far; specific activity was 2.79 x 10/sup 4/ TA98 revertants/mg sample. Fractionation by serial extractions with increasingly polar organic solvents was done at least 2 x with ETTM-10, ETTM-11, ETTM-15, ETTM-16 and ETTM-17. For some samples highly mutagenic fractions were observed.

  12. Coal to gas substitution using coal?!

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Schlüter, Ralph

    2010-05-01

    Substitution of carbon-intensive coal with less carbon-intensive natural gas for energy production is discussed as one main pillar targeting reduction of antrophogenic greenhouse gas emissions by means of climate change mitigation. Other pillars are energy efficiency, renewable energies, carbon capture and storage as well as further development of nuclear energy. Taking into account innovative clean coal technologies such as UCG-CCS (underground coal gasification with carbon capture and storage), in which coal deposits are developed using directional drilling technologies and subsequently converted into a synthesis gas of high calorific value, the coupled conceptual approach can provide a synergetic technology for coal utilization and mitigation of carbon emissions. This study aims at the evaluation of UCǴ s carbon mitigation potentials and the review of the economical boundary conditions. The analytical models applied within this study are based on data available from world-wide UCG projects and extensive laboratory studies. In summary, scenarios considering costs and carbon storage potentials are economically feasible and thus competitive with less carbon-intensive energy generation technologies such as natural gas. Thus, coal to gas substitution can be one of the coal based options.

  13. Properties of adsorbents prepared by the alkali activation of Aleksandriisk brown coal

    SciTech Connect

    Yu.V. Tamarkina; V.G. Kolobrodov; T.G. Shendrik; V.A. Kucherenko

    2009-07-01

    Highly microporous adsorbents (micropore fraction of about 70%) were prepared by the alkali activation-thermolysis (800{sup o}C, 1 h) of brown coal (C{sup daf} = 70.4%) in the presence of potassium hydroxide at the KOH/coal weight ratio R{sub KOH} {le} 2.0 g/g. The dependences of the specific surface areas and adsorption capacities of the adsorbents for methylene blue (A{sub MB}, mg/g), iodine (A{sub I}, mg/g), and hydrogen (A{sub H{sub 2}} wt %) on R{sub KOH} were determined. The adsorbents obtained at R{sub KOH}{ge} 1.0 g/g exhibited developed specific surface areas and good adsorption characteristics (A{sub I} = 1000-1200 mg/g, A{sub MB} = 200-250 mg/g, and A{sub H{sub 2}} {le} 3.16 wt % at 0.33 MPa). The high capacity for hydrogen allowed us to consider brown coal adsorbents as promising materials for use as hydrogen accumulators.

  14. Coal liquefaction process streams characterization and evaluation. Volume 1, Base program activities

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1994-05-01

    This 4.5-year project consisted of routine analytical support to DOE`s direct liquefaction process development effort (the Base Program), and an extensive effort to develop, demonstrate, and apply new analytical methods for the characterization of liquefaction process streams (the Participants Program). The objective of the Base Program was to support the on-going DOE direct coal liquefaction process development program. Feed, process, and product samples were used to assess process operations, product quality, and the effects of process variables, and to direct future testing. The primary objective of the Participants Program was to identify and demonstrate analytical methods for use in support of liquefaction process development, and in so doing, provide a bridge between process design, and development, and operation and analytical chemistry. To achieve this objective, novel analytical methods were evaluated for application to direct coal liquefaction-derived materials. CONSOL teamed with 24 research groups in the program. Well-defined and characterized samples of coal liquefaction process-derived materials were provided to each group. CONSOL made an evaluation of each analytical technique. During the performance of this project, we obtained analyses on samples from numerous process development and research programs and we evaluated a variety of analytical techniques for their usefulness in supporting liquefaction process development. Because of the diverse nature of this program, we provide here an annotated bibliography of the technical reports, publications, and formal presentations that resulted from this program to serve as a comprehensive summary of contract activities.

  15. Deep-coal potential in the Appalachian Coal Basin, USA: The Kentucky model

    USGS Publications Warehouse

    Haney, D.C.; Chesnut, D.R.

