Dynamically variable negative stiffness structures.
Churchill, Christopher B; Shahan, David W; Smith, Sloan P; Keefe, Andrew C; McKnight, Geoffrey P
2016-02-01
Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators.
Dynamically variable negative stiffness structures
Churchill, Christopher B.; Shahan, David W.; Smith, Sloan P.; Keefe, Andrew C.; McKnight, Geoffrey P.
2016-01-01
Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771
A novel variable stiffness mechanism for dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang
2017-08-01
In this paper, a novel variable stiffness mechanism is proposed for the design of a variable stiffness dielectric elastomer actuator (VSDEA) which combines a flexible strip with a DEA in a dielectric elastomer minimum energy structure. The DEA induces an analog tuning of the transverse curvature of the strip, thus conveniently providing a voltage-controllable flexural rigidity. The VSDEA tends to be a fully flexible and compact structure with the advantages of simplicity and fast response. Both experimental and theoretical investigations are carried out to reveal the variable stiffness performances of the VSDEA. The effect of the clamped location on the bending stiffness of the VSDEA is analyzed, and then effects of the lengths, the loading points and the applied voltages on the bending stiffness are experimentally investigated. An analytical model is developed to verify the availability of this variable stiffness mechanism, and the theoretical results demonstrate that the bending stiffness of the VSDEA decreases as the applied voltage increases, which agree well with the experimental data. Moreover, the experimental results show that the maximum change of the relative stiffness can reach about 88.80%. It can be useful for the design and optimization of active variable stiffness structures and DEAs for soft robots, vibration control, and morphing applications.
Application of shape memory alloy (SMA) spars for aircraft maneuver enhancement
NASA Astrophysics Data System (ADS)
Nam, Changho; Chattopadhyay, Aditi; Kim, Youdan
2002-07-01
Modern combat aircraft are required to achieve aggressive maneuverability and high agility performance, while maintaining handling qualities over a wide range of flight conditions. Recently, a new adaptive-structural concept called variable stiffness spar is proposed in order to increase the maneuverability of the flexible aircraft. The variable stiffness spar controls wing torsional stiffness to enhance roll performance in the complete flight envelope. However, variable stiffness spar requires the mechanical actuation system in order to rotate the Variable stiffness spar during flight. The mechanical actuation system to rotate variable stiffness spar may cause an additional weight increase. In this paper, we will apply Shape Memory Alloy (SMA) spars for aeroelastic performance enhancement. In order to explore the potential of SMA spar design, roll performance of the composite smart wings will be investigated using ASTROS. Parametric study will be conducted to investigate the SMA spar effects by changing the spar locations and geometry. The results show that with activation of the SMA spar, the roll effectiveness can be increased up to 61% compared with the baseline model.
Running Economy: Neuromuscular and Joint Stiffness Contributions in Trained Runners.
Tam, Nicholas; Tucker, Ross; Santos-Concejero, Jordan; Prins, Danielle; Lamberts, Robert P
2018-05-29
It is debated whether running biomechanics make good predictors of running economy, with little known information about the neuromuscular and joint stiffness contributions to economical running gait. The aim of this study was to understand the relationship between certain neuromuscular and spatiotemporal biomechanical factors associated with running economy. Thirty trained runners performed a 6-minute constant-speed running set at 3.3 m∙s -1 , where oxygen consumption was assessed. Overground running trials were also performed at 3.3 m∙s -1 to assess kinematics, kinetics and muscle activity. Spatiotemporal gait variables, joint stiffness, pre-activation and stance phase muscle activity (gluteus medius; rectus femoris (RF); biceps femoris(BF); peroneus longus (PL); tibialis anterior (TA); gastrocnemius lateralis and medius (LG and MG) were variables of specific interest and thus determined. Additionally, pre-activation and ground contact of agonist:antagonist co-activation were calculated. More economical runners presented with short ground contact times (r=0.639, p<0.001) and greater strides frequencies (r=-0.630, p<0.001). Lower ankle and greater knee stiffness were associated with lower oxygen consumption (r=0.527, p=0.007 & r=0.384, p=0.043, respectively). Only LG:TA co-activation during stance were associated with lower oxygen cost of transport (r=0.672, p<0.0001). Greater muscle pre-activation and bi-articular muscle activity during stance were associated with more economical runners. Consequently, trained runners who exhibit greater neuromuscular activation prior to and during ground contact, in turn optimise spatiotemporal variables and joint stiffness, will be the most economical runners.
A variable stiffness mechanism for steerable percutaneous instruments: integration in a needle.
De Falco, Iris; Culmone, Costanza; Menciassi, Arianna; Dankelman, Jenny; van den Dobbelsteen, John J
2018-06-04
Needles are advanced tools commonly used in minimally invasive medical procedures. The accurate manoeuvrability of flexible needles through soft tissues is strongly determined by variations in tissue stiffness, which affects the needle-tissue interaction and thus causes needle deflection. This work presents a variable stiffness mechanism for percutaneous needles capable of compensating for variations in tissue stiffness and undesirable trajectory changes. It is composed of compliant segments and rigid plates alternately connected in series and longitudinally crossed by four cables. The tensioning of the cables allows the omnidirectional steering of the tip and the stiffness tuning of the needle. The mechanism was tested separately under different working conditions, demonstrating a capability to exert up to 3.6 N. Afterwards, the mechanism was integrated into a needle, and the overall device was tested in gelatine phantoms simulating the stiffness of biological tissues. The needle demonstrated the capability to vary deflection (from 11.6 to 4.4 mm) and adapt to the inhomogeneity of the phantoms (from 21 to 80 kPa) depending on the activation of the variable stiffness mechanism. Graphical abstract ᅟ.
NASA Astrophysics Data System (ADS)
Sun, S. S.; Yildirim, T.; Wu, Jichu; Yang, J.; Du, H.; Zhang, S. W.; Li, W. H.
2017-09-01
In this work, a hybrid nonlinear magnetorheological elastomer (MRE) vibration absorber has been designed, theoretically investigated and experimentally verified. The proposed nonlinear MRE absorber has the dual advantages of a nonlinear force-displacement relationship and variable stiffness technology; the purpose for coupling these two technologies is to achieve a large broadband vibration absorber with controllable capability. To achieve a nonlinear stiffness in the device, two pairs of magnets move at a rotary angle against each other, and the theoretical nonlinear force-displacement relationship has been theoretically calculated. For the experimental investigation, the effects of base excitation, variable currents applied to the device (i.e. variable stiffness of the MRE) and semi-active control have been conducted to determine the enhanced broadband performance of the designed device. It was observed the device was able to change resonance frequency with the applied current; moreover, the hybrid nonlinear MRE absorber displayed a softening-type nonlinear response with clear discontinuous bifurcations observed. Furthermore, the performance of the device under a semi-active control algorithm displayed the optimal performance in attenuating the vibration from a primary system to the absorber over a large frequency bandwidth from 4 to 12 Hz. By coupling nonlinear stiffness attributes with variable stiffness MRE technology, the performance of a vibration absorber is substantially improved.
A new active variable stiffness suspension system using a nonlinear energy sink-based controller
NASA Astrophysics Data System (ADS)
Anubi, Olugbenga Moses; Crane, Carl D.
2013-10-01
This paper presents the active case of a variable stiffness suspension system. The central concept is based on a recently designed variable stiffness mechanism which consists of a horizontal control strut and a vertical strut. The horizontal strut is used to vary the load transfer ratio by actively controlling the location of the point of attachment of the vertical strut to the car body. The control algorithm, effected by a hydraulic actuator, uses the concept of nonlinear energy sink (NES) to effectively transfer the vibrational energy in the sprung mass to a control mass, thereby reducing the transfer of energy from road disturbance to the car body at a relatively lower cost compared to the traditional active suspension using the skyhook concept. The analyses and simulation results show that a better performance can be achieved by subjecting the point of attachment of a suspension system, to the chassis, to the influence of a horizontal NES system.
Introducing a new semi-active engine mount using force controlled variable stiffness
NASA Astrophysics Data System (ADS)
Azadi, Mojtaba; Behzadipour, Saeed; Faulkner, Gary
2013-05-01
This work introduces a new concept in designing semi-active engine mounts. Engine mounts are under continuous development to provide better and more cost-effective engine vibration control. Passive engine mounts do not provide satisfactory solution. Available semi-active and active mounts provide better solutions but they are more complex and expensive. The variable stiffness engine mount (VSEM) is a semi-active engine mount with a simple ON-OFF control strategy. However, unlike available semi-active engine mounts that work based on damping change, the VSEM works based on the static stiffness change by using a new fast response force controlled variable spring. The VSEM is an improved version of the vibration mount introduced by the authors in their previous work. The results showed significant performance improvements over a passive rubber mount. The VSEM also provides better vibration control than a hydromount at idle speed. Low hysteresis and the ability to be modelled by a linear model in low-frequency are the advantages of the VSEM over the vibration isolator introduced earlier and available hydromounts. These specifications facilitate the use of VSEM in the automotive industry, however, further evaluation and developments are needed for this purpose.
A torsional MRE joint for a C-shaped robotic leg
NASA Astrophysics Data System (ADS)
Christie, M. D.; Sun, S. S.; Ning, D. H.; Du, H.; Zhang, S. W.; Li, W. H.
2017-01-01
Serving to improve stability and energy efficiency during locomotion, in nature, animals modulate their leg stiffness to adapt to their terrain. Now incorporated into many locomotive robot designs, such compliance control can enable disturbance rejection and improved transition between changing ground conditions. This paper presents a novel design of a variable stiffness leg utilizing a magnetorheological elastomer joint in a literal rolling spring loaded inverted pendulum (R-SLIP) morphology. Through the semi-active control of this hybrid permanent-magnet and coil design, variable stiffness is realized, offering a design which is capable of both softening and stiffening in an adaptive sort of way, with a maximum stiffness change of 48.0%. Experimental characterization first serves to assess the stiffness variation capacity of the torsional joint, and through later comparison with force testing of the leg, the linear stiffness is characterized with the R-SLIP-like behavior of the leg being demonstrated. Through the force relationships applied, a generalized relationship for determining linear stiffness based on joint rotation angle is also proposed, further aiding experimental validation.
Chagas, Mauro H.; Magalhães, Fabrício A.; Peixoto, Gustavo H. C.; Pereira, Beatriz M.; Andrade, André G. P.; Menzel, Hans-Joachim K.
2016-01-01
ABSTRACT Background Stretching exercises are able to promote adaptations in the muscle-tendon unit (MTU), which can be tested through physiological and biomechanical variables. Identifying the key variables in MTU adaptations is crucial to improvements in training. Objective To perform an exploratory factor analysis (EFA) involving the variables often used to evaluate the response of the MTU to stretching exercises. Method Maximum joint range of motion (ROMMAX), ROM at first sensation of stretching (FSTROM), peak torque (torqueMAX), passive stiffness, normalized stiffness, passive energy, and normalized energy were investigated in 36 participants during passive knee extension on an isokinetic dynamometer. Stiffness and energy values were normalized by the muscle cross-sectional area and their passive mode assured by monitoring the EMG activity. Results EFA revealed two major factors that explained 89.68% of the total variance: 53.13% was explained by the variables torqueMAX, passive stiffness, normalized stiffness, passive energy, and normalized energy, whereas the remaining 36.55% was explained by the variables ROMMAX and FSTROM. Conclusion This result supports the literature wherein two main hypotheses (mechanical and sensory theories) have been suggested to describe the adaptations of the MTU to stretching exercises. Contrary to some studies, in the present investigation torqueMAX was significantly correlated with the variables of the mechanical theory rather than those of the sensory theory. Therefore, a new approach was proposed to explain the behavior of the torqueMAX during stretching exercises. PMID:27437715
NASA Astrophysics Data System (ADS)
Zheng, Y.; Chen, J.
2018-06-01
Variable stiffness composite structures take full advantages of composite’s design ability. An enlarged design space will make the structure’s performance more excellent. Through an optimal design of a variable stiffness cylinder, the buckling capacity of the cylinder will be increased as compared with its constant stiffness counterpart. In this paper, variable stiffness composite cylinders sustaining combined loadings are considered, and the optimization is conducted based on the multi-objective optimization method. The results indicate that variable stiffness cylinder’s loading capacity is increased significantly as compared with the constant stiffness, especially when an inhomogeneous loading is considered.
Seismic Response Control Of Structures Using Semi-Active and Passive Variable Stiffness Devices
NASA Astrophysics Data System (ADS)
Salem, Mohamed M. A.
Controllable devices such as Magneto-Rheological Fluid Dampers, Electro-Rheological Dampers, and controllable friction devices have been studied extensively with limited implementation in real structures. Such devices have shown great potential in reducing seismic demands, either as smart base isolation systems, or as smart devices for multistory structures. Although variable stiffness devices can be used for seismic control of structures, the vast majority of research effort has been given to the control of damping. The primary focus of this dissertation is to evaluate the seismic control of structures using semi-active and passive variable stiffness characteristics. Smart base isolation systems employing variable stiffness devices have been studied, and two semi-active control strategies are proposed. The control algorithms were designed to reduce the superstructure and base accelerations of seismically isolated structures subject to near-fault and far-field ground motions. Computational simulations of the proposed control algorithms on the benchmark structure have shown that excessive base displacements associated with the near-fault ground motions may be better mitigated with the use of variable stiffness devices. However, the device properties must be controllable to produce a wide range of stiffness changes for an effective control of the base displacements. The potential of controllable stiffness devices in limiting the base displacement due to near-fault excitation without compromising the performance of conventionally isolated structures, is illustrated. The application of passive variable stiffness devices for seismic response mitigation of multistory structures is also investigated. A stiffening bracing system (SBS) is proposed to replace the conventional bracing systems of braced frames. An optimization process for the SBS parameters has been developed. The main objective of the design process is to maintain a uniform inter-story drift angle over the building's height, which in turn would evenly distribute the seismic demand over the building. This behavior is particularly essential so that any possible damage is not concentrated in a single story. Furthermore, the proposed design ensures that additional damping devices distributed over the building's height work efficiently with their maximum design capacity, leading to a cost efficient design. An integrated and comprehensive design procedure that can be readily adopted by the current seismic design codes is proposed. An equivalent lateral force distribution is developed that shows a good agreement with the response history analyses in terms of seismic performance and demand prediction. This lateral force pattern explicitly accounts for the higher mode effect, the dynamic characteristics of the structure, the supplemental damping, and the site specific seismic hazard. Therefore, the proposed design procedure is considered as a standalone method for the design of SBS equipped buildings.
He, Xin; Du, Yu-Fan; Lan, Ning
2013-07-01
The purpose of this study is to validate a neuromechanical model of the virtual arm (VA) by comparing emerging behaviors of the model to those of experimental observations. Hand stiffness of the VA model was obtained by either theoretical computation or simulated perturbations. Variability in hand position of the VA was generated by adding signal dependent noise (SDN) to the motoneuron pools of muscles. Reflex circuits of Ia, Ib and Renshaw cells were included to regulate the motoneuron pool outputs. Evaluation of hand stiffness and variability was conducted in simulations with and without afferent feedback under different patterns of muscle activations during postural maintenance. The simulated hand stiffness and variability ellipses captured the experimentally observed features in shape, magnitude and orientation. Steady state afferent feedback contributed significantly to the increase in hand stiffness by 35.75±16.99% in area, 18.37±7.80% and 16.15±7.15% in major and minor axes; and to the reduction of hand variability by 49.41±21.19% in area, 36.89±12.78% and 18.87±23.32% in major and minor axes. The VA model reproduced the neuromechanical behaviors that were consistent with experimental data, and it could be a useful tool for study of neural control of posture and movement, as well as for application to rehabilitation.
Dures, Emma; Kirwan, John; Pollock, Jon; Baker, Gill; Edmunds, Avis; Hewlett, Sarah
2015-01-01
Objective. Stiffness is internationally recognized as an important indicator of inflammatory activity in RA but is poorly understood and difficult to measure. The aim of this study was to explore the experience of stiffness from the patient perspective. Methods. Semi-structured interviews conducted with 16 RA patients were analysed independently by researchers and pat.ient partners using inductive thematic analysis. Results. Six themes were identified. Part of having RA identified stiffness as a normal consequence of RA, perceived as associated with disease-related aspects such as fluctuating disease activity, other RA symptoms and disease duration. Local and widespread highlighted stiffness occurring not only in joints, but also over the whole body, being more widespread during the morning or flare. Linked to behaviour and environment illustrated factors that influence stiffness, including movement, medications and weather. Highly variable captured the fluctuating nature of stiffness within and between patients and in relation to temporality, duration and intensity. Impacts on daily life emphasized the effect of stiffness on a range of domains, including physical function, quality of life, psychological well-being, activities of daily living and participation in work and leisure activities. Requires self-management detailed self-management strategies targeting both the symptom and its consequences. Conclusion. Patients’ experiences of stiffness were varied, complex and not exclusive to the morning period. Importantly, stiffness was reported in terms of impact rather than the traditional measurement concepts of severity or duration. Based on these findings, further research is needed to develop a patient-centred measure that adequately reflects inflammatory activity. PMID:25231178
Höppner, Hannes; Große-Dunker, Maximilian; Stillfried, Georg; Bayer, Justin; van der Smagt, Patrick
2017-01-01
We investigate the relation between grip force and grip stiffness for the human hand with and without voluntary cocontraction. Apart from gaining biomechanical insight, this issue is particularly relevant for variable-stiffness robotic systems, which can independently control the two parameters, but for which no clear methods exist to design or efficiently exploit them. Subjects were asked in one task to produce different levels of force, and stiffness was measured. As expected, this task reveals a linear coupling between force and stiffness. In a second task, subjects were then asked to additionally decouple stiffness from force at these force levels by using cocontraction. We measured the electromyogram from relevant groups of muscles and analyzed the possibility to predict stiffness and force. Optical tracking was used for avoiding wrist movements. We found that subjects were able to decouple grip stiffness from force when using cocontraction on average by about 20% of the maximum measured stiffness over all force levels, while this ability increased with the applied force. This result contradicts the force–stiffness behavior of most variable-stiffness actuators. Moreover, we found the thumb to be on average twice as stiff as the index finger and discovered that intrinsic hand muscles predominate our prediction of stiffness, but not of force. EMG activity and grip force allowed to explain 72 ± 12% of the measured variance in stiffness by simple linear regression, while only 33 ± 18% variance in force. Conclusively the high signal-to-noise ratio and the high correlation to stiffness of these muscles allow for a robust and reliable regression of stiffness, which can be used to continuously teleoperate compliance of modern robotic hands. PMID:28588472
The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness.
Shepherd, Max K; Rouse, Elliott J
2017-12-01
Most commercially available prosthetic feet do not exhibit a biomimetic torque-angle relationship, and are unable to modulate their mechanics to assist with other mobility tasks, such as stairs and ramps. In this paper, we present a quasi-passive ankle-foot prosthesis with a customizable torque-angle curve and an ability to quickly modulate ankle stiffness between tasks. The customizable torque-angle curve is obtained with a cam-based transmission and a fiberglass leaf spring. To achieve variable stiffness, the leaf spring's support conditions can be actively modulated by a small motor, shifting the torque-angle curve to be more or less stiff. We introduce the design, characterize the available torque-angle curves, and present kinematics from a transtibial amputee subject performing level-ground walking, stair ascent/descent, and ramp ascent/descent. The subject exhibited a more normative range of motion on stairs and ramps at lower stiffness levels, and preferred different stiffness levels for each task. Paired with an appropriate intent recognition system, our novel ankle prosthesis could improve gait biomechanics during walking and many other mobility tasks.
NASA Astrophysics Data System (ADS)
Houmat, A.
2018-02-01
The optimal lay-up design for the maximum fundamental frequency of variable stiffness laminated composite plates is investigated using a layer-wise optimization technique. The design variables are two fibre orientation angles per ply. Thin plate theory is used in conjunction with a p-element to calculate the fundamental frequencies of symmetrically and antisymmetrically laminated composite plates. Comparisons with existing optimal solutions for constant stiffness symmetrically laminated composite plates show excellent agreement. It is observed that the maximum fundamental frequency can be increased considerably using variable stiffness design as compared to constant stiffness design. In addition, optimal lay-ups for the maximum fundamental frequency of variable stiffness symmetrically and antisymmetrically laminated composite plates with different aspect ratios and various combinations of free, simply supported and clamped edge conditions are presented. These should prove a useful benchmark for optimal lay-ups of variable stiffness laminated composite plates.
Balance disorders caused by running and jumping occurring in young basketball players.
Struzik, Artur; Zawadzki, Jerzy; Pietraszewski, Bogdan
2015-01-01
Body balance, as one of the coordination abilities,is a desirable variable for basketball players as regards the necessity of efficient responses in constantly changing situations on a basketball court. The aim of this study was to check whether physical activity in the form of running and jumping influences variables characterizing the process of keeping body balance of a basketball player in the standing position. The research was conducted on 11 young basketball players. The measurements were taken with a Kistler force plate. Apart from commonly registered COP displacements, an additional variable describing the process of keeping body balance by a basketball player was ankle joint stiffness on the basis of which an "Index of Balance-Stiffness" (IB-S) was created. Statistically significant differences were obtained for the maximum COP displacements and ankle joint stiffness between measurements of balance in the standing position before and after the employed movement tasks whereas there were no statistically significant differences for the aforementioned variables describing the process of keeping balance between measurements after running and after jumping. The research results indicate that the employed movement activities brought about significant changes in the process of keeping balance of basketball player in the standing position which, after the run performed, remain on a similar level to the series of jumps being performed. The authors attempted to establish an index based on the stiffness which yields a possibility to perceive each basketball player as an individual person in the process of keeping balance.
Variable stiffness mechanisms with SMA actuators
NASA Astrophysics Data System (ADS)
Siler, Damin J.; Demoret, Kimberly B. J.
1996-05-01
Variable stiffness is a new branch of smart structures development with several applications related to aircraft. Previous research indicates that temporarily reducing the stiffness of an airplane wing can decrease control actuator sizing and improve aeroelastic roll performance. Some smart materials like shape memory alloys (SMA) can change their material stiffness properties, but they tend to gain stiffness in their `power on' state. An alternative is to integrate mechanisms into a structure and change stiffness by altering boundary conditions and structural load paths. An innovative concept for an axial strut mechanism was discovered as part of research into variable stiffness. It employs SMA springs (specifically Ni-Ti) in a way that reduces overall stiffness when the SMA springs gain stiffness. A simplified mathematical model for static analysis was developed, and a 70% reduction in stiffness was obtained for a particular selection of springs. The small force capacity of commercially available SMA springs limits the practicality of this concept for large load applications. However, smart material technology is still immature, and future advances may permit development of a heavy-duty, variable stiffness strut that is small and light enough for use in aircraft structures.
Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind
2017-07-26
Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gong, Xiaobo; Liu, Liwu; Scarpa, Fabrizio; Leng, Jinsong; Liu, Yanju
2017-03-01
This work presents a variable stiffness corrugated structure based on a shape memory polymer (SMP) composite with corrugated laminates as reinforcement that shows smooth aerodynamic surface, extreme mechanical anisotropy and variable stiffness for potential morphing skin applications. The smart composite corrugated structure shows a low in-plane stiffness to minimize the actuation energy, but also possess high out-of-plane stiffness to transfer the aerodynamic pressure load. The skin provides an external smooth aerodynamic surface because of the one-sided filling with the SMP. Due to variable stiffness of the shape memory polymer the morphing skin exhibits a variable stiffness with a change of temperature, which can help the skin adjust its stiffness according different service environments and also lock the temporary shape without external force. Analytical models related to the transverse and bending stiffness are derived and validated using finite element techniques. The stiffness of the morphing skin is further investigated by performing a parametric analysis against the geometry of the corrugation and various sets of SMP fillers. The theoretical and numerical models show a good agreement and demonstrate the potential of this morphing skin concept for morphing aircraft applications. We also perform a feasibility study of the use of this morphing skin in a variable camber morphing wing baseline. The results show that the morphing skin concept exhibits sufficient bending stiffness to withstand the aerodynamic load at low speed (less than 0.3 Ma), while demonstrating a large transverse stiffness variation (up to 191 times) that helps to create a maximum mechanical efficiency of the structure under varying external conditions.
Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping.
Wang, Wei; Ahn, Sung-Hoon
2017-12-01
Soft pneumatic actuators and motor-based mechanisms being concomitant with the cumbersome appendages have many challenges to making the independent robotic system with compact and lightweight configuration. Meanwhile, shape memory actuators have shown a promising alternative solution in many engineering applications ranging from artificial muscle to aerospace industry. However, one of the main limitations of such systems is their inherent softness resulting in a small actuation force, which prevents them from more effective applications. This issue can be solved by combining shape memory actuators and the mechanism of stiffness modulation. As a first, this study describes a shape memory alloy-based soft gripper composed of three identical fingers with variable stiffness for adaptive grasping in low stiffness state and effective holding in high stiffness state. Each finger with two hinges is fabricated through integrating soft composite actuator with stiffness changeable material where each hinge can approximately achieve a 55-fold changeable stiffness independently. Besides, each finger with two hinges can actively achieve multiple postures by both selectively changing the stiffness of hinges and actuating the relevant SMA wire. Based on these principles, the gripper is applicable for grasping objects with deformable shapes and varying shapes with a large range of weight where its maximum grasping force is increased to ∼10 times through integrating with the stiffness changeable mechanism. The final demonstration shows that the finger with desired shape-retained configurations enables the gripper to successfully pick up a frustum-shaped object.
Shoe midsole longitudinal bending stiffness and running economy, joint energy, and EMG.
Roy, Jean-Pierre R; Stefanyshyn, Darren J
2006-03-01
It has been shown that mechanical energy is dissipated at the metatarsophalangeal (MTP) joint during running and jumping. Furthermore, increasing the longitudinal bending stiffness of the midsole significantly reduced the energy dissipated at the MTP joint and increased jump performance. It was hypothesized that increasing midsole longitudinal bending stiffness would also lead to improvements in running economy. This study investigated the influence of midsole longitudinal bending stiffness on running economy (performance variable) and evaluated the local effects on joint energetics and muscular activity. Carbon fiber plates were inserted into running shoe midsoles and running economy, joint energy, and electromyographic (EMG) data were collected on 13 subjects. Approximately a 1% metabolic energy savings was observed when subjects ran in a stiff midsole relative to the control midsole. Subjects with a greater body mass had a greater decrease in oxygen consumption rates in the stiff midsole relative to the control midsole condition. The stiffer midsoles showed no significant differences in energy absorption at the MTP joint compared with the control shoe. Finally, no significant changes were observed in muscular activation. Increasing midsole longitudinal bending stiffness led to improvements in running economy, yet the underlying mechanisms that can be attributed to this improvement are still not fully understood.
Schrade, Stefan O; Nager, Yannik; Wu, Amy R; Gassert, Roger; Ijspeert, Auke
2017-07-01
Robotic lower limb exoskeletons are becoming increasingly popular in therapy and recreational use. However, most exoskeletons are still rather limited in their locomotion speed and the activities of daily live they can perform. Furthermore, they typically do not allow for a dynamic adaptation to the environment, as they are often controlled with predefined reference trajectories. Inspired by human leg stiffness modulation during walking, variable stiffness actuators increase flexibility without the need for more complex controllers. Actuation with adaptable stiffness is inspired by the human leg stiffness modulation during walking. However, this actuation principle also introduces the stiffness setpoint as an additional degree of freedom that needs to be coordinated with the joint trajectories. As a potential solution to this issue a bio-inspired controller based on a central pattern generator (CPG) is presented in this work. It generates coordinated joint torques and knee stiffness modulations to produce flexible and dynamic gait patterns for an exoskeleton with variable knee stiffness actuation. The CPG controller is evaluated and optimized in simulation using a model of the exoskeleton. The CPG controller produced stable and smooth gait for walking speeds from 0.4 m/s up to 1.57 m/s with a torso stabilizing force that simulated the use of crutches, which are commonly needed by exoskeleton users. Through the CPG, the knee stiffness intrinsically adapted to the frequency and phase of the gait, when the speed was changed. Additionally, it adjusted to changes in the environment in the form of uneven terrain by reacting to ground contact forces. This could allow future exoskeletons to be more adaptive to various environments, thus making ambulation more robust.
Estrogen receptor-alpha genotype affects exercise-related reduction of arterial stiffness.
Hayashi, Koichiro; Maeda, Seiji; Iemitsu, Motoyuki; Otsuki, Takeshi; Sugawara, Jun; Tanabe, Takumi; Miyauchi, Takashi; Kuno, Shinya; Ajisaka, Ryuichi; Matsuda, Mitsuo
2008-02-01
Arterial stiffness, an independent risk factor for cardiovascular disease, increases with advancing age. Arterial stiffness is improved by regular exercise, but individual responses to exercise training are variable. Given that estrogen and estrogen receptor-alpha (ER-alpha) can induce vasodilation and can exert an antiatherosclerotic effect in vessels, we hypothesized that gene polymorphisms of ER-alpha might influence the ability of regular exercise to improve arterial stiffness in postmenopausal women. One hundred ninety-five healthy postmenopausal women (62 +/- 6 yr, mean +/- SD) participated in our cross-sectional study. We determined the genotype of single-nucleotide polymorphisms (SNP) at -401T/C of intron 1 of the ER-alpha gene. Arterial stiffness was measured by brachial-ankle pulse wave velocity (baPWV), and daily physical activity was estimated by a uniaxial accelerometer. Subjects were divided into active and inactive groups according to the median value (200 kcal.d(-1)) of energy expenditure. baPWV in individuals with the TT variant of -401T/C genotype were significantly higher than for individuals with the TC+CC genotype. No significant differences in mean baPWV values were found between the active group and the inactive group (P = 0.09). A significant reduction of baPWV secondary to increased daily physical activity was observed in individuals with the TC+CC genotype but not in individuals with the TT genotype (TT/active: 1470 +/- 36 cm.s(-1); TT/inactive: 1457 +/- 34 cm.s(-1); TC+CC/active: 1359 +/- 21 cm.s(-1); TC+CC/inactive: 1433 +/- 24 cm.s(-1)). These results suggest that ER-alpha polymorphism affects the regular exercise-related reduction in arterial stiffness in healthy postmenopausal women.
Variable Stiffness Panel Structural Analyses With Material Nonlinearity and Correlation With Tests
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Gurdal, Zafer
2006-01-01
Results from structural analyses of three tow-placed AS4/977-3 composite panels with both geometric and material nonlinearities are presented. Two of the panels have variable stiffness layups where the fiber orientation angle varies as a continuous function of location on the panel planform. One variable stiffness panel has overlapping tow bands of varying thickness, while the other has a theoretically uniform thickness. The third panel has a conventional uniform-thickness [plus or minus 45](sub 5s) layup with straight fibers, providing a baseline for comparing the performance of the variable stiffness panels. Parametric finite element analyses including nonlinear material shear are first compared with material characterization test results for two orthotropic layups. This nonlinear material model is incorporated into structural analysis models of the variable stiffness and baseline panels with applied end shortenings. Measured geometric imperfections and mechanical prestresses, generated by forcing the variable stiffness panels from their cured anticlastic shapes into their flatter test configurations, are also modeled. Results of these structural analyses are then compared to the measured panel structural response. Good correlation is observed between the analysis results and displacement test data throughout deep postbuckling up to global failure, suggesting that nonlinear material behavior is an important component of the actual panel structural response.
Facchinello, Yann; Brailovski, Vladimir; Petit, Yvan; Mac-Thiong, Jean-Marc
2014-11-01
The concept of a monolithic Ti-Ni spinal rod with variable flexural stiffness is proposed to reduce the risks associated with spinal fusion. The variable stiffness is conferred to the rod using the Joule-heating local annealing technique. The annealing temperature and the mechanical properties' distributions resulted from this thermal treatment are numerically modeled and experimentally measured. To illustrate the possible applications of such a modeling approach, two case studies are presented: (a) optimization of the Joule-heating strategy to reduce annealing time, and (b) modulation of the rod's overall flexural stiffness using partial annealing. A numerical model of a human spine coupled with the model of the variable flexural stiffness spinal rod developed in this work can ultimately be used to maximize the stabilization capability of spinal instrumentation, while simultaneously decreasing the risks associated with spinal fusion. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
“An Impediment to Living Life”: Why and How Should We Measure Stiffness in Polymyalgia Rheumatica?
Mackie, Sarah Louise; Hughes, Rodney; Walsh, Margaret; Day, John; Newton, Marion; Pease, Colin; Kirwan, John; Morris, Marianne
2015-01-01
Objectives To explore patients’ concepts of stiffness in polymyalgia rheumatica (PMR), and how they think stiffness should be measured. Methods Eight focus groups were held at three centres involving 50 patients with current/previous PMR. Each group had at least one facilitator and one rapporteur making field notes. An interview schedule was used to stimulate discussion. Interviews were recorded, transcribed and analysed using an inductive thematic approach. Results Major themes identified were: symptoms: pain, stiffness and fatigue; functional impact; impact on daily schedule; and approaches to measurement. The common subtheme for the experience of stiffness was “difficulty in moving”, and usually considered as distinct from the experience of pain, albeit with a variable overlap. Some participants felt stiffness was the “overwhelming” symptom, in that it prevented them carrying out “fundamental activities” and “generally living life”. Diurnal variation in stiffness was generally described in relation to the daily schedule but was not the same as stiffness severity. Some participants suggested measuring stiffness using a numeric rating scale or a Likert scale, while others felt that it was more relevant and straightforward to measure difficulty in performing everyday activities rather than about stiffness itself. Conclusions A conceptual model of stiffness in PMR is presented where stiffness is an important part of the patient experience and impacts on their ability to live their lives. Stiffness is closely related to function and often regarded as interchangeable with pain. From the patients’ perspective, visual analogue scales measuring pain and stiffness were not the most useful method for reporting stiffness; participants preferred numerical rating scales, or assessments of function to reflect how stiffness impacts on their daily lives. Assessing function may be a pragmatic solution to difficulties in quantifying stiffness. PMID:25955770
Bennett, Robert; Russell, I Jon; Choy, Ernest; Spaeth, Michael; Mease, Philip; Kajdasz, Daniel; Walker, Daniel; Wang, Fujun; Chappell, Amy
2012-04-01
Patients with fibromyalgia (FM) rate stiffness as one of the most troublesome symptoms of the disorder. However, there are few published studies that have focused on better understanding the nature of stiffness in FM. The primary objectives of these analyses were to characterize the distribution of stiffness severity in patients at baseline, evaluate changes in stiffness after 12 weeks of treatment with duloxetine, and determine which outcomes were correlated with stiffness. These were post-hoc analyses of 3-month data from 4 randomized, double-blind, placebo-controlled studies that assessed efficacy of duloxetine in adults with FM. Severity of stiffness was assessed by using the Fibromyalgia Impact Questionnaire (FIQ) on a scale from 0 (no stiffness) to 10 (most severe stiffness). The association between changes in stiffness and other measures was evaluated by using Pearson's correlation coefficient. The FIQ total score and items, the Brief Pain Inventory (BPI-modified short form), the Clinical Global Impression-Severity scale, the Multidimensional Fatigue Inventory, the 17-item Hamilton Depression Rating Scale, the Sheehan Disability Scale, the 36-item Short-Form Health Survey, and the EuroQoL Questionnaire-5 Dimensions were evaluated in the correlation analyses. Stepwise linear regression was used to identify the variables that were most highly predictive of the changes in FIQ stiffness. The analysis included 1332 patients (mean age, 50.2 years; 94.7% female; and 87.8% white). The mean (SD) baseline FIQ stiffness score was 7.7 (2.0), and this score correlated with baseline BPI pain score and FIQ function. Duloxetine significantly improved the FIQ stiffness score compared with placebo (P < 0.001) and provided a moderate effect size (0.23 for the 60-mg dose and 0.38 for the 120-mg dose). Changes in stiffness were best correlated (range, 0.52-0.75; all, P < 0.001) with changes in BPI/FIQ pain and interference scores, FIQ nonrefreshing sleep, FIQ anxiety, 36-item Short-Form Health Survey bodily pain, and Sheehan Disability Scale total score. Variables related to severity of pain, pain interfering with daily activities, and physical functioning were predictors of change in stiffness. Stiffness scores were high in this population with FM and best correlated at baseline with BPI pain score and FIQ function. Not unexpectedly, improvement in stiffness with duloxetine correlated with many of the other markers of FM severity, presumably a result of amelioration in FM comorbidities. Copyright © 2012. Published by EM Inc USA.
Golkar, Mahsa A.; Sobhani Tehrani, Ehsan; Kearney, Robert E.
2017-01-01
Dynamic joint stiffness is a dynamic, nonlinear relationship between the position of a joint and the torque acting about it, which can be used to describe the biomechanics of the joint and associated limb(s). This paper models and quantifies changes in ankle dynamic stiffness and its individual elements, intrinsic and reflex stiffness, in healthy human subjects during isometric, time-varying (TV) contractions of the ankle plantarflexor muscles. A subspace, linear parameter varying, parallel-cascade (LPV-PC) algorithm was used to identify the model from measured input position perturbations and output torque data using voluntary torque as the LPV scheduling variable (SV). Monte-Carlo simulations demonstrated that the algorithm is accurate, precise, and robust to colored measurement noise. The algorithm was then used to examine stiffness changes associated with TV isometric contractions. The SV was estimated from the Soleus EMG using a Hammerstein model of EMG-torque dynamics identified from unperturbed trials. The LPV-PC algorithm identified (i) a non-parametric LPV impulse response function (LPV IRF) for intrinsic stiffness and (ii) a LPV-Hammerstein model for reflex stiffness consisting of a LPV static nonlinearity followed by a time-invariant state-space model of reflex dynamics. The results demonstrated that: (a) intrinsic stiffness, in particular ankle elasticity, increased significantly and monotonically with activation level; (b) the gain of the reflex pathway increased from rest to around 10–20% of subject's MVC and then declined; and (c) the reflex dynamics were second order. These findings suggest that in healthy human ankle, reflex stiffness contributes most at low muscle contraction levels, whereas, intrinsic contributions monotonically increase with activation level. PMID:28579954
Li, Zhi-Yong; Xu, Tian-Ying; Zhang, Sai-Long; Zhou, Xiao-Ming; Xu, Xue-Wen; Guan, Yun-Feng; Lo, Ming; Miao, Chao-Yu
2013-09-01
Ambulatory arterial stiffness index (AASI) has been proposed as a new measure of arterial stiffness for predicting cardio-cerebro-vascular morbidity and mortality. However, there has been no research on the direct relationships between AASI and arterial stiffness-determining factors. We utilized beat-to-beat intra-aortic blood pressure (BP) telemetry to characterize AASI in Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). By determination of aortic structural components and analysis of their correlations with AASI, we provided the first direct evidence for the associations between AASI and arterial stiffness-determining factors including the collagen content and collagen/elastin. Ambulatory arterial stiffness index was positively correlated with pulse pressure in both WKY and SHR, less dependent on BP and BP variability than pulse pressure, and relatively stable, especially the number of BP readings not less than ~36. The correlations between AASI and aortic components were comparable for various AASI values derived from BP readings not less than ~36. Not only AASI but also BP variability and pulse pressure demonstrated a direct relationship with arterial stiffness. These findings indicate AASI may become a routine measure in human arterial stiffness assessment. It is recommended to use a cluster of parameters such as AASI, BP variability, and pulse pressure for evaluating arterial stiffness. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Abolfathi, Ali; O'Boy, Dan J.; Walsh, Stephen J.; Dowsett, Amy; Fisher, Stephen A.
2016-09-01
Small plastic clips are used in large numbers in automotive vehicles to connect interior trims to vehicle structures. The variability in their properties can contribute to the overall variability in noise and vibration response of the vehicle. The variability arises due to their material and manufacturing tolerances and more importantly due to the boundary condition. To measure their stiffness and damping, a simple experimental rig is used where a mass is supported by the clip which is modelled as a single degree of freedom system. The rig is designed in a way that it simulates the boundary condition as those of the real vehicle. The variability in clip and also due to the boundary condition at the structure side is first examined which is 7% for stiffness and 8% for damping. To simulate the connection of the trim side, a mount is built using a 3D printer. Rattling occurs in the response of the clips with loose connections, however by preloading the mount the effective stiffness increases and the rattling is eliminated. The variability due to the boundary condition at the trim side was as large as 40% for stiffness and 52% for damping.
Stretching of Active Muscle Elicits Chronic Changes in Multiple Strain Risk Factors.
Kay, Anthony David; Richmond, Dominic; Talbot, Chris; Mina, Minas; Baross, Anthony William; Blazevich, Anthony John
2016-07-01
The muscle stretch intensity imposed during "flexibility" training influences the magnitude of joint range of motion (ROM) adaptation. Thus, stretching while the muscle is voluntarily activated was hypothesized to provide a greater stimulus than passive stretching. The effect of a 6-wk program of stretch imposed on an isometrically contracting muscle (i.e., qualitatively similar to isokinetic eccentric training) on muscle-tendon mechanics was therefore studied in 13 healthy human volunteers. Before and after the training program, dorsiflexion ROM, passive joint moment, and maximal isometric plantarflexor moment were recorded on an isokinetic dynamometer. Simultaneous real-time motion analysis and ultrasound imaging recorded gastrocnemius medialis muscle and Achilles tendon elongation. Training was performed twice weekly and consisted of five sets of 12 maximal isokinetic eccentric contractions at 10°·s. Significant increases (P < 0.01) in ROM (92.7% [14.7°]), peak passive moment (i.e., stretch tolerance; 136.2%), area under the passive moment curve (i.e., energy storage; 302.6%), and maximal isometric plantarflexor moment (51.3%) were observed after training. Although no change in the slope of the passive moment curve (muscle-tendon stiffness) was detected (-1.5%, P > 0.05), a significant increase in tendon stiffness (31.2%, P < 0.01) and a decrease in passive muscle stiffness (-14.6%, P < 0.05) were observed. The substantial positive adaptation in multiple functional and physiological variables that are cited within the primary etiology of muscle strain injury, including strength, ROM, muscle stiffness, and maximal energy storage, indicate that the stretching of active muscle might influence injury risk in addition to muscle function. The lack of change in muscle-tendon stiffness simultaneous with significant increases in tendon stiffness and decreases in passive muscle stiffness indicates that tissue-specific effects were elicited.
van der Krogt, Marjolein M.; de Graaf, Wendy W.; Farley, Claire T.; Moritz, Chet T.; Richard Casius, L. J.; Bobbert, Maarten F.
2009-01-01
When human hoppers are surprised by a change in surface stiffness, they adapt almost instantly by changing leg stiffness, implying that neural feedback is not necessary. The goal of this simulation study was first to investigate whether leg stiffness can change without neural control adjustment when landing on an unexpected hard or unexpected compliant (soft) surface, and second to determine what underlying mechanisms are responsible for this change in leg stiffness. The muscle stimulation pattern of a forward dynamic musculoskeletal model was optimized to make the model match experimental hopping kinematics on hard and soft surfaces. Next, only surface stiffness was changed to determine how the mechanical interaction of the musculoskeletal model with the unexpected surface affected leg stiffness. It was found that leg stiffness adapted passively to both unexpected surfaces. On the unexpected hard surface, leg stiffness was lower than on the soft surface, resulting in close-to-normal center of mass displacement. This reduction in leg stiffness was a result of reduced joint stiffness caused by lower effective muscle stiffness. Faster flexion of the joints due to the interaction with the hard surface led to larger changes in muscle length, while the prescribed increase in active state and resulting muscle force remained nearly constant in time. Opposite effects were found on the unexpected soft surface, demonstrating the bidirectional stabilizing properties of passive dynamics. These passive adaptations to unexpected surfaces may be critical when negotiating disturbances during locomotion across variable terrain. PMID:19589956
Secomb, Josh L.; Nimphius, Sophia; Farley, Oliver R.L.; Lundgren, Lina E.; Tran, Tai T.; Sheppard, Jeremy M.
2015-01-01
The purpose of the present study was to determine whether any relationships were present between lower-body muscle structure and, lower-body strength, variables measured during a countermovement jump (CMJ) and squat jump (SJ), and eccentric leg stiffness, in adolescent athletes. Thirty junior male (n = 23) and female (n = 7) surfing athletes (14.8 ± 1.7 y; 1.63 ± 0.09 m; 54.8 ± 12.1 kg) undertook lower-body muscle structure assessment with ultrasonography and performed a; CMJ, SJ and an isometric mid-thigh pull (IMTP). In addition, eccentric leg stiffness was calculated from variables of the CMJ and IMTP. Moderate to very large relationships (r = 0.46-0.73) were identified between the thickness of the vastus lateralis (VL) and lateral gastrocnemius (LG) muscles, and VL pennation angle and; peak force (PF) in the CMJ, SJ and IMTP. Additionally, moderate to large relationships (r = 0.37-0.59) were found between eccentric leg stiffness and; VL and LG thickness, VL pennation angle, and LG fascicle length, with a large relationship (r = 0.59) also present with IMTP PF. These results suggest that greater thickness of the VL and LG were related to improved maximal dynamic and isometric strength, likely due to increased hypertrophy of the extensor muscles. Furthermore, this increased thickness was related to greater eccentric leg stiffness, as the associated enhanced lower-body strength likely allowed for greater neuromuscular activation, and hence less compliance, during a stretch-shortening cycle. Key points Greater thickness of the VL and LG muscles were significantly related to an enhanced ability to express higher levels of isometric and dynamic strength, and explosiveness in adolescent athletes. Isometric strength underpinned performance in the CMJ and SJ in these athletes. Greater lower-body isometric strength was significantly related to eccentric leg stiffness, which is potentially the result of greater neuromuscular activation in the muscle-tendon unit. PMID:26664263
Fuzzy variable impedance control based on stiffness identification for human-robot cooperation
NASA Astrophysics Data System (ADS)
Mao, Dachao; Yang, Wenlong; Du, Zhijiang
2017-06-01
This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.
A variable stiffness dielectric elastomer actuator based on electrostatic chucking.
Imamura, Hiroya; Kadooka, Kevin; Taya, Minoru
2017-05-14
Dielectric elastomer actuators (DEA) are one type of promising artificial muscle; however, applications of bending-type DEA for robotic end-effectors may be limited by their low stiffness and ability to resist external loads without buckling. Unimorph DEA can produce large out-of-plane deformation suitable for use as robotic end effectors; however, design of such actuators for large displacement comes at the cost of low stiffness and blocking force. This work proposes and demonstrates a variable stiffness dielectric elastomer actuator (VSDEA) consisting of a plurality of unimorph DEA units operating in parallel, which can exhibit variable electrostatic chucking to modulate the structure's bending stiffness. The unimorph DEA units are additively manufactured using a high-resolution pneumatic dispenser, and VSDEA comprising various numbers of units are assembled. The performance of the DEA units and VSDEA are compared to model predictions, exhibiting a maximum stiffness change of 39.2×. A claw actuator comprising two VSDEA and weighing 0.6 grams is demonstrated grasping and lifting a 10 gram object.
Variable stiffness sandwich panels using electrostatic interlocking core
NASA Astrophysics Data System (ADS)
Heath, Callum J. C.; Bond, Ian P.; Potter, Kevin D.
2016-04-01
Structural topology has a large impact on the flexural stiffness of a beam structure. Reversible attachment between discrete substructures allows for control of shear stress transfer between structural elements, thus stiffness modulation. Electrostatic adhesion has shown promise for providing a reversible latching mechanism for controllable internal connectivity. Building on previous research, a thin film copper polyimide laminate has been used to incorporate high voltage electrodes to Fibre Reinforced Polymer (FRP) sandwich structures. The level of electrostatic holding force across the electrode interface is key to the achievable level of stiffness modulation. The use of non-flat interlocking core structures can allow for a significant increase in electrode contact area for a given core geometry, thus a greater electrostatic holding force. Interlocking core geometries based on cosine waves can be Computer Numerical Control (CNC) machined from Rohacell IGF 110 Foam core. These Interlocking Core structures could allow for enhanced variable stiffness functionality compared to basic planar electrodes. This novel concept could open up potential new applications for electrostatically induced variable stiffness structures.
Bisogni, Valeria; Pengo, Martino F; Drakatos, Panagis; Maiolino, Giuseppe; Kent, Brian; Rossitto, Giacomo; Steier, Joerg; Rossi, Gian Paolo
2017-06-01
Increased arterial stiffness and sympathetic nervous system activity, independent markers of cardiovascular risk, are common in patients with severe obstructive sleep apnoea, who have excessive daytime sleepiness. Among patients with mild-to-moderate obstructive sleep apnoea, however, it remains unknown whether arterial stiffness and/or increased sympathetic nervous system activity correlate with excessive daytime sleepiness. We measured heart rate variability, as an index of autonomic nervous system activity, and arterial stiffness index, as a marker of vascular damage and cardiovascular risk, in 56 men aged 18 to 75years, with mild-to-moderate obstructive sleep apnoea, and matched into two groups, "sleepy" (Epworth Sleepiness Scale≥10) and "non-sleepy" (Epworth Sleepiness Scale<10). We found no association of excessive daytime sleepiness with sympathetic nervous system activation (very low frequency power 18,947±11,207ms 2 vs 15,893±8,272ms 2 , p=0.28; low frequency (LH) power 17,753±8,441ms 2 vs 15,414±5,666ms 2 , p=0.26; high frequency (HF) power 7,527±1,979ms 2 vs 8,257±3,416ms 2 , p=0.36; LF/HF ratio 3.04±1.37 vs 2.55±1.01, p=0.15) and mean arterial stiffness index (6.97±0.83 vs 7.26±0.66, p=0.18) in mild-to-moderate obstructive sleep apnoea patients. Symptoms of excessive daytime sleepiness are not associated with sympathetic nervous system activation and arterial stiffness in male subjects with mild-to-moderate obstructive sleep apnoea. Copyright © 2017 Elsevier B.V. All rights reserved.
Terrain stiffness and ankle biomechanics during simulated half-squat parachute landing.
Niu, Wenxin; Fan, Yubo
2013-12-01
A hard surface is potentially one of the risk factors for ankle injuries during parachute landing, but this has never been experimentally validated. This study was designed to evaluate the effects of terrain stiffness on ankle biomechanics during half-squat parachute landing (HSPL). Eight male and eight female healthy participants landed on three surfaces with standard HSPL technique. The three surfaces were cushioned mats with different thicknesses (0 mm, 4 mm, and 8 mm). The effects of terrain hardness and gender and their interaction with ground reaction forces, ankle kinematics, and electromyograms of selected lower-extremity muscles were statistically analyzed with multivariate analysis of variance. The effects of terrain stiffness and the interaction between factors on all variables were not statistically significant. The effects of gender were not statistically significant on most variables. The peak angular velocity of the ankle dorsiflexion was significantly lower in men (mean 1345 degree x s(-1)) than in women (mean 1965 degree x s(-1)). A spongy surface even eliminated the differences between men compared to women in the activity of their tibialis anterior during simulated HSPL. Terrain stiffness, in the ranges tested, did not appear to influence ankle biomechanics among individuals performing HSPL. Additional studies are required to know whether this finding is applicable to realistic parachuting.
Sornkarn, Nantachai; Nanayakkara, Thrishantha
2017-01-01
When humans are asked to palpate a soft tissue to locate a hard nodule, they regulate the stiffness, speed, and force of the finger during examination. If we understand the relationship between these behavioral variables and haptic information gain (transfer entropy) during manual probing, we can improve the efficacy of soft robotic probes for soft tissue palpation, such as in tumor localization in minimally invasive surgery. Here, we recorded the muscle co-contraction activity of the finger using EMG sensors to address the question as to whether joint stiffness control during manual palpation plays an important role in the haptic information gain. To address this question, we used a soft robotic probe with a controllable stiffness joint and a force sensor mounted at the base to represent the function of the tendon in a biological finger. Then, we trained a Markov chain using muscle co-contraction patterns of human subjects, and used it to control the stiffness of the soft robotic probe in the same soft tissue palpation task. The soft robotic experiments showed that haptic information gain about the depth of the hard nodule can be maximized by varying the internal stiffness of the soft probe.
Research on damping properties optimization of variable-stiffness plate
NASA Astrophysics Data System (ADS)
Wen-kai, QI; Xian-tao, YIN; Cheng, SHEN
2016-09-01
This paper investigates damping optimization design of variable-stiffness composite laminated plate, which means fibre paths can be continuously curved and fibre angles are distinct for different regions. First, damping prediction model is developed based on modal dissipative energy principle and verified by comparing with modal testing results. Then, instead of fibre angles, the element stiffness and damping matrixes are translated to be design variables on the basis of novel Discrete Material Optimization (DMO) formulation, thus reducing the computation time greatly. Finally, the modal damping capacity of arbitrary order is optimized using MMA (Method of Moving Asymptotes) method. Meanwhile, mode tracking technique is employed to investigate the variation of modal shape. The convergent performance of interpolation function, first order specific damping capacity (SDC) optimization results and variation of modal shape in different penalty factor are discussed. The results show that the damping properties of the variable-stiffness plate can be increased by 50%-70% after optimization.
A linear stepping endovascular intervention robot with variable stiffness and force sensing.
He, Chengbin; Wang, Shuxin; Zuo, Siyang
2018-05-01
Robotic-assisted endovascular intervention surgery has attracted significant attention and interest in recent years. However, limited designs have focused on the variable stiffness mechanism of the catheter shaft. Flexible catheter needs to be partially switched to a rigid state that can hold its shape against external force to achieve a stable and effective insertion procedure. Furthermore, driving catheter in a similar way with manual procedures has the potential to make full use of the extensive experience from conventional catheter navigation. Besides driving method, force sensing is another significant factor for endovascular intervention. This paper presents a variable stiffness catheterization system that can provide stable and accurate endovascular intervention procedure with a linear stepping mechanism that has a similar operation mode to the conventional catheter navigation. A specially designed shape-memory polymer tube with water cooling structure is used to achieve variable stiffness of the catheter. Hence, four FBG sensors are attached to the catheter tip in order to monitor the tip contact force situation with temperature compensation. Experimental results show that the actuation unit is able to deliver linear and rotational motions. We have shown the feasibility of FBG force sensing to reduce the effect of temperature and detect the tip contact force. The designed catheter can change its stiffness partially, and the stiffness of the catheter can be remarkably increased in rigid state. Hence, in the rigid state, the catheter can hold its shape against a [Formula: see text] load. The prototype has also been validated with a vascular phantom, demonstrating the potential clinical value of the system. The proposed system provides important insights into the design of compact robotic-assisted catheter incorporating effective variable stiffness mechanism and real-time force sensing for intraoperative endovascular intervention.
Quantifying Effects of Voids in Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.
2013-01-01
Randomness in woven ceramic matrix composite architecture has been found to cause large variability in stiffness and strength. The inherent voids are an aspect of the architecture that may cause a significant portion of the variability. A study is undertaken to investigate the effects of many voids of random sizes and distributions. Response surface approximations were formulated based on void parameters such as area and length fractions to provide an estimate of the effective stiffness. Obtaining quantitative relationships between the properties of the voids and their effects on stiffness of ceramic matrix composites are of ultimate interest, but the exploratory study presented here starts by first modeling the effects of voids on an isotropic material. Several cases with varying void parameters were modeled which resulted in a large amount of variability of the transverse stiffness and out-of-plane shear stiffness. An investigation into a physical explanation for the stiffness degradation led to the observation that the voids need to be treated as an entity that reduces load bearing capabilities in a space larger than what the void directly occupies through a corrected length fraction or area fraction. This provides explanation as to why void volume fraction is not the only important factor to consider when computing loss of stiffness.
Christian R. Mora; Laurence R. Schimleck; Fikret Isik; Jerry M. Mahon Jr.; Alexander Clark III; Richard F. Daniels
2009-01-01
Acoustic tools are increasingly used to estimate standing-tree (dynamic) stiffness; however, such techniques overestimate static stiffness, the standard measurement for determining modulus of elasticity (MOE) of wood. This study aimed to identify correction methods for standing-tree estimates making dynamic and static stiffness comparable. Sixty Pinus taeda L...
Schroeder, Elizabeth C; Rosenberg, Alexander J; Hilgenkamp, Thessa I M; White, Daniel W; Baynard, Tracy; Fernhall, Bo
2017-12-01
To evaluate changes in arterial stiffness with positional change and whether the stiffness changes are due to hydrostatic pressure alone or if physiological changes in vasoconstriction of the conduit arteries play a role in the modulation of arterial stiffness. Thirty participants' (male = 15, 24 ± 4 years) upper bodies were positioned at 0, 45, and 72° angles. Pulse wave velocity (PWV), cardio-ankle vascular index, carotid beta-stiffness index, carotid blood pressure (cBP), and carotid diameters were measured at each position. A gravitational height correction was determined using the vertical fluid column distance (mmHg) between the heart and carotid artery. Carotid beta-stiffness was calibrated using three methods: nonheight corrected cBP of each position, height corrected cBP of each position, and height corrected cBP of the supine position (theoretical model). Low frequency systolic blood pressure variability (LFSAP) was analyzed as a marker of sympathetic activity. PWV and cardio-ankle vascular index increased with position (P < 0.05). Carotid beta-stiffness did not increase if not corrected for hydrostatic pressure. Arterial stiffness indices based on Method 2 were not different from Method 3 (P = 0.65). LFSAP increased in more upright positions (P < 0.05) but diastolic diameter relative to diastolic pressure did not (P > 0.05). Arterial stiffness increases with a more upright body position. Carotid beta-stiffness needs to be calibrated accounting for hydrostatic effects of gravity if measured in a seated position. It is unclear why PWV increased as this increase was independent of blood pressure. No difference between Methods 2 and 3 presumably indicates that the beta-stiffness increases are only pressure dependent, despite the increase in vascular sympathetic modulation.
Gender differences in head-neck segment dynamic stabilization during head acceleration.
Tierney, Ryan T; Sitler, Michael R; Swanik, C Buz; Swanik, Kathleen A; Higgins, Michael; Torg, Joseph
2005-02-01
Recent epidemiological research has revealed that gender differences exist in concussion incidence but no study has investigated why females may be at greater risk of concussion. Our purpose was to determine whether gender differences existed in head-neck segment kinematic and neuromuscular control variables responses to an external force application with and without neck muscle preactivation. Forty (20 females and 20 males) physically active volunteers participated in the study. The independent variables were gender, force application (known vs unknown), and force direction (forced flexion vs forced extension). The dependent variables were kinematic and EMG variables, head-neck segment stiffness, and head-neck segment flexor and extensor isometric strength. Statistical analyses consisted of multiple multivariate and univariate analyses of variance, follow-up univariate analyses of variance, and t-tests (P < or = 0.05). Gender differences existed in head-neck segment dynamic stabilization during head angular acceleration. Females exhibited significantly greater head-neck segment peak angular acceleration (50%) and displacement (39%) than males despite initiating muscle activity significantly earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity (79% peak activity and 117% muscle activity area). The head-neck segment angular acceleration differences may be because females exhibited significantly less isometric strength (49%), neck girth (30%), and head mass (43%), resulting in lower levels of head-neck segment stiffness (29%). For our subject demographic, the results revealed gender differences in head-neck segment dynamic stabilization during head acceleration in response to an external force application. Females exhibited significantly greater head-neck segment peak angular acceleration and displacement than males despite initiating muscle activity earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity.
NASA Technical Reports Server (NTRS)
Scheidler, Justin; Asnani, Vivake M.; Dapino, Marcelo J.
2015-01-01
This paper details the development of an electrically-controlled, variable-stiffness spring based on magnetostrictive materials. The device, termed a magnetostrictive Varispring, can be applied as a semi-active vibration isolator or switched stiffness vibration controller for reducing transmitted vibrations. The Varispring is designed using 1D linear models that consider the coupled electrical response, mechanically-induced magnetic diffusion, and the effect of internal mass on dynamic stiffness. Modeling results illustrate that a Terfenol-D-based Varispring has a rise time almost an order of magnitude smaller and a magnetic diffusion cut-off frequency over two orders of magnitude greater than a Galfenol-based Varispring. The results motivate the use of laminated Terfenol-D rods for a greater stiffness tuning range and increased bandwidth. The behavior of a prototype Varispring is examined under vibratory excitation up to 6 MPa and 25 Hz using a dynamic load frame. For this prototype, stiffness is indirectly varied by controlling the excitation current. Preliminary measurements of continuous stiffness tuning via sinusoidal currents up to 1 kHz are presented. The measurements demonstrate that the Young's modulus of the Terfenol-D rod inside the Varispring can be continuously varied by up to 21.9 GPa. The observed stiffness tuning range is relatively constant up to 500 Hz, but significantly decreases thereafter. The stiffness tuning range can be greatly increased by improving the current and force control such that a more consistent current can be applied and the Varispring can be accurately tested at a more optimal bias stress.
Analysis and Modeling of Chromosome Congression During Mitosis in the Chemotherapy Drug Cisplatin.
Chacón, Jeremy M; Gardner, Melissa K
2013-12-01
The chemotherapy drug Cisplatin (cis-diamminedichloroplatinum(II)) induces crosslinks within and between DNA strands, and between DNA and nearby proteins. Therefore, Cisplatin-treated cells which progress into cell division may do so with altered chromosome mechanical properties. This could have important consequences for the successful completion of mitosis. Using Total Internal Reflection Fluorescence (TIRF) microscopy of live Cisplatin-treated Saccharomyces cerevisiae cells, we found that metaphase mitotic spindles have disorganized kinetochores relative to untreated cells, and also that there is increased variability in the chromosome stretching distance between sister centromeres. This suggests that chromosome stiffness may become more variable after Cisplatin treatment. We explored the effect of variable chromosome stiffness during mitosis using a stochastic model in which kinetochore microtubule dynamics were regulated by tension imparted by stretched sister chromosomes. Consistent with experimental results, increased variability of chromosome stiffness in the model led to disorganization of kinetochores in simulated metaphase mitotic spindles. Furthermore, the variability in simulated chromosome stretching tension was increased as chromosome stiffness became more variable. Because proper chromosome stretching tension may serve as a signal that is required for proper progression through mitosis, tension variability could act to impair this signal and thus prevent proper mitotic progression. Our results suggest a possible mitotic mode of action for the anti-cancer drug Cisplatin.
Analysis and Design of Variable Stiffness Composite Cylinders
NASA Technical Reports Server (NTRS)
Tatting, Brian F.; Guerdal, Zafer
1998-01-01
An investigation of the possible performance improvements of thin circular cylindrical shells through the use of the variable stiffness concept is presented. The variable stiffness concept implies that the stiffness parameters change spatially throughout the structure. This situation is achieved mainly through the use of curvilinear fibers within a fiber-reinforced composite laminate, though the possibility of thickness variations and discrete stiffening elements is also allowed. These three mechanisms are incorporated into the constitutive laws for thin shells through the use of Classical Lamination Theory. The existence of stiffness variation within the structure warrants a formulation of the static equilibrium equations from the most basic principles. The governing equations include sufficient detail to correctly model several types of nonlinearity, including the formation of a nonlinear shell boundary layer as well as the Brazier effect due to nonlinear bending of long cylinders. Stress analysis and initial buckling estimates are formulated for a general variable stiffness cylinder. Results and comparisons for several simplifications of these highly complex governing equations are presented so that the ensuing numerical solutions are considered reliable and efficient enough for in-depth optimization studies. Four distinct cases of loading and stiffness variation are chosen to investigate possible areas of improvement that the variable stiffness concept may offer over traditional constant stiffness and/or stiffened structures. The initial investigation deals with the simplest solution for cylindrical shells in which all quantities are constant around the circumference of the cylinder. This axisymmetric case includes a stiffness variation exclusively in the axial direction, and the only pertinent loading scenarios include constant loads of axial compression, pressure, and torsion. The results for these cases indicate that little improvement over traditional laminates exists through the use of curvilinear fibers, mainly due to the presence of a weak link area within the stiffness variation that limits the ultimate load that the structure can withstand. Rigorous optimization studies reveal that even though slight increases in the critical loads can be produced for designs with an arbitrary variation of the fiber orientation angle, the improvements are not significant when compared to traditional design techniques that utilize ring stiffeners and frames. The second problem that is studied involves arbitrary loading of a cylinder with a stiffness variation that changes only in the circumferential direction. The end effects of the cylinder are ignored, so that the problem takes the form of an analysis of a cross-section for a short cylinder segment. Various load cases including axial compression, pressure, torsion, bending, and transverse shear forces are investigated. It is found that the most significant improvements in load-carrying capability exist for cases which involve loads that also vary around the circumference of the shell, namely bending and shear forces. The stiffness variation of the optimal designs contribute to the increased performance in two ways: lowering the stresses in the critical areas through redistribution of the stresses; and providing a relatively stiff region that alters the buckling behavior of the structure. These results lead to an in-depth optimization study involving weight optimization of a fuselage structure subjected to typical design constraints. Comparisons of the curvilinear fiber format to traditional stiffened structures constructed of isotropic and composite materials are included. It is found that standard variable stiffness designs are quite comparable in terms of weight and load-carrying capability yet offer the added advantage of tailorability of distinct regions of the structure that experience drastically different loading conditions. The last two problems presented in this work involve the nonlinear phenomenon of long tubes under bending. Though this scenario is not as applicable to fuselage structures as the previous problems, the mechanisms that produce the nonlinear effect are ideally suited to be controlled by the variable stiffness concept. This is due to the fact that the dominating influence for long cylinders under bending is the ovalization of the cross-section, which is governed mainly by the stiffness parameters of the cylindrical shell. Possible improvement of the critical buckling moments for these structures is investigated using either a circumferential or axial stiffness variation. For the circumferential case involving infinite length cylinders, it is found that slight improvements can be observed by designing structures that resist the cross-sectional deformation yet do not detract from the buckling resistance at the critical location. The results also indicate that buckling behavior is extremely dependent on cylinder length. This effect is most easily seen in the solution of finite length cylinders under bending that contain an axial stiffness variation. For these structures, the only mechanism that exhibits improved response are those that effectively shorten the length of the cylinder, thus reducing the cross-sectional deformation due to the forced restraint at the ends. It was found that the use of curvilinear fibers was not able to achieve this effect in sufficient degree to resist the deformation, but that ring stiffeners produced the desired response admirably. Thus, it is shown that the variable stiffness concept is most effective at improving the bending response of long cylinders through the use of a circumferential stiffness variation.
Collar height and heel counter-stiffness for ankle stability and athletic performance in basketball.
Liu, Hui; Wu, Zitian; Lam, Wing-Kai
2017-01-01
This study examined the effects of collar height and heel counter-stiffness of basketball shoes on ankle stability during sidestep cutting and athletic performance. 15 university basketball players wore customized shoes with different collar heights (high and low) and heel counter-stiffness (regular, stiffer and stiffest) for this study. Ankle stability was evaluated in sidestep cutting while athletic performance evaluated in jumping and agility tasks. All variables were analysed using two-way repeated ANOVA. Results showed shorter time to peak ankle inversion for both high collar and stiff heel counter conditions (P < 0.05), while smaller initial ankle inversion angle, peak inversion velocity and total range of inversion for wearing high collar shoes (P < 0.05). No shoe differences were found for performance variables. These findings imply that the collar height might play a larger role in lateral stability than heel counter-stiffness, while both collar height and counter-stiffness have no effect on athletic performance.
Pneumatic Variable Series Elastic Actuator.
Zheng, Hao; Wu, Molei; Shen, Xiangrong
2016-08-01
Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.
Pneumatic Variable Series Elastic Actuator
Zheng, Hao; Wu, Molei; Shen, Xiangrong
2016-01-01
Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on–off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator. PMID:27354755
NASA Astrophysics Data System (ADS)
Harris, B. J.; Sun, S. S.; Li, W. H.
2017-03-01
With the growing need for effective intercity transport, the need for more advanced rail vehicle technology has never been greater. The conflicting primary longitudinal suspension requirements of high speed stability and curving performance limit the development of rail vehicle technology. This paper presents a novel magnetorheological fluid based joint with variable stiffness characteristics for the purpose of overcoming this parameter conflict. Firstly, the joint design and working principle is developed. Following this, a prototype is tested by MTS to characterize its variable stiffness properties under a range of conditions. Lastly, the performance of the proposed MRF rubber joint with regard to improving train stability and curving performance is numerically evaluated.
Estimation of Quasi-Stiffness of the Human Knee in the Stance Phase of Walking
Shamaei, Kamran; Sawicki, Gregory S.; Dollar, Aaron M.
2013-01-01
Biomechanical data characterizing the quasi-stiffness of lower-limb joints during human locomotion is limited. Understanding joint stiffness is critical for evaluating gait function and designing devices such as prostheses and orthoses intended to emulate biological properties of human legs. The knee joint moment-angle relationship is approximately linear in the flexion and extension stages of stance, exhibiting nearly constant stiffnesses, known as the quasi-stiffnesses of each stage. Using a generalized inverse dynamics analysis approach, we identify the key independent variables needed to predict knee quasi-stiffness during walking, including gait speed, knee excursion, and subject height and weight. Then, based on the identified key variables, we used experimental walking data for 136 conditions (speeds of 0.75–2.63 m/s) across 14 subjects to obtain best fit linear regressions for a set of general models, which were further simplified for the optimal gait speed. We found R2 > 86% for the most general models of knee quasi-stiffnesses for the flexion and extension stages of stance. With only subject height and weight, we could predict knee quasi-stiffness for preferred walking speed with average error of 9% with only one outlier. These results provide a useful framework and foundation for selecting subject-specific stiffness for prosthetic and exoskeletal devices designed to emulate biological knee function during walking. PMID:23533662
NASA Astrophysics Data System (ADS)
Bazaz Behbahani, Sanaz; Tan, Xiaobo
2017-08-01
Fish actively control their stiffness in different swimming conditions. Inspired by such an adaptive behavior, in this paper we study the design, prototyping, and dynamic modeling of compact, tunable-stiffness fins for robotic fish, where electrorheological (ER) fluid serves as the enabling element. A multi-layer composite fin with an ER fluid core is prototyped and utilized to investigate the influence of electrical field on its performance. Hamilton's principle is used to derive the dynamic equations of motion of the flexible fin, and Lighthill's large-amplitude elongated-body theory is adopted to estimate the hydrodynamic force when the fin undergoes base-actuated rotation. The dynamic equations are then discretized using the finite element method, to obtain an approximate numerical solution. Experiments are conducted on the prototyped flexible ER fluid-filled beam for parameter identification and validation of the proposed model, and for examining the effectiveness of electrically controlled stiffness tuning. In particular, it is found that the natural frequency is increased by almost 40% when the applied electric field changes from 0 to 1.5× {10}6 {{V}} {{{m}}}-1.
Endpoint Accuracy in Manual Control of a Steerable Needle.
van de Berg, Nick J; Dankelman, Jenny; van den Dobbelsteen, John J
2017-02-01
To study the ability of a human operator to manually correct for errors in the needle insertion path without partial withdrawal of the needle by means of an active, tip-articulated steerable needle. The needle is composed of a 1.32-mm outer-diameter cannula, with a flexure joint near the tip, and a retractable stylet. The bending stiffness of the needle resembles that of a 20-gauge hypodermic needle. The needle functionality was evaluated in manual insertions by steering to predefined targets and a lateral displacement of 20 mm from the straight insertion line. Steering tasks were conducted in 5 directions and 2 tissue simulants under image guidance from a camera. The repeatability in instrument actuations was assessed during 100 mm deep automated insertions with a linear motor. In addition to tip position, tip angles were tracked during the insertions. The targeting error (mean absolute error ± standard deviation) during manual steering to 5 different targets in stiff tissue was 0.5 mm ± 1.1. This variability in manual tip placement (1.1 mm) was less than the variability among automated insertions (1.4 mm) in the same tissue type. An increased tissue stiffness resulted in an increased lateral tip displacement. The tip angle was directly controlled by the user interface, and remained unaffected by the tissue stiffness. This study demonstrates the ability to manually steer needles to predefined target locations under image guidance. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.
A fast collocation method for a variable-coefficient nonlocal diffusion model
NASA Astrophysics Data System (ADS)
Wang, Che; Wang, Hong
2017-02-01
We develop a fast collocation scheme for a variable-coefficient nonlocal diffusion model, for which a numerical discretization would yield a dense stiffness matrix. The development of the fast method is achieved by carefully handling the variable coefficients appearing inside the singular integral operator and exploiting the structure of the dense stiffness matrix. The resulting fast method reduces the computational work from O (N3) required by a commonly used direct solver to O (Nlog N) per iteration and the memory requirement from O (N2) to O (N). Furthermore, the fast method reduces the computational work of assembling the stiffness matrix from O (N2) to O (N). Numerical results are presented to show the utility of the fast method.
Hamstrings Stiffness and Landing Biomechanics Linked to Anterior Cruciate Ligament Loading
Blackburn, J. Troy; Norcross, Marc F.; Cannon, Lindsey N.; Zinder, Steven M.
2013-01-01
Context: Greater hamstrings stiffness is associated with less anterior tibial translation during controlled perturbations. However, it is unclear how hamstrings stiffness influences anterior cruciate ligament (ACL) loading mechanisms during dynamic tasks. Objective: To evaluate the influence of hamstrings stiffness on landing biomechanics related to ACL injury. Design: Cross-sectional study. Setting: Research laboratory. Patients or Other Participants: A total of 36 healthy, physically active volunteers (18 men, 18 women; age = 23 ± 3 years, height = 1.8 ± 0.1 m, mass = 73.1 ± 16.6 kg). Intervention(s): Hamstrings stiffness was quantified via the damped oscillatory technique. Three-dimensional lower extremity kinematics and kinetics were captured during a double-legged jump-landing task via a 3-dimensional motion-capture system interfaced with a force plate. Landing biomechanics were compared between groups displaying high and low hamstrings stiffness via independent-samples t tests. Main Outcome Measure(s): Hamstrings stiffness was normalized to body mass (N/m·kg−1). Peak knee-flexion and -valgus angles, vertical and posterior ground reaction forces, anterior tibial shear force, internal knee-extension and -varus moments, and knee-flexion angles at the instants of each peak kinetic variable were identified during the landing task. Forces were normalized to body weight, whereas moments were normalized to the product of weight and height. Results: Internal knee-varus moment was 3.6 times smaller in the high-stiffness group (t22 = 2.221, P = .02). A trend in the data also indicated that peak anterior tibial shear force was 1.1 times smaller in the high-stiffness group (t22 = 1.537, P = .07). The high-stiffness group also demonstrated greater knee flexion at the instants of peak anterior tibial shear force and internal knee-extension and -varus moments (t22 range = 1.729–2.224, P < .05). Conclusions: Greater hamstrings stiffness was associated with landing biomechanics consistent with less ACL loading and injury risk. Musculotendinous stiffness is a modifiable characteristic; thus exercises that enhance hamstrings stiffness may be important additions to ACL injury-prevention programs. PMID:24303987
You, Sung H; Granata, Kevin P; Bunker, Linda K
2004-08-01
Cross-sectional repeated-measures design. Determine the effects of circumferential ankle pressure (CAP) intervention on proprioceptive acuity, ankle stiffness, and postural stability. The application of CAP using braces, taping, and adaptive shoes or military boots is widely used to address chronic ankle instability (CAI). An underlying assumption is that the CAP intervention might improve ankle stability through increased proprioceptive acuity and stiffness in the ankle. METHOD AND MEASURES: A convenience sample of 10 subjects was recruited from the local university community and categorized according to proprioceptive acuity (high, low) and ankle stability (normal, CAI). Proprioceptive acuity was measured when blindfolded subjects were asked to accurately reproduce a self-selected target ankle position before and after the application of CAP. Proprioceptive acuity was determined in 5 different ankle joint position sense tests: neutral, inversion, eversion, plantar flexion, and dorsiflexion. Joint position angles were recorded electromechanically using a potentiometer. Passive ankle stiffness was computed from the ratio of applied static moment versus angular displacement. Active ankle stiffness was determined from biomechanical analyses of ankle motion following a mediolateral perturbation. Postural stability was quantified from the center of pressure displacement in the mediolateral and the anteroposterior directions in unipedal stance. All measurements were recorded with and without CAP applied by a pediatric blood pressure cuff. Data were analyzed using a separate mixed-model analysis of variance (ANOVA) for each dependent variable. Post hoc comparison using Tukey's honestly significant difference (HSD) test was performed if significant interactions were obtained. Significance level was set at P<.05 for all analyses. Significant group (high versus low proprioceptive acuity) x CAP interactions were identified for postural stability. Passive ankle stiffness was not increased by an application of CAP. Active ankle stiffness was significantly different between the high and low proprioceptive acuity groups and was not affected by an application of CAP. Significant group (normal versus CAI) x CAP interactions were observed for mediolateral center-of-pressure displacement with a main effect of group on neutral joint position sense. Application of CAP increased proprioceptive acuity and demonstrated trends toward increased active stiffness in the ankle, hence improved postural stability. The effects tend to be limited to individuals with low proprioceptive acuity.
Synthesis, Characterization, and Modeling of Nanotube Materials with Variable Stiffness Tethers
NASA Technical Reports Server (NTRS)
Frankland, S. J. V.; Herzog, M. N.; Odegard, G. M.; Gates, T. S.; Fay, C. C.
2004-01-01
Synthesis, mechanical testing, and modeling have been performed for carbon nanotube based materials. Tests using nanoindentation indicated a six-fold enhancement in the storage modulus when comparing the base material (no nanotubes) to the composite that contained 5.3 wt% of nanotubes. To understand how crosslinking the nanotubes may further alter the stiffness, a model of the system was constructed using nanotubes crosslinked with a variable stiffness tether (VST). The model predicted that for a composite with 5 wt% nanotubes at random orientations, crosslinked with the VST, the bulk Young's modulus was reduced by 30% compared to the noncrosslinked equivalent.
Stiffness control of magnetorheological gels for adaptive tunable vibration absorber
NASA Astrophysics Data System (ADS)
Kim, Hyun Kee; Kim, Hye Shin; Kim, Young-Keun
2017-01-01
In this study, a stiffness feedback control system for magnetorheological (MR) gel—a smart material of variable stiffness—is proposed, toward the design of a tunable vibration absorber that can adaptively tune to a time varying disturbance in real time. A PID controller was designed to track the required stiffness of the MR gel by controlling the magnitude of the target external magnetic field pervading the MR gel. This paper proposes a novel magnetic field generator that could produce a variable magnetic field with low energy consumption. The performance of the MR gel stiffness control was validated through experiments that showed the MR gel absorber system could be automatically tuned from 56 Hz to 67 Hz under a field of 100 mT to minimize the vibration of the primary system.
Cardiovascular Health and Arterial Stiffness: The Maine Syracuse Longitudinal Study
Crichton, Georgina E; Elias, Merrill F; Robbins, Michael A
2014-01-01
Ideal cardiovascular health is a recently defined construct by the American Heart Association (AHA) to promote cardiovascular disease reduction. Arterial stiffness is a major risk factor for cardiovascular disease. The extent to which the presence of multiple prevalent cardiovascular risk factors and health behaviors is associated with arterial stiffness is unknown. The aim of this study was to examine the association between the AHA construct of cardiovascular health and arterial stiffness, as indexed by pulse wave velocity and pulse pressure. The AHA health metrics, comprising of four health behaviors (smoking, body mass index, physical activity, and diet) and three health factors (total cholesterol, blood pressure, and fasting plasma glucose) were evaluated among 505 participants in the Maine-Syracuse Longitudinal Study. Outcome measures were carotid-femoral pulse wave velocity (PWV) and pulse pressure measured at 4 to 5-year follow-up. Better cardiovascular health, comprising both health factors and behaviors, was associated with lower arterial stiffness, as indexed by pulse wave velocity and pulse pressure. Those with at least five health metrics at ideal levels had significantly lower PWV (9.8 m/s) than those with two or less ideal health metrics (11.7 m/s) (P<0.001). This finding remained with the addition of demographic and PWV-related variables (P=0.004). PMID:24384629
Cardiovascular health and arterial stiffness: the Maine-Syracuse Longitudinal Study.
Crichton, G E; Elias, M F; Robbins, M A
2014-07-01
Ideal cardiovascular health is a recently defined construct by the American Heart Association (AHA) to promote cardiovascular disease reduction. Arterial stiffness is a major risk factor for cardiovascular disease. The extent to which the presence of multiple prevalent cardiovascular risk factors and health behaviors is associated with arterial stiffness is unknown. The aim of this study was to examine the association between the AHA construct of cardiovascular health and arterial stiffness, as indexed by pulse wave velocity (PWV) and pulse pressure. The AHA health metrics, comprising of four health behaviors (smoking, body mass index, physical activity and diet) and three health factors (total cholesterol, blood pressure and fasting plasma glucose), were evaluated among 505 participants in the Maine-Syracuse Longitudinal Study. Outcome measures were carotid-femoral PWV and pulse pressure measured at 4- to 5-year follow-up. Better cardiovascular health, comprising both health factors and behaviors, was associated with lower arterial stiffness, as indexed by PWV and pulse pressure. Those with at least five health metrics at ideal levels had significantly lower PWV (9.8 m s(-1)) than those with two or less ideal health metrics (11.7 m s(-1)) (P < 0.001). This finding remained with the addition of demographic and PWV-related variables (P = 0.004).
Gervasi, Marco; Sisti, Davide; Benelli, Piero; Fernández-Peña, Eneko; Calcabrini, Cinzia; Rocchi, Marco B L; Lanata, Luigi; Bagnasco, Michela; Tonti, Andrea; Vilberto, Stocchi; Sestili, Piero
2017-07-01
In professional road cyclists, the majority of overuse injuries affect the lower limbs and are mostly represented by contractures or muscle shortening, characterized by an increase of tone and stiffness and a variation of elasticity. Treatment and prevention of these specific conditions may include physical, supplementary, and pharmacologic support. The aim of this real-life study was to determine: first, the alterations of tone, stiffness, elasticity, and soreness of rectus femoris (RF) and biceps femoris (BF) in top class cyclists engaged in 3 multistage races, and second, whether any variable in the management of the athletes may affect the prevention and/or reduction of such alterations.Twenty-three professional cyclists competing in 3 international, cycling stage races were assessed. Athletes could receive, upon the approval of the medical staff, physical, dietary, and/or pharmacological management which could include treatments with topical over-the-counter myorelaxants to prevent and/or reduce muscle contractures. MyotonPro was used to daily measure tone, stiffness, and elasticity in RF and BF in relaxed and contracted state after every stage. In parallel, BF and RF soreness was also assessed with a Likert scale.All athletes received the same general massage management; none of them received dietary supplements; some of the athletes were treated with a topical myorelaxant thiocolchicoside (TCC 0.25%) foam 3 times daily. TCC was identified as the only variable able to affect these muscle parameters in the cyclists. Tone, stiffness (regardless of the state), and soreness significantly increased over time either in BF or RF in all athletes. In the group of athletes that used TCC (n = 11; TCC+) the increase in tone, stiffness, and soreness was significantly lower than in the group not receiving TCC (n = 12; No-TCC). Elasticity varied coherently with tone and stiffness.A very intense and protracted sport activity increases muscular tone, stiffness, and soreness over time. Topical TCC foam significantly attenuates these alterations and might represent an efficient strategy both to prevent and manage contractures and their consequences in professional cyclists as well in athletes from other disciplines involving similar workloads.
Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off.
Charalambous, Laura; Irwin, Gareth; Bezodis, Ian N; Kerwin, David
2012-01-01
Sprint push-off technique is fundamental to sprint performance and joint stiffness has been identified as a performance-related variable during dynamic movements. However, joint stiffness for the push-off and its relationship with performance (times and velocities) has not been reported. The aim of this study was to quantify and explain lower limb net joint moments and mechanical powers, and ankle stiffness during the first stance phase of the push-off. One elite sprinter performed 10 maximal sprint starts. An automatic motion analysis system (CODA, 200 Hz) with synchronized force plates (Kistler, 1000 Hz) collected kinematic profiles at the hip, knee, and ankle and ground reaction forces, providing input for inverse dynamics analyses. The lower-limb joints predominately extended and revealed a proximal-to-distal sequential pattern of maximal extensor angular velocity and positive power production. Pearson correlations revealed relationships (P < 0.05) between ankle stiffness (5.93 ± 0.75 N x m x deg(-1)) and selected performance variables. Relationships between negative power phase ankle stiffness and horizontal (r = -0.79) and vertical (r = 0.74) centre of mass velocities were opposite in direction to the positive power phase ankle stiffness (horizontal: r = 0.85; vertical: r = -0.54). Thus ankle stiffness may affect the goals of the sprint push-off in different ways, depending on the phase of stance considered.
Martial arts training attenuates arterial stiffness in middle aged adults.
Douris, Peter C; Ingenito, Teresa; Piccirillo, Barbara; Herbst, Meredith; Petrizzo, John; Cherian, Vincen; McCutchan, Christopher; Burke, Caitlin; Stamatinos, George; Jung, Min-Kyung
2013-09-01
Arterial stiffness increases with age and is related to an increased risk of coronary artery disease. Poor trunk flexibility has been shown to be associated with arterial stiffness in middle-aged subjects. The purpose of our research study was to measure arterial stiffness and flexibility in healthy middle-aged martial artists compared to age and gender matched healthy sedentary controls. Ten martial artists (54.0 ± 2.0 years), who practice Soo Bahk Do (SBD), a Korean martial art, and ten sedentary subjects (54.7 ± 1.8 years) for a total of twenty subjects took part in this cross-sectional study. Arterial stiffness was assessed in all subjects using pulse wave velocity (PWV), a recognized index of arterial stiffness. Flexibility of the trunk and hamstring were also measured. The independent variables were the martial artists and matched sedentary controls. The dependent variables were PWV and flexibility. There were significant differences, between the SBD practitioners and sedentary controls, in PWV (P = 0.004), in trunk flexibility (P= 0.002), and in hamstring length (P= 0.003). The middle-aged martial artists were more flexible in their trunk and hamstrings and had less arterial stiffness compared to the healthy sedentary controls. The flexibility component of martial art training or flexibility exercises in general may be considered as a possible intervention to reduce the effects of aging on arterial stiffness.
Martial Arts Training Attenuates Arterial Stiffness in Middle Aged Adults
Douris, Peter C.; Ingenito, Teresa; Piccirillo, Barbara; Herbst, Meredith; Petrizzo, John; Cherian, Vincen; McCutchan, Christopher; Burke, Caitlin; Stamatinos, George; Jung, Min-Kyung
2013-01-01
Purpose Arterial stiffness increases with age and is related to an increased risk of coronary artery disease. Poor trunk flexibility has been shown to be associated with arterial stiffness in middle-aged subjects. The purpose of our research study was to measure arterial stiffness and flexibility in healthy middle-aged martial artists compared to age and gender matched healthy sedentary controls. Methods Ten martial artists (54.0 ± 2.0 years), who practice Soo Bahk Do (SBD), a Korean martial art, and ten sedentary subjects (54.7 ± 1.8 years) for a total of twenty subjects took part in this cross-sectional study. Arterial stiffness was assessed in all subjects using pulse wave velocity (PWV), a recognized index of arterial stiffness. Flexibility of the trunk and hamstring were also measured. The independent variables were the martial artists and matched sedentary controls. The dependent variables were PWV and flexibility. Results There were significant differences, between the SBD practitioners and sedentary controls, in PWV (P = 0.004), in trunk flexibility (P= 0.002), and in hamstring length (P= 0.003). Conclusion The middle-aged martial artists were more flexible in their trunk and hamstrings and had less arterial stiffness compared to the healthy sedentary controls. The flexibility component of martial art training or flexibility exercises in general may be considered as a possible intervention to reduce the effects of aging on arterial stiffness. PMID:24427479
2010-01-01
Background The effects of lumbosacral orthoses (LSOs) on neuromuscular control of the trunk are not known. There is a concern that wearing LSOs for a long period may adversely alter muscle control, making individuals more susceptible to injury if they discontinue wearing the LSOs. The purpose of this study was to document neuromuscular changes in healthy subjects during a 3-week period while they regularly wore a LSO. Methods Fourteen subjects wore LSOs 3 hrs a day for 3 weeks. Trunk muscle activity prior to and following a quick force release (trunk perturbation) was measured with EMG in 3 sessions on days 0, 7, and 21. A longitudinal, repeated-measures, factorial design was used. Muscle reflex response to trunk perturbations, spine compression force, as well as effective trunk stiffness and damping were dependent variables. The LSO, direction of perturbation, and testing session were the independent variables. Results The LSO significantly (P < 0.001) increased the effective trunk stiffness by 160 Nm/rad (27%) across all directions and testing sessions. The number of antagonist muscles that responded with an onset activity was significantly reduced after 7 days of wearing the LSO, but this difference disappeared on day 21 and is likely not clinically relevant. The average number of agonist muscles switching off following the quick force release was significantly greater with the LSO, compared to without the LSO (P = 0.003). Conclusions The LSO increased trunk stiffness and resulted in a greater number of agonist muscles shutting-off in response to a quick force release. However, these effects did not result in detrimental changes to the neuromuscular function of trunk muscles after 3 weeks of wearing a LSO 3 hours a day by healthy subjects. PMID:20609255
Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm
Hu, Xiao; Murray, Wendy M.
2011-01-01
The mechanical properties of the human arm are regulated to maintain stability across many tasks. The static mechanics of the arm can be characterized by estimates of endpoint stiffness, considered especially relevant for the maintenance of posture. At a fixed posture, endpoint stiffness can be regulated by changes in muscle activation, but which activation-dependent muscle properties contribute to this global measure of limb mechanics remains unclear. We evaluated the role of muscle properties in the regulation of endpoint stiffness by incorporating scalable models of muscle stiffness into a three-dimensional musculoskeletal model of the human arm. Two classes of muscle models were tested: one characterizing short-range stiffness and two estimating stiffness from the slope of the force-length curve. All models were compared with previously collected experimental data describing how endpoint stiffness varies with changes in voluntary force. Importantly, muscle properties were not fit to the experimental data but scaled only by the geometry of individual muscles in the model. We found that force-dependent variations in endpoint stiffness were accurately described by the short-range stiffness of active arm muscles. Over the wide range of evaluated arm postures and voluntary forces, the musculoskeletal model incorporating short-range stiffness accounted for 98 ± 2, 91 ± 4, and 82 ± 12% of the variance in stiffness orientation, shape, and area, respectively, across all simulated subjects. In contrast, estimates based on muscle force-length curves were less accurate in all measures, especially stiffness area. These results suggest that muscle short-range stiffness is a major contributor to endpoint stiffness of the human arm. Furthermore, the developed model provides an important tool for assessing how the nervous system may regulate endpoint stiffness via changes in muscle activation. PMID:21289133
Olds, Margie; McNair, Peter; Nordez, Antoine; Cornu, Christophe
2011-01-01
Active muscle stiffness might protect the unstable shoulder from recurrent dislocation. To compare strength and active stiffness in participants with unilateral anterior shoulder instability and to examine the relationship between active stiffness and functional ability. Cross-sectional study. University research laboratory. Participants included 16 males (age range, 16-40 years; height = 179.4 ± 6.1 cm; mass = 79.1 ± 6.8 kg) with 2 or more episodes of unilateral traumatic anterior shoulder instability. Active stiffness and maximal voluntary strength were measured bilaterally in participants. In addition, quality of life, function, and perceived instability were measured using the Western Ontario Stability Index, American Shoulder and Elbow Surgeons Standardized Shoulder Assessment Form, and Single Alpha Numeric Evaluation, respectively. We found less horizontal adduction strength (t(15) = -4.092, P = .001) and less stiffness at 30% (t(14) = -3.796, P = .002) and 50% (t(12) = -2.341, P = .04) maximal voluntary strength in the unstable than stable shoulder. Active stiffness was not correlated with quality of life, function, or perceived instability (r range, 0.0-0.25; P > .05). The observed reduction in stiffness in the unstable shoulder warrants inclusion of exercises in the rehabilitation program to protect the joint from perturbations that might lead to dislocation. The lack of association between active stiffness and quality of life, function, or perceived instability might indicate that stiffness plays a less direct role in shoulder stability.
NASA Technical Reports Server (NTRS)
Kibler, K. S.; Mcdaniel, G. A.
1981-01-01
A digital local linearization technique was used to solve a system of stiff differential equations which simulate a magnetic bearing assembly. The results prove the technique to be accurate, stable, and efficient when compared to a general purpose variable order Adams method with a stiff option.
Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans
2013-01-01
Background Emissions from biomass combustion are a major source of indoor and outdoor air pollution, and are estimated to cause millions of premature deaths worldwide annually. Whilst adverse respiratory health effects of biomass exposure are well established, less is known about its effects on the cardiovascular system. In this study we assessed the effect of exposure to wood smoke on heart rate, blood pressure, central arterial stiffness and heart rate variability in otherwise healthy persons. Methods Fourteen healthy non-smoking subjects participated in a randomized, double-blind crossover study. Subjects were exposed to dilute wood smoke (mean particle concentration of 314±38 μg/m3) or filtered air for three hours during intermittent exercise. Heart rate, blood pressure, central arterial stiffness and heart rate variability were measured at baseline and for one hour post-exposure. Results Central arterial stiffness, measured as augmentation index, augmentation pressure and pulse wave velocity, was higher after wood smoke exposure as compared to filtered air (p < 0.01 for all), and heart rate was increased (p < 0.01) although there was no effect on blood pressure. Heart rate variability (SDNN, RMSSD and pNN50; p = 0.003, p < 0.001 and p < 0.001 respectively) was decreased one hour following exposure to wood smoke compared to filtered air. Conclusions Acute exposure to wood smoke as a model of exposure to biomass combustion is associated with an immediate increase in central arterial stiffness and a simultaneous reduction in heart rate variability. As biomass is used for cooking and heating by a large fraction of the global population and is currently advocated as a sustainable alternative energy source, further studies are required to establish its likely impact on cardiovascular disease. Trial registration ClinicalTrials.gov, NCT01488500 PMID:23742058
Aiello, Brett R; Hardy, Adam R; Cherian, Chery; Olsen, Aaron M; Orsbon, Courtney P; Hale, Melina E; Westneat, Mark W
2018-04-25
The organization of tissues in appendages often affects their mechanical properties and function. In the fish family Labridae, swimming behavior is associated with pectoral fin flexural stiffness and morphology, where fins range on a continuum from stiff to relatively flexible fins. Across this diversity, pectoral fin flexural stiffness decreases exponentially along the length of any given fin ray, and ray stiffness decreases along the chord of the fin from the leading to trailing edge. In this study, we examine the morphological properties of fin rays, including the effective modulus in bending (E), second moment of area (I), segmentation, and branching patterns, and their impact on fin ray stiffness. We quantify intrinsic pectoral fin ray stiffness in similarly sized fins of two closely related species that employ fins of divergent mechanics, the flapping Gomphosus varius and the rowing Halichoeres bivittatus. While segmentation patterns and E were similar between species, measurements of I and the number of fin ray branch nodes were greater in G. varius than in H. bivittatus. A multiple regression model found that of these variables, I was always significantly correlated with fin ray flexural stiffness and that variation in I always explained the majority of the variation in flexural stiffness. Thus, while most of the morphological variables quantified in this study correlate with fin ray flexural stiffness, second moment of area is the greatest factor contributing to variation in flexural stiffness. Further, interspecific variation in fin ray branching pattern could be used as a means of tuning the effective stiffness of the fin webbing to differences in swimming behavior and hydrodynamics. The comparison of these results to other systems begins to unveil fundamental morphological features of biological beams and yields insight into the role of mechanical properties in fin deformation for aquatic locomotion. © 2018 Wiley Periodicals, Inc.
Robinson, M L; Winters-Stone, K; Gabel, K; Dolny, D
2007-08-01
One hundred and fourteen girls were measured for calcaneus QUS (stiffness index score), calcium intake, weight, and total hours spent in physical activity (moderate to high-impact activities and low to no-impact activities). Multiple regression analysis indicated that hours spent in moderate to high-impact activities, current calcium intake, and weight significantly predicted SI. To determine the influence of modifiable lifestyle factors on adolescent girls' bone health measured by calcaneus quantitative ultrasound (QUS). One hundred and fourteen girls, ages 14-18 (15.97 +/- .7), enrolled in high school physical education classes, were measured for calcaneus QUS (stiffness index score), height, weight, current calcium intake from 2-3 day food records, and estimated total hours spent in physical activity from kindergarten to present. Cumulative physical activity hours were separated into two classifications (according to their estimated strain from ground reaction force): moderate to high-impact activities and low to no-impact activities. Pearson correlations between stiffness index (SI) and age, height, weight, current calcium intake, and hours spent in moderate to high-impact versus low to no-impact activities indicated a positive relationships between SI and weight (r = .259, p = .005), current calcium intake (r = .286, p = .002), and hours spent in moderate to high-impact activities (r = .451, p < .001). Multiple regression between SI and the above independent variables indicated that collectively, hours spent in moderate to high-impact activities, current calcium intake, and weight (r (2) = .363, p = <.001) significantly predicted SI. Our data indicate that moderate to high-impact activities, current calcium intake, and weight positively influence bone properties of the calcaneus in adolescent girls.
Probabilistic micromechanics of woven ceramic matrix composites
NASA Astrophysics Data System (ADS)
Goldsmith, Marlana
Woven ceramic matrix composites are a special class of composite materials that are of current interest for harsh thermo-structural conditions such as those encountered by hypersonic vehicle systems and turbine engine components. Testing of the materials is expensive, especially as materials are constantly redesigned. Randomness in the tow architecture, as well as the randomly shaped and spaced voids that are produced as a result of the manufacturing process, are features that contribute to variability in stiffness and strength. The goal of the research is to lay a foundation in which characteristics of the geometry can be translated into material properties. The research first includes quantifying the architectural variability based on 2D micrographs of a 5 harness satin CVI (Chemical Vapor Infiltration) SiC/SiC composite. The architectural variability is applied to a 2D representative volume element (RVE) in order to evaluate which aspects of the architecture are important to model in order to capture the variability found in the cross sections. Tow width, tow spacing, and tow volume fraction were found to have some effect on the variability, but voids were found to have a large influence on transverse stiffness, and a separate study was conducted to determine which characteristics of the voids are most critical to model. It was found that the projected area of the void perpendicular to the transverse direction and the number of voids modeled had a significant influence on the stiffness. The effect of varying architecture on the variability of in-plane tensile strength was also studied using the Brittle Cracking Model for Concrete in the commercial finite element software, Abaqus. A maximum stress criterion is used to evaluate failure, and the stiffness of failed elements is gradually degraded such that the energy required to open a crack (fracture energy) is dissipated during this degradation process. While the varying architecture did not create variability in the in-plane stiffness, it does contribute significantly to the variability of in-plane strength as measured by a 0.02% offset method. Applying spatially random strengths for the constituents did not contribute to variability in strength as measured by the 0.02% offset. The results of this research may be of interest to those designing materials, as well as those using the material in their design. Having an idea about which characteristics of the architecture affect variability in stiffness may provide guidance to the material designer with respect to which aspects of the architecture can be controlled or improved to decrease the variability of the material properties. The work will also be useful to those desiring to use the complex materials by determining how to link the architectural properties to the mechanical properties with the ultimate goal of reducing the required number of tests.
NASA Technical Reports Server (NTRS)
Radovcich, N. A.; Gentile, D. P.
1989-01-01
A NASTRAN bulk dataset preprocessor was developed to facilitate the integration of filamentary composite laminate properties into composite structural resizing for stiffness requirements. The NASCOMP system generates delta stiffness and delta mass matrices for input to the flutter derivative program. The flutter baseline analysis, derivative calculations, and stiffness and mass matrix updates are controlled by engineer defined processes under an operating system called CBUS. A multi-layered design variable grid system permits high fidelity resizing without excessive computer cost. The NASCOMP system uses ply layup drawings for basic input. The aeroelastic resizing for stiffness capability was used during an actual design exercise.
Morphological Computation of Haptic Perception of a Controllable Stiffness Probe.
Sornkarn, Nantachai; Dasgupta, Prokar; Nanayakkara, Thrishantha
2016-01-01
When people are asked to palpate a novel soft object to discern its physical properties such as texture, elasticity, and even non-homogeneity, they not only regulate probing behaviors, but also the co-contraction level of antagonistic muscles to control the mechanical impedance of fingers. It is suspected that such behavior tries to enhance haptic perception by regulating the function of mechanoreceptors at different depths of the fingertips and proprioceptive sensors such as tendon and spindle sensors located in muscles. In this paper, we designed and fabricated a novel two-degree of freedom variable stiffness indentation probe to investigate whether the regulation of internal stiffness, indentation, and probe sweeping velocity (PSV) variables affect the accuracy of the depth estimation of stiff inclusions in an artificial silicon phantom using information gain metrics. Our experimental results provide new insights into not only the biological phenomena of haptic perception but also new opportunities to design and control soft robotic probes.
Creaby, Mark W; Wrigley, Tim V; Lim, Boon-Whatt; Hinman, Rana S; Bryant, Adam L; Bennell, Kim L
2013-11-20
Self-reported knee joint instability compromises function in individuals with medial knee osteoarthritis and may be related to impaired joint mechanics. The purpose of this study was to evaluate the relationship between self-reported instability and the passive varus-valgus mechanical behaviour of the medial osteoarthritis knee. Passive varus-valgus angular laxity and stiffness were assessed using a modified isokinetic dynamometer in 73 participants with medial tibiofemoral osteoarthritis. All participants self-reported the absence or presence of knee instability symptoms and the degree to which instability affected daily activity on a 6-point likert scale. Forward linear regression modelling identified a significant inverse relationship between passive mid-range knee stiffness and symptoms of knee instability (r = 0.27; P < 0.05): reduced stiffness was indicative of more severe instability symptoms. Angular laxity and end-range stiffness were not related to instability symptoms (P > 0.05). Conceivably, a stiffer passive system may contribute toward greater joint stability during functional activities. Importantly however, net joint stiffness is influenced by both active and passive stiffness, and thus the active neuromuscular system may compensate for reduced passive stiffness in order to maintain joint stability. Future work is merited to examine the role of active stiffness in symptomatic joint stability.
2013-01-01
Background Self-reported knee joint instability compromises function in individuals with medial knee osteoarthritis and may be related to impaired joint mechanics. The purpose of this study was to evaluate the relationship between self-reported instability and the passive varus-valgus mechanical behaviour of the medial osteoarthritis knee. Methods Passive varus-valgus angular laxity and stiffness were assessed using a modified isokinetic dynamometer in 73 participants with medial tibiofemoral osteoarthritis. All participants self-reported the absence or presence of knee instability symptoms and the degree to which instability affected daily activity on a 6-point likert scale. Results Forward linear regression modelling identified a significant inverse relationship between passive mid-range knee stiffness and symptoms of knee instability (r = 0.27; P < 0.05): reduced stiffness was indicative of more severe instability symptoms. Angular laxity and end-range stiffness were not related to instability symptoms (P > 0.05). Conclusions Conceivably, a stiffer passive system may contribute toward greater joint stability during functional activities. Importantly however, net joint stiffness is influenced by both active and passive stiffness, and thus the active neuromuscular system may compensate for reduced passive stiffness in order to maintain joint stability. Future work is merited to examine the role of active stiffness in symptomatic joint stability. PMID:24252592
Acute Effects of Stretching on Leg and Vertical Stiffness During Treadmill Running.
Pappas, Panagiotis T; Paradisis, Giorgos P; Exell, Timothy A; Smirniotou, Athanasia S; Tsolakis, Charilaos K; Arampatzis, Adamantios
2017-12-01
Pappas, PT, Paradisis, GP, Exell, TA, Smirniotou, AS, Tsolakis, CK, and Arampatzis, A. Acute effects of stretching on leg and vertical stiffness during treadmill running. J Strength Cond Res 31(12): 3417-3424, 2017-The implementation of static (SS) and dynamic (DS) stretching during warm-up routines produces significant changes in biological and functional properties of the human musculoskeletal system. These properties could affect the leg and vertical stiffness characteristics that are considered important factors for the success of athletic activities. The aim of this study was to investigate the influence of SS and DS on selected kinematic variables, and leg and vertical stiffness during treadmill running. Fourteen men (age: 22.58 ± 1.05 years, height: 1.77 ± 0.05 m, body mass: 72.74 ± 10.04 kg) performed 30-second running bouts at 4.44 m·s, under 3 different stretching conditions (SS, DS, and no stretching). The total duration in each stretching condition was 6 minutes, and each of the 4 muscle groups was stretched for 40 seconds. Leg and vertical stiffness values were calculated using the "sine wave" method, with no significant differences in stiffness found between stretching conditions. After DS, vertical ground reaction force increased by 1.7% (p < 0.05), which resulted in significant (p < 0.05) increases in flight time (5.8%), step length (2.2%), and vertical displacement of the center of mass (4.5%) and a decrease in step rate (2.2%). Practical durations of SS and DS stretching did not influence leg or vertical stiffness during treadmill running. However, DS seems to result in a small increase in lower-limb force production which may influence running mechanics.
Design of a Variable Stiffness Soft Dexterous Gripper
Nefti-Meziani, Samia; Davis, Steve
2017-01-01
Abstract This article presents the design of a variable stiffness, soft, three-fingered dexterous gripper. The gripper uses two designs of McKibben muscles. Extensor muscles that increase in length when pressurized are used to form the fingers of the gripper. Contractor muscles that decrease in length when pressurized are then used to apply forces to the fingers through tendons, which cause flexion and extension of the fingers. The two types of muscles are arranged to act antagonistically and this means that by raising the pressure in all of the pneumatic muscles, the stiffness of the system can be increased without a resulting change in finger position. The article presents the design of the gripper, some basic kinematics to describe its function, and then experimental results demonstrating the ability to adjust the bending stiffness of the gripper's fingers. It has been demonstrated that the fingers' bending stiffness can be increased by more than 150%. The article concludes by demonstrating that the fingers can be closed loop position controlled and are able to track step and sinusoidal inputs. PMID:29062630
Wong, Arnold Y L; Parent, Eric C; Prasad, Narasimha; Huang, Christopher; Chan, K Ming; Kawchuk, Gregory N
2016-05-01
While some patients with low back pain demonstrate increased spinal stiffness that decreases as pain subsides, this observation is inconsistent. Currently, the relation between spinal stiffness and low back pain remains unclear. This study aimed to investigate the effects of experimental low back pain on temporal changes in posteroanterior spinal stiffness and concurrent trunk muscle activity. In separate sessions five days apart, nine asymptomatic participants received equal volume injections of hypertonic or isotonic saline in random order into the L3-L5 interspinous ligaments. Pain intensity, spinal stiffness (global and terminal stiffness) at the L3 level, and the surface electromyographic activity of six trunk muscles were measured before, immediately after, and 25-minute after injections. These outcome measures under different saline conditions were compared by generalized estimating equations. Compared to isotonic saline injections, hypertonic saline injections evoked significantly higher pain intensity (mean difference: 5.7/10), higher global (mean difference: 0.73N/mm) and terminal stiffness (mean difference: 0.58N/mm), and increased activity of four trunk muscles during indentation (P<0.05). Both spinal stiffness and trunk muscle activity returned to baseline levels as pain subsided. While previous clinical research reported inconsistent findings regarding the association between spinal stiffness and low back pain, our study revealed that experimental pain caused temporary increases in spinal stiffness and concurrent trunk muscle co-contraction during indentation, which helps explain the temporal relation between spinal stiffness and low back pain observed in some clinical studies. Our results substantiate the role of spinal stiffness assessments in monitoring back pain progression. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multi-stability and variable stiffness of cellular solids designed based on origami patterns
NASA Astrophysics Data System (ADS)
Sengupta, Sattam; Li, Suyi
2017-04-01
The application of origami-inspired designs to engineered structures and materials has been a subject of much research efforts. These structures and materials, whose mechanical properties are directly related to the geometry of folding, are capable of achieving a host of unique adaptive functions. In this study, we investigate a three-dimensional multistability and variable stiffness function of a cellular solid based on the Miura-Ori folding pattern. The unit cell of such a solid, consisting of two stacked Miura-Ori sheets, can be elastically bistable due to the nonlinear relationship between rigid-folding deformation and crease material bending. Such a bistability possesses an unorthodox property: the critical, unstable configuration lies on the same side of two stable ones, so that two different force-deformation curves co-exist within the same range of deformation. By exploiting such unique stability properties, we can achieve a programmable stiffness change between the two elastically stable states, and the stiffness differences can be prescribed by tailoring the crease patterns of the cell. This paper presents a comprehensive parametric study revealing the correlations between such variable stiffness and various design parameters. The unique properties stemming from the bistability and design of such a unit cell can be advanced further by assembling them into a solid which can be capable of shape morphing and programmable mechanical properties.
Variable stiffness torsion springs
NASA Astrophysics Data System (ADS)
Alhorn, Dean C.; Polites, Michael E.
1994-05-01
In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.
Variable stiffness torsion springs
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)
1995-01-01
In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.
Variable stiffness torsion springs
NASA Astrophysics Data System (ADS)
Alhorn, Dean C.; Polites, Michael E.
1995-08-01
In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.
Variable stiffness torsion springs
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)
1994-01-01
In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.
Static Aeroelasticity in Combat Aircraft.
1986-01-01
stiffness scaled beam machined along a predicted elastic axis, and load iola- tion cuts forward and aft of the beam, has proved to be most successful...aircraft components. Many papers deal with the activities in the field of structural optimization.’ 4sing fiber composites , a new design technique...Supersonic Design Composite Structures Fly - by - Wire Thin Profiles Aeroelastic Tailoring Unstable Aircraft V Variable Camber Lght Weight Pilot Handling
NASA Astrophysics Data System (ADS)
McKnight, G. P.; Henry, C. P.
2008-03-01
Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than prototypical orthotropic variable stiffness composites. This design allows us to create composite materials that have high stiffness in the cold state below SMP T g (4-14GPa) and yet achieve large composite shear strains (5-20%) in the hot state (above SMP T g).
Morphing hybrid honeycomb (MOHYCOMB) with in situ Poisson’s ratio modulation
NASA Astrophysics Data System (ADS)
Heath, Callum J. C.; Neville, Robin M.; Scarpa, Fabrizio; Bond, Ian P.; Potter, Kevin D.
2016-08-01
Electrostatic adhesion can be used as a means of reversible attachment. Through application of high voltage (~2 kV) across closely spaced parallel plate electrodes, significant shear stresses (11 kPa) can be generated. The highest levels of electrostatic holding force can be achieved through close contact of connection surfaces; this is facilitated by flexible electrodes which can conform to reduce air gaps. Cellular structures are comprised of thin walled elements, making them ideal host structures for electrostatic adhesive elements. The reversible adhesion provides control of the internal connectivity of the cellular structure, and determines the effective cell geometry. This would offer variable stiffness and control of the effective Poisson’s ratio of the global cellular array. Using copper-polyimide thin film laminates and PVDF thin film dielectrics, double lap shear electrostatic adhesive elements have been introduced to a cellular geometry. By activating different groups of reversible adhesive interfaces, the cellular array can assume four different cell configurations. A maximum stiffness modulation of 450% between the ‘All off’ and ‘All on’ cell morphologies has been demonstrated. This structure is also capable of in situ effective Poisson’s ratio variations, with the ability to switch between values of -0.45 and 0.54. Such a structure offers the potential for tuneable vibration absorption (due to its variable stiffness properties), or as a smart honeycomb with controllable curvature and is termed morphing hybrid honeycomb.
Different TCR-induced T lymphocyte responses are potentiated by stiffness with variable sensitivity
Saitakis, Michael; Dogniaux, Stéphanie; Goudot, Christel; Bufi, Nathalie; Asnacios, Sophie; Maurin, Mathieu; Randriamampita, Clotilde; Asnacios, Atef; Hivroz, Claire
2017-01-01
T cells are mechanosensitive but the effect of stiffness on their functions is still debated. We characterize herein how human primary CD4+ T cell functions are affected by stiffness within the physiological Young’s modulus range of 0.5 kPa to 100 kPa. Stiffness modulates T lymphocyte migration and morphological changes induced by TCR/CD3 triggering. Stiffness also increases TCR-induced immune system, metabolism and cell-cycle-related genes. Yet, upon TCR/CD3 stimulation, while cytokine production increases within a wide range of stiffness, from hundreds of Pa to hundreds of kPa, T cell metabolic properties and cell cycle progression are only increased by the highest stiffness tested (100 kPa). Finally, mechanical properties of adherent antigen-presenting cells modulate cytokine production by T cells. Together, these results reveal that T cells discriminate between the wide range of stiffness values found in the body and adapt their responses accordingly. DOI: http://dx.doi.org/10.7554/eLife.23190.001 PMID:28594327
Ramsey, Jason Allan
2011-03-01
A non-articulated plantarflexion resist ankle foot orthosis (AFO), commonly known as a posterior leaf spring AFO, is indicated for patients with motor impairment to the dorsiflexors. The AFO is often custom molded to a patient's lower limb anatomy and fabricated from polypropylene. There are no established guidelines for fabricating this type of AFO with predetermined stiffness of the ankle region for normal walking speeds. Therefore an AFO may not meet the biomechanical needs of the patient. Quantify the biomechanical ankle stiffness requirement for an individual with complete dorsiflexor impairment and develop a method for fabricating an AFO with ankle stiffness to meet that requirement. Experimental, bench research. The literature on sagittal biomechanics of non-pathological adults was reviewed to derive the stiffness of the ankle during loading response. Computer models of 144 AFOs were created with geometric variations to account for differences in human anthropometrics. Computer-based finite element analysis was employed to determine the stiffness and safety factor of the models. Stiffness of the AFOs ranged from 0.04 to 1.8 Nm/deg. This ample range is expected to account for the stiffness required for most adults with complete dorsiflexor impairment. At 5° deflection the factor of safety (ratio of strength to stress) ranged from 2.8 to 9.1. A computer program was generated that computes AFO stiffness from user-input variables of AFO geometry. The stiffness is compared to a theoretically appropriate stiffness based on the patient mass. The geometric variables can be modified until there is a close match, resulting in AFO design specification that is appropriate for the patient. Through validation on human subjects, this method may benefit patient outcomes in clinical practice by avoiding the current uncertainty surrounding AFO performance and reducing the labor and time involved in rectifying a custom AFO post-fabrication. This method provides an avenue for improving patient outcomes by avoiding the current uncertainty surrounding non-articulated plantarflexion resist ankle foot orthosis performance. The ability to quantify the biomechanical ankle stiffness requirement for an individual with complete dorsiflexor impairment provides insight into how other AFO types should be designed as well.
Acute changes in arterial stiffness following exercise in people with metabolic syndrome.
Radhakrishnan, Jeyasundar; Swaminathan, Narasimman; Pereira, Natasha M; Henderson, Keiran; Brodie, David A
This study aims to examine the changes in arterial stiffness immediately following sub-maximal exercise in people with metabolic syndrome. Ninety-four adult participants (19-80 years) with metabolic syndrome gave written consent and were measured for arterial stiffness using a SphygmoCor (SCOR-PVx, Version 8.0, Atcor Medical Private Ltd, USA) immediately before and within 5-10min after an incremental shuttle walk test. The arterial stiffness measures used were pulse wave velocity (PWV), aortic pulse pressure (PP), augmentation pressure, augmentation index (AI), subendocardial viability ratio (SEVR) and ejection duration (ED). There was a significant increase (p<0.05) in most of the arterial stiffness variables following exercise. Exercise capacity had a strong inverse correlation with arterial stiffness and age (p<0.01). Age influences arterial stiffness. Exercise capacity is inversely related to arterial stiffness and age in people with metabolic syndrome. Exercise induced changes in arterial stiffness measured using pulse wave analysis is an important tool that provides further evidence in studying cardiovascular risk in metabolic syndrome. Copyright © 2016 Diabetes India. Published by Elsevier Ltd. All rights reserved.
Previtera, Michelle L.; Sengupta, Amitabha
2015-01-01
Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow–derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness–regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p–NF–κB p65, MyD88, and p–IκBα expression as well as p–NF–κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072
Wang, Dan; De Vito, Giuseppe; Ditroilo, Massimiliano; Fong, Daniel T P; Delahunt, Eamonn
2015-06-01
The objective of this study was to investigate the gender-specific differences in peak torque (PT), muscle stiffness (MS) and musculoarticular stiffness (MAS) of the knee joints in a young active population. Twenty-two male and twenty-two female recreational athletes participated. PT of the knee joint extensor musculature was assessed on an isokinetic dynamometer, MS of the vastus lateralis (VL) muscle was measured in both relaxed and contracted conditions, and knee joint MAS was quantified using the free oscillation technique. Significant gender differences were observed for all dependent variables. Females demonstrated less normalized PT (mean difference (MD)=0.4Nm/kg, p=0.005, η(2)=0.17), relaxed MS (MD=94.2N/m, p<.001, η(2)=0.53), contracted MS (MD=162.7N/m, p<.001, η(2)=0.53) and MAS (MD=422.1N/m, p<.001, η(2)=0.23) than males. MAS increased linearly with the external load in both genders with males demonstrating a significantly higher slope (p=0.019) than females. The observed differences outlined above may contribute to the higher knee joint injury incidence and prevalence in females when compared to males. Copyright © 2015 Elsevier Ltd. All rights reserved.
Giannaccini, Maria Elena; Xiang, Chaoqun; Atyabi, Adham; Theodoridis, Theo; Nefti-Meziani, Samia; Davis, Steve
2018-02-01
Soft robot arms possess unique capabilities when it comes to adaptability, flexibility, and dexterity. In addition, soft systems that are pneumatically actuated can claim high power-to-weight ratio. One of the main drawbacks of pneumatically actuated soft arms is that their stiffness cannot be varied independently from their end-effector position in space. The novel robot arm physical design presented in this article successfully decouples its end-effector positioning from its stiffness. An experimental characterization of this ability is coupled with a mathematical analysis. The arm combines the light weight, high payload to weight ratio and robustness of pneumatic actuation with the adaptability and versatility of variable stiffness. Light weight is a vital component of the inherent safety approach to physical human-robot interaction. To characterize the arm, a neural network analysis of the curvature of the arm for different input pressures is performed. The curvature-pressure relationship is also characterized experimentally.
Buckling and Post-Buckling Behaviors of a Variable Stiffness Composite Laminated Wing Box Structure
NASA Astrophysics Data System (ADS)
Wang, Peiyan; Huang, Xinting; Wang, Zhongnan; Geng, Xiaoliang; Wang, Yuansheng
2018-04-01
The buckling and post-buckling behaviors of variable stiffness composite laminates (VSCL) with curvilinear fibers were investigated and compared with constant stiffness composite laminates (CSCL) with straight fibers. A VSCL box structure was evaluated under a pure bending moment. The results of the comparative test showed that the critical buckling load of the VSCL box was approximately 3% higher than that of the CSCL box. However, the post-buckling load-bearing capacity was similar due to the layup angle and the immature status of the material processing technology. The properties of the VSCL and CSCL boxes under a pure bending moment were simulated using the Hashin criterion and cohesive interface elements. The simulation results are consistent with the experimental results in stiffness, critical buckling load and failure modes but not in post-buckling load capacity. The results of the experiment, the simulation and laminated plate theory show that VSCL greatly improves the critical buckling load but has little influence on the post-buckling load-bearing capacity.
Morphological Computation of Haptic Perception of a Controllable Stiffness Probe
Sornkarn, Nantachai; Dasgupta, Prokar; Nanayakkara, Thrishantha
2016-01-01
When people are asked to palpate a novel soft object to discern its physical properties such as texture, elasticity, and even non-homogeneity, they not only regulate probing behaviors, but also the co-contraction level of antagonistic muscles to control the mechanical impedance of fingers. It is suspected that such behavior tries to enhance haptic perception by regulating the function of mechanoreceptors at different depths of the fingertips and proprioceptive sensors such as tendon and spindle sensors located in muscles. In this paper, we designed and fabricated a novel two-degree of freedom variable stiffness indentation probe to investigate whether the regulation of internal stiffness, indentation, and probe sweeping velocity (PSV) variables affect the accuracy of the depth estimation of stiff inclusions in an artificial silicon phantom using information gain metrics. Our experimental results provide new insights into not only the biological phenomena of haptic perception but also new opportunities to design and control soft robotic probes. PMID:27257814
Xiang, Chaoqun; Atyabi, Adham; Theodoridis, Theo; Nefti-Meziani, Samia; Davis, Steve
2018-01-01
Abstract Soft robot arms possess unique capabilities when it comes to adaptability, flexibility, and dexterity. In addition, soft systems that are pneumatically actuated can claim high power-to-weight ratio. One of the main drawbacks of pneumatically actuated soft arms is that their stiffness cannot be varied independently from their end-effector position in space. The novel robot arm physical design presented in this article successfully decouples its end-effector positioning from its stiffness. An experimental characterization of this ability is coupled with a mathematical analysis. The arm combines the light weight, high payload to weight ratio and robustness of pneumatic actuation with the adaptability and versatility of variable stiffness. Light weight is a vital component of the inherent safety approach to physical human-robot interaction. To characterize the arm, a neural network analysis of the curvature of the arm for different input pressures is performed. The curvature-pressure relationship is also characterized experimentally. PMID:29412080
Influence of Passive Stiffness of Hamstrings on Postural Stability
Kuszewski, Michał; Gnat, Rafał; Sobota, Grzegorz; Myśliwiec, Andrzej
2015-01-01
The aim of the study was to explore whether passive stiffness of the hamstrings influences the strategy of maintaining postural stability. A sample of 50 subjects was selected; the final analyses were based on data of 41 individuals (33 men, 8 women) aged 21 to 29 (mean = 23.3, SD = 1.1) years. A quasi- experimental ex post facto design with repeated measures was used. Categories of independent variables were obtained directly prior to the measurement of the dependent variables. In stage one of the study, passive knee extension was measured in the supine position to assess hamstring stiffness. In stage two, the magnitude of postural sway in antero-posterior direction was measured, while varying the body position on a stabilometric platform, both with and without visual control. The margin of safety was used as a measure of postural control. The magnitude of the margin of safety increased significantly between the open-eye and closed-eye trials. However, although we registered a visible tendency for a larger increase of the margin of safety associated with lower levels of passive hamstrings stiffness, no significant differences were found. Therefore, this study demonstrated that hamstring stiffness did not influence the strategy used to maintain postural stability. PMID:25964809
Influence of passive stiffness of hamstrings on postural stability.
Kuszewski, Michał; Gnat, Rafał; Sobota, Grzegorz; Myśliwiec, Andrzej
2015-03-29
The aim of the study was to explore whether passive stiffness of the hamstrings influences the strategy of maintaining postural stability. A sample of 50 subjects was selected; the final analyses were based on data of 41 individuals (33 men, 8 women) aged 21 to 29 (mean = 23.3, SD = 1.1) years. A quasi- experimental ex post facto design with repeated measures was used. Categories of independent variables were obtained directly prior to the measurement of the dependent variables. In stage one of the study, passive knee extension was measured in the supine position to assess hamstring stiffness. In stage two, the magnitude of postural sway in antero-posterior direction was measured, while varying the body position on a stabilometric platform, both with and without visual control. The margin of safety was used as a measure of postural control. The magnitude of the margin of safety increased significantly between the open-eye and closed-eye trials. However, although we registered a visible tendency for a larger increase of the margin of safety associated with lower levels of passive hamstrings stiffness, no significant differences were found. Therefore, this study demonstrated that hamstring stiffness did not influence the strategy used to maintain postural stability.
NASA Astrophysics Data System (ADS)
Liu, Gaoyu; Lu, Kun; Zou, Donglin; Xie, Zhongliang; Rao, Zhushi; Ta, Na
2017-07-01
The control of the longitudinal pulsating force and the vibration generated is very important to improve the stealth performance of a submarine. Magnetorheological elastomer (MRE) is a kind of intelligent composite material, whose mechanical properties can be continuously, rapidly and reversibly controlled by an external magnetic field. It can be used as variable-stiffness components in the design of a semi-active dynamic vibration absorber (SDVA), which is one of the effective means of longitudinal vibration control. In this paper, an SDVA is designed based on the MRE’s magnetic-induced variable stiffness characteristic. Firstly, a mechanical model of the propulsion shaft system with the SDVA is proposed, theoretically discussed and numerically validated. Then, the mechanical performance of the MRE under different magnetic fields is tested. In addition, the magnetic circuit and the overall structure of the SDVA are designed. Furthermore, electromagnetic and thermodynamic simulations are carried out to guarantee the structural design. The frequency shift property of the SDVA is found through dynamic simulations and validated by a frequency shift experiment. Lastly, the vibration absorption capacity of the SDVA is investigated. The results show that the magnetorheological effect of the MRE and the frequency shift of the SDVA are obvious; the SDVA has relatively acceptable vibration absorption capacity.
Optimization under uncertainty of parallel nonlinear energy sinks
NASA Astrophysics Data System (ADS)
Boroson, Ethan; Missoum, Samy; Mattei, Pierre-Olivier; Vergez, Christophe
2017-04-01
Nonlinear Energy Sinks (NESs) are a promising technique for passively reducing the amplitude of vibrations. Through nonlinear stiffness properties, a NES is able to passively and irreversibly absorb energy. Unlike the traditional Tuned Mass Damper (TMD), NESs do not require a specific tuning and absorb energy over a wider range of frequencies. Nevertheless, they are still only efficient over a limited range of excitations. In order to mitigate this limitation and maximize the efficiency range, this work investigates the optimization of multiple NESs configured in parallel. It is well known that the efficiency of a NES is extremely sensitive to small perturbations in loading conditions or design parameters. In fact, the efficiency of a NES has been shown to be nearly discontinuous in the neighborhood of its activation threshold. For this reason, uncertainties must be taken into account in the design optimization of NESs. In addition, the discontinuities require a specific treatment during the optimization process. In this work, the objective of the optimization is to maximize the expected value of the efficiency of NESs in parallel. The optimization algorithm is able to tackle design variables with uncertainty (e.g., nonlinear stiffness coefficients) as well as aleatory variables such as the initial velocity of the main system. The optimal design of several parallel NES configurations for maximum mean efficiency is investigated. Specifically, NES nonlinear stiffness properties, considered random design variables, are optimized for cases with 1, 2, 3, 4, 5, and 10 NESs in parallel. The distributions of efficiency for the optimal parallel configurations are compared to distributions of efficiencies of non-optimized NESs. It is observed that the optimization enables a sharp increase in the mean value of efficiency while reducing the corresponding variance, thus leading to more robust NES designs.
Light Intensity Physical Activity Trial
2018-01-30
Diabetes Mellitus; Physical Exercise; Light Intensity Physical Activity; Arterial Stiffness; Aortic Stiffness; Pulse Wave Velocity; Type2 Diabetes; Sedentary Lifestyle; Artery Disease; Physical Activity
Brughelli, Matt; Cronin, John
2008-01-01
Human running can be modelled as either a spring-mass model or multiple springs in series. A force is required to stretch or compress the spring, and thus stiffness, the variable of interest in this paper, can be calculated from the ratio of this force to the change in spring length. Given the link between force and length change, muscle stiffness and mechanical stiffness have been areas of interest to researchers, clinicians, and strength and conditioning practitioners for many years. This review focuses on mechanical stiffness, and in particular, vertical, leg and joint stiffness, since these are the only stiffness types that have been directly calculated during human running. It has been established that as running velocity increases from slow-to-moderate values, leg stiffness remains constant while both vertical stiffness and joint stiffness increase. However, no studies have calculated vertical, leg or joint stiffness over a range of slow-to-moderate values to maximum values in an athletic population. Therefore, the effects of faster running velocities on stiffness are relatively unexplored. Furthermore, no experimental research has examined the effects of training on vertical, leg or joint stiffness and the subsequent effects on running performance. Various methods of training (Olympic style weightlifting, heavy resistance training, plyometrics, eccentric strength training) have shown to be effective at improving running performance. However, the effects of these training methods on vertical, leg and joint stiffness are unknown. As a result, the true importance of stiffness to running performance remains unexplored, and the best practice for changing stiffness to optimize running performance is speculative at best. It is our hope that a better understanding of stiffness, and the influence of running speed on stiffness, will lead to greater interest and an increase in experimental research in this area.
Obusek, J P; Holt, K G; Rosenstein, R M
1995-07-01
Human leg swinging is modeled as the harmonic motion of a hybrid mass-spring pendulum. The cycle period is determined by a gravitational component and an elastic component, which is provided by the attachment of a soft-tissue/muscular spring of variable stiffness. To confirm that the stiffness of the spring changes with alterations in the inertial properties of the oscillator and that stiffness is relevant for the control of cycle period, we conducted this study in which the simple pendulum equivalent length was experimentally manipulated by adding mass to the ankle of a comfortably swinging leg. Twenty-four young, healthy adults were videotaped as they swung their right leg under four conditions: no added mass and with masses of 2.27, 4.55, and 6.82kg added to the ankle. Strong, linear relationships between the acceleration and displacement of the swinging leg within subjects and conditions were found, confirming the motion's harmonic nature. Cycle period significantly increased with the added mass. However, the observed increases were not as large as would be predicted by the induced changes in the gravitational component alone. These differences were interpreted as being due to increases in the active muscular stiffness. Significant linear increases in the elastic component (and hence stiffness) were demonstrated with increases in the simple pendulum equivalent length in 20 of the individual subjects, with r2 values ranging between 0.89 and 0.99. Significant linear relationships were also demonstrated between the elastic and gravitational components in 22 subjects, with individual r2 values between 0.90 and 0.99.(ABSTRACT TRUNCATED AT 250 WORDS)
Feola, Andrew; Abramowitch, Steven; Jallah, Zegbeh; Stein, Suzan; Barone, William; Palcsey, Stacy; Moalli, Pamela
2012-01-01
Objective Define the impact of prolapse mesh on the biomechanical properties of the vagina by comparing the prototype Gynemesh PS (Ethicon, Somerville, NJ) to 2 new generation lower stiffness meshes, SmartMesh (Coloplast, Minneapolis, MN) and UltraPro (Ethicon). Design A study employing a non-human primate model Setting University of Pittsburgh Population 45 parous rhesus macaques Methods Meshes were implanted via sacrocolpexy after hysterectomy and compared to Sham. Because its stiffness is highly directional UltraPro was implanted in two directions: UltraPro Perpendicular (less stiff) and UltraPro Parallel (more stiff), with the indicated direction referring to the blue orientation lines. The mesh-vaginal complex (MVC) was excised en toto after 3 months. Main Outcome Measures Active mechanical properties were quantified as contractile force generated in the presence of 120 mM KCl. Passive mechanical properties (a tissues ability to resist an applied force) were measured using a multi-axial protocol. Results Vaginal contractility decreased 80% following implantation with the Gynemesh PS (p=0.001), 48% after SmartMesh (p=0.001), 68% after UltraPro parallel (p=0.001) and was highly variable after UltraPro perpendicular (p =0.16). The tissue contribution to the passive mechanical behavior of the MVC was drastically reduced for Gynemesh PS (p=0.003) but not SmartMesh (p=0.9) or UltraPro independent of the direction of implantation (p=0.68 and p=0.66, respectively). Conclusions Deterioration of the mechanical properties of the vagina was highest following implantation with the stiffest mesh, Gynemesh PS. Such a decrease associated with implantation of a device of increased stiffness is consistent with findings from other systems employing prostheses for support. PMID:23240801
Feola, A; Abramowitch, S; Jallah, Z; Stein, S; Barone, W; Palcsey, S; Moalli, P
2013-01-01
To define the impact of prolapse mesh on the biomechanical properties of the vagina by comparing the prototype Gynemesh PS (Ethicon) to two new-generation lower stiffness meshes, SmartMesh (Coloplast) and UltraPro (Ethicon). A study employing a nonhuman primate model. University of Pittsburgh, PA, USA. Forty-five parous rhesus macaques. Meshes were implanted via sacrocolpopexy after hysterectomy and compared with sham. Because its stiffness is highly directional, UltraPro was implanted in two directions: UltraPro Perpendicular (less stiff) and UltraPro Parallel (more stiff), with the indicated direction referring to the position of the blue orientation lines relative to the longitudinal axis of the vagina. The mesh-vaginal complex (MVC) was excised in toto after 3 months. Active mechanical properties were quantified as the contractile force generated in the presence of 120 mmol/l KCl. Passive mechanical properties (a tissue's ability to resist an applied force) were measured using a multiaxial protocol. Vaginal contractility decreased by 80% following implantation with the Gynemesh PS (P = 0.001), 48% after SmartMesh (P = 0.001), 68% after UltraPro Parallel (P = 0.001) and was highly variable after UltraPro Perpendicular (P = 0.16). The tissue contribution to the passive mechanical behaviour of the MVC was drastically reduced for Gynemesh PS (P = 0.003), but not for SmartMesh (P = 0.9) or UltraPro independent of the direction of implantation (P = 0.68 and P = 0.66, respectively). Deterioration of the mechanical properties of the vagina was highest following implantation with the stiffest mesh, Gynemesh PS. Such a decrease associated with implantation of a device of increased stiffness is consistent with findings from other systems employing prostheses for support. © 2013 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2013 RCOG.
Shaheen, Samina; Wan, Zhengpeng; Li, Zongyu; Chau, Alicia; Li, Xinxin; Zhang, Shaosen; Liu, Yang; Yi, Junyang; Zeng, Yingyue; Wang, Jing; Chen, Xiangjun; Xu, Liling; Chen, Wei; Wang, Fei; Lu, Yun; Zheng, Wenjie; Shi, Yan; Sun, Xiaolin; Li, Zhanguo; Xiong, Chunyang; Liu, Wanli
2017-01-01
The mechanosensing ability of lymphocytes regulates their activation in response to antigen stimulation, but the underlying mechanism remains unexplored. Here, we report that B cell mechanosensing-governed activation requires BCR signaling molecules. PMA-induced activation of PKCβ can bypass the Btk and PLC-γ2 signaling molecules that are usually required for B cells to discriminate substrate stiffness. Instead, PKCβ-dependent activation of FAK is required, leading to FAK-mediated potentiation of B cell spreading and adhesion responses. FAK inactivation or deficiency impaired B cell discrimination of substrate stiffness. Conversely, adhesion molecules greatly enhanced this capability of B cells. Lastly, B cells derived from rheumatoid arthritis (RA) patients exhibited an altered BCR response to substrate stiffness in comparison with healthy controls. These results provide a molecular explanation of how initiation of B cell activation discriminates substrate stiffness through a PKCβ-mediated FAK activation dependent manner. DOI: http://dx.doi.org/10.7554/eLife.23060.001 PMID:28755662
Souza, Thales R.; Araújo, Vanessa L.; Silva, Paula L.; Carvalhais, Viviane O. C.; Resende, Renan A.; Fonseca, Sérgio T.
2016-01-01
ABSTRACT Background Reducing rearfoot eversion is a commonly desired effect in clinical practice to prevent or treat musculoskeletal dysfunction. Interventions that pull the lower limb into external rotation may reduce rearfoot eversion. Objective This study investigated whether the use of external rotation elastic bands, of different levels of stiffness, will decrease rearfoot eversion during walking. We hypothesized that the use of elastic bands would decrease rearfoot eversion and that the greater the band stiffness, the greater the eversion reduction. Method Seventeen healthy participants underwent three-dimensional kinematic analysis of the rearfoot and shank. The participants walked on a treadmill with and without high- and low-stiffness bands. Frontal-plane kinematics of the rearfoot-shank joint complex was obtained during the stance phase of walking. Repeated-measures ANOVAs were used to compare discrete variables that described rearfoot eversion-inversion: mean eversion-inversion; eversion peak; and eversion-inversion range of motion. Results The low-stiffness and high-stiffness bands significantly decreased eversion and increased mean eversion-inversion (p≤0.037) and eversion peak (p≤0.006) compared with the control condition. Both bands also decreased eversion-inversion range of motion (p≤0.047) compared with control by reducing eversion. The high-stiffness band condition was not significantly different from the low-stiffness band condition for any variables (p≥0.479). Conclusion The results indicated that the external rotation bands decreased rearfoot eversion during walking. This constitutes preliminary experimental evidence suggesting that increasing external rotation moments at the lower limb may reduce rearfoot eversion, which needs further testing. PMID:27849289
Erhart, Jennifer C.; Dyrby, Chris O.; D'Lima, Darryl D.; Colwell, Clifford W.; Andriacchi, Thomas P.
2010-01-01
External knee adduction moment can be reduced using footwear interventions, but the exact changes in in vivo medial joint loading remain unknown. An instrumented knee replacement was used to assess changes in in vivo medial joint loading in a single patient walking with a variable-stiffness intervention shoe. We hypothesized that during walking with a load modifying variable-stiffness shoe intervention: (1) the first peak knee adduction moment will be reduced compared to a subject's personal shoes; (2) the first peak in vivo medial contact force will be reduced compared to personal shoes; and (3) the reduction in knee adduction moment will be correlated with the reduction in medial contact force. The instrumentation included a motion capture system, force plate, and the instrumented knee prosthesis. The intervention shoe reduced the first peak knee adduction moment (13.3%, p=0.011) and medial compartment joint contact force (22%; p=0.008) compared to the personal shoe. The change in first peak knee adduction moment was significantly correlated with the change in first peak medial contact force (R2=0.67, p=0.007). Thus, for a single subject with a total knee prosthesis the variable-stiffness shoe reduces loading on the affected compartment of the joint. The reductions in the external knee adduction moment are indicative of reductions in in vivo medial compressive force with this intervention. PMID:20973058
Hiptmair, F; Major, Z; Haßlacher, R; Hild, S
2015-08-01
Magnetoactive elastomers (MAEs) are a class of smart materials whose mechanical properties can be rapidly and reversibly changed by an external magnetic field. Due to this tunability, they are useable for actuators or in active vibration control applications. An extensive magnetomechanical characterization is necessary for MAE material development and requires experiments under cyclic loading in uniform but variable magnetic fields. MAE testing apparatus typically rely on fields of adjustable strength, but fixed (transverse) direction, often provided by electromagnets. In this work, two permanent magnet flux sources were developed as an add-on for a modular test stand, to allow for mechanical testing in uniform fields of variable direction. MAE specimens, based on a silicone matrix with isotropic and anisotropic carbonyl iron particle distributions, were subjected to dynamic mechanical analysis under different field and loading configurations. The magneto-induced increase of stiffness and energy dissipation was determined by the change of the hysteresis loop area and dynamic modulus values. A distinct influence of the composite microstructure and the loading state was observed. Due to the very soft and flexible matrix used for preparing the MAE samples, the material stiffness and damping behavior could be varied over a wide range via the applied field direction and intensity.
dos Santos, Marcelo R.; Sayegh, Ana L.C.; Armani, Rafael; Costa-Hong, Valéria; de Souza, Francis R.; Toschi-Dias, Edgar; Bortolotto, Luiz A.; Yonamine, Mauricio; Negrão, Carlos E.; Alves, Maria-Janieire N.N.
2018-01-01
OBJECTIVES: Misuse of anabolic androgenic steroids in athletes is a strategy used to enhance strength and skeletal muscle hypertrophy. However, its abuse leads to an imbalance in muscle sympathetic nerve activity, increased vascular resistance, and increased blood pressure. However, the mechanisms underlying these alterations are still unknown. Therefore, we tested whether anabolic androgenic steroids could impair resting baroreflex sensitivity and cardiac sympathovagal control. In addition, we evaluate pulse wave velocity to ascertain the arterial stiffness of large vessels. METHODS: Fourteen male anabolic androgenic steroid users and 12 nonusers were studied. Heart rate, blood pressure, and respiratory rate were recorded. Baroreflex sensitivity was estimated by the sequence method, and cardiac autonomic control by analysis of the R-R interval. Pulse wave velocity was measured using a noninvasive automatic device. RESULTS: Mean spontaneous baroreflex sensitivity, baroreflex sensitivity to activation of the baroreceptors, and baroreflex sensitivity to deactivation of the baroreceptors were significantly lower in users than in nonusers. In the spectral analysis of heart rate variability, high frequency activity was lower, while low frequency activity was higher in users than in nonusers. Moreover, the sympathovagal balance was higher in users. Users showed higher pulse wave velocity than nonusers showing arterial stiffness of large vessels. Single linear regression analysis showed significant correlations between mean blood pressure and baroreflex sensitivity and pulse wave velocity. CONCLUSIONS: Our results provide evidence for lower baroreflex sensitivity and sympathovagal imbalance in anabolic androgenic steroid users. Moreover, anabolic androgenic steroid users showed arterial stiffness. Together, these alterations might be the mechanisms triggering the increased blood pressure in this population. PMID:29791601
Santos, Marcelo R Dos; Sayegh, Ana L C; Armani, Rafael; Costa-Hong, Valéria; Souza, Francis R de; Toschi-Dias, Edgar; Bortolotto, Luiz A; Yonamine, Mauricio; Negrão, Carlos E; Alves, Maria-Janieire N N
2018-05-21
Misuse of anabolic androgenic steroids in athletes is a strategy used to enhance strength and skeletal muscle hypertrophy. However, its abuse leads to an imbalance in muscle sympathetic nerve activity, increased vascular resistance, and increased blood pressure. However, the mechanisms underlying these alterations are still unknown. Therefore, we tested whether anabolic androgenic steroids could impair resting baroreflex sensitivity and cardiac sympathovagal control. In addition, we evaluate pulse wave velocity to ascertain the arterial stiffness of large vessels. Fourteen male anabolic androgenic steroid users and 12 nonusers were studied. Heart rate, blood pressure, and respiratory rate were recorded. Baroreflex sensitivity was estimated by the sequence method, and cardiac autonomic control by analysis of the R-R interval. Pulse wave velocity was measured using a noninvasive automatic device. Mean spontaneous baroreflex sensitivity, baroreflex sensitivity to activation of the baroreceptors, and baroreflex sensitivity to deactivation of the baroreceptors were significantly lower in users than in nonusers. In the spectral analysis of heart rate variability, high frequency activity was lower, while low frequency activity was higher in users than in nonusers. Moreover, the sympathovagal balance was higher in users. Users showed higher pulse wave velocity than nonusers showing arterial stiffness of large vessels. Single linear regression analysis showed significant correlations between mean blood pressure and baroreflex sensitivity and pulse wave velocity. Our results provide evidence for lower baroreflex sensitivity and sympathovagal imbalance in anabolic androgenic steroid users. Moreover, anabolic androgenic steroid users showed arterial stiffness. Together, these alterations might be the mechanisms triggering the increased blood pressure in this population.
Maquer, Ghislain; Laurent, Marc; Brandejsky, Vaclav; Pretterklieber, Michael L; Zysset, Philippe K
2014-06-01
Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently higher CV after normalization. Assuming that geometry and material properties affect the mechanical response, they can also compensate for one another. Therefore, the larger CV after normalization can be interpreted as a strong variability of the material properties, previously hidden by the geometry's own influence. In conclusion, a new normalization protocol for the intervertebral disc stiffness in compression, flexion, extension, bilateral torsion and bending was proposed, with the possible use of MRI and FE to acquire the discs' anatomy and determine the nonlinear relations between stiffness and morphology. Such protocol may be useful to relate the disc's mechanical properties to its degree of degeneration.
Stiffness and Damping in Postural Control Increase with Age
Cenciarini, Massimo; Loughlin, Patrick J.; Sparto, Patrick J.; Redfern, Mark S.
2011-01-01
Upright balance is believed to be maintained through active and passive mechanisms, both of which have been shown to be impacted by aging. A compensatory balance response often observed in older adults is increased co-contraction, which is generally assumed to enhance stability by increasing joint stiffness. We investigated the effect of aging on standing balance by fitting body sway data to a previously-developed postural control model that includes active and passive stiffness and damping parameters. Ten young (24 ± 3 y) and seven older (75 ± 5 y) adults were exposed during eyes-closed stance to perturbations consisting of lateral pseudorandom floor tilts. A least-squares fit of the measured body sway data to the postural control model found significantly larger active stiffness and damping model parameters in the older adults. These differences remained significant even after normalizing to account for different body sizes between the young and older adult groups. An age effect was also found for the normalized passive stiffness, but not for the normalized passive damping parameter. This concurrent increase in active stiffness and damping was shown to be more stabilizing than an increase in stiffness alone, as assessed by oscillations in the postural control model impulse response. PMID:19770083
Effects of plyometric and isometric training on muscle and tendon stiffness in vivo.
Kubo, Keitaro; Ishigaki, Tomonobu; Ikebukuro, Toshihiro
2017-08-01
The purpose of this study was to compare the effects of plyometric and isometric training on tendon properties during ramp and ballistic contractions and muscle stiffness under passive and active conditions. Eleven subjects completed 12 weeks (3 days/week) of a unilateral training program for the plantar flexors. They performed plyometric training on one side (PLY) and isometric training on the other side (ISO). Active muscle stiffness in the medial gastrocnemius muscle was calculated according to changes in estimated muscle force and fascicle length during fast stretching after submaximal isometric contractions. Passive muscle stiffness was also calculated from estimated passive muscle force and fascicle length during slow passive stretching. Stiffness and hysteresis of tendon structures were measured using ultrasonography during ramp and ballistic contractions. Passive muscle stiffness and tendon hysteresis did not change for PLY or ISO Active muscle stiffness significantly increased for PLY, but not for ISO Tendon stiffness during ramp and ballistic contractions increased significantly for ISO, but not for PLY In addition, tendon elongation values at force production levels beyond 100 N during ballistic contractions increased for PLY These results suggest that plyometric training (but not isometric training) enhances the extensibility of tendon structures during ballistic contractions and active muscle stiffness during fast stretching, and these changes may be related to improved performances during stretch-shortening cycle exercises. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
The effect of short-term isometric training on core/torso stiffness.
Lee, Benjamin; McGill, Stuart
2017-09-01
"Core" exercise is a basic part of many physical training regimens with goals ranging from rehabilitation of spine and knee injuries to improving athletic performance. Core stiffness has been proposed to perform several functions including reducing pain by minimising joint micro-movements, and enhancing strength and speed performance. This study probes the links between a training approach and immediate but temporary changes in stiffness. Passive and active stiffness was measured on 24 participants; 12 having little to no experience in core training (inexperienced), and the other 12 being athletes experienced to core training methods; before and after a 15 min bout of isometric core exercises. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed via a quick release mechanism. Short-term isometric core training increased passive and active stiffness in most directions for both inexperienced and experienced participants, passive left lateral bend among experienced participants being the exception (P < 0.05). There was no difference between the inexperienced and experienced groups. The results confirm that the specific isometric training exercise approach tested here can induce immediate changes in core stiffness, in this case following a single session. This may influence performance and injury resilience for a brief period.
Park, Sang-Kyoon; Lam, Wing-Kai; Yoon, Sukhoon; Lee, Ki-Kwang; Ryu, Jiseon
2017-09-01
This study investigated whether an increase in the forefoot bending stiffness of a badminton shoe would positively affect agility, comfort and biomechanical variables during badminton-specific movements. Three shoe conditions with identical shoe upper and sole designs with different bending stiffness (Flexible, Regular and Stiff) were used. Elite male badminton players completed an agility test on a standard badminton court involving consecutive lunges in six directions, a comfort test performed by a pair of participants conducting a game-like practice trial and a biomechanics test involving a random assignment of consecutive right forward lunges. No significant differences were found in agility time and biomechanical variables among the three shoes. The players wearing the shoe with a flexible forefoot outsole demonstrated a decreased perception of comfort in the forefoot cushion compared to regular and stiffer conditions during the comfort test (p < 0.05). The results suggested that the modification of forefoot bending stiffness would influence individual perception of comfort but would not influence performance and lower extremity kinematics during the tested badminton-specific tasks. It was concluded that an optimisation of forefoot structure and materials in badminton shoes should consider the individual's perception to maximise footwear comfort in performance.
Reliability of Leg and Vertical Stiffness During High Speed Treadmill Running.
Pappas, Panagiotis; Dallas, Giorgos; Paradisis, Giorgos
2017-04-01
In research, the accurate and reliable measurement of leg and vertical stiffness could contribute to valid interpretations. The current study aimed at determining the intraparticipant variability (ie, intraday and interday reliabilities) of leg and vertical stiffness, as well as related parameters, during high speed treadmill running, using the "sine-wave" method. Thirty-one males ran on a treadmill at 6.67 m∙s -1 , and the contact and flight times were measured. To determine the intraday reliability, three 10-s running bouts with 10-min recovery were performed. In addition, to examine the interday reliability, three 10-s running bouts on 3 separate days with 48-h interbout intervals were performed. The reliability statistics included repeated-measure analysis of variance, average intertrial correlations, intraclass correlation coefficients (ICCs), Cronbach's α reliability coefficient, and the coefficient of variation (CV%). Both intraday and interday reliabilities were high for leg and vertical stiffness (ICC > 0.939 and CV < 4.3%), as well as related variables (ICC > 0.934 and CV < 3.9%). It was thus inferred that the measurements of leg and vertical stiffness, as well as the related parameters obtained using the "sine-wave" method during treadmill running at 6.67 m∙s -1 , were highly reliable, both within and across days.
Morning pressor surge, blood pressure variability, and arterial stiffness in essential hypertension.
Pucci, Giacomo; Battista, Francesca; Anastasio, Fabio; Schillaci, Giuseppe
2017-02-01
An excess morning blood pressure surge (MBPS) may portend an increased cardiovascular risk, but the mechanisms thereof have been little investigated. The link between MBPS, short-term blood pressure (BP) variability, and arterial stiffness has not been entirely defined. In 602 consecutive untreated hypertensive patients (48 ± 12 years, 61% men, office BP 149/93 ± 17/10 mmHg), we measured carotid-femoral pulse wave velocity (cf-PWV, SphygmoCor) and 24-h ambulatory BP. Using self-reported sleep and wake times, MBPS was defined as sleep-trough (ST-MBPS), prewaking, rising. Short-term BP variability was calculated as weighted 24-h SBP SD and average real variability of 24-h SBP (ARV), that is, average of absolute differences between consecutive SBP readings. ST-MBPS (r = 0.16, P < 0.001) and rising MBPS (r = 0.12, P = 0.003) showed a direct correlation with cf-PWV, whereas prewaking MBPS had no such relation (r = 0.06, P = 0.14). Only ST-MBPS was independently associated with cf-PWV (t = 1.96, P = 0.04) after adjustment for age, sex, height, office mean arterial pressure, heart rate, and renal function. This association was lost after further adjustment for weighted 24-h SBP SD (P = 0.13) or ARV (P = 0.24). ARV was a significant mediator of the relationship between ST-MBPS and cf-PWV (P = 0.003). In untreated hypertension, ST-MBPS has a direct relation with aortic stiffness, which is mediated by an increased ARV. The adverse effects of MBPS may be partly explained by its link with arterial stiffness, mediated by short-term SBP variability.
Thermo-mechanical fatigue behavior of reduced activation ferrite/martensite stainless steels
NASA Astrophysics Data System (ADS)
Petersen, C.; Rodrian, D.
2002-12-01
The thermo-mechanical cycling fatigue (TMCF) behavior of reduced activation ferrite/martensite stainless steels is examined. The test rig consists of a stiff load frame, which is directly heated by the digitally controlled ohmic heating device. Cylindrical specimens are used with a wall thickness of 0.4 mm. Variable strain rates are applied at TMCF test mode, due to the constant heating rate of 5.8 K/s and variable temperature changes. TMCF results of as received EUROFER 97 in the temperature range between 100 and 500-600 °C show a reduction in life time (a factor of 2) compared to F82H mod. and OPTIFER IV. TMCF-experiments with hold times of 100 and 1000 s show dramatic reduction in life time for all three materials.
Temporary ipsilateral stiff shoulder after operative fixation of distal radial fractures.