    1997-01-01

    The Eastern Kentucky Coal Field is located in the Appalachian Basin of the United States and occupies an area of approximately 15,000 square kilometers. The coal beds range from a few centimeters to several meters in thickness and consist of high-grade bituminous coal. Currently the amount of coal mined by surface methods exceeds underground extraction; however, there is a steady and gradual shift toward underground mining. In the future, as near-surface resources are depleted, this trend toward increased underground mining will continue. Knowledge about deeper coals is essential for future economic development of resources. Preliminary investigations indicate that coal-bearing strata with deep-mining potential exist in several parts of eastern Kentucky, especially along the Eastern Kentucky Syncline. Eastern Kentucky coals are Westphalian A through D; however, current production is from major beds of Westphalian A and B. Because coals that occur above drainage are more easily accessible and are generally of better quality, most of the current mining takes place in formations that are at or near the surface. In the future, however, due to environmental regulations and increased demands, it will be necessary to attempt to utilize deeper coals about which little is known. Future development of deep resources will require data from boreholes and high-resolution geophysical-logging techniques. There is also potential for coal-bed methane from the deeper coals which could be an important resource in the Appalachian Coal Basin where a natural gas distribution system already exists.

  16. DEEP UNDERGROUND NEUTRINO EXPERIMENT

    SciTech Connect

    Wilson, Robert J.

    2016-03-03

    The Deep Underground Neutrino Experiment (DUNE) collaboration will perform an experiment centered on accelerator-based long-baseline neutrino studies along with nucleon decay and topics in neutrino astrophysics. It will consist of a modular 40-kt (fiducial) mass liquid argon TPC detector located deep underground at the Sanford Underground Research Facility in South Dakota and a high-resolution near detector at Fermilab in Illinois. This conguration provides a 1300-km baseline in a megawatt-scale neutrino beam provided by the Fermilab- hosted international Long-Baseline Neutrino Facility.

  17. 76 FR 32951 - Coal Mining Equipment, Technologies and Services Trade Mission to China and Mongolia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ...: coal liquefaction, gas-turbine technology, Integrated Gasification Combined Cycle (IGCC), Ultra Supercritical Power Generation (USPG), Underground Coal Gasification Combined Cycle (UCGCC). Post-combustion: Carbon Capture and Sequestration (CCS), Flue Gas Denitration (De-NO x ), Flue Gas Desulphurization...

  18. [Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of dissolved organic matter in water of coal-mining area].

    PubMed

    Yang, Ce; Zhong, Ning-Ning; Shui, Yu-Lei; Wang, Fei-Yu; Chen, Dang-Yi

    2008-01-01

    Three-dimensional excitation emission matrix was applied to characterize the fluorescence properties of dissolved organic matter in various waters of Shilong coal-mining area. Fluorescence peak I (fulvic-like) and peak II (humic-like) were strong, while peak IV and peak V (protein-like) were weak or even undetected in some samples. Fluorescence peaks in various waters and different zones showed great difference in intensities and the fluorescence peaks in underground water tended to be much lower than those of surface waters. Furthermore, the fluorescence peaks of rivers and lakes were higher than those of mine drainage, and also the fluorescence peaks in coking zone and coal mining zone were higher than those in sewage-irrigated zone, or even much higher than those in farming zone. The reason may be that coal mining activities and coal industry can bring plenty of organic matter from coal to surroundings. Meanwhile, surface water would accept mine drainage, waste water of coal-washing and sewage from daily life easier than underground water, so surface water can be polluted seriously. Fluorescence peaks in waters from coal mining area are little influenced by pH of the water but can be influenced by the content of Ca2+ to water in some extent.

  19. Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water.

    PubMed

    Unal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R(2) = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community.

  20. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water

    PubMed Central

    Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID

  1. Insights into induced earthquakes and aftershock activity with in-situ measurements of seismic velocity variations in an active underground mine

    NASA Astrophysics Data System (ADS)

    Brenguier, F.; Olivier, G.; Campillo, M.; Roux, P.; Shapiro, N.; Lynch, R.

    2015-12-01

    The behaviour of the crust shortly after large earthquakes has been the subject of numerous studies, but many co- and post-seismic processes remain poorly understood. Damage and healing of the bulk rock mass, post-seismic deformation and the mechanisms of earthquake triggering are still not well understood. These processes are important to properly model and understand the behaviour of faults and earthquake cycles.In this presentation, we will show how in-situ measurements of seismic velocity variations have given new insights into these co- and post-seismic processes. An experiment was performed where a blast was detonated in a tunnel in an underground mine, while seismic velocity variations were accurately (0.005 %) measured with ambient seismic noise correlations. Additionally, aftershock activity was examined and the influence of the removal of a piece of solid rock was estimated with elastic static stress modelling. The majority of the aftershocks were delayed with respect to the passing of the dynamic waves from the blast, while the locations of the aftershocks appeared clustered and not homogeneously spread around the blast location. A significant velocity drop is visible during the time of the blast, which is interpreted as co-seismic damage and plastic deformation. These non-elastic effects are healed by the confining stresses over a period of 5 days until the seismic velocity converges to a new baseline level. The instantaneous weakening and gradual healing observed from the velocity variations are qualitatively similar to results reported in laboratory studies. The change in the baseline level of the seismic velocity before and after the blast indicate a change in the static stress that is comparable to the results of elastic static stress modelling. The differences between the elastic model predictions and the seismic velocity variations could be due to zones of fractured rock, indicated by the spatial clustering of the aftershocks, that are not

  2. Effect of ozone and granular activated coal (GAC) on the bioactivity of drinking water

    SciTech Connect

    Sallanko, J.; Iivari, P.; Heiska, E.

    2009-07-01

    In this research, the appearance of easily biodegradable organic material in ozonation and granular activated coal (GAC) filtration was studied. The amount of bioactivity was measured by conventional AOC analyses used in two different modes and also using quite a new growth potential (GP) method. GAC filtration without ozone doubled the amount of AOC of the chemically treated surface water, whereas by ozonation with GAC filtration it was possible to halve the amount of the AOC. The measurement of GP was noticeably simpler than measuring AOC, but for wider use more parallel studies are needed for the comparability of the results of the analysis.

  3. Science Center Goes Underground

    ERIC Educational Resources Information Center

    Modern Schools, 1977

    1977-01-01

    A unique underground science center at Bluffton College, designed to save energy and preserve trees, rolling landscape, and other environmental features of the campus, is under construction in Bluffton, Ohio. (Author)

  4. The production of activated carbon from high-ash sub-bituminous and bituminous South African coals

    SciTech Connect

    Prinsloo, F.F.; Opperman, D.P.J.; Budeli, C.; Hauman, D.

    1999-07-01

    This paper describes a process for the production of activated carbon in a pilot rotary kiln. The first step comprises crushing and/or sieving and beneficiation of the different ROM coal precursors. The coal precursors used in this investigation are part of Sasol's resources and although they show high reactivity towards steam and CO{sub 2} they unfortunately contains high ash contents. Consequently it is necessary to beneficiate the ROM coal in a second step, to be a suitable feedstock for the production of activated carbon. The final step in the process entails devolatilization and activation of the beneficiated precursors in one continuous step in the kiln. The product characterization results demonstrate that the adsorption features of the activated carbons produced by Sasol compare favorably with that of commercial products.

  5. ESTIMATE OF GLOBAL METHANE EMISSIONS FROM COAL MINES

    EPA Science Inventory

    Country-specific emissions of methane (CH4) from underground coal mines, surface coal mines, and coal crushing and transport operations are estimated for 1989. Emissions for individual countries are estimated by using two sets of regression equations (R2 values range from 0.56 to...

  6. When I was a coal miner: a pastor's memoir

    SciTech Connect

    Dan L. Martineau

    2005-07-01

    This is a true story about a young man from Michigan who became the pastor of a small church in Coalwood, West Virginia. In order to support his family, he worked underground in a deep coal mine. This book tells the story of life in a coal-mining community and presents an insider's view of a coal mine.