Cha, Soo Min; Shin, Hyun Dae; Hwang, Sung Jin
2017-06-01
This study was conducted to identify variables affecting the development of temporary stiff shoulder after operative fixation for distal radial fractures (DRF). The study retrospectively analyzed 167 patients who had undergone internal fixation using volar locking plate for DRF between 2010 and 2013. Group 1 was denoted as the "normal group," and group 2 was denoted as the "stiff shoulder group." Basic demographic factors evaluated included age, sex, bone mineral density (BMD), and the dominancy. Also investigated were radiologic variables, including concurrent fractures of the styloid process, positive ulnar variances, classification of DRF, and morphologic type of the distal radioulnar joint. Finally, the type of plate, methods used for postoperative protection, and time of union were analyzed. Group 1 consisted of 114 patients, and group 2 consisted of 53 patients. On overall univariate analysis, BMD, hand dominancy, and the protective methods after plating were significantly different between the 2 groups. On multivariate analysis, a lower BMD and injury on the nondominant side were significant factors for shoulder stiffness. Stiffness was significantly higher in patients with a mean BMD < -2.6 than in patients with a mean BMD ≥ -2.6. At the final follow-up, all of the 53 patients in group 2 were relieved of the symptoms of a stiff shoulder. A lower BMD and injury on the nondominant distal radius were distinct factors for the development of a stiff shoulder after operative fixation in DRF. Fortunately, nonoperative treatments, such as stretching exercises/injections, were useful for the relief of these symptoms in the short-term follow-up. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Inverse relationship between physical activity and arterial stiffness in adults with hypertension.
O'Donovan, Cuisle; Lithander, Fiona E; Raftery, Tara; Gormley, John; Mahmud, Azra; Hussey, Juliette
2014-02-01
Physical activity has beneficial effects on arterial stiffness among healthy adults. There is a lack of data on this relationship in adults with hypertension. The majority of studies which have examined physical activity and arterial stiffness have used subjective measures of activity. The aim of this study was to investigate the relationship between objectively measured habitual physical activity and arterial stiffness in individuals with newly diagnosed essential hypertension. Adults attending an outpatient hypertension clinic were recruited into this cross sectional study. Physical activity was measured using a triaxial accelerometer. Pulse wave velocity (PWV) and augmentation index (AIx) were measured using applanation tonometry. Participant's full lipid profile and glucose were determined through the collection of a fasting blood sample. Fifty-three adults [51(14) years, 26 male] participated, 16 of whom had the metabolic syndrome. Inactivity was positively correlated with PWV (r = .53, P < .001) and AIx (r = .48, P < .001). There were significant inverse associations between habitual physical activity of all intensities and both AIx and PWV. In stepwise regression, after adjusting for potential confounders, physical activity was a significant predictor of AIx and PWV. Habitual physical activity of all intensities is associated with reduced arterial stiffness among adults with hypertension.
Tam, Lydia Ho-Pui; Shang, Qing; Li, Edmund Kwok-Ming; Wong, Priscilla Ching-Han; Kwok, Kitty Yan; Kun, Emily Wai-Lin; Yim, Isaac Cheuk-Wan; Lee, Violet Ka-Lai; Yip, Ronald Man-Lung; Pang, Steve Hin-Ting; Lao, Virginia Weng-Nga; Mak, Queenie Wah-Yan; Cheng, Isaac Tsz-Ho; Lau, Xerox Sze-Lok; Li, Tena Ka-Yan; Zhu, Tracy Yaner; Lee, Alex Pui-Wai; Tam, Lai-Shan
2018-05-15
To determine the efficacy of 2 tight control treatment strategies aiming at Simplified Disease Activity Score (SDAI) remission (SDAI ≤ 3.3) compared to 28-joint count Disease Activity Score (DAS28) remission (DAS28 < 2.6) in the prevention of arterial stiffness in patients with early rheumatoid arthritis (RA). This was an open-label study in which 120 patients with early RA were randomized to receive 1 year of tight control treatment. Group 1 (n = 60) aimed to achieve SDAI ≤ 3.3 and Group 2 (n = 60), DAS28 < 2.6. Pulse wave velocity (PWV) and augmentation index (AIx) were measured at baseline and 12 months. A posthoc analysis was also performed to ascertain whether achieving sustained remission could prevent progression in arterial stiffness. The proportions of patients receiving methotrexate monotherapy were significantly lower in Group 1 throughout the study period. At 12 months, the proportions of patients achieving DAS28 and SDAI remission, and the change in PWV and AIx, were comparable between the 2 groups. In view of the lack of differences between the 2 groups, a posthoc analysis was performed at Month 12, including all 110 patients with PWV, to elucidate the independent predictors associated with the change in PWV. Multivariate analysis revealed that achieving sustained DAS28 remission at months 6, 9, and 12 and a shorter disease duration were independent explanatory variables associated with less progression of PWV. With limited access to biologic disease-modifying antirheumatic drugs, treatment efforts toward DAS28 and SDAI remission had similar effects in preventing the progression of arterial stiffness at 1 year. However, achieving sustained DAS28 remission was associated with a significantly greater improvement in PWV. [Clinical Trial registration: Clinicaltrial.gov NCT01768923.].
Fantin, Francesco; Comellato, Gabriele; Rossi, Andrea P; Grison, Elisa; Zoico, Elena; Mazzali, Gloria; Zamboni, Mauro
2017-09-01
Background Only a few studies have investigated the relationship between neck circumference and cardiometabolic risk. The aim of this study was to assess the relationships between neck circumference, waist circumference, metabolic variables and arterial stiffness in a group of overweight and obese subjects evaluating a possible independent role of neck circumference in determining arterial stiffness. Methods and results We studied 95 subjects (53 women) with an age range of 20-77 years and body mass index range from 25.69 to 47.04 kg/m 2 . In each subject we evaluated body mass index, waist, hip and neck circumference, systolic and diastolic blood pressure, insulin, fasting glucose, cholesterol, low-density lipoprotein and high-density lipoprotein cholesterol and triglycerides. Arterial stiffness was assessed by carotid-femoral pulse wave velocity (PWVcf) and carotid-radial pulse wave velocity (PWVcr). Both PWVcf and PWVcr were higher in subjects with high values of neck circumference compared with subjects with normal values of neck circumference. Subjects with high values of neck circumference and abdominal obesity presented higher values of mean arterial pressure, PWVcr and homeostasis model assessment (HOMA) index and lower values of high-density lipoprotein than subjects with only abdominal obesity. Two models of stepwise multiple regression were performed in order to evaluate the combined effect of independent variables on arterial stiffness. In the first model PWVcf was considered a dependent variable, and age, gender, systolic blood pressure, triglycerides, high-density lipoprotein cholesterol, waist circumference, neck circumference, HOMA index and the use of anti-hypertensive medications were considered independent variables. Age, systolic blood pressure, triglycerides and waist circumference were significant predictors of PWVcf, explaining 65% of its variance. In the second model, in which PWVcr was considered a dependent variable, neck circumference and gender were significant predictors of PWVcr, explaining 24% of its variance. Conclusions These findings emphasise the need to measure not only waist but even neck circumference to better stratify and identify individuals at increased cardiometabolic risk, as upper-body subcutaneous fat is a novel, easily measured fat depot.
Increased active hamstring stiffness after exercise in women with a history of low back pain.
Bedard, Rebecca J; Kim, Kyung-Min; Grindstaff, Terry L; Hart, Joseph M
2013-02-01
To compare active hamstring stiffness in female subjects with and without a history of low back pain (LBP) after a standardized 20-min aerobic-exercise session. Case control. Laboratory. 12 women with a history of recurrent episodes of LBP (age = 22.4 ± 2.1 y, mass = 67.1 ± 11.8 kg, height = 167.9 ± 8 cm) and 12 matched healthy women (age = 21.7 ± 1.7 y, mass = 61.4 ± 8.8 kg, height = 165.6 ± 7.3 cm). LBP subjects reported an average 6.5 ± 4.7 on the Oswestry Disability Index. Participants walked at a self-selected speed (minimum 3.0 miles/h) for 20 min. The treadmill incline was raised 1% grade per minute for the first 15 min. During the last 5 min, participants adjusted the incline of the treadmill so they would maintain a moderate level of perceived exertion through the end of the exercise protocol. During session 1, active hamstring stiffness, hamstring and quadriceps isometric strength, and concurrently collected electromyographic activity were recorded before and immediately after the exercise protocol. For session 2, subjects returned 48-72 h after exercise for repeat measure of active hamstring stiffness. Hamstring active stiffness (Nm/rad) taken immediately postexercise was not significantly different between groups. However, individuals with a history of recurrent LBP episodes presented significantly increased hamstring stiffness 48-72 h postexercise compared with controls. For other outcomes, there was no group difference. Women with a history of recurrent LBP episodes presented greater active hamstring stiffness 48-72 h after aerobic exercise.
Spinal Stiffness in Prone and Upright Postures During 0-1.8 g Induced by Parabolic Flight.
Swanenburg, Jaap; Meier, Michael L; Langenfeld, Anke; Schweinhardt, Petra; Humphreys, B Kim
2018-06-01
The purpose of this study was to analyze posterior-to-anterior spinal stiffness in Earth, hyper-, and microgravity conditions during both prone and upright postures. During parabolic flight, the spinal stiffness of the L3 vertebra of a healthy 37-yr-old man was measured in normal Earth gravity (1.0 g), hypergravity (1.8 g), and microgravity (0.0 g) conditions induced in the prone and upright positions. Differences in spinal stiffness were significant across all three gravity conditions in the prone and upright positions. Most effect sizes were large; however, in the upright posture, the effect size between Earth gravity and microgravity was medium. Significant differences in spinal stiffness between the prone and upright positions were found during Earth gravity and hypergravity conditions. No difference was found between the two postures during microgravity conditions. Based on repeated measurements of a single individual, our results showed detectable changes in posterior-to-anterior spinal stiffness. Spinal stiffness increased during microgravity and decreased during hypergravity conditions. In microgravity conditions, posture did not impact spinal stiffness. More data on spinal stiffness in variable gravitational conditions is needed to confirm these results.Swanenburg J, Meier ML, Langenfeld A, Schweinhardt P, Humphreys BK. Spinal stiffness in prone and upright postures during 0-1.8 g induced by parabolic flight. Aerosp Med Hum Perform. 2018; 89(6):563-567.
Pamukoff, Derek N; Blackburn, J Troy
2015-02-01
Greater lower extremity joint stiffness may be related to the development of tibial stress fractures in runners. Musculotendinous stiffness is the largest contributor to joint stiffness, but it is unclear what factors contribute to musculotendinous stiffness. The purpose of this study was to compare plantar flexor musculotendinous stiffness, architecture, geometry, and Achilles tendon stiffness between male runners with and without a history of tibial stress fracture. Nineteen healthy runners (age = 21 ± 2.7 years; mass = 68.2 ± 9.3 kg; height = 177.3 ± 6.0 cm) and 19 runners with a history of tibial stress fracture (age = 21 ± 2.9 years; mass = 65.3 ± 6.0 kg; height = 177.2 ± 5.2 cm) were recruited from community running groups and the university's varsity and club cross-country teams. Plantar flexor musculotendinous stiffness was estimated from the damped frequency of oscillatory motion about the ankle follow perturbation. Ultrasound imaging was used to measure architecture and geometry of the medial gastrocnemius. Dependent variables were compared between groups via one-way ANOVAs. Previously injured runners had greater plantar flexor musculotendinous stiffness (P < .001), greater Achilles tendon stiffness (P = .004), and lesser Achilles tendon elongation (P = .003) during maximal isometric contraction compared with healthy runners. No differences were found in muscle thickness, pennation angle, or fascicle length.
Propulsive performance of pitching foils with variable chordwise flexibility
NASA Astrophysics Data System (ADS)
Zeyghami, Samane; Moored, Keith; Lehigh University Team
2017-11-01
Many swimming and flying animals propel themselves efficiently through water by oscillating flexible fins. These fins are not homogeneously flexible, but instead their flexural stiffness varies along their chord and span. Here we seek to evaluate the effect stiffness profile on the propulsive performance of pitching foils. Stiffness profile characterizes the variation in the local fin stiffness along the chord. To this aim, we developed a low order model of a functionally-graded material where the chordwise flexibility is modeled by two torsional springs along the chordline and the stiffness and location of the springs can be varied arbitrarily. The torsional spring structural model is then strongly coupled to a boundary element fluid model to simulate the fluid-structure interactions. Keeping the leading edge kinematics unchanged, we alter the stiffness profile of the foil and allow it to swim freely in response to the resulting hydrodynamic forces. We then detail the dependency of the hydrodynamic performance and the wake structure to the variations in the local structural properties of the foil.
Direct measurement of the intrinsic ankle stiffness during standing.
Vlutters, M; Boonstra, T A; Schouten, A C; van der Kooij, H
2015-05-01
Ankle stiffness contributes to standing balance, counteracting the destabilizing effect of gravity. The ankle stiffness together with the compliance between the foot and the support surface make up the ankle-foot stiffness, which is relevant to quiet standing. The contribution of the intrinsic ankle-foot stiffness to balance, and the ankle-foot stiffness amplitude dependency remain a topic of debate in the literature. We therefore developed an experimental protocol to directly measure the bilateral intrinsic ankle-foot stiffness during standing balance, and determine its amplitude dependency. By applying fast (40 ms) ramp-and-hold support surface rotations (0.005-0.08 rad) during standing, reflexive contributions could be excluded, and the amplitude dependency of the intrinsic ankle-foot stiffness was investigated. Results showed that reflexive activity could not have biased the torque used for estimating the intrinsic stiffness. Furthermore, subjects required less recovery action to restore balance after bilateral rotations in opposite directions compared to rotations in the same direction. The intrinsic ankle-foot stiffness appears insufficient to ensure balance, ranging from 0.93±0.09 to 0.44±0.06 (normalized to critical stiffness 'mgh'). This implies that changes in muscle activation are required to maintain balance. The non-linear stiffness decrease with increasing rotation amplitude supports the previous published research. With the proposed method reflexive effects can be ruled out from the measured torque without any model assumptions, allowing direct estimation of intrinsic stiffness during standing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Maps and models of density and stiffness within individual Douglas-fir trees
Christine L. Todoroki; Eini C. Lowell; Dennis P. Dykstra; David G. Briggs
2012-01-01
Spatial maps of density and stiffness patterns within individual trees were developed using two methods: (1) measured wood properties of veneer sheets; and (2) mixed effects models, to test the hypothesis that within-tree patterns could be predicted from easily measurable tree variables (height, taper, breast-height diameter, and acoustic velocity). Sample trees...
NASA Technical Reports Server (NTRS)
Lemoine, Sandra M.
1997-01-01
This study examined 3 methods that assessed muscle stiffness. Muscle stiffness has been quantified by tissue reactive force (transverse stiffness), vibration, and force (or torque) over displacement. Muscle stiffness also has two components: reflex (due to muscle sensor activity) and intrinsic (tonic firing of motor units, elastic nature of actin and myosin cross bridges, and connective tissue). This study compared three methods of measuring muscle stiffness of agonist-antagonist muscle pairs of the ankle, knee and elbow.
Effect of long-term isometric training on core/torso stiffness.
Lee, Benjamin C Y; McGill, Stuart M
2015-06-01
Although core stiffness enhances athletic performance traits, controversy exists regarding the effectiveness of isometric vs. dynamic core training methods. This study aimed to determine whether long-term changes in stiffness can be trained, and if so, what is the most effective method. Twenty-four healthy male subjects (23 ± 3 years; 1.8 ± 0.06 m; 77.5 ± 10.8 kg) were recruited for passive and active stiffness measurements before and after a 6-week core training intervention. Twelve subjects (22 ± 2 years; 1.8 ± 0.08 m; 78.3 ± 12.3 kg) were considered naive to physical and core exercise. The other 12 subjects (24 ± 3 years; 1.8 ± 0.05 m; 76.8 ± 9.7 kg) were Muay Thai athletes (savvy). A repeated-measures design compared core training methods (isometric vs. dynamic, with a control group) and subject training experience (naive vs. savvy) before and after a 6-week training period. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed through a quick release mechanism. Passive stiffness increased after the isometric training protocol. Dynamic training produced a smaller effect, and as expected, there was no change in the control group. Active stiffness did not change in any group. Comparisons between subject and training groups did not reveal any interactions. Thus, an isometric training approach was superior in terms of enhancing core stiffness. This is important since increased core stiffness enhances load bearing ability, arrests painful vertebral micromovements, and enhances ballistic distal limb movement. This may explain the efficacy reported for back and knee injury reduction.
Ambegaonkar, Jatin P.; Shultz, Sandra J.; Perrin, David H.; Schmitz, Randy J.; Ackerman, Terry A.; Schulz, Mark R.
2011-01-01
Background: Anterior cruciate ligament (ACL) injuries often occur during landing, with female athletes at higher injury risk than male athletes. Interestingly, female dancers have lower ACL injury rates than do female athletes in general. Hypothesis: Female dancers will have earlier and greater lower extremity muscle activity and higher sagittal knee joint and leg stiffness than will female basketball players. Study Design: Cross-sectional group comparison. Methods: Fifty-five healthy female athletes (35 dancers, 20 basketball players) performed 5 double-leg drop jumps from a 45-cm box. Surface electromyography (onsets and amplitudes; prelanding and postlanding) was recorded from the lateral gastrocnemius, medial and lateral hamstrings, lateral quadriceps muscles with a 3-dimensional electromagnetic tracking system, and forceplates recording biomechanics (leg spring stiffness and knee joint stiffness). Results: Compared with basketball players, dancers had greater leg spring stiffness (P = 0.047) but similar knee joint stiffness (P = 0.44). Although no significant differences were observed in overall muscle onset times (P = 0.22) or activation amplitudes (prelanding, P = 0.60; postlanding, P = 0.78), small to moderate effect sizes (ESs) suggest trends in dancers toward earlier (ES = 0.53) and higher medial hamstrings activation pre- (ES = 0.55) and post- (ES = 0.41) landing and lower lateral quadriceps (ES = 0.30) and higher gastrocnemius (ES = 0.33) postlanding muscle activation. Conclusions: In dancers, the higher leg spring stiffness and trends toward higher hamstrings prelanding and postlanding, as well as lower quadriceps and higher gastrocnemius activation postlanding with similar knee joint stiffness, indicate lower extremity neuromechanical differences across other joints. Clinical Relevance: Female dancers may have lower extremity neuromechanics that are different from those of basketball players during drop jumps. If dancers use ACL-protective strategies during activity, then their training routines should be further investigated to improve ACL injury prevention programs. PMID:23015996
Gao, Diansa; Zuo, Zhong; Tian, Jing; Ali, Quaisar; Lin, Yi; Lei, Han; Sun, Zhongjie
2016-11-01
Arterial stiffness is an independent risk factor for stroke and myocardial infarction. This study was designed to investigate the role of SIRT1, an important deacetylase, and its relationship with Klotho, a kidney-derived aging-suppressor protein, in the pathogenesis of arterial stiffness and hypertension. We found that the serum level of Klotho was decreased by ≈45% in patients with arterial stiffness and hypertension. Interestingly, Klotho haplodeficiency caused arterial stiffening and hypertension, as evidenced by significant increases in pulse wave velocity and blood pressure in Klotho-haplodeficient (KL +/- ) mice. Notably, the expression and activity of SIRT1 were decreased significantly in aortic endothelial and smooth muscle cells in KL +/- mice, suggesting that Klotho deficiency downregulates SIRT1. Treatment with SRT1720 (15 mg/kg/d, IP), a specific SIRT1 activator, abolished Klotho deficiency-induced arterial stiffness and hypertension in KL +/- mice. Klotho deficiency was associated with significant decreases in activities of AMP-activated protein kinase α (AMPKα) and endothelial NO synthase (eNOS) in aortas, which were abolished by SRT1720. Furthermore, Klotho deficiency upregulated NADPH oxidase activity and superoxide production, increased collagen expression, and enhanced elastin fragmentation in the media of aortas. These Klotho deficiency-associated changes were blocked by SRT1720. In conclusion, this study provides the first evidence that Klotho deficiency downregulates SIRT1 activity in arterial endothelial and smooth muscle cells. Pharmacological activation of SIRT1 may be an effective therapeutic strategy for arterial stiffness and hypertension. © 2016 American Heart Association, Inc.
Model-Based Estimation of Knee Stiffness
Pfeifer, Serge; Vallery, Heike; Hardegger, Michael; Riener, Robert; Perreault, Eric J.
2013-01-01
During natural locomotion, the stiffness of the human knee is modulated continuously and subconsciously according to the demands of activity and terrain. Given modern actuator technology, powered transfemoral prostheses could theoretically provide a similar degree of sophistication and function. However, experimentally quantifying knee stiffness modulation during natural gait is challenging. Alternatively, joint stiffness could be estimated in a less disruptive manner using electromyography (EMG) combined with kinetic and kinematic measurements to estimate muscle force, together with models that relate muscle force to stiffness. Here we present the first step in that process, where we develop such an approach and evaluate it in isometric conditions, where experimental measurements are more feasible. Our EMG-guided modeling approach allows us to consider conditions with antagonistic muscle activation, a phenomenon commonly observed in physiological gait. Our validation shows that model-based estimates of knee joint stiffness coincide well with experimental data obtained using conventional perturbation techniques. We conclude that knee stiffness can be accurately estimated in isometric conditions without applying perturbations, which presents an important step towards our ultimate goal of quantifying knee stiffness during gait. PMID:22801482
Gao, Diansa; Zuo, Zhong; Tian, Jing; Ali, Quaisar; Lin, Yi; Lei, Han; Sun, Zhongjie
2016-01-01
Arterial stiffness is an independent risk factor for stroke and myocardial infarction. This study was designed to investigate the role of SIRT1, an important deacetylase, and its relationship with Klotho, a kidney-derived aging-suppressor protein, in the pathogenesis of arterial stiffness and hypertension. We found that the serum level of Klotho was decreased by nearly 45% in patients with arterial stiffness and hypertension. Interestingly, Klotho haplodeficiency caused arterial stiffening and hypertension, as evidenced by significant increases in pulse wave velocity (PWV) and blood pressure (BP) in Klotho-haplodeficient (KL+/−) mice. Notably, the expression and activity of SIRT1 were decreased significantly in aortic endothelial and smooth muscle cells in KL+/− mice, suggesting that Klotho deficiency downregulates SIRT1. Treatment with SRT1720 (15 mg/kg/day, IP), a specific SIRT1 activator, abolished Klotho deficiency-induced arterial stiffness and hypertension in KL+/− mice. Klotho deficiency was associated with significant decreases in activities of AMP-activated protein kinase alpha (AMPKα) and endothelial nitric oxide synthase (eNOS) in aortas, which were abolished by SRT1720. Furthermore, Klotho deficiency upregulated NADPH oxidase activity and superoxide production, increased collagen expression, and enhanced elastin fragmentation in the media of aortas. These Klotho deficiency-associated changes were blocked by SRT1720. In conclusion, this study provides the first evidence that Klotho deficiency downregulates SIRT1 activity in arterial endothelial and smooth muscle cells. Pharmacological activation of SIRT1 may be an effective therapeutic strategy for arterial stiffness and hypertension. PMID:27620389
B. Lachenbruch; G.R. Johnson; G.M. Downes; R. Evans
2010-01-01
The relative importance of density, acoustic velocity, and microfibril angle (MFA) for the prediction of stiffness (MOE) and strength (MOR) has not been well established for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). MOE and MOR of small clear specimens of mature wood were better predicted by density and velocity than by either variable...
On a high-potential variable flexural stiffness device
NASA Astrophysics Data System (ADS)
Henke, Markus; Gerlach, Gerald
2013-05-01
There are great efforts in developing effective composite structures for lightweight constructions for nearly every field of engineering. This concerns for example aeronautics and spacecrafts, but also automotive industry and energy harvesting applications. Modern concepts of lightweight components try to make use of structures with properties which can be adjusted in a controllable was. However, classic composite materials can only slightly adapt to varying environmental conditions because most materials, like carbon or glass-fiber composites show properties which are time-constant and not changeable. This contribution describes the development, the potential and the limitations of novel smart, self-controlling structures which can change their mechanical properties - e.g. their flexural stiffness - by more then one order of magnitude. These structures use a multi-layer approach with a 10-layer stack of 0.75 mm thick polycarbonate. The set-up is analytically described and its mechanical behavior is predicted by finite element analysis done with ABAQUS. The layers are braided together by an array of shape memory alloy (SMA) wires, which can be activated independently. Depending on the temperature applied by the electrical current flowing through the wires and the corresponding contraction the wires can tightly clamp the layers so that they cannot slide against each other due to friction forces. In this case the multilayer acts as rigid beam with high stiffness. If the friction-induced shear stress is smaller than a certain threshold, then the layers can slide over each other and the multilayer becomes compliant under bending load. The friction forces between the layers and, hence, the stiffness of the beam is controlled by the electrical current through the wires. The more separate parts of SMA wires the structure has the larger is the number of steps of stiffness changes of the flexural beam.
Morillas-de-Laguno, Pablo; Vargas-Hitos, José A; Rosales-Castillo, Antonio; Sáez-Urán, Luis Manuel; Montalbán-Méndez, Cristina; Gavilán-Carrera, Blanca; Navarro-Mateos, Carmen; Acosta-Manzano, Pedro; Delgado-Fernández, Manuel; Sabio, José M; Ortego-Centeno, Norberto; Callejas-Rubio, José L; Soriano-Maldonado, Alberto
2018-01-01
To examine the association of objectively measured physical activity (PA) intensity levels and sedentary time with arterial stiffness in women with systemic lupus erythematosus (SLE) with mild disease activity and to analyze whether participants meeting the international PA guidelines have lower arterial stiffness than those not meeting the PA guidelines. The study comprised 47 women with SLE (average age 41.2 [standard deviation 13.9]) years, with clinical and treatment stability during the 6 months prior to the study. PA intensity levels and sedentary time were objectively measured with triaxial accelerometry. Arterial stiffness was assessed through pulse wave velocity, evaluated by Mobil-O-Graph® 24h pulse wave analysis monitor. The average time in moderate to vigorous PA in bouts of ≥10 consecutive minutes was 135.1±151.8 minutes per week. There was no association of PA intensity levels and sedentary time with arterial stiffness, either in crude analyses or after adjusting for potential confounders. Participants who met the international PA guidelines did not show lower pulse wave velocity than those not meeting them (b = -0.169; 95% CI: -0.480 to 0.143; P = 0.280). Our results suggest that PA intensity levels and sedentary time are not associated with arterial stiffness in patients with SLE. Further analyses revealed that patients with SLE meeting international PA guidelines did not present lower arterial stiffness than those not meeting the PA guidelines. Future prospective research is needed to better understand the association of PA and sedentary time with arterial stiffness in patients with SLE.
Kingsley, J Derek; Mayo, Xián; Tai, Yu Lun; Fennell, Curtis
2016-12-01
Kingsley, JD, Mayo, X, Tai, YL, and Fennell, C. Arterial stiffness and autonomic modulation after free-weight resistance exercises in resistance trained individuals. J Strength Cond Res 30(12): 3373-3380, 2016-We investigated the effects of an acute bout of free-weight, whole-body resistance exercise consisting of the squat, bench press, and deadlift on arterial stiffness and cardiac autonomic modulation in 16 (aged 23 ± 3 years; mean ± SD) resistance-trained individuals. Arterial stiffness, autonomic modulation, and baroreflex sensitivity (BRS) were assessed at rest and after 3 sets of 10 repetitions at 75% 1-repetition maximum on each exercise with 2 minutes of rest between sets and exercises. Arterial stiffness was analyzed using carotid-femoral pulse wave velocity (cf-PWV). Linear heart rate variability (log transformed [ln] absolute and normalized units [nu] of low-frequency [LF] and high-frequency [HF] power) and nonlinear heart rate complexity (Sample Entropy [SampEn], Lempel-Ziv Entropy [LZEn]) were measured to determine autonomic modulation. BRS was measured by the sequence method. A 2 × 2 repeated measures analysis of variance (ANOVA) was used to analyze time (rest, recovery) across condition (acute resistance exercise, control). There were significant increases in cf-PWV (p = 0.05), heart rate (p = 0.0001), normalized LF (LFnu; p = 0.001), and the LF/HF ratio (p = 0.0001). Interactions were also noted for ln HF (p = 0.006), HFnu (p = 0.0001), SampEn (p = 0.001), LZEn (p = 0.005), and BRS (p = 0.0001) such that they significantly decreased during recovery from the resistance exercise compared with rest and the control. There was no effect on ln total power, or ln LF. These data suggest that a bout of resistance exercise using free-weights increases arterial stiffness and reduces vagal activity and BRS in comparison with a control session. Vagal tone may not be fully recovered up to 30 minutes after a resistance exercise bout.
Milazzo, Valeria; Maule, Simona; Di Stefano, Cristina; Tosello, Francesco; Totaro, Silvia; Veglio, Franco; Milan, Alberto
2015-12-01
Autonomic failure (AF) is characterized by orthostatic hypotension, supine hypertension, and increased blood pressure (BP) variability. AF patients develop cardiac organ damage, similarly to essential hypertension (EH), and have higher arterial stiffness than healthy controls. Determinants of cardiovascular organ damage in AF are not well known: both BP variability and mean BP values may be involved. The aim of the study was to evaluate cardiac organ damage, arterial stiffness, and central hemodynamics in AF, compared with EH subjects with similar 24-hour BP and a group of healthy controls, and to evaluate determinants of target organ damage in patients with AF. Twenty-seven patients with primary AF were studied (mean age, 65.7±11.2 years) using transthoracic echocardiography, carotid-femoral pulse wave velocity, central hemodynamics, and 24-hour ambulatory BP monitoring. They were compared with 27 EH subjects matched for age, sex, and 24-hour mean BP and with 27 healthy controls. AF and EH had similar left ventricular mass (101.6±33.3 versus 97.7±28.1 g/m(2), P=0.59) and carotid-femoral pulse wave velocity (9.3±1.8 versus 9.2±3.0 m/s, P=0.93); both parameters were significantly lower in healthy controls (P<0.01). Compared with EH, AF patients had higher augmentation index (31.0±7.6% versus 26.1±9.2%, P=0.04) and central BP values. Nighttime systolic BP and 24-hour systolic BP predicted organ damage, independent of BP variability. AF patients develop hypertensive heart disease and increased arterial stiffness, similar to EH with comparable mean BP values. Twenty-four-hour and nighttime systolic BP were determinants of cardiovascular damage, independent of BP variability. © 2015 American Heart Association, Inc.
Contributions to Leg Stiffness in High- Compared with Low-Arched Athletes.
Powell, Douglas W; Paquette, Max R; Williams, D S Blaise
2017-08-01
High-arched (HA) athletes exhibit greater lower extremity stiffness during functional tasks than low-arched (LA) athletes. The contributions of skeletal and muscular structures to stiffness may underlie the distinct injury patterns observed in these athletes. The purpose of this study was to compare skeletal and muscular contributions to leg stiffness in HA and LA athletes during running and landing tasks. Ten HA and 10 LA female athletes performed five overground running trials at a self-selected pace and five step off bilateral landing trials from a height of 30 cm. Three-dimensional kinematics and kinetics were collected using a motion capture system and a force platform. Leg stiffness and its skeletal and muscular contributions were calculated. Independent t-tests were used to compare variable means between arch type groups and Cohen's d were computed to assess effect sizes of mean differences. In running, HA athletes had greater leg stiffness (P = 0.010, d = 1.03) and skeletal stiffness (P = 0.016, d = 0.81), although there are no differences in muscular stiffness (P = 0.134). During landing, HA had greater leg stiffness (P = 0.015, d = 1.06) and skeletal stiffness (P < 0.001, d = 1.84), whereas LA athletes had greater muscular stiffness (P = 0.025, d = 0.96). These findings demonstrate that HA athletes place a greater reliance on skeletal structures for load attenuation during running and landing, whereas LA athletes rely more greatly on muscle contributions during landing only. These findings may provide insight into the distinct injury patterns observed in HA and LA athletes.
Effects of vehicle front-end stiffness on rear seat dummies in NCAP and FMVSS208 tests.
Sahraei, Elham; Digges, Kennerly; Marzougui, Dhafer
2013-01-01
This study is devoted to quantifying changes in mass and stiffness of vehicles tested by the National Highway Traffic Safety Administration (NHTSA) over the past 3 decades (model years 1982 to 2010) and understanding the effect of those changes on protection of rear seat occupants. A total of 1179 tests were used, and the changes in their mass and stiffness versus their model year was quantified. Additionally, data from 439 dummies tested in rear seats of NHTSA's full frontal crashes were analyzed. Dummies were divided into 3 groups based on their reference injury criteria. Multiple regressions were performed with speed, stiffness, and mass as predicting variables for head, neck, and chest injury criteria. A significant increase in mass and stiffness over model year of vehicles was observed, for passenger cars as well as large platform vehicles. The result showed a significant correlation (P-value < .05) between the increase in stiffness of the vehicles and increase in head and chest injury criteria for all dummy sizes. These results explain that stiffness is a significant contributor to previously reported decreases in protection of rear seat occupants over model years of vehicles.
Hage, Ilige S; Hamade, Ramsey F
2017-09-01
Microscale lacunar-canalicular (L-C) porosity is a major contributor to intracortical bone stiffness variability. In this work, such variability is investigated experimentally using micro hardness indentation tests and numerically using a homogenization scheme. Cross sectional rings of cortical bones are cut from the middle tubular part of bovine femur long bone at mid-diaphysis. A series of light microscopy images are taken along a line emanating from the cross-section center starting from the ring's interior (endosteum) ring surface toward the ring's exterior (periosteum) ring surface. For each image in the line, computer vision analysis of porosity is conducted employing an image segmentation methodology based on pulse coupled neural networks (PCNN) recently developed by the authors. Determined are size and shape of each of the lacunar-canalicular (L-C) cortical micro constituents: lacunae, canaliculi, and Haversian canals. Consequently, it was possible to segment and quantify the geometrical attributes of all individual segmented pores leading to accurate determination of derived geometrical measures such as L-C cortical pores' total porosity (pore volume fraction), (elliptical) aspect ratio, orientation, location, and number of pores in secondary and primary osteons. Porosity was found to be unevenly (but linearly) distributed along the interior and exterior regions of the intracortical bone. The segmented L-C porosity data is passed to a numerical microscale-based homogenization scheme, also recently developed by the authors, that analyses a composite made up of lamella matrix punctuated by multi-inclusions and returns corresponding values for longitudinal and transverse Young's modulus (matrix stiffness) for these micro-sized spatial locations. Hence, intracortical stiffness variability is numerically quantified using a combination of computer vision program and numerical homogenization code. These numerically found stiffness values of the homogenization solution are corroborated experimentally using microhardness indentation measurements taken at the same points that the digital images were taken along a radial distance emanating from the interior (endosteum) surface toward the bone's exterior (periosteum) surface. Good agreement was found between numerically calculated and indentation measured stiffness of Intracortical lamellae. Both indentation measurements and numerical solutions of matrix stiffness showed increasing linear trend of compressive longitudinal modulus (E11) values vs. radial position for both interior and exterior regions. In the interior (exterior) region of cortical bone, stiffness modulus values were found to range from 18.5 to 23.4 GPa (23 to 26.0 GPa) with the aggregate stiffness of the cortical lamella in the exterior region being 12% stiffer than that in the interior region. In order to further validate these findings, experimental and FEM simulation of a mid-diaphysis bone ring under compression is employed. The FEM numerical deflections employed nine concentric regions across the thickness with graded stiffness values based on the digital segmentation and homogenization scheme. Bone ring deflections are found to agree well with measured deformations of the compression bone ring.
Schmidt, Ulf; Penzkofer, Rainer; Bachmaier, Samuel; Augat, Peter
2013-09-01
Construct stiffness affects healing of bones fixed with locking plates. However, variable construct stiffness reported in the literature may be attributable to differing test configurations and direct comparisons may clarify these differences. We therefore asked whether different distal femur locking plate systems and constructs will lead to different (1) axial and rotational stiffness and (2) fatigue under cyclic loading. We investigated four plate systems for distal femur fixation (AxSOS, LCP, PERI-LOC, POLYAX) of differing designs and materials using bone substitutes in a distal femur fracture model (OTA/AO 33-A3). We created six constructs of each of the four plating systems. Stiffness under static and cyclic loading and fatigue under cyclic loading were measured. Mean construct stiffness under axial loading was highest for AxSOS (100.8 N/mm) followed by PERI-LOC (80.8 N/mm) and LCP (62.6 N/mm). POLYAX construct stiffness testing showed the lowest stiffness (51.7 N/mm) with 50% stiffness of AxSOS construct testing. Mean construct stiffness under torsional loading was similar in the group of AxSOS and PERI-LOC (3.40 Nm/degree versus 3.15 Nm/degree) and in the group of LCP and POLYAX (2.63 Nm/degree versus 2.56 Nm/degree). The fourth load level of > 75,000 cycles was reached by three of six AxSOS, three of six POLYAX, and two of six PERI-LOC constructs. All others including all LCP constructs failed earlier. Implant design and material of new-generation distal femur locking plate systems leads to a wide range of differences in construct stiffness. Assuming construct stiffness affects fracture healing, these data may influence surgical decision-making in choosing an implant system.
Is stiffness related to athletic groin pain?
Gore, S J; Franklyn-Miller, A; Richter, C; Falvey, E C; King, E; Moran, K
2018-06-01
Athletic groin pain (AGP) is a common injury prevalent in field sports. One biomechanical measure that may be of importance for injury risk is stiffness. To date however, stiffness has not been examined in AGP. The primary aim was to determine whether AGP affects vertical and joint stiffness and if so, whether successful rehabilitation is associated with a change in stiffness. Sixty-five male patients with AGP and fifty male controls were recruited to this study. Assessment included a biomechanical examination of stiffness during a lateral hurdle hop test. Subjects with AGP were tested pre- and post-rehabilitation, while controls were tested once. AGP subjects were cleared for return to play in a median time of 9.14 weeks (5.14-29.0). Stiffness was significantly different at pre-rehabilitation in comparison with controls for four of the ten stiffness values examined: ankle plantar flexor, knee extensor, hip abductor, and vertical stiffness (P < .05, D = 0.36-0.79). Despite clearance for return to play, of these four variables, only hip abductor stiffness changed significantly from pre- to post-rehabilitation (P = .05, D = 0.35) to become non-significantly different to the uninjured group (P = .18, D = 0.26). These findings suggest that hip abductor stiffness may represent a target for AGP rehabilitation. Conversely, given the clearance for return to play, the lower sagittal plane and vertical stiffness in the AGP group in comparison with the uninjured controls likely represents either a compensatory mechanism to reduce the risk of further injury or a consequence of neuromuscular detraining. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A Two-moment Radiation Hydrodynamics Module in ATHENA Using a Godunov Method
NASA Astrophysics Data System (ADS)
Skinner, M. A.; Ostriker, E. C.
2013-04-01
We describe a module for the Athena code that solves the grey equations of radiation hydrodynamics (RHD) using a local variable Eddington tensor (VET) based on the M1 closure of the two-moment hierarchy of the transfer equation. The variables are updated via a combination of explicit Godunov methods to advance the gas and radiation variables including the non-stiff source terms, and a local implicit method to integrate the stiff source terms. We employ the reduced speed of light approximation (RSLA) with subcycling of the radiation variables in order to reduce computational costs. The streaming and diffusion limits are well-described by the M1 closure model, and our implementation shows excellent behavior for problems containing both regimes simultaneously. Our operator-split method is ideally suited for problems with a slowly-varying radiation field and dynamical gas flows, in which the effect of the RSLA is minimal.
Edema and elasticity of a fronto-temporal decompressive craniectomy
Takada, Daikei; Nagai, Hidemasa; Moritake, Kouzo; Akiyama, Yasuhiko
2012-01-01
Background: Decompressive craniectomy is undertaken for relief of brain herniation caused by acute brain swelling. Brain stiffness can be estimated by palpating the decompressive cranial defect and can provide some relatively subjective information to the neurosurgeon to help guide care. The goal of the present study was to objectively evaluate transcutaneous stiffness of the cranial defect using a tactile resonance sensor and to describe the values in patients with a decompressive window in order to characterize the clinical association between brain edema and stiffness. Methods: Data were prospectively collected from 13 of 37 patients who underwent a decompressive craniectomy in our hospital during a 5-year period. Transcutaneous stiffness was measured as change in frequency and as elastic modulus. Results: Stiffness variables of the decompressive site were measured without any adverse effect and subsequent calculations revealed change in frequency = 101.71 ± 36.42 Hz, and shear elastic modulus = 1.99 ± 1.11 kPa. Conclusions: The elasticity of stiffness of a decompressive site correlated with brain edema, cisternal cerebrospinal fluid pressure, and brain shift, all of which are related to acute brain edema. PMID:22347679
The role of elastic energy in activities with high force and power requirements: a brief review.
Wilson, Jacob M; Flanagan, Eamonn P
2008-09-01
The purpose of this article is to provide strength and conditioning practitioners with an understanding of the role of elastic energy in activities with high force and power requirements. Specifically, the article covers 1) the nature of elasticity and its application to human participants, 2) the role of elastic energy in activities requiring a stretch-shorten cycle such as the vertical jump, 3) the role of muscular stiffness in athletic performance, 4) the control of muscular stiffness through feedforward and feedback mechanisms, and 5) factors affecting muscular stiffness. Finally, practical applications are provided. In this section, it is suggested that the storage and reuse of elastic energy is optimized at relatively higher levels of stiffness. Because stiffness decreases as fatigue ensues as well as with stretching before an event, the article emphasizes the need for proper preparation phases in a periodized cycle and the avoidance of long static stretches before high-force activities. The importance of teaching athletes to transition from eccentric to concentric movements with minimal time delays is also proposed due to the finding that time delays appear to decrease the reuse of elastic energy. In addition to teaching within the criterion tasks, evidence is provided that minimizing transitions in plyometric training, a technique demonstrated to increase musculotendinous stiffness, can optimize power output in explosive movements. Finally, evidence is provided that training and teaching programs designed to optimize muscular stiffness may protect athletes against sports-related injuries.
Grgurevic, Ivica; Bokun, Tomislav; Salkic, Nermin N; Brkljacic, Boris; Vukelić-Markovic, Mirjana; Stoos-Veic, Tajana; Aralica, Gorana; Rakic, Mislav; Filipec-Kanizaj, Tajana; Berzigotti, Annalisa
2018-06-01
To analyse elastographic characteristics of focal liver lesions (FLL)s and diagnostic performance of real-time two-dimensional shear-wave elastography (RT-2D-SWE) in order to differentiate benign and malignant FLLs. Consecutive patients diagnosed with FLL by abdominal ultrasound (US) underwent RT-2D-SWE of FLL and non-infiltrated liver by intercostal approach over the right liver lobe. The nature of FLL was determined by diagnostic work-up, including at least one contrast-enhanced imaging modality (MDCT/MRI), check-up of target organs when metastatic disease was suspected and FLL biopsy in inconclusive cases. We analysed 196 patients (median age 60 [range 50-68], 50.5% males) with 259 FLLs (57 hepatocellular carcinomas, 17 cholangiocarcinomas, 94 metastases, 71 haemangiomas, 20 focal nodular hyperplasia) of which 70 (27%) were in cirrhotic liver. Malignant lesions were stiffer (P < .001) with higher variability in intralesional stiffness (P = .001). The best performing cut-off of lesion stiffness was 22.3 kPa (sensitivity 83%; specificity 86%; positive predictive value [PPV] 91.5%; negative predictive value [NPV] 73%) for malignancy. Lesion stiffness <14 kPa had NPV of 96%, while values >32.5 kPa had PPV of 96% for malignancy. Lesion stiffness, lesion/liver stiffness ratio and lesion stiffness variability significantly predicted malignancy in stepwise logistic regression (P < .05), and were used to construct a new Liver Elastography Malignancy Prediction (LEMP) score with accuracy of 96.1% in validation cohort (online calculator available at http://bit.do/lemps). The comprehensive approach demonstrated in this study enables correct differentiation of benign and malignant FLL in 96% of patients by using RT-2D-SWE. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, D. H.; Harris, C. E.
1989-01-01
A mathematical model utilizing the internal state variable concept is proposed for predicting the upper bound of the reduced axial stiffnesses in cross-ply laminates with matrix cracks. The axial crack opening displacement is explicitly expressed in terms of the observable axial strain and the undamaged material properties. A crack parameter representing the effect of matrix cracks on the observable axial Young's modulus is calculated for glass/epoxy and graphite/epoxy material systems. The results show that the matrix crack opening displacement and the effective Young's modulus depend not on the crack length, but on its ratio to the crack spacing.
Vargas-Hitos, José A.; Gavilán-Carrera, Blanca; Navarro-Mateos, Carmen; Acosta-Manzano, Pedro; Delgado-Fernández, Manuel; Sabio, José M.; Ortego-Centeno, Norberto; Callejas-Rubio, José L.; Soriano-Maldonado, Alberto
2018-01-01
Objectives To examine the association of objectively measured physical activity (PA) intensity levels and sedentary time with arterial stiffness in women with systemic lupus erythematosus (SLE) with mild disease activity and to analyze whether participants meeting the international PA guidelines have lower arterial stiffness than those not meeting the PA guidelines. Methods The study comprised 47 women with SLE (average age 41.2 [standard deviation 13.9]) years, with clinical and treatment stability during the 6 months prior to the study. PA intensity levels and sedentary time were objectively measured with triaxial accelerometry. Arterial stiffness was assessed through pulse wave velocity, evaluated by Mobil-O-Graph® 24h pulse wave analysis monitor. Results The average time in moderate to vigorous PA in bouts of ≥10 consecutive minutes was 135.1±151.8 minutes per week. There was no association of PA intensity levels and sedentary time with arterial stiffness, either in crude analyses or after adjusting for potential confounders. Participants who met the international PA guidelines did not show lower pulse wave velocity than those not meeting them (b = -0.169; 95% CI: -0.480 to 0.143; P = 0.280). Conclusions Our results suggest that PA intensity levels and sedentary time are not associated with arterial stiffness in patients with SLE. Further analyses revealed that patients with SLE meeting international PA guidelines did not present lower arterial stiffness than those not meeting the PA guidelines. Future prospective research is needed to better understand the association of PA and sedentary time with arterial stiffness in patients with SLE. PMID:29694382
Hody, S; Rogister, B; Leprince, P; Wang, F; Croisier, J-L
2013-08-01
Unaccustomed eccentric exercise may cause skeletal muscle damage with an increase in plasma creatine kinase (CK) activity. Although the wide variability among individuals in CK response to standardized lengthening contractions has been well described, the reasons underlying this phenomenon have not yet been understood. Therefore, this study investigated a possible correlation of the changes in muscle damage indirect markers after an eccentric exercise with the decline in muscle performance during the exercise. Twenty-seven healthy untrained male subjects performed three sets of 30 maximal isokinetic eccentric contractions of the knee extensors. The muscular work was recorded using an isokinetic dynamometer to assess muscle fatigue by means of various fatigue indices. Plasma CK activity, muscle soreness, and stiffness were measured before (pre) and one day after (post) exercise. The eccentric exercise bout induced significant changes of the three muscle damage indirect markers. Large inter-subject variability was observed for all criteria measured. More interestingly, the log (CK(post) /CK(pre)) and muscle stiffness appeared to be closely correlated with the relative work decrease (r = 0.84, r(2) = 0.70 and r = 0.75, r(2) = 0.56, respectively). This is the first study to propose that the muscle fatigue profile during maximal eccentric protocol could predict the magnitude of the symptoms associated with muscle damage in humans. © 2011 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sway‐dependent changes in standing ankle stiffness caused by muscle thixotropy
Sakanaka, Tania E.; Lakie, Martin
2016-01-01
Key points The passive stiffness of the calf muscles contributes to standing balance, although the properties of muscle tissue are highly labile.We investigated the effect of sway history upon intrinsic ankle stiffness and demonstrated reductions in stiffness of up to 43% during conditions of increased baseline sway.This sway dependence was most apparent when using low amplitude stiffness‐measuring perturbations, and the short‐range stiffness component was smaller during periods of high sway.These characteristics are consistent with the thixotropic properties of the calf muscles causing the observed changes in ankle stiffness.Periods of increased sway impair the passive stabilization of standing, demanding more active neural control of balance. Abstract Quiet standing is achieved through a combination of active and passive mechanisms, consisting of neural control and intrinsic mechanical stiffness of the ankle joint, respectively. The mechanical stiffness is partly determined by the calf muscles. However, the viscoelastic properties of muscle are highly labile, exhibiting a strong dependence on movement history. By measuring the effect of sway history upon ankle stiffness, the present study determines whether this lability has consequences for the passive stabilization of human standing. Ten subjects stood quietly on a rotating platform whose axis was collinear with the ankle joint. Ankle sway was increased by slowly tilting this platform in a random fashion, or decreased by fixing the body to a board. Ankle stiffness was measured by using the same platform to simultaneously apply small, brief perturbations (<0.6 deg; 140 ms) at the same time as the resulting torque response was recorded. The results show that increasing sway reduces ankle stiffness by up to 43% compared to the body‐fixed condition. Normal quiet stance was associated with intermediate values. The effect was most apparent when using smaller perturbation amplitudes to measure stiffness (0.1 vs. 0.6 deg). Furthermore, torque responses exhibited a biphasic pattern, consisting of an initial steep rise followed by a shallower increase. This transition occurred earlier during increased levels of ankle sway. These results are consistent with a movement‐dependent change in passive ankle stiffness caused by thixotropic properties of the calf muscle. The consequence is to place increased reliance upon active neural control during times when increased sway renders ankle stiffness low. PMID:26607292
Tang, Jiqiang; Xiang, Biao; Zhang, Yongbin
2014-07-01
For a magnetically suspended control moment gyroscope, stiffness and damping of magnetic bearing will influence modal frequency of a rotor. In this paper the relationship between modal frequency and stiffness and damping has been investigated. The mathematic calculation model of axial passive magnetic bearing (PMB) stiffness is developed. And PID control based on internal model control is introduced into control of radial active magnetic bearing (AMB), considering the radial coupling of axial PMB, a mathematic calculation model of stiffness and damping of radial AMB is established. According to modal analysis, the relationship between modal frequency and modal shapes is achieved. Radial vibration frequency is mainly influenced by stiffness of radial AMB; however, when stiffness increases, radial vibration will disappear and a high frequency bending modal will appear. Stiffness of axial PMB mainly affects the axial vibration mode, which will turn into high-order bending modal. Axial PMB causes bigger influence on torsion modal of the rotor. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Development of a stiffness-angle law for simplifying the measurement of human hair stiffness.
Jung, I K; Park, S C; Lee, Y R; Bin, S A; Hong, Y D; Eun, D; Lee, J H; Roh, Y S; Kim, B M
2018-04-01
This research examines the benefits of caffeine absorption on hair stiffness. To test hair stiffness, we have developed an evaluation method that is not only accurate, but also inexpensive. Our evaluation method for measuring hair stiffness culminated in a model, called the Stiffness-Angle Law, which describes the elastic properties of hair and can be widely applied to the development of hair care products. Small molecules (≤500 g mol -1 ) such as caffeine can be absorbed into hair. A common shampoo containing 4% caffeine was formulated and applied to hair 10 times, after which the hair stiffness was measured. The caffeine absorption of the treated hair was observed using Fourier-transform infrared spectroscopy (FTIR) with a focal plane array (FPA) detector. Our evaluation method for measuring hair stiffness consists of a regular camera and a support for single strands of hair. After attaching the hair to the support, the bending angle of the hair was observed with a camera and measured. Then, the hair strand was weighed. The stiffness of the hair was calculated based on our proposed Stiffness-Angle Law using three variables: angle, weight of hair and the distance the hair was pulled across the support. The caffeine absorption was confirmed by FTIR analysis. The concentration of amide bond in the hair certainly increased due to caffeine absorption. After caffeine was absorbed into the hair, the bending angle and weight of the hair changed. Applying these measured changes to the Stiffness-Angle Law, it was confirmed that the hair stiffness increased by 13.2% due to caffeine absorption. The theoretical results using the Stiffness-Angle Law agree with the visual examinations of hair exposed to caffeine and also the known results of hair stiffness from a previous report. Our evaluation method combined with our proposed Stiffness-Angle Law effectively provides an accurate and inexpensive evaluation technique for measuring bending stiffness of human hair. © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Chen, Jianfeng; Liu, Guangli; Ma, Chengfu; Zhao, Gang; Du, Wenqiang; Zhu, Wulin; Chu, Jiaru
2017-06-01
Recently, interactions between one-dimensional structural stiffness of physical micro environments and cell biological process have been widely studied. However in previous studies, the influence of structural stiffness on biological process was coupled with the influence of micro fiber curvature. Therefore decoupling the influences of fiber curvature and structural stiffness on cell biological process is of prime importance. In this study, we proposed a novel cell culture substrate comprised of silicon nitride bridges whose structure stiffness can be regulated by altering the axial residual stress without changing material and geometry properties. Both theoretical calculations and finite element simulations were performed to study the influence of residual stress on structure stiffness of bridges. Then multi-positions AFM bending tests were implemented to measure local stiffness of a single micro bridge so as to verify our predictions. NIH/3T3 mouse fibroblast cells were cultured on our substrates to examine the feasibility of the substrate application for investigating cellular response to microenvironment with variable stiffness. The results showed that cells on the edge region near bridge ends were more spread, elongated and better aligned along the bridge axial direction than those on the bridge center region. The results suggest that cells can sense and respond to the differences of stiffness and stiffness gradient between the edge and the center region of the bridges, which makes this kind of substrates can be applied in some biomedical fields, such as cell migration and wound healing. Copyright © 2017 Elsevier B.V. All rights reserved.
Oatis, Carol A; Wolff, Edward F; Lockard, Margery A; Michener, Lori A; Robbins, Steven J
2013-03-01
Stiffness is a common complaint in individuals with knee osteoarthritis and is a component of the osteoarthritis diagnosis. Yet the relationship between stiffness and function is poorly understood and methods to quantify stiffness are limited. Using a cross-sectional observational design with 66 subjects with knee osteoarthritis, stiffness and damping coefficients were calculated from a relaxed knee oscillation procedure. Gait parameters were measured using an electronic walkway. Self-reported pain, stiffness, and function were measured with the Western Ontario and McMaster Osteoarthritis Index. Correlation and Alexander's normalized-t approximation analyses were used to assess associations among the variables. Subset analysis was performed on subjects with and without tibiofemoral joint crepitus. Slight to moderate correlations existed between stiffness and damping coefficients and most gait parameters ((| r |=0.30-0.56; P<.05) and between Western Ontario and McMaster Osteoarthritis Index scores and all gait parameters (| r |=0.35-0.62; P<.05). The damping coefficient was only slightly associated with patient-rated Western Ontario and McMaster Osteoarthritis Index stiffness subscale scores. Subset analysis revealed significant correlations that differed between those with and without crepitus. These findings suggest that laboratory measured stiffness and damping coefficients, Western Ontario and McMaster Osteoarthritis Index scores and gait-related measurements assess different aspects related to movement in individuals with knee osteoarthritis. Stiffness and damping coefficients may offer the ability to explain gait changes in the knee that are independent of a person's perceptions particularly in the early stages of the disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kovaleski, John E; Heitman, Robert J; Gurchiek, Larry R; Hollis, J M; Liu, Wei; Pearsall, Albert W
2014-01-01
The mechanical property of stiffness may be important to investigating how lateral ankle ligament injury affects the behavior of the viscoelastic properties of the ankle complex. A better understanding of injury effects on tissue elastic characteristics in relation to joint laxity could be obtained from cadaveric study. To biomechanically determine the laxity and stiffness characteristics of the cadaver ankle complex before and after simulated injury to the anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) during anterior drawer and inversion loading. Cross-sectional study. University research laboratory. Seven fresh-frozen cadaver ankle specimens. All ankles underwent loading before and after simulated lateral ankle injury using an ankle arthrometer. The dependent variables were anterior displacement, anterior end-range stiffness, inversion rotation, and inversion end-range stiffness. Isolated ATFL and combined ATFL and CFL sectioning resulted in increased anterior displacement but not end-range stiffness when compared with the intact ankle. With inversion loading, combined ATFL and CFL sectioning resulted in increased range of motion and decreased end-range stiffness when compared with the intact and ATFL-sectioned ankles. The absence of change in anterior end-range stiffness between the intact and ligament-deficient ankles indicated bony and other soft tissues functioned to maintain stiffness after pathologic joint displacement, whereas inversion loading of the CFL-deficient ankle after pathologic joint displacement indicated the ankle complex was less stiff when supported only by the secondary joint structures.
Cortical actin nanodynamics determines nitric oxide release in vascular endothelium.
Fels, Johannes; Jeggle, Pia; Kusche-Vihrog, Kristina; Oberleithner, Hans
2012-01-01
The release of the main vasodilator nitric oxide (NO) by the endothelial NO synthase (eNOS) is a hallmark of endothelial function. We aim at elucidating the underlying mechanism how eNOS activity depends on cortical stiffness (К(cortex)) of living endothelial cells. It is hypothesized that cortical actin dynamics determines К(cortex) and directly influences eNOS activity. By combined atomic force microscopy and fluorescence imaging we generated mechanical and optical sections of single living cells. This approach allows the discrimination between К(cortex) and bulk cell stiffness (К(bulk)) and, additionally, the simultaneous analysis of submembranous actin web dynamics. We show that К(cortex) softens when cortical F-actin depolymerizes and that this shift from a gel-like stiff cortex to a soft G-actin rich layer, triggers the stiffness-sensitive eNOS activity. The results implicate that stiffness changes in the ∼100 nm phase of the submembranous actin web, without affecting К(bulk), regulate NO release and thus determines endothelial function.
Rannelli, Luke Anthony; MacRae, Jennifer M; Mann, Michelle C; Ramesh, Sharanya; Hemmelgarn, Brenda R; Rabi, Doreen; Sola, Darlene Y; Ahmed, Sofia B
2017-04-01
Diabetes confers greater cardiovascular risk to women than to men. Whether insulin-resistance-mediated risk extends to the healthy population is unknown. Measures of insulin resistance (fasting insulin, homeostatic model assessment, hemoglobin A1c, quantitative insulin sensitivity check index, glucose) were determined in 48 (56% female) healthy subjects. Heart rate variability (HRV) was calculated by spectral power analysis and arterial stiffness was determined using noninvasive applanation tonometry. Both were measured at baseline and in response to angiotensin II infusion. In women, there was a non-statistically significant trend towards increasing insulin resistance being associated with an overall unfavourable HRV response and increased arterial stiffness to the stressor, while men demonstrated the opposite response. Significant differences in the associations between insulin resistance and cardiovascular physiological profile exist between healthy women and men. Further studies investigating the sex differences in the pathophysiology of insulin resistance in cardiovascular disease are warranted.
Driven translocation of Polymer through a nanopore: effect of heterogeneous flexibility
NASA Astrophysics Data System (ADS)
Adhikari, Ramesh; Bhattacharya, Aniket
2014-03-01
We have studied translocation of a model bead-spring polymer through a nanopore whose building blocks consist of alternate stiff and flexible segments and variable elastic bond potentials. For the case of uniform spring potential translocation of a symmetric periodic stiff-flexible chain of contour length N and segment length m (mod(N,2m)=0), we find that the end-to-end distance and the mean first passage time (MFPT) have weak dependence on the length m. The characteristic periodic pattern of the waiting time distribution captures the stiff and flexible segments of the chain with stiff segments taking longer time to translocate. But when we vary both the elastic bond energy, and the bending energy, as well as the length of stiff/flexible segments, we discover novel patterns in the waiting time distribution which brings out structural information of the building blocks of the translocating chain. Partially supported by UCF Office of Research and Commercialization & College of Science SEED grant.
Ding, Xiaohan; Ye, Ping; Wang, Xiaona; Cao, Ruihua; Yang, Xu; Xiao, Wenkai; Zhang, Yun; Bai, Yongyi; Wu, Hongmei
2017-03-01
This prospective cohort study aimed at identifying association between uric acid (UA) and peripheral arterial stiffness. A prospective cohort longitudinal study was performed according to an average of 4.8 years' follow-up. The demographic data, anthropometric parameters, peripheral arterial stiffness (carotid-radial pulse-wave velocity, cr-PWV) and biomarker variables including UA were examined at both baseline and follow-up. Pearson's correlations were used to identify the associations between UA and peripheral arterial stiffness. Further logistic regressions were employed to determine the associations between UA and arterial stiffness. At the end of follow-up, 1447 subjects were included in the analyses. At baseline, cr-PWV ( r = 0.200, p < 0.001) was closely associated with UA. Furthermore, the follow-up cr-PWV ( r = 0.145, p < 0.001) was also strongly correlated to baseline UA in Pearson's correlation analysis. Multiple regressions also indicated the association between follow-up cr-PWV ( β = 0.493, p = 0.013) and baseline UA level. Logistic regressions revealed that higher baseline UA level was an independent predictor of arterial stiffness severity assessed by cr-PWV at follow-up cross-section. Peripheral arterial stiffness is closely associated with higher baseline UA level. Furthermore, a higher baseline UA level is an independent risk factor and predictor for peripheral arterial stiffness.
Hirai, Hiroaki; Miyazaki, Fumio; Naritomi, Hiroaki; Koba, Keitaro; Oku, Takanori; Uno, Kanna; Uemura, Mitsunori; Nishi, Tomoki; Kageyama, Masayuki; Krebs, Hermano Igo
2015-01-01
Investigation of neural representation of movement planning has attracted the attention of neuroscientists, as it may reveal the sensorimotor transformation essential to motor control. The analysis of muscle synergies based on the activity of agonist–antagonist (AA) muscle pairs may provide insight into such transformations, especially for a reference frame in the muscle space. In this study, we examined the AA concept using the following explanatory variables: the AA ratio, which is related to the equilibrium-joint angle, and the AA sum, which is associated with joint stiffness. We formulated muscle synergies as a function of AA sums, positing that muscle synergies are composite units of mechanical impedance. The AA concept can be regarded as another form of the equilibrium-point (EP) hypothesis, and it can be extended to the concept of EP-based synergies. We introduce, here, a novel tool for analyzing the neurological and motor functions underlying human movements and review some initial insights from our results about the relationships between muscle synergies, endpoint stiffness, and virtual trajectories (time series of EP). Our results suggest that (1) muscle synergies reflect an invariant balance in the co-activation of AA muscle pairs; (2) each synergy represents the basis for the radial, tangential, and null movements of the virtual trajectory in the polar coordinates centered on the specific joint at the base of the body; and (3) the alteration of muscle synergies (for example, due to spasticity or rigidity following neurological injury) results in significant distortion of endpoint stiffness and concomitant virtual trajectories. These results indicate that muscle synergies (i.e., the balance of muscle mechanical impedance) are essential for motor control. PMID:26636079
Hirai, Hiroaki; Miyazaki, Fumio; Naritomi, Hiroaki; Koba, Keitaro; Oku, Takanori; Uno, Kanna; Uemura, Mitsunori; Nishi, Tomoki; Kageyama, Masayuki; Krebs, Hermano Igo
2015-01-01
Investigation of neural representation of movement planning has attracted the attention of neuroscientists, as it may reveal the sensorimotor transformation essential to motor control. The analysis of muscle synergies based on the activity of agonist-antagonist (AA) muscle pairs may provide insight into such transformations, especially for a reference frame in the muscle space. In this study, we examined the AA concept using the following explanatory variables: the AA ratio, which is related to the equilibrium-joint angle, and the AA sum, which is associated with joint stiffness. We formulated muscle synergies as a function of AA sums, positing that muscle synergies are composite units of mechanical impedance. The AA concept can be regarded as another form of the equilibrium-point (EP) hypothesis, and it can be extended to the concept of EP-based synergies. We introduce, here, a novel tool for analyzing the neurological and motor functions underlying human movements and review some initial insights from our results about the relationships between muscle synergies, endpoint stiffness, and virtual trajectories (time series of EP). Our results suggest that (1) muscle synergies reflect an invariant balance in the co-activation of AA muscle pairs; (2) each synergy represents the basis for the radial, tangential, and null movements of the virtual trajectory in the polar coordinates centered on the specific joint at the base of the body; and (3) the alteration of muscle synergies (for example, due to spasticity or rigidity following neurological injury) results in significant distortion of endpoint stiffness and concomitant virtual trajectories. These results indicate that muscle synergies (i.e., the balance of muscle mechanical impedance) are essential for motor control.
Viscoelastic propellant effects on Space Shuttle Dynamics
NASA Technical Reports Server (NTRS)
Bugg, F.
1981-01-01
The program of solid propellant research performed in support of the space shuttle dynamics modeling effort is described. Stiffness, damping, and compressibility of the propellant and the effects of many variables on these properties are discussed. The relationship between the propellant and solid rocket booster dynamics during liftoff and boost flight conditions and the effects of booster vibration and propellant stiffness on free free solid rocket booster modes are described. Coupled modes of the shuttle system and the effect of propellant stiffness on the interfaces of the booster and the external tank are described. A finite shell model of the solid rocket booster was developed.
NASA Astrophysics Data System (ADS)
Gurova, E. G.
2016-08-01
During the researches the mathematical description of the traction characteristics of the stiffness compensators of the vibration isolation devices, relatively of the each axis, has been done. Representation of the compensators properties considers the variable load, thereby provide the wide enough spectrum of the action of the suggested vibration isolators. The derived expressions are valid for all three axes of space at the different stiffnesses, i.e. basic basic and two compensating. The research was supported by the scholarships of Russian Federation President for young scientists №184 from 10th of March 2015.
Increased dynamic regulation of postural tone through Alexander Technique training
Cacciatore, TW; Gurfinkel, VS; Horak, FB; Cordo, PJ; Ames, KE
2010-01-01
Gurfinkel and colleagues (2006) recently found that healthy adults dynamically modulate postural muscle tone in the body axis during anti-gravity postural maintenance and that this modulation is inversely correlated with axial stiffness. Our objective in the present study was to investigate whether dynamic modulation of axial postural tone can change through training. We examined whether teachers of the Alexander Technique (AT), who undergo “long-term” (3-year) training, have greater modulation of axial postural tone than matched control subjects. In addition, we performed a longitudinal study on the effect of “short-term” (10-week) AT training on the axial postural tone of individuals with low back pain (LBP), since short term AT training has previously been shown to reduce LBP. Axial postural tone was quantified by measuring the resistance of the neck, trunk and hips to small (±10°), slow (1°/s) torsional rotation during stance. Modulation of tone was determined by the torsional resistance to rotation (peak-to-peak, phase-advance, and variability of torque) and axial muscle activity (EMG). Peak-to-peak torque was lower (~50%), while phase-advance and cycle-to-cycle variability were enhanced for AT teachers compared to matched control subjects at all levels of the axis. In addition, LBP subjects decreased trunk and hip stiffness following short-term AT training compared to a control intervention. While changes in static levels of postural tone may have contributed to the reduced stiffness observed with the AT, our results suggest that dynamic modulation of postural tone can be enhanced through long-term training in the AT, which may constitute an important direction for therapeutic intervention. PMID:21185100
Increased dynamic regulation of postural tone through Alexander Technique training.
Cacciatore, T W; Gurfinkel, V S; Horak, F B; Cordo, P J; Ames, K E
2011-02-01
Gurfinkel and colleagues (2006) recently found that healthy adults dynamically modulate postural muscle tone in the body axis during anti-gravity postural maintenance and that this modulation is inversely correlated with axial stiffness. Our objective in the present study was to investigate whether dynamic modulation of axial postural tone can change through training. We examined whether teachers of the Alexander Technique (AT), who undergo "long-term" (3-year) training, have greater modulation of axial postural tone than matched control subjects. In addition, we performed a longitudinal study on the effect of "short-term" (10-week) AT training on the axial postural tone of individuals with low back pain (LBP), since short term AT training has previously been shown to reduce LBP. Axial postural tone was quantified by measuring the resistance of the neck, trunk and hips to small (±10°), slow (1°/s) torsional rotation during stance. Modulation of tone was determined by the torsional resistance to rotation (peak-to-peak, phase-advance, and variability of torque) and axial muscle activity (EMG). Peak-to-peak torque was lower (∼50%), while phase-advance and cycle-to-cycle variability were enhanced for AT teachers compared to matched control subjects at all levels of the axis. In addition, LBP subjects decreased trunk and hip stiffness following short-term AT training compared to a control intervention. While changes in static levels of postural tone may have contributed to the reduced stiffness observed with the AT, our results suggest that dynamic modulation of postural tone can be enhanced through long-term training in the AT, which may constitute an important direction for therapeutic intervention. Copyright © 2010 Elsevier B.V. All rights reserved.
Gill, Jaspret
2018-01-01
Individuals may stand with a range of ankle angles. Furthermore, shoes or floor surfaces may elevate or depress their heels. Here we ask how these situations impact ankle stiffness and balance. We performed two studies (each with 10 participants) in which the triceps surae, Achilles tendon and aponeurosis were stretched either passively, by rotating the support surface, or actively by leaning forward. Participants stood freely on footplates which could rotate around the ankle joint axis. Brief, small stiffness-measuring perturbations (<0.7 deg; 140 ms) were applied at intervals of 4–5 s. In study 1, participants stood at selected angles of forward lean. In study 2, normal standing was compared with passive dorsiflexion induced by 15 deg toes-up tilt of the support surface. Smaller perturbations produced higher stiffness estimates, but for all perturbation sizes stiffness increased with active torque or passive stretch. Sway was minimally affected by stretch or lean, suggesting that this did not underlie the alterations in stiffness. In quiet stance, maximum ankle stiffness is limited by the tendon. As tendon strain increases, it becomes stiffer, causing an increase in overall ankle stiffness, which would explain the effects of leaning. However, stiffness also increased considerably with passive stretch, despite a modest torque increase. We discuss possible explanations for this increase. PMID:29558469
Meyer, Timothy E; Karamanoglu, Mustafa; Ehsani, Ali A; Kovács, Sándor J
2004-11-01
Impaired exercise tolerance, determined by peak oxygen consumption (VO2 peak), is predictive of mortality and the necessity for cardiac transplantation in patients with chronic heart failure (HF). However, the role of left ventricular (LV) diastolic function at rest, reflected by chamber stiffness assessed echocardiographically, as a determinant of exercise tolerance is unknown. Increased LV chamber stiffness and limitation of VO2 peak are known correlates of HF. Yet, the relationship between chamber stiffness and VO2 peak in subjects with HF has not been fully determined. Forty-one patients with HF New York Heart Association [(NYHA) class 2.4 +/- 0.8, mean +/- SD] had echocardiographic studies and VO2 peak measurements. Transmitral Doppler E waves were analyzed using a previously validated method to determine k, the LV chamber stiffness parameter. Multiple linear regression analysis of VO(2 peak) variance indicated that LV chamber stiffness k (r2 = 0.55) and NYHA classification (r2 = 0.43) were its best independent predictors and when taken together account for 59% of the variability in VO2 peak. We conclude that diastolic function at rest, as manifested by chamber stiffness, is a major determinant of maximal exercise capacity in HF.
NASA Technical Reports Server (NTRS)
Majda, G.
1985-01-01
A large set of variable coefficient linear systems of ordinary differential equations which possess two different time scales, a slow one and a fast one is considered. A small parameter epsilon characterizes the stiffness of these systems. A system of o.d.e.s. in this set is approximated by a general class of multistep discretizations which includes both one-leg and linear multistep methods. Sufficient conditions are determined under which each solution of a multistep method is uniformly bounded, with a bound which is independent of the stiffness of the system of o.d.e.s., when the step size resolves the slow time scale, but not the fast one. This property is called stability with large step sizes. The theory presented lets one compare properties of one-leg methods and linear multistep methods when they approximate variable coefficient systems of stiff o.d.e.s. In particular, it is shown that one-leg methods have better stability properties with large step sizes than their linear multistep counter parts. The theory also allows one to relate the concept of D-stability to the usual notions of stability and stability domains and to the propagation of errors for multistep methods which use large step sizes.
Stafford, Ryan E; Aljuraifani, Rafeef; Hug, François; Hodges, Paul W
2017-04-01
To investigate whether increases in stiffness can be detected in the anatomical region associated with the striated urethral sphincter (SUS) during voluntary activation using shear-wave elastography (SWE); to identify the location and area of the stiffness increase relative to the point of greatest dorsal displacement of the mid urethra (i.e. SUS); and to determine the relationship between muscle stiffness and contraction intensity. In all, 10 healthy men participated. A linear ultrasound (US) transducer was placed mid-sagittal on the perineum adjacent to a pair of electromyography electrodes that recorded non-specific pelvic floor muscle activity. Stiffness in the area expected to contain the SUS was estimated via US SWE at rest and during voluntary pelvic floor muscles contractions to 5%, 10% and 15% maximum. Still image frames were exported for each repetition and analysed with software that detected increases in stiffness above 150% of the resting stiffness. Pelvic floor muscle contraction elicited an increase in stiffness above threshold within the region expected to contain the SUS for all participants and contraction intensities. The mean (SD) ventral-dorsal distance between the centre of the stiffness area and region of maximal motion of the mid-urethra (caused by SUS contraction) was 5.6 (1.8), 6.2 (0.8), and 5.8 (0.7) mm for 5%, 10% and 15% maximal voluntary contraction, respectively. Greater pelvic floor muscle contraction intensity resulted in a concomitant increase in stiffness, which differed between contraction intensities (5% vs 10%, P < 0.001; 5% vs 15%, P < 0.001; 10% vs 15%, P = 0.003). Voluntary contraction of the pelvic floor muscles in men is associated with an area of stiffness increase measured with SWE, which concurs with the expected location of the SUS. The increase in stiffness occurred in association with an increase in perineal surface electromyography activity, providing evidence that stiffness amplitude relates to general pelvic floor muscle contraction intensity. Future applications of SWE may include investigations of patient populations in which dysfunction of the SUS is thought to play an important role, or investigation of the effect of rehabilitation programmes that target this muscle. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ou, Zhijing; Lin, Jianmao; Chen, Shengfu; Lin, Wen
2017-10-01
A total of 7 experimental tests were conducted to investigate seismic performance of four element variable cross-sectional Concrete Filled Steel Tubular (CFST) laced columns. The experimental parameters are longitudinal slope and arrangement type of lacing tubes. The rules on hysteresis loop, ductility, energy expenditure, and stiffness degradation of specimens are researched. Test results indicate that all specimens have good seismic performance; their hysteresis loops are full without obvious shrinkage. With the increase of longitudinal slope, the horizontal carrying capacity increases, energy dissipation capacity improve, and there is slightly increase in stiffness degradation. The influence of arrangement type of lacing tubes on displacement ductility of specimens is big.
Semi-active control of helicopter vibration using controllable stiffness and damping devices
NASA Astrophysics Data System (ADS)
Anusonti-Inthra, Phuriwat
Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor, represented by a lumped mass under harmonic force excitation, is supported by a spring and a parallel damper on the fuselage (assumed to have infinite mass). Properties of the spring or damper can then be controlled to reduce transmission of the force into the fuselage or the support structure. This semi-active isolation concept can produce additional 30% vibration reduction beyond the level achieved by a passive isolator. Different control schemes (i.e. open-loop, closed-loop, and closed-loop adaptive schemes) are developed and evaluated to control transmission of vibratory loads to the support structure (fuselage), and it is seen that a closed-loop adaptive controller is required to retain vibration reduction effectiveness when there is a change in operating condition. (Abstract shortened by UMI.)
Comparative study on stiffness properties of WOODCAST and conventional casting materials.