  7. Evaluation of activated carbon for control of mercury from coal-fired boilers

    SciTech Connect

    Miller, S.; Laudal, D.; Dunham, G.

    1995-11-01

    The ability to remove mercury from power plant flue gas may become important because of the Clean Air Act amendments` requirement that the U.S. Environmental Protection Agency (EPA) assess the health risks associated with these emissions. One approach for mercury removal, which may be relatively simple to retrofit, is the injection of sorbents, such as activated carbon, upstream of existing particulate control devices. Activated carbon has been reported to capture mercury when injected into flue gas upstream of a spray dryer baghouse system applied to waste incinerators or coal-fired boilers. However, the mercury capture ability of activated carbon injected upstream of an electrostatic precipitator (ESP) or baghouse operated at temperatures between 200{degrees} and 400{degrees}F is not well known. A study sponsored by the U.S. Department of Energy and the Electric power Research Institute is being conducted at the University of North Dakota Energy & Environmental Research Center (EERC) to evaluate whether mercury control with sorbents can be a cost-effective approach for large power plants. Initial results from the study were reported last year. This paper presents some of the recent project results. Variables of interest include coal type, sorbent type, sorbent addition rate, collection media, and temperature.

  8. Coal feed lock

    DOEpatents

    Pinkel, I. Irving

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  9. Coal Combustion Science

    SciTech Connect

    Hardesty, D.R.; Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. )

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  10. Small airways involvement in coal mine dust lung disease.

    PubMed

    Long, Joshua; Stansbury, Robert C; Petsonk, Edward L

    2015-06-01

    Inhalation of coal mine dust results in a spectrum of symptoms, dysfunction, and pathological changes in the respiratory tract that collectively have been labeled coal mine dust lung disease. Recent reports from periodic health surveillance among underground and surface coal miners in the United States have demonstrated an increasing prevalence and severity of dust diseases, and have also documented that some miners experience rapid disease progression. The coal macule is an inflammatory lesion associated with deposited dust, and occurs in the region of the most distal conducting airways and proximal respiratory bronchioles. Inflammatory changes in the small airways have long been recognized as the signature lung pathology among coal miners. Human and laboratory studies have suggested oxidant injury, and increased recruitment and activity of macrophages play important roles in dust-induced lung injury. However, the functional importance of the small airway changes was debated for many years. We reviewed published literature that documents a pervasive occurrence of both physiologic and structural abnormalities in small airways among coal miners and other workers exposed to airborne particulates. There is increasing evidence supporting an important association of abnormalities in the small peripheral airways with the development of respiratory symptoms, deficits in spirometry values, and accelerated declines in ventilatory lung function. Pathologic changes associated with mineral dust deposition in the small airways may be of particular importance in contemporary miners with rapidly progressive respiratory impairment.

  11. Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Vogelaar, R. Bruce

    2011-10-01

    A new deep underground research facility is open and operating only 30 minutes from the Virginia Tech campus. It is located in an operating limestone mine, and has drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' x 20' x 100'; the current lab is 35'x100'x22'), and is located where there is a 1700' overburden. The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ˜ 0.004 muons per square meter, per second, per steradian. There are currently six projects using the facility: mini-LENS - Low Energy Neutrino Spectroscopy (Virginia Tech, Louisiana State University, BNL); Neutron Spectrometer (University of Maryland, NIST); Double Beta Decay to Excited States (Duke University); HPGe Low-Background Screening (North Carolina State University, University of North Carolina, Virginia Tech); MALBEK - Majorana neutrinoless double beta decay (University of North Carolina); Ar-39 Depleted Argon (Princeton University). I will summarize the current program, and exciting plans for the future.