Pirhonen, Eija; Pärssinen, Antti; Pelto, Mika
2013-08-01
Plaster-of-Paris and synthetic materials (e.g. fibreglass) have been in clinical use as casting materials for decades. An innovative casting material, WOODCAST, brings interesting alternatives to the traditional materials. The aim of this study was to compare the stiffness properties of the WOODCAST material to traditional casting materials. In immobilization by casting, materials with variable stiffness properties are required. Ring stiffness of cylindrical samples correlates well with cast rigidity. For load-bearing structures, the use of the WOODCAST Splint is recommended as equally high stiffness was obtained with the WOODCAST Splint as was with fibreglass. The WOODCAST 2 mm product is optimal for structures where some elasticity is required, and WOODCAST Ribbon can be used in any WOODCAST structure where further reinforcement is needed. The results show that WOODCAST material can be used in replacing traditional casting materials used in extremity immobilization. The mechanical properties of casting material play an important role in safe and effective fracture immobilization. Stiffness properties of the WOODCAST casting material and conventional materials - fibreglass and plaster-of-Paris - were analysed in this study. The WOODCAST Splint appears to compare favorably with traditional materials such as Scotchcast.
Granata, K P; Padua, D A; Wilson, S E
2002-04-01
Leg stiffness was compared between age-matched males and females during hopping at preferred and controlled frequencies. Stiffness was defined as the linear regression slope between the vertical center of mass (COM) displacement and ground-reaction forces recorded from a force plate during the stance phase of the hopping task. Results demonstrate that subjects modulated the vertical displacement of the COM during ground contact in relation to the square of hopping frequency. This supports the accuracy of the spring-mass oscillator as a representative model of hopping. It also maintained peak vertical ground-reaction load at approximately three times body weight. Leg stiffness values in males (33.9+/-8.7 kN/m) were significantly (p<0.01) greater than in females (26.3+/-6.5 kN/m) at each of three hopping frequencies, 3.0, 2.5 Hz, and a preferred hopping rate. In the spring-mass oscillator model leg stiffness and body mass are related to the frequency of motion. Thus male subjects necessarily recruited greater leg stiffness to drive their heavier body mass at the same frequency as the lighter female subjects during the controlled frequency trials. However, in the preferred hopping condition the stiffness was not constrained by the task because frequency was self-selected. Nonetheless, both male and female subjects hopped at statistically similar preferred frequencies (2.34+/-0.22 Hz), therefore, the females continued to demonstrate less leg stiffness. Recognizing the active muscle stiffness contributes to biomechanical stability as well as leg stiffness, these results may provide insight into the gender bias in risk of musculoskeletal knee injury.
Effects of Functional Training and Calf Stretching on Risk of Falls in Older People: A Pilot Study.
do Rosario, Jailton Thulher; da Fonseca Martins, Natalia Santos; Peixinho, Carolina Carneiro; Oliveira, Liliam Fernandes
2017-04-01
This study aimed to determine the effects of a functional training and ankle stretching program in triceps surae torque, passive stiffness index, and in the risk for fall indicators in older adults. Twenty women (73.4 ± 7.3 years) were allocated into an intervention or control group. The 12-week intervention consisted of functional training and calf stretching exercises performed twice a week. Measurements of peak passive and active torque, passive stiffness, maximum dorsiflexion angle, and indexes of risk for falls (Timed Up and Go, functional reach test, QuickScreen-test) were collected. There were no significant differences for all variables, except the maximum dorsiflexion angle, which increased in the intervention group from 33.78 ± 8.57° to 38.89 ± 7.52°. The exercise program was not sufficient to enhance performance on functional tests and decrease the risk for falls in older adults. The significant increase in the maximum dorsiflexion indicates a positive impact of stretching exercises.
[The influence of "rigidity" and structure of fibrous dust on their biological activity].
Troitskaia, N A; Velichkovskiĭ, B T; Vanchugova, N N
2000-01-01
The authors represent experimental data on cytotoxic, fibrogenic and mutagenic effects of fibrous dusts--"soft" pulp fibers and "stiff" ones (chrysotile-asbestos, carbon, basalt and fiber glass) in comparison with the nonfibrous analogs (antigorit, quartz DQ-12 and others). Viability of peritoneal macrophages was depressed more dramatically by "stiff" fibers vs. the "soft" ones. Mutagenic activity was associated with the "stiffness" degree of the dust particles. When compared to fibrous chemical dusts, nonfibrous ones appeared inert in micronuclear test.
Development and validation of a canine radius replica for mechanical testing of orthopedic implants.
Little, Jeffrey P; Horn, Timothy J; Marcellin-Little, Denis J; Harrysson, Ola L A; West, Harvey A
2012-01-01
To design and fabricate fiberglass-reinforced composite (FRC) replicas of a canine radius and compare their mechanical properties with those of radii from dog cadavers. Replicas based on 3 FRC formulations with 33%, 50%, or 60% short-length discontinuous fiberglass by weight (7 replicas/group) and 5 radii from large (> 30-kg) dog cadavers. Bones and FRC replicas underwent nondestructive mechanical testing including 4-point bending, axial loading, and torsion and destructive testing to failure during 4-point bending. Axial, internal and external torsional, and bending stiffnesses were calculated. Axial pullout loads for bone screws placed in the replicas and cadaveric radii were also assessed. Axial, internal and external torsional, and 4-point bending stiffnesses of FRC replicas increased significantly with increasing fiberglass content. The 4-point bending stiffness of 33% and 50% FRC replicas and axial and internal torsional stiffnesses of 33% FRC replicas were equivalent to the cadaveric bone stiffnesses. Ultimate 4-point bending loads did not differ significantly between FRC replicas and bones. Ultimate screw pullout loads did not differ significantly between 33% or 50% FRC replicas and bones. Mechanical property variability (coefficient of variation) of cadaveric radii was approximately 2 to 19 times that of FRC replicas, depending on loading protocols. Within the range of properties tested, FRC replicas had mechanical properties equivalent to and mechanical property variability less than those of radii from dog cadavers. Results indicated that FRC replicas may be a useful alternative to cadaveric bones for biomechanical testing of canine bone constructs.
NASA Technical Reports Server (NTRS)
Majda, George
1986-01-01
One-leg and multistep discretizations of variable-coefficient linear systems of ODEs having both slow and fast time scales are investigated analytically. The stability properties of these discretizations are obtained independent of ODE stiffness and compared. The results of numerical computations are presented in tables, and it is shown that for large step sizes the stability of one-leg methods is better than that of the corresponding linear multistep methods.
Kozel, Beth A; Danback, Joshua R; Waxler, Jessica L; Knutsen, Russell H; de Las Fuentes, Lisa; Reusz, Gyorgy S; Kis, Eva; Bhatt, Ami B; Pober, Barbara R
2014-01-01
Williams syndrome is caused by the deletion of 26 to 28 genes, including elastin, on human chromosome 7. Elastin insufficiency leads to the cardiovascular hallmarks of this condition, namely focal stenosis and hypertension. Extrapolation from the Eln(+/-) mouse suggests that affected people may also have stiff vasculature, a risk factor for stroke, myocardial infarction, and cardiac death. NCF1, one of the variably deleted Williams genes, is a component of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex and is involved in the generation of oxidative stress, making it an interesting candidate modifier for vascular stiffness. Using a case-control design, vascular stiffness was evaluated by pulse wave velocity in 77 Williams cases and matched controls. Cases had stiffer conducting vessels than controls (P<0.001), with increased stiffness observed in even the youngest children with Williams syndrome. Pulse wave velocity increased with age at comparable rates in cases and controls, and although the degree of vascular stiffness varied, it was seen in both hypertensive and normotensive Williams participants. Use of antihypertensive medication and extension of the Williams deletion to include NCF1 were associated with protection from vascular stiffness. These findings demonstrate that vascular stiffness is a primary vascular phenotype in Williams syndrome and that treatment with antihypertensives or agents inhibiting oxidative stress may be important in managing patients with this condition, potentially even those who are not overtly hypertensive.
Martínez-Revelles, Sonia; García-Redondo, Ana B; Avendaño, María S; Varona, Saray; Palao, Teresa; Orriols, Mar; Roque, Fernanda R; Fortuño, Ana; Touyz, Rhian M; Martínez-González, Jose; Salaices, Mercedes; Rodríguez, Cristina; Briones, Ana M
2017-09-01
Vascular stiffness, structural elastin abnormalities, and increased oxidative stress are hallmarks of hypertension. Lysyl oxidase (LOX) is an elastin crosslinking enzyme that produces H 2 O 2 as a by-product. We addressed the interplay between LOX, oxidative stress, vessel stiffness, and elastin. Angiotensin II (Ang II)-infused hypertensive mice and spontaneously hypertensive rats (SHR) showed increased vascular LOX expression and stiffness and an abnormal elastin structure. Mice over-expressing LOX in vascular smooth muscle cells (TgLOX) exhibited similar mechanical and elastin alterations to those of hypertensive models. LOX inhibition with β-aminopropionitrile (BAPN) attenuated mechanical and elastin alterations in TgLOX mice, Ang II-infused mice, and SHR. Arteries from TgLOX mice, Ang II-infused mice, and/or SHR exhibited increased vascular H 2 O 2 and O 2 .- levels, NADPH oxidase activity, and/or mitochondrial dysfunction. BAPN prevented the higher oxidative stress in hypertensive models. Treatment of TgLOX and Ang II-infused mice and SHR with the mitochondrial-targeted superoxide dismutase mimetic mito-TEMPO, the antioxidant apocynin, or the H 2 O 2 scavenger polyethylene glycol-conjugated catalase (PEG-catalase) reduced oxidative stress, vascular stiffness, and elastin alterations. Vascular p38 mitogen-activated protein kinase (p38MAPK) activation was increased in Ang II-infused and TgLOX mice and this effect was prevented by BAPN, mito-TEMPO, or PEG-catalase. SB203580, the p38MAPK inhibitor, normalized vessel stiffness and elastin structure in TgLOX mice. We identify LOX as a novel source of vascular reactive oxygen species and a new pathway involved in vascular stiffness and elastin remodeling in hypertension. LOX up-regulation is associated with enhanced oxidative stress that promotes p38MAPK activation, elastin structural alterations, and vascular stiffness. This pathway contributes to vascular abnormalities in hypertension. Antioxid. Redox Signal. 27, 379-397.
Martínez-Revelles, Sonia; García-Redondo, Ana B.; Avendaño, María S.; Varona, Saray; Palao, Teresa; Orriols, Mar; Roque, Fernanda R.; Fortuño, Ana; Touyz, Rhian M.; Martínez-González, Jose; Salaices, Mercedes
2017-01-01
Abstract Aims: Vascular stiffness, structural elastin abnormalities, and increased oxidative stress are hallmarks of hypertension. Lysyl oxidase (LOX) is an elastin crosslinking enzyme that produces H2O2 as a by-product. We addressed the interplay between LOX, oxidative stress, vessel stiffness, and elastin. Results: Angiotensin II (Ang II)-infused hypertensive mice and spontaneously hypertensive rats (SHR) showed increased vascular LOX expression and stiffness and an abnormal elastin structure. Mice over-expressing LOX in vascular smooth muscle cells (TgLOX) exhibited similar mechanical and elastin alterations to those of hypertensive models. LOX inhibition with β-aminopropionitrile (BAPN) attenuated mechanical and elastin alterations in TgLOX mice, Ang II-infused mice, and SHR. Arteries from TgLOX mice, Ang II-infused mice, and/or SHR exhibited increased vascular H2O2 and O2.− levels, NADPH oxidase activity, and/or mitochondrial dysfunction. BAPN prevented the higher oxidative stress in hypertensive models. Treatment of TgLOX and Ang II-infused mice and SHR with the mitochondrial-targeted superoxide dismutase mimetic mito-TEMPO, the antioxidant apocynin, or the H2O2 scavenger polyethylene glycol-conjugated catalase (PEG-catalase) reduced oxidative stress, vascular stiffness, and elastin alterations. Vascular p38 mitogen-activated protein kinase (p38MAPK) activation was increased in Ang II-infused and TgLOX mice and this effect was prevented by BAPN, mito-TEMPO, or PEG-catalase. SB203580, the p38MAPK inhibitor, normalized vessel stiffness and elastin structure in TgLOX mice. Innovation: We identify LOX as a novel source of vascular reactive oxygen species and a new pathway involved in vascular stiffness and elastin remodeling in hypertension. Conclusion: LOX up-regulation is associated with enhanced oxidative stress that promotes p38MAPK activation, elastin structural alterations, and vascular stiffness. This pathway contributes to vascular abnormalities in hypertension. Antioxid. Redox Signal. 27, 379–397. PMID:28010122
Arterial stiffness in 10-year-old children: current and early determinants.
Schack-Nielsen, Lene; Mølgaard, Christian; Larsen, Dorthe; Martyn, Christopher; Michaelsen, Kim Fleischer
2005-12-01
It has been suggested that CVD has its origins in early life. An impairment of fetal growth and early postnatal nutrition may have programming effects on cardiovascular physiology. In addition, traditional risk factors for CVD may initiate the atherosclerotic process during childhood. We explored the effect of fat intake, physical activity and lipid profile in childhood, and birth weight, growth during infancy and breast-feeding on arterial stiffness in a cohort study of ninety-three 10-year-old children followed during infancy and re-examined at the age of 10 years. Arterial stiffness in two arterial segments (aorto-radial and aorto-femoral) was measured as pulse wave velocity. Arterial stiffness was inversely associated with physical activity (a regression coefficient in cm/s (95 % CI) of -6.8 (-11.2, -2.4) and -3.9 (-6.9, -0.8) per h of high physical activity/d in the aorto-radial and aorto-femoral segments, respectively). Arterial stiffness was also positively associated with dietary fat energy percentage (3.1 (95 % CI 0.9, 5.2) and 1.8 (95 % CI 0.2, 3.2) per fat energy percentage in the aorto-radial and aorto-femoral segments, respectively) but was not related to body composition, insulin resistance or lipid profile. Arterial stiffness was also positively associated with duration of breast-feeding for the aorto-femoral segment only (2.1 (95 % CI 0.4, 3.7) per month) but was not associated with growth in early life. In conclusion, patterns of physical activity and diet, and history of breast-feeding in infancy, have an influence on the stiffness of the large arteries in children. The long-term effects of this are unknown.
Altered neuromuscular control of leg stiffness following soccer-specific exercise.
Oliver, Jon L; De Ste Croix, Mark B A; Lloyd, Rhodri S; Williams, Craig A
2014-11-01
To examine changes to neuromuscular control of leg stiffness following 42 min of soccer-specific exercise. Ten youth soccer players, aged 15.8 ± 0.4 years, stature 1.73 ± 0.06 m and mass 59.8 ± 9.7 kg, hopped on a force plate at a self-selected frequency before and after simulated soccer exercise performed on a non-motorised treadmill. During hopping, muscle activity was measured using surface electromyography from four lower limb muscles and analysed to determine feedforward- and feedback-mediated activity, as well as co-contraction. There was a small, non-significant change in stiffness following exercise (26.6 ± 10.6 vs. 24.0 ± 7.0 kN m(-1), p > 0.05, ES = 0.25), with half the group increasing and half decreasing their stiffness. Changes in stiffness were significantly related to changes in centre of mass (CoM) displacement (r = 0.90, p < 0.01, extremely large correlation) but not changes in peak ground reaction force (r = 0.58, p > 0.05, large correlation). A number of significant relationships were observed between changes in stiffness and CoM displacement with changes in feedforward, feedback and eccentric muscle activity of the soleus and vastus lateralis muscles following exercise (r = 0.64-0.98, p < 0.05, large-extremely large correlations), but not with changes in co-contraction (r = 0.11-0.55, p > 0.05, small-large correlations). Following soccer-specific exercise individual changes in feedforward- and reflex-mediated activity of the soleus and vastus lateralis, and not co-contraction around the knee and ankle, modulate changes in CoM displacement and leg stiffness.
Östling, Gerd; Nilsson, Peter M.
2015-01-01
Introduction Arterial stiffness is an independent risk factor for cardiovascular morbidity and can be assessed by applanation tonometry by measuring pulse wave velocity (PWV) and augmentation index (AIX) by pressure pulse wave analysis (PWA). As an inexpensive and operator independent alternative, photoelectric plethysmography (PPG) has been introduced with analysis of the digital volume pulse wave (DPA) and its second derivatives of wave reflections. Objective The objective was to investigate the repeatability of arterial stiffness parameters measured by digital pulse wave analysis (DPA) and the associations to applanation tonometry parameters. Methods and Results 112 pregnant and non-pregnant individuals of different ages and genders were examined with SphygmoCor arterial wall tonometry and Meridian DPA finger photoplethysmography. Coefficients of repeatability, Bland-Altman plots, intraclass correlation coefficients and correlations to heart rate (HR) and body height were calculated for DPA variables, and the DPA variables were compared to tonometry variables left ventricular ejection time (LVET), PWV and AIX. No DPA variable showed any systematic measurement error or excellent repeatability, but dicrotic index (DI), dicrotic dilatation index (DDI), cardiac ejection elasticity index (EEI), aging index (AI) and second derivatives of the crude pulse wave curve, b/a and e/a, showed good repeatability. Overall, the correlations to AIX were better than to PWV, with correlations coefficients >0.70 for EEI, AI and b/a. Considering the level of repeatability and the correlations to tonometry, the overall best DPA parameters were EEI, AI and b/a. The two pansystolic time parameters, ejection time compensated (ETc) by DPA and LVET by tonometry, showed a significant but weak correlation. Conclusion For estimation of the LV function, ETc, EEI and b/a are suitable, for large artery stiffness EEI, and for small arteries DI and DDI. The only global parameter, AI, showed a high repeatability and the overall best correlations with AIX and PWV. PMID:26291079
Evaluation of mechanical and thermal properties of commonly used denture base resins.
Phoenix, Rodney D; Mansueto, Michael A; Ackerman, Neal A; Jones, Robert E
2004-03-01
The purpose of this investigation was to evaluate and compare the mechanical and thermal properties of 6 commonly used polymethyl methacrylate denture base resins. Sorption, solubility, color stability, adaptation, flexural stiffness, and hardness were assessed to determine compliance with ADA Specification No. 12. Thermal assessments were performed using differential scanning calorimetry and dynamic mechanical analysis. Results were assessed using statistical and observational analyses. All materials satisfied ADA requirements for sorption, solubility, and color stability. Adaptation testing indicated that microwave-activated systems provided better adaptation to associated casts than conventional heat-activated resins. According to flexural testing results, microwaveable resins were relatively stiff, while rubber-modified resins were more flexible. Differential scanning calorimetry indicated that microwave-activated systems were more completely polymerized than conventional heat-activated materials. The microwaveable resins displayed better adaptation, greater stiffness, and greater surface hardness than other denture base resins included in this investigation. Elastomeric toughening agents yielded decreased stiffness, decreased surface hardness, and decreased glass transition temperatures.
Singer, Madeline L.; Kobayashi, Toshiki; Lincoln, Lucas S.; Orendurff, Michael S.; Foreman, K. Bo
2014-01-01
Background Stiffness of an ankle-foot orthosis plays an important role in improving gait in patients with a history of stroke. To address this, the aim of this case series study was to determine the effect of increasing plantarflexion stiffness of an ankle-foot orthosis on the sagittal ankle and knee joint angle and moment during the first and second rockers of gait. Methods Gait data were collected in 5 subjects with stroke at a self-selected walking speed under two plantarflexion stiffness conditions (0.4 Nm/deg and 1.3 Nm/deg) using a stiffness-adjustable experimental ankle-foot orthosis on a Bertec split-belt fully instrumented treadmill in a 3-dimensional motion analysis laboratory. Findings By increasing the plantarflexion stiffness of the ankle-foot orthosis, peak plantarfexion angle of the ankle was reduced and peak dorsiflexion moment was generally increased in the first rocker as hypothesized. Two subjects demonstrated increases in both peak knee flexion angle and peak knee extension moment in the second rocker as hypothesized. The two subjects exhibited minimum contractility during active plantarflexion, while the other three subjects could actively plantarflex their ankle joint. Interpretation It was suggested that those with the decreased ability to actively plantarflex their ankle could not overcome excessive plantarflexion stiffness at initial contact of gait, and as a result exhibited compensation strategies at the knee joint. Providing excessively stiff ankle-foot orthoses might put added stress on the extensor muscles of the knee joint, potentially creating fatigue and future pathologies in some patients with stroke. PMID:25241248
Virion stiffness regulates immature HIV-1 entry
2013-01-01
Background Human immunodeficiency virus type 1 (HIV-1) undergoes a protease-mediated maturation process that is required for its infectivity. Little is known about how the physical properties of viral particles change during maturation and how these changes affect the viral lifecycle. Using Atomic Force Microscopy (AFM), we previously discovered that HIV undergoes a “stiffness switch”, a dramatic reduction in particle stiffness during maturation that is mediated by the viral Envelope (Env) protein. Results In this study, we show that transmembrane-anchored Env cytoplasmic tail (CT) domain is sufficient to regulate the particle stiffness of immature HIV-1. Using this construct expressed in trans with viral Env lacking the CT domain, we show that increasing particle stiffness reduces viral entry activity in immature virions. A similar effect was also observed for immature HIV-1 pseudovirions containing Env from vesicular stomatitis virus. Conclusions This linkage between particle stiffness and viral entry activity illustrates a novel level of regulation for viral replication, providing the first evidence for a biological role of virion physical properties and suggesting a new inhibitory strategy. PMID:23305456
Parameter identification and optimization of slide guide joint of CNC machine tools
NASA Astrophysics Data System (ADS)
Zhou, S.; Sun, B. B.
2017-11-01
The joint surface has an important influence on the performance of CNC machine tools. In order to identify the dynamic parameters of slide guide joint, the parametric finite element model of the joint is established and optimum design method is used based on the finite element simulation and modal test. Then the mode that has the most influence on the dynamics of slip joint is found through harmonic response analysis. Take the frequency of this mode as objective, the sensitivity analysis of the stiffness of each joint surface is carried out using Latin Hypercube Sampling and Monte Carlo Simulation. The result shows that the vertical stiffness of slip joint surface constituted by the bed and the slide plate has the most obvious influence on the structure. Therefore, this stiffness is taken as the optimization variable and the optimal value is obtained through studying the relationship between structural dynamic performance and stiffness. Take the stiffness values before and after optimization into the FEM of machine tool, and it is found that the dynamic performance of the machine tool is improved.
Spoon, Corrie; Moravec, W J; Rowe, M H; Grant, J W; Peterson, E H
2011-12-01
Spatial and temporal properties of head movement are encoded by vestibular hair cells in the inner ear. One of the most striking features of these receptors is the orderly structural variation in their mechanoreceptive hair bundles, but the functional significance of this diversity is poorly understood. We tested the hypothesis that hair bundle structure is a significant contributor to hair bundle mechanics by comparing structure and steady-state stiffness of 73 hair bundles at varying locations on the utricular macula. Our first major finding is that stiffness of utricular hair bundles varies systematically with macular locus. Stiffness values are highest in the striola, near the line of hair bundle polarity reversal, and decline exponentially toward the medial extrastriola. Striolar bundles are significantly more stiff than those in medial (median: 8.9 μN/m) and lateral (2.0 μN/m) extrastriolae. Within the striola, bundle stiffness is greatest in zone 2 (106.4 μN/m), a band of type II hair cells, and significantly less in zone 3 (30.6 μN/m), which contains the only type I hair cells in the macula. Bathing bundles in media that break interciliary links produced changes in bundle stiffness with predictable time course and magnitude, suggesting that links were intact in our standard media and contributed normally to bundle stiffness during measurements. Our second major finding is that bundle structure is a significant predictor of steady-state stiffness: the heights of kinocilia and the tallest stereocilia are the most important determinants of bundle stiffness. Our results suggest 1) a functional interpretation of bundle height variability in vertebrate vestibular organs, 2) a role for the striola in detecting onset of head movement, and 3) the hypothesis that differences in bundle stiffness contribute to diversity in afferent response dynamics.
Steady-state stiffness of utricular hair cells depends on macular location and hair bundle structure
Spoon, Corrie; Moravec, W. J.; Rowe, M. H.; Grant, J. W.
2011-01-01
Spatial and temporal properties of head movement are encoded by vestibular hair cells in the inner ear. One of the most striking features of these receptors is the orderly structural variation in their mechanoreceptive hair bundles, but the functional significance of this diversity is poorly understood. We tested the hypothesis that hair bundle structure is a significant contributor to hair bundle mechanics by comparing structure and steady-state stiffness of 73 hair bundles at varying locations on the utricular macula. Our first major finding is that stiffness of utricular hair bundles varies systematically with macular locus. Stiffness values are highest in the striola, near the line of hair bundle polarity reversal, and decline exponentially toward the medial extrastriola. Striolar bundles are significantly more stiff than those in medial (median: 8.9 μN/m) and lateral (2.0 μN/m) extrastriolae. Within the striola, bundle stiffness is greatest in zone 2 (106.4 μN/m), a band of type II hair cells, and significantly less in zone 3 (30.6 μN/m), which contains the only type I hair cells in the macula. Bathing bundles in media that break interciliary links produced changes in bundle stiffness with predictable time course and magnitude, suggesting that links were intact in our standard media and contributed normally to bundle stiffness during measurements. Our second major finding is that bundle structure is a significant predictor of steady-state stiffness: the heights of kinocilia and the tallest stereocilia are the most important determinants of bundle stiffness. Our results suggest 1) a functional interpretation of bundle height variability in vertebrate vestibular organs, 2) a role for the striola in detecting onset of head movement, and 3) the hypothesis that differences in bundle stiffness contribute to diversity in afferent response dynamics. PMID:21918003
Keating, M; Kurup, A; Alvarez-Elizondo, M; Levine, A J; Botvinick, E
2017-07-15
Bulk tissue stiffness has been correlated with regulation of cellular processes and conversely cells have been shown to remodel their pericellular tissue according to a complex feedback mechanism critical to development, homeostasis, and disease. However, bulk rheological methods mask the dynamics within a heterogeneous fibrous extracellular matrix (ECM) in the region proximal to a cell (pericellular region). Here, we use optical tweezers active microrheology (AMR) to probe the distribution of the complex material response function (α=α'+α″, in units of µm/nN) within a type I collagen ECM, a biomaterial commonly used in tissue engineering. We discovered cells both elastically and plastically deformed the pericellular material. α' is wildly heterogeneous, with 1/α' values spanning three orders of magnitude around a single cell. This was observed in gels having a cell-free 1/α' of approximately 0.5nN/µm. We also found that inhibition of cell contractility instantaneously softens the pericellular space and reduces stiffness heterogeneity, suggesting the system was strain hardened and not only plastically remodeled. The remaining regions of high stiffness suggest cellular remodeling of the surrounding matrix. To test this hypothesis, cells were incubated within the type I collagen gel for 24-h in a media containing a broad-spectrum matrix metalloproteinase (MMP) inhibitor. While pericellular material maintained stiffness asymmetry, stiffness magnitudes were reduced. Dual inhibition demonstrates that the combination of MMP activity and contractility is necessary to establish the pericellular stiffness landscape. This heterogeneity in stiffness suggests the distribution of pericellular stiffness, and not bulk stiffness alone, must be considered in the study of cell-ECM interactions and design of complex biomaterial scaffolds. Collagen is a fibrous extracellular matrix (ECM) protein widely used to study cell-ECM interactions. Stiffness of ECM has been shown to instruct cells, which can in turn modify their ECM, as has been shown in the study of cancer and regenerative medicine. Here we measure the stiffness of the collagen microenvironment surrounding cells and quantitatively measure the dependence of pericellular stiffness on MMP activity and cytoskeletal contractility. Competent cell-mediated stiffening results in a wildly heterogeneous micromechanical topography, with values spanning orders of magnitude around a single cell. We speculate studies must consider this notable heterogeneity generated by cells when testing theories regarding the role of ECM mechanics in health and disease. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Performance variation due to stiffness in a tuna-inspired flexible foil model.
Rosic, Mariel-Luisa N; Thornycroft, Patrick J M; Feilich, Kara L; Lucas, Kelsey N; Lauder, George V
2017-01-17
Tuna are fast, economical swimmers in part due to their stiff, high aspect ratio caudal fins and streamlined bodies. Previous studies using passive caudal fin models have suggested that while high aspect ratio tail shapes such as a tuna's generally perform well, tail performance cannot be determined from shape alone. In this study, we analyzed the swimming performance of tuna-tail-shaped hydrofoils of a wide range of stiffnesses, heave amplitudes, and frequencies to determine how stiffness and kinematics affect multiple swimming performance parameters for a single foil shape. We then compared the foil models' kinematics with published data from a live swimming tuna to determine how well the hydrofoil models could mimic fish kinematics. Foil kinematics over a wide range of motion programs generally showed a minimum lateral displacement at the narrowest part of the foil, and, immediately anterior to that, a local area of large lateral body displacement. These two kinematic patterns may enhance thrust in foils of intermediate stiffness. Stiffness and kinematics exhibited subtle interacting effects on hydrodynamic efficiency, with no one stiffness maximizing both thrust and efficiency. Foils of intermediate stiffnesses typically had the greatest coefficients of thrust at the highest heave amplitudes and frequencies. The comparison of foil kinematics with tuna kinematics showed that tuna motion is better approximated by a zero angle of attack foil motion program than by programs that do not incorporate pitch. These results indicate that open questions in biomechanics may be well served by foil models, given appropriate choice of model characteristics and control programs. Accurate replication of biological movements will require refinement of motion control programs and physical models, including the creation of models of variable stiffness.
NASA Astrophysics Data System (ADS)
Kong, Xiangdong; Ba, Kaixian; Yu, Bin; Cao, Yuan; Zhu, Qixin; Zhao, Hualong
2016-05-01
Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit (HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
Miyamoto, Naokazu; Hirata, Kosuke; Miyamoto-Mikami, Eri; Yasuda, Osamu; Kanehisa, Hiroaki
2018-05-29
Joint range of motion (ROM) is an important parameter for athletic performance and muscular injury risk. Nonetheless, a complete description of muscular factors influencing ROM among individuals and between men and women is lacking. We examined whether passive muscle stiffness (evaluated by angle-specific muscle shear modulus), tolerance to muscle stretch (evaluated by muscle shear modulus at end-ROM), and muscle slack angle of the triceps surae are associated with the individual variability and sex difference in dorsiflexion ROM, using ultrasound shear wave elastography. For men, ROM was negatively correlated to passive muscle stiffness of the medial and lateral gastrocnemius in a tensioned state and positively to tolerance to muscle stretch in the medial gastrocnemius. For women, ROM was only positively correlated to tolerance to muscle stretch in all muscles but not correlated to passive muscle stiffness. Muscle slack angle was not correlated to ROM in men and women. Significant sex differences were observed only for dorsiflexion ROM and passive muscle stiffness in a tensioned state. These findings suggest that muscular factors associated with ROM are different between men and women. Furthermore, the sex difference in dorsiflexion ROM might be attributed partly to that in passive muscle stiffness of plantar flexors.
Pierobon, Alberto; DiZio, Paul; Lackner, James R.
2013-01-01
We tested an innovative method to estimate joint stiffness and damping during multijoint unfettered arm movements. The technique employs impulsive perturbations and a time-frequency analysis to estimate the arm's mechanical properties along a reaching trajectory. Each single impulsive perturbation provides a continuous estimation on a single-reach basis, making our method ideal to investigate motor adaptation in the presence of force fields and to study the control of movement in impaired individuals with limited kinematic repeatability. In contrast with previous dynamic stiffness studies, we found that stiffness varies during movement, achieving levels higher than during static postural control. High stiffness was associated with elevated reflexive activity. We observed a decrease in stiffness and a marked reduction in long-latency reflexes around the reaching movement velocity peak. This pattern could partly explain the difference between the high stiffness reported in postural studies and the low stiffness measured in dynamic estimation studies, where perturbations are typically applied near the peak velocity point. PMID:23945781
Ogneva, I V; Maximova, M V; Larina, I M
2014-01-01
The aim of this study was to determine the transversal stiffness of the cortical cytoskeleton and the cytoskeletal protein desmin content in the left ventricle cardiomyocytes, fibers of the mouse soleus and tibialis anterior muscle after a 30-day space flight on board the "BION-M1" biosatellite (Russia, 2013). The dissection was made after 13-16.5 h after landing. The transversal stiffness was measured in relaxed and calcium activated state by, atomic force microscopy. The desmin content was estimated by western blotting, and the expression level of desmin-coding gene was detected using real-time PCR. The results indicate that, the transversal stiffness of the left ventricle cardiomyocytes and fibers of the soleus muscle in relaxed and activated states did not differ from the control. The transversal stiffness of the tibialis muscle fibers in relaxed and activated state was increased in the mice group after space flight. At the same time, in all types of studied tissues the desmin content and the expression level of desmin-coding gene did not differ from the control level.
Marinković, Aleksandar; Mih, Justin D.; Park, Jin-Ah; Liu, Fei
2012-01-01
Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation. PMID:22659883
Viscoelastic Response of the Human Lower Back to Passive Flexion: The Effects of Age.
Shojaei, Iman; Allen-Bryant, Kacy; Bazrgari, Babak
2016-09-01
Low back pain is a leading cause of disability in the elderly. The potential role of spinal instability in increasing risk of low back pain with aging was indirectly investigated via assessment of age-related differences in viscoelastic response of lower back to passive deformation. The passive deformation tests were conducted in upright standing posture to account for the effects of gravity load and corresponding internal tissues responses on the lower back viscoelastic response. Average bending stiffness, viscoelastic relaxation, and dissipated energy were quantified to characterize viscoelastic response of the lower back. Larger average bending stiffness, viscoelastic relaxation and dissipated energy were observed among older vs. younger participants. Furthermore, average bending stiffness of the lower back was found to be the highest around the neutral standing posture and to decrease with increasing the lower back flexion angle. Larger bending stiffness of the lower back at flexion angles where passive contribution of lower back tissues to its bending stiffness was minimal (i.e., around neutral standing posture) highlighted the important role of active vs. passive contribution of tissues to lower back bending stiffness and spinal stability. As a whole our results suggested that a diminishing contribution of passive and volitional active subsystems to spinal stability may not be a reason for higher severity of low back pain in older population. The role of other contributing elements to spinal stability (e.g., active reflexive) as well as equilibrium-based parameters (e.g., compression and shear forces under various activities) in increasing severity of low back pain with aging should be investigated in future.
Ogneva, I V
2010-12-01
The aim of this research was the analysis of structural changes in various parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy under gravitational unloading. Soleus, medial gastrocnemius, and tibialis anterior muscles of Wistar rats were the objects of the study. Gravitational unloading was carried out by antiorthostatic suspension of hindlimbs for 1, 3, 7, and 12 days. It was shown that the transversal stiffness of different parts of the contractile apparatus of soleus muscle fibers decreases during gravitational unloading in the relaxed, calcium-activated, and rigor states, the fibers of the medial gastrocnemius show no changes, whereas the transversal stiffness of tibialis anterior muscle increases. Thus the transversal stiffness of the sarcolemma in the relaxed state is reduced in all muscles, which may be due to the direct action of gravity as an external mechanical factor that can influence the tension on a membrane. The change of sarcolemma stiffness in activated fibers, which is due probably to the transfer of tension from the contractile apparatus, correlates with the dynamics of changes in the content of desmin.
Grosset, Jean-François; Lapole, Thomas; Mora, Isabelle; Verhaeghe, Martine; Doutrellot, Pierre-Louis; Pérot, Chantal
2010-08-01
Clinical manual tests refer to increased ankle stiffness in children immobilized due to hip osteochondritis. The aim of the present study was to investigate musculo-articular stiffness via different techniques in immobilized children to confirm or not and quantify these observations. Ankle stiffness was quantified monthly during the long immobilization period in three diseased children and compared to healthy age-matched children. Sinusoidal perturbations were used to evaluate musculo-articular (MA) stiffness of the ankle plantar-flexors. The stiffness index (SI(MA-EMG)) was the slope of the linear relationship between angular stiffness and plantar-flexion torque normalized with electromyographic activity of the triceps surae (TS). The stiffness of the ankle plantar-flexors was also indirectly evaluated using the TS electromechanical delay (EMD). SI(MA-EMG) was greater for diseased children, and this higher stiffness was confirmed by the higher EMD values found in these immobilized children. Furthermore, both parameters indicated that ankle stiffness continues to increase through immobilization period. This study gives a quantitative evaluation of ankle stiffness changes through the immobilization period imposed to children treated for hip osteochondritis. The use of EMD measurement to indirectly evaluate these stiffness changes is also validated. This study shed for the first time some light into the patterns of muscle modifications following immobilization in children. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Correas, Jean-Michel; Anglicheau, Dany; Gennisson, Jean-Luc; Tanter, Mickael
2016-04-01
Renal elastography has become available with the development of noninvasive quantitative techniques (including shear-wave elastography), following the rapidly growing field of diagnosis and quantification of liver fibrosis, which has a demonstrated major clinical impact. Ultrasound or even magnetic resonance techniques are leaving the pure research area to reach the routine clinical use. With the increased incidence of chronic kidney disease and its specific morbidity and mortality, the noninvasive diagnosis of renal fibrosis can be of critical value. However, it is difficult to simply extend the application from one organ to the other due to a large number of anatomical and technical issues. Indeed, the kidney exhibits various features that make stiffness assessment more complex, such as the presence of various tissue types (cortex, medulla), high spatial orientation (anisotropy), local blood flow, fatty sinus with variable volume and echotexture, perirenal space with variable fatty content, and the variable depth of the organ. Furthermore, the stiffness changes of the renal parenchyma are not exclusively related to fibrosis, as renal perfusion or hydronephrosis will impact the local elasticity. Renal elastography might be able to diagnose acute or chronic obstruction, or to renal tumor or pseudotumor characterization. Today, renal elastography appears as a promising application that still requires optimization and validation, which is the contrary for liver stiffness assessment. Copyright © 2016 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.
Omer, Gedikli; Gokhan, Aksan; Adem, Uzun; Sabri, Demircan; Korhan, Soylu
2014-01-01
Background: Current guidelines recommend clinical risk scoring systems for the patients diagnosed and determinated treatment strategy with in Non-ST-elevation elevation myocardial infarction (NSTEMI). Previous studies demonstrated association between aortic elasticity properties, stiffness and severity CAD. However, the associations between Aortic stiffness, elasticity properties and clinical risk scores have not been investigated. In the present study we have evaluated the relation between the Global Registry of Acute Coronary Events (GRACE) risk score and aortic stiffness in patients with NSTEMI. Method: We prospectively analyzed 87 consecutive patients with NSTEMI. Aortic elastic parameter and stiffness parameter were calculated from the echocardiographically derived thoracic aortic diameters (mm/m2), and the measurement of pulse pressure obtained by cuff sphygmomanometry. We have categorized the patients in to two groups as low ((n = 45) (GRACE risk score ≤ 140)) and high ((n = 42) (GRACE risk score > 140)) risk group according to GRACE risk score and compare the both groups. Results: Table 1 shows baseline characteristics of patients. Our study showed that Aortic strain was significantly low (3.5 ± 1.4, 7.9 ± 2.3 respectively, p < 0.001) and aortic stiffness index was significantly high (3.9 ± 0.38; 3 ± 0.35, respectively, p < 0.001) in the high risk group values compared to those with low risk group. The aortic stiffness index was the only independent predictor of GRACE risk score (OR: 119.390; 95% CI: 2.925-4872.8; p = 0.011) in multivariate analysis. Conclusion: We found a significant correlation between aortic stiffness, impaired elasticity and GRACE risk score. Aortic stiffness index was the only independent variable of the high GRACE risk score. The inclusion of aortic stiffness into the GRACE risk score could allow improved risk classification of patients with ACS at admission and this may be important in the diagnosis, follow up and treatment of the patients. PMID:25356178
Omer, Gedikli; Gokhan, Aksan; Adem, Uzun; Sabri, Demircan; Korhan, Soylu
2014-01-01
Current guidelines recommend clinical risk scoring systems for the patients diagnosed and determinated treatment strategy with in Non-ST-elevation elevation myocardial infarction (NSTEMI). Previous studies demonstrated association between aortic elasticity properties, stiffness and severity CAD. However, the associations between Aortic stiffness, elasticity properties and clinical risk scores have not been investigated. In the present study we have evaluated the relation between the Global Registry of Acute Coronary Events (GRACE) risk score and aortic stiffness in patients with NSTEMI. We prospectively analyzed 87 consecutive patients with NSTEMI. Aortic elastic parameter and stiffness parameter were calculated from the echocardiographically derived thoracic aortic diameters (mm/m(2)), and the measurement of pulse pressure obtained by cuff sphygmomanometry. We have categorized the patients in to two groups as low ((n = 45) (GRACE risk score ≤ 140)) and high ((n = 42) (GRACE risk score > 140)) risk group according to GRACE risk score and compare the both groups. Table 1 shows baseline characteristics of patients. Our study showed that Aortic strain was significantly low (3.5 ± 1.4, 7.9 ± 2.3 respectively, p < 0.001) and aortic stiffness index was significantly high (3.9 ± 0.38; 3 ± 0.35, respectively, p < 0.001) in the high risk group values compared to those with low risk group. The aortic stiffness index was the only independent predictor of GRACE risk score (OR: 119.390; 95% CI: 2.925-4872.8; p = 0.011) in multivariate analysis. We found a significant correlation between aortic stiffness, impaired elasticity and GRACE risk score. Aortic stiffness index was the only independent variable of the high GRACE risk score. The inclusion of aortic stiffness into the GRACE risk score could allow improved risk classification of patients with ACS at admission and this may be important in the diagnosis, follow up and treatment of the patients.
Investigation of In Vivo skin stiffness anisotropy in breast cancer related lymphoedema.
Coutts, L V; Miller, N R; Mortimer, P S; Bamber, J C
2016-01-04
There is a limited range of suitable measurement techniques for detecting and assessing breast cancer related lymphoedema (BCRL). This study investigated the suitability of using skin stiffness measurements, with a particular focus on the variation in stiffness with measurement direction (known as anisotropy). In addition to comparing affected tissue with the unaffected tissue on the corresponding site on the opposite limb, volunteers without BCRL were tested to establish the normal variability in stiffness anisotropy between these two corresponding regions of skin on each opposite limb. Multi-directional stiffness was measured with an Extensometer, within the higher stiffness region that skin typically displays at high applied strains, using a previously established protocol developed by the authors. Healthy volunteers showed no significant difference in anisotropy between regions of skin on opposite limbs (mean decrease of 4.7 +/-2.5% between non-dominant and dominant arms), whereas BCRL sufferers showed a significant difference between limbs (mean decrease of 51.0+/-16.3% between unaffected and affected arms). A large difference in anisotropy was apparent even for those with recent onset of the condition, indicating that the technique may have potential to be useful for early detection. This difference also appeared to increase with duration since onset. Therefore, measurement of stiffness anisotropy has potential value for the clinical assessment and diagnosis of skin conditions such as BCRL. The promising results justify a larger study with a larger number of participants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Musculoskeletal stiffness changes linearly in response to increasing load during walking gait.
Caron, Robert R; Lewis, Cara L; Saltzman, Elliot; Wagenaar, Robert C; Holt, Kenneth G
2015-04-13
Development of biologically inspired exoskeletons to assist soldiers in carrying load is a rapidly expanding field. Understanding how the body modulates stiffness in response to changing loads may inform the development of these exoskeletons and is the purpose of the present study. Seventeen subjects walked on a treadmill at a constant preferred walking velocity while nine different backpack loading conditions ranging from 12.5% to 40% bodyweight (BW) were introduced in an ascending and then descending order. Kinematic data were collected using Optotrak, a 3D motion analysis system, and used to estimate the position of the center of mass (COM). Two different estimates of stiffness were computed for the stance phase of gait. Both measures of stiffness were positively and linearly related to load magnitudes, with the slopes of the relationships being larger for the descending than the ascending conditions. These results indicate that changes in mechanical stiffness brought about in the musculoskeletal system vary systematically during increases in load to ensure that critical kinematic variables measured in a previous publication remain invariant (Caron et al., 2013). Changes in stiffness and other kinematics measured at the 40% BW condition suggest a boundary in which gait stiffness control limit is reached and a new gait pattern is required. Since soldiers are now carrying up to 96% of body weight, the need for research with even heavier loads is warranted. These findings have implications on the development of exoskeletons to assist in carrying loads. Copyright © 2015 Elsevier Ltd. All rights reserved.
Betel nut chewing associated with increased risk of arterial stiffness.
Wei, Yu-Ting; Chou, Yu-Tsung; Yang, Yi-Ching; Chou, Chieh-Ying; Lu, Feng-Hwa; Chang, Chih-Jen; Wu, Jin-Shang
2017-11-01
Betel nut chewing is associated with certain cardiovascular outcomes. Subclinical atherosclerosis may be one link between betel nut chewing and cardiovascular risk. Few studies have examined the association between chewing betel nut and arterial stiffness. The aim of this study was thus to determine the relationship between betel nut chewing and arterial stiffness in a Taiwanese population. We enrolled 7540 eligible subjects in National Cheng Kung University Hospital from October 2006 to August 2009. The exclusion criteria included history of cerebrovascular events, coronary artery disease, and taking lipid-lowering drugs, antihypertensives, and hypoglycemic agents. Increased arterial stiffness was defined as brachial-ankle pulse wave velocity (baPWV) ≥1400cm/s. According to their habit of betel nut use, the subjects were categorized into non-, ex-, and current chewers. The prevalence of increased arterial stiffness was 32.7, 43.3, and 43.2% in non-, ex- and current chewers, respectively (p=0.011). Multiple logistic regression analysis revealed that ex-chewers (odds ratio [OR] 1.69, 95% confidence interval (CI)=1.08-2.65) and current chewers (OR 2.29, 95% CI=1.05-4.99) had elevated risks of increased arterial stiffness after adjustment for co-variables. Both ex- and current betel nut chewing were associated with a higher risk of increased arterial stiffness. Stopping betel nut chewing may thus potentially be beneficial to reduce cardiovascular risk, based on the principals of preventive medicine. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Bo-Hyun; Larson, Mark K.; Lawson, Heather E.
2018-01-01
Bumps and other types of dynamic failure have been a persistent, worldwide problem in the underground coal mining industry, spanning decades. For example, in just five states in the U.S. from 1983 to 2014, there were 388 reportable bumps. Despite significant advances in mine design tools and mining practices, these events continue to occur. Many conditions have been associated with bump potential, such as the presence of stiff units in the local geology. The effect of a stiff sandstone unit on the potential for coal bumps depends on the location of the stiff unit in the stratigraphic column, the relative stiffness and strength of other structural members, and stress concentrations caused by mining. This study describes the results of a robust design to consider the impact of different lithologic risk factors impacting dynamic failure risk. Because the inherent variability of stratigraphic characteristics in sedimentary formations, such as thickness, engineering material properties, and location, is significant and the number of influential parameters in determining a parametric study is large, it is impractical to consider every simulation case by varying each parameter individually. Therefore, to save time and honor the statistical distributions of the parameters, it is necessary to develop a robust design to collect sufficient sample data and develop a statistical analysis method to draw accurate conclusions from the collected data. In this study, orthogonal arrays, which were developed using the robust design, are used to define the combination of the (a) thickness of a stiff sandstone inserted on the top and bottom of a coal seam in a massive shale mine roof and floor, (b) location of the stiff sandstone inserted on the top and bottom of the coal seam, and (c) material properties of the stiff sandstone and contacts as interfaces using the 3-dimensional numerical model, FLAC3D. After completion of the numerical experiments, statistical and multivariate analysis are performed using the calculated results from the orthogonal arrays to analyze the effect of these variables. As a consequence, the impact of each of the parameters on the potential for bumps is quantitatively classified in terms of a normalized intensity of plastic dissipated energy. By multiple regression, the intensity of plastic dissipated energy and migration of the risk from the roof to the floor via the pillars is predicted based on the value of the variables. The results demonstrate and suggest a possible capability to predict the bump potential in a given rock mass adjacent to the underground excavations and pillars. Assessing the risk of bumps is important to preventing fatalities and injuries resulting from bumps. PMID:29416902
A dynamic model for generating actuator specifications for small arms barrel active stabilization
NASA Astrophysics Data System (ADS)
Pathak, Anupam; Brei, Diann; Luntz, Jonathan; Lavigna, Chris
2006-03-01
Due to stresses encountered in combat, it is known that soldier marksmanship noticeably decreases regardless of prior training. Active stabilization systems in small arms have potential to address this problem to increase soldier survivability and mission effectiveness. The key to success is proper actuator design, but this is highly dependent on proper specification which is challenging due to the human/weapon interaction. This paper presents a generic analytical dynamic model which is capable of defining the necessary actuation specifications for a wide range of small arms platforms. The model is unique because it captures the human interface--shoulder and arm--that introduces the jitter disturbance in addition to the geometry, inertial properties and active stabilization stiffness of the small arms platform. Because no data to date is available for actual shooter-induced disturbance in field conditions, a method is given using the model to back-solve from measured shooting range variability data the disturbance amplitude information relative to the input source (arm or shoulder). As examples of the applicability of the model to various small arms systems, two different weapon systems were investigated: the M24 sniper weapon and the M16 assault rifle. In both cases, model based simulations provided valuable insight into impact on the actuation specifications (force, displacement, phase, frequency) due to the interplay of the human-weapon-active stabilization interface including the effect of shooter-disturbance frequency, disturbance location (shoulder vs. arm), and system parameters (stiffness, barrel rotation).
Fukui, Michiaki; Ushigome, Emi; Tanaka, Muhei; Hamaguchi, Masahide; Tanaka, Toru; Atsuta, Haruhiko; Ohnishi, Masayoshi; Oda, Yohei; Hasegawa, Goji; Nakamura, Naoto
2013-03-01
Recent studies have suggested that not only mean blood pressure but also variability in blood pressure might be related to cardiovascular disease. The aim of this study was to investigate the association between home blood pressure variability on one occasion and markers of arterial stiffness in patients with type 2 diabetes. We investigated the relationship between the s.d. of clinic- or home-measured systolic blood pressure on one occasion and pulse wave velocity (PWV) in 332 patients with type 2 diabetes, and we evaluated whether the SD of clinic- or home-measured systolic blood pressure on one occasion was an independent determinant of PWV by multivariate linear regression analysis, after adjustment for known risk factors for arterial stiffness, including sex, age, duration of diabetes, body mass index, hemoglobin A1c, serum total cholesterol, triglycerides, smoking status, drinking alcohol, presence of antihypertensive medication, average systolic blood pressure and heart rate. Age, average morning home-measured systolic blood pressure, heart rate and PWV (r=0.259, P<0.0001) were positively correlated with the s.d. of morning home blood pressure on one occasion. Multiple regression analysis demonstrated that age, average morning home-measured systolic blood pressure (P=0.0019), heart rate and the s.d. of morning home-measured systolic blood pressure on one occasion (P=0.0159) were independently associated with PWV. In conclusion, home blood pressure variability on one occasion was correlated with PWV, independent of other known risk factors, in Japanese patients with type 2 diabetes.
2013-01-01
Background Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: “spasticity” vs. “contracture”). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. Methods Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. Results In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p < .001). Ratio between neural and non-neural contributors varied substantially within adolescents with CP. Significant associations of SPAT (spasticity test) score with both tissue stiffness and reflexive torque show agreement with clinical phenotype. Conclusions Using an instrumented and model based approach, increased joint stiffness in CP could be mainly attributed to higher reflexive torque compared to control subjects. Ratios between contributors varied substantially within adolescents with CP. Quantitative differentiation of neural and non-neural stiffness contributors in CP allows for assessment of individual patient characteristics and tailoring of therapy. PMID:23880287
de Gooijer-van de Groep, Karin L; de Vlugt, Erwin; de Groot, Jurriaan H; van der Heijden-Maessen, Hélène C M; Wielheesen, Dennis H M; van Wijlen-Hempel, Rietje M S; Arendzen, J Hans; Meskers, Carel G M
2013-07-23
Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: "spasticity" vs. "contracture"). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p < .001). Ratio between neural and non-neural contributors varied substantially within adolescents with CP. Significant associations of SPAT (spasticity test) score with both tissue stiffness and reflexive torque show agreement with clinical phenotype. Using an instrumented and model based approach, increased joint stiffness in CP could be mainly attributed to higher reflexive torque compared to control subjects. Ratios between contributors varied substantially within adolescents with CP. Quantitative differentiation of neural and non-neural stiffness contributors in CP allows for assessment of individual patient characteristics and tailoring of therapy.
Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng
2017-01-01
A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model. PMID:28753912
Wu, Bitao; Lu, Huaxi; Chen, Bo; Gao, Zhicheng
2017-07-19
A finite model updating method that combines dynamic-static long-gauge strain responses is proposed for highway bridge static loading tests. For this method, the objective function consisting of static long-gauge stains and the first order modal macro-strain parameter (frequency) is established, wherein the local bending stiffness, density and boundary conditions of the structures are selected as the design variables. The relationship between the macro-strain and local element stiffness was studied first. It is revealed that the macro-strain is inversely proportional to the local stiffness covered by the long-gauge strain sensor. This corresponding relation is important for the modification of the local stiffness based on the macro-strain. The local and global parameters can be simultaneously updated. Then, a series of numerical simulation and experiments were conducted to verify the effectiveness of the proposed method. The results show that the static deformation, macro-strain and macro-strain modal can be predicted well by using the proposed updating model.
Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells
NASA Astrophysics Data System (ADS)
Xu, Wenwei; Mezencev, Roman; Kim, Byungkyu; Wang, Lijuan; McDonald, John; Sulchek, Todd; Sulchek Team; McDonald Team
2013-03-01
The metastatic potential of cells is an important parameter in the design of optimal strategies for the personalized treatment of cancer. Using atomic force microscopy (AFM), we show that ovarian cancer cells are generally softer and display lower intrinsic variability in cell stiffness than non-malignant ovarian epithelial cells. A detailed study of highly invasive ovarian cancer cells (HEY A8) and their less invasive parental cells (HEY), demonstrates that deformability can serve as an accurate biomarker of metastatic potential. Comparative gene expression profiling indicate that the reduced stiffness of highly metastatic HEY A8 cells is associated with actin cytoskeleton remodeling, microscopic examination of actin fiber structure in these cell lines is consistent with this prediction. Our results indicate that cell stiffness not only distinguishes ovarian cancer cells from non-malignant cells, but may also be a useful biomarker to evaluate the relative metastatic potential of ovarian and perhaps other types of cancer cells.
NASA Astrophysics Data System (ADS)
Koltsov, A. G.; Shamutdinov, A. H.; Blokhin, D. A.; Krivonos, E. V.
2018-01-01
A new classification of parallel kinematics mechanisms on symmetry coefficient, being proportional to mechanism stiffness and accuracy of the processing product using the technological equipment under study, is proposed. A new version of the Stewart platform with a high symmetry coefficient is presented for analysis. The workspace of the mechanism under study is described, this space being a complex solid figure. The workspace end points are reached by the center of the mobile platform which moves in parallel related to the base plate. Parameters affecting the processing accuracy, namely the static and dynamic stiffness, natural vibration frequencies are determined. The capability assessment of the mechanism operation under various loads, taking into account resonance phenomena at different points of the workspace, was conducted. The study proved that stiffness and therefore, processing accuracy with the use of the above mentioned mechanisms are comparable with the stiffness and accuracy of medium-sized series-produced machines.
Considerations in the weathering of wood-plastic composites
Nicole M. Stark
2007-01-01
During weathering, wood-plastic composites (WPCs) can fade and lose stiffness and strength. Weathering variables that induce these changes include exposure to UV light and water. Each variable degrades WPCs independently, but can also act synergistically. Recent efforts have highlighted the need to understand how WPCs weather, and to develop schemes for protection. The...
Wave mixing in coupled phononic crystals via a variable stiffness mechanism
NASA Astrophysics Data System (ADS)
Lee, Gil-Yong; Chong, Christopher; Kevrekidis, Panayotis G.; Yang, Jinkyu
2016-10-01
We investigate wave mixing effects in a phononic crystal that couples the wave dynamics of two channels - primary and control ones - via a variable stiffness mechanism. We demonstrate analytically and numerically that the wave transmission in the primary channel can be manipulated by the control channel's signal. We show that the application of control waves allows the selection of a specific mode through the primary channel. We also demonstrate that the mixing of two wave modes is possible whereby a modulation effect is observed. A detailed study of the design parameters is also carried out to optimize the switching capabilities of the proposed system. Finally, we verify that the system can fulfill both switching and amplification functionalities, potentially enabling the realization of an acoustic transistor.
A linear circuit analysis program with stiff systems capability
NASA Technical Reports Server (NTRS)
Cook, C. H.; Bavuso, S. J.
1973-01-01
Several existing network analysis programs have been modified and combined to employ a variable topological approach to circuit translation. Efficient numerical integration techniques are used for transient analysis.
NASA Astrophysics Data System (ADS)
Abolfathi, Ali; O'Boy, Dan J.; Walsh, Stephen J.; Fisher, Stephen A.
2017-01-01
It is well established that the dynamic response of a number of nominally identical built-up structures are often different and the variability increases with increasing complexity of the structure. Furthermore, the effects of the different parameters, for example the variation in joint locations or the range of the Young's modulus, on the dynamic response of the system are not the same. In this paper, the effects of different material and geometric parameters on the variability of a vibration transfer function are compared using an analytical model of a simple linear built-up structure that consist of two plates connected by a single mount. Similar results can be obtained if multiple mounts are used. The scope of this paper is limited to a low and medium frequency range where usually deterministic models are used for vibrational analysis. The effect of the mount position and also the global variation in the properties of the plate, such as modulus of elasticity or thickness, is higher on the variability of vibration transfer function than the effect of the mount properties. It is shown that the vibration transfer function between the plates is independent of the mount property if a stiff enough mount with a small mass is implemented. For a soft mount, there is a direct relationship between the mount impedance and the variation in the vibration transfer function. Furthermore, there are a range of mount stiffnesses between these two extreme cases at which the vibration transfer function is more sensitive to changes in the stiffness of the mount than when compared to a soft mount. It is found that the effect of variation in the mount damping and the mount mass on the variability is negligible. Similarly, the effect of the plate damping on the variability is not significant.
Masaki, Mitsuhiro; Aoyama, Tomoki; Murakami, Takashi; Yanase, Ko; Ji, Xiang; Tateuchi, Hiroshige; Ichihashi, Noriaki
2017-11-01
Muscle stiffness of the lumbar back muscles in low back pain (LBP) patients has not been clearly elucidated because quantitative assessment of the stiffness of individual muscles was conventionally difficult. This study aimed to examine the association of LBP with muscle stiffness assessed using ultrasonic shear wave elastography (SWE) and muscle mass of the lumbar back muscle, and spinal alignment in young and middle-aged medical workers. The study comprised 23 asymptomatic medical workers [control (CTR) group] and 9 medical workers with LBP (LBP group). Muscle stiffness and mass of the lumbar back muscles (lumbar erector spinae, multifidus, and quadratus lumborum) in the prone position were measured using ultrasonic SWE. Sagittal spinal alignment in the standing and prone positions was measured using a Spinal Mouse. The association with LBP was investigated by multiple logistic regression analysis with a forward selection method. The analysis was conducted using the shear elastic modulus and muscle thickness of the lumbar back muscles, and spinal alignment, age, body height, body weight, and sex as independent variables. Multiple logistic regression analysis showed that muscle stiffness of the lumbar multifidus muscle and body height were significant and independent determinants of LBP, but that muscle mass and spinal alignment were not. Muscle stiffness of the lumbar multifidus muscle in the LBP group was significantly higher than that in the CTR group. The results of this study suggest that LBP is associated with muscle stiffness of the lumbar multifidus muscle in young and middle-aged medical workers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Estimation of Quasi-Stiffness and Propulsive Work of the Human Ankle in the Stance Phase of Walking
Shamaei, Kamran; Sawicki, Gregory S.; Dollar, Aaron M.
2013-01-01
Characterizing the quasi-stiffness and work of lower extremity joints is critical for evaluating human locomotion and designing assistive devices such as prostheses and orthoses intended to emulate the biological behavior of human legs. This work aims to establish statistical models that allow us to predict the ankle quasi-stiffness and net mechanical work for adults walking on level ground. During the stance phase of walking, the ankle joint propels the body through three distinctive phases of nearly constant stiffness known as the quasi-stiffness of each phase. Using a generic equation for the ankle moment obtained through an inverse dynamics analysis, we identify key independent parameters needed to predict ankle quasi-stiffness and propulsive work and also the functional form of each correlation. These parameters include gait speed, ankle excursion, and subject height and weight. Based on the identified form of the correlation and key variables, we applied linear regression on experimental walking data for 216 gait trials across 26 subjects (speeds from 0.75–2.63 m/s) to obtain statistical models of varying complexity. The most general forms of the statistical models include all the key parameters and have an R2 of 75% to 81% in the prediction of the ankle quasi-stiffnesses and propulsive work. The most specific models include only subject height and weight and could predict the ankle quasi-stiffnesses and work for optimal walking speed with average error of 13% to 30%. We discuss how these models provide a useful framework and foundation for designing subject- and gait-specific prosthetic and exoskeletal devices designed to emulate biological ankle function during level ground walking. PMID:23555839
Stiffness control of a nylon twisted coiled actuator for use in mechatronic rehabilitation devices.
Edmonds, Brandon P R; Trejos, Ana Luisa
2017-07-01
Mechatronic rehabilitation devices, especially wearables, have been researched extensively and proven to be promising additions to physical therapy, but most designs utilize traditional actuators providing unnatural, robot-like movements. Therefore, many researchers have focused on the development of actuators that mimic biological properties to provide patients with improved results, safety, and comfort. Recently, a twisted-coiled actuator (TCA) made from nylon thread has been found to possess many of these important properties when heated, such as variable stiffness, flexibility, and high power density. So far, TCAs have been characterized in controlled environments to define their fundamental properties under simple loading configurations. However, for an actuator like this to be implemented in a biomimetic design such as an exoskeleton, it needs to be characterized and controlled as a biological muscle. One major control law that natural muscles exhibit is stiffness control, allowing humans to passively avoid injury from external forces, or move the limbs in a controlled or high impact motion. This type of control is created by the antagonistic muscle arrangement. In this paper, an antagonistic apparatus was developed to model the TCAs from a biological standpoint, the stiffness was characterized with respect to the TCA temperature, and a fully functional stiffness and position controller was implemented with an incorporated TCA thermal model. The stiffness was found to have a linear relationship to the TCA temperatures (R 2 =0.95). The controller performed with a stiffness accuracy of 98.95% and a position accuracy of 92.7%. A final trial with varying continuous position input and varying stepped stiffness input exhibited position control with R 2 =0.9638.
Sheahan, Peter J; Cashaback, Joshua G A; Fischer, Steven L
2017-09-01
Background Tree planters are at a high risk for wrist injury due to awkward postures and high wrist loads experienced during each planting cycle, specifically at shovel-ground impact. Wrist joint stiffness provides a measure that integrates postural and loading information. Objective The purpose of this study was to evaluate wrist joint stiffness requirements at the instant of shovel-ground impact during tree planting and determine if a wrist brace could alter muscular contributions to wrist joint stiffness. Method Planters simulated tree planting with and without wearing a brace on their planting arm. Surface electromyography (sEMG) from six forearm muscles and wrist kinematics were collected and used to calculate muscular contributions to joint rotational stiffness about the wrist. Results Wrist joint stiffness increased with brace use, an unanticipated and negative consequence of wearing a brace. As a potential benefit, planters achieved a more neutrally oriented wrist angle about the flexion/extension axis, although a less neutral wrist angle about the ulnar/radial axis was observed. Muscle activity did not change between conditions. Conclusion The joint stiffness analysis, combining kinematic and sEMG information in a biologically relevant manner, revealed clear limitations with the interface between the brace grip and shovel handle that jeopardized the prophylactic benefits of the current brace design. This limitation was not as evident when considering kinematics and sEMG data independently. Application A neuromechanical model (joint rotational stiffness) enhanced our ability to evaluate the brace design relative to kinematic and sEMG parameter-based metrics alone.
Desai, Seema S.; Tung, Jason C.; Zhou, Vivian X.; Grenert, James P.; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M.; Chang, Tammy T.
2016-01-01
Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of hepatic-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150Pa and increased to 1–6kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α) whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase (FAK). In addition, blockade of the Rho/Rho-associated protein kinase (ROCK) pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Conclusion Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/ROCK pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. PMID:26755329
Biomechanical response to ankle-foot orthosis stiffness during running.
Russell Esposito, Elizabeth; Choi, Harmony S; Owens, Johnny G; Blanck, Ryan V; Wilken, Jason M
2015-12-01
The Intrepid Dynamic Exoskeletal Orthosis (IDEO) is an ankle-foot orthosis developed to address the high rates of delayed amputation in the military. Its use has enabled many wounded Service Members to run again. During running, stiffness is thought to influence an orthosis' energy storage and return mechanical properties. This study examined the effect of orthosis stiffness on running biomechanics in patients with lower limb impairments who had undergone unilateral limb salvage. Ten patients with lower limb impairments underwent gait analysis at a self-selected running velocity. 1. Nominal (clinically-prescribed), 2. Stiff (20% stiffer than nominal), and 3. Compliant (20% less stiff than nominal) ankle-foot orthosis stiffnesses were tested. Ankle joint stiffness was greatest in the stiffest strut and lowest in the compliant strut, however ankle mechanical work remained unchanged. Speed, stride length, cycle time, joint angles, moments, powers, and ground reaction forces were not significantly different among stiffness conditions. Ankle joint kinematics and ankle, knee and hip kinetics were different between limbs. Ankle power, in particular, was lower in the injured limb. Ankle-foot orthosis stiffness affected ankle joint stiffness but did not influence other biomechanical parameters of running in individuals with unilateral limb salvage. Foot strike asymmetries may have influenced the kinetics of running. Therefore, a range of stiffness may be clinically appropriate when prescribing ankle-foot orthoses for active individuals with limb salvage. Published by Elsevier Ltd.
Vibration Control via Stiffness Switching of Magnetostrictive Transducers
NASA Technical Reports Server (NTRS)
Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.
2016-01-01
This paper presents a computational study of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magnetomechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.25; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping.
Ganesh, VK; Ramakrishna, K; Ghista, Dhanjoo N
2005-01-01
Background In the internal fixation of fractured bone by means of bone-plates fastened to the bone on its tensile surface, an on-going concern has been the excessive stress-shielding of the bone by the excessively-stiff stainless-steel plate. The compressive stress-shielding at the fracture-interface immediately after fracture-fixation delays callus formation and bone healing. Likewise, the tensile stress-shielding of the layer of the bone underneath the plate can cause osteoporosis and decrease in tensile strength of this layer. Method In order to address this problem, we propose to use stiffness-graded plates. Accordingly, we have computed (by finite-element analysis) the stress distribution in the fractured bone fixed by composite plates, whose stiffness is graded both longitudinally and transversely. Results It can be seen that the stiffness-graded composite-plates cause less stress-shielding (as an example: at 50% of the healing stage, stress at the fracture interface is compressive in nature i.e. 0.002 GPa for stainless steel plate whereas stiffness graded plates provides tensile stress of 0.002 GPa. This means that stiffness graded plate is allowing the 50% healed bone to participate in loadings). Stiffness-graded plates are more flexible, and hence permit more bending of the fractured bone. This results in higher compressive stresses induced at the fractured faces accelerate bone-healing. On the other hand, away from the fracture interface the reduced stiffness and elastic modulus of the plate causes the neutral axis of the composite structure to be lowered into the bone resulting in the higher tensile stress in the bone-layer underneath the plate, wherein is conducive to the bone preserving its tensile strength. Conclusion Stiffness graded plates (with in-built variable stiffness) are deemed to offer less stress-shielding to the bone, providing higher compressive stress at the fractured interface (to induce accelerated healing) as well as higher tensile stress in the intact portion of the bone (to prevent bone remodeling and osteoporosis). PMID:16045807
Bastounis, Effie E; Yeh, Yi-Ting; Theriot, Julie A
2018-05-02
Extracellular matrix stiffness (ECM) is one of the many mechanical forces acting on mammalian adherent cells and an important determinant of cellular function. While the effect of ECM stiffness on many aspects of cellular behavior has been previously studied, how ECM stiffness might mediate susceptibility of host cells to infection by bacterial pathogens was hitherto unexplored. To address this open question, we manufactured hydrogels of varying physiologically-relevant stiffness and seeded human microvascular endothelial cells (HMEC-1) on them. We then infected HMEC-1 with the bacterial pathogen Listeria monocytogenes (Lm), and found that adhesion of Lm onto host cells increases monotonically with increasing matrix stiffness, an effect that requires the activity of focal adhesion kinase (FAK). We identified cell surface vimentin as a candidate surface receptor mediating stiffness-dependent adhesion of Lm to HMEC-1 and found that bacterial infection of these host cells is decreased when the amount of surface vimentin is reduced. Our results provide the first evidence that ECM stiffness can mediate the susceptibility of mammalian host cells to infection by a bacterial pathogen.
NASA Technical Reports Server (NTRS)
Darlow, M. S.; Smalley, A. J.
1977-01-01
A test rig designed to measure stiffness and damping of elastomer cartridges under a rotating load excitation is described. The test rig employs rotating unbalance in a rotor which runs to 60,000 RPM as the excitation mechanism. A variable resonant mass is supported on elastomer elements and the dynamic characteristics are determined from measurements of input and output acceleration. Five different cartridges are considered: three of these are buttons cartridges having buttons located in pairs, with 120 between each pair. Two of the cartridges consist of 360 elastomer rings with rectangular cross-sections. Dynamic stiffness and damping are measured for each cartridge and compared with predictions at different frequencies and different strains.
Effect of damage on elastically tailored composite laminates
NASA Technical Reports Server (NTRS)
Armanios, Erian; Badir, Ashraf; Berdichevsky, Victor
1991-01-01
A variationally consistent theory is derived in order to predict the response of anisotropic thin-walled closed sections subjected to axial load, torsion and bending. The theory is valid for arbitrary cross-sections made of laminated composite materials with variable thickness and stiffness. Closed form expressions for the stiffness coefficients are provided as integrals in terms of lay-ups parameters and cross-sectional geometry. A comparison of stiffness coefficients and response with finite element predictions and a closed form solution is performed. The theory is applied to the investigation of the effect of damage on the extension-twist coupling in a thin-walled closed section beam. The damage is simulated as a progressive ply-by-ply failure. Results show that damage can have a significant effect on the extension-twist coupling.
Floren, Michael; Bonani, Walter; Dharmarajan, Anirudh; Motta, Antonella; Migliaresi, Claudio; Tan, Wei
2016-02-01
Cell-matrix and cell-biomolecule interactions play critical roles in a diversity of biological events including cell adhesion, growth, differentiation, and apoptosis. Evidence suggests that a concise crosstalk of these environmental factors may be required to direct stem cell differentiation toward matured cell type and function. However, the culmination of these complex interactions to direct stem cells into highly specific phenotypes in vitro is still widely unknown, particularly in the context of implantable biomaterials. In this study, we utilized tunable hydrogels based on a simple high pressure CO2 method and silk fibroin (SF) the structural protein of Bombyx mori silk fibers. Modification of SF protein starting water solution concentration results in hydrogels of variable stiffness while retaining key structural parameters such as matrix pore size and β-sheet crystallinity. To further resolve the complex crosstalk of chemical signals with matrix properties, we chose to investigate the role of 3D hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Our data revealed the potential to upregulate matured vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Overall, our observations suggest that chemical and physical stimuli within the cellular microenvironment are tightly coupled systems involved in the fate decisions of hMSCs. The production of tunable scaffold materials that are biocompatible and further specialized to mimic tissue-specific niche environments will be of considerable value to future tissue engineering platforms. This article investigates the role of silk fibroin hydrogel stiffness and transforming growth factor (TGF-β1), with the aim of correlating the effects on the vascular commitment of human mesenchymal stem cells. Specifically, we demonstrate the upregulation of mature vascular smooth muscle cell phenotype (myosin heavy chain expression) of hMSCs by employing appropriate matrix stiffness and growth factor (within 72h). Moreover, we demonstrate the potential to direct specialized hMSC differentiation by modulating stiffness and growth factor using silk fibroin, a well-tolerated and -defined biomaterial with an impressive portfolio of tissue engineering applications. Altogether, our study reinforce the fact that complex differentiation protocols may be simplified by engineering the cellular microenvironment on multiple scales, i.e. matrix stiffness with growth factor. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Podgórski, Michał; Grzelak, Piotr; Kaczmarska, Magdalena; Polguj, Michał; Łukaszewski, Maciej; Stefańczyk, Ludomir
2018-02-01
Objective Arterial stiffening is an early marker of atherosclerosis that has a prognostic value for cardiovascular morbidity and mortality. Although many markers of arterial hardening have been proposed, the search is on for newer, more user-friendly and reliable surrogates. One such potential candidate has emerged from cardiology, the speckle-tracking technique. The aim of this study was to evaluate the feasibility of the two-dimensional speckle tracking for the evaluation of arterial wall stiffness in comparison with standard stiffness parameters. Methods Carotid ultrasound and applanation tonometry were performed in 188 patients with no cardiovascular risk factors. The following parameters were then evaluated: the intima-media complex thickness, distensibility coefficient, β-stiffness index, circumferential strain/strain rate, and pulse wave velocity and augmentation index. These variables were compared with each other and with patient age, and their reliability was assessed with Bland-Altman plots. Results Strain parameters derived from two-dimensional speckle tracking and intima-media complex thickness correlated better with age and pulse wave velocity than standard makers of arterial stiffness. Moreover, the reliability of these measurements was significantly higher than conventional surrogates. Conclusions Two-dimensional speckle tracing is a reliable method for the evaluation of arterial stiffness. Therefore, together with intima-media complex thickness measurement, it offers great potential in clinical practice as an early marker of atherosclerosis.
Urbina, Elaine M; Khoury, Philip R; McCoy, Connie E; Dolan, Lawrence M; Daniels, Stephen R; Kimball, Thomas R
2013-04-01
Lipid levels are linked to early atherosclerosis. Risk stratification may be improved by using triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C), which relates to arterial stiffness in adults. We tested whether TG/HDL-C was an independent predictor of arterial stiffness in youth. Subjects 10 to 26 years old (mean 18.9 years, 39% male, 56% non-Caucasian, n = 893) had laboratory, anthropometric, blood pressure, and arterial stiffness data collected (brachial distensibility, augmentation index, carotid-femoral pulse-wave velocity). Subjects were stratified into tertiles of TG/HDL-C (low, n = 227; mid, n = 288; high, n = 379). There was a progressive rise in cardiovascular (CV) risk factors and arterial stiffness across TG/HDL-C ratio. The high TG/HDL-C ratio group had the stiffest vessels (all P < .03 by analysis of variance). TG/HDL-C as a continuous variable was an independent determinant of brachial distensibility in CV risk factor adjusted model and for carotid-femoral pulse-wave velocity in obese subjects, with trend for higher augmentation index. TG/HDL-C, an estimate of small, dense low-density lipoprotein cholesterol, is an independent determinant of arterial stiffness in adolescents and young adults, especially in obese youth. These data suggest that use of TG/HDL-C may be helpful in identifying young adults requiring aggressive intervention to prevent atherosclerotic CV diseases.
Khoury, Philip R.; McCoy, Connie E.; Dolan, Lawrence M.; Daniels, Stephen R.; Kimball, Thomas R.
2013-01-01
BACKGROUND AND OBJECTIVE: Lipid levels are linked to early atherosclerosis. Risk stratification may be improved by using triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-C), which relates to arterial stiffness in adults. We tested whether TG/HDL-C was an independent predictor of arterial stiffness in youth. METHODS: Subjects 10 to 26 years old (mean 18.9 years, 39% male, 56% non-Caucasian, n = 893) had laboratory, anthropometric, blood pressure, and arterial stiffness data collected (brachial distensibility, augmentation index, carotid-femoral pulse-wave velocity). Subjects were stratified into tertiles of TG/HDL-C (low, n = 227; mid, n = 288; high, n = 379). RESULTS: There was a progressive rise in cardiovascular (CV) risk factors and arterial stiffness across TG/HDL-C ratio. The high TG/HDL-C ratio group had the stiffest vessels (all P < .03 by analysis of variance). TG/HDL-C as a continuous variable was an independent determinant of brachial distensibility in CV risk factor adjusted model and for carotid-femoral pulse-wave velocity in obese subjects, with trend for higher augmentation index. CONCLUSIONS: TG/HDL-C, an estimate of small, dense low-density lipoprotein cholesterol, is an independent determinant of arterial stiffness in adolescents and young adults, especially in obese youth. These data suggest that use of TG/HDL-C may be helpful in identifying young adults requiring aggressive intervention to prevent atherosclerotic CV diseases. PMID:23460684
Vibration Control via Stiffness Switching of Magnetostrictive Transducers
NASA Technical Reports Server (NTRS)
Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.
2016-01-01
In this paper, a computational study is presented of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magneto-mechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.13; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping. For the cases considered, optimal resistive shunt damping performed considerably better than both voltage- and shunt-controlled stiffness switching.
Effect of squeeze film damper land geometry on damper performance
NASA Astrophysics Data System (ADS)
Wang, Y. H.; Hahn, E. J.
1994-04-01
Variable axial land geometry dampers can significantly alter the unbalance response, and in particular, the likelihood of undesirable jump behavior, or circular orbit-type squeeze film dampers. Assuming end feed, the pressure distribution, the fluid film forces, and the stiffness and damping coefficients are obtained for such variable axial and geometry dampers, as well as the jump-up propensity for vertical squeeze film damped rigid rotors. It is shown that variable land geometry dampers can reduce the variation of stiffness and damping coefficients, thereby reducing the degree of damper force non-linearity, and presumably reducing the likelihood of undesirable bistable operation. However, it is also found that regardless of unbalance and regardless of the depth, width or shape of the profile, parallel land dampers are least likely to experience jump-up to undesirable operation modes. These conflicting conclusions may be accounted for by the reduction in damping. They will need to be qualified for practical dampers which normally have oil hole feed rather than end feed.
Design and testing of a novel multi-stroke micropositioning system with variable resolutions.
Xu, Qingsong
2014-02-01
Multi-stroke stages are demanded in micro-/nanopositioning applications which require smaller and larger motion strokes with fine and coarse resolutions, respectively. This paper presents the conceptual design of a novel multi-stroke, multi-resolution micropositioning stage driven by a single actuator for each working axis. It eliminates the issue of the interference among different drives, which resides in conventional multi-actuation stages. The stage is devised based on a fully compliant variable stiffness mechanism, which exhibits unequal stiffnesses in different strokes. Resistive strain sensors are employed to offer variable position resolutions in the different strokes. To quantify the design of the motion strokes and coarse/fine resolution ratio, analytical models are established. These models are verified through finite-element analysis simulations. A proof-of-concept prototype XY stage is designed, fabricated, and tested to demonstrate the feasibility of the presented ideas. Experimental results of static and dynamic testing validate the effectiveness of the proposed design.
NASA Astrophysics Data System (ADS)
Ismail, Nik Intan Nik; Kamaruddin, Shamsul
2017-12-01
Magnetorheological elastomers (MREs) are composite materials consist of micron-sized magnetizable particles carbonyl iron particles [CIPs]) embedded in a soft elastomer matrix. MRE technology offers variable stiffness and damping properties under the influence of a magnetic field. Herein, the feasibility of incorporating a new generation specialty rubber, Pureprena as a matrix for MREs was investigated. Pureprena or Deproteinised Natural Rubber (DPNR) is a specialty natural rubber that has good dynamic properties, particularly with respect to damping parameters. DPNR was compounded with 60 wt% of CIPs to fabricate MREs. The performance of the DPNR-based MRE was measured in terms of tensile strength, dynamic properties, and magnetorheological (MR) effect and compared with polyisoprene (IR)-based MRE with the same amount of CIPs. Dynamic Mechanical Analyzer (DMA) showed that the loss factor in the glass transition region of the DPNR-based MRE was higher than that of the IR-based MRE, indicating better damping properties. Further investigation was undertaken using a servo-hydraulic testing machine to characterise the effect of strain amplitude and frequency on the dynamic properties (e.g. damping coefficient) of MREs at zero magnetic fields. The results demonstrate that DPNR-based MREs possess a comparable damping coefficient to that of IR-based MREs. In addition, MR effect, which relates to the ratio between elastic modulus with applied magnetic field (on-state) to the same modulus without applied fields (off-state), was measured using a parallel plate rheometer. As a result, DPNR-based MREs have improved MR effect than that of IR-based MREs. Moreover, variable stiffness is obtained when the magnetic field was increased to 0.8T. Loss factor or tan δ of MREs was found to vary against different magnetic fields. Finally, MREs with varied stiffness and damping were found to have potential as active control devices for smart damping materials.
A recursive Bayesian updating model of haptic stiffness perception.
Wu, Bing; Klatzky, Roberta L
2018-06-01
Stiffness of many materials follows Hooke's Law, but the mechanism underlying the haptic perception of stiffness is not as simple as it seems in the physical definition. The present experiments support a model by which stiffness perception is adaptively updated during dynamic interaction. Participants actively explored virtual springs and estimated their stiffness relative to a reference. The stimuli were simulations of linear springs or nonlinear springs created by modulating a linear counterpart with low-amplitude, half-cycle (Experiment 1) or full-cycle (Experiment 2) sinusoidal force. Experiment 1 showed that subjective stiffness increased (decreased) as a linear spring was positively (negatively) modulated by a half-sinewave force. In Experiment 2, an opposite pattern was observed for full-sinewave modulations. Modeling showed that the results were best described by an adaptive process that sequentially and recursively updated an estimate of stiffness using the force and displacement information sampled over trajectory and time. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Characterizing the Mechanical Properties of Running-Specific Prostheses
Beck, Owen N.; Taboga, Paolo; Grabowski, Alena M.
2016-01-01
The mechanical stiffness of running-specific prostheses likely affects the functional abilities of athletes with leg amputations. However, each prosthetic manufacturer recommends prostheses based on subjective stiffness categories rather than performance based metrics. The actual mechanical stiffness values of running-specific prostheses (i.e. kN/m) are unknown. Consequently, we sought to characterize and disseminate the stiffness values of running-specific prostheses so that researchers, clinicians, and athletes can objectively evaluate prosthetic function. We characterized the stiffness values of 55 running-specific prostheses across various models, stiffness categories, and heights using forces and angles representative of those measured from athletes with transtibial amputations during running. Characterizing prosthetic force-displacement profiles with a 2nd degree polynomial explained 4.4% more of the variance than a linear function (p<0.001). The prosthetic stiffness values of manufacturer recommended stiffness categories varied between prosthetic models (p<0.001). Also, prosthetic stiffness was 10% to 39% less at angles typical of running 3 m/s and 6 m/s (10°-25°) compared to neutral (0°) (p<0.001). Furthermore, prosthetic stiffness was inversely related to height in J-shaped (p<0.001), but not C-shaped, prostheses. Running-specific prostheses should be tested under the demands of the respective activity in order to derive relevant characterizations of stiffness and function. In all, our results indicate that when athletes with leg amputations alter prosthetic model, height, and/or sagittal plane alignment, their prosthetic stiffness profiles also change; therefore variations in comfort, performance, etc. may be indirectly due to altered stiffness. PMID:27973573
Williams, Cylie M; Penkala, Stefania; Smith, Peter; Haines, Terry; Bowles, Kelly-Ann
2017-01-01
Workplace injury is an international costly burden. Health care workers are an essential component to managing musculoskeletal disorders, however in doing this, they may increase their own susceptibility. While there is substantial evidence about work-related musculoskeletal disorders across the health workforce, understanding risk factors in specific occupational groups, such as podiatry, is limited. The primary aim of this study was to determine the prevalence and intensity of work related low back pain in podiatrists. This was an international cross-sectional survey targeting podiatrists in Australia, New Zealand and the United Kingdom. The survey had two components; general demographic variables and variables relating to general musculoskeletal pain in general or podiatry work-related musculoskeletal pain. Multivariable regression analyses were used to identify factors associated with musculoskeletal stiffness and pain and low back pain intensity. Thematic analysis was used to group comments podiatrists made about their musculoskeletal health. There were 948 survey responses (5% of Australian, New Zealand and United Kingdom registered podiatrists). There were 719 (76%) podiatrists reporting musculoskeletal pain as a result of their work practices throughout their career. The majority of injuries reported were in the first five years of practice ( n = 320, 45%). The body area reported as being the location of the most significant injury was the low back (203 of 705 responses, 29%). Being female ( p < 0.001) and working in private practice ( p = 0.003) was associated with musculoskeletal pain or stiffness in the past 12 months. There were no variables associated with pain or stiffness in the past four weeks. Being female was the only variable associated with higher pain ( p = 0.018). There were four main themes to workplace musculoskeletal pain: 1. Organisational and procedural responses to injury, 2. Giving up work, taking time off, reducing hours, 3. Maintaining good musculoskeletal health and 4. Environmental change. The postures that podiatrists hold while treating patients appear to impact on musculoskeletal pain and stiffness. Recently graduated and female podiatrists are at higher risk of injury. There is a need for the profession to consider how they move and take care of their own musculoskeletal health.
Team approach to treatment of the posttraumatic stiff hand. A case report.
Morey, K R; Watson, A H
1986-02-01
Posttraumatic hand stiffness is a common but complex problem treated in many general clinics and in hand treatment centers. Although much information is available regarding various treatment procedures, the use of a team approach to evaluate and treat hand stiffness has not been examined thoroughly in the Journal. The problems of the patient with a stiff hand include both physical and psychological components that must be addressed in a structured manner. The clinical picture of posttraumatic hand stiffness involves edema, immobility, pain, and the inability to incorporate the affected extremity into daily activities. In this case report, we review the purpose and philosophy of the team approach to hand therapy and the clarification of responsibilities for physical therapy and occupational therapy intervention.
Uehara, G; Takeda, H
2008-01-01
Using the cardio-ankle vascular index (CAVI) as an indicator, we assessed improvement of arterial stiffness in 95 outpatients with hypertension complicated by type 2 diabetes mellitus who were treated orally for >or= 12 months with telmisartan 40 mg/day, losartan 50 mg/day or candesartan 8 mg/day. At 1 year, in the telmisartan and losartan groups CAVI did not change whereas in the candesartan group CAVI showed a statistically significant decrease of 2.70%. Although telmisartan is believed to enhance the activity of peroxisome proliferator-activated receptor (PPAR-gamma) in vitro, it did not ameliorate arterial stiffness in our patients. Candesartan, however, improved arterial stiffness independently of blood pressure lowering and without PPAR-gamma agonist action, possibly by direct action resulting from its potent affinity and binding capacity for the angiotensin II type 1 receptor. We conclude that candesartan is a potentially useful therapy against arterial stiffness in hypertensive patients with type 2 diabetes mellitus.
Does aerobic exercise mitigate the effects of cigarette smoking on arterial stiffness?
Park, Wonil; Miyachi, Motohiko; Tanaka, Hirofumi
2014-09-01
The largest percentage of mortality from tobacco smoking is cardiovascular-related. It is not known whether regular participation in exercise mitigates the adverse influence of smoking on vasculature. Accordingly, the authors determined whether regular aerobic exercise is associated with reduced arterial stiffness in men who smoke cigarettes. Using a cross-sectional study design, 78 young men were studied, including sedentary nonsmokers (n=20), sedentary smokers (n=12), physically active nonsmokers (n=21), and physically active smokers (n=25). Arterial stiffness was assessed by brachial-ankle pulse wave velocity (baPWV). There were no group differences in height, body fat, and systolic and diastolic blood pressure. As expected, both physically active groups demonstrated greater maximal oxygen consumption and lower heart rate at rest than their sedentary peers. The sedentary smokers demonstrated greater baPWV than the sedentary nonsmokers (11.8±1 m/s vs 10.6±1 m/s, P=.036). baPWV values were not different between the physically active nonsmokers and the physically active smokers (10.8±1 m/s vs 10.7±1 m/s). Chronic smoking is associated with arterial stiffening in sedentary men but a significant smoking-induced increase in arterial stiffness was not observed in physically active adults. These results are consistent with the idea that regular participation in physical activity may mitigate the adverse effects of smoking on the vasculature. ©2014 Wiley Periodicals, Inc.
Verheul, Jasper; Clansey, Adam C; Lake, Mark J
2017-03-01
It remains to be determined whether running training influences the amplitude of lower limb muscle activations before and during the first half of stance and whether such changes are associated with joint stiffness regulation and usage of stored energy from tendons. Therefore, the aim of this study was to investigate neuromuscular and movement adaptations before and during landing in response to running training across a range of speeds. Two groups of high mileage (HM; >45 km/wk, n = 13) and low mileage (LM; <15 km/wk, n = 13) runners ran at four speeds (2.5-5.5 m/s) while lower limb mechanics and electromyography of the thigh muscles were collected. There were few differences in prelanding activation levels, but HM runners displayed lower activations of the rectus femoris, vastus medialis, and semitendinosus muscles postlanding, and these differences increased with running speed. HM runners also demonstrated higher initial knee stiffness during the impact phase compared with LM runners, which was associated with an earlier peak knee flexion velocity, and both were relatively unchanged by running speed. In contrast, LM runners had higher knee stiffness during the slightly later weight acceptance phase and the disparity was amplified with increases in speed. It was concluded that initial knee joint stiffness might predominantly be governed by tendon stiffness rather than muscular activations before landing. Estimated elastic work about the ankle was found to be higher in the HM runners, which might play a role in reducing weight acceptance phase muscle activation levels and improve muscle activation efficiency with running training. NEW & NOTEWORTHY Although neuromuscular factors play a key role during running, the influence of high mileage training on neuromuscular function has been poorly studied, especially in relation to running speed. This study is the first to demonstrate changes in neuromuscular conditioning with high mileage training, mainly characterized by lower thigh muscle activation after touch down, higher initial knee stiffness, and greater estimates of energy return, with adaptations being increasingly evident at faster running speeds. Copyright © 2017 the American Physiological Society.
The effects of resistance exercise training on arterial stiffness in metabolic syndrome.
DeVallance, E; Fournier, S; Lemaster, K; Moore, C; Asano, S; Bonner, D; Donley, D; Olfert, I M; Chantler, P D
2016-05-01
Arterial stiffness is a strong independent risk factor for cardiovascular disease and is elevated in individuals with metabolic syndrome (MetS). Resistance training is a popular form of exercise that has beneficial effects on muscle mass, strength, balance and glucose control. However, it is unknown whether resistance exercise training (RT) can lower arterial stiffness in patients with MetS. Thus, the aim of this study was to examine whether a progressive RT program would improve arterial stiffness in MetS. A total of 57 subjects (28 healthy sedentary subjects; 29 MetS) were evaluated for arterial structure and function, including pulse wave velocity (cfPWV: arterial stiffness), before and after an 8-week period of RT or continuation of sedentary lifestyle. We found that 8 weeks of progressive RT increased skeletal muscle strength in both Con and MetS, but did not change arterial stiffness in either MetS (cfPWV; Pre 7.9 ± 0.4 m/s vs. Post 7.7 ± 0.4 m/s) or healthy controls (cfPWV; Pre 6.9 ± 0.3 m/s vs. Post 7.0 ± 0.3 m/s). However, when cfPWV is considered as a continuous variable, high baseline measures of cfPWV tended to show a decrease in cfPWV following RT. Eight weeks of progressive RT did not decrease the group mean values of arterial stiffness in individuals with MetS or healthy controls.
Kovaleski, John E; Heitman, Robert J; Gurchiek, Larry R; Hollis, J M; Liu, Wei; Pearsall, Albert W
2014-01-01
This is part II of a 2-part series discussing stability characteristics of the ankle complex. In part I, we used a cadaver model to examine the effects of sectioning the lateral ankle ligaments on anterior and inversion motion and stiffness of the ankle complex. In part II, we wanted to build on and apply these findings to the clinical assessment of ankle-complex motion and stiffness in a group of athletes with a history of unilateral ankle sprain. To examine ankle-complex motion and stiffness in a group of athletes with reported history of lateral ankle sprain. Cross-sectional study. University research laboratory. Twenty-five female college athletes (age = 19.4 ± 1.4 years, height = 170.2 ± 7.4 cm, mass = 67.3 ± 10.0 kg) with histories of unilateral ankle sprain. All ankles underwent loading with an ankle arthrometer. Ankles were tested bilaterally. The dependent variables were anterior displacement, anterior end-range stiffness, inversion rotation, and inversion end-range stiffness. Anterior displacement of the ankle complex did not differ between the uninjured and sprained ankles (P = .37), whereas ankle-complex rotation was greater for the sprained ankles (P = .03). The sprained ankles had less anterior and inversion end-range stiffness than the uninjured ankles (P < .01). Changes in ankle-complex laxity and end-range stiffness were detected in ankles with histories of sprain. These results indicate the presence of altered mechanical characteristics in the soft tissues of the sprained ankles.
Reduction of magneto rheological dampers stiffness by incorporating of an eddy current damper
NASA Astrophysics Data System (ADS)
Asghar Maddah, Ali; Hojjat, Yousef; Reza Karafi, Mohammad; Reza Ashory, Mohammad
2017-05-01
In this paper, a hybrid damper is developed to achieve lower stiffness compared to magneto rheological dampers. The hybrid damper consists of an eddy current damper (ECD) and a Magneto Rheological Damper (MRD). The aim of this research is to reduce the stiffness of MRDs with equal damping forces. This work is done by adding an eddy current passive damper to a semi-active MRD. The ECDs are contactless dampers which show an almost viscous damping behavior without increasing the stiffness of a system. However, MRDs increase damping and stiffness of a system simultaneously, when a magnetic field is applied. Damping of each part is studied theoretically and experimentally. A semi-empirical model is developed to explain the viscoelastic behavior of the damper. The experimental results showed that the hybrid damper is able to dissipate energy as much as those of MRDs while its stiffness is 12% lower at a zero excitation current.
Physical limits to biomechanical sensing in disordered fibre networks
NASA Astrophysics Data System (ADS)
Beroz, Farzan; Jawerth, Louise M.; Münster, Stefan; Weitz, David A.; Broedersz, Chase P.; Wingreen, Ned S.
2017-07-01
Cells actively probe and respond to the stiffness of their surroundings. Since mechanosensory cells in connective tissue are surrounded by a disordered network of biopolymers, their in vivo mechanical environment can be extremely heterogeneous. Here we investigate how this heterogeneity impacts mechanosensing by modelling the cell as an idealized local stiffness sensor inside a disordered fibre network. For all types of networks we study, including experimentally-imaged collagen and fibrin architectures, we find that measurements applied at different points yield a strikingly broad range of local stiffnesses, spanning roughly two decades. We verify via simulations and scaling arguments that this broad range of local stiffnesses is a generic property of disordered fibre networks. Finally, we show that to obtain optimal, reliable estimates of global tissue stiffness, a cell must adjust its size, shape, and position to integrate multiple stiffness measurements over extended regions of space.
NASA Technical Reports Server (NTRS)
Chao, H. C.; Cheng, H. S.
1987-01-01
A complete analysis of spiral bevel gear sets is presented. The gear profile is described by the movements of the cutting tools. The contact patterns of the rigid body gears are investigated. The tooth dynamic force is studied by combining the effects of variable teeth meshing stiffness, speed, damping, and bearing stiffness. The lubrication performance is also accomplished by including the effects of the lubricant viscosity, ambient temperature, and gear speed. A set of numerical results is also presented.
Palmer, Ty B; Agu-Udemba, Chinonye C; Palmer, Bailey M
2018-02-01
This study aimed to examine the acute effects of straight-leg raise (SLR) static stretching on passive stiffness and postural balance in healthy, elderly men. An additional aim of this study was to examine the relationships between stiffness and balance at baseline (prior to stretching) and the relationships between the stretch-induced changes in these variables. Eleven elderly men (age = 69 ± 6 years; height = 177 ± 7 cm; mass = 83 ± 13 kg) underwent postural balance and passive stiffness assessments before and after: 1) a stretching treatment consisting of four, 15-s SLR static stretches performed by the primary investigator and 2) a control treatment consisting of no static stretching. Passive stiffness was calculated from the slopes of the initial (phase 1) and final (phase 2) portions of the angle-torque curve. Unilateral postural balance was assessed on the right leg using a commercially designed balance testing device, which provides a measurement of static stability based on the overall stability index (OSI). The slope coefficients and OSI values decreased from pre- to post-treatment for the stretching intervention (P = 0.015 and 0.018, respectively); however, there were no changes for the control (P = 0.654 and 0.920). For the stretching intervention, a significant positive relationship was observed between OSI and the slope coefficient of phase 1 at baseline (r = 0.619; P = 0.042). A significant positive relationship was also observed between the stretched-induced changes in OSI and the slope coefficient of phase 1 (r = 0.731; P = 0.011). No relationship was observed between OSI and the slope coefficient of phase 2 at baseline (r = 0.262; P = 0.437) nor was there a relationship between the changes in these variables (r = 0.419; P = 0.200). A short, practical bout of SLR static stretching may be an effective intervention for reducing passive stiffness and improving postural balance in healthy, elderly men.
Kay, Anthony D; Blazevich, Anthony J
2009-04-01
The effects of static stretch on muscle and tendon mechanical properties and muscle activation were studied in fifteen healthy human volunteers. Peak active and passive moment data were recorded during plantar flexion trials on an isokinetic dynamometer. Electromyography (EMG) monitoring of the triceps surae muscles, real-time motion analysis of the lower leg, and ultrasound imaging of the Achilles-medial gastrocnemius muscle-tendon junction were simultaneously conducted. Subjects performed three 60-s static stretches before being retested 2 min and 30 min poststretch. There were three main findings in the present study. First, peak concentric moment was significantly reduced after stretch; 60% of the deficit recovered 30 min poststretch. This was accompanied by, and correlated with (r = 0.81; P < 0.01) reductions in peak triceps surae EMG amplitude, which was fully recovered at 30 min poststretch. Second, Achilles tendon length was significantly shorter during the concentric contraction after stretch and at 30 min poststretch; however, no change in tendon stiffness was detected. Third, passive joint moment was significantly reduced after stretch, and this was accompanied by significant reductions in medial gastrocnemius passive muscle stiffness; both measures fully recovered by 30 min poststretch. These data indicate that the stretching protocol used in this study induced losses in concentric moment that were accompanied by, and related to, reductions in neuromuscular activity, but they were not associated with alterations in tendon stiffness or shorter muscle operating length. Reductions in passive moment were associated with reductions in muscle stiffness, whereas tendon mechanics were unaffected by the stretch. Importantly, the impact on mechanical properties and neuromuscular activity was minimal at 30 min poststretch.
Seebohm, B; Matinmehr, F; Köhler, J; Francino, A; Navarro-Lopéz, F; Perrot, A; Ozcelik, C; McKenna, W J; Brenner, B; Kraft, T
2009-08-05
The ability of myosin to generate motile forces is based on elastic distortion of a structural element of the actomyosin complex (cross-bridge) that allows strain to develop before filament sliding. Addressing the question, which part of the actomyosin complex experiences main elastic distortion, we suggested previously that the converter domain might be the most compliant region of the myosin head domain. Here we test this proposal by studying functional effects of naturally occurring missense mutations in the beta-myosin heavy chain, 723Arg --> Gly (R723G) and 736Ile --> Thr (I736T), in comparison to 719Arg --> Trp (R719W). All three mutations are associated with hypertrophic cardiomyopathy and are located in the converter region of the myosin head domain. We determined several mechanical parameters of single skinned slow fibers isolated from Musculus soleus biopsies of hypertrophic cardiomyopathy patients and healthy controls. Major findings of this study for mutation R723G were i), a >40% increase in fiber stiffness in rigor with a 2.9-fold increase in stiffness per myosin head (S( *)(rigor R723G) = 0.84 pN/nm S( *)(rigor WT) = 0.29 pN/nm); and ii), a significant increase in force per head (F( *)(10 degrees C), 1.99 pN vs. 1.49 pN = 1.3-fold increase; F( *)(20 degrees C), 2.56 pN vs. 1.92 pN = 1.3-fold increase) as well as stiffness per head during isometric steady-state contraction (S( *)(active10 degrees C), 0.52 pN/nm vs. 0.28 pN/nm = 1.9-fold increase). Similar changes were found for mutation R719W (2.6-fold increase in S( *)(rigor); 1.8-fold increase in F( *)(10 degrees C), 1.6-fold in F( *)(20 degrees C); twofold increase in S( *)(active10 degrees C)). Changes in active cross-bridge cycling kinetics could not account for the increase in force and active stiffness. For the above estimates the previously determined fraction of mutated myosin in the biopsies was taken into account. Data for wild-type myosin of slow soleus muscle fibers support previous findings that for the slow myosin isoform S( *) and F( *) are significantly lower than for fast myosin e.g., of rabbit psoas muscle. The data indicate that two mutations, R723G and R719W, are associated with an increase in resistance to elastic distortion of the individual mutated myosin heads whereas mutation I736T has essentially no effect. The data strongly support the notion that major elastic distortion occurs within the converter itself. Apparently, the compliance depends on specific residues, e.g., R719 and R723, presumably located at strategic positions near the long alpha-helix of the light chain binding domain. Because amino acids 719 and 723 are nonconserved residues, cross-bridge stiffness may well be specifically tuned for different myosins.
Skin-stiffener interface stresses in composite stiffened panels
NASA Technical Reports Server (NTRS)
Wang, J. T. S.; Biggers, S. B.
1984-01-01
A model and solution method for determining the normal and shear stresses in the interface between the skin and the stiffener attached flange were developed. An efficient, analytical solution procedure was developed and incorporated in a sizing code for stiffened panels. The analysis procedure described provides a means to study the effects of material and geometric design parameters on the interface stresses. These stresses include the normal stress, and the shear stresses in both the longitudinal and the transverse directions. The tendency toward skin/stiffener separation may therefore be minimized by choosing appropriate values for the design variables. The most important design variables include the relative bending stiffnesses of the skin and stiffener attached flange, the bending stiffness of the stiffener web, and the flange width. The longitudinal compressive loads in the flange and skin have significant effects on the interface stresses.
Gerage, Aline M.; Benedetti, Tania R. B.; Farah, Breno Q.; Santana, Fábio da S.; Ohara, David; Andersen, Lars B.; Ritti-Dias, Raphael M.
2015-01-01
Background Physical activity is recommended as a part of a comprehensive lifestyle approach in the treatment of hypertension, but there is a lack of data about the relationship between different intensities of physical activity and cardiovascular parameters in hypertensive patients. The purpose of this study was to investigate the association between the time spent in physical activities of different intensities and blood pressure levels, arterial stiffness and autonomic modulation in hypertensive patients. Methods In this cross-sectional study, 87 hypertensive patients (57.5 ± 9.9 years of age) had their physical activity assessed over a 7 day period using an accelerometer and the time spent in sedentary activities, light physical activities, moderate physical activities and moderate-to-vigorous physical activities was obtained. The primary outcomes were brachial and central blood pressure. Arterial stiffness parameters (augmentation index and pulse wave velocity) and cardiac autonomic modulation (sympathetic and parasympathetic modulation in the heart) were also obtained as secondary outcomes. Results Sedentary activities and light physical activities were positively and inversely associated, respectively, with brachial systolic (r = 0.56; P < 0.01), central systolic (r = 0.51; P < 0.05), brachial diastolic (r = 0.45; P < 0.01) and central diastolic (r = 0.42; P < 0.05) blood pressures, after adjustment for sex, age, trunk fat, number of antihypertensive drugs, accelerometer wear time and moderate-to-vigorous physical activities. Arterial stiffness parameters and cardiac autonomic modulation were not associated with the time spent in sedentary activities and in light physical activities (P > 0.05). Conclusion Lower time spent in sedentary activities and higher time spent in light physical activities are associated with lower blood pressure, without affecting arterial stiffness and cardiac autonomic modulation in hypertensive patients. PMID:26717310
Bi-directional series-parallel elastic actuator and overlap of the actuation layers.
Furnémont, Raphaël; Mathijssen, Glenn; Verstraten, Tom; Lefeber, Dirk; Vanderborght, Bram
2016-01-27
Several robotics applications require high torque-to-weight ratio and energy efficient actuators. Progress in that direction was made by introducing compliant elements into the actuation. A large variety of actuators were developed such as series elastic actuators (SEAs), variable stiffness actuators and parallel elastic actuators (PEAs). SEAs can reduce the peak power while PEAs can reduce the torque requirement on the motor. Nonetheless, these actuators still cannot meet performances close to humans. To combine both advantages, the series parallel elastic actuator (SPEA) was developed. The principle is inspired from biological muscles. Muscles are composed of motor units, placed in parallel, which are variably recruited as the required effort increases. This biological principle is exploited in the SPEA, where springs (layers), placed in parallel, can be recruited one by one. This recruitment is performed by an intermittent mechanism. This paper presents the development of a SPEA using the MACCEPA principle with a self-closing mechanism. This actuator can deliver a bi-directional output torque, variable stiffness and reduced friction. The load on the motor can also be reduced, leading to a lower power consumption. The variable recruitment of the parallel springs can also be tuned in order to further decrease the consumption of the actuator for a given task. First, an explanation of the concept and a brief description of the prior work done will be given. Next, the design and the model of one of the layers will be presented. The working principle of the full actuator will then be given. At the end of this paper, experiments showing the electric consumption of the actuator will display the advantage of the SPEA over an equivalent stiff actuator.
Desai, Seema S; Tung, Jason C; Zhou, Vivian X; Grenert, James P; Malato, Yann; Rezvani, Milad; Español-Suñer, Regina; Willenbring, Holger; Weaver, Valerie M; Chang, Tammy T
2016-07-01
Matrix rigidity has important effects on cell behavior and is increased during liver fibrosis; however, its effect on primary hepatocyte function is unknown. We hypothesized that increased matrix rigidity in fibrotic livers would activate mechanotransduction in hepatocytes and lead to inhibition of liver-specific functions. To determine the physiologically relevant ranges of matrix stiffness at the cellular level, we performed detailed atomic force microscopy analysis across liver lobules from normal and fibrotic livers. We determined that normal liver matrix stiffness was around 150 Pa and increased to 1-6 kPa in areas near fibrillar collagen deposition in fibrotic livers. In vitro culture of primary hepatocytes on collagen matrix of tunable rigidity demonstrated that fibrotic levels of matrix stiffness had profound effects on cytoskeletal tension and significantly inhibited hepatocyte-specific functions. Normal liver stiffness maintained functional gene regulation by hepatocyte nuclear factor 4 alpha (HNF4α), whereas fibrotic matrix stiffness inhibited the HNF4α transcriptional network. Fibrotic levels of matrix stiffness activated mechanotransduction in primary hepatocytes through focal adhesion kinase. In addition, blockade of the Rho/Rho-associated protein kinase pathway rescued HNF4α expression from hepatocytes cultured on stiff matrix. Fibrotic levels of matrix stiffness significantly inhibit hepatocyte-specific functions in part by inhibiting the HNF4α transcriptional network mediated through the Rho/Rho-associated protein kinase pathway. Increased appreciation of the role of matrix rigidity in modulating hepatocyte function will advance our understanding of the mechanisms of hepatocyte dysfunction in liver cirrhosis and spur development of novel treatments for chronic liver disease. (Hepatology 2016;64:261-275). © 2016 by the American Association for the Study of Liver Diseases.
Yule, Christie E.; Stoner, Lee; Hodges, Lynette D.; Cochrane, Darryl J.
2016-01-01
[Purpose] Previous studies have shown that stroke is associated with increased arterial stiffness that can be diminished by a program of physical activity. A novel exercise intervention, whole-body vibration (WBV), is reported to significantly improve arterial stiffness in healthy men and older sedentary adults. However, little is known about its efficacy in reducing arterial stiffness in chronic stroke. [Subjects and Methods] Six participants with chronic stroke were randomly assigned to 4 weeks of WBV training or control followed by cross-over after a 2-week washout period. WBV intervention consisted of 3 sessions of 5 min intermittent WBV per week for 4 weeks. Arterial stiffness (carotid arterial stiffness, pulse wave velocity [PWV], pulse and wave analysis [PWA]) were measured before/after each intervention. [Results] No significant improvements were reported with respect to carotid arterial stiffness, PWV, and PWA between WBV and control. However, carotid arterial stiffness showed a decrease over time following WBV compared to control, but this was not significant. [Conclusion] Three days/week for 4 weeks of WBV seems too short to elicit appropriate changes in arterial stiffness in chronic stroke. However, no adverse effects were reported, indicating that WBV is a safe and acceptable exercise modality for people with chronic stroke. PMID:27134400
Development of moving spars for active aeroelastic structures
NASA Astrophysics Data System (ADS)
Amprikidis, Michael; Cooper, Jonathan E.
2003-08-01
This paper describes a research program investigating the development of "moving spars" to enable active aeroelastic control of aerospace structures. A number of different concepts have been considered as part of the EU funded Active Aeroelastic Aircraft Structures (3AS) project that enable the control of the bending and torsional stiffness of aircraft wings through changes in the internal aircraft structure. The aeroelastic behaviour, in particular static deflections, can be controlled as desired through changes in the position, orientation and stiffness of the spars. The concept described in this paper is based upon translational movement of the spars. This will result in changes in the torsional stiffness and shear centre position whilst leaving the bending stiffness unaffected. An analytical study of the aeroelastic behaviour demonstrates the benefits of using such an approach. An experimental investigation involving construction and bench testing of the concepts was undertaken to demonstrate its feasibility. Finally, a wind tunnel test of simple wing models constructed using these concepts was performed. The simulated and experimental results show that it is possible to control the wind twist in practice.
A quasi-linear control theory analysis of timesharing skills
NASA Technical Reports Server (NTRS)
Agarwal, G. C.; Gottlieb, G. L.
1977-01-01
The compliance of the human ankle joint is measured by applying 0 to 50 Hz band-limited gaussian random torques to the foot of a seated human subject. These torques rotate the foot in a plantar-dorsal direction about a horizontal axis at a medial moleolus of the ankle. The applied torques and the resulting angular rotation of the foot are measured, digitized and recorded for off-line processing. Using such a best-fit, second-order model, the effective moment of inertia of the ankle joint, the angular viscosity and the stiffness are calculated. The ankle joint stiffness is shown to be a linear function of the level of tonic muscle contraction, increasing at a rate of 20 to 40 Nm/rad/Kg.m. of active torque. In terms of the muscle physiology, the more muscle fibers that are active, the greater the muscle stiffness. Joint viscosity also increases with activation. Joint stiffness is also a linear function of the joint angle, increasing at a rate of about 0.7 to 1.1 Nm/rad/deg from plantar flexion to dorsiflexion rotation.
NASA Technical Reports Server (NTRS)
Holland, W.
1974-01-01
This document describes the dynamic loads analysis accomplished for the Space Shuttle Main Engine (SSME) considering the side load excitation associated with transient flow separation on the engine bell during ground ignition. The results contained herein pertain only to the flight configuration. A Monte Carlo procedure was employed to select the input variables describing the side load excitation and the loads were statistically combined. This revision includes an active thrust vector control system representation and updated orbiter thrust structure stiffness characteristics. No future revisions are planned but may be necessary as system definition and input parameters change.
Sartori, Massimo; Maculan, Marco; Pizzolato, Claudio; Reggiani, Monica; Farina, Dario
2015-10-01
This work presents an electrophysiologically and dynamically consistent musculoskeletal model to predict stiffness in the human ankle and knee joints as derived from the joints constituent biological tissues (i.e., the spanning musculotendon units). The modeling method we propose uses electromyography (EMG) recordings from 13 muscle groups to drive forward dynamic simulations of the human leg in five healthy subjects during overground walking and running. The EMG-driven musculoskeletal model estimates musculotendon and resulting joint stiffness that is consistent with experimental EMG data as well as with the experimental joint moments. This provides a framework that allows for the first time observing 1) the elastic interplay between the knee and ankle joints, 2) the individual muscle contribution to joint stiffness, and 3) the underlying co-contraction strategies. It provides a theoretical description of how stiffness modulates as a function of muscle activation, fiber contraction, and interacting tendon dynamics. Furthermore, it describes how this differs from currently available stiffness definitions, including quasi-stiffness and short-range stiffness. This work offers a theoretical and computational basis for describing and investigating the neuromuscular mechanisms underlying human locomotion. Copyright © 2015 the American Physiological Society.
Maculan, Marco; Pizzolato, Claudio; Reggiani, Monica; Farina, Dario
2015-01-01
This work presents an electrophysiologically and dynamically consistent musculoskeletal model to predict stiffness in the human ankle and knee joints as derived from the joints constituent biological tissues (i.e., the spanning musculotendon units). The modeling method we propose uses electromyography (EMG) recordings from 13 muscle groups to drive forward dynamic simulations of the human leg in five healthy subjects during overground walking and running. The EMG-driven musculoskeletal model estimates musculotendon and resulting joint stiffness that is consistent with experimental EMG data as well as with the experimental joint moments. This provides a framework that allows for the first time observing 1) the elastic interplay between the knee and ankle joints, 2) the individual muscle contribution to joint stiffness, and 3) the underlying co-contraction strategies. It provides a theoretical description of how stiffness modulates as a function of muscle activation, fiber contraction, and interacting tendon dynamics. Furthermore, it describes how this differs from currently available stiffness definitions, including quasi-stiffness and short-range stiffness. This work offers a theoretical and computational basis for describing and investigating the neuromuscular mechanisms underlying human locomotion. PMID:26245321
NASA Astrophysics Data System (ADS)
Poojary, Umanath R.; Hegde, Sriharsha; Gangadharan, K. V.
2016-11-01
Magneto rheological elastomer (MRE) is a potential resilient element for the semi active vibration isolator. MRE based isolators adapt to different frequency of vibrations arising from the source to isolate the structure over wider frequency range. The performance of MRE isolator depends on the magnetic field and frequency dependent characteristics of MRE. Present study is focused on experimentally evaluating the dynamic stiffness and loss factor of MRE through dynamic blocked transfer stiffness method. The dynamic stiffness variations of MRE exhibit strong magnetic field and mild frequency dependency. Enhancements in dynamic stiffness saturate with the increase in magnetic field and the frequency. The inconsistent variations of loss factor with the magnetic field substantiate the inability of MRE to have independent control over its damping characteristics.
NASA Technical Reports Server (NTRS)
Anderson, C. M.; Noor, A. K.
1975-01-01
Computerized symbolic integration was used in conjunction with group-theoretic techniques to obtain analytic expressions for the stiffness, geometric stiffness, consistent mass, and consistent load matrices of composite shallow shell structural elements. The elements are shear flexible and have variable curvature. A stiffness (displacement) formulation was used with the fundamental unknowns consisting of both the displacement and rotation components of the reference surface of the shell. The triangular elements have six and ten nodes; the quadrilateral elements have four and eight nodes and can have internal degrees of freedom associated with displacement modes which vanish along the edges of the element (bubble modes). The stiffness, geometric stiffness, consistent mass, and consistent load coefficients are expressed as linear combinations of integrals (over the element domain) whose integrands are products of shape functions and their derivatives. The evaluation of the elemental matrices is divided into two separate problems - determination of the coefficients in the linear combination and evaluation of the integrals. The integrals are performed symbolically by using the symbolic-and-algebraic-manipulation language MACSYMA. The efficiency of using symbolic integration in the element development is demonstrated by comparing the number of floating-point arithmetic operations required in this approach with those required by a commonly used numerical quadrature technique.
The effects of oral contraceptive use on muscle stiffness across the menstrual cycle.
Bell, David R; Blackburn, J Troy; Ondrak, Kristin S; Hackney, Anthony C; Hudson, Jeffrey D; Norcross, Marc F; Padua, Darin A
2011-11-01
To determine the effect of oral contraceptives (OC) on hamstring neuromechanics and lower extremity stiffness across the menstrual cycle (MC). Causal comparative. Research laboratory. Thirty, healthy, normally menstruating female volunteers who were using OC (OC group, n = 15) or not (non-OC group, n = 15). Stiffness and hamstring neuromechanics were assessed at 2 points of the MC corresponding to low (menses) and high (ovulation) hormone concentrations. Menses testing took place 3 to 5 days after the onset of menses (or pills 3-5 for the OC group). Ovulation test session occurred 2 to 4 days after ovulation identified using a commercial ovulation kit (or pills 15-17 in the OC group). Lower extremity stiffness and hamstring neuromechanics [stiffness, electromechanical delay, rate of force production (RFP), time to 50% peak force (T50%)] and blood plasma concentrations of estradiol-β-17, free testosterone, and progesterone. Estradiol-β-17, free testosterone, and progesterone increased at ovulation in the non-OC group and remained constant in the OC group. No changes were observed across the MC or between the groups in other variables (P > 0.05). Although previous literature suggests a prophylactic effect of OC use with respect to musculoskeletal injury risk, our results indicate that OC use does not affect muscle properties in manners thought to reduce ACL injury risk.
Indentation stiffness does not discriminate between normal and degraded articular cartilage.
Brown, Cameron P; Crawford, Ross W; Oloyede, Adekunle
2007-08-01
Relative indentation characteristics are commonly used for distinguishing between normal healthy and degraded cartilage. The application of this parameter in surgical decision making and an appreciation of articular cartilage biomechanics has prompted us to hypothesise that it is difficult to define a reference stiffness to characterise normal articular cartilage. This hypothesis is tested for validity by carrying out biomechanical indentation of articular cartilage samples that are characterised as visually normal and degraded relative to proteoglycan depletion and collagen disruption. Compressive loading was applied at known strain rates to visually normal, artificially degraded and naturally osteoarthritic articular cartilage and observing the trends of their stress-strain and stiffness characteristics. While our results demonstrated a 25% depreciation in the stiffness of individual samples after proteoglycan depletion, they also showed that when compared to the stiffness of normal samples only 17% lie outside the range of the stress-strain behaviour of normal samples. We conclude that the extent of the variability in the properties of normal samples, and the degree of overlap (81%) of the biomechanical properties of normal and degraded matrices demonstrate that indentation data cannot form an accurate basis for distinguishing normal from abnormal articular cartilage samples with consequences for the application of this mechanical process in the clinical environment.
Sato, Eugene J.; Killian, Megan L.; Choi, Anthony J.; Lin, Evie; Esparza, Mary C.; Galatz, Leesa M.; Thomopoulos, Stavros; Ward, Samuel R.
2015-01-01
Rotator cuff tears can cause irreversible changes (e.g., fibrosis) to the structure and function of the injured muscle(s). Fibrosis leads to increased muscle stiffness resulting in increased tension at the rotator cuff repair site. This tension influences repairability and healing potential in the clinical setting. However, the micro- and meso-scale structural and molecular sources of these whole-muscle mechanical changes are poorly understood. Here, single muscle fiber and fiber bundle passive mechanical testing was performed on rat supraspinatus and infraspinatus muscles with experimentally induced massive rotator cuff tears (Tenotomy) as well as massive tears with chemical denervation (Tenotomy+BTX) at 8 and 16 weeks post-injury. Titin molecular weight, collagen content, and myosin heavy chain profiles were measured and correlated with mechanical variables. Single fiber stiffness was not different between controls and experimental groups. However, fiber bundle stiffness was significantly increased at 8 weeks in the Tenotomy+BTX group compared to Tenotomy or control groups. Many of the changes were resolved by 16 weeks. Only fiber bundle passive mechanics was weakly correlated with collagen content. These data suggest that tendon injury with concomitant neuromuscular compromise results in extracellular matrix production and increases in stiffness of the muscle, potentially complicating subsequent attempts for surgical repair. PMID:24838823
NASA Astrophysics Data System (ADS)
Hao, Yufei; Wang, Tianmiao; Xie, Zhexin; Sun, Wenguang; Liu, Zemin; Fang, Xi; Yang, Minxuan; Wen, Li
2018-02-01
This paper presents a soft actuator embedded with two types of eutectic alloys which enable sensing, tunable mechanical degrees of freedom (DOF), and variable stiffness properties. To modulate the stiffness of the actuator, we embedded a low melting point alloy (LMPA) in the bottom portion of the soft actuator. Different sections of the LMPA could be selectively melted by the Ni-Cr wires twined underneath. To acquire the curvature information, EGaIn (eutectic gallium indium) was infused into a microchannel surrounding the chambers of the soft actuator. Systematic experiments were performed to characterize the stiffness, tunable DOF, and sensing the bending curvature. We found that the average bending force and elasticity modulus could be increased about 35 and 4000 times, respectively, with the LMPA in a solid state. The entire LMPA could be melted from a solid to a liquid state within 12 s. In particular, up to six different motion patterns could be achieved under each pneumatic pressure of the soft actuator. Furthermore, the kinematics of the actuator under different motion patterns could be obtained by a mathematical model whose input was provided by the EGaIn sensor. For demonstration purposes, a two-fingered gripper was fabricated to grasp various objects by adjusting the DOF and mechanical stiffness.
Christie, Anne; Hagen, Kåre Birger; Mowinckel, Petter; Dagfinrud, Hanne
2014-12-10
The aim of this study was two-fold: to compare symptoms and daily activity in patients with inflammatory rheumatic diseases across periods with and without aquatic exercises, and to examine whether the patients reached an acceptable state of symptoms during the periods with aquatic exercises. Thirty-six patients reported pain, fatigue, stiffness and ability to carry out daily activities across periods with and without aquatic exercises. The study has an interrupted time-series design and variables were collected with text messages on mobile phones twice a week over a period of 35 weeks. There was a significant reduction in pain, fatigue, stiffness and enhanced level of daily activity (p > 0.05) during periods of aquatic exercises compared to periods without. Further, a significantly higher proportion of patients reached an acceptable state for both pain and fatigue during periods with aquatic exercises. Living with an inflammatory rheumatic disease is a lifelong challenge. Pain and fatigue are considered major obstacles for daily functioning and adequate self-management strategies are requested. Based on the high proportion of patients reporting to be in an acceptable state of both pain and fatigue during periods with aquatic exercises, the intervention should be regarded as an important self-management tool rather than a treatment option assuming long-lasting effects. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Niederhäuser, Simone K; Tepic, Slobodan; Weber, Urs T
2015-05-01
To evaluate the effect of screw position on strength and stiffness of a combination locking plate-rod construct in a synthetic feline femoral gap model. 30 synthetic long-bone models derived from beechwood and balsa wood. 3 constructs (2 locking plate-rod constructs and 1 locking plate construct; 10 specimens/construct) were tested in a diaphyseal bridge plating configuration by use of 4-point bending and torsion. Variables included screw position (near the fracture gap and far from the fracture gap) and application of an intramedullary pin. Constructs were tested to failure in each loading mode to determine strength and stiffness. Failure was defined as plastic deformation of the plate or breakage of the bone model or plate. Strength, yield angle, and stiffness were compared by use of a Wilcoxon test. Placement of screws near the fracture gap did not increase bending or torsional stiffness in the locking plate-rod constructs, assuming the plate was placed on the tension side of the bone. Addition of an intramedullary pin resulted in a significant increase in bending strength of the construct. Screw positioning did not have a significant effect on any torsion variables. Results of this study suggested that, in the investigated plate-rod construct, screw insertion adjacent to the fracture lacked mechanical advantages over screw insertion at the plate ends. For surgeons attempting to minimize soft tissue dissection, the decision to make additional incisions for screw placement should be considered with even more caution.
Zhang, Xiao; Liu, Jian Jun; Fang Sum, Chee; Ying, Yeoh Lee; Tavintharan, Subramaniam; Ng, Xiao Wei; Su, Chang; Low, Serena; Lee, Simon Bm; Tang, Wern Ee; Lim, Su Chi
2016-07-01
To examine the relationship between inflammation and central arterial stiffness in a type 2 diabetes Asian cohort. Central arterial stiffness was estimated by carotid-femoral pulse wave velocity and augmentation index. Linear regression model was used to evaluate the association of high-sensitivity C-reactive protein and soluble receptor for advanced glycation end products with pulse wave velocity and augmentation index. High-sensitivity C-reactive protein was analysed as a continuous variable and categories (<1, 1-3, and >3 mg/L). There is no association between high-sensitivity C-reactive protein and pulse wave velocity. Augmentation index increased with high-sensitivity C-reactive protein as a continuous variable (β = 0.328, p = 0.049) and categories (β = 1.474, p = 0.008 for high-sensitivity C-reactive protein: 1-3 mg/L and β = 1.323, p = 0.019 for high-sensitivity C-reactive protein: >3 mg/L) after multivariable adjustment. No association was observed between augmentation index and soluble receptor for advanced glycation end products. Each unit increase in natural log-transformed soluble receptor for advanced glycation end products was associated with 0.328 m/s decrease in pulse wave velocity after multivariable adjustment (p = 0.007). Elevated high-sensitivity C-reactive protein and decreased soluble receptor for advanced glycation end products are associated with augmentation index and pulse wave velocity, respectively, suggesting the potential role of systemic inflammation in the pathogenesis of central arterial stiffness in type 2 diabetes. © The Author(s) 2016.
Plyometric vs. isometric training influences on tendon properties and muscle output.
Burgess, Katherine E; Connick, Mark J; Graham-Smith, Philip; Pearson, Stephen J
2007-08-01
The purpose of this study was to concurrently determine the effect that plyometric and isometric training has on tendon stiffness (K) and muscle output characteristics to compare any subsequent changes. Thirteen men trained the lower limbs either plyometrically or isometrically 2-3 times a week for a 6-week period. Medial gastrocnemius tendon stiffness was measured in vivo using ultrasonography during ramped isometric contractions before and after training. Mechanical output variables were measured using a force plate during concentric and isometric efforts. Significant (p < 0.05) training-induced increases in tendon K were seen for the plyometric (29.4%; 49.0 +/- 10.8 to 63.4 +/- 9.2 N x mm(-1)) and isometric groups (61.6%; 43.9 +/- 2.5 to 71.0 +/- 7.4 N x mm(-1)). Statistically similar increases in rate of force development and jump height were also seen for both training groups, with increases of 18.9 and 58.6% for the plyometric group and 16.7 and 64.3% for the isometric group, respectively. Jump height was found to be significantly correlated with tendon stiffness, such that stiffness could explain 21% of the variance in jump height. Plyometric training has been shown to place large stresses on the body, which can lead to a potential for injury, whereas explosive isometric training has been shown here to provide similar benefits to that of plyometric training with respect to the measured variables, but with reduced impact forces, and would therefore provide a useful adjunct for athletic training programs within a 6-week time frame.
Schrade, Stefan O; Dätwyler, Katrin; Stücheli, Marius; Studer, Kathrin; Türk, Daniel-Alexander; Meboldt, Mirko; Gassert, Roger; Lambercy, Olivier
2018-03-13
Powered exoskeletons are a promising approach to restore the ability to walk after spinal cord injury (SCI). However, current exoskeletons remain limited in their walking speed and ability to support tasks of daily living, such as stair climbing or overcoming ramps. Moreover, training progress for such advanced mobility tasks is rarely reported in literature. The work presented here aims to demonstrate the basic functionality of the VariLeg exoskeleton and its ability to enable people with motor complete SCI to perform mobility tasks of daily life. VariLeg is a novel powered lower limb exoskeleton that enables adjustments to the compliance in the leg, with the objective of improving the robustness of walking on uneven terrain. This is achieved by an actuation system with variable mechanical stiffness in the knee joint, which was validated through test bench experiments. The feasibility and usability of the exoskeleton was tested with two paraplegic users with motor complete thoracic lesions at Th4 and Th12. The users trained three times a week, in 60 min sessions over four months with the aim of participating in the CYBATHLON 2016 competition, which served as a field test for the usability of the exoskeleton. The progress on basic walking skills and on advanced mobility tasks such as incline walking and stair climbing is reported. Within this first study, the exoskeleton was used with a constant knee stiffness. Test bench evaluation of the variable stiffness actuation system demonstrate that the stiffness could be rendered with an error lower than 30 Nm/rad. During training with the exoskeleton, both users acquired proficient skills in basic balancing, walking and slalom walking. In advanced mobility tasks, such as climbing ramps and stairs, only basic (needing support) to intermediate (able to perform task independently in 25% of the attempts) skill levels were achieved. After 4 months of training, one user competed at the CYBATHLON 2016 and was able to perform 3 (stand-sit-stand, slalom and tilted path) out of 6 obstacles of the track. No adverse events occurred during the training or the competition. Demonstration of the applicability to restore ambulation for people with motor complete SCI was achieved. The CYBATHLON highlighted the importance of training and gaining experience in piloting an exoskeleton, which were just as important as the technical realization of the robot.
Novaković, Marko; Prokšelj, Katja; Starc, Vito; Jug, Borut
2017-06-01
Adults after surgical repair of tetralogy of Fallot (ToF) may have impaired vascular and cardiac autonomic function. Thus, we wanted to assess interrelations between heart rate variability (HRV) and heart rate recovery (HRR), as parameters of cardiac autonomic function, and arterial stiffness, as a parameter of vascular function, in adults with repaired ToF as compared to healthy controls. In a case-control study of adults with repaired ToF and healthy age-matched controls we measured: 5-min HRV variability (with time and frequency domain data collected), carotid artery stiffness (through pulse-wave analysis using echo-tracking ultrasound) and post-exercise HRR (cycle ergometer exercise testing). Twenty-five patients with repaired ToF (mean age 38 ± 10 years) and 10 healthy controls (mean age 39 ± 8 years) were included. Selected HRR and HRV (time-domain) parameters, but not arterial stiffness were significantly reduced in adults after ToF repair. Moreover, a strong association between late/slow HRR (after 2, 3 and 4 min) and carotid artery stiffness was detected in ToF patients (r = -0.404, p = 0.045; r = -0.545, p = 0.005 and r = -0.545, p = 0.005, respectively), with statistical significance retained even after adjusting for age, gender, resting heart rate and β-blockers use (r = -0.393, p = 0.024 for HRR after 3 min). Autonomic cardiac function is impaired in patients with repaired ToF, and independently associated with vascular function in adults after ToF repair, but not in age-matched healthy controls. These results might help in introducing new predictors of cardiovascular morbidity in a growing population of adults after surgical repair of ToF.
Jaroch, Joanna; Łoboz-Grudzień, Krystyna; Magda, Stefania; Florescu, Maria; Bociąga, Zbigniew; Ciobanu, Andrea O; Kruszyńska, Ewa; Dudek, Krzysztof; Vinereanu, Dragos
2016-01-01
Left ventricular hypertrophy (LVH) and geometry patterns vary in different hemodynamic profiles The concentric hypertrophy (CH) pattern has been proved to have the worst prognosis. The aim of the study was to test the hypothesis that carotid artery stiffness, as a marker of vascular damage, is associated with CH, independently of other potential determinants such as demographic factors (age, sex, BMI), clinical parameters (smoking, diabetes, creatinine level) and hemodynamic variables (blood pressure, pulse pressure [PP]). The study involved 262 subjects (89 men): 202 patients with hypertension (153 untreated, 49 on medication), aged 55.7 ± 10 years, and 60 age-matched normal controls. The subjects were examined by echocardiography and carotid ultrasound with a high-resolution echo-tracking system. Based on the left ventricular mass index (LVMI) and relative wall thickness (RWT), the patients with hypertension were divided into four patterns of LVH and geometry: normal geometry (N, n = 57), concentric remodeling (CR, n = 48), concentric hypertrophy CH (n = 62) and eccentric hypertrophy (EH, n = 35). Intima-media thickness (IMT) and the parameters of arterial stiffness were also assessed using the β stiffness index (β), Young elastic modulus (Ep), arterial compliance (AC), one-point pulse wave velocity (PWVβ) and the wave reflection augmentation index (AI). Univariate analysis showed that the following variables are significant in determining CH: β > 8.4, Ep > 136 kPa, PWVβ > 7.1 m/s, AI > 21.9%, systolic BP > 151 mm Hg, PP > 54, IMT > 0.56 and the presence of diabetes. However, by multivariate analysis only AI (OR 3.65, p = 0.003), PWVβ > 7.1 m/s (OR 2.86, p = 0.014), systolic BP (OR 3.12, p = 0037) and the presence of diabetes (OR 3.75, p = 0.007) were associated independently with the occurrence of CH. Concentric hypertrophy in hypertension is strongly associated with carotid arterial stiffness and wave reflection parameters, independently of the influence of systolic blood pressure and diabetes.
Chen, Jee-Wei Emily; Pedron, Sara; Harley, Brendan A C
2017-08-01
Glioblastoma (GBM) is the most common and lethal form of brain cancer. Its high mortality is associated with its aggressive invasion throughout the brain. The heterogeneity of stiffness and hyaluronic acid (HA) content within the brain makes it difficult to study invasion in vivo. A dextran-bead assay is employed to quantify GBM invasion within HA-functionalized gelatin hydrogels. Using a library of stiffness-matched hydrogels with variable levels of matrix-bound HA, it is reported that U251 GBM invasion is enhanced in softer hydrogels but reduced in the presence of matrix-bound HA. Inhibiting HA-CD44 interactions reduces invasion, even in hydrogels lacking matrix-bound HA. Analysis of HA biosynthesis suggests that GBM cells compensate for a lack of matrix-bound HA by producing soluble HA to stimulate invasion. Together, a robust method is showed to quantify GBM invasion over long culture times to reveal the coordinated effect of matrix stiffness, immobilized HA, and compensatory HA production on GBM invasion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Zhuo; Luo, Runlan; Tan, Bijun; Qian, Jing; Duan, Yanfang; Wang, Nan; Li, Guangsen
2018-04-01
This study aims to assess carotid elasticity early in normal left ventricular function in post-radiotherapy patients with nasopharyngeal carcinoma (NPC) by wave intensity. Sixty-seven post-radiotherapy patients all with normal left ventricular function were classified into group NPC1 and group NPC2 based on their carotid intima-media thickness. Thirty age- and sex-matched NPC patients without any history of irradiation and chemotherapy were included as a control group. Carotid parameters, including stiffness constant (β), pressure-strain elastic modulus (Ep), arterial compliance (AC), stiffness constant pulse wave velocity (PWVβ), and wave intensity pulse wave velocity (PWVWI) were measured. There were no significant differences in conventional echocardiographic variables among the three groups. In comparison with the control group, β, Ep, PWVβ, and PWVWI were significantly increased, while AC was significantly decreased in the NPC1 and NPC2 groups, and there were differences between the NPC1 group and NPC2 group (all P < 0.05). This study suggested that carotid artery stiffness increased with reduced carotid compliance in post-RT with NPC.
Cañas, Teresa; Fontanilla, Teresa; Miralles, María; Maciá, Araceli; Malalana, Ana; Román, Enriqueta
2015-08-01
Portal hypertension, a major complication of hepatic fibrosis, can affect the stiffness of the spleen. To suggest normal values of spleen stiffness determined by acoustic radiation force impulse imaging in healthy children and to compare measurements using two different US probes. In a prospective study, 60 healthy children between 1 day and 14 years of age were assigned to four age groups with 15 children in each. Measurements were performed using two transducers (convex 4C1 and linear 9L4), and 10 measurements were obtained in each child, 5 with each probe. The mean splenic shear wave velocities were 2.17 m/s (SD 0.35, 95% CI 2.08-2.26) with the 4C1 probe and 2.15 m/s (SD 0.23, 95% CI 2.09-2.21) with the 9L4 probe (not significant). We found normal values for spleen stiffness with no difference in the mean values obtained using two types of US transducers, but with higher variability using a convex compared to a linear transducer.
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.
2012-01-01
A continuum-level, dual internal state variable, thermodynamically based, work potential model, Schapery Theory, is used capture the effects of two matrix damage mechanisms in a fiber-reinforced laminated composite: microdamage and transverse cracking. Matrix microdamage accrues primarily in the form of shear microcracks between the fibers of the composite. Whereas, larger transverse matrix cracks typically span the thickness of a lamina and run parallel to the fibers. Schapery Theory uses the energy potential required to advance structural changes, associated with the damage mechanisms, to govern damage growth through a set of internal state variables. These state variables are used to quantify the stiffness degradation resulting from damage growth. The transverse and shear stiffness of the lamina are related to the internal state variables through a set of measurable damage functions. Additionally, the damage variables for a given strain state can be calculated from a set of evolution equations. These evolution equations and damage functions are implemented into the finite element method and used to govern the constitutive response of the material points in the model. Additionally, an axial failure criterion is included in the model. The response of a center-notched, buffer strip-stiffened panel subjected to uniaxial tension is investigated and results are compared to experiment.
A biomechanical model for actively controlled snow ski bindings.
Hull, M L; Ramming, J E
1980-11-01
Active control of snow ski bindings is a new design concept which potentially offers improved protection from lower extremity injury. Implementation of this concept entails measuring physical variables and calculating loading and/or deformation in injury prone musculoskeletal components. The subject of this paper is definition of a biomechanical model for calculating tibia torsion based on measurements of torsion loading between the boot and ski. Previous control schemes have used leg displacement only to indicate tibia torsion. The contributions of both inertial and velocity-dependent torques to tibia loading are explored and it is shown that both these moments must be included in addition to displacement-dependent moments. A new analog controller design which includes inertia, damping, and stiffness terms in the tibia load calculation is also presented.
R.W. Wolfe; Monica McCarthy
1989-01-01
The first report of a three-part series that covers results of a full-scale roof assemblies research program. The focus of this report is the structural performance of truss assemblies comprising trusses with abnormally high stiffness variability and critical joint strength. Results discussed include properties of truss members and connections. individual truss...
Age and Sex Effects on the Active Stiffness of Vastus Intermedius under Isometric Contraction
Wang, Cong-Zhi; Guo, Jing-Yi; Li, Tian-Jie; Shi, Wenxiu; Zheng, Yong-Ping
2017-01-01
Previously, a novel technique was proposed to quantify the relationship between the muscle stiffness and its nonfatigue contraction intensity. The method extended the measured range of isometric contraction to 100% maximum voluntary contraction (MVC) using an ultrasonic shear wave measurement setup. Yet, it has not been revealed how this relationship could be affected by factors like age or sex. To clarify these questions, vastus intermedius (VI) stiffness of 40 healthy subjects was assessed under 11 step levels of isometric contraction. The subjects were divided into four groups: young males, young females, elderly males, and elderly females (n = 10 for each). In a relaxed state, no significant difference was observed between the male and female subjects (p = 0.156) nor between the young and elderly subjects (p = 0.221). However, when performing isometric contraction, the VI stiffness of males was found to be significantly higher than that of females at the same level (p < 0.001), and that of the young was higher than the elderly (p < 0.001). Meanwhile, for two knee joint angles used, the stiffness measured at a 90° knee joint angle was always significantly larger than that measured at 60° (p < 0.001). Recognizing the active muscle stiffness of VI contributes to body stability, and these results may provide insight into the age and sex bias in musculoskeletal studies, such as those on fall risks. PMID:28473990
Johnson, Laura A.; Rodansky, Eva S.; Sauder, Kay L.; Horowitz, Jeffrey C.; Mih, Justin D.; Tschumperlin, Daniel J.; Higgins, Peter D.
2013-01-01
Background Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. Methods The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression. Results Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A. Conclusions Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease. PMID:23502354
Kovaleski, John E.; Heitman, Robert J.; Gurchiek, Larry R.; Hollis, J. M.; Liu, Wei; IV, Albert W. Pearsall
2014-01-01
Context: This is part II of a 2-part series discussing stability characteristics of the ankle complex. In part I, we used a cadaver model to examine the effects of sectioning the lateral ankle ligaments on anterior and inversion motion and stiffness of the ankle complex. In part II, we wanted to build on and apply these findings to the clinical assessment of ankle-complex motion and stiffness in a group of athletes with a history of unilateral ankle sprain. Objective: To examine ankle-complex motion and stiffness in a group of athletes with reported history of lateral ankle sprain. Design: Cross-sectional study. Setting: University research laboratory. Patients or Other Participants: Twenty-five female college athletes (age = 19.4 ± 1.4 years, height = 170.2 ± 7.4 cm, mass = 67.3 ± 10.0 kg) with histories of unilateral ankle sprain. Intervention(s): All ankles underwent loading with an ankle arthrometer. Ankles were tested bilaterally. Main Outcome Measure(s): The dependent variables were anterior displacement, anterior end-range stiffness, inversion rotation, and inversion end-range stiffness. Results: Anterior displacement of the ankle complex did not differ between the uninjured and sprained ankles (P = .37), whereas ankle-complex rotation was greater for the sprained ankles (P = .03). The sprained ankles had less anterior and inversion end-range stiffness than the uninjured ankles (P < .01). Conclusions: Changes in ankle-complex laxity and end-range stiffness were detected in ankles with histories of sprain. These results indicate the presence of altered mechanical characteristics in the soft tissues of the sprained ankles. PMID:24568223
Effect of passive heat stress on arterial stiffness in smokers versus non-smokers.
Moyen, N E; Ganio, M S; Burchfield, J M; Tucker, M A; Gonzalez, M A; Dougherty, E K; Robinson, F B; Ridings, C B; Veilleux, J C
2016-04-01
In non-smokers, passive heat stress increases shear stress and vasodilation, decreasing arterial stiffness. Smokers, who reportedly have arterial dysfunction, may have similar improvements in arterial stiffness with passive heat stress. Therefore, we examined the effects of an acute bout of whole-body passive heat stress on arterial stiffness in smokers vs. non-smokers. Thirteen smokers (8.8 ± 5.5 [median = 6] cigarettes per day for > 4 years) and 13 non-smokers matched for age, mass, height, and exercise habits (27 ± 8 years; 78.8 ± 15.4 kg; 177.6 ± 6.7 cm) were passively heated to 1.5 °C core temperature (T C) increase. At baseline and each 0.5 °C T C increase, peripheral (pPWV) and central pulse wave velocity (cPWV) were measured via Doppler ultrasound. No differences existed between smokers and non-smokers for any variables (all p > .05), except cPWV slightly increased from baseline (526.7 ± 81.7 cm · s(-1)) to 1.5 °C ΔT C (579.7 ± 69.8 cm · s(-1); p < 0.005), suggesting heat stress acutely increased central arterial stiffness. pPWV did not change with heating (grand mean: baseline = 691.9 ± 92.9 cm · s(-1); 1.5 °C ΔT C = 691.9 ± 79.5 cm · s(-1); p > 0.05). Changes in cPWV and pPWV during heating correlated (p < 0.05) with baseline PWV in smokers (cPWV: r = -0.59; pPWV: r = -0.62) and non-smokers (cPWV: r = -0.45; pPWV: r = -0.77). Independent of smoking status, baseline stiffness appears to mediate the magnitude of heating-induced changes in arterial stiffness.
Effect of passive heat stress on arterial stiffness in smokers versus non-smokers
NASA Astrophysics Data System (ADS)
Moyen, N. E.; Ganio, M. S.; Burchfield, J. M.; Tucker, M. A.; Gonzalez, M. A.; Dougherty, E. K.; Robinson, F. B.; Ridings, C. B.; Veilleux, J. C.
2016-04-01
In non-smokers, passive heat stress increases shear stress and vasodilation, decreasing arterial stiffness. Smokers, who reportedly have arterial dysfunction, may have similar improvements in arterial stiffness with passive heat stress. Therefore, we examined the effects of an acute bout of whole-body passive heat stress on arterial stiffness in smokers vs. non-smokers. Thirteen smokers (8.8 ± 5.5 [median = 6] cigarettes per day for >4 years) and 13 non-smokers matched for age, mass, height, and exercise habits (27 ± 8 years; 78.8 ± 15.4 kg; 177.6 ± 6.7 cm) were passively heated to 1.5 °C core temperature ( T C) increase. At baseline and each 0.5 °C T C increase, peripheral (pPWV) and central pulse wave velocity (cPWV) were measured via Doppler ultrasound. No differences existed between smokers and non-smokers for any variables (all p > 0.05), except cPWV slightly increased from baseline (526.7 ± 81.7 cm · s-1) to 1.5 °C Δ T C (579.7 ± 69.8 cm · s-1; p < 0.005), suggesting heat stress acutely increased central arterial stiffness. pPWV did not change with heating (grand mean: baseline = 691.9 ± 92.9 cm · s-1; 1.5 °C Δ T C = 691.9 ± 79.5 cm · s-1; p > 0.05). Changes in cPWV and pPWV during heating correlated ( p < 0.05) with baseline PWV in smokers (cPWV: r = -0.59; pPWV: r = -0.62) and non-smokers (cPWV: r = -0.45; pPWV: r = -0.77). Independent of smoking status, baseline stiffness appears to mediate the magnitude of heating-induced changes in arterial stiffness.
Khan, Nasim A; Yazici, Yusuf; Calvo-Alen, Jaime; Dadoniene, Jolanta; Gossec, Laure; Hansen, Troels M; Huisman, Margriet; Kallikorm, Riina; Muller, Raili; Liveborn, Margareth; Oding, Rolf; Luchikhina, Elena; Naranjo, Antonio; Rexhepi, Sylejman; Taylor, Peter; Tlustochowich, Witold; Tsirogianni, Afrodite; Sokka, Tuulikki
2009-11-01
To evaluate the utility of the duration of morning stiffness (MS), as a patient-reported outcome (PRO), in assessing rheumatoid arthritis (RA) disease activity. We acquired information on 5439 patients in QUEST-RA, an international database of patients with RA evaluated by a standard protocol. MS duration was assessed from time of waking to time of maximal improvement. Ability of MS duration to differentiate RA activity states, based on Disease Activity Score (DAS)28, was assessed by analysis of variance; and a receiver-operating characteristic (ROC) curve was plotted for discriminating clinically active (DAS28 > 3.2) from less active (DAS28
Meng, Fanyong; Mambetsariev, Isa; Tian, Yufeng; Beckham, Yvonne; Meliton, Angelo; Leff, Alan; Gardel, Margaret L.; Allen, Michael J.; Birukov, Konstantin G.
2015-01-01
Reversible changes in lung microstructure accompany lung inflammation, although alterations in tissue micromechanics and their impact on inflammation remain unknown. This study investigated changes in extracellular matrix (ECM) remodeling and tissue stiffness in a model of LPS-induced inflammation and examined the role of lipoxin analog 15-epi-lipoxin A4 (eLXA4) in the reduction of stiffness-dependent exacerbation of the inflammatory process. Atomic force microscopy measurements of live lung slices were used to directly measure local tissue stiffness changes induced by intratracheal injection of LPS. Effects of LPS on ECM properties and inflammatory response were evaluated in an animal model of LPS-induced lung injury, live lung tissue slices, and pulmonary endothelial cell (EC) culture. In vivo, LPS increased perivascular stiffness in lung slices monitored by atomic force microscopy and stimulated expression of ECM proteins fibronectin, collagen I, and ECM crosslinker enzyme, lysyl oxidase. Increased stiffness and ECM remodeling escalated LPS-induced VCAM1 and ICAM1 expression and IL-8 production by lung ECs. Stiffness-dependent exacerbation of inflammatory signaling was confirmed in pulmonary ECs grown on substrates with high and low stiffness. eLXA4 inhibited LPS-increased stiffness in lung cross sections, attenuated stiffness-dependent enhancement of EC inflammatory activation, and restored lung compliance in vivo. This study shows that increased local vascular stiffness exacerbates lung inflammation. Attenuation of local stiffening of lung vasculature represents a novel mechanism of lipoxin antiinflammatory action. PMID:24992633
Iemitsu, Motoyuki; Maeda, Seiji; Otsuki, Takeshi; Sugawara, Jun; Kuno, Shinya; Ajisaka, Ryuichi; Matsuda, Mitsuo
2008-04-01
An increase in arterial stiffness with advancing age is associated with several pathological states, including hypertension and arteriosclerosis. Regular exercise improves the aging-induced increase in arterial stiffness and has a protective effect against these diseases. However, not all individuals respond to exercise to the same extent. Atrial natriuretic peptide (ANP) is involved in the regulation of basal blood pressure, blood flow, and vascular tone. The present study was designed to clarify whether gene polymorphisms in ANP-related genes affect exercise-induced improvements in arterial stiffness. We performed a cross-sectional study of 291 healthy middle-aged and older Japanese subjects (63+/-1 years), examining the relationship between daily physical activity-induced improvements in arterial stiffness, estimated by brachial-ankle arterial pulse wave velocity (baPWV), and the gene polymorphisms of valine32methionine (V32M: 664G>A) in exon 1 of ANP and asparagine521aspartic acid (N521D: 1780A>G) in exon 8 of the ANP clearance receptor (NPR-C). The baseline baPWV was significantly lower in the active group, but no differences were seen in blood pressure. Active subjects with the ANP-VV genotype had significantly lower baPWV and higher plasma ANP levels compared with inactive subjects, but there were no variations related to the VM+MM genotype. Additionally, baPWV and plasma ANP levels were negatively correlated in ANP-VV genotype subjects, but were not correlated in VM+MM individuals. Our results suggest that ANP polymorphism in older Japanese subjects may affect the cardiovascular response to regular exercise.
RELATIONS BETWEEN DAIRY FOOD INTAKE AND ARTERIAL STIFFNESS: PULSE WAVE VELOCITY AND PULSE PRESSURE
Crichton, Georgina E.; Elias, Merrrill F.; Dore, Gregory A.; Abhayaratna, Walter P.; Robbins, Michael A.
2012-01-01
Modifiable risk factors, such as diet, are becomingly increasingly important in the management of cardiovascular disease, one of the greatest major causes of death and disease burden. Few studies have examined the role of diet as a possible means of reducing arterial stiffness, as measured by pulse wave velocity, an independent predictor of cardiovascular events and all-cause mortality. The aim of this study was to investigate whether dairy food intake is associated with measures of arterial stiffness including carotid-femoral pulse wave velocity and pulse pressure. A cross-sectional analysis of a subset of the Maine Syracuse Longitudinal Study sample was performed. A linear decrease in pulse wave velocity was observed across increasing intakes of dairy food consumption (ranging from never/rarely to daily dairy food intake). The negative linear relationship between pulse wave velocity and intake of dairy food was independent of demographic variables, other cardiovascular disease risk factors and nutrition variables. The pattern of results was very similar for pulse pressure, while no association between dairy food intake and lipid levels was found. Further intervention studies are needed to ascertain whether dairy food intake may be an appropriate dietary intervention for the attenuation of age-related arterial stiffening and reduction of cardiovascular disease risk. PMID:22431583
NASA Astrophysics Data System (ADS)
Ye, Hong-Ling; Wang, Wei-Wei; Chen, Ning; Sui, Yun-Kang
2017-10-01
The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.
An acoustic startle alters knee joint stiffness and neuromuscular control.