  12. Kimballton Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Rountree, S. Derek; Vogelaar, R. Bruce

    2012-03-01

    A new deep underground research facility is open and operating only 30 minutes from the Virginia Tech campus. It is located in an operating limestone mine, and has drive-in access (eg: roll-back truck, motor coach), over 50 miles of drifts (all 40' x 20+'; the current lab is 35' x 22' x 100'), and is located where there is a 1700' overburden. The laboratory was built in 2007 and offers fiber optic internet, LN2, 480/220/110 V power, ample water, filtered air, 55 F constant temp, low Rn levels, low rock background activity, and a muon flux of only ˜0.004 muons per square meter, per second, per steradian. There are currently six projects using the facility: mini-LENS - Low Energy Neutrino Spectroscopy (Virginia Tech, Louisiana State University, BNL); Neutron Spectrometer (University of Maryland, NIST); Double Beta Decay to Excited States (Duke University); HPGe Low-Background Screening (North Carolina State University, University of North Carolina, Virginia Tech); MALBEK - Majorana neutrinoless double beta decay (University of North Carolina); Ar-39 Depleted Argon (Princeton University). I will summarize the current program and exciting potential for the future.

  13. Removal of vertigo blue dyes from Batik textile wastewater by adsorption onto activated carbon and coal bottom ash

    NASA Astrophysics Data System (ADS)

    Kusmiyati, L., Puspita Adi; Deni, V.; Robi Indra, S.; Islamica, Dlia; Fuadi, M.

    2016-04-01

    Removal of vertigo blue dye from batik textile wastewater was studied by adsorptionprocess onto activated carbon (AC) and coal bottom ash (CBA).The influence of experimental conditions (pH solution, dye concentration, and contact time) were studied on the both adsorbents. At equilibrium conditions, the data were fitted to Langmuir and Freundlich adsorption models. The maximum adsorption capacity calculated from the Langmuir model for carbon active was 6.29mg/g at pH that found to be considerably higher than that obtained for coal bottom ash 3.72mg/g pH 9. From Freundlich model, the maximum adsorption capacity is less for coal bottom ash (pH 9) than that for carbon active (pH4).

  14. Trace element concentration of central Appalachian coal beds

    SciTech Connect

    McClure, M.; Miller, M.S.

    1996-09-01

    As a result of more stringent environmental regulations, there is increasing demand for coal beds with lower sulfur and trace element concentrations. Unfortunately, due to technical difficulties associated with the detection of elemental composition in parts-per-million, reliable trace element is scarce. Examination of the U.S.G.S. COALQUAL database of Appalachian coals was conducted for the following metals: antimony, arsenic, chromium, lead, and mercury. Within an area of approximately 14,000 square miles, 1,500 raw (core, underground and surface mine) coal samples with geographic coordinates were examined, and more than 100 named coal seams from Tennessee, southern West Virginia, eastern Kentucky, and southwestern Virginia were investigated. Some samples were obtained from formerly active mines which have since been depleted. Researchers have identified approximately 80 coal-related minerals including clays, carbonates, phosphates, chlorides, silicates, sulfates, and sulfides and, of these, sulfides have been found in chemical association with some trace elements. Quality trends over a broad region provide insights into geochemical and depositional processes which may have influenced trace element content. Furthermore, recently published E.P.R.I. data from {open_quotes}as-shipped{close_quotes} coal samples (located by state only) demonstrate similar patterns at the state level. Analysis of these data generally indicates a geographic and stratigraphic preference for coal beds with lower levels of trace elements along the southern edge of the Appalachian coal fields. While these quality trends may be a reasonably good first approximation, additional sampling is needed in minable reserve areas to further identify coal seams which possess favorable trace metal concentrations.

  15. Adsorption of Crystal Violet on Activated Carbon Prepared from Coal Flotation Concentrate

    NASA Astrophysics Data System (ADS)

    Aydogmus, Ramazan; Depci, Tolga; Sarikaya, Musa; Riza Kul, Ali; Onal, Yunus

    2016-10-01

    The objective of this study is firstly to investigate the floatability properties of Zilan- Van coal after microwave irradiation and secondly to produce activated carbon from flotation concentrate in order to remove Crystal Violet (CV) from waste water. The flotation experiments showed that microwave heating at 0.9 kW power level for 60 sec exposure time enhanced the hydrophobicity and increased the flotation yield. The activated carbon with remarkable surface area (696 m2/g) was produced from the flotation concentrate and used to adsorb CV from aqueous solution in a batch reactor at different temperature. The adsorption properties of CV onto the activated carbon are discussed in terms of the adsorption isotherms (Langmuir and Freundlich) and found that the experimental results best fitted by the Langmuir model.