DeAngelis, A I; Needle, A R; Kaminski, T W; Royer, T R; Knight, C A; Swanik, C B
2015-08-01
Growing evidence suggests that the nervous system contributes to non-contact knee ligament injury, but limited evidence has measured the effect of extrinsic events on joint stability. Following unanticipated events, the startle reflex leads to universal stiffening of the limbs, but no studies have investigated how an acoustic startle influences knee stiffness and muscle activation during a dynamic knee perturbation. Thirty-six individuals were tested for knee stiffness and muscle activation of the quadriceps and hamstrings. Subjects were seated and instructed to resist a 40-degree knee flexion perturbation from a relaxed state. During some trials, an acoustic startle (50 ms, 1000 Hz, 100 dB) was applied 100 ms prior to the perturbation. Knee stiffness, muscle amplitude, and timing were quantified across time, muscle, and startle conditions. The acoustic startle increased short-range (no startle: 0.044 ± 0.011 N·m/deg/kg; average startle: 0.047 ± 0.01 N·m/deg/kg) and total knee stiffness (no startle: 0.036 ± 0.01 N·m/deg/kg; first startle 0.027 ± 0.02 N·m/deg/kg). Additionally, the startle contributed to decreased [vastus medialis (VM): 13.76 ± 33.6%; vastus lateralis (VL): 6.72 ± 37.4%] but earlier (VM: 0.133 ± 0.17 s; VL: 0.124 ± 0.17 s) activation of the quadriceps muscles. The results of this study indicate that the startle response can significantly disrupt knee stiffness regulation required to maintain joint stability. Further studies should explore the role of unanticipated events on unintentional injury. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Chae, Sanghoon; Jung, Sung-Weon
2018-01-01
A survey of 67 experienced orthopedic surgeons indicated that precise portal placement was the most important skill in arthroscopic surgery. However, none of the currently available virtual reality simulators include simulation / training in portal placement, including haptic feedback of the necessary puncture force. This study aimed to: (1) measure the in vivo force and stiffness during a portal placement procedure in an actual operating room and (2) implement active haptic simulation of a portal placement procedure using the measured in vivo data. We measured the force required for port placement and the stiffness of the joint capsule during portal placement procedures performed by an experienced arthroscopic surgeon. Based on the acquired mechanical property values, we developed a cable-driven active haptic simulator designed to train the portal placement skill and evaluated the validity of the simulated haptics. Ten patients diagnosed with rotator cuff tears were enrolled in this experiment. The maximum peak force and joint capsule stiffness during posterior portal placement procedures were 66.46 (±10.76N) and 2560.82(±252.92) N/m, respectively. We then designed an active haptic simulator using the acquired data. Our cable-driven mechanism structure had a friction force of 3.763 ± 0.341 N, less than 6% of the mean puncture force. Simulator performance was evaluated by comparing the target stiffness and force with the stiffness and force reproduced by the device. R-squared values were 0.998 for puncture force replication and 0.902 for stiffness replication, indicating that the in vivo data can be used to implement a realistic haptic simulator. PMID:29494691
Driss, Tarak; Rouis, Majdi; Jaafar, Hamdi; Vandewalle, Henry
2015-01-01
The relationships between ankle plantar flexor musculotendinous stiffness (MTS) and performance in a countermovement vertical jump (CMJ) and maximal rate of torque development (MRTD) were studied in 27 active men. MTS was studied by means of quick releases at 20 (S 0.2), 40 (S 0.4), 60 (S 0.6), and 80% (S 0.8) of maximal voluntary torque (T MVC). CMJ was not correlated with strength indices but was positively correlated with MRTD/BM, S 0.4/BM. The slope α 2 and intercept β 2 of the torque-stiffness relationships from 40 to 80% T MVC were correlated negatively (α 2) and positively (β 2) with CMJ. The different stiffness indices were not correlated with MRTD. The prediction of CMJ was improved by the introduction of MRTD in multiple regressions between CMJ and stiffness. CMJ was also negatively correlated with indices of curvature of the torque-stiffness relationship. The subjects were subdivided in 3 groups in function of CMJ (groups H, M, and L for high, medium, and low performers, resp.). There was a downward curvature of the torque-stiffness relationship at high torques in group H or M and the torque-stiffness regression was linear in group L only. These results suggested that torque-stiffness relationships with a plateau at high torques are more frequent in the best jumpers. PMID:25710026
A multi-purpose method for analysis of spur gear tooth loading
NASA Technical Reports Server (NTRS)
Kasuba, R.; Evans, J. W.; August, R.; Frater, J. L.
1981-01-01
A large digitized approach was developed for the static and dynamic load analysis of spur gearing. An iterative procedure was used to calculate directly the "variable-variable" gear mesh stiffness as a function of transmitted load, gear tooth profile errors, gear tooth deflections and gear hub torsional deformation, and position of contacting profile points. The developed approach can be used to analyze the loads, Hertz stresses, and PV for the normal and high contrast ratio gearing, presently the modeling is limited to the condition that for a given gear all teeth have identical spacing and profiles (with or without surface imperfections). Certain types of simulated sinusoidal profile errors and pitting can cause interruptions of the gear mesh stiffness function and, thus, increase the dynamic loads in spur gearing. In addition, a finite element stress and mesh subprogram was developed for future introduction into the main program for calculating the gear tooth bending stresses under dynamic loads.
Lorentzen, Jakob; Kirk, Henrik; Fernandez-Lago, Helena; Frisk, Rasmus; Scharff Nielsen, Nanna; Jorsal, Martin; Nielsen, Jens Bo
2017-05-01
We investigated if 30 min of daily treadmill training with an incline for 6 weeks would reduce ankle joint stiffness and improve active range of movement in adults with cerebral palsy (CP). The study was designed as a randomized controlled clinical trial including 32 adults with CP (GMFCS 1-3) aged 38.1 SD 12 years. The training group (n = 16) performed uphill treadmill training at home daily for 30 min for 6 weeks in addition to their usual activities. Passive and reflex mediated stiffness and range of motion (ROM) of the ankle joint, kinematic and functional measures of gait were obtained before and after the intervention/control period. Intervention subjects trained 31.4 SD 10.1 days for 29.0 SD 2.3 min (total) 15.2 h. Passive ankle joint stiffness was reduced (F = 5.1; p = 0.031), maximal gait speed increased (F = 42.8, p < 0.001), amplitude of toe lift prior to heel strike increased (F = 5.3, p < 0.03) and ankle angle at heel strike was decreased (F = 12.5; p < 0.001) significant in the training group as compared to controls. Daily treadmill training with an incline for 6 weeks reduces ankle joint stiffness and increases active ROM during gait in adults with CP. Intensive gait training may thus be beneficial in preventing and reducing contractures and help to maintain functional gait ability in adults with CP. Implications for rehabilitation Uphill gait training is an effective way to reduce ankle joint stiffness in adult with contractures. 6 weeks of daily uphill gait training improves functional gait parameters such as gait speed and dorsal flexion during gait in adults with cerebral palsy.
7C.05: PREDICTORS OF INCREASED ARTERIALL STIFFNESS IN HYPERTENSIVE PATIENTS.
Tautu, O; Darabont, R; Onciul, S; Deaconu, A; Petre, I; Andrei, R D; Dragoescu, B; Dorobantu, M
2015-06-01
To evaluate arterial stiffness in hypertensive patients and to identify predictors of increased arterial stiffness. 798 hypertensives identifyed in SEPHAR II survey (mean age 51.46 ± 5.82 years; 48.1% females) were evaluated by a study questionnaire, blood pressure and antropometric measurements and laboratory work-up. Studied parameters definitions were: increased arterial stiffness: PWVao > 10m/s, visceral obesity: waist circumference >102 cm in men and > 88 cm in women, diabetes mellitus assessed by current ADA criteria, lipid dissorders by NCEP ATPIII recomendations and increased BP variability: mean SBP' standard deviation (s.d.) values above the 75th percentile. Subclinical organ damage definitions were: left ventricular hypertrophy (LVH) on ECG assessed by Cornell product,urinary albumin to creatinine ratio (UACR) of 30 - 300 mg/g) and eGFRCKD-EPI < 60-90 ml/min/1.73m2. Cardiovascular risk was assessed by SCORE system. Binary logistic regression using stepwise LR method (coliniarity analysis and adjustmens for major confunders) was used to validate predictors of increased arterial stiffness. Mean values of studied parameters were: BP-149.96 ± 20.94/89.18 ± 11.54, SBP's.d -7.73 ± 8.6mmHg (24.9% of subjects with increased SBP variability), PP-60.99 ± 17.95mmHg, HR-73.75 ± 10.89bpm. Mean PWVao-10.19 ± 2.22m/s, 27.2% of the study sample having PWVao >10m/s. Regression analysis validated as predictors of increased PWVao: age group [OR: 5.53; 95%CI (2.62-13.21)], hypertrygliceridemia [OR: 1.82; 95%CI (1.18-2.81)], low-HDL cholesterol [OR: 1.62; 95%CI (1.05-2.49)], SBP's.d values above 8,49mmHg [OR: 2.14; 95%CI (1.16-3.95)], UACR 30-300 mg/g [OR: 3.46; 95%CI (1.43-8.36)], LVH on ECG [OR: 2.14; 95%CI (1.79-7.34)], eGRFCKD-EPI < 60-90 ml/min/1.73m2 [OR: 1.49; 95%CI (1 -2.23)], lack of BP treatment control [OR: 5.53; 95%CI (2.62-13.21)] and high/very high CV risk category by SCORE [OR: 1.69; 95%CI (1.02-2.83)]. Age above 40 years, atherogenic dislipidemia, increased SBP variability, the lack of optimal BP treatment control and the presence of subclinical organ damage, may be considered as predictors of an increased arterial stiffness in hypertensive patients, placing these patients at an increased risk of major CV events.
Ferrari, Gianfranco; Khir, Ashraf W; Fresiello, Libera; Di Molfetta, Arianna; Kozarski, Maciej
2011-09-01
We investigated the effects of the intra-aortic balloon pump (IABP) on endocardial viability ratio (EVR), cardiac output (CO), end-systolic (V(es)) and end-diastolic (V(ed)) ventricular volumes, total coronary blood flow (TCBF), and ventricular energetics (external work [EW], pressure-volume area [PVA]) under different ventricular (E(max) and diastolic stiffness) and circulatory (arterial compliance) parameters. We derived a hybrid model from a computational model, which is based on merging computational and hydraulic submodels. The lumped parameter computational submodel consists of left and right hearts and systemic, pulmonary, and coronary circulations. The hydraulic submodel includes part of the systemic arterial circulation, essentially a silicone rubber tube representing the aorta, which contains a 40-mL IAB. EVR, CO, V(es), and V(ed), TCBF and ventricular energetics (EW, PVA) were analyzed against the ranges of left ventricular E(max) (0.3-0.5-1 mm Hg/cm(3)) and diastolic stiffness V(stiffness) (≈0.08 and ≈0.3 mm Hg/cm(3), obtained by changing diastolic stiffness constant) and systemic arterial compliance (1.8-2.5 cm(3)/mm Hg). All experiments were performed comparing the selected variables before and during IABP assistance. Increasing E(maxl) from 0.5 to 2 mm Hg/cm(3) resulted in IABP assistance producing lower percentage changes in the selected variables. The changes in ventricular diastolic stiffness strongly influence both absolute value of EVR and its variations during IABP (71 and 65% for lower and higher arterial compliance, respectively). V(ed) and V(es) changes are rather small but higher for lower E(max) and higher V(stiffness). Lower E(max) and higher V(stiffness) resulted in higher TCBF and CO during IABP assistance (∼35 and 10%, respectively). The use of this hybrid model allows for testing real devices in realistic, stable, and repeatable circulatory conditions. Specifically, the presented results show that IABP performance is dependent, at least in part, on left ventricular filling, ejection characteristics, and arterial compliance. It is possible in this way to simulate patient-specific conditions and predict the IABP performance at different values of the circulatory or ventricular parameters. Further work is required to study the conditions for heart recovery modeling, baroreceptor controls, and physiological feedbacks. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Ng, Mei Rosa; Besser, Achim
2012-01-01
The mechanical microenvironment is known to influence single-cell migration; however, the extent to which mechanical cues affect collective migration of adherent cells is not well understood. We measured the effects of varying substrate compliance on individual cell migratory properties in an epithelial wound-healing assay. Increasing substrate stiffness increased collective cell migration speed, persistence, and directionality as well as the coordination of cell movements. Dynamic analysis revealed that wounding initiated a wave of motion coordination from the wound edge into the sheet. This was accompanied by a front-to-back gradient of myosin-II activation and establishment of cell polarity. The propagation was faster and farther reaching on stiff substrates, indicating that substrate stiffness affects the transmission of directional cues. Manipulation of myosin-II activity and cadherin–catenin complexes revealed that this transmission is mediated by coupling of contractile forces between neighboring cells. Thus, our findings suggest that the mechanical environment integrates in a feedback with cell contractility and cell–cell adhesion to regulate collective migration. PMID:23091067
Determination of Ankle and Metatarsophalangeal Stiffness During Walking and Jogging.
Mager, Fabian; Richards, Jim; Hennies, Malika; Dötzel, Eugen; Chohan, Ambreen; Mbuli, Alex; Capanni, Felix
2018-05-29
Forefoot stiffness has been shown to influence joint biomechanics. However, little or no data exists on metatarsophalangeal stiffness. Twenty-four healthy rearfoot strike runners were recruited from a staff and student population at the University of Central Lancashire. Five repetitions of shod, self-selected speed level walking and jogging were performed. Kinetic and kinematic data were collected using retro-reflective markers placed on the lower limb and foot, to create a three-segment foot model using the Calibrated Anatomical System Technique. Ankle and metatarsophalangeal moments and angles were calculated. Stiffness values were calculated using a linear best fit line of moment versus of angle plots. Paired t-tests were used to compare values between walking and jogging conditions. Significant differences were seen in ankle range of motion (ROM), but not in metatarsophalangeal ROM. Maximum moments were significantly greater in the ankle during jogging, but these were not significantly different at the metatarsophalangeal joint. Average ankle joint stiffness exhibited significantly lower stiffness when walking compared to jogging. However, the metatarsophalangeal joint exhibited significantly greater stiffness when walking compared to jogging. A greater understanding of forefoot stiffness may inform the development of footwear, prosthetic feet and orthotic devices, such as ankle-foot orthoses for walking and sporting activities.
Mok, Chi Chiu; Cha, Hoon Suk; Hidayat, Rudy; Nguyen, Lan Thi Ngoc; Perez, Emmanuel C; Ramachandran, Raveendran; Tsay, Gregory J; Yoo, Dae Hyun
2016-01-01
In patients with rheumatoid arthritis (RA), morning stiffness is linked more to functional disability and pain than disease activity, as assessed by joint counts and markers of inflammation. As part of the Asia Pacific Morning Stiffness in Rheumatoid Arthritis Expert Panel, a group of eight rheumatologists met to formulate consensus points and develop recommendations for the assessment and management of morning stiffness in RA. On the basis of a systematic literature review and expert opinion, a panel of Asian rheumatologists formulated recommendations for the assessment and medical treatment of RA. The panel agreed upon 10 consensus statements on morning stiffness, its assessment and treatment. Specifically, the panel recommended that morning stiffness, pain and impaired morning function should be routinely assessed in clinical practice. Although there are currently no validated tools for these parameters, they should be assessed as part of the patients' reported outcomes in RA. The panel also agreed on the benefits of low-dose glucocorticoids in RA, particularly for the improvement of morning stiffness. These recommendations serve to guide rheumatologists and other stakeholders on the assessment and management of morning stiffness, and help implement the treat-to-target principle in the management of RA. © 2015 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
Rinaldi, Luca; Valente, Giovanna; Piai, Guido
2016-01-01
Background Liver transplanted patients need close surveillance for early signs of graft disease. Objectives Transient elastography can safely be repeated over time, offering serial liver stiffness measurement values. Serial stiffness measurements were compared to single baseline stiffness measurements in predicting the appearance of liver-related clinical events and guiding subsequent clinical decisions. Methods One hundred and sixty liver transplanted patients were observed for three years in our real-life practice. Results Liver stiffness measurements were stable in 75% of patients, decreased in 4% of patients, and increased in 21% of patients. The pattern of increased stiffness measurements was associated with both HCV-RNA positive status and the presence of an active biliary complication of liver transplantation and was more predictive of a clinically significant event resulting from any disease of the transplanted liver when compared to a stable pattern or to a single liver stiffness measurement. The procedures that were consequently performed were often diagnostic for unexpected situations, both in HCV-RNA positive and HCV-RNA negative patients. Conclusions The pattern of longitudinally increased liver stiffness measurements efficiently supported clinical decisions for individualized management strategies. Repeated transient elastography in real-life clinical practice appears to have a practical role in monitoring liver transplanted patients. PMID:28123442
Structural Optimization of a Knuckle with Consideration of Stiffness and Durability Requirements
Kim, Geun-Yeon
2014-01-01
The automobile's knuckle is connected to the parts of the steering system and the suspension system and it is used for adjusting the direction of a rotation through its attachment to the wheel. This study changes the existing material made of GCD45 to Al6082M and recommends the lightweight design of the knuckle as the optimal design technique to be installed in small cars. Six shape design variables were selected for the optimization of the knuckle and the criteria relevant to stiffness and durability were considered as the design requirements during the optimization process. The metamodel-based optimization method that uses the kriging interpolation method as the optimization technique was applied. The result shows that all constraints for stiffness and durability are satisfied using A16082M, while reducing the weight of the knuckle by 60% compared to that of the existing GCD450. PMID:24995359
Application of traction drives as servo mechanisms
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.; Rohn, D. A.; Steinetz, B. M.
1985-01-01
The suitability of traction drives for a wide class of aerospace control mechanisms is examined. Potential applications include antenna or solar array drive positioners, robotic joints, control moment gyro (CMG) actuators and propeller pitch change mechanisms. In these and similar applications the zero backlash, high torsional stiffness, low hysteresis and torque ripple characteristics of traction drives are of particular interest, as is the ability to run without liquid lubrication in certain cases. Wear and fatigue considerations for wet and dry operation are examined along with the tribological performance of several promising self lubricating polymers for traction contracts. The speed regulation capabilities of variable ratio traction drives are reviewed. A torsional stiffness analysis described suggests that traction contacts are relatively stiff compared to gears and are significantly stiffer than the other structural elements in the prototype CMG traction drive analyzed. Discussion is also given of an advanced turboprop propeller pitch change mechanism that incorporates a traction drive.
Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale
Mo, Jingyi; Blowes, Liisa M.; Egertová, Michaela; Terrill, Nicholas J.; Wang, Wen; Elphick, Maurice R.; Gupta, Himadri S.
2016-01-01
The mutable collagenous tissue (MCT) of echinoderms (e.g., sea cucumbers and starfish) is a remarkable example of a biological material that has the unique attribute, among collagenous tissues, of being able to rapidly change its stiffness and extensibility under neural control. However, the mechanisms of MCT have not been characterized at the nanoscale. Using synchrotron small-angle X-ray diffraction to probe time-dependent changes in fibrillar structure during in situ tensile testing of sea cucumber dermis, we investigate the ultrastructural mechanics of MCT by measuring fibril strain at different chemically induced mechanical states. By measuring a variable interfibrillar stiffness (EIF), the mechanism of mutability at the nanoscale can be demonstrated directly. A model of stiffness modulation via enhanced fibrillar recruitment is developed to explain the biophysical mechanisms of MCT. Understanding the mechanisms of MCT quantitatively may have applications in development of new types of mechanically tunable biomaterials. PMID:27708167
Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale.
Mo, Jingyi; Prévost, Sylvain F; Blowes, Liisa M; Egertová, Michaela; Terrill, Nicholas J; Wang, Wen; Elphick, Maurice R; Gupta, Himadri S
2016-10-18
The mutable collagenous tissue (MCT) of echinoderms (e.g., sea cucumbers and starfish) is a remarkable example of a biological material that has the unique attribute, among collagenous tissues, of being able to rapidly change its stiffness and extensibility under neural control. However, the mechanisms of MCT have not been characterized at the nanoscale. Using synchrotron small-angle X-ray diffraction to probe time-dependent changes in fibrillar structure during in situ tensile testing of sea cucumber dermis, we investigate the ultrastructural mechanics of MCT by measuring fibril strain at different chemically induced mechanical states. By measuring a variable interfibrillar stiffness (E IF ), the mechanism of mutability at the nanoscale can be demonstrated directly. A model of stiffness modulation via enhanced fibrillar recruitment is developed to explain the biophysical mechanisms of MCT. Understanding the mechanisms of MCT quantitatively may have applications in development of new types of mechanically tunable biomaterials.
Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis
Liu, Fei; Lagares, David; Choi, Kyoung Moo; Stopfer, Lauren; Marinković, Aleksandar; Vrbanac, Vladimir; Probst, Clemens K.; Hiemer, Samantha E.; Sisson, Thomas H.; Horowitz, Jeffrey C.; Rosas, Ivan O.; Fredenburgh, Laura E.; Feghali-Bostwick, Carol; Varelas, Xaralabos; Tager, Andrew M.
2014-01-01
Pathological fibrosis is driven by a feedback loop in which the fibrotic extracellular matrix is both a cause and consequence of fibroblast activation. However, the molecular mechanisms underlying this process remain poorly understood. Here we identify yes-associated protein (YAP) (homolog of drosophila Yki) and transcriptional coactivator with PDZ-binding motif (TAZ) (also known as Wwtr1), transcriptional effectors of the Hippo pathway, as key matrix stiffness-regulated coordinators of fibroblast activation and matrix synthesis. YAP and TAZ are prominently expressed in fibrotic but not healthy lung tissue, with particularly pronounced nuclear expression of TAZ in spindle-shaped fibroblastic cells. In culture, both YAP and TAZ accumulate in the nuclei of fibroblasts grown on pathologically stiff matrices but not physiologically compliant matrices. Knockdown of YAP and TAZ together in vitro attenuates key fibroblast functions, including matrix synthesis, contraction, and proliferation, and does so exclusively on pathologically stiff matrices. Profibrotic effects of YAP and TAZ operate, in part, through their transcriptional target plasminogen activator inhibitor-1, which is regulated by matrix stiffness independent of transforming growth factor-β signaling. Immortalized fibroblasts conditionally expressing active YAP or TAZ mutant proteins overcome soft matrix limitations on growth and promote fibrosis when adoptively transferred to the murine lung, demonstrating the ability of fibroblast YAP/TAZ activation to drive a profibrotic response in vivo. Together, these results identify YAP and TAZ as mechanoactivated coordinators of the matrix-driven feedback loop that amplifies and sustains fibrosis. PMID:25502501
Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane
NASA Technical Reports Server (NTRS)
Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.
2002-01-01
The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.
A Novel Concept for Safe, Stiffness-Controllable Robot Links.
Stilli, Agostino; Wurdemann, Helge A; Althoefer, Kaspar
2017-03-01
The recent decade has seen an astounding increase of interest and advancement in a new field of robotics, aimed at creating structures specifically for the safe interaction with humans. Softness, flexibility, and variable stiffness in robotics have been recognized as highly desirable characteristics for many applications. A number of solutions were proposed ranging from entirely soft robots (such as those composed mainly from soft materials such as silicone), via flexible continuum and snake-like robots, to rigid-link robots enhanced by joints that exhibit an elastic behavior either implemented in hardware or achieved purely by means of intelligent control. Although these are very good solutions paving the path to safe human-robot interaction, we propose here a new approach that focuses on creating stiffness controllability for the linkages between the robot joints. This article proposes a replacement for the traditionally rigid robot link-the new link is equipped with an additional capability of stiffness controllability. With this added feature, a robot can accurately carry out manipulation tasks (high stiffness), but can virtually instantaneously reduce its stiffness when a human is nearby or in contact with the robot. The key point of the invention described here is a robot link made of an airtight chamber formed by a soft and flexible, but high-strain resistant combination of a plastic mesh and silicone wall. Inflated with air to a high pressure, the mesh silicone chamber behaves like a rigid link; reducing the air pressure, softens the link and rendering the robot structure safe. This article investigates a number of link prototypes and shows the feasibility of the new concept. Stiffness tests have been performed, showing that a significant level of stiffness can be achieved-up to 40 N reaction force along the axial direction, for a 25-mm-diameter sample at 60 kPa, at an axial deformation of 5 mm. The results confirm that this novel concept to linkages for robot manipulators exhibits the beam-like behavior of traditional rigid links when fully pressurized and significantly reduced stiffness at low pressure. The proposed concept has the potential to easily create safe robots, augmenting traditional robot designs.
Shultz, Sandra J; Pye, Michele L; Montgomery, Melissa M; Schmitz, Randy J
2012-12-01
Compared with men, women have disproportionally greater frontal (varus-valgus) and transverse (internal-external) plane laxity and lower stiffness, despite having similar sagittal (anterior-posterior) plane laxity and stiffness. While the underlying cause is unclear, the amount of lower extremity lean mass (LELM) may be a contributing factor. Lower extremity lean mass would be a stronger predictor of frontal and transverse plane laxity and incremental stiffness than the sagittal plane. Associations between LELM and stiffness would be stronger at lower force increments. Descriptive laboratory study. Sixty-three women and 30 men with no history of ligament injury were measured for knee laxity and incremental stiffness in the sagittal (-90- to 130-N posterior-to-anterior directed loads), frontal (±10-N·m varus-valgus torques), and transverse (±5-N·m internal-external rotation torques) planes and underwent dual-energy X-ray absorptiometry scans to measure LELM. Linear regressions examined the extent to which LELM predicted each laxity and stiffness value, while also accounting for a person's sex. Females (vs males) had greater laxity and less stiffness in the frontal and transverse planes but not the sagittal plane. Lower extremity lean mass was a poor predictor of sagittal laxity and stiffness (R (2) range = .021-.081; P > .06) but was a stronger predictor of frontal (R (2) range = .215-.567; P < .01) and transverse (R (2) range = .224-.356; P < .01) plane laxity and stiffness. Associations were stronger for low (R (2) = .495-.504) versus high (R (2) = .215-.435) frontal plane stiffness but were similar for low (R (2) = .233-.293) versus high (R (2) = .224-.356) transverse plane stiffness. Once we accounted for a person's LELM, sex had little effect on laxity and stiffness (change in R (2) after removal = .01-.08; P = .027-.797). Less LELM was associated with greater laxity and less stiffness in frontal and transverse planes, which may contribute to the disproportionally higher laxities and reduced stiffnesses observed in females in these planes. Frontal and transverse plane laxity and stiffness may be modifiable through strength training interventions that promote changes in muscle characteristics (eg, muscle cross-sectional area, stiffness) that may contribute to static knee joint stability, thus dynamic joint stability during sport activity.
Koshiba, Hiroya; Maeshima, Estuko; Okumura, Yuka
2017-09-01
This study investigated the relationship between changes in arterial stiffness and the lifestyle habits of endurance athletes after retiring from competition. The subjects were 10 female university endurance athletes. We used formPWV/ABI ® as an index for arterial stiffness and measured brachial-ankle pulse-wave velocity (baPWV) directly before subjects retired (0Y) and at 2 years after retirement (2Y). Furthermore, to investigate the relationship between arterial stiffness and lifestyle habits 2 years later, Lifecorder ® PLUS was used to measure physical activity levels, hours of sleep were surveyed using a questionnaire, and a food intake survey was conducted using Excel Eiyoukun Food Frequency Questionnaire Based on Food Group, FFQg Ver. 3.5. We found that baPWV increased significantly from 0Y to 2Y (P<0·05). Furthermore, negative correlations were observed between 2Y baPWV and step count as the physical activity index (r = -0·653, P<0·05) and moderate physical activity (r = -0·663, P<0·05). With regard to lifestyle habits that affected the amount of increase in baPWV from 0Y to 2Y (ΔbaPWV), negative correlations were noted between the step count (r = -0·690, P<0·05) and total physical activity (r = -0·657, P<0·05). However, no significant correlations were observed between 2Y baPWV and ΔbaPWV with food intake or hours of sleep. The results of this study suggested that physical activity was a lifestyle habit that inhibited an increase in arterial stiffness after retirement from competition and that having a high step count or engaging in physical activity for long periods of time in particular was useful in this regard. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Zhang, Zhaoyan; Hieu Luu, Trung
2012-01-01
Vibration characteristics of a self-oscillating two-layer vocal fold model with left-right asymmetry in body-layer stiffness were experimentally and numerically investigated. Two regimes of distinct vibratory pattern were identified as a function of left-right stiffness mismatch. In the first regime with extremely large left-right stiffness mismatch, phonation onset resulted from an eigenmode synchronization process that involved only eigenmodes of the soft fold. Vocal fold vibration in this regime was dominated by a large-amplitude vibration of the soft fold, and phonation frequency was determined by the properties of the soft fold alone. The stiff fold was only enslaved to vibrate at a much reduced amplitude. In the second regime with small left-right stiffness mismatch, eigenmodes of both folds actively participated in the eigenmode synchronization process. The two folds vibrated with comparable amplitude, but the stiff fold consistently led the soft fold in phase for all conditions. A qualitatively good agreement was obtained between experiment and simulation, although the simulations generally underestimated phonation threshold pressure and onset frequency. The clinical implications of the results of this study are also discussed. PMID:22978891
Zhang, Zhaoyan; Luu, Trung Hieu
2012-09-01
Vibration characteristics of a self-oscillating two-layer vocal fold model with left-right asymmetry in body-layer stiffness were experimentally and numerically investigated. Two regimes of distinct vibratory pattern were identified as a function of left-right stiffness mismatch. In the first regime with extremely large left-right stiffness mismatch, phonation onset resulted from an eigenmode synchronization process that involved only eigenmodes of the soft fold. Vocal fold vibration in this regime was dominated by a large-amplitude vibration of the soft fold, and phonation frequency was determined by the properties of the soft fold alone. The stiff fold was only enslaved to vibrate at a much reduced amplitude. In the second regime with small left-right stiffness mismatch, eigenmodes of both folds actively participated in the eigenmode synchronization process. The two folds vibrated with comparable amplitude, but the stiff fold consistently led the soft fold in phase for all conditions. A qualitatively good agreement was obtained between experiment and simulation, although the simulations generally underestimated phonation threshold pressure and onset frequency. The clinical implications of the results of this study are also discussed.
Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing.
Lin, Hsi-Hui; Lin, Hsiu-Kuan; Lin, I-Hsuan; Chiou, Yu-Wei; Chen, Horn-Wei; Liu, Ching-Yi; Harn, Hans I-Chen; Chiu, Wen-Tai; Wang, Yang-Kao; Shen, Meng-Ru; Tang, Ming-Jer
2015-08-28
The stiffness sensing ability is required to respond to the stiffness of the matrix. Here we determined whether normal cells and cancer cells display distinct mechanical phenotypes. Cancer cells were softer than their normal counterparts, regardless of the type of cancer (breast, bladder, cervix, pancreas, or Ha-RasV12-transformed cells). When cultured on matrices of varying stiffness, low stiffness decreased proliferation in normal cells, while cancer cells and transformed cells lost this response. Thus, cancer cells undergo a change in their mechanical phenotype that includes cell softening and loss of stiffness sensing. Caveolin-1, which is suppressed in many tumor cells and in oncogene-transformed cells, regulates the mechanical phenotype. Caveolin-1-upregulated RhoA activity and Y397FAK phosphorylation directed actin cap formation, which was positively correlated with cell elasticity and stiffness sensing in fibroblasts. Ha-RasV12-induced transformation and changes in the mechanical phenotypes were reversed by re-expression of caveolin-1 and mimicked by the suppression of caveolin-1 in normal fibroblasts. This is the first study to describe this novel role for caveolin-1, linking mechanical phenotype to cell transformation. Furthermore, mechanical characteristics may serve as biomarkers for cell transformation.
Stiff person syndrome: presentation of a case with repetitive complex discharges in electromiograms.
Jiménez Caballero, Pedro Enrique
2009-07-01
Stiff person syndrome is characterized by rigidity of axial and proximal limb muscles, associated with muscle spasms, triggered by unexpected acoustic or somesthetic stimuli. It usually has an autoimmune basis, in which the blood contains antiglutamate decarboxylase antibodies, and is associated with different types of autoimmune diseases. The electromyogram provides evidences of continuous muscular activity. A 41-year-old woman with a history of diabetes mellitus type I, Hashimoto thyroiditis, vitiligo, and pernicious anemia developed symptoms compatible with stiff person syndrome. In the electromyogram, in addition to continuous muscular activity, there was evidence of complex repetitive activity in the form of doublets and triplets. Given the absence of clinical or electrophysiological neuropathic affectation, the presence of doublets and triplets in our patient could be due to a subclinical functional alteration of alpha motoneurons. They could produce the complex repetitive discharges when released from the inhibition mediated by GABAergic neurons.
[Vascular aging, arterial hypertension and physical activity].
Schmidt-Trucksäss, A; Weisser, B
2011-11-01
The present review delineates the significance of intima-media-thickness, arterial stiffness and endothelial function for vascular aging. There is profound evidence for an increase in intima-media-thickness and vascular stiffness not only during healthy aging but induced also by cardiovascular risk factors. There is a central role of arterial hypertension for this progression in both structural factors. In addition, both parameters are strongly associated with cardiovascular risk. Endothelial function measured as postischemic flow-mediated vasodilatation is a functional parameter which is decreased both in healthy aging and by cardiovascular risk factors. Physical activity modifies the influence of aging and risk factors on endothelial function. A positive influence of endurance exercise on vascular stiffness and endothelial function has been demonstrated in numerous studies. In long-term studies, regular physical activity has been shown to reduce the progression of intima-media-thickness. Thus, arterial hypertension accelerates vascular aging, while physical activity has a positive influence on a variety of vascular parameters associated with vascular aging. © Georg Thieme Verlag KG Stuttgart · New York.
Tazawa, Yasushi; Mori, Nobuyoshi; Ogawa, Yoshiko; Ito, Osamu; Kohzuki, Masahiro
2016-06-01
Arterial stiffness is widely used in assessing arteriosclerosis in the background of increased cardiovascular events. Arteriosclerosis also causes reduction in exercise capacity, which is a most important prognostic factor in patients with cardiovascular disease; however, data on the association between arterial stiffness and exercise capacity are limited. Therefore, a simple and noninvasive measurement of arterial stiffness that reflects the central circulation and exercise capacity is needed. The arterial velocity pulse index (AVI) is a parameter of arterial stiffness measurable with the cuff oscillometric method; however, the clinical utility of this method is unclear. We aimed to evaluate the trend of AVI in patients with coronary artery disease (CAD), and the association between AVI and exercise capacity. A cross-sectional study of 116 patients with cardiac disease (34 CAD and 82 non-CAD patients) was performed. Non-CAD patients were those with any cardiac diseases who did not have proven CAD. The results showed that the AVI was significantly higher in CAD patients than non-CAD patients (P < 0.05, analysis of covariance). The AVI was inversely correlated with peakVO2 (r = -0.239, P < 0.05) and was a significant explanatory variable for peakVO2 in stepwise regression analysis (β = -14.62, t = -2.5, P < 0.05). These results indicate that the AVI is strongly associated with CAD and predictive of the exercise capacity in patients with cardiac diseases. We, therefore, propose that the cuff oscillometric method is clinically useful in evaluating arterial stiffness in patients with cardiac diseases, especially CAD.
The effect of eccentric and concentric calf muscle training on Achilles tendon stiffness.
Morrissey, Dylan; Roskilly, Anna; Twycross-Lewis, Richard; Isinkaye, Tomide; Screen, Hazel; Woledge, Roger; Bader, Dan
2011-03-01
To compare in vivo effects of eccentric and concentric calf muscle training on Achilles tendon stiffness, in subjects without tendinopathy. Thirty-eight recreational athletes completed 6 weeks eccentric (6 males, 13 females, 21.6 ± 2.2 years) or concentric training (8 males, 11 females, 21.1 ± 2.0 years). Achilles tendon stiffness, tendon modulus and single-leg jump height were measured before and after intervention. Exercise adherence was recorded using a diary. All data are reported as mean ± SD. Groups were matched for height and weight but the eccentric training group were more active at baseline (P < 0.05). Tendon stiffness was higher in the eccentrically trained group at baseline compared to the concentrically trained group (20.9 ± 7.3 N/mm v 13.38 ± 4.66 N/mm; P = 0.001) and decreased significantly after eccentric training (to 17.2 ( ± 5.9) N/mm (P = 0.035)). There was no stiffness change in the concentric group (P = 0.405). Stiffness modulus showed similar changes to stiffness. An inverse correlation was found between initial, and subsequent, reduction in stiffness (r = -0.66). Jump height did not change and no correlation between stiffness change and adherence was observed in either group (r = 0.01). Six weeks of eccentric training can alter Achilles tendon stiffness while a matched concentric programme shows no similar effects. Studies in patients with Achilles tendinopathy are warranted.
Biomechanical constraints on the feedforward regulation of endpoint stiffness.
Hu, Xiao; Murray, Wendy M; Perreault, Eric J
2012-10-01
Although many daily tasks tend to destabilize arm posture, it is still possible to have stable interactions with the environment by regulating the multijoint mechanics of the arm in a task-appropriate manner. For postural tasks, this regulation involves the appropriate control of endpoint stiffness, which represents the stiffness of the arm at the hand. Although experimental studies have been used to evaluate endpoint stiffness control, including the orientation of maximal stiffness, the underlying neural strategies remain unknown. Specifically, the relative importance of feedforward and feedback mechanisms has yet to be determined due to the difficulty separately identifying the contributions of these mechanisms in human experiments. This study used a previously validated three-dimensional musculoskeletal model of the arm to quantify the degree to which the orientation of maximal endpoint stiffness could be changed using only steady-state muscle activations, used to represent feedforward motor commands. Our hypothesis was that the feedforward control of endpoint stiffness orientation would be significantly constrained by the biomechanical properties of the musculoskeletal system. Our results supported this hypothesis, demonstrating substantial biomechanical constraints on the ability to regulate endpoint stiffness throughout the workspace. The ability to regulate stiffness orientation was further constrained by additional task requirements, such as the need to support the arm against gravity or exert forces on the environment. Together, these results bound the degree to which slowly varying feedforward motor commands can be used to regulate the orientation of maximum arm stiffness and provide a context for better understanding conditions in which feedback control may be needed.
NASA Astrophysics Data System (ADS)
Baker, Brendon M.; Trappmann, Britta; Wang, William Y.; Sakar, Mahmut S.; Kim, Iris L.; Shenoy, Vivek B.; Burdick, Jason A.; Chen, Christopher S.
2015-12-01
To investigate how cells sense stiffness in settings structurally similar to native extracellular matrices, we designed a synthetic fibrous material with tunable mechanics and user-defined architecture. In contrast to flat hydrogel surfaces, these fibrous materials recapitulated cell-matrix interactions observed with collagen matrices including stellate cell morphologies, cell-mediated realignment of fibres, and bulk contraction of the material. Increasing the stiffness of flat hydrogel surfaces induced mesenchymal stem cell spreading and proliferation; however, increasing fibre stiffness instead suppressed spreading and proliferation for certain network architectures. Lower fibre stiffness permitted active cellular forces to recruit nearby fibres, dynamically increasing ligand density at the cell surface and promoting the formation of focal adhesions and related signalling. These studies demonstrate a departure from the well-described relationship between material stiffness and spreading established with hydrogel surfaces, and introduce fibre recruitment as a previously undescribed mechanism by which cells probe and respond to mechanics in fibrillar matrices.
Muela, Henrique C S; Costa-Hong, Valeria A; Yassuda, Mônica S; Moraes, Natália C; Memória, Claudia M; Machado, Michel F; Bor-Seng-Shu, Edson; Nogueira, Ricardo C; Mansur, Alfredo J; Massaro, Ayrton R; Nitrini, Ricardo; Macedo, Thiago A; Bortolotto, Luiz A
2018-01-01
Cognitive impairment and elevated arterial stiffness have been described in patients with arterial hypertension, but their association has not been well studied. We evaluated the correlation of arterial stiffness and different cognitive domains in patients with hypertension compared with those with normotension. We evaluated 211 patients (69 with normotension and 142 with hypertension). Patients were age matched and distributed according to their blood pressure: normotension, hypertension stage 1, and hypertension stage 2. Cognitive function was assessed using the Mini-Mental State Examination, Montreal Cognitive Assessment, and a battery of neuropsychological evaluations that assessed six main cognitive domains. Pulse wave velocity was measured using a Complior device, and carotid properties were assessed by radiofrequency ultrasound. Central arterial pressure and augmentation index were obtained using applanation tonometry. The hypertension stage 2 group had higher arterial stiffness and worse performance either by Mini-Mental State Examination (26.8±2.1 vs 27.3±2.1 vs 28.0±2.0, P=.003) or the Montreal Cognitive Assessment test (23.4±3.5 vs 24.9±2.9 vs 25.6±3.0, P<.001). On multivariable regression analysis, augmentation index, intima-media thickness, and pulse wave velocity were the variables mainly associated with lower cognitive performance at different cognitive domains. Cognitive impairment in different domains was associated with higher arterial stiffness. ©2017 Wiley Periodicals, Inc.
Self-Myofascial Release: No Improvement of Functional Outcomes in 'Tight' Hamstrings.
Morton, Robert W; Oikawa, Sara Y; Phillips, Stuart M; Devries, Michaela C; Mitchell, Cameron J
2016-07-01
Self-myofascial release (SMR) is a common exercise and therapeutic modality shown to induce acute improvements in joint range of motion (ROM) and recovery; however, no long-term studies have been conducted. Static stretching (SS) is the most common method used to increase joint ROM and decrease muscle stiffness. It was hypothesized that SMR paired with SS (SMR+SS) compared with SS alone over a 4-wk intervention would yield greater improvement in knee-extension ROM and hamstring stiffness. 19 men (22 ± 3 y) with bilateral reduced hamstring ROM had each of their legs randomly assigned to either an SMR+SS or an SS-only group. The intervention consisted of 4 repetitions of SS each for 45 s or the identical amount of SS preceded by 4 repetitions of SMR each for 60 s and was performed on the respective leg twice daily for 4 wk. Passive ROM, hamstring stiffness, rate of torque development (RTD), and maximum voluntary contraction (MVC) were assessed pre- and postintervention. Passive ROM (P < .001), RTD, and MVC (P < .05) all increased after the intervention. Hamstring stiffness toward end-ROM was reduced postintervention (P = .02). There were no differences between the intervention groups for any variable. The addition of SMR to SS did not enhance the efficacy of SS alone. SS increases joint ROM through a combination of decreased muscle stiffness and increased stretch tolerance.
Brown, Benjamin T; Blacke, Alexandra; Carroll, Vanessa; Graham, Petra L; Kawchuk, Greg; Downie, Aron; Swain, Michael
2017-01-01
The measurement of Posterior-Anterior (P-A) spinal stiffness is a common component of the physical examination of patients presenting with spinal disorders. The aim of this assessment is to provoke pain and/or to determine the degree of resistance or compliance of these structures and the associated soft-tissues to loading. This information, combined with other patient-specific history and examination findings, is integrated into the clinical reasoning process and is used to guide treatment decisions. Unfortunately, there are inter-rater reliability and standardisation issues associated with the manual performance of this type of assessment. In an attempt to remedy these issues researchers have developed mechanical devices for the measurement of spinal stiffness. The aim of this research is to investigate the comfort and safety of a novel device for measuring P-A trunk stiffness in a sample of young adults. A sample of young adults from a general population was recruited in May 2016 from Sydney, Australia. Demographic, anthropometric and clinical variables were collected prior to participants undergoing a lumbar P-A trunk stiffness assessment involving a mechanical indentation device called the VerteTrack. The primary outcomes for the study were key feasibility items; overall assessment time, perceived comfort measured both during and after the procedure, and adverse events. Univariate ordinal logistic regression was used to identify key variables associated with a participant's subjective report of comfort both during and after the VerteTrack assessment. Eighty four participants (35% female) with a median age of 23 years (IQR = 3) took part in the research. The mean assessment time for the Vertetrack assessment was 11.6 min (SD = 2.1). Increasing load ( p < 0.001) and increasing number of days with lower back pain ( p = 0.009) were associated with decreased comfort ratings during the procedure. The vast majority 63/84 (75%) of participants rated the overall assessment experience as comfortable. There were two minor, short-lived adverse events recorded leading to an adverse event rate of 2.4% (2/84). The results of this study suggest that the VerteTrack device is well-tolerated and can be used safely and efficiently when measuring P-A stiffness of the lumbar trunk in young adults. Not applicable.
Huang, Lu; Tian, Mengkun; Wu, Dong; ...
2017-11-24
In this paper, a new materials platform, utilizing the amorphous microstructure of bulk metallic glasses (BMGs) and the versatility of ion implantation, was developed for the fundamental investigation of cell responses to substrate-rigidity variations in the gigapascal modulus range, which was previously unattainable with polymeric materials. The surface rigidity of a Zr-Al- Ni-Cu-Y BMG was modulated with low-energy Ar-ion implantation owing to the impartment of Ar nanobubbles into the amorphous matrix. Surface softening was achieved due to the formation of nanobubble-doped transitional zones in the Zrbased BMG substrate. Bone-forming cell studies on this newly designed platform demonstrated that mechanical cues,more » accompanied with the potential effects of other surface properties (i.e. roughness, morphology, and chemistry), contributed to modulating cell behaviors. Cell adhesion and actin filaments were found to be less established on less stiff surfaces, especially on the surface with an elastic modulus of 51 GPa. Cell growth appeared to be affected by surface mechanical properties. A lower stiffness was generally related to a higher growth rate. Findings in this study broadened our fundamental understanding concerning the mechanosensing of bone cells on stiff substrates. It also suggests that surface mechano-engineering of metallic materials could be a potential strategy to promote osseointegration of such materials for bone-implant applications. Further investigations are proposed to fine tune the ion implantation variables in order to further distinguish the surface-mechanical effect on bone-forming cell activities from the contributions of other surface properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lu; Tian, Mengkun; Wu, Dong
In this paper, a new materials platform, utilizing the amorphous microstructure of bulk metallic glasses (BMGs) and the versatility of ion implantation, was developed for the fundamental investigation of cell responses to substrate-rigidity variations in the gigapascal modulus range, which was previously unattainable with polymeric materials. The surface rigidity of a Zr-Al- Ni-Cu-Y BMG was modulated with low-energy Ar-ion implantation owing to the impartment of Ar nanobubbles into the amorphous matrix. Surface softening was achieved due to the formation of nanobubble-doped transitional zones in the Zrbased BMG substrate. Bone-forming cell studies on this newly designed platform demonstrated that mechanical cues,more » accompanied with the potential effects of other surface properties (i.e. roughness, morphology, and chemistry), contributed to modulating cell behaviors. Cell adhesion and actin filaments were found to be less established on less stiff surfaces, especially on the surface with an elastic modulus of 51 GPa. Cell growth appeared to be affected by surface mechanical properties. A lower stiffness was generally related to a higher growth rate. Findings in this study broadened our fundamental understanding concerning the mechanosensing of bone cells on stiff substrates. It also suggests that surface mechano-engineering of metallic materials could be a potential strategy to promote osseointegration of such materials for bone-implant applications. Further investigations are proposed to fine tune the ion implantation variables in order to further distinguish the surface-mechanical effect on bone-forming cell activities from the contributions of other surface properties.« less
Nam, Denis; Berend, Michael E; Nunley, Ryan M; Della Valle, Craig J; Berend, Keith R; Lombardi, Adolph V; Barrack, Robert L
2016-10-01
Whether patient-reported symptoms and function after total knee arthroplasty (TKA) and medial unicompartmental knee arthroplasty (UKA) compare favorably to similar individuals without a diagnosis of knee pathology has not been investigated. A retrospective, multicenter study was designed in which 4 centers contributed patients between ages 18 and 80 years undergoing knee arthroplasty. Data were collected by an independent, third-party survey center that administered a questionnaire assessing patient satisfaction and function. The survey center identified a "control" population of the same age range using a "random digit dial call method" with no prior knee interventions or major problems with their knees limiting their activity. Comparisons were performed using multivariate logistic regression analyses accounting for differences in demographic variables among the 3 cohorts. Overall, 1456 TKAs, 476UKAs, and 409 controls were included for analysis. Controls reported a surprisingly high incidence of pain (30%), a limp (26%), stiffness (22%), and noise (21%) in their knee. However, the likelihood of reported noise (odds ratio [OR], 1.3), swelling (OR, 1.4), stiffness (OR, 1.8), and difficulty getting in and out of a chair (OR, 2.5) was increased after TKA vs controls (P < .001-.03). The likelihood of swelling (OR, 1.8), stiffness (OR, 1.5), and difficulty getting in and out of a chair (OR, 1.7) was increased after UKA vs controls (P = .002-.005). When interviewed by an independent, third party, a substantial percentage of control patients reported the presence of knee symptoms, but to a lesser degree than patients after a knee arthroplasty. Copyright © 2016 Elsevier Inc. All rights reserved.
Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell.
Martin, P; Mehta, A D; Hudspeth, A J
2000-10-24
Hearing and balance rely on the ability of hair cells in the inner ear to sense miniscule mechanical stimuli. In each cell, sound or acceleration deflects the mechanosensitive hair bundle, a tuft of rigid stereocilia protruding from the cell's apical surface. By altering the tension in gating springs linked to mechanically sensitive transduction channels, this deflection changes the channels' open probability and elicits an electrical response. To detect weak stimuli despite energy losses caused by viscous dissipation, a hair cell can use active hair-bundle movement to amplify its mechanical inputs. This amplificatory process also yields spontaneous bundle oscillations. Using a displacement-clamp system to measure the mechanical properties of individual hair bundles from the bullfrog's ear, we found that an oscillatory bundle displays negative slope stiffness at the heart of its region of mechanosensitivity. Offsetting the hair bundle's position activates an adaptation process that shifts the region of negative stiffness along the displacement axis. Modeling indicates that the interplay between negative bundle stiffness and the motor responsible for mechanical adaptation produces bundle oscillation similar to that observed. Just as the negative resistance of electrically excitable cells and of tunnel diodes can be embedded in a biasing circuit to amplify electrical signals, negative stiffness can be harnessed to amplify mechanical stimuli in the ear.
An under-actuated origami gripper with adjustable stiffness joints for multiple grasp modes
NASA Astrophysics Data System (ADS)
Firouzeh, Amir; Paik, Jamie
2017-05-01
Under-actuated robots offer multiple degrees of freedom without much added complexity to the actuation and control. Utilizing adjustable stiffness joints in these robots allows us to control their stable configurations and their mode of interaction with the environment. In this paper, we present the design of tendon-driven robotic origami (robogami) joints with adjustable stiffness. The proposed designs allow us to place joints along any direction in the plane of the robot and in the normal direction to the plane. The layer-by-layer manufacturing of robogamis facilitates the design and manufacturing of robots with different arrangement of joints for different applications. We use thermally activated shape memory polymer to control the joint stiffness. The manufacturing of the polymer layer is compatible with the layer-by-layer manufacturing process of the robogamis which results in scalable and customizable robots. To demonstrate, we prototyped an under-actuated gripper with three fingers and only one input actuation. The grasp mode of the gripper is set by adjusting the configuration of the locked joints and modulating the stiffness of the active joints. We present a model to estimate the configuration and the contact forces of the gripper at different settings that will assist us in design and control of future generation of under-actuated robogamis.
Multivariable Dynamic Ankle Mechanical Impedance With Active Muscles
Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville
2015-01-01
Multivariable dynamic ankle mechanical impedance in two coupled degrees-of-freedom (DOFs) was quantified when muscles were active. Measurements were performed at five different target activation levels of tibialis anterior and soleus, from 10% to 30% of maximum voluntary contraction (MVC) with increments of 5% MVC. Interestingly, several ankle behaviors characterized in our previous study of the relaxed ankle were observed with muscles active: ankle mechanical impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness; stiffness was greater in the sagittal plane than in the frontal plane at all activation conditions for all subjects; and the coupling between dorsiflexion–plantarflexion and inversion–eversion was small—the two DOF measurements were well explained by a strictly diagonal impedance matrix. In general, ankle stiffness increased linearly with muscle activation in all directions in the 2-D space formed by the sagittal and frontal planes, but more in the sagittal than in the frontal plane, resulting in an accentuated “peanut shape.” This characterization of young healthy subjects’ ankle mechanical impedance with active muscles will serve as a baseline to investigate pathophysiological ankle behaviors of biomechanically and/or neurologically impaired patients. PMID:25203497
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Aiqun; Chen, Jianwei; Liang, Zhi-Hong
Acute myocardial infarction (AMI) initiation and progression follow complex molecular and structural changes in the nanoarchitecture of platelets. However, it remains poorly understood how the transformation from health to AMI alters the ultrastructural and biomechanical properties of platelets within the platelet activation microenvironment. Here, we show using an atomic force microscope (AFM) that platelet samples, including living human platelets from the healthy and AMI patient, activated platelets from collagen-stimulated model, show distinct ultrastructural imaging and stiffness profiles. Correlative morphology obtained on AMI platelets and collagen-activated platelets display distinct pseudopodia structure and nanoclusters on membrane. In contrast to normal platelets, AMImore » platelets have a stiffer distribution resulting from complicated pathogenesis, with a prominent high-stiffness peak representative of platelet activation using AFM-based force spectroscopy. Similar findings are seen in specific stages of platelet activation in collagen-stimulated model. Further evidence obtained from different force measurement region with activated platelets shows that platelet migration is correlated to the more elasticity of pseudopodia while high stiffness at the center region. Overall, ultrastructural and nanomechanical profiling by AFM provides quantitative indicators in the clinical diagnostics of AMI with mechanobiological significance.« less
Wu, Sifan; Zheng, Qiongdan; Xing, Xiaoxia; Dong, Yinying; Wang, Yaohui; You, Yang; Chen, Rongxin; Hu, Chao; Chen, Jie; Gao, Dongmei; Zhao, Yan; Wang, Zhiming; Xue, Tongchun; Ren, Zhenggang; Cui, Jiefeng
2018-05-04
Higher matrix stiffness affects biological behavior of tumor cells, regulates tumor-associated gene/miRNA expression and stemness characteristic, and contributes to tumor invasion and metastasis. However, the linkage between higher matrix stiffness and pre-metastatic niche in hepatocellular carcinoma (HCC) is still largely unknown. We comparatively analyzed the expressions of LOX family members in HCC cells grown on different stiffness substrates, and speculated that the secreted LOXL2 may mediate the linkage between higher matrix stiffness and pre-metastatic niche. Subsequently, we investigated the underlying molecular mechanism by which matrix stiffness induced LOXL2 expression in HCC cells, and explored the effects of LOXL2 on pre-metastatic niche formation, such as BMCs recruitment, fibronectin production, MMPs and CXCL12 expression, cell adhesion, etc. RESULTS: Higher matrix stiffness significantly upregulated LOXL2 expression in HCC cells, and activated JNK/c-JUN signaling pathway. Knockdown of integrin β1 and α5 suppressed LOXL2 expression and reversed the activation of above signaling pathway. Additionally, JNK inhibitor attenuated the expressions of p-JNK, p-c-JUN, c-JUN and LOXL2, and shRNA-c-JUN also decreased LOXL2 expression. CM-LV-LOXL2-OE and rhLOXL2 upregulated MMP9 expression and fibronectin production obviously in lung fibroblasts. Moreover, activation of Akt pathway contributed to LOXL2-induced fibronectin upregulation. LOXL2 in CM as chemoattractant increased motility and invasion of BMCs, implicating a significant role of LOXL2 in BMCs recruitment. Except that, CM-LV-LOXL2-OE as chemoattractant also increased the number of migrated HCC cells, and improved chemokine CXCL12 expression in lung fibroblasts. The number of HCC cells adhered to surface of lung fibroblasts treated with CM-LV-LOXL2-OE was remarkably higher than that of the control cells. These results indicated that the secreted LOXL2 facilitated the motility of HCC cells and strengthened CTCs settlement on the remodeled matrix "soil". Integrin β1/α5/JNK/c-JUN signaling pathway participates in higher matrix stiffness-induced LOXL2 upregulation in HCC cells. The secreted LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation.
Gabriele, Sylvain; Benoliel, Anne-Marie; Bongrand, Pierre; Théodoly, Olivier
2009-01-01
Circulating leukocyte sequestration in pulmonary capillaries is arguably the initiating event of lung injury in acute respiratory distress syndrome. We present a microfluidic investigation of the roles of actin organization and myosin II activity during the different stages of leukocyte trafficking through narrow capillaries (entry, transit and shape relaxation) using specific drugs (latrunculin A, jasplakinolide, and blebbistatin). The deformation rate during entry reveals that cell stiffness depends strongly on F-actin organization and hardly on myosin II activity, supporting a microfilament role in leukocyte sequestration. In the transit stage, cell friction is influenced by stiffness, demonstrating that the actin network is not completely broken after a forced entry into a capillary. Conversely, membrane unfolding was independent of leukocyte stiffness. The surface area of sequestered leukocytes increased by up to 160% in the absence of myosin II activity, showing the major role of molecular motors in microvilli wrinkling and zipping. Finally, cell shape relaxation was largely independent of both actin organization and myosin II activity, whereas a deformed state was required for normal trafficking through capillary segments. PMID:19450501
The co-contraction index of the upper limb for young and old adult cyclists.
Kiewiet, H; Bulsink, V E; Beugels, F; Koopman, H F J M
2017-08-01
Bicycling is a popular and convenient means of transportation amongst the elderly in the Netherlands. However, the uptake of the electric bicycle resulted in an increase of single-sided bicycle accidents amongst the elderly (Veiligheid, 2010). Since elderly are prone to severe injuries, bicycle stability is currently a popular research topic. Three main balance strategies have been proposed in former studies: steering as the primary balance strategy and trunk -and lateral knee movement as secondary balance strategies (Moore et al., 2011; Cain, 2013). Since steering is the primary strategy for bicycle stability, the stiffness of the arms plays an important role in active stability during cycling. It has been shown that the arm stiffness of a passive rider is an important factor on the stability of a bicycle (Doria and Tognazzo, 2014). In the study presented here, the co-contraction index (CCI) of the upper limb for young and old adult cyclist is studied. Data is collected during experiments based on the setup described in (Kiewiet et al., 2014), wherein contact forces, muscle activities and motions of the rider and bicycle are measured for 15 young adult (mean±sd: 25.3±2.8 yrs) and 15 old adult (mean±sd: 58.1±2.1 yrs) subjects during unperturbed and perturbed cycling. The arm stiffness is defined as a co-contraction ratio between muscle activity of the m. Biceps Brachii and m. Triceps Lateralis. Results suggest that older adult cyclists use more co-contraction of their arm muscles during cycling, compared to young cyclists. The inter-subject variability of the found CCI was higher for the old adult subject group, compared to the young group. The results support the initial hypothesis that the increase in co-contraction of the upper limb for older cyclists is higher during perturbed cycling compared to unperturbed cycling than for younger cyclists. The findings might give direction towards solutions for increasing the safety and stability for elderly cyclists. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stretch shorten cycle performance enhancement through flexibility training.
Wilson, G J; Elliott, B C; Wood, G A
1992-01-01
Sixteen experienced male powerlifters served as subjects in a training study designed to examine the effect of flexibility training on: (i) the stiffness of the series elastic components (SEC) of the upper body musculature and (ii) rebound and purely concentric bench press performance. Nine of the subjects participated in two sessions of flexibility training twice per week for 8 wk. Prior to and after the training period the subjects' static flexibility, SEC stiffness, rebound bench press (RBP), and purely concentric bench press (PCBP) performance were recorded. The flexibility training induced a significant reduction in the maximal stiffness of the SEC. Furthermore, the experimental subjects produced significantly more work during the initial concentric portion of the RBP lift, enabling a significantly greater load to be lifted in the post-training testing occasion. The benefits to performance achieved by the experimental group consequent to flexibility training were greater during the RBP lift as compared with the PCBP lift. The control subjects exhibited no change in any variable over the training period. These results implied that the RBP performance enhancement observed consequent to flexibility training was directly caused by a reduction in SEC stiffness, increasing the utilization of elastic strain energy during the RBP lift.
Crichton, Georgina E; Elias, Merrill F; Alkerwi, Ala'a; Stranges, Saverio; Abhayaratna, Walter P
2016-07-01
The consumption of chocolate and cocoa has established cardiovascular benefits. Less is known about the effects of chocolate on arterial stiffness, a marker of subclinical cardiovascular disease. The aim of this study was to investigate whether chocolate intakes are independently associated with pulse wave velocity (PWV), after adjustment for cardiovascular, lifestyle and dietary factors. Prospective analyses were undertaken on 508 community-dwelling participants (mean age 61 years, 60% women) from the Maine-Syracuse Longitudinal Study (MSLS). Habitual chocolate intakes, measured using a food frequency questionnaire, were related to PWV, measured approximately 5 years later. Chocolate intake was significantly associated with PWV in a non-linear fashion with the highest levels of PWV in those who never or rarely ate chocolate and lowest levels in those who consumed chocolate once a week. This pattern of results remained and was not attenuated after multivariate adjustment for diabetes, cardiovascular risk factors and dietary variables (p = 0.002). Weekly chocolate intake may be of benefit to arterial stiffness. Further studies are needed to explore the underlying mechanisms that may mediate the observed effects of habitual chocolate consumption on arterial stiffness.
Crichton, Georgina E.; Elias, Merrill F.; Alkerwi, Ala'a; Stranges, Saverio; Abhayaratna, Walter P.
2016-01-01
Background The consumption of chocolate and cocoa has established cardiovascular benefits. Less is known about the effects of chocolate on arterial stiffness, a marker of subclinical cardiovascular disease. The aim of this study was to investigate whether chocolate intakes are independently associated with pulse wave velocity (PWV), after adjustment for cardiovascular, lifestyle and dietary factors. Methods Prospective analyses were undertaken on 508 community-dwelling participants (mean age 61 years, 60% women) from the Maine-Syracuse Longitudinal Study (MSLS). Habitual chocolate intakes, measured using a food frequency questionnaire, were related to PWV, measured approximately 5 years later. Results Chocolate intake was significantly associated with PWV in a non-linear fashion with the highest levels of PWV in those who never or rarely ate chocolate and lowest levels in those who consumed chocolate once a week. This pattern of results remained and was not attenuated after multivariate adjustment for diabetes, cardiovascular risk factors and dietary variables (p = 0.002). Conclusions Weekly chocolate intake may be of benefit to arterial stiffness. Further studies are needed to explore the underlying mechanisms that may mediate the observed effects of habitual chocolate consumption on arterial stiffness. PMID:27493901
Meinck, H M; Ricker, K; Conrad, B
1984-01-01
Neurophysiological investigations of a patient suffering from the stiff-man syndrome revealed that exteroceptive reflexes, in particular those elicited from the skin, were excessively enhanced. In contrast, no abnormalities were found within the monosynaptic reflex arc. Clomipramine injection severely aggravated the clinical symptoms whereas diazepam, clonidine, and tizanidine decreased both muscular stiffness and abnormal exteroceptive reflexes. The hypothesis is put forward that the stiff-man syndrome is a disorder of descending brain-stem systems which exert a net inhibitory control on axial and limb girdle muscle tone as well as on exteroceptive reflex transmission. Detection of abnormal exteroceptive reflex activity in conjunction with neuropharmacological testing might help in the diagnosis of this rare disease. PMID:6707674
Combining Dynamic Stretch and Tunable Stiffness to Probe Cell Mechanobiology In Vitro
Throm Quinlan, Angela M.; Sierad, Leslie N.; Capulli, Andrew K.; Firstenberg, Laura E.; Billiar, Kristen L.
2011-01-01
Cells have the ability to actively sense their mechanical environment and respond to both substrate stiffness and stretch by altering their adhesion, proliferation, locomotion, morphology, and synthetic profile. In order to elucidate the interrelated effects of different mechanical stimuli on cell phenotype in vitro, we have developed a method for culturing mammalian cells in a two-dimensional environment at a wide range of combined levels of substrate stiffness and dynamic stretch. Polyacrylamide gels were covalently bonded to flexible silicone culture plates and coated with monomeric collagen for cell adhesion. Substrate stiffness was adjusted from relatively soft (G′ = 0.3 kPa) to stiff (G′ = 50 kPa) by altering the ratio of acrylamide to bis-acrylamide, and the silicone membranes were stretched over circular loading posts by applying vacuum pressure to impart near-uniform stretch, as confirmed by strain field analysis. As a demonstration of the system, porcine aortic valve interstitial cells (VIC) and human mesenchymal stem cells (hMSC) were plated on soft and stiff substrates either statically cultured or exposed to 10% equibiaxial or pure uniaxial stretch at 1Hz for 6 hours. In all cases, cell attachment and cell viability were high. On soft substrates, VICs cultured statically exhibit a small rounded morphology, significantly smaller than on stiff substrates (p<0.05). Following equibiaxial cyclic stretch, VICs spread to the extent of cells cultured on stiff substrates, but did not reorient in response to uniaxial stretch to the extent of cells stretched on stiff substrates. hMSCs exhibited a less pronounced response than VICs, likely due to a lower stiffness threshold for spreading on static gels. These preliminary data demonstrate that inhibition of spreading due to a lack of matrix stiffness surrounding a cell may be overcome by externally applied stretch suggesting similar mechanotransduction mechanisms for sensing stiffness and stretch. PMID:21858051
Stability of Hand Force Production: II. Ascending and Descending Synergies.
Reschechtko, Sasha; Latash, Mark L
2018-06-06
We combined the theory of neural control of movement with referent coordinates and the uncontrolled manifold hypothesis to investigate multi-finger coordination. We tested hypotheses related to stabilization of performance by co-varying control variables, translated into apparent stiffness and referent coordinate, at different levels of an assumed hierarchy of control. Subjects produced an accurate combination of total force and total moment of force with the four fingers under visual feedback on both variables and after feedback was partly or completely removed. The "inverse piano" device was used to estimate control variables. We observed strong synergies in the space of hypothetical control variables which stabilized total force and moment of force, as well as weaker synergies stabilizing individual finger forces; while the former were attenuated by alteration of visual feedback, the latter were much less affected. In addition, we investigated the organization of "ascending synergies" stabilizing task-level control variables by co-varied adjustments of finger-level control variables. We observed inter-trial co-variation of individual fingers' referent coordinates stabilizing hand-level referent coordinate, but observed no such co-variation for apparent stiffness. The observations suggest the existence of both descending and ascending synergies in a hierarchical control system. They confirm a trade-off between synergies at different levels of control and corroborate the hypothesis on specialization of different fingers for the control of force and moment. The results provide strong evidence for the importance of central back-coupling loops in ensuring stability of action.
Peng, Hao; Zhu, Yun; Yeh, Fawn; Cole, Shelley A; Best, Lyle G; Lin, Jue; Blackburn, Elizabeth; Devereux, Richard B; Roman, Mary J; Lee, Elisa T; Howard, Barbara V; Zhao, Jinying
2016-08-01
Telomere length, a marker of biological aging, has been associated with cardiovascular disease (CVD). Increased arterial stiffness, an indicator of arterial aging, predicts adverse CVD outcomes. However, the relationship between telomere length and arterial stiffness is less well studied. Here we examined the cross-sectional association between leukocyte telomere length (LTL) and arterial stiffness in 2,165 American Indians in the Strong Heart Family Study (SHFS). LTL was measured by qPCR. Arterial stiffness was assessed by stiffness index β. The association between LTL and arterial stiffness was assessed by generalized estimating equation model, adjusting for sociodemographics (age, sex, education level), study site, metabolic factors (fasting glucose, lipids, systolic blood pressure, and kidney function), lifestyle (BMI, smoking, drinking, and physical activity), and prevalent CVD. Results showed that longer LTL was significantly associated with a decreased arterial stiffness (β=-0.070, P=0.007). This association did not attenuate after further adjustment for hsCRP (β=-0.071, P=0.005) or excluding participants with overt CVD (β=-0.068, P=0.012), diabetes (β=-0.070, P=0.005), or chronic kidney disease (β=-0.090, P=0.001). In summary, shorter LTL was significantly associated with an increased arterial stiffness, independent of known risk factors. This finding may shed light on the potential role of biological aging in arterial aging in American Indians.
Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures.
Lantoine, Joséphine; Grevesse, Thomas; Villers, Agnès; Delhaye, Geoffrey; Mestdagh, Camille; Versaevel, Marie; Mohammed, Danahe; Bruyère, Céline; Alaimo, Laura; Lacour, Stéphanie P; Ris, Laurence; Gabriele, Sylvain
2016-05-01
The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study to eliminate ground resonance using active controls
NASA Technical Reports Server (NTRS)
Straub, F. K.
1984-01-01
The effectiveness of active control blade feathering in increasing rotor body damping and the possibility to eliminate ground resonance instabilities were investigated. An analytical model representing rotor flapping and lead-lag degrees of freedom and body pitch, roll, longitudinal and lateral motion is developed. Active control blade feathering is implemented as state variable feedback through a conventional swashplate. The influence of various feedback states, feedback gain, and weighting between the cyclic controls is studied through stability and response analyses. It is shown that blade cyclic inplane motion, roll rate and roll acceleration feedback can add considerable damping to the system and eliminate ground resonance instabilities, which the feedback phase is also a powerful parameter, if chosen properly, it maximizes augmentation of the inherent regressing lag mode damping. It is shown that rotor configuration parameters, like blade root hinge offset, flapping stiffness, and precone considerably influence the control effectiveness. It is found that active control is particularly powerful for hingeless and bearingless rotor systems.
Real-time control of geometry and stiffness in adaptive structures
NASA Technical Reports Server (NTRS)
Ramesh, A. V.; Utku, S.; Wada, B. K.
1991-01-01
The basic theory is presented for the geometry, stiffness, and damping control of adaptive structures, with emphasis on adaptive truss structures. Necessary and sufficient conditions are given for stress-free geometry control in statically determinate and indeterminate adaptive discrete structures. Two criteria for selecting the controls are proposed, and their use in real-time control is illustrated by numerical simulation results. It is shown that the stiffness and damping control of adaptive truss structures for vibration suppression is possible by elongation and elongation rate dependent feedback forces from the active elements.
Rezende, Rosamar E F; Duarte, Sebastião M B; Stefano, Jose T; Roschel, Hamilton; Gualano, Bruno; de Sá Pinto, Ana L; Vezozzo, Denise C P; Carrilho, Flair J; Oliveira, Claudia P
2016-08-01
The aim of the study was to evaluate the effectiveness of aerobic physical activity in reducing the frequency of hepatic steatosis and metabolic and cardiovascular risk in postmenopausal women with nonalcoholic fatty liver disease (NAFLD). Forty sedentary postmenopausal women (mean age 55.3 ± 8.0 y) with biopsy-proven NAFLD were randomly divided into two groups: an exercising group (19 participants) and a control group (nonexercising, 21 participants). The exercise group underwent a supervised aerobic physical activity program of 120 min/wk for 24 weeks. The anthropometric parameters; body composition; hepatic, lipid, and glycemic profiles; homeostasis model assessment of insulin resistance index; cytokines; transient elastography (FibroScan; liver stiffness/controlled attenuation parameter); and cardiopulmonary exercise test were evaluated at baseline and after 24 weeks of protocol. At baseline there were no significant differences in anthropometric, metabolic, and inflammatory parameters-stiffness and liver fat content by FibroScan between the groups. After 24 weeks, we observed a decrease of waist circumference, an increase of high-density lipoprotein cholesterol levels (P < 0.05), and improved cardiopulmonary functional capacity in the exercise group. In addition, the controlled attenuation parameter analysis showed no significant decrease of hepatic steatosis in the exercise group. With regard to the systemic inflammation, there were, however, no significant differences in the cytokines between the groups. An aerobic physical activity program of 24 weeks in NAFLD postmenopausal women showed improvement in some variables such as waist circumference, high-density lipoprotein cholesterol, and cardiopulmonary performance that may be beneficial in improving cardiovascular risk factors in this population.
van Deel, Elza D; Najafi, Aref; Fontoura, Dulce; Valent, Erik; Goebel, Max; Kardux, Kim; Falcão-Pires, Inês; van der Velden, Jolanda
2017-07-15
This paper describes a novel model that allows exploration of matrix-induced cardiomyocyte adaptations independent of the passive effect of matrix rigidity on cardiomyocyte function. Detachment of adult cardiomyocytes from the matrix enables the study of matrix effects on cell shortening, Ca 2+ handling and myofilament function. Cell shortening and Ca 2+ handling are altered in cardiomyocytes cultured for 24 h on a stiff matrix. Matrix stiffness-impaired cardiomyocyte contractility is reversed upon normalization of extracellular stiffness. Matrix stiffness-induced reduction in unloaded shortening is more pronounced in cardiomyocytes isolated from obese ZSF1 rats with heart failure with preserved ejection fraction compared to lean ZSF1 rats. Extracellular matrix (ECM) stiffening is a key element of cardiac disease. Increased rigidity of the ECM passively inhibits cardiac contraction, but if and how matrix stiffening also actively alters cardiomyocyte contractility is incompletely understood. In vitro models designed to study cardiomyocyte-matrix interaction lack the possibility to separate passive inhibition by a stiff matrix from active matrix-induced alterations of cardiomyocyte properties. Here we introduce a novel experimental model that allows exploration of cardiomyocyte functional alterations in response to matrix stiffening. Adult rat cardiomyocytes were cultured for 24 h on matrices of tuneable stiffness representing the healthy and the diseased heart and detached from their matrix before functional measurements. We demonstrate that matrix stiffening, independent of passive inhibition, reduces cell shortening and Ca 2+ handling but does not alter myofilament-generated force. Additionally, detachment of adult cultured cardiomyocytes allowed the transfer of cells from one matrix to another. This revealed that stiffness-induced cardiomyocyte changes are reversed when matrix stiffness is normalized. These matrix stiffness-induced changes in cardiomyocyte function could not be explained by adaptation in the microtubules. Additionally, cardiomyocytes isolated from stiff hearts of the obese ZSF1 rat model of heart failure with preserved ejection fraction show more pronounced reduction in unloaded shortening in response to matrix stiffening. Taken together, we introduce a method that allows evaluation of the influence of ECM properties on cardiomyocyte function separate from the passive inhibitory component of a stiff matrix. As such, it adds an important and physiologically relevant tool to investigate the functional consequences of cardiomyocyte-matrix interactions. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Endes, Simon; Schaffner, Emmanuel; Caviezel, Seraina; Dratva, Julia; Stolz, Daiana; Schindler, Christian; Künzli, Nino; Schmidt-Trucksäss, Arno; Probst-Hensch, Nicole
2017-08-01
Air pollution and insufficient physical activity have been associated with inflammation and oxidative stress, molecular mechanisms linked to arterial stiffness and cardiovascular disease. There are no studies on how physical activity modifies the association between air pollution and arterial stiffness. We examined whether the adverse cardiovascular effects of air pollution were modified by individual physical activity levels in 2823 adults aged 50-81 years from the well-characterized Swiss Cohort Study on Air Pollution and Lung and Heart Diseases (SAPALDIA). We assessed arterial stiffness as the brachial-ankle pulse wave velocity (baPWV [m/s]) with an oscillometric device. We administered a self-reported physical activity questionnaire to classify each subject's physical activity level. Air pollution exposure was estimated by the annual average individual home outdoor PM 10 and PM 2.5 (particulate matter <10μm and <2.5μm in diameter, respectively) and NO 2 (nitrogen dioxide) exposure estimated for the year preceding the survey. Exposure estimates for ultrafine particles calculated as particle number concentration (PNC) and lung deposited surface area (LDSA) were available for a subsample (N=1353). We used mixed effects logistic regression models to regress increased arterial stiffness (baPWV≥14.4m/s) on air pollution exposure and physical activity while adjusting for relevant confounders. We found evidence that the association of air pollution exposure with baPWV was different between inactive and active participants. The probability of having increased baPWV was significantly higher with higher PM 10 , PM 2.5 , NO 2 , PNC and LDSA exposure in inactive, but not in physically active participants. We found some evidence of an interaction between physical activity and ambient air pollution exposure for PM 10 , PM 2.5 and NO 2 (p interaction =0.06, 0.09, and 0.04, respectively), but not PNC and LDSA (p interaction =0.32 and 0.35). Our study provides some indication that physical activity may protect against the adverse vascular effects of air pollution in low pollution settings. Additional research in large prospective cohorts is needed to assess whether the observed effect modification translates to high pollution settings in mega-cities of middle and low-income countries. Copyright © 2017 Elsevier GmbH. All rights reserved.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Goldberg, Robert K.; Lerch, Bradley A.; Saleeb, Atef F.
2009-01-01
Herein a general, multimechanism, physics-based viscoelastoplastic model is presented in the context of an integrated diagnosis and prognosis methodology which is proposed for structural health monitoring, with particular applicability to gas turbine engine structures. In this methodology, diagnostics and prognostics will be linked through state awareness variable(s). Key technologies which comprise the proposed integrated approach include (1) diagnostic/detection methodology, (2) prognosis/lifing methodology, (3) diagnostic/prognosis linkage, (4) experimental validation, and (5) material data information management system. A specific prognosis lifing methodology, experimental characterization and validation and data information management are the focal point of current activities being pursued within this integrated approach. The prognostic lifing methodology is based on an advanced multimechanism viscoelastoplastic model which accounts for both stiffness and/or strength reduction damage variables. Methods to characterize both the reversible and irreversible portions of the model are discussed. Once the multiscale model is validated the intent is to link it to appropriate diagnostic methods to provide a full-featured structural health monitoring system.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Goldberg, Robert K.; Lerch, Bradley A.; Saleeb, Atef F.
2009-01-01
Herein a general, multimechanism, physics-based viscoelastoplastic model is presented in the context of an integrated diagnosis and prognosis methodology which is proposed for structural health monitoring, with particular applicability to gas turbine engine structures. In this methodology, diagnostics and prognostics will be linked through state awareness variable(s). Key technologies which comprise the proposed integrated approach include 1) diagnostic/detection methodology, 2) prognosis/lifing methodology, 3) diagnostic/prognosis linkage, 4) experimental validation and 5) material data information management system. A specific prognosis lifing methodology, experimental characterization and validation and data information management are the focal point of current activities being pursued within this integrated approach. The prognostic lifing methodology is based on an advanced multi-mechanism viscoelastoplastic model which accounts for both stiffness and/or strength reduction damage variables. Methods to characterize both the reversible and irreversible portions of the model are discussed. Once the multiscale model is validated the intent is to link it to appropriate diagnostic methods to provide a full-featured structural health monitoring system.
Muscle Co-activation: Definitions, Mechanisms, and Functions.
Latash, Mark L
2018-03-28
The phenomenon of agonist-antagonist muscle co-activation is discussed with respect to its consequences for movement mechanics (such as increasing joint apparent stiffness, facilitating faster movements, and effects on action stability), implication for movement optimization, and involvement of different neurophysiological structures. Effects of co-activation on movement stability are ambiguous and depend on the effector representing a kinematic chain with a fixed origin or free origin. Further, co-activation is discussed within the framework of the equilibrium-point hypothesis and the idea of hierarchical control with spatial referent coordinates. Relations of muscle co-activation to changes in one of the basic commands, the c-command, are discussed and illustrated. A hypothesis is suggested that agonist-antagonist co-activation reflects a deliberate neural control strategy to preserve effector-level control and avoid making it degenerate and facing the necessity to control at the level of signals to individual muscles. This strategy, in particular, allows stabilizing motor actions by co-varied adjustments in spaces of control variables. This hypothesis is able to account for higher levels of co-activation in young healthy persons performing challenging tasks and across various populations with movement impairments.
Chapple, W D
1997-09-01
Reflex activation of the ventral superficial muscles (VSM) in the abdomen of the hermit crab, Pagurus pollicarus, was studied using sinusoidal and stochastic longitudinal vibration of the muscle while recording the length and force of the muscle and the spike times of three exciter motoneurons. In the absence of vibration, the interspike interval histograms of the two larger motoneurons were bimodal; cutting sensory nerves containing most of the mechanoreceptor input removed the short interval peak in the histogram, indicating that the receptors are important in maintaining tonic firing. Vibration of the muscle evoked a reflex increase in motoneuron frequency that habituated after an initial peak but remained above control levels for the duration of stimulation. Motoneuron frequency increased with root mean square (rms) stimulus amplitude. Average stiffness during stimulation was about two times the stiffness of passive muscle. The reflex did not alter muscle dynamics. Estimated transfer functions were calculated from the fast Fourier transform of length and force signals. Coherence was >0.9 for the frequency range of 3-35 Hz. Stiffness magnitude gradually increased over this range in both reflex activated and passive muscle; phase was between 10 and 20 degrees. Reflex stiffness decreased with increasing stimulus amplitudes, but at larger amplitudes, this decrease was much less pronounced; in this range stiffness was regulated by the reflex. The sinusoidal frequency at which reflex bursts were elicited was approximately 6 Hz, consistent with previous measurements using ramp stretch. During reflex excitation, there was an increase in amplitude of the short interval peak in the interspike interval histogram; this was reduced when the majority of afferent pathways was removed. A phase histogram of motoneuron firing during sinusoidal vibration had a peak at approximately 110 ms, also suggesting that an important component of the reflex is via direct projections from the mechanoreceptors. These results are consistent with the hypothesis that a robust feedforward regulation of abdominal stiffness during continuous disturbances is achieved by mechanoreceptors signalling the absolute value of changing forces; habituation of the reflex, its high-threshold for low frequency disturbances and the activation kinetics of the muscle further modify reflex dynamics.
NASA Technical Reports Server (NTRS)
Clark, S. K.; Dodge, R. N.; Nybakken, G. H.
1972-01-01
The string theory was evaluated for predicting lateral tire dynamic properties as obtained from scaled model tests. The experimental data and string theory predictions are in generally good agreement using lateral stiffness and relaxation length values obtained from the static or slowly rolling tire. The results indicate that lateral forces and self-aligning torques are linearly proportional to tire lateral stiffness and to the amplitude of either steer or lateral displacement. In addition, the results show that the ratio of input excitation frequency to road speed is the proper independent variable by which frequency should be measured.
NASA Astrophysics Data System (ADS)
Barthelat, Francois
2014-12-01
Nacre, bone and spider silk are staggered composites where inclusions of high aspect ratio reinforce a softer matrix. Such staggered composites have emerged through natural selection as the best configuration to produce stiffness, strength and toughness simultaneously. As a result, these remarkable materials are increasingly serving as model for synthetic composites with unusual and attractive performance. While several models have been developed to predict basic properties for biological and bio-inspired staggered composites, the designer is still left to struggle with finding optimum parameters. Unresolved issues include choosing optimum properties for inclusions and matrix, and resolving the contradictory effects of certain design variables. Here we overcome these difficulties with a multi-objective optimization for simultaneous high stiffness, strength and energy absorption in staggered composites. Our optimization scheme includes material properties for inclusions and matrix as design variables. This process reveals new guidelines, for example the staggered microstructure is only advantageous if the tablets are at least five times stronger than the interfaces, and only if high volume concentrations of tablets are used. We finally compile the results into a step-by-step optimization procedure which can be applied for the design of any type of high-performance staggered composite and at any length scale. The procedure produces optimum designs which are consistent with the materials and microstructure of natural nacre, confirming that this natural material is indeed optimized for mechanical performance.
NASA Astrophysics Data System (ADS)
Yang, B. D.; Chu, M. L.; Menq, C. H.
1998-03-01
Mechanical systems in which moving components are mutually constrained through contacts often lead to complex contact kinematics involving tangential and normal relative motions. A friction contact model is proposed to characterize this type of contact kinematics that imposes both friction non-linearity and intermittent separation non-linearity on the system. The stick-slip friction phenomenon is analyzed by establishing analytical criteria that predict the transition between stick, slip, and separation of the interface. The established analytical transition criteria are particularly important to the proposed friction contact model for the transition conditions of the contact kinematics are complicated by the effect of normal load variation and possible interface separation. With these transition criteria, the induced friction force on the contact plane and the variable normal load perpendicular to the contact plane, can be predicted for any given cyclic relative motions at the contact interface and hysteresis loops can be produced so as to characterize the equivalent damping and stiffness of the friction contact. These-non-linear damping and stiffness methods along with the harmonic balance method are then used to predict the resonant response of a frictionally constrained two-degree-of-freedom oscillator. The predicted results are compared with those of the time integration method and the damping effect, the resonant frequency shift, and the jump phenomenon are examined.
Doyon, Marielle; Mathieu, Patrick; Moreau, Pierre
2013-02-01
Arterial stiffness is accelerated in type 1 diabetic patients. Medial artery calcification (MAC) contributes to the development of arterial stiffness. Vitamin K oxidoreductase (VKOR) reduces the vitamin K required by γ-carboxylase to activate matrix γ-carboxyglutamic acid (Gla) protein (MGP), an inhibitor of vascular calcification. This study aimed to evaluate the hypothesis that diabetes reduces the γ-carboxylation of MGP in the aortic wall, leading to increased vascular calcification, and the role of γ-carboxylase and VKOR in this γ-carboxylation deficit. Type 1 diabetes was induced in male Wistar rats with a single ip injection of streptozotocin. Augmentation of arterial stiffness in diabetic rats was shown by a 44% increase in aortic pulse wave velocity. Aortic and femoral calcification were increased by 26 and 56%, respectively. γ-Carboxylated MGP (cMGP, active) was reduced by 36% and the aortic expression of γ-carboxylase was reduced by 58%. Expression of γ-carboxylase correlated with cMGP (r= 0.59) and aortic calcification (r = -0.57). VKOR aortic expression and activity were not modified by diabetes. Vitamin K plasma concentrations were increased by 191% in diabetic rats. In ex vivo experiments with aortic rings, vitamin K supplementation prevented the glucose-induced decrease in γ-carboxylase expression. Our results suggest that reduced cMGP, through an impaired expression of γ-carboxylase, is involved in the early development of MAC in diabetes, and therefore, in the acceleration of arterial stiffness. A defect in vitamin K uptake by target cells could also be involved.
Nasrollahi, Samila; Walter, Christopher; Loza, Andrew J; Schimizzi, Gregory V; Longmore, Gregory D; Pathak, Amit
2017-11-01
During morphogenesis and cancer metastasis, grouped cells migrate through tissues of dissimilar stiffness. Although the influence of matrix stiffness on cellular mechanosensitivity and motility are well-recognized, it remains unknown whether these matrix-dependent cellular features persist after cells move to a new microenvironment. Here, we interrogate whether priming of epithelial cells by a given matrix stiffness influences their future collective migration on a different matrix - a property we refer to as the 'mechanical memory' of migratory cells. To prime cells on a defined matrix and track their collective migration onto an adjoining secondary matrix of dissimilar stiffness, we develop a modular polyacrylamide substrate through step-by-step polymerization of different PA compositions. We report that epithelial cells primed on a stiff matrix migrate faster, display higher actomyosin expression, form larger focal adhesions, and retain nuclear YAP even after arriving onto a soft secondary matrix, as compared to their control behavior on a homogeneously soft matrix. Priming on a soft ECM causes a reverse effect. The depletion of YAP dramatically reduces this memory-dependent migration. Our results present a previously unidentified regulation of mechanosensitive collective cell migration by past matrix stiffness, in which mechanical memory depends on YAP activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Arterial Stiffness Is Increased in Patients With Type 1 Diabetes Without Cardiovascular Disease
Llauradó, Gemma; Ceperuelo-Mallafré, Victòria; Vilardell, Carme; Simó, Rafael; Freixenet, Núria; Vendrell, Joan; González-Clemente, José Miguel
2012-01-01
OBJECTIVE To investigate the relationship between arterial stiffness and low-grade inflammation in subjects with type 1 diabetes without clinical cardiovascular disease. RESEARCH DESIGN AND METHODS Sixty-eight patients with type 1 diabetes and 68 age- and sex-matched healthy subjects were evaluated. Arterial stiffness was assessed by aortic pulse wave velocity (aPWV). Serum concentrations of high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-6, and soluble fractions of tumor necrosis factor-α receptors 1 and 2 (sTNFαR1 and sTNFαR2, respectively) were measured. All statistical analyses were stratified by sex. RESULTS Subjects with diabetes had a higher aPWV compared with healthy control subjects (men: 6.9 vs. 6.3 m/s, P < 0.001; women: 6.4 vs. 6.0 m/s, P = 0.023). These differences remained significant after adjusting for cardiovascular risk factors. Men with diabetes had higher concentrations of hsCRP (1.2 vs. 0.6 mg/L; P = 0.036), IL-6 (0.6 vs. 0.3 pg/mL; P = 0.002), sTNFαR1 (2,739 vs. 1,410 pg/mL; P < 0.001), and sTNFαR2 (2,774 vs. 2,060 pg/mL; P < 0.001). Women with diabetes only had higher concentrations of IL-6 (0.6 vs. 0.4 pg/mL; P = 0.039). In men with diabetes, aPWV correlated positively with hsCRP (r = 0.389; P = 0.031) and IL-6 (r = 0.447; P = 0.008), whereas in women with diabetes no significant correlation was found. In men, multiple linear regression analysis showed that the following variables were associated independently with aPWV: age, BMI, type 1 diabetes, and low-grade inflammation (R2 = 0.543). In women, these variables were age, BMI, mean arterial pressure, and type 1 diabetes (R2 = 0.550). CONCLUSIONS Arterial stiffness assessed as aPWV is increased in patients with type 1 diabetes without clinical cardiovascular disease, independently of classical cardiovascular risk factors. In men with type 1 diabetes, low-grade inflammation is independently associated with arterial stiffness. PMID:22357186
A method for accounting for test fixture compliance when estimating proximal femur stiffness.
Rossman, Timothy; Dragomir-Daescu, Dan
2016-09-06
Fracture testing of cadaveric femora to obtain strength and stiffness information is an active area of research in developing tools for diagnostic prediction of bone strength. These measurements are often used in the estimation and validation of companion finite element models constructed from the femora CT scan data, therefore, the accuracy of the data is of paramount importance. However, experimental stiffness calculated from force-displacement data has largely been ignored by most researchers due to inherent error in the differential displacement measurement obtained when not accounting for testing apparatus compliance. However, having such information is necessary for validation of computational models. Even in the few cases when fixture compliance was considered the measurements showed large lab-to-lab variation due to lack of standardization in fixture design. We examined the compliance of our in-house designed cadaveric femur test fixture to determine the errors we could expect when calculating stiffness from the collected experimental force-displacement data and determined the stiffness of the test fixture to be more than 10 times the stiffness of the stiffest femur in a sample of 44 femora. When correcting the apparent femur stiffness derived from the original data, we found that the largest stiffness was underestimated by about 10%. The study confirmed that considering test fixture compliance is a necessary step in improving the accuracy of fracture test data for characterizing femur stiffness, and highlighted the need for test fixture design standardization for proximal femur fracture testing. Copyright © 2016 Elsevier Ltd. All rights reserved.
You, Yang; Zheng, Qiongdan; Dong, Yinying; Wang, Yaohui; Zhang, Lan; Xue, Tongchun; Xie, Xiaoying; Hu, Chao; Wang, Zhiming; Chen, Rongxin; Wang, Yanhong; Cui, Jiefeng; Ren, Zhenggang
2015-01-01
Increased stromal stiffness is associated with hepatocellular carcinoma (HCC) development and progression. However, the molecular mechanism by which matrix stiffness stimuli modulate HCC progress is largely unknown. In this study, we explored whether matrix stiffness-mediated effects on osteopontin (OPN) expression occur in HCC cells. We used a previously reported in vitro culture system with tunable matrix stiffness and found that OPN expression was remarkably upregulated in HCC cells with increasing matrix stiffness. Furthermore, the phosphorylation level of GSK3β and the expression of nuclear β-catenin were also elevated, indicating that GSK3β/β-catenin pathway might be involved in OPN regulation. Knock-down analysis of integrin β1 showed that OPN expression and p-GSK3β level were downregulated in HCC cells grown on high stiffness substrate compared with controls. Simultaneously, inhibition of GSK-3β led to accumulation of β-catenin in the cytoplasm and its enhanced nuclear translocation, further triggered the rescue of OPN expression, suggesting that the integrin β1/GSK-3β/β-catenin pathway is specifically activated for matrix stiffness-mediated OPN upregulation in HCC cells. Tissue microarray analysis confirmed that OPN expression was positively correlated with the expression of LOX and COL1. Taken together, high matrix stiffness upregulated OPN expression in HCC cells via the integrin β1/GSK-3β/β-catenin signaling pathway. It highlights a new insight into a pathway involving physical mechanical signal and biochemical signal molecules which contributes to OPN expression in HCC cells.
2015-01-01
Objective To compare the acute effects of a cycling intervention on carotid arterial hemodynamics between basketball athletes and sedentary controls. Methods Ten young long-term trained male basketball athletes (BA) and nine age-matched male sedentary controls (SC) successively underwent four bouts of exercise on a bicycle ergometer at the same workload. Hemodynamic variables at right common carotid artery were determined at rest and immediately following each bout of exercise. An ANCOVA was used to compare differences between the BA and SC groups at rest and immediately following the cycling intervention. The repeated ANOVA was used to assess differences between baseline and each bout of exercise within the BA or SC group. Results In both groups, carotid hemodynamic variables showed significant differences at rest and immediately after the cycling intervention. At rest, carotid arterial stiffness was significantly decreased and carotid arterial diameter was significantly increased in the BA group as compared to the SC group. Immediately following the cycling intervention, carotid arterial stiffness showed no obvious changes in the BA group but significantly increased in the SC group. It is worth noting that while arterial stiffness was lower in the BA group than in the SC group, the oscillatory shear index (OSI) was significantly higher in the BA group than in the SC group both at rest and immediately following the cycling intervention. Conclusion Long-term basketball exercise had a significant impact on common carotid arterial hemodynamic variables not only at rest but also after a cycling intervention. The role of OSI in the remodeling of arterial structure and function in the BA group at rest and after cycling requires clarification. PMID:25602805
Xie, Qin; Chen, Bin; Liu, Liu; Gan, Huatian
2012-10-24
The variable-stiffness colonoscope (VSC) appears to have advantages over the standard adult colonoscope (SAC), although data are conflicting. To provide a comprehensive up-to-date review, we conducted a meta-analysis to compare the efficacies of the VSC and SAC. Electronic databases, including PubMed, EMBASE, the Cochrane library and the Science Citation Index, were searched to retrieve relevant trials. In addition, meeting abstracts and the reference lists of retrieved articles were reviewed for further relevant studies. Eight randomized controlled trials (RCTs), enrolling a total of 2033 patients, were included in the meta-analysis. There was no significant heterogeneity among these studies. The cecal intubation rate was higher with the use of VSC (RR = 1.03, 95% CI 1.01 to 1.06, 8 RCTs). The VSC was also associated with fewer position changes made during colonoscopy. Time to cecal intubation was similar with VSC and SAC (WMD -0.54, 95% CI -1.40 to 0.32) but shorter in subgroup analysis with the use of VSC (WMD = -1.36, 95% CI -2.29 to -0.43). Sedation dose used with the two types of instruments showed no evidence of differences either. For all trials, only patients were blinded because of the nature of the interventions. Use of the VSC significantly improved the cecal intubation rate and reduced ancillary maneuvers made during the procedure. Cecal intubation time was similar for the two colonoscope types over all trials, whereas a shortened time with the use of the adult VSC was seen in subgroup analysis.
2012-01-01
Background The variable-stiffness colonoscope (VSC) appears to have advantages over the standard adult colonoscope (SAC), although data are conflicting. To provide a comprehensive up-to-date review, we conducted a meta-analysis to compare the efficacies of the VSC and SAC. Methods Electronic databases, including PubMed, EMBASE, the Cochrane library and the Science Citation Index, were searched to retrieve relevant trials. In addition, meeting abstracts and the reference lists of retrieved articles were reviewed for further relevant studies. Results Eight randomized controlled trials (RCTs), enrolling a total of 2033 patients, were included in the meta-analysis. There was no significant heterogeneity among these studies. The cecal intubation rate was higher with the use of VSC (RR = 1.03, 95% CI 1.01 to 1.06, 8 RCTs). The VSC was also associated with fewer position changes made during colonoscopy. Time to cecal intubation was similar with VSC and SAC (WMD −0.54, 95% CI −1.40 to 0.32) but shorter in subgroup analysis with the use of VSC (WMD = −1.36, 95% CI −2.29 to −0.43). Sedation dose used with the two types of instruments showed no evidence of differences either. For all trials, only patients were blinded because of the nature of the interventions. Conclusion Use of the VSC significantly improved the cecal intubation rate and reduced ancillary maneuvers made during the procedure. Cecal intubation time was similar for the two colonoscope types over all trials, whereas a shortened time with the use of the adult VSC was seen in subgroup analysis. PMID:23095461
On the performance of exponential integrators for problems in magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Einkemmer, Lukas; Tokman, Mayya; Loffeld, John
2017-02-01
Exponential integrators have been introduced as an efficient alternative to explicit and implicit methods for integrating large stiff systems of differential equations. Over the past decades these methods have been studied theoretically and their performance was evaluated using a range of test problems. While the results of these investigations showed that exponential integrators can provide significant computational savings, the research on validating this hypothesis for large scale systems and understanding what classes of problems can particularly benefit from the use of the new techniques is in its initial stages. Resistive magnetohydrodynamic (MHD) modeling is widely used in studying large scale behavior of laboratory and astrophysical plasmas. In many problems numerical solution of MHD equations is a challenging task due to the temporal stiffness of this system in the parameter regimes of interest. In this paper we evaluate the performance of exponential integrators on large MHD problems and compare them to a state-of-the-art implicit time integrator. Both the variable and constant time step exponential methods of EPIRK-type are used to simulate magnetic reconnection and the Kevin-Helmholtz instability in plasma. Performance of these methods, which are part of the EPIC software package, is compared to the variable time step variable order BDF scheme included in the CVODE (part of SUNDIALS) library. We study performance of the methods on parallel architectures and with respect to magnitudes of important parameters such as Reynolds, Lundquist, and Prandtl numbers. We find that the exponential integrators provide superior or equal performance in most circumstances and conclude that further development of exponential methods for MHD problems is warranted and can lead to significant computational advantages for large scale stiff systems of differential equations such as MHD.
Stability Limits of a PD Controller for a Flywheel Supported on Rigid Rotor and Magnetic Bearings
NASA Technical Reports Server (NTRS)
Kascak, Albert F.; Brown, Gerald V.; Jansen, Ralph H.; Dever, TImothy P.
2006-01-01
Active magnetic bearings are used to provide a long-life, low-loss suspension of a high-speed flywheel rotor. This paper describes a modeling effort used to understand the stability boundaries of the PD controller used to control the active magnetic bearings on a high speed test rig. Limits of stability are described in terms of allowable stiffness and damping values which result in stable levitation of the nonrotating rig. Small signal stability limits for the system is defined as a nongrowth in vibration amplitude of a small disturbance. A simple mass-force model was analyzed. The force resulting from the magnetic bearing was linearized to include negative displacement stiffness and a current stiffness. The current stiffness was then used in a PD controller. The phase lag of the control loop was modeled by a simple time delay. The stability limits and the associated vibration frequencies were measured and compared to the theoretical values. The results show a region on stiffness versus damping plot that have the same qualitative tendencies as experimental measurements. The resulting stability model was then extended to a flywheel system. The rotor dynamics of the flywheel was modeled using a rigid rotor supported on magnetic bearings. The equations of motion were written for the center of mass and a small angle linearization of the rotations about the center of mass. The stability limits and the associated vibration frequencies were found as a function of nondimensional magnetic bearing stiffness and damping and nondimensional parameters of flywheel speed and time delay.
Biphasic force response to iso-velocity stretch in airway smooth muscle.
Norris, Brandon A; Lan, Bo; Wang, Lu; Pascoe, Christopher D; Swyngedouw, Nicholas E; Paré, Peter D; Seow, Chun Y
2015-10-01
Airway smooth muscle (ASM) in vivo is constantly subjected to oscillatory strain due to tidal breathing and deep inspirations. ASM contractility is known to be adversely affected by strains, especially those of large amplitudes. Based on the cross-bridge model of contraction, it is likely that strain impairs force generation by disrupting actomyosin cross-bridge interaction. There is also evidence that strain modulates muscle stiffness and force through induction of cytoskeletal remodeling. However, the molecular mechanism by which strain alters smooth muscle function is not entirely clear. Here, we examine the response of ASM to iso-velocity stretches to probe the components within the muscle preparation that give rise to different features in the force response. We found in ASM that force response to a ramp stretch showed a biphasic feature, with the initial phase associated with greater muscle stiffness compared with that in the later phase, and that the transition between the phases occurred at a critical strain of ∼3.3%. Only strains with amplitudes greater than the critical strain could lead to reduction in force and stiffness of the muscle in the subsequent stretches. The initial-phase stiffness was found to be linearly related to the degree of muscle activation, suggesting that the stiffness stems mainly from attached cross bridges. Both phases were affected by the degree of muscle activation and by inhibitors of myosin light-chain kinase, PKC, and Rho-kinase. Different responses due to different interventions suggest that cross-bridge and cytoskeletal stiffness is regulated differently by the kinases. Copyright © 2015 the American Physiological Society.
Polyaxial Screws in Locked Plating of Tibial Pilon Fractures.
Yenna, Zachary C; Bhadra, Arup K; Ojike, Nwakile I; Burden, Robert L; Voor, Michael J; Roberts, Craig S
2015-08-01
This study examined the axial and torsional stiffness of polyaxial locked plating techniques compared with fixed-angle locked plating techniques in a distal tibia pilon fracture model. The effect of using a polyaxial screw to cross the fracture site was examined to determine its ability to control relative fracture site motion. A laboratory experiment was performed to investigate the biomechanical stiffness of distal tibia fracture models repaired with 3.5-mm anterior polyaxial distal tibial plates and locking screws. Sawbones Fourth Generation Composite Tibia models (Pacific Research Laboratories, Inc, Vashon, Washington) were used to model an Orthopaedic Trauma Association 43-A1.3 distal tibia pilon fracture. The polyaxial plates were inserted with 2 central locking screws at a position perpendicular to the cortical surface of the tibia and tested for load as a function of axial displacement and torque as a function of angular displacement. The 2 screws were withdrawn and inserted at an angle 15° from perpendicular, allowing them to span the fracture and insert into the opposing fracture surface. Each tibia was tested again for axial and torsional stiffness. In medial and posterior loading, no statistically significant difference was found between tibiae plated with the polyaxial plate and the central screws placed in the neutral position compared with the central screws placed at a 15° position. In torsional loading, a statistically significant difference was noted, showing greater stiffness in tibiae plated with the polyaxial plate and the central screws placed at a 15° position compared with tibiae plated with the central screws placed at a 0° (or perpendicular) position. This study showed that variable angle constructs show similar stiffness properties between perpendicular and 15° angle insertions in axial loading. The 15° angle construct shows greater stiffness in torsional loading. Copyright 2015, SLACK Incorporated.
Tahara, Nobuhiro; Yamagishi, Sho-Ichi; Bekki, Munehisa; Kodama, Norihiro; Nakamura, Tomohisa; Sugiyama, Yoichi; Oshige, Tamami; Kumashiro, Yuki; Honda, Akihiro; Tahara, Atsuko; Igata, Sachiyo; Fukumoto, Yoshihiro
2016-01-01
Inhibition of dipeptidyl peptidase-4 (DPP-4) has been proposed as a therapeutic target for type 2 diabetes (T2DM). Arterial stiffness, a predictor of future cardiovascular events and all-cause mortality, is augmented in these patients. However, effects of DPP-4 inhibitors on arterial stiffness remain unknown. In this study, we compared effects of anagliptin, an inhibitor of DPP-4 on arterial stiffness evaluated by cardio-ankle vascular index (CAVI) with those of an equipotent glucose-lowering agent, glimepiride in patients with T2DM. The study involved 50 consecutive outpatients (33 males and 17 females; mean age of 72.5±9.5 years) who visited our hospitals for a risk-screening test or treatment for T2DM. They underwent complete history and physical examination, and determination of blood chemistry and anthropometric variables, and then were randomized to receive either anagliptin (n=26) or glimepiride (n=24) for 6 months. After 6-months treatment, fasting plasma glucose and HbA1c values were comparably reduced in both groups. Anagliptin, but not glimepiride treatment significantly decreased low-density lipoprotein cholesterol, malondialdehyde-modified LDL, remnant-like particle (RLP) cholesterol, CAVI, alanine transaminase (ALT), γ-glutamyl transferase and visceral fat volume. In multiple regression analysis, absolute changes from baseline of RLP cholesterol and ALT after anagliptin treatment for 6 months (ΔRLP cholesterol and ΔALT) were independently correlated with ΔCAVI (R2=0.445). The present study suggests that anagliptin may exert a beneficial effect on arterial stiffness in patients with T2DM, which is independent of its blood glucose-lowering property. Anagliptin may ameliorate arterial stiffness partly via reduction of RLP cholesterol and improvement of liver function.
Rommel, Karl-Philipp; von Roeder, Maximilian; Latuscynski, Konrad; Oberueck, Christian; Blazek, Stephan; Fengler, Karl; Besler, Christian; Sandri, Marcus; Lücke, Christian; Gutberlet, Matthias; Linke, Axel; Schuler, Gerhard; Lurz, Philipp
2016-04-19
Optimal patient characterization in heart failure with preserved ejection fraction (HFpEF) is essential to tailor successful treatment strategies. Cardiac magnetic resonance (CMR)-derived T1 mapping can noninvasively quantify diffuse myocardial fibrosis as extracellular volume fraction (ECV). This study aimed to elucidate the diagnostic performance of T1 mapping in HFpEF by examining the relationship between ECV and invasively measured parameters of diastolic function. It also investigated the potential of ECV to differentiate among pathomechanisms in HFpEF. We performed T1 mapping in 24 patients with HFpEF and 12 patients without heart failure symptoms. Pressure-volume loops were obtained with a conductance catheter during basal conditions and handgrip exercise. Transient pre-load reduction was used to extrapolate the diastolic stiffness constant. Patients with HFpEF showed higher ECV (p < 0.01), elevated load-independent passive left ventricular (LV) stiffness constant (beta) (p < 0.001), and a longer time constant of active LV relaxation (p = 0.02). ECV correlated highly with beta (r = 0.75; p < 0.001). Within the HFpEF cohort, patients with ECV greater than the median showed a higher beta (p = 0.05), whereas ECV below the median identified patients with prolonged active LV relaxation (p = 0.01) and a marked hypertensive reaction to exercise due to pathologic arterial elastance (p = 0.04). On multiple linear regression analyses, ECV independently predicted intrinsic LV stiffness (β = 0.75; p < 0.01). Diffuse myocardial fibrosis, assessed by CMR-derived T1 mapping, independently predicts invasively measured LV stiffness in HFpEF. Additionally, ECV helps to noninvasively distinguish the role of passive stiffness and hypertensive exercise response with impaired active relaxation. (Left Ventricular Stiffness vs. Fibrosis Quantification by T1 Mapping in Heart Failure With Preserved Ejection Fraction [STIFFMAP]; NCT02459626). Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Aroor, Annayya R; Jia, Guanghong; Habibi, Javad; Sun, Zhe; Ramirez-Perez, Francisco I; Brady, Barron; Chen, Dongqing; Martinez-Lemus, Luis A; Manrique, Camila; Nistala, Ravi; Whaley-Connell, Adam T; Demarco, Vincent G; Meininger, Gerald A; Sowers, James R
2017-09-01
Aortic vascular stiffness has been implicated in the development of cardiovascular disease (CVD) and chronic kidney disease (CKD) in obese individuals. However, the mechanism promoting these adverse effects are unclear. In this context, promotion of obesity through consumption of a western diet (WD) high in fat and fructose leads to excess circulating uric acid. There is accumulating data implicating elevated uric acid in the promotion of CVD and CKD. Accordingly, we hypothesized that xanthine oxidase(XO) inhibition with allopurinol would prevent a rise in vascular stiffness and proteinuria in a translationally relevant model of WD-induced obesity. Four-week-old C57BL6/J male mice were fed a WD with excess fat (46%) and fructose (17.5%) with or without allopurinol (125mg/L in drinking water) for 16weeks. Aortic endothelial and extracellular matrix/vascular smooth muscle stiffness was evaluated by atomic force microscopy. Aortic XO activity, 3-nitrotyrosine (3-NT) and aortic endothelial sodium channel (EnNaC) expression were evaluated along with aortic expression of inflammatory markers. In the kidney, expression of toll like receptor 4 (TLR4) and fibronectin were assessed along with evaluation of proteinuria. XO inhibition significantly attenuated WD-induced increases in plasma uric acid, vascular XO activity and oxidative stress, in concert with reductions in proteinuria. Further, XO inhibition prevented WD-induced increases in aortic EnNaC expression and associated endothelial and subendothelial stiffness. XO inhibition also reduced vascular pro-inflammatory and maladaptive immune responses induced by consumption of a WD. XO inhibition also decreased WD-induced increases in renal TLR4 and fibronectin that associated proteinuria. Consumption of a WD leads to elevations in plasma uric acid, increased vascular XO activity, oxidative stress, vascular stiffness, and proteinuria all of which are attenuated with allopurinol administration. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Fang, Sheng-En; Perera, Ricardo; De Roeck, Guido
2008-06-01
This paper develops a sensitivity-based updating method to identify the damage in a tested reinforced concrete (RC) frame modeled with a two-dimensional planar finite element (FE) by minimizing the discrepancies of modal frequencies and mode shapes. In order to reduce the number of unknown variables, a bidimensional damage (element) function is proposed, resulting in a considerable improvement of the optimization performance. For damage identification, a reference FE model of the undamaged frame divided into a few damage functions is firstly obtained and then a rough identification is carried out to detect possible damage locations, which are subsequently refined with new damage functions to accurately identify the damage. From a design point of view, it would be useful to evaluate, in a simplified way, the remaining bending stiffness of cracked beam sections or segments. Hence, an RC damage model based on a static mechanism is proposed to estimate the remnant stiffness of a cracked RC beam segment. The damage model is based on the assumption that the damage effect spreads over a region and the stiffness in the segment changes linearly. Furthermore, the stiffness reduction evaluated using this damage model is compared with the FE updating result. It is shown that the proposed bidimensional damage function is useful in producing a well-conditioned optimization problem and the aforementioned damage model can be used for an approximate stiffness estimation of a cracked beam segment.
Vehicle Related Factors that Influence Injury Outcome in Head-On Collisions
Blum, Jeremy J.; Scullion, Paul; Morgan, Richard M.; Digges, Kennerly; Kan, Cing-Dao; Park, Shinhee; Bae, Hanil
2008-01-01
This study specifically investigated a range of vehicle-related factors that are associated with a lower risk of serious or fatal injury to a belted driver in a head-on collision. This analysis investigated a range of structural characteristics, quantities that describes the physical features of a passenger vehicle, e.g., stiffness or frontal geometry. The study used a data-mining approach (classification tree algorithm) to find the most significant relationships between injury outcome and the structural variables. The algorithm was applied to 120,000 real-world, head-on collisions, from the National Highway Traffic Safety Administration’s (NHTSA’s) State Crash data files, that were linked to structural attributes derived from frontal crash tests performed as part of the USA New Car Assessment Program. As with previous literature, the analysis found that the heavier vehicles were correlated with lower injury risk to their drivers. This analysis also found a new and significant correlation between the vehicle’s stiffness and injury risk. When an airbag deployed, the vehicle’s stiffness has the most statistically significant correlation with injury risk. These results suggest that in severe collisions, lower intrusion in the occupant cabin associated with higher stiffness is at least as important to occupant protection as vehicle weight for self-protection of the occupant. Consequently, the safety community might better improve self-protection by a renewed focus on increasing vehicle stiffness in order to improve crashworthiness in head-on collisions. PMID:19026230
Bioinspired Robotic Fingers Based on Pneumatic Actuator and 3D Printing of Smart Material.
Yang, Yang; Chen, Yonghua; Li, Yingtian; Chen, Michael Z Q; Wei, Ying
2017-06-01
In this article, we have proposed a novel robotic finger design principle aimed to address two challenges in soft pneumatic grippers-the controllability of the stiffness and the controllability of the bending position. The proposed finger design is composed of a 3D printed multimaterial substrate and a soft pneumatic actuator. The substrate has four polylactic acid (PLA) segments interlocked with three shape memory polymer (SMP) joints, inspired by bones and joints in human fingers. By controlling the thermal energy of an SMP joint, the stiffness of the joints is modulated due to the dramatic change in SMP elastic modulus around its glass transition temperature (T g ). When SMP joints are heated above T g , they exhibit very small stiffness, allowing the finger to easily bend around the SMP joints if the attached soft actuator is actuated. When there is no force from the soft actuator, shape recovery stress in SMP contributes to the finger's shape restoration. Since each joint's rotation can be individually controlled, the position control of the finger is made possible. Experimental analysis has been conducted to show the finger's variable stiffness and the result is compared with the analytical values. It is found that the stiffness ratio can be 24.9 times for a joint at room temperature (20°C) and at an elevated temperature of 60°C when air pressure p of the soft actuator is turned off. Finally, a gripper composed of two fingers is fabricated for demonstration.
Relationship between Vitamin D Status and Autonomic Nervous System Activity
Burt, Morton G.; Mangelsdorf, Brenda L.; Stranks, Stephen N.; Mangoni, Arduino A.
2016-01-01
Vitamin D deficiency is associated with increased arterial stiffness. However, the mechanisms underlying this association have not been clarified. The aim was to investigate whether changes in autonomic nervous system activity could underlie an association between 25 hydroxy vitamin D and arterial stiffness. A total of 49 subjects (age = 60 ± 8 years, body mass index = 26.7 ± 4.6 kg/m2, 25 hydroxy vitamin D = 69 ± 22 nmol/L) underwent measurements of pulse wave velocity (PWV) and augmentation index (AIx), spontaneous baroreflex sensitivity, plasma metanephrines and 25 hydroxy vitamin D. Subjects with 25 hydroxy vitamin D ≤ 50 nmol/L were restudied after 200,000 International Units 25 hydroxy vitamin D. Plasma metanephrine was positively associated with AIx (p = 0.02) independent of age, sex, smoking and cholesterol and negatively associated with 25 hydroxy vitamin D (p = 0.002) independent of age, sex and season. In contrast, there was no association between baroreflex sensitivity and 25 hydroxy vitamin D (p = 0.54). Treatment with vitamin D increased 25 hydroxy vitamin D from 43 ± 5 to 96 ± 24 nmol/L (p < 0.0001) but there was no significant change in plasma metanephrine (115 ± 25 vs. 99 ± 39 pmol/L, p = 0.12). We conclude that as plasma metanephrine was negatively associated with 25 hydroxy vitamin D and positively with AIx, it could mediate an association between these two variables. This hypothesis should be tested in larger interventional studies. PMID:27649235
NASA Astrophysics Data System (ADS)
Nguyen, Xuan Bao; Komatsuzaki, Toshihiko; Iwata, Yoshio; Asanuma, Haruhiko
2018-02-01
In this paper, a magnetorheological elastomer (MRE) based isolator was investigated to mitigate excessive vibrations in structures during seismic events. The primary objectives of this research are to propose a numerical model that expresses viscoelastic behaviors of the MRE and predict operation process of the MRE-based isolator for future design of isolator systems for various technical applications. Despite the simplicity in parameter definition in comparison to the conventional models, the proposed model works efficiently in a wide range of frequencies and amplitudes. The model consists of the following components: viscoelasticity of host MRE, magnetic field-induced property, nominal viscosity as well as high stiffness in low excitation frequency that are modeled in analogy with a standard linear solid model (Zener model), a stiffness variable spring, and a smooth Coulomb friction, respectively. Furthermore, a semi-active fuzzy controller was designed to enhance the performance of the isolator in suppressing structural vibrations. The control strategy was built to determine the command applied current. The controller is completely adequate for handling the nonlinearity of the isolator and works independently with the building structure. The efficiency of the MRE-based isolator was evaluated by the responses of the scaled building under seismic excitation. Numerical and experimental results show that the isolator accompanied with a fuzzy controller remarkably reduces the relative displacement and absolute acceleration of the scaled building compared to passive-off and passive-on cases.
Probing the stiffness of isolated nucleoli by atomic force microscopy.
Louvet, Emilie; Yoshida, Aiko; Kumeta, Masahiro; Takeyasu, Kunio
2014-04-01
In eukaryotic cells, ribosome biogenesis occurs in the nucleolus, a membraneless nuclear compartment. Noticeably, the nucleolus is also involved in several nuclear functions, such as cell cycle regulation, non-ribosomal ribonucleoprotein complex assembly, aggresome formation and some virus assembly. The most intriguing question about the nucleolus is how such dynamics processes can occur in such a compact compartment. We hypothesized that its structure may be rather flexible. To investigate this, we used atomic force microscopy (AFM) on isolated nucleoli. Surface topography imaging revealed the beaded structure of the nucleolar surface. With the AFM's ability to measure forces, we were able to determine the stiffness of isolated nucleoli. We could establish that the nucleolar stiffness varies upon drastic morphological changes induced by transcription and proteasome inhibition. Furthermore, upon ribosomal proteins and LaminB1 knockdowns, the nucleolar stiffness was increased. This led us to propose a model where the nucleolus has steady-state stiffness dependent on ribosome biogenesis activity and requires LaminB1 for its flexibility.
van Soest, A J Knoek; Rozendaal, Leonard A
2008-07-01
Control of bipedal standing is typically analyzed in the context of a single-segment inverted pendulum model. The stiffness K (SE) of the series elastic element that transmits the force generated by the contractile elements of the ankle plantarflexors to the skeletal system has been reported to be smaller in magnitude than the destabilizing gravitational stiffness K ( g ). In this study, we assess, in case K (SE) + K ( g ) < 0, if bipedal standing can be locally stable under direct feedback of contractile element length, contractile element velocity (both sensed by muscle spindles) and muscle force (sensed by Golgi tendon organs) to alpha-motoneuron activity. A theoretical analysis reveals that even though positive feedback of force may increase the stiffness of the muscle-tendon complex to values well over the destabilizing gravitational stiffness, dynamic instability makes it impossible to obtain locally stable standing under the conditions assumed.
Active vibration control of a single-stage spur gearbox
NASA Astrophysics Data System (ADS)
Dogruer, C. U.; Pirsoltan, Abbas K.
2017-02-01
The dynamic transmission error between driving and driven gears of a gear mechanism with torsional mode is induced by periodic time-varying mesh stiffness. In this study, to minimize the adverse effect of this time-varying mesh stiffness, a nonlinear controller which adjusts the torque acting on the driving gear is proposed. The basic approach is to modulate the input torque such that it compensates the periodic change in mesh stiffness. It is assumed that gears are assembled with high precision and gearbox is analyzed by a finite element software to calculate the mesh stiffness curve. Thus, change in the mesh stiffness, which is inherently nonlinear, can be predicted and canceled by a feed-forward loop. Then, remaining linear dynamics is controlled by pole placement techniques. Under these premises, it is claimed that any acceleration and velocity profile of the input shaft can be tracked accurately. Thereby, dynamic transmission error is kept to a minimum possible value and a spur gearbox, which does not emit much noise and vibration, is designed.
Determination of ankle external fixation stiffness by expedited interactive finite element analysis.
Nielsen, Jonathan K; Saltzman, Charles L; Brown, Thomas D
2005-11-01
Interactive finite element analysis holds the potential to quickly and accurately determine the mechanical stiffness of alternative external fixator frame configurations. Using as an example Ilizarov distraction of the ankle, a finite element model and graphical user interface were developed that provided rapid, construct-specific information on fixation rigidity. After input of specific construct variables, the finite element software determined the resulting tibial displacement for a given configuration in typically 15s. The formulation was employed to investigate constructs used to treat end-stage arthritis, both in a parametric series and for five specific clinical distraction cases. Parametric testing of 15 individual variables revealed that tibial half-pins were much more effective than transfixion wires in limiting axial tibial displacement. Factors most strongly contributing to stiffening the construct included placing the tibia closer to the fixator rings, and mounting the pins to the rings at the nearest circumferential location to the bone. Benchtop mechanical validation results differed inappreciably from the finite element computations.
Herrmann, Diana; Pohlabeln, Hermann; Gianfagna, Francesco; Konstabel, Kenn; Lissner, Lauren; Mårild, Staffan; Molnar, Dénes; Moreno, Luis A; Siani, Alfonso; Sioen, Isabelle; Veidebaum, Toomas; Ahrens, Wolfgang
2015-09-01
Physical activity (PA) and micronutrients such as calcium (Ca), vitamin D (25OHD), and phosphate (PO) are important determinants of skeletal development. This case-control study examined the association of these nutritional biomarkers and different PA behaviours, such as habitual PA, weight-bearing exercise (WBE) and sedentary time (SED) with bone stiffness (SI) in 1819 2-9-year-old children from the IDEFICS study (2007-2008). SI was measured on the calcaneus using quantitative ultrasound. Serum and urine Ca and PO and serum 25OHD were determined. Children's sports activities were reported by parents using a standardised questionnaire. A subsample of 1089 children had accelerometer-based PA data (counts per minute, cpm). Moderate-to-vigorous PA (MVPA) and SED were estimated. Children with poor SI (below the 15th age-/sex-/height-specific percentile) were defined as cases (N=603). Randomly selected controls (N=1216) were matched by age, sex, and country. Odds ratios (OR) for poor SI were calculated by conditional logistic regression for all biomarkers and PA behaviour variables separately and combined (expressed as tertiles and dichotomised variables, respectively). ORs were adjusted for fat-free mass, dairy product consumption, and daylight duration. We observed increased ORs for no sports (OR=1.39, p<0.05), PA levels below 524 cpm (OR=1.85, p<0.05) and MVPA below 4.2% a day (OR=1.69, p<0.05) compared to WBE, high PA levels (<688 cpm) and high MVPA (6.7%), respectively. SED was not associated with SI. ORs were moderately elevated for low serum Ca and 25OHD. However, biomarkers were not statistically significantly associated with SI and did not modify the association between PA behaviours and SI. Although nutritional biomarkers appear to play a minor role compared to the osteogenic effect of PA and WBE, it is noteworthy that the highest risk for poor SI was observed for no sports or low MVPA combined with lower serum Ca (<2.5 mmol/l) or lower 25OHD (<43.0 nmol/l). Copyright © 2015 Elsevier Inc. All rights reserved.
Tytell, Eric D; Hsu, Chia-Yu; Williams, Thelma L; Cohen, Avis H; Fauci, Lisa J
2010-11-16
Animal movements result from a complex balance of many different forces. Muscles produce force to move the body; the body has inertial, elastic, and damping properties that may aid or oppose the muscle force; and the environment produces reaction forces back on the body. The actual motion is an emergent property of these interactions. To examine the roles of body stiffness, muscle activation, and fluid environment for swimming animals, a computational model of a lamprey was developed. The model uses an immersed boundary framework that fully couples the Navier-Stokes equations of fluid dynamics with an actuated, elastic body model. This is the first model at a Reynolds number appropriate for a swimming fish that captures the complete fluid-structure interaction, in which the body deforms according to both internal muscular forces and external fluid forces. Results indicate that identical muscle activation patterns can produce different kinematics depending on body stiffness, and the optimal value of stiffness for maximum acceleration is different from that for maximum steady swimming speed. Additionally, negative muscle work, observed in many fishes, emerges at higher tail beat frequencies without sensory input and may contribute to energy efficiency. Swimming fishes that can tune their body stiffness by appropriately timed muscle contractions may therefore be able to optimize the passive dynamics of their bodies to maximize peak acceleration or swimming speed.
Berg, Nora G; Pearce, Brady L; Rohrbaugh, Nathaniel; Jiang, Lin; Nolan, Michael W; Ivanisevic, Albena
2017-02-01
We report a composite biomaterial containing nanostructured GaOOH and Matrigel™ that can be modulated with respect to its stiffness and radiosensitization properties. A variety of concentrations of GaOOH were added to the composite to alter the mechanical properties of the material as well as to tune the radiosensitizing properties to the composite. PC-12 cells were used to study the combined effects of different stimuli on cell behavior. NGF was given to the cells to record their morphology as well as viability. An increase in the substrate stiffness caused an increase in neurite outgrowth but a decrease in cell viability. In addition, increasing the radiation dose decreased neurite outgrowth but increased cell viability when radiosensitizing particles were present. A subtractive effect between radiosensitizing and mechanical stimuli was observed when PC-12 cells were grown on the GaOOH containing composite. Copyright © 2016 Elsevier B.V. All rights reserved.
Integrated smart panel and support structure response
NASA Astrophysics Data System (ADS)
DeGiorgi, Virginia G.
1998-06-01
The performance of smart structures is a complex interaction between active and passive components. Active components, even when non-activated, can have an impact on structural performance and, conversely, structural characteristics of passive components can have a measurable impact on active component performance. The present work is an evaluation of the structural characteristics of an active panel designed for acoustic quieting. The support structure is included in the panel design as evaluated. Finite element methods are used to determine the active panel-support structure response. Two conditions are considered; a hollow unfilled support structure and the same structure filled with a polymer compound. Finite element models were defined so that stiffness values corresponding to the center of individual pistons could be determined. Superelement techniques were used to define mass and stiffness values representative of the combined active and support structure at the center of each piston. Results of interest obtained from the analysis include mode shapes, natural frequencies, and equivalent spring stuffiness for use in structural response models to represent the support structure. The effects on plate motion on piston performance cannot be obtained from this analysis, however mass and stiffness matrices for use in an integrated system model to determine piston head velocities can be obtained from this work.
Functions of fish skin: flexural stiffness and steady swimming of longnose gar, Lepisosteus osseus
Long; Hale; Mchenry; Westneat
1996-01-01
The functions of fish skin during swimming remain enigmatic. Does skin stiffen the body and alter the propagation of the axial undulatory wave? To address this question, we measured the skin's in situ flexural stiffness and in vivo mechanical role in the longnose gar Lepisosteus osseus. To measure flexural stiffness, dead gar were gripped and bent in a device that measured applied bending moment (N m) and the resulting midline curvature (m-1). From these values, the flexural stiffness of the body (EI in N m2) was calculated before and after sequential alterations of skin structure. Cutting of the dermis between two caudal scale rows significantly reduced the flexural stiffness of the body and increased the neutral zone of curvature, a region of bending without detectable stiffness. Neither bending property was significantly altered by the removal of a caudal scale row. These alterations in skin structure were also made in live gar and the kinematics of steady swimming was measured before and after each treatment. Cutting of the dermis between two caudal scale rows, performed under anesthesia, changed the swimming kinematics of the fish: tailbeat frequency (Hz) and propulsive wave speed (body lengths per second, L s-1) decreased, while the depth (in L) of the trailing edge of the tail increased. The decreases in tailbeat frequency and wave speed are consistent with predictions of the theory of forced, harmonic vibrations; wave speed, if equated with resonance frequency, is proportional to the square root of a structure's stiffness. While it did not significantly reduce the body's flexural stiffness, surgical removal of a caudal scale row resulted in increased tailbeat amplitude and the relative total hydrodynamic power. In an attempt to understand the specific function of the scale row, we propose a model in which a scale row resists medio-lateral force applied by a single myomere, thus functioning to enhance mechanical advantage for bending. Finally, surgical removal of a precaudal scale row did not significantly alter any of the kinematic variables. This lack of effect is associated with a lower midline curvature of the precaudal region during swimming compared with that of the caudal region. Overall, these results demonstrate a causal relationship between skin, the passive flexural stiffness it imparts to the body and the influence of body stiffness on the undulatory wave speed and cycle frequency at which gar choose to swim.
Fear of Movement Is Related to Trunk Stiffness in Low Back Pain
Karayannis, Nicholas V.; Smeets, Rob J. E. M.; van den Hoorn, Wolbert; Hodges, Paul W.
2013-01-01
Background Psychological features have been related to trunk muscle activation patterns in low back pain (LBP). We hypothesised higher pain-related fear would relate to changes in trunk mechanical properties, such as higher trunk stiffness. Objectives To evaluate the relationship between trunk mechanical properties and psychological features in people with recurrent LBP. Methods The relationship between pain-related fear (Tampa Scale for Kinesiophobia, TSK; Photograph Series of Daily Activities, PHODA-SeV; Fear Avoidance Beliefs Questionnaire, FABQ; Pain Catastrophizing Scale, PCS) and trunk mechanical properties (estimated from the response of the trunk to a sudden sagittal plane forwards or backwards perturbation by unpredictable release of a load) was explored in a case-controlled study of 14 LBP participants. Regression analysis (r 2) tested the linear relationships between pain-related fear and trunk mechanical properties (trunk stiffness and damping). Mechanical properties were also compared with t-tests between groups based on stratification according to high/low scores based on median values for each psychological measure. Results Fear of movement (TSK) was positively associated with trunk stiffness (but not damping) in response to a forward perturbation (r2 = 0.33, P = 0.03), but not backward perturbation (r2 = 0.22, P = 0.09). Other pain-related fear constructs (PHODA-SeV, FABQ, PCS) were not associated with trunk stiffness or damping. Trunk stiffness was greater for individuals with high kinesiophobia (TSK) for forward (P = 0.03) perturbations, and greater with forward perturbation for those with high fear avoidance scores (FABQ-W, P = 0.01). Conclusions Fear of movement is positively (but weakly) associated with trunk stiffness. This provides preliminary support an interaction between biological and psychological features of LBP, suggesting this condition may be best understood if these domains are not considered in isolation. PMID:23826339
Hu, Bin; Tommasini, Steven M.; Courtland, Hayden-William; Price, Christopher; Terranova, Carl J.; Nadeau, Joseph H.
2007-01-01
We examined femora from adult AXB/BXA recombinant inbred (RI) mouse strains to identify skeletal traits that are functionally related and to determine how functional interactions among these traits contribute to genetic variability in whole-bone stiffness, strength, and toughness. Randomization of A/J and C57BL/6J genomic regions resulted in each adult male and female RI strain building mechanically functional femora by assembling unique sets of morphologic and tissue-quality traits. A correlation analysis was conducted using the mean trait values for each RI strain. A third of the 66 correlations examined were significant, indicating that many bone traits covaried or were functionally related. Path analysis revealed important functional interactions among bone slenderness, cortical thickness, and tissue mineral density. The path coefficients describing these functional relations were similar for both sexes. The causal relationship among these three traits suggested that cellular processes during growth simultaneously regulate bone slenderness, cortical thickness, and tissue mineral density so that the combination of traits is sufficiently stiff and strong to satisfy daily loading demands. A disadvantage of these functional interactions was that increases in tissue mineral density also deleteriously affected tissue ductility. Consequently, slender bones with high mineral density may be stiff and strong but they are also brittle. Thus, genetically randomized mouse strains revealed a basic biological paradigm that allows for flexibility in building bones that are functional for daily activities but that creates preferred sets of traits under extreme loading conditions. Genetic or environmental perturbations that alter these functional interactions during growth would be expected to lead to loss of function and suboptimal adult bone quality. PMID:17557179
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lingling, E-mail: liulingling2012@163.com; Luo, Qing, E-mail: qing.luo@cqu.edu.cn; Sun, Jinghui, E-mail: sunjhemail@163.com
Migration of bone marrow-derived mesenchymal stem cells (BMSCs) plays an important role in many physiological and pathological settings, including wound healing. During the migration of BMSCs through interstitial tissues, the movement of the nucleus must be coordinated with the cytoskeletal dynamics, which in turn affects the cell migration efficiency. Our previous study indicated that osteopontin (OPN) significantly promotes the migration of rat BMSCs. However, the nuclear behaviors and involved molecular mechanisms in OPN-mediated BMSC migration are largely unclear. In the present study, using an atomic force microscope (AFM), we found that OPN could decrease the nuclear stiffness of BMSCs andmore » reduce the expression of lamin A/C, which is the main determinant of nuclear stiffness. Increased lamin A/C expression attenuates BMSC migration by increasing nuclear stiffness. Decreased lamin A/C expression promotes BMSC migration by decreasing nuclear stiffness. Furthermore, OPN promotes BMSC migration by diminishing lamin A/C expression and decreasing nuclear stiffness via the FAK-ERK1/2 signaling pathway. This study provides strong evidence for the role of nuclear mechanics in BMSC migration as well as new insight into the molecular mechanisms of OPN-promoted BMSC migration. - Highlights: • OPN promotes BMSC migration by decreasing nuclear stiffness. • Lamin A/C knockdown decreases, while its overexpression enhances, the nuclear stiffness of BMSCs. • Lamin A/C overexpression and downregulation affect the migration of BMSCs. • OPN diminishes lamin A/C expression and decreases nuclear stiffness through the activation of the FAK-ERK1/2 signaling pathway. • OPN promotes BMSC migration via the FAK-ERK1/2 signaling pathway.« less
Shell, Courtney E; Segal, Ava D; Klute, Glenn K; Neptune, Richard R
2017-11-01
Little evidence exists regarding how prosthesis design characteristics affect performance in tasks that challenge mediolateral balance such as turning. This study assesses the influence of prosthetic foot stiffness on amputee walking mechanics and balance control during a continuous turning task. Three-dimensional kinematic and kinetic data were collected from eight unilateral transtibial amputees as they walked overground at self-selected speed clockwise and counterclockwise around a 1-meter circle and along a straight line. Subjects performed the walking tasks wearing three different ankle-foot prostheses that spanned a range of sagittal- and coronal-plane stiffness levels. A decrease in stiffness increased residual ankle dorsiflexion (10-13°), caused smaller adaptations (<5°) in proximal joint angles, decreased residual and increased intact limb body support, increased residual limb propulsion and increased intact limb braking for all tasks. While changes in sagittal-plane joint work due to decreased stiffness were generally consistent across tasks, effects on coronal-plane hip work were task-dependent. When the residual limb was on the inside of the turn and during straight-line walking, coronal-plane hip work increased and coronal-plane peak-to-peak range of whole-body angular momentum decreased with decreased stiffness. Changes in sagittal-plane kinematics and kinetics were similar to those previously observed in straight-line walking. Mediolateral balance improved with decreased stiffness, but adaptations in coronal-plane angles, work and ground reaction force impulses were less systematic than those in sagittal-plane measures. Effects of stiffness varied with the residual limb inside versus outside the turn, which suggests that actively adjusting stiffness to turn direction may be beneficial. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structural acoustic control of plates with variable boundary conditions: design methodology.
Sprofera, Joseph D; Cabell, Randolph H; Gibbs, Gary P; Clark, Robert L
2007-07-01
A method for optimizing a structural acoustic control system subject to variations in plate boundary conditions is provided. The assumed modes method is used to build a plate model with varying levels of rotational boundary stiffness to simulate the dynamics of a plate with uncertain edge conditions. A transducer placement scoring process, involving Hankel singular values, is combined with a genetic optimization routine to find spatial locations robust to boundary condition variation. Predicted frequency response characteristics are examined, and theoretically optimized results are discussed in relation to the range of boundary conditions investigated. Modeled results indicate that it is possible to minimize the impact of uncertain boundary conditions in active structural acoustic control by optimizing the placement of transducers with respect to those uncertainties.
An Examination of the True Reliability of Lower Limb Stiffness Measures During Overground Hopping.
Diggin, David; Anderson, Ross; Harrison, Andrew J
2016-06-01
Evidence suggests reports describing the reliability of leg-spring (kleg) and joint stiffness (kjoint) measures are contaminated by artifacts originating from digital filtering procedures. In addition, the intraday reliability of kleg and kjoint requires investigation. This study examined the effects of experimental procedures on the inter- and intraday reliability of kleg and kjoint. Thirty-two participants completed 2 trials of single-legged hopping at 1.5, 2.2, and 3.0 Hz at the same time of day across 3 days. On the final test day a fourth experimental bout took place 6 hours before or after participants' typical testing time. Kinematic and kinetic data were collected throughout. Stiffness was calculated using models of kleg and kjoint. Classifications of measurement agreement were established using thresholds for absolute and relative reliability statistics. Results illustrated that kleg and kankle exhibited strong agreement. In contrast, kknee and khip demonstrated weak-to-moderate consistency. Results suggest limits in kjoint reliability persist despite employment of appropriate filtering procedures. Furthermore, diurnal fluctuations in lower-limb muscle-tendon stiffness exhibit little effect on intraday reliability. The present findings support the existence of kleg as an attractor state during hopping, achieved through fluctuations in kjoint variables. Limits to kjoint reliability appear to represent biological function rather than measurement artifact.
Bracing of pectus carinatum: A quantitative analysis.
Bugajski, Tomasz; Murari, Kartikeya; Lopushinsky, Steven; Schneider, Marc; Ronsky, Janet
2018-05-01
Primary treatment of pectus carinatum (PC) is performed with an external brace that compresses the protrusion. Patients are 'prescribed' a brace tightening force. However, no visual guides exist to display this force magnitude. The purpose of this study was to determine the repeatability of patients in applying their prescribed force over time and to determine whether the protrusion stiffness influences the patient-applied forces and the protrusion correction rate. Twenty-one male participants (12-17years) with chondrogladiolar PC were recruited at the time of brace fitting. Participants were evaluated on three visits: fitting, one month postfitting, and two months postfitting. Differences between prescribed force and patient-applied force were evaluated. Relationships of patient-applied force and correction rate with protrusion stiffness were assessed. Majority of individuals followed for two months (75%) had a significantly different patient-applied force (p<0.05) from their prescribed force. Protrusion stiffness had a positive relationship with patient-applied force, but no relationship with correction rate. Patients did not follow their prescribed force. Magnitudes of these differences require further investigation to determine clinical significance. Patient-applied forces were influenced by protrusion stiffness, but correction rate was not. Other factors may influence these variables, such as patient compliance. Treatment Study - Level IV. Copyright © 2018 Elsevier Inc. All rights reserved.
Matrix cracking in composite laminates with resin-rich interlaminar layers
NASA Technical Reports Server (NTRS)
Ilcewicz, Larry B.; Dost, Ernest F.; Mccool, J. W.; Grande, D. H.
1991-01-01
Fracture mechanics analysis and test data for a toughened composite material that has a resin-rich interlaminar layer (RIL) were used to investigate in situ strength. Exposure to a range of environmental conditions was considered. A parametric analysis study was performed to judge the effects of laminate and material variables. A finite thickness effect, indicating an interaction between ply group thickness and effective flaw size, was found dominant. The magnitude of the effect was directly related to RIL stiffness. In situ strength was found to decrease with decreasing RIL stiffness. This work indicates the need to use a fracture mechanics model of actual lamina microstructure and heterogeneous properties to predict in situ strength in materials with RIL.
The upper bounds of reduced axial and shear moduli in cross-ply laminates with matrix cracks
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, D. H.; Harris, C. E.
1991-01-01
The present study proposes a mathematical model utilizing the internal state variable concept for predicting the upper bounds of the reduced axial and shear stiffnesses in cross-ply laminates with matrix cracks. The displacement components at the matrix crack surfaces are explicitly expressed in terms of the observable axial and shear strains and the undamaged material properties. The reduced axial and shear stiffnesses are predicted for glass/epoxy and graphite/epoxy laminates. Comparison of the model with other theoretical and experimental studies is also presented to confirm direct applicability of the model to angle-ply laminates with matrix cracks subjected to general in-plane loading.
The influence of artificially increased trunk stiffness on the balance recovery after a trip.
van der Burg, J C E; Pijnappels, M; van Dieën, J H
2007-07-01
Falls occur frequently in the growing population of elderly. Since trunk control is critical for maintaining balance, the higher trunk stiffness in elderly people compared to the general population has been associated with their increased fall-risk. Theoretically, trunk stiffness may be beneficial for balance recovery in walking, i.e. after a trip. A stiff joint may provide a torque that restricts the perturbation effects and thereby reduces the probability of a fall. The aim of this study was to test whether trunk stiffness impaired or assisted balance recovery after a trip during walking. An orthopedic corset was used to simulate trunk stiffness in 11 young male adults. Subjects walked over a platform, with or without the corset on, and were occasionally tripped over a hidden obstacle. Kinematics of the tripping reaction were measured. Initial trunk accelerations were significantly attenuated by the corset, which indicates a positive effect of the stiffening corset. However, no subsequent effects on peak trunk inclination and on the peak moment arm of gravity on the trunk were found. The pattern of trunk motion allowed ample time for triggered or voluntary muscle responses to be generated, before a substantial inclination occurred. It appears that such active responses were sufficient in the young subjects tested to obtain a similar net effect with or without the increased trunk stiffness induced by the corset.
Iemitsu, Motoyuki; Maeda, Seiji; Otsuki, Takeshi; Sugawara, Jun; Tanabe, Takumi; Jesmin, Subrina; Kuno, Shinya; Ajisaka, Ryuichi; Miyauchi, Takashi; Matsuda, Mitsuo
2006-05-01
Increase in arterial stiffness is associated with aging, which is improved by regular exercise. Endothelin (ET) system has crucial roles in regulating vascular tone and in the progression of atherosclerosis. We hypothesized that molecular variations (ie, gene polymorphisms) in ET-related gene might affect exercise-induced improvement in arterial stiffness with age in human subjects. The present study provides a cross-sectional investigation of 191 healthy middle-aged and older (65+/-1 years) human subjects to clarify the relationship between the regular exercise-induced improvement of arterial stiffness and the gene polymorphisms of ET converting enzyme (ECE)-1, ECE-2, ET-A receptor (ET-A), and ET-B receptor (ET-B). The study subjects were divided into active and inactive groups based on the median value (186 kcal/d) of energy expenditure. Brachial-ankle arterial pulse wave velocity (baPWV) was used to evaluate arterial stiffness. All individuals were genotyped for 4 different polymorphisms of the ET system: 2013(+289)A/G in intron 17 of ECE-1, 669(+17)T/C in intron 5 of ECE-2, 958A/G in exon 6 of ET-A, and 831A/G in exon 4 of ET-B. The baseline baPWV was significantly lower in the active group without any change in blood pressure. Polymorphisms in ECE-1 influenced basal blood pressure. Polymorphisms in ECE-1 and ECE-2 had no effect on baPWV between active and inactive groups. However, polymorphisms in both ET-A and ET-B affected baPWV in the 2 groups. The present results suggest that differences in ET-A and ET-B polymorphisms may influence the response of the vascular wall to exercise whereas ECE-1 polymorphisms may affect basal blood pressure.
Performance evaluation of a semi-active cladding connection for multi-hazard mitigation
NASA Astrophysics Data System (ADS)
Gong, Yongqiang; Cao, Liang; Micheli, Laura; Laflamme, Simon; Quiel, Spencer; Ricles, James
2018-03-01
A novel semi-active damping device termed Variable Friction Cladding Connection (VFCC) has been previously proposed to leverage cladding systems for the mitigation of natural and man-made hazards. The VFCC is a semi-active friction damper that connects cladding elements to the structural system. The friction force is generated by sliding plates and varied using an actuator through a system of adjustable toggles. The dynamics of the device has been previously characterized in a laboratory environment. In this paper, the performance of the VFCC at mitigating non-simultaneous multi-hazard excitations that includes wind and seismic loads is investigated on a simulated benchmark building. Simulations consider the robustness with respect to some uncertainties, including the wear of the friction surfaces and sensor failure. The performance of the VFCC is compared against other connection strategies including traditional stiffness, passive viscous, and passive friction elements. Results show that the VFCC is robust and capable of outperforming passive systems for the mitigation of multiple hazards.
Liaw, Yu-Cheng; Su, Yu-Yu M; Lai, Yu-Lin; Lee, Shyh-Yuan
2007-05-01
Stress-induced martensite formation with stress hysteresis that changes the elasticity and stiffness of nickel-titanium (Ni-Ti) wire influences the sliding mechanics of archwire-guided tooth movement. This in-vitro study investigated the frictional behavior of an improved superelastic Ni-Ti wire with low-stress hysteresis. Improved superelastic Ni-Ti alloy wires (L & H Titan, Tomy International, Tokyo, Japan) with low-stress hysteresis were examined by using 3-point bending and frictional resistance tests with a universal test machine at a constant temperature of 35 degrees C, and compared with the former conventional austenitic-active superelastic Ni-Ti wires (Sentalloy, Tomy International). Wire stiffness levels were derived from differentiation of the polynomial regression of the unloading curves, and values for kinetic friction were measured at constant bending deflection distances of 0, 2, 3, and 4 mm, respectively. Compared with conventional Sentalloy wires, the L & H Titan wire had a narrower stress hysteresis including a lower loading plateau and a higher unloading plateau. In addition, L & H Titan wires were less stiff than the Sentalloy wires during most unloading stages. Values of friction measured at deflections of 0, 2, and 3 mm were significantly (P <.05) increased in both types of wire. However, they showed a significant decrease in friction from 3 to 4 mm of deflection. L & H Titan wires had less friction than Sentalloy wires at all bending deflections (P <.05). Stress-induced martensite formation significantly reduced the stiffness and thus could be beneficial to decrease the binding friction of superelastic Ni-Ti wires during sliding with large bending deflections. Austenitic-active alloy wires with low-stress hysteresis and lower stiffness and friction offer significant potential for further investigation.
Applicability and variability of liver stiffness measurements according to probe position
Ingiliz, Patrick; Chhay, Kim Pav; Munteanu, Mona; Lebray, Pascal; Ngo, Yen; Roulot, Dominique; Benhamou, Yves; Thabut, Dominique; Ratziu, Vlad; Poynard, Thierry
2009-01-01
AIM: To investigate the liver stiffness measurement (LSM) applicability and variability with reference to three probe positions according to the region of liver biopsy. METHODS: The applicability for LSM was defined as at least 10 valid measurements with a success rate greater than 60% and an interquartile range/median LSM < 30%. The LSM variability compared the inter-position concordance and the concordance with FibroTest. RESULTS: Four hundred and forty two consecutive patients were included. The applicability of the anterior position (81%) was significantly higher than that of the reference (69%) and lower positions (68%), (both P = 0.0001). There was a significant difference (0.5 kPa, 95% CI 0.13-0.89; P < 0.0001) between mean LSM estimated at the reference position (9.3 kPa) vs the anterior position (8.8 kPa). Discordance between positions was associated with thoracic fold (P = 0.008). The discordance rate between the reference position result and FibroTest was higher when the 7.1 kPa cutoff was used to define advanced fibrosis instead of 8.8 kPa (33.6% vs 23.5%, P = 0.03). CONCLUSION: The anterior position of the probe should be the first choice for LSM using Fibroscan, as it has a higher applicability without higher variability compared to the usual liver biopsy position. PMID:19610141
Bulpitt, Christopher J; Webb, Richard; Beckett, Nigel; Peters, Ruth; Cheek, Elizabeth; Anderson, Craig; Antikainen, Riitta; Staessen, Jan A; Rajkumar, Chakravarthi
2017-04-01
The main Hypertension in the Very Elderly Trial (HYVET) demonstrated a very marked reduction in cardiovascular events by treating hypertensive participants 80 years or older with a low dose, sustained release prescription of indapamide (indapamide SR, 1.5 mg) to which was added a low dose of an angiotensin converting enzyme inhibitor in two-thirds of cases (perindopril 2-4 mg). This report from the ambulatory blood pressure sub-study investigates whether changes in arterial stiffness and ambulatory blood pressure (BP) could both explain the benefits observed in the main trial. A total of 139 participants were randomized to placebo [67] and to active treatment [72] and had both day and night observations of BP and arterial stiffness as determined from the Q wave Korotkoff diastolic (QKD) interval. The QKD interval was 5.6 ms longer (p = 0.017) in the actively treated group at night than in the placebo group. This was not true for the more numerous daytime readings so that 24-h results were similar in the two groups. The QKD interval remained longer at night in the actively treated group even when adjusted for systolic pressure, heart rate and height. The reduced arterial stiffness at night may partly explain the marked benefits observed in the main trial.
Is titin a 'winding filament'? A new twist on muscle contraction.
Nishikawa, Kiisa C; Monroy, Jenna A; Uyeno, Theodore E; Yeo, Sang Hoon; Pai, Dinesh K; Lindstedt, Stan L
2012-03-07
Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca(2+)-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a 'winding filament' mechanism for titin's role in active muscle. First, we hypothesize that Ca(2+)-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.
Is titin a ‘winding filament’? A new twist on muscle contraction
Nishikawa, Kiisa C.; Monroy, Jenna A.; Uyeno, Theodore E.; Yeo, Sang Hoon; Pai, Dinesh K.; Lindstedt, Stan L.
2012-01-01
Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca2+-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a ‘winding filament’ mechanism for titin's role in active muscle. First, we hypothesize that Ca2+-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction. PMID:21900329
Saudi Arabia’s Counterterrorism Methods: A Case Study on Homeland Security
2017-06-01
laws to safeguard the homeland and its borders, Saudi Arabia has enacted laws that impose stiff penalties aimed at money laundering and other illicit...safeguard the homeland and its borders, Saudi Arabia has enacted laws that impose stiff penalties aimed at money laundering and other illicit activities...34 1. Combating Financing Terrorist Organizations ............... 34 2. Combating Money Laundering by
Postoperative stiff shoulder after open rotator cuff repair: a 3- to 20-year follow-up study.
Vastamäki, H; Vastamäki, M
2014-12-01
Stiffness after a rotator cuff tear is common. So is stiffness after an arthroscopic rotator cuff repair. In the literature, however, postoperative restriction of passive range of motion after open rotator cuff repair in shoulders with free passive range of motion at surgery has seldom been recognized. We hypothesize that this postoperative stiffness is more frequent than recognized and slows the primary postoperative healing after a rotator cuff reconstruction. We wondered how common is postoperative restriction of both active and passive range of motion after open rotator cuff repair in shoulders with free passive preoperative range of motion, how it recovers, and whether this condition influences short- and long-term results of surgery. We also explored factors predicting postoperative shoulder stiffness. We retrospectively identified 103 postoperative stiff shoulders among 416 consecutive open rotator cuff repairs, evaluating incidence and duration of stiffness, short-term clinical results and long-term range of motion, pain relief, shoulder strength, and functional results 3-20 (mean 8.7) years after surgery in 56 patients. The incidence of postoperative shoulder stiffness was 20%. It delayed primary postoperative healing by 3-6 months and resolved during a mean 6.3 months postoperatively. External rotation resolved first, corresponding to that of the controls at 3 months; flexion and abduction took less than 1 year after surgery. The mean summarized range of motion (flexion + abduction + external rotation) increased as high as 93% of the controls' range of motion by 6 months and 100% by 1 year. Flexion, abduction, and internal rotation improved to the level of the contralateral shoulders as did pain, strength, and function. Age at surgery and condition of the biceps tendon were related to postoperative stiffness. Postoperative stiff shoulder after open rotator cuff repair is a common complication resolving in 6-12 months with good long-term results. © The Finnish Surgical Society 2013.
Lakie, Martin; Caplan, Nicholas; Loram, Ian D
2003-01-01
These experiments were prompted by the recent discovery that the intrinsic stiffness of the ankle is inadequate to stabilise passively the body in standing. Our hope was that showing how a large inverted pendulum was manually balanced with low intrinsic stiffness would elucidate the active control of human standing. The results show that the pendulum can be satisfactorily stabilised when intrinsic stiffness is low. Analysis of sway size shows that intrinsic stiffness actually plays little part in stabilisation. The sway duration is also substantially independent of intrinsic stiffness. This suggests that the characteristic sway of the pendulum, rather than being dictated by stiffness and inertia, may result from the control pattern of hand movements. The key points revealed by these experiments are that with low intrinsic stiffness the hand provides pendulum stability by intermittently altering the bias of the spring and, on average, the hand moves in opposition to the load. The results lead to a new and testable hypothesis; namely that in standing, the calf muscle shortens as the body sways forward and lengthens as it sways backwards. These findings are difficult to reconcile with stretch reflex control of the pendulum and are of particular relevance to standing. They may also be relevant to postural maintenance in general whenever the CNS controls muscles which operate through compliant linkages. The results also suggest that in standing, rather than providing passive stability, the intrinsic stiffness acts as an energy efficient buffer which provides decoupling between muscle and body. PMID:12832494
Chaouachi, Anis; Othman, Aymen Ben; Hammami, Raouf; Drinkwater, Eric J; Behm, David G
2014-02-01
Because balance is not fully developed in children and studies have shown functional improvements with balance only training studies, a combination of plyometric and balance activities might enhance static balance, dynamic balance, and power. The objective of this study was to compare the effectiveness of plyometric only (PLYO) with balance and plyometric (COMBINED) training on balance and power measures in children. Before and after an 8-week training period, testing assessed lower-body strength (1 repetition maximum leg press), power (horizontal and vertical jumps, triple hop for distance, reactive strength, and leg stiffness), running speed (10-m and 30-m sprint), static and dynamic balance (Standing Stork Test and Star Excursion Balance Test), and agility (shuttle run). Subjects were randomly divided into 2 training groups (PLYO [n = 14] and COMBINED [n = 14]) and a control group (n = 12). Results based on magnitude-based inferences and precision of estimation indicated that the COMBINED training group was considered likely to be superior to the PLYO group in leg stiffness (d = 0.69, 91% likely), 10-m sprint (d = 0.57, 84% likely), and shuttle run (d = 0.52, 80% likely). The difference between the groups was unclear in 8 of the 11 dependent variables. COMBINED training enhanced activities such as 10-m sprints and shuttle runs to a greater degree. COMBINED training could be an important consideration for reducing the high velocity impacts of PLYO training. This reduction in stretch-shortening cycle stress on neuromuscular system with the replacement of balance and landing exercises might help to alleviate the overtraining effects of excessive repetitive high load activities.