  16. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On...

  17. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that...

  18. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that...

  19. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On...

  20. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. On and...

  1. 30 CFR 77.1713 - Daily inspection of surface coal mine; certified person; reports of inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Daily inspection of surface coal mine... ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Miscellaneous § 77.1713 Daily inspection of...

  2. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. On and...

  3. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipment employed in low coal. 75.1107-11 Section 75.1107-11 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES... § 75.1107-11 Extinguishing agents; requirements on mining equipment employed in low coal. On...

  4. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. On and...

  5. 30 CFR 75.501 - Permissible electric face equipment; coal seams above water table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permissible electric face equipment; coal seams..., DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.501 Permissible electric face equipment; coal seams above water table. On and...

  6. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that...

  7. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that...

  8. 30 CFR 49.50 - Certification of coal mine rescue teams.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Certification of coal mine rescue teams. 49.50... TRAINING MINE RESCUE TEAMS Mine Rescue Teams for Underground Coal Mines § 49.50 Certification of coal mine... coal mine, the mine operator shall send the District Manager an annual statement certifying that...

  9. Short-term radon activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno (Sudety Mts., SW Poland).

    PubMed

    Fijałkowska-Lichwa, Lidia

    2014-09-01

    Short-term (222)Rn activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno were studied, based on continuous measurements conducted between 16 May 2008 and 15 May 2010. The results were analysed in the context of numbers of visitors arriving at the facility in particular seasons and the time per day spent inside by staff and visitors. This choice was based on partially published earlier findings (Fijałkowska-Lichwa and Przylibski, 2011). Results for the year 2009 were analysed in depth, because it is the only period of observation covering a full calendar year. The year 2009 was also chosen for detailed analysis of short-term radon concentration changes, because in each period of this year (hour, month, season) fluctuations of noted values were the most visible. Attention has been paid to three crucial issues linked to the occurrence and behaviour of radon and to the radiological protection of workers and visitors at the tourist route in Kletno. The object of study is a complex of workings in a former uranium mine situated within a metamorphic rock complex in the most radon-prone area in Poland. The facility has been equipped with a mechanical ventilation system, which is turned on after the closing time and at the end of the working day for the visitor service staff, i.e. after 6 p.m. Short-term radon activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno are related to the activity of the facility's mechanical ventilation. Its inactivity in the daytime results in the fact that the highest values of (222)Rn activity concentration are observed at the time when the facility is open to visitors, i.e. between 10 a.m. and 6 p.m. The improper usage of the mechanical ventilation system is responsible for the extremely unfavourable working conditions, which persist in the facility for practically all year. The absence of appropriate radiological protection

  10. Mercury Removal with Activated Carbon in Coal-Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Rapperport, J.; Sasmaz, E.; Wilcox, J.

    2010-12-01

    Coal is both the most abundant and the dirtiest combustible energy source on earth. In the United States, about half of the country’s electricity comes from coal combustion and the industry is rapidly expanding all over the world. Among many of coal’s flaws, its combustion annually produces roughly 50 tones in the U.S. and 5000 tons worldwide of mercury, a carcinogen and highly toxic pollutant. Certain sorbents and processes are used to try to limit the amount of mercury that reaches the atmosphere, a key aspect of reducing the energy source’s harmful environmental impact. This experiment’s goal is to discover what process occurs on a sorbent surface during mercury’s capture while also determining sorbent effectiveness. Bench-scale experiments are difficult to carry out since the focus of the experiment is to simulate mercury capture in a power plant flue gas stream, where mercury is in its elemental form. The process involves injecting air, elemental mercury and other components to simulate a coal exhaust environment, and then running the stream through a packed-bed reactor with an in-tact sorbent. While carrying out the reactor tests, the gas-phase is monitored for changes in mercury oxidation and following these gas-phase studies, the mercury-laden sorbent is analyzed using x-ray photoelectron spectroscopy. Conclusions that can be drawn thus far are that brominated activated carbon shows very high mercury capture and that mercury is found in its oxidized form on the surface of the sorbent. The speciation, or conclusions drawn on the process and bonding sites on the surface, cannot be determined at this point simply using the current spectroscopic analysis.

  11. Forecast of long term coal supply and mining conditions: Model documentation and results

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A coal industry model was developed to support the Jet Propulsion Laboratory in its investigation of advanced underground coal extraction systems. The model documentation includes the programming for the coal mining cost models and an accompanying users' manual, and a guide to reading model output. The methodology used in assembling the transportation, demand, and coal reserve components of the model are also described. Results presented for 1986 and 2000, include projections of coal production patterns and marginal prices, differentiated by coal sulfur content.

  12. Background Models for Muons and Neutrons Underground

    SciTech Connect

    Formaggio, Joseph A.

    2005-09-08

    Cosmogenic-induced activity is an issue of great concern for many sensitive experiments sited underground. A variety of different arch-type experiments - such as those geared toward the detection of dark matter, neutrinoless double beta decay and solar neutrinos - have reached levels of cleanliness and sensitivity that warrant careful consideration of secondary activity induced by cosmic rays. This paper reviews some of the main issues associated with the modeling of cosmogenic activity underground. Comparison with data, when such data is available, is also presented.

  13. Underground physics with DUNE

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Vitaly A.; DUNE Collaboration

    2016-05-01

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches. In this paper we will focus on the underground physics with DUNE.

  14. Underground physics with DUNE

    SciTech Connect

    Kudryavtsev, Vitaly A.

    2016-06-09

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches. In this study, we will focus on the underground physics with DUNE.

  15. Underground physics with DUNE

    DOE PAGES

    Kudryavtsev, Vitaly A.

    2016-06-09

    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches.more » In this study, we will focus on the underground physics with DUNE.« less

  16. Coal Production 1992

    SciTech Connect

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  17. Dynamic Underground Stripping Project

    SciTech Connect

    Aines, R.; Newmark, R.; McConachie, W.; Udell, K.; Rice, D.; Ramirez, A.; Siegel, W.; Buettner, M.; Daily, W.; Krauter, P.; Folsom, E.; Boegel, A.J.; Bishop, D.; Udell, K.

    1992-01-01

    LLNL is collaborating with the UC Berkeley College of Engineering to develop and demonstrate a system of thermal remediation and underground imaging techniques for use in rapid cleanup of localized underground spills. Called ``Dynamic Stripping`` to reflect the rapid and controllable nature of the process, it will combine steam injection, direct electrical heating, and tomographic geophysical imaging in a cleanup of the LLNL gasoline spill. In the first 8 months of the project, a Clean Site engineering test was conducted to prove the field application of the techniques before moving the contaminated site in FY 92.

  18. Background Underground at WIPP

    NASA Astrophysics Data System (ADS)

    Esch, Ernst-Ingo; Hime, A.; Bowles, T. J.

    2001-04-01

    Recent interest to establish a dedicated underground laboratory in the United States prompted an experimental program at to quantify the enviromental backgrounds underground at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. An outline of this program is provided along with recent experimental data on the cosmic ray muon flux at the 650 meter level of WIPP. The implications of the cosmic ray muon and fast neutron background at WIPP will be discussed in the context of new generation, low background experiments envisioned in the future.

  19. 30 CFR 75.1107-11 - Extinguishing agents; requirements on mining equipment employed in low coal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection Fire Suppression Devices and Fire-Resistant Hydraulic Fluids on Underground Equipment... §§ 75.1107-7, 75.1107-9, and 75.1107-10 may be reduced by one-fourth if space limitations on...

  20. 77 FR 25198 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Refuge...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ...; Refuge Alternatives for Underground Coal Mines ACTION: Notice. SUMMARY: The Department of Labor (DOL) is...) revision titled, ``Refuge Alternatives for Underground Coal Mines,'' to the Office of Management and Budget...: MSHA regulations mandate each underground coal mine to have an emergency response plan and...