Effect of dermal thickness, tissue composition, and body site on skin biomechanical properties.
Smalls, Lola K; Randall Wickett, R; Visscher, Marty O
2006-02-01
Quantitative measurement of skin biomechanical properties has been used effectively in the investigation of physiological changes in tissue structure and function and to determine treatment efficacy. As the methods are applied to new questions, tissue characteristics that may influence the resultant biomechanical properties are important considerations in the research design. For certain applications, variables such as dermal thickness and subdermal tissue composition, as well as age and/or solar exposure, may influence the skin biomechanics. We determined the influence of dermal thickness, tissue composition, and age on the skin biomechanical properties at the shoulder, thigh, and calf among 30 healthy females. We compared two devices, the Biomechanical Tissue Characterization System and the Cutometer SEM 575 Skin Elasticity Meter , to determine the effect of tissue sampling size. Dermal thickness was measured with 20 MHz ultrasound (Dermascan C) and tissue composition was inferred from anthropomorphic data. Skin thickness was significantly correlated with stiffness, energy absorption, and U(r)/U(f) for the shoulder. Body mass index (BMI) was significantly correlated with stiffness (negative correlation), energy absorption (positive), and skin thickness (negative) for the shoulder. Significant differences across body sites were observed. The calf was significantly different from the thigh and shoulders for all parameters (P<0.05, one-way anova). The calf had significantly lower laxity, laxity%, elastic deformation, energy absorption, elasticity, elasticity %, U(r), U(f), and U(r)/U(f) and significantly higher stiffness compared with the thighs and shoulders. sites. The thigh and shoulder sites were significantly different for all parameters except U(r)/U(f), elasticity %, laxity%, and stiffness. The dominant and non-dominant sides were significantly different. The dominant side (right for 90% of the subjects) had increased stiffness and decreased energy absorption (tissue softness, compliance) compared with the left side. A significant (P< or =0.02) negative relationship with age was seen for all biomechanical measures except stiffness at the shoulder. For the thigh and calf sites, significant negative correlations with age were found for elasticity %, U(r), and U(r)/U(f). Age and skin thickness were not correlated in this population. Skin thickness and age influenced the energy absorption at the shoulder site. The biological elasticity at the calf site could be predicted by age and BMI. The biological activity at the thigh site could be predicted by skin thickness and BMI. Significant regional variations in biomechanical properties and dominant side effects were observed. The biomechanical properties were significantly influenced by age. Certain properties varied with dermal thickness and tissue composition. The parameters were well correlated between the two instruments. The Cutometer, with its smaller aperture, was found to be more sensitive to age relationships.
Frisk, Rasmus F; Jensen, Peter; Kirk, Henrik; Bouyer, Laurent J; Lorentzen, Jakob; Nielsen, Jens B
2017-12-01
Exaggerated sensory activity has been assumed to contribute to functional impairment following lesion of the central motor pathway. However, recent studies have suggested that sensory contribution to muscle activity during gait is reduced in stroke patients and children with cerebral palsy (CP). We investigated whether this also occurs in CP adults and whether daily treadmill training is accompanied by alterations in sensory contribution to muscle activity. Seventeen adults with CP and 12 uninjured individuals participated. The participants walked on a treadmill while a robotized ankle-foot orthosis applied unload perturbations at the ankle, thereby removing sensory feedback naturally activated during push-off. Reduction of electromyographic (EMG) activity in the soleus muscle caused by unloads was compared and related to kinematics and ankle joint stiffness measurements. Similar measures were obtained after 6 wk of gait training. We found that sensory contribution to soleus EMG activation was reduced in CP adults compared with uninjured adults. The lowest contribution of sensory feedback was found in participants with lowest maximal gait speed. This was related to increased ankle plantar flexor stiffness. Six weeks of gait training did not alter the contribution of sensory feedback. We conclude that exaggerated sensory activity is unlikely to contribute to impaired gait in CP adults, because sensory contribution to muscle activity during gait was reduced compared with in uninjured individuals. Increased passive stiffness around the ankle joint is likely to diminish sensory feedback during gait so that a larger part of plantar flexor muscle activity must be generated by descending motor commands. NEW & NOTEWORTHY Findings suggest that adults with cerebral palsy have less contribution of sensory feedback to ongoing soleus muscle activation during push-off than uninjured individuals. Increased passive stiffness around the ankle joint is likely to diminish sensory feedback during gait, and/or sensory feedback is less integrated with central motor commands in the activation of spinal motor neurons. Consequently, muscle activation must to a larger extent rely on descending drive, which is already decreased because of the cerebral lesion. Copyright © 2017 the American Physiological Society.
Tow-Steered Panels With Holes Subjected to Compression or Shear Loads
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Tatting, Brian F.; Guerdal, Zafer
2005-01-01
Tailoring composite laminates to vary the fiber orientations within a fiber layer of a laminate to address non-uniform stress states and provide structural advantages such as the alteration of principal load paths has potential application to future low-cost, light-weight structures for commercial transport aircraft. Evaluation of this approach requires the determination of the effectiveness of stiffness tailoring through the use of curvilinear fiber paths in flat panels including the reduction of stress concentrations around the holes and the increase in load carrying capability. Panels were designed through the use of an optimization code using a genetic algorithm and fabricated using a tow-steering approach. Manufacturing limitations, such as the radius of curvature of tows the machine could support, avoidance of wrinkling of fibers and minimization of gaps between fibers were considered in the design process. Variable stiffness tow-steered panels constructed with curvilinear fiber paths were fabricated so that the design methodology could be verified through experimentation. Finite element analysis where each element s stacking sequence was accurately defined is used to verify the behavior predicted based on the design code. Experiments on variable stiffness flat panels with central circular holes were conducted with the panels loaded in axial compression or shear. Tape and tow-steered panels are used to demonstrate the buckling, post-buckling and failure behavior of elastically tailored panels. The experimental results presented establish the buckling performance improvements attainable by elastic tailoring of composite laminates.
Stiff-person syndrome: a case report and review of the literature.
Egwuonwu, Steve; Chedebeau, Fernando
2010-12-01
We report a case of stiff-person syndrome associated with several autoimmune diseases. A 49-year-old male with type 1 diabetes presented with a 6-month history of muscle rigidity and spasms of his upper and lower extremities. Anti-glutamic acid decarboxylase 65 antibody was elevated at 609 nmol/L. Electromyography revealed continuous motor unit activity in agonist and antagonist muscles. He responded favorably to diazepam, baclofen, and intravenous immunoglobulin infusions. This case report describes stiff-person syndrome in association with pernicious anemia and diabetes mellitus. A review of the literature discusses the diagnosis and treatment of this rare entity.
Gupta, Amit; Jain, Gaurav; Kaur, Manpreet; Jaryal, Ashok Kumar; Deepak, Kishore Kumar; Bhowmik, Dipankar; Agarwal, Sanjay Kumar
2016-04-01
Peritoneal dialysis patients have high cardiovascular morbidity and mortality. The underlying mechanism of cardiovascular dysfunction remains unclear. Large arterial stiffness in chronic kidney disease (CKD) patients leads to increase in pulse wave velocity (PWV) and decrease in baroreflex sensitivity (BRS). Impairment in baroreflex function could be attributed to the alteration in mechanical properties of large vessels due to arterial remodeling observed in these patients. The present study was designed to study the association of BRS and PWV in peritoneal dialysis (PD) patients. 42 CKD patients (21--without dialysis and 21--on PD) and 25 healthy controls were recruited in this study. BRS was determined by spontaneous sequence method. Short-term heart rate variability (HRV) and blood pressure variability (BPV) were assessed using power spectrum analysis of RR intervals and systolic blood pressure by time domain and frequency domain analysis. Arterial stiffness indices were assessed by carotid-femoral PWV using Sphygmocor Vx device (AtCor Medical, Australia). CKD patients had significantly high PWV and low BRS as compared to healthy controls. PWV had a significant negative correlation with BRS in CKD patients (Spearman r = -0.7049, P < 0.0001; BRS-Systolic BP). On subgroup analysis, PWV was higher with lower BRS in CKD patients on peritoneal dialysis (CKD-PD) as compared to those not on dialysis (CKD-ND). Negative relationship between PWV and BRS was found in both the groups. In addition, BRS was found to have a positive correlation with HRV in CKD patients as well as both the subgroups. Reduction in BRS is strongly associated with increase in PWV in PD patients. Large arterial stiffness probably explains this simultaneous impairment in baroreflex functioning and increase in pulse wave velocity observed in these patients. CKD patients are characterized by poor hemodynamic profile (low BRS, high PWV, and low HRV), and peritoneal dialysis patients had further worsened profile as compared to non-dialysis group.
Dewey, James B; Xia, Anping; Müller, Ulrich; Belyantseva, Inna A; Applegate, Brian E; Oghalai, John S
2018-06-05
The stereociliary bundles of cochlear hair cells convert mechanical vibrations into the electrical signals required for auditory sensation. While the stiffness of the bundles strongly influences mechanotransduction, its influence on the vibratory response of the cochlear partition is unclear. To assess this, we measured cochlear vibrations in mutant mice with reduced bundle stiffness or with a tectorial membrane (TM) that is detached from the sensory epithelium. We found that reducing bundle stiffness decreased the high-frequency extent and sharpened the tuning of vibratory responses obtained postmortem. Detaching the TM further reduced the high-frequency extent of the vibrations but also lowered the partition's resonant frequency. Together, these results demonstrate that the bundle's stiffness and attachment to the TM contribute to passive longitudinal coupling in the cochlea. We conclude that the stereociliary bundles and TM interact to facilitate passive-wave propagation to more apical locations, possibly enhancing active-wave amplification in vivo. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Stiff person case misdiagnosed as conversion disorder: A case report
Razmeh, Saeed; Habibi, Amir Hasan; Sina, Farzad; Alizadeh, Elham; Eslami, Monireh
2017-01-01
Background: Stiff person syndrome (SPS) is a rare neurological disease resulting in stiffness and spasm of muscles. It initially affects the axial muscles and then spread to limb muscles. Emotional stress exacerbated the symptoms and signs of the disease. The pathophysiology of the disease is caused by the decreased level of the glutamic acid decarboxylase (GAD) activity due to an autoantibody against GAD that decreases the level of gamma-aminobutyric acid (GABA). In this paper, we present a case of atypical presentation of SPS with lower limb stiffness misdiagnosed as conversion disorder. Case presentation: We report a patient with atypical presentation of SPS with lower limb stiffness and gait disorder misdiagnosed as conversion disorder for a year. Her antithyroid peroxidase antibody (anti-TPO Ab) level was 75 IU (normal value: 0–34 IU). Intravenous immunoglobulin (IVIG) was administered (2gr/kg, 5 days) for the patient that showed significant improvement in the follow-up visit. Conclusion: It is essential that in any patient with bizarre gait disorder and suspicious to conversion disorder due to the reversibility of symptoms, SPS and other movement disorder should be considered. PMID:29201327
Stiff person case misdiagnosed as conversion disorder: A case report.
Razmeh, Saeed; Habibi, Amir Hasan; Sina, Farzad; Alizadeh, Elham; Eslami, Monireh
2017-01-01
Stiff person syndrome (SPS) is a rare neurological disease resulting in stiffness and spasm of muscles. It initially affects the axial muscles and then spread to limb muscles. Emotional stress exacerbated the symptoms and signs of the disease. The pathophysiology of the disease is caused by the decreased level of the glutamic acid decarboxylase (GAD) activity due to an autoantibody against GAD that decreases the level of gamma-aminobutyric acid (GABA). In this paper, we present a case of atypical presentation of SPS with lower limb stiffness misdiagnosed as conversion disorder. We report a patient with atypical presentation of SPS with lower limb stiffness and gait disorder misdiagnosed as conversion disorder for a year. Her antithyroid peroxidase antibody (anti-TPO Ab) level was 75 IU (normal value: 0-34 IU). Intravenous immunoglobulin (IVIG) was administered (2gr/kg, 5 days) for the patient that showed significant improvement in the follow-up visit. It is essential that in any patient with bizarre gait disorder and suspicious to conversion disorder due to the reversibility of symptoms, SPS and other movement disorder should be considered.
Plyometric Training Favors Optimizing Muscle–Tendon Behavior during Depth Jumping
Hirayama, Kuniaki; Iwanuma, Soichiro; Ikeda, Naoki; Yoshikawa, Ayumi; Ema, Ryoichi; Kawakami, Yasuo
2017-01-01
The purpose of the present study was to elucidate how plyometric training improves stretch–shortening cycle (SSC) exercise performance in terms of muscle strength, tendon stiffness, and muscle–tendon behavior during SSC exercise. Eleven men were assigned to a training group and ten to a control group. Subjects in the training group performed depth jumps (DJ) using only the ankle joint for 12 weeks. Before and after the period, we observed reaction forces at foot, muscle–tendon behavior of the gastrocnemius, and electromyographic activities of the triceps surae and tibialis anterior during DJ. Maximal static plantar flexion strength and Achilles tendon stiffness were also determined. In the training group, maximal strength remained unchanged while tendon stiffness increased. The force impulse of DJ increased, with a shorter contact time and larger reaction force over the latter half of braking and initial half of propulsion phases. In the latter half of braking phase, the average electromyographic activity (mEMG) increased in the triceps surae and decreased in tibialis anterior, while fascicle behavior of the gastrocnemius remained unchanged. In the initial half of propulsion, mEMG of triceps surae and shortening velocity of gastrocnemius fascicle decreased, while shortening velocity of the tendon increased. These results suggest that the following mechanisms play an important role in improving SSC exercise performance through plyometric training: (1) optimization of muscle–tendon behavior of the agonists, associated with alteration in the neuromuscular activity during SSC exercise and increase in tendon stiffness and (2) decrease in the neuromuscular activity of antagonists during a counter movement. PMID:28179885
Holmes, Michael W R; Keir, Peter J
2014-04-01
Understanding joint stiffness and stability is beneficial for assessing injury risk. The purpose of this study was to examine joint rotational stiffness for individual muscles contributing to elbow joint stability. Fifteen male participants maintained combinations of three body orientations (standing, supine, sitting) and three hand preloads (no load, solid tube, fluid filled tube) while a device imposed a sudden elbow extension. Elbow angle and activity from nine muscles were inputs to a biomechanical model to determine relative contributions to elbow joint rotational stiffness, reported as percent of total stiffness. A body orientation by preload interaction was evident for most muscles (P<.001). Brachioradialis had the largest change in contribution while standing (no load, 18.5%; solid, 23.8%; fluid, 26.3%). Across trials, the greatest contributions were brachialis (30.4±1.9%) and brachioradialis (21.7±2.2%). Contributions from the forearm muscles and triceps were 5.5±0.6% and 9.2±1.9%, respectively. Contributions increased at time points closer to the perturbation (baseline to anticipatory), indicating increased neuromuscular response to resist rotation. This study quantified muscle contributions that resist elbow perturbations, found that forearm muscles contribute marginally and showed that orientation and preload should be considered when evaluating elbow joint stiffness and safety.
NASA Astrophysics Data System (ADS)
Xu, Y. L.; Huang, Q.; Zhan, S.; Su, Z. Q.; Liu, H. J.
2014-06-01
How to use control devices to enhance system identification and damage detection in relation to a structure that requires both vibration control and structural health monitoring is an interesting yet practical topic. In this study, the possibility of using the added stiffness provided by control devices and frequency response functions (FRFs) to detect damage in a building complex was explored experimentally. Scale models of a 12-storey main building and a 3-storey podium structure were built to represent a building complex. Given that the connection between the main building and the podium structure is most susceptible to damage, damage to the building complex was experimentally simulated by changing the connection stiffness. To simulate the added stiffness provided by a semi-active friction damper, a steel circular ring was designed and used to add the related stiffness to the building complex. By varying the connection stiffness using an eccentric wheel excitation system and by adding or not adding the circular ring, eight cases were investigated and eight sets of FRFs were measured. The experimental results were used to detect damage (changes in connection stiffness) using a recently proposed FRF-based damage detection method. The experimental results showed that the FRF-based damage detection method could satisfactorily locate and quantify damage.
Programmable Self-Locking Origami Mechanical Metamaterials.
Fang, Hongbin; Chu, Shih-Cheng A; Xia, Yutong; Wang, Kon-Well
2018-04-01
Developing mechanical metamaterials with programmable properties is an emerging topic receiving wide attention. While the programmability mainly originates from structural multistability in previously designed metamaterials, here it is shown that nonflat-foldable origami provides a new platform to achieve programmability via its intrinsic self-locking and reconfiguration capabilities. Working with the single-collinear degree-4 vertex origami tessellation, it is found that each unit cell can self-lock at a nonflat configuration and, therefore, possesses wide design space to program its foldability and relative density. Experiments and numerical analyses are combined to demonstrate that by switching the deformation modes of the constituent cell from prelocking folding to postlocking pressing, its stiffness experiences a sudden jump, implying a limiting-stopper effect. Such a stiffness jump is generalized to a multisegment piecewise stiffness profile in a multilayer model. Furthermore, it is revealed that via strategically switching the constituent cells' deformation modes through passive or active means, the n-layer metamaterial's stiffness is controllable among 2 n target stiffness values. Additionally, the piecewise stiffness can also trigger bistable responses dynamically under harmonic excitations, highlighting the metamaterial's rich dynamic performance. These unique characteristics of self-locking origami present new paths for creating programmable mechanical metamaterials with in situ controllable mechanical properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Buzzi, Jacopo; Ferrigno, Giancarlo; Jansma, Joost M.; De Momi, Elena
2017-01-01
Teleoperated robotic systems are widely spreading in multiple different fields, from hazardous environments exploration to surgery. In teleoperation, users directly manipulate a master device to achieve task execution at the slave robot side; this interaction is fundamental to guarantee both system stability and task execution performance. In this work, we propose a non-disruptive method to study the arm endpoint stiffness. We evaluate how users exploit the kinetic redundancy of the arm to achieve stability and precision during the execution of different tasks with different master devices. Four users were asked to perform two planar trajectories following virtual tasks using both a serial and a parallel link master device. Users' arm kinematics and muscular activation were acquired and combined with a user-specific musculoskeletal model to estimate the joint stiffness. Using the arm kinematic Jacobian, the arm end-point stiffness was derived. The proposed non-disruptive method is capable of estimating the arm endpoint stiffness during the execution of virtual teleoperated tasks. The obtained results are in accordance with the existing literature in human motor control and show, throughout the tested trajectory, a modulation of the arm endpoint stiffness that is affected by task characteristics and hand speed and acceleration. PMID:29018319
Ogneva, Irina V.; Lebedev, Dmitry V.; Shenkman, Boris S.
2010-01-01
Abstract The structural integrity of striated muscle is determined by extra-sarcomere cytoskeleton that includes structures that connect the Z-disks and M-bands of a sarcomere to sarcomeres of neighbor myofibrils or to sarcolemma. Mechanical properties of these structures are not well characterized. The surface structure and transversal stiffness of single fibers from soleus muscle of the rat were studied with atomic force microscopy in liquid. We identified surface regions that correspond to projections of the Z-disks, M-bands, and structures between them. Transversal stiffness of the fibers was measured in each of these three regions. The stiffness was higher in the Z-disk regions, minimal between the Z-disks and the M-bands, and intermediate in the M-band regions. The stiffness increased twofold when relaxed fibers were maximally activated with calcium and threefold when they were transferred to rigor (ATP-free) solution. Transversal stiffness of fibers heavily treated with Triton X-100 was about twice higher than that of the permeabilized ones, however, its regional difference and the dependence on physiological state of the fiber remained the same. The data may be useful for understanding mechanics of muscle fibers when it is subjected to both axial and transversal strain and stress. PMID:20141755
Myo1g is an active player in maintaining cell stiffness in B-lymphocytes.
López-Ortega, O; Ovalle-García, E; Ortega-Blake, I; Antillón, A; Chávez-Munguía, B; Patiño-López, G; Fragoso-Soriano, R; Santos-Argumedo, L
2016-05-01
B-lymphocytes are migrating cells that specialize in antigen presentation, antibody secretion, and endocytosis; these processes implicate the modulation of plasma membrane elasticity. Cell stiffness is a force generated by the interaction between the actin-cytoskeleton and the plasma membrane, which requires the participation of several proteins. These proteins include class I myosins, which are now considered to play a role in controlling membrane-cytoskeleton interactions. In this study, we identified the motor protein Myosin 1g (Myo1g) as a mediator of this phenomenon. The absence of Myo1g decreased the cell stiffness, affecting cell adhesion, cell spreading, phagocytosis, and endocytosis in B-lymphocytes. The results described here reveal a novel molecular mechanism by which Myo1g mediates and regulates cell stiffness in B-lymphocytes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Active Knits for Radical Change Air Force Structures
2012-10-01
for self - healing structures, but the material distribution could be optimized to achieve desired mechanical properties or obtain a predetermined...causes the material to transition from the soft martensite phase to the stiff austenite phase. When heated the loops attempt to return to their...nominally straight, is bent into the loop shape when in the cold, relatively soft martensite state. When heated to the relatively stiff austenite
Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.
Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi
2012-06-01
Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gao, Yuan Z.; Saphirstein, Robert J.; Yamin, Rina; Suki, Bela
2014-01-01
Increased aortic stiffness is an early and independent biomarker of cardiovascular disease. Here we tested the hypothesis that vascular smooth muscle cells (VSMCs) contribute significantly to aortic stiffness and investigated the mechanisms involved. The relative contributions of VSMCs, focal adhesions (FAs), and matrix to stiffness in mouse aorta preparations at optimal length and with confirmed VSMC viability were separated by the use of small-molecule inhibitors and activators. Using biomechanical methods designed for minimal perturbation of cellular function, we directly quantified changes with aging in aortic material stiffness. An alpha adrenoceptor agonist, in the presence of NG-nitro-l-arginine methyl ester (l-NAME) to remove interference of endothelial nitric oxide, increases stiffness by 90–200% from baseline in both young and old mice. Interestingly, increases are robustly suppressed by the Src kinase inhibitor PP2 in young but not old mice. Phosphotyrosine screening revealed, with aging, a biochemical signature of markedly impaired agonist-induced FA remodeling previously associated with Src signaling. Protein expression measurement confirmed a decrease in Src expression with aging. Thus we report here an additive model for the in vitro biomechanical components of the mouse aortic wall in which 1) VSMCs are a surprisingly large component of aortic stiffness at physiological lengths and 2) regulation of the VSMC component through FA signaling and hence plasticity is impaired with aging, diminishing the aorta's normal shock absorption function in response to stressors. PMID:25128168
Yuan, Wen-Xue; Liu, Hai-Bin; Gao, Feng-Shan; Wang, Yan-Xia; Qin, Kai-Rong
2016-12-28
Exercise has been found to either reduce or increase arterial stiffness. Land-based exercise modalities have been documented as effective physical therapies to decrease arterial stiffness. However, these land-based exercise modalities may not be suitable for overweight individuals, in terms of risks of joint injury. The purpose of this study was to determine the effects of 8-week swimming training and 4-week detraining on carotid arterial stiffness and hemodynamics in young overweight adults. Twenty young male adults who were overweight were recruited and engaged in 8-week of swimming training and 4-week detraining. Five individuals withdrew due to lack of interest and failure to follow the training protocol. Body Fat Percentage (BFP) and carotid hemodynamic variables were measured on a resting day at the following intervals: baseline, 4 weeks, 8 weeks after swimming training and 4 weeks after detraining. A repeated analysis of variance (ANOVA) was used to assess the differences between baseline and each measurement. When significant differences were detected, Tukey's test for post hoc comparisons was used. Eight-week swimming training at moderate intensity decreased BFP, including the trunk and four extremities. Additionally, the BFP of the right and left lower extremities continued to decrease in these overweight adults 4 weeks after ceasing training. Carotid arterial stiffness decreased, while there were no significant changes in arterial diameters. Blood flow velocity, flow rate, maximal and mean wall shear stress increased, while systolic blood pressure and peripheral resistance decreased. No significant differences existed in minimal wall shear stress and oscillatory shear stress. Eight-week swimming training at moderate intensity exhibited beneficial effects on systolic blood pressure, arterial stiffness and blood supply to the brain in overweight adults. Moreover, maximal and mean wall shear stress increased after training. It is worth noting that these changes in hemodynamics did not last 4 weeks. Therefore, further studies are still warranted to clarify the underlying relationship between improvements in arterial stiffness and alterations in wall shear stress.
Tailored metal matrix composites for high-temperature performance
NASA Technical Reports Server (NTRS)
Morel, M. R.; Saravanos, D. A.; Chamis, C. C.
1992-01-01
A multi-objective tailoring methodology is presented to maximize stiffness and load carrying capacity of a metal matrix cross-ply laminated at elevated temperatures. The fabrication process and fiber volume ratio are used as the design variables. A unique feature is the concurrent effects from fabrication, residual stresses, material nonlinearity, and thermo-mechanical loading on the laminate properties at the post-fabrication phase. For a (0/90)(sub s) graphite/copper laminate, strong coupling was observed between the fabrication process, laminate characteristics, and thermo-mechanical loading. The multi-objective tailoring was found to be more effective than single objective tailoring. Results indicate the potential to increase laminate stiffness and load carrying capacity by controlling the critical parameters of the fabrication process and the laminate.
Biophysics of cancer progression and high-throughput mechanical characterization of biomaterials
NASA Astrophysics Data System (ADS)
Osborne, Lukas Dylan
Cancer metastasis involves a series of events known as the metastatic cascade. In this complex progression, cancer cells detach from the primary tumor, invade the surrounding stromal space, transmigrate the vascular system, and establish secondary tumors at distal sites. Specific mechanical phenotypes are likely adopted to enable cells to successfully navigate the mechanical environments encountered during metastasis. To examine the role of cell mechanics in cancer progression, I employed force-consistent biophysical and biochemical assays to characterize the mechanistic links between stiffness, stiffness response and cell invasion during the epithelial to mesenchymal transition (EMT). EMT is an essential physiological process, whose abnormal reactivation has been implicated in the detachment of cancer cells from epithelial tissue and their subsequent invasion into stromal tissue. I demonstrate that epithelial-state cells respond to force by evoking a stiffening response, and that after EMT, mesenchymal-state cells have reduced stiffness but also lose the ability to increase their stiffness in response to force. Using loss and gain of function studies, two proteins are established as functional connections between attenuated stiffness and stiffness response and the increased invasion capacity acquired after EMT. To enable larger scale assays to more fully explore the connection between biomechanics and cancer, I discuss the development of an automated array high throughput (AHT) microscope. The AHT system is shown to implement passive microbead rheology to accurately characterize the mechanical properties of biomaterials. Compared to manually performed mechanical characterizations, the AHT system executes experiments in two orders of magnitude less time. Finally, I use the AHT microscope to study the effect of gain of function oncogenic molecules on cell stiffness. I find evidence that our assay can identify alterations in cell stiffness due to constitutive activation of cancer pathways.
Friesen, Richard M; Schäfer, Michal; Ivy, D Dunbar; Abman, Steven H; Stenmark, Kurt; Browne, Lorna P; Barker, Alex J; Hunter, Kendall S; Truong, Uyen
2018-05-16
Main pulmonary artery (MPA) stiffness and abnormal flow haemodynamics in pulmonary arterial hypertension (PAH) are strongly associated with elevated right ventricular (RV) afterload and associated with disease severity and poor clinical outcomes in adults with PAH. However, the long-term effects of MPA stiffness on RV function in children with PAH remain poorly understood. This study is the first comprehensive evaluation of MPA stiffness in children with PAH, delineating the mechanistic relationship between flow haemodynamics and MPA stiffness as well as the prognostic ability of these measures regarding clinical outcomes. Fifty-six children diagnosed with PAH underwent baseline cardiac magnetic resonance (CMR) acquisition and were compared with 23 control subjects. MPA stiffness and wall shear stress (WSS) were evaluated using phase contrast CMR and were evaluated for prognostic potential along with standard RV volumetric and functional indices. Pulse wave velocity (PWV) was significantly increased (2.8 m/s vs. 1.4 m/s, P < 0.0001) and relative area change (RAC) was decreased (25% vs. 37%, P < 0.0001) in the PAH group, correlating with metrics of RV performance. Decreased WSS was associated with a decrease in RAC over time (r = 0.679, P < 0.001). For each unit increase in PWV, there was approximately a 3.2-fold increase in having a moderate clinical event. MPA stiffness assessed by non-invasive CMR was increased in children with PAH and correlated with RV performance, suggesting that MPA stiffness is a major contribution to RV dysfunction. PWV is predictive of moderate clinical outcomes, and may be a useful prognostic marker of disease activity in children with PAH.
Mariappan, Yogesh K; Kolipaka, Arunark; Manduca, Armando; Hubmayr, Rolf D; Ehman, Richard L; Araoz, Philip; McGee, Kiaran P
2012-01-01
Quantification of the mechanical properties of lung parenchyma is an active field of research due to the association of this metric with normal function, disease initiation and progression. A phase contrast MRI-based elasticity imaging technique known as magnetic resonance elastography is being investigated as a method for measuring the shear stiffness of lung parenchyma. Previous experiments performed with small animals using invasive drivers in direct contact with the lungs have indicated that the quantification of lung shear modulus with (1) H based magnetic resonance elastography is feasible. This technique has been extended to an in situ porcine model with a noninvasive mechanical driver placed on the chest wall. This approach was tested to measure the change in parenchymal stiffness as a function of airway opening pressure (P(ao) ) in 10 adult pigs. In all animals, shear stiffness was successfully quantified at four different P(ao) values. Mean (±STD error of mean) pulmonary parenchyma density corrected stiffness values were calculated to be 1.48 (±0.09), 1.68 (±0.10), 2.05 (±0.13), and 2.23 (±0.17) kPa for P(ao) values of 5, 10, 15, and 20 cm H2O, respectively. Shear stiffness increased with increasing P(ao) , in agreement with the literature. It is concluded that in an in situ porcine lung shear stiffness can be quantitated with (1) H magnetic resonance elastography using a noninvasive mechanical driver and that it is feasible to measure the change in shear stiffness due to change in P(ao) . Copyright © 2011 Wiley-Liss, Inc.
Suzuki, Masataka; Yamazaki, Yoshihiko
2005-01-01
According to the equilibrium point hypothesis of voluntary motor control, control action of muscles is not explicitly computed, but rather arises as a consequence of interaction between moving equilibrium position, current kinematics and stiffness of the joint. This approach is attractive as it obviates the need to explicitly specify the forces controlling limb movements. However, many debatable aspects of this hypothesis remain in the manner of specification of the equilibrium point trajectory and muscle activation (or its stiffness), which elicits a restoring force toward the planned equilibrium trajectory. In this study, we expanded the framework of this hypothesis by assuming that the control system uses the velocity measure as the origin of subordinate variables scaling descending commands. The velocity command is translated into muscle control inputs by second order pattern generators, which yield reciprocal command and coactivation commands, and create alternating activation of the antagonistic muscles during movement and coactivation in the post-movement phase, respectively. The velocity command is also integrated to give a position command specifying a moving equilibrium point. This model is purely kinematics-dependent, since the descending commands needed to modulate the visco-elasticity of muscles are implicitly given by simple parametric specifications of the velocity command alone. The simulated movements of fast elbow single-joint movements corresponded well with measured data performed over a wide range of movement distances, in terms of both muscle excitations and kinematics. Our proposal on a synthesis for the equilibrium point approach and velocity command, may offer some insights into the control scheme of the single-joint arm movements.
Zhang, Xiao; Liu, Jian Jun; Sum, Chee Fang; Ying, Yeoh Lee; Tavintharan, Subramaniam; Ng, Xiao Wei; Low, Serena; Lee, Simon B M; Tang, Wern Ee; Lim, Su Chi
2015-09-01
We previously reported ethnic disparity in adverse outcomes among Asians with type 2 diabetes (T2DM) in Singapore. Central arterial stiffness can aggravate systemic vasculopathy by propagating elevated systolic and pulse pressures forward, thereby accentuating global vascular injury. We aim to study ethnic disparity in central arterial stiffness and its determinants in a multi-ethnic T2DM Asian cohort. Arterial stiffness was estimated by carotid-femoral pulse wave velocity (PWV) and augmentation index (AI) using applanation tonometry method in Chinese (N = 1045), Malays (N = 458) and Indians (N = 468). Linear regression model was used to evaluate predictors of PWV and AI. PWV was higher in Malays (10.1 ± 3.0 m/s) than Chinese (9.7 ± 2.8 m/s) and Indians (9.6 ± 3.1 m/s) (P = 0.018). AI was higher in Indians (28.1 ± 10.8%) than Malays (25.9 ± 10.1%) and Chinese (26.1 ± 10.7%) (P < 0.001). Malays remain associated with higher PWV (β = 0.299, P = 0.048) post-adjustment for age, gender, duration of diabetes, hemoglobin A1c, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), soluble receptor for advanced glycation end-products, urinary albumin-to-creatinine ratio, and insulin usage, which were all independent predictors of PWV. Indians remain associated with higher AI (β = 2.776, P < 0.001) post-adjustment for age, gender, BMI, SBP, DBP, and height, which were independent predictors of AI. These variables explained 27.7% and 33.4% of the variance in PWV and AI respectively. Malays and Indians with T2DM have higher central arterial stiffness, which may explain their higher risk for adverse outcomes. Modifying traditional major vascular risk factors may partially alleviate their excess cardiovascular risk through modulating arterial stiffness. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Nekkanty, Srikant; Yerramshetty, Janardhan; Kim, Do-Gyoon; Zauel, Roger; Johnson, Evan; Cody, Dianna D.; Yeni, Yener N.
2013-01-01
Stress magnitude and variability as estimated from large scale finite element (FE) analyses have been associated with compressive strength of human vertebral cancellous cores but these relationships have not been explored for whole vertebral bodies. In this study, the objectives were to investigate the relationship of FE-calculated stress distribution parameters with experimentally determined strength, stiffness, and displacement based ductility measures in human whole vertebral bodies, investigate the effect of endplate loading conditions on vertebral stiffness, strength, and ductility and test the hypothesis that endplate topography affects vertebral ductility and stress distributions. Eighteen vertebral bodies (T6-L3 levels; 4 female and 5 male cadavers, aged 40-98 years) were scanned using a flat panel CT system and followed with axial compression testing with Wood’s metal as filler material to maintain flat boundaries between load plates and specimens. FE models were constructed using reconstructed CT images and filler material was added digitally. Two different FE models with different filler material modulus simulating Wood’s metal and intervertebral disc (W-layer and D-layer models) were used. Element material modulus to cancellous bone was based on image gray value. Average, standard deviation, and coefficient of variation of von Mises stress in vertebral bone for W-layer and D-layer models and also the ratios of FE parameters from the two models (W/D) were calculated. Inferior and superior endplate surface topographical distribution parameters were calculated. Experimental stiffness, maximum load and work to fracture had the highest correlation with FE-calculated stiffness while experimental ductility measures had highest correlations with FE-calculated average von Mises stress and W-layer to D-layer stiffness ratio. Endplate topography of the vertebra was also associated with its structural ductility and the distribution parameter that best explained this association was kurtosis of inferior endplate topography. Our results indicate that endplate topography variations may provide insight into the mechanisms responsible for vertebral fractures. PMID:20633709
Microstructure-Sensitive Modeling of High Cycle Fatigue (Preprint)
2009-03-01
SUBJECT TERMS microplasticity , microstructure-sensitive modeling, high cycle fatigue, fatigue variability 16. SECURITY CLASSIFICATION OF: 17...3Air Force Research Laboratory Wright Patterson Air Force Base, Ohio 45433 Keywords: Microplasticity , microstructure-sensitive modeling, high cycle...cyclic microplasticity ) plays a key role in modeling fatigue resistance. Unlike effective properties such as elastic stiffness, fatigue is
Itaya, Nobuyuki; Yabe, Yutake; Hagiwara, Yoshihiro; Kanazawa, Kenji; Koide, Masashi; Sekiguchi, Takuya; Yoshida, Shinichirou; Sogi, Yasuhito; Yano, Toshihisa; Tsuchiya, Masahiro; Saijo, Yoshihumi; Itoi, Eiji
2018-06-01
The purpose of this study was to examine the effect of low-intensity pulsed ultrasound (LIPUS) in preventing joint stiffness. Unilateral knee joints were immobilized in two groups of rats (n = 6/period/group). Under general anesthesia, the immobilized knee joints were exposed to LIPUS for 20 min/d, 5 d/wk, using an existing LIPUS device (LIPUS group, 1.5-MHz frequency, 1.0-kHz repetition cycle, 200-µs burst width and 30-mW/cm 2 power output) until endpoints (2, 4 or 6 wk). In the control group, general anesthesia alone was administered in the same manner as in the other group. The variables compared between the groups included joint angles; histologic, histomorphometric and immunohistochemical analyses; quantitative reverse transcription polymerase chain reactions; and tissue elasticity. LIPUS had a preventive effect on joint stiffness, resulting in decreased adhesion, fibrosis and inflammation and hypoxic response after joint immobilization. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal
2017-03-01
The resistance of polymeric materials to time-dependent plastic deformation is an important requirement of the fused deposition modeling (FDM) design process, its processed products, and their application for long-term loading, durability, and reliability. The creep performance of the material and part processed by FDM is the fundamental criterion for many applications with strict dimensional stability requirements, including medical implants, electrical and electronic products, and various automotive applications. Herein, the effect of FDM fabrication conditions on the flexural creep stiffness behavior of polycarbonate-acrylonitrile-butadiene-styrene processed parts was investigated. A relatively new class of experimental design called "definitive screening design" was adopted for this investigation. The effects of process variables on flexural creep stiffness behavior were monitored, and the best suited quadratic polynomial model with high coefficient of determination ( R 2) value was developed. This study highlights the value of response surface definitive screening design in optimizing properties for the products and materials, and it demonstrates its role and potential application in material processing and additive manufacturing.
Identifying Bearing Rotodynamic Coefficients Using an Extended Kalman Filter
NASA Technical Reports Server (NTRS)
Miller, Brad A.; Howard, Samuel A.
2008-01-01
An Extended Kalman Filter is developed to estimate the linearized direct and indirect stiffness and damping force coefficients for bearings in rotor dynamic applications from noisy measurements of the shaft displacement in response to imbalance and impact excitation. The bearing properties are modeled as stochastic random variables using a Gauss-Markov model. Noise terms are introduced into the system model to account for all of the estimation error, including modeling errors and uncertainties and the propagation of measurement errors into the parameter estimates. The system model contains two user-defined parameters that can be tuned to improve the filter's performance; these parameters correspond to the covariance of the system and measurement noise variables. The filter is also strongly influenced by the initial values of the states and the error covariance matrix. The filter is demonstrated using numerically simulated data for a rotor bearing system with two identical bearings, which reduces the number of unknown linear dynamic coefficients to eight. The filter estimates for the direct damping coefficients and all four stiffness coefficients correlated well with actual values, whereas the estimates for the cross-coupled damping coefficients were the least accurate.
Parvin, Sh; Taghiloo, A; Irani, A; Mirbagheri, M Mehdi
2017-07-01
We aimed to study therapeutic effects of antigravity treadmill (AlterG) training on reflex hyper-excitability, muscle stiffness, and corticospinal tract (CST) function in children with spastic hemiplegic cerebral palsy (CP). Three children received AlterG training 3 days per week for 8 weeks as experimental group. Each session lasted 45 minutes. One child as control group received typical occupational therapy for the same amount of time. We evaluated hyper-excitability of lower limb muscles by H-reflex response. We quantified muscle stiffness by sonoelastography images of the affected muscles. We quantified CST activity by transcranial magnetic stimulation (TMS). We performed the evaluations before and after training for both groups. H response latency and maximum M-wave amplitude were improved in experimental group after training compared to control group. Two children of experimental group had TMS response. Major parameters of TMS (i.e. peak-to-peak amplitude of motor evoked potential (MEP), latency of MEP, cortical silent period, and intensity of pulse) improved for both of them. Three parameters of texture analysis of sonoelastography images were improved for experimental group (i.e. contrast, entropy, and shear wave velocity). These findings indicate that AlterG training can improve reflexes, muscle stiffness, and CST activity in children with spastic hemiplegic CP and can be considered as a therapeutic tool to improve neuromuscular abnormalities occurring secondary to CP.
Elias, Merrill F; Crichton, Georgina E; Dearborn, Peter J; Robbins, Michael A; Abhayaratna, Walter P
2018-03-01
The aim of this study was to investigate prospective associations between type 2 diabetes mellitus status and the gold standard non-invasive method for ascertaining arterial stiffness, carotid femoral pulse wave velocity. The prospective analysis employed 508 community-dwelling participants (mean age 61 years, 60% women) from the Maine-Syracuse Longitudinal Study. Pulse wave velocity at wave 7 (2006-2010) was compared between those with type 2 diabetes mellitus at wave 6 (2001-2006) ( n = 52) and non-diabetics at wave 6 ( n = 456), with adjustment for demographic factors, cardiovascular risk factors and lifestyle- and pulse wave velocity-related factors. Type 2 diabetes mellitus status was associated with a significantly higher pulse wave velocity (12.5 ± 0.36 vs. 10.4 ± 0.12 m/s). Multivariate adjustment for other cardiovascular risk factors and lifestyle- and pulse wave velocity-related variables did not attenuate the findings. The risk of an elevated pulse wave velocity (≥12 m/s) was over 9 times higher for those with uncontrolled type 2 diabetes mellitus than for those without diabetes (OR 9.14, 95% CI 3.23-25.9, p < 0.001). Type 2 diabetes mellitus, particularly if uncontrolled, is significantly associated with risk of arterial stiffness later in life. Effective management of diabetes mellitus is an important element of protection from arterial stiffness.
Ranadive, Sushant M.; Lane-Cordova, Abbi D.; Kappus, Rebecca M.; Behun, Michael A.; Cook, Marc D.; Woods, Jeffrey A.; Wilund, Kenneth R.; Baynard, Tracy; Fernhall, Bo
2017-01-01
African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise compared with Caucasians, which may contribute to their higher risk of cardiovascular disease. Furthermore, African Americans exhibit attenuated vasodilator response compared with Caucasians. PMID:27979988
Yan, Huimin; Ranadive, Sushant M; Lane-Cordova, Abbi D; Kappus, Rebecca M; Behun, Michael A; Cook, Marc D; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Halliwill, John R; Fernhall, Bo
2017-02-01
African Americans (AA) exhibit exaggerated central blood pressure (BP) and arterial stiffness measured by pulse wave velocity (PWV) in response to an acute bout of maximal exercise compared with Caucasians (CA). However, whether potential racial differences exist in central BP, elastic, or muscular arterial distensibility after submaximal aerobic exercise remains unknown. Histamine receptor activation mediates sustained postexercise hyperemia in CA but the effect on arterial stiffness is unknown. This study sought to determine the effects of an acute bout of aerobic exercise on central BP and arterial stiffness and the role of histamine receptors, in AA and CA. Forty-nine (22 AA, 27 CA) young and healthy subjects completed the study. Subjects were randomly assigned to take either histamine receptor antagonist or control placebo. Central blood BP and arterial stiffness measurements were obtained at baseline, and at 30, 60, and 90 min after 45 min of moderate treadmill exercise. AA exhibited greater central diastolic BP, elevated brachial PWV, and local carotid arterial stiffness after an acute bout of submaximal exercise compared with CA, which may contribute to their higher risk of cardiovascular disease. Unexpectedly, histamine receptor blockade did not affect central BP or PWV in AA or CA after exercise, but it may play a role in mediating local carotid arterial stiffness. Furthermore, histamine may mediate postexercise carotid arterial dilation in CA but not in AA. These observations provide evidence that young and healthy AA exhibit an exaggerated hemodynamic response to exercise and attenuated vasodilator response compared with CA. NEW & NOTEWORTHY African Americans are at greater risk for developing cardiovascular disease than Caucasians. We are the first to show that young and healthy African Americans exhibit greater central blood pressure, elevated brachial stiffness, and local carotid arterial stiffness following an acute bout of submaximal exercise compared with Caucasians, which may contribute to their higher risk of cardiovascular disease. Furthermore, African Americans exhibit attenuated vasodilator response compared with Caucasians. Copyright © 2017 the American Physiological Society.
Lin, Ming-Ju; Nosaka, Kazunori; Ho, Chih-Chiao; Chen, Hsin-Lian; Tseng, Kuo-Wei; Ratel, Sébastien; Chen, Trevor Chung-Ching
2018-01-01
This study compared changes in indirect muscle damage markers, proprioception and arterial stiffness after elbow flexor eccentric exercise between pre-pubescent (9–10 y), pubescent (14–15 y), and post-pubescent (20–24 y) healthy, untrained females (n = 13/group). The maturation of the participants was confirmed by the hand bone age. All participants performed two bouts of 30 sub-maximal eccentric contractions (EC1, EC2) using a dumbbell set at 60% of pre-exercise maximal voluntary isometric elbow flexion strength at 90°. Changes in maximal voluntary concentric contraction (MVC) torque, muscle soreness (SOR), plasma creatine kinase activity, proprioception (position sense, joint reaction angle) and arterial stiffness (carotid-femoral pulse-wave velocity: cfPWV) before to 5 days after EC1 and EC2 were compared among groups by a mixed-design two-way ANOVA. Pre-exercise MVC torque and cfPWV were smaller (P < 0.05) for the pre-pubescent (MVC: 10.0 ± 0.9 Nm, cfPWV: 903 ± 60 cm/s) and the pubescent (14.3 ± 1.1 Nm, 967 ± 61 cm/s) than the post-pubescent (19.1 ± 1.4 Nm, 1,103 ± 73 cm/s). Changes in all variables after EC1 were smaller (P < 0.05) for the pre-pubescent (e.g., MVC at 1 d post-exercise: −10 ± 6%, peak SOR: 5 ± 2 mm) than the pubescent (−15 ± 9%, 12 ± 6 mm) and the post-pubescent (−25 ± 7%, 19 ± 13 mm). After EC2, changes in all variables were smaller (P < 0.05) than those after EC1 for all groups (e.g., MVC at 1 d post-exercise, pre-pubescent: −4 ± 6%, pubescent: −9 ± 4%, post-pubescent: −14 ± 5%; peak SOR: 3 ± 2, 7 ± 3, 11 ± 6 mm), but the magnitude of the repeated bout effect was not different (P > 0.05) among the groups. These results show that the extents of muscle damage, and proprioception and arterial stiffness changes after eccentric exercise are greater at later stages of maturation, but the repeated bout effect is not affected by maturation. PMID:29354073
Nie, Bingbing; Panzer, Matthew Brian; Mane, Adwait; Mait, Alexander Ritz; Donlon, John-Paul; Forman, Jason Lee; Kent, Richard Wesley
2016-09-01
Ligament sprains account for a majority of injuries to the foot and ankle complex, but ligament properties have not been understood well due to the difficulties in replicating the complex geometry, in situ stress state, and non-uniformity of the strain. For a full investigation of the injury mechanism, it is essential to build up a foot and ankle model validated at the level of bony kinematics and ligament properties. This study developed a framework to parameterize the ligament response for determining the in situ stress state and heterogeneous force-elongation characteristics using a finite element ankle model. Nine major ankle ligaments and the interosseous membrane were modeled as discrete elements corresponding functionally to the ligamentous microstructure of collagen fibers and having parameterized toe region and stiffness at the fiber level. The range of the design variables in the ligament model was determined from existing experimental data. Sensitivity of the bony kinematics to each variable was investigated by design of experiment. The results highlighted the critical role of the length of the toe region of the ligamentous fibers on the bony kinematics with the cumulative influence of more than 95%, while the fiber stiffness was statistically insignificant with an influence of less than 1% under the given variable range and loading conditions. With the flexibility of variable adjustment and high computational efficiency, the presented ankle model was generic in nature so as to maximize its applicability to capture the individual ligament behaviors in future studies.
Reliability and validity of an accele-rometric system for assessing vertical jumping performance.
Choukou, M-A; Laffaye, G; Taiar, R
2014-03-01
The validity of an accelerometric system (Myotest©) for assessing vertical jump height, vertical force and power, leg stiffness and reactivity index was examined. 20 healthy males performed 3×"5 hops in place", 3×"1 squat jump" and 3× "1 countermovement jump" during 2 test-retest sessions. The variables were simultaneously assessed using an accelerometer and a force platform at a frequency of 0.5 and 1 kHz, respectively. Both reliability and validity of the accelerometric system were studied. No significant differences between test and retest data were found (p < 0.05), showing a high level of reliability. Besides, moderate to high intraclass correlation coefficients (ICCs) (from 0.74 to 0.96) were obtained for all variables whereas weak to moderate ICCs (from 0.29 to 0.79) were obtained for force and power during the countermovement jump. With regards to validity, the difference between the two devices was not significant for 5 hops in place height (1.8 cm), force during squat (-1.4 N · kg(-1)) and countermovement (0.1 N · kg(-1)) jumps, leg stiffness (7.8 kN · m(-1)) and reactivity index (0.4). So, the measurements of these variables with this accelerometer are valid, which is not the case for the other variables. The main causes of non-validity for velocity, power and contact time assessment are temporal biases of the takeoff and touchdown moments detection.
RELIABILITY AND VALIDITY OF AN ACCELEROMETRIC SYSTEM FOR ASSESSING VERTICAL JUMPING PERFORMANCE
Laffaye, G.; Taiar, R.
2014-01-01
The validity of an accelerometric system (Myotest©) for assessing vertical jump height, vertical force and power, leg stiffness and reactivity index was examined. 20 healthy males performed 3ד5 hops in place”, 3ד1 squat jump” and 3× “1 countermovement jump” during 2 test-retest sessions. The variables were simultaneously assessed using an accelerometer and a force platform at a frequency of 0.5 and 1 kHz, respectively. Both reliability and validity of the accelerometric system were studied. No significant differences between test and retest data were found (p < 0.05), showing a high level of reliability. Besides, moderate to high intraclass correlation coefficients (ICCs) (from 0.74 to 0.96) were obtained for all variables whereas weak to moderate ICCs (from 0.29 to 0.79) were obtained for force and power during the countermovement jump. With regards to validity, the difference between the two devices was not significant for 5 hops in place height (1.8 cm), force during squat (-1.4 N · kg−1) and countermovement (0.1 N · kg−1) jumps, leg stiffness (7.8 kN · m−1) and reactivity index (0.4). So, the measurements of these variables with this accelerometer are valid, which is not the case for the other variables. The main causes of non-validity for velocity, power and contact time assessment are temporal biases of the takeoff and touchdown moments detection. PMID:24917690
Unified continuum damage model for matrix cracking in composite rotor blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollayi, Hemaraju; Harursampath, Dineshkumar
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system undermore » various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.« less
Pingel, Jessica; Wienecke, Jacob; Lorentzen, Jakob
2016-01-01
Botulinum toxin is used with the intention of diminishing spasticity and reducing the risk of development of contractures. Here, we investigated changes in muscle stiffness caused by reflex activity or elastic muscle properties following botulinum toxin injection in the triceps surae muscle in rats. Forty-four rats received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the noninjected contralateral side in all rats. Acute experiments were performed, 1, 2, 4, and 8 wk following injection. The triceps surae muscle was dissected free, and the Achilles tendon was cut and attached to a muscle puller. The resistance of the muscle to stretches of different amplitudes and velocities was systematically investigated. Reflex-mediated torque was normalized to the maximal muscle force evoked by supramaximal stimulation of the tibial nerve. Botulinum toxin injection caused severe atrophy of the triceps surae muscle at all time points. The force generated by stretch reflex activity was also strongly diminished but not to the same extent as the maximal muscle force at 2 and 4 wk, signifying a relative reflex hyperexcitability. Passive muscle stiffness was unaltered at 1 wk but increased at 2, 4, and 8 wk (P < 0.01). These data demonstrate that botulinum toxin causes a relative increase in reflex stiffness, which is likely caused by compensatory neuroplastic changes. The stiffness of elastic elements in the muscles also increased. The data are not consistent with the ideas that botulinum toxin is an efficient antispastic medication or that it may prevent development of contractures. PMID:27628204
2014-01-01
Background This study examined whether passive hamstring tissue stiffness and/or stretch tolerance explain the relationship between sex and hamstring extensibility. Methods Ninety healthy participants, 45 men and 45 women (mean ± SD; age 24.6 ± 5.9 years, height 1.72 ± 0.09 m, weight 74.6 ± 14.1 kg) volunteered for this study. The instrumented straight leg raise was used to determine hamstring extensibility and allow measurement of stiffness and stretch tolerance (visual analog pain score, VAS). Results Hamstring extensibility was 9.9° greater in women compared to men (p = 0.003). VAS scores were 16 mm lower in women (p = 0.001). Maximal stiffness (maximal applied torque) was not different between men and women (p = 0.42). Passive stiffness (slope from 20-50° hip flexion) was 0.09 Nm.°-1 lower in women (p = 0.025). For women, linear and stepwise regression showed that no predictor variables were associated with hamstring extensibility (adjusted r2 = -0.03, p = 0.61). For men, 44% of the variance in hamstring extensibility was explained by VAS and maximal applied torque (adjusted r2 = 0.44, p < 0.001), with 41% of the model accounted for by the relationship between higher VAS scores and lower extensibility (standardized β coefficient = -0.64, p < 0.001). Conclusions The results of this study suggest that stretch tolerance and not passive stiffness explains hamstring extensibility, but this relationship is only manifest in men. PMID:25000977
Effect of a novel sterilization method on biomechanical properties of soft tissue allografts.
Baldini, T; Caperton, K; Hawkins, M; McCarty, E
2016-12-01
Evaluate allograft tissue commonly used in soft tissue reconstruction to determine whether stiffness and strength were significantly altered after grafts were treated with different sterilization methods. Unprocessed, irradiated, and grafts treated with supercritical CO 2 were compared. Thirty-eight anterior or posterior tibialis tendons were obtained from a tissue bank (Allograft Innovations, Gainesville, FL). Group I was unprocessed, group II was sterilized with gamma irradiation (20-28 kGy), and group III was sterilized with supercritical CO 2 . The grafts were pretensioned to 89 N for 300 s. Specimens were then loaded from 50 to 300 N at 0.5 Hz for 250 cycles before being loaded to failure at 50 mm/min. Dependent variables were compared between sterilization groups with one-way ANOVA (P < 0.05) and equivalence trial. There was no significant difference in load to failure or failure stress among groups I, II, and III. Group III resulted in 27-36 % lower stiffness than group I and II. This difference was significant at 1, 10, 50, 100, and 250 cycles. There was no significant difference in stiffness between group I and group II. The two sterilization methods tested in this study do not affect allograft strength. The supercritical CO 2 sterilization method resulted in significantly lower stiffness than unprocessed and irradiated allografts. However, the stiffness and strength of all groups tested were greater than that of published values of the native intact anterior cruciate ligament (ACL). This study provides previously unpublished mechanical test data on a new sterilization technique that will assist surgeons to decide which allograft to use in ACL reconstruction surgery. III.
Hepatic fibrosis and factors associated with liver stiffness in HIV mono-infected individuals
Ferenci, Tamás; Makara, Mihály; Horváth, Gábor; Szlávik, János; Rupnik, Zsófia; Kormos, Luca; Gerlei, Zsuzsanna; Sulyok, Zita; Vályi-Nagy, István
2017-01-01
Background Liver disease has become an important cause of morbidity and mortality even in those HIV-infected individuals who are devoid of hepatitis virus co-infection. The aim of this study was to evaluate the degree of hepatic fibrosis and the role of associated factors using liver stiffness measurement in HIV mono-infected patients without significant alcohol intake. Methods We performed a cross-sectional study of 101 HIV mono-infected patients recruited prospectively from March 1, 2014 to October 30, 2014 at the Center for HIV, St István and St László Hospital, Budapest, Hungary. To determine hepatic fibrosis, liver stiffness was measured with transient elastography. Demographic, immunologic and other clinical parameters were collected to establish a multivariate model. Bayesian Model Averaging (BMA) was performed to identify predictors of liver stiffness. Results Liver stiffness ranged from 3.0–34.3 kPa, with a median value of 5.1 kPa (IQR 1.7). BMA provided a very high support for age (Posterior Effect Probability-PEP: 84.5%), moderate for BMI (PEP: 49.3%), CD4/8 ratio (PEP: 44.2%) and lipodystrophy (PEP: 44.0%). For all remaining variables, the model rather provides evidence against their effect. These results overall suggest that age and BMI have a positive association with LS, while CD4/8 ratio and lipodystrophy are negatively associated. Discussion Our findings shed light on the possible importance of ageing, overweight and HIV-induced immune dysregulation in the development of liver fibrosis in the HIV-infected population. Nonetheless, further controlled studies are warranted to clarify causal relations. PMID:28097068
Cussons, Andrea J; Watts, Gerald F; Stuckey, Bronwyn G A
2009-12-01
Polycystic ovary syndrome (PCOS) is associated with cardiovascular risk but it is not clear if this is independent of obesity and insulin resistance. This study therefore investigates endothelial function and arterial stiffness in nonobese, noninsulin resistant women with PCOS. This is cross-sectional case-control study. A total of 19 young women with PCOS, with body mass index (BMI) <30 kg/m(2), and 19 healthy controls matched for age and BMI were included in the study. Endothelial function was assessed with flow mediated dilatation (FMD) of the brachial artery, while arterial stiffness was assessed with pulse wave velocity (PWV) and augmentation index (AI). There were no significant differences between PCOS and control subjects when assessing the following clinical and biochemical variables: blood pressure, homeostasis model assessment insulin-resistance index, lipids and oestradiol. Women with PCOS had higher free androgen index scores (5.14 ± 3.47 vs. 3.25 ± 1.42, P = 0.036). The PCOS subjects had significantly lower FMD of the brachial artery compared with the controls (6.5 ± 2.9%vs. 10.5 ± 4.0%, P < 0.01). There were no significant differences in markers of arterial stiffness (PWV 5.8 ± 1.1 vs. 6.0 ± 1.0, P = 0.58, AI 16.5 ± 10.2 vs. 20.3 ± 10.2, P = 0.25). Women with polycystic ovary syndrome who are young, nonobese, and have no biochemical evidence of insulin resistance, have abnormal vascular function, but normal arterial stiffness, when compared with age and weight matched control subjects. Whether this leads to a greater risk of cardiovascular disease requires further investigation. © 2009 Blackwell Publishing Ltd.
Ushigome, Emi; Fukui, Michiaki; Hamaguchi, Masahide; Tanaka, Toru; Atsuta, Haruhiko; Mogami, Shin-ichi; Tsunoda, Sei; Yamazaki, Masahiro; Hasegawa, Goji; Nakamura, Naoto
2014-09-01
Maximum (max) home systolic blood pressure (HSBP) as well as mean HSBP or HSBP variability was reported to increase the predictive value of target organ damage. Yet, the association between max HSBP and target organ damage in patients with type 2 diabetes has never been reported. The aim of this study was to investigate the association between max HSBP and pulse wave velocity (PWV), a marker of arterial stiffness which in turn is a marker of target organ damage, in patients with type 2 diabetes. We assessed the relationship of mean HSBP or max HSBP to PWV, and compared area under the receiver-operating characteristic curve (AUC) of mean HSBP or max HSBP for arterial stiffness in 758 patients with type 2 diabetes. In the univariate analyses, age, duration of diabetes mellitus, body mass index, mean clinic systolic blood pressure (SBP), mean HSBP and max HSBP were associated with PWV. Multivariate linear regression analyses indicated that mean morning SBP (β=0.156, P=0.001) or max morning SBP (β=0.146, P=0.001) were significantly associated with PWV. AUC (95% CI) for arterial stiffness, defined as PWV equal to or more than 1800 cm per second, in mean morning SBP and max morning SBP were 0.622 (0.582-0.662; P<0.001) and 0.631 (0.591-0.670; P<0.001), respectively. Our findings implicate that max HSBP as well as mean HSBP was significantly associated with arterial stiffness in patients with type 2 diabetes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Relations Between Aortic Stiffness and Left Ventricular Mechanical Function in the Community.
Bell, Vanessa; McCabe, Elizabeth L; Larson, Martin G; Rong, Jian; Merz, Allison A; Osypiuk, Ewa; Lehman, Birgitta T; Stantchev, Plamen; Aragam, Jayashri; Benjamin, Emelia J; Hamburg, Naomi M; Vasan, Ramachandran S; Mitchell, Gary F; Cheng, Susan
2017-01-09
Aortic stiffness impairs optimal ventricular-vascular coupling and left ventricular systolic function, particularly in the long axis. Left ventricular global longitudinal strain (GLS) has recently emerged as a sensitive measure of early cardiac dysfunction. In this study, we investigated the relation between aortic stiffness and GLS in a large community-based sample. In 2495 participants (age 39-90 years, 57% women) of the Framingham Offspring and Omni cohorts, free of cardiovascular disease, we performed tonometry to measure arterial hemodynamics and echocardiography to assess cardiac function. Aortic stiffness was evaluated as carotid-femoral pulse wave velocity and as characteristic impedance, and GLS was calculated using speckle tracking-based measurements. In multivariable analyses adjusting for age, sex, height, systolic blood pressure, augmentation index, left ventricular structure, and additional cardiovascular risk factors, increased carotid-femoral pulse wave velocity (B±SE: 0.122±0.030% strain per SD, P<0.0001) and characteristic impedance (0.090±0.029, P=0.002) were both associated with worse GLS. We observed effect modification by sex on the relation between characteristic impedance and GLS (P=0.004); in sex-stratified multivariable analyses, the relation between greater characteristic impedance and worse GLS persisted in women (0.145±0.039, P=0.0003) but not in men (P=0.73). Multiple measures of increased aortic stiffness were cross-sectionally associated with worse GLS after adjusting for hemodynamic variables. Parallel reductions in left ventricular long axis shortening and proximal aortic longitudinal strain in individuals with a stiffened proximal aorta, from direct mechanical ventricular-vascular coupling, offers an alternative explanation for the observed relations. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Xiao, Wen-Kai; Ye, Ping; Bai, Yong-Yi; Luo, Lei-Ming; Wu, Hong-Mei; Gao, Peng
2015-01-01
To investigate the differences in central hemodynamic indices between hypertensive and normotensive subjects and identify the blood pressure index that the most strongly correlate with arterial stiffness and vascular damage markers. A cohort of 820 hypertensive patients and 820 normotensive individuals matched for age and gender were enrolled in this study. We measured carotid-femoral and carotid-radial pulse wave velocity (PWV), aortic augmentation index (AIx) and central blood pressures using pulse wave analysis and applanation tonometry. Plasma homocysteine (HCY), high-sensitivity C-reactive protein (hsCRP) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) were also tested in these subjects. In both hypertensive and normotensive subjects, the central systolic blood pressure (SBP) and pulse pressure (PP) were significantly lower than brachial SBP and PP; this PP amplification was significantly lower in the normotensives (9.85∓6.55 mmHg) than in the hypertensives (12.64∓6.69 mmHg), but the amplification ratios were comparable between the two groups. Blood pressure and age were closely related with aortic arterial stiffness. Compared with normotensive subjects, hypertensive subjects had higher carotid-femoral PWV and AIx, and showed significantly lowered PP amplification ratio with age. Central PP was more strongly related to arterial stiffness and vascular damage markers than the other pressure indices. Multivariate analyses revealed that carotid-femoral PWV and aortic AIx were strongly influenced by central PP but not by the mean blood pressure or brachial PP. The central PP is a more direct indicator of central arterial stiffness and a better marker of vascular aging than other blood pressure variables. These findings support the use of central blood pressure as a treatment target in future trials.
Can chronic stretching change the muscle-tendon mechanical properties? A review.
Freitas, S R; Mendes, B; Le Sant, G; Andrade, R J; Nordez, A; Milanovic, Z
2018-03-01
It is recognized that stretching is an effective method to chronically increase the joint range of motion. However, the effects of stretching training on the muscle-tendon structural properties remain unclear. This systematic review with meta-analysis aimed to determine whether chronic stretching alter the muscle-tendon structural properties. Published papers regarding longitudinal stretching (static, dynamic and/or PNF) intervention (either randomized or not) in humans of any age and health status, with more than 2 weeks in duration and at least 2 sessions per week, were searched in PubMed, PEDro, ScienceDirect and ResearchGate databases. Structural or mechanical variables from joint (maximal tolerated passive torque or resistance to stretch) or muscle-tendon unit (muscle architecture, stiffness, extensibility, shear modulus, volume, thickness, cross-sectional area, and slack length) were extracted from those papers. A total of 26 studies were selected, with a duration ranging from 3 to 8 weeks, and an average total time under stretching of 1165 seconds per week. Small effects were seen for maximal tolerated passive torque, but trivial effects were seen for joint resistance to stretch, muscle architecture, muscle stiffness, and tendon stiffness. A large heterogeneity was seen for most of the variables. Stretching interventions with 3- to 8-week duration do not seem to change either the muscle or the tendon properties, although it increases the extensibility and tolerance to a greater tensile force. Adaptations to chronic stretching protocols shorter than 8 weeks seem to mostly occur at a sensory level. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Anderson, W.; Eshghinejad, A.; Azadegan, R.; Cooper, C.; Elahinia, M.
2013-09-01
Smart materials have gained a great deal of attention in recent years because of their unique actuation properties. Actuators are needed in the medical field where space is limited. Presented within this work is an organ positioner used to position the esophagus away from the left atrium to avoid the development of an esophageal fistula during atrial fibrillation (afib) ablation procedures. Within this work, a subroutine was implemented into the finite element framework to predict the midspan load capacity of a near equiatomic NiTi specimen in both the super elastic and shape memory regimes. The purpose of the simulations and experimental results was to develop a design envelope for the organ positioning device. The transverse loading experiments were conducted at several different temperatures leading to the ability to design a variable stiffness actuator. This is essential because the actuator must not be too stiff to injure the organ it is positioning. Extended further, geometric perturbations were applied in the virtual model and the entire design envelope was developed. Further, nitinol was tested for safety in the radio-frequency environment (to ensure that local heating will not occur in the ablation environment). With the safety of the device confirmed, a primitive prototype was manufactured and successfully tested in a cadaver. The design of the final device is also presented. The contribution of this work is the presentation of a new type of positoning device for medical purposes (NiTiBOP). In the process a comprehensive model for transverse actuation of an SMA actuator was developed and experimentally verified.
Muscular contribution to low-back loading and stiffness during standard and suspended push-ups.
Beach, Tyson A C; Howarth, Samuel J; Callaghan, Jack P
2008-06-01
Push-up exercises are normally performed to challenge muscles that span upper extremity joints. However, it is also recognized that push-ups provide an effective abdominal muscle challenge, especially when the hands are in contact with a labile support surface. The purpose of this study was to compare trunk muscle activation levels and resultant intervertebral joint (IVJ) loading when standard and suspended push-ups were performed, and to quantify and compare the contribution of trunk muscles to IVJ rotational stiffness in both exercises. Eleven recreationally trained male volunteers performed sets of standard and suspended push-ups. Upper body kinematic, kinetic, and EMG data were collected and input into a 3D biomechanical model of the lumbar torso to quantify lumbar IVJ loading and the contributions of trunk muscles to IVJ rotational stiffness. When performing suspended push-ups, muscles of the abdominal wall and the latissimus dorsi were activated to levels that were significantly greater than those elicited when performing standard push-ups (p<.05). As a direct result of these increased activation levels, model-predicted muscle forces increased and consequently led to significantly greater mean (p=.0008) and peak (p=.0012) lumbar IVJ compressive forces when performing suspended push-ups. Also directly resulting from the increased activation levels of the abdominal muscles and the latissimus dorsi during suspended push-ups was increased muscular contribution to lumbar IVJ rotational stiffness (p<.05). In comparison to the standard version of the exercise, suspended push-ups appear to provide a superior abdominal muscle challenge. However, for individuals unable to tolerate high lumbar IVJ compressive loads, potential benefits gained by incorporating suspended push-ups into their resistance training regimen may be outweighed by the risk of overloading low-back tissues.
Zhao, Shifu; Cheng, Rongchuan; Zheng, Jian; Li, Qianning; Wang, Jingzhou; Fan, Wenhui; Zhang, Lili; Zhang, Yanling; Li, Hongzeng; Liu, Shuxiao
2015-10-01
The primary objective was to evaluate the efficacy and safety of droxidopa as add-on therapy in improving stiffness, tremors and other motor functions and activities of daily living for moderate-to-severe Parkinson's disease (PD). PD patients, above Hoehn-Yahr III (including Hoehn-Yahr III), were randomly assigned to drug therapy (droxidopa 600 mg/day for 8 weeks) or placebo. Efficacy indicators were the Unified Parkinson's Disease Rating Scale (UPDRS) part I, II, III subscale, Clinical Global Impression (CGI) rating score, and individual symptom scores (e.g. stiffness, tremors), to evaluate motor function and activities of daily life. There are 109 patients in the droxidopa group, and 110 in the placebo group, at baseline, there were no differences between the two groups for age, body weight, disease severity and previous drugs therapy. At days 14 and 57 of droxidopa add on treatment, UPDRS-II scores reflecting activities of daily life and UPDRS-III scores reflecting motor functions were significantly different compared to the pre-treatment baseline scores (P < 0.01), UPDRS- II and UPDRS-III scores at day 14 and day 57 were also significantly different (P < 0.01) between the two groups. Individual motor symptoms such as stiffness, resting tremor, and alternate hand motion were also significantly improved with droxidopa on days 14 and 57 of treatment (P < 0.01 vs placebo), showing that droxidopa is effective in improving rigidity, tremor and alternate motion of hand. Droxidopa was effective as symptomatic adjunct therapy, improved significantly motor function and activities of daily living, benefited patients with signs of tremor and Stiffness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Müller, Christian W.; Pfeifer, Ronny; Meier, Karen; Decker, Sebastian; Reifenrath, Janin; Gösling, Thomas; Wesling, Volker; Krettek, Christian; Krämer, Manuel
2015-01-01
Nickel-titanium shape memory alloy (NiTi-SMA) implants might allow modulating fracture healing, changing their stiffness through alteration of both elastic modulus and cross-sectional shape by employing the shape memory effect (SME). Hypotheses: a novel NiTi-SMA plate stabilizes tibia osteotomies in rabbits. After noninvasive electromagnetic induction heating the alloy exhibits the SME and the plate changes towards higher stiffness (inverse dynamization) resulting in increased fixation stiffness and equal or better bony healing. In 14 rabbits, 1.0 mm tibia osteotomies were fixed with our experimental plate. Animals were randomised for control or induction heating at three weeks postoperatively. Repetitive X-ray imaging and in vivo measurements of bending stiffness were performed. After sacrifice at 8 weeks, macroscopic evaluation, µCT, and post mortem bending tests of the tibiae were carried out. One death and one early implant dislocation occurred. Following electromagnetic induction heating, radiographic and macroscopic changes of the implant proved successful SME activation. All osteotomies healed. In the treatment group, bending stiffness increased over time. Differences between groups were not significant. In conclusion, we demonstrated successful healing of rabbit tibia osteotomies using our novel NiTi-SMA plate. We demonstrated shape-changing SME in-vivo through transcutaneous electromagnetic induction heating. Thus, future orthopaedic implants could be modified without additional surgery. PMID:26167493
MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells
NASA Astrophysics Data System (ADS)
Li, Chen Xi; Talele, Nilesh P.; Boo, Stellar; Koehler, Anne; Knee-Walden, Ericka; Balestrini, Jenna L.; Speight, Pam; Kapus, Andras; Hinz, Boris
2017-03-01
Expansion on stiff culture substrates activates pro-fibrotic cell programs that are retained by mechanical memory. Here, we show that priming on physiologically soft silicone substrates suppresses fibrogenesis and desensitizes mesenchymal stem cells (MSCs) against subsequent mechanical activation in vitro and in vivo, and identify the microRNA miR-21 as a long-term memory keeper of the fibrogenic program in MSCs. During stiff priming, miR-21 levels were gradually increased by continued regulation through the acutely mechanosensitive myocardin-related transcription factor-A (MRTF-A/MLK-1) and remained high over 2 weeks after removal of the mechanical stimulus. Knocking down miR-21 once by the end of the stiff-priming period was sufficient to erase the mechanical memory and sensitize MSCs to subsequent exposure to soft substrates. Soft priming and erasing mechanical memory following cell culture expansion protects MSCs from fibrogenesis in the host wound environment and increases the chances for success of MSC therapy in tissue-repair applications.
2011-01-01
Background Idiopathic Toe Walking (ITW) is present in children older than 3 years of age still walking on their toes without signs of neurological, orthopaedic or psychiatric diseases. ITW has been estimated to occur in 7% to 24% of the childhood population. To study associations between Idiopathic Toe Walking (ITW) and decrease in range of joint motion of the ankle joint. To study associations between ITW (with stiff ankles) and stiffness in other joints, muscle strength and bone density. Methods In a cross-sectional study, 362 healthy children, adolescents and young adults (mean age (sd): 14.2 (3.9) years) participated. Range of joint motion (ROM), muscle strength, anthropometrics sport activities and bone density were measured. Results A prevalence of 12% of ITW was found. Nine percent had ITW and severely restricted ROM of the ankle joint. Children with ITW had three times higher chance of severe ROM restriction of the ankle joint. Participants with ITW and stiff ankle joints had a decreased ROM in other joints, whereas bone density and muscle strength were comparable. Conclusion ITW and a decrease in ankle joint ROM might be due to local stiffness. Differential etiological diagnosis should be considered. PMID:21418634
Engelbert, Raoul; Gorter, Jan Willem; Uiterwaal, Cuno; van de Putte, Elise; Helders, Paul
2011-03-21
Idiopathic Toe Walking (ITW) is present in children older than 3 years of age still walking on their toes without signs of neurological, orthopaedic or psychiatric diseases. ITW has been estimated to occur in 7% to 24% of the childhood population. To study associations between Idiopathic Toe Walking (ITW) and decrease in range of joint motion of the ankle joint. To study associations between ITW (with stiff ankles) and stiffness in other joints, muscle strength and bone density. In a cross-sectional study, 362 healthy children, adolescents and young adults (mean age (sd): 14.2 (3.9) years) participated. Range of joint motion (ROM), muscle strength, anthropometrics sport activities and bone density were measured. A prevalence of 12% of ITW was found. Nine percent had ITW and severely restricted ROM of the ankle joint. Children with ITW had three times higher chance of severe ROM restriction of the ankle joint. Participants with ITW and stiff ankle joints had a decreased ROM in other joints, whereas bone density and muscle strength were comparable. ITW and a decrease in ankle joint ROM might be due to local stiffness. Differential etiological diagnosis should be considered.
Damage detection on sudden stiffness reduction based on discrete wavelet transform.
Chen, Bo; Chen, Zhi-wei; Wang, Gan-jun; Xie, Wei-ping
2014-01-01
The sudden stiffness reduction in a structure may cause the signal discontinuity in the acceleration responses close to the damage location at the damage time instant. To this end, the damage detection on sudden stiffness reduction of building structures has been actively investigated in this study. The signal discontinuity of the structural acceleration responses of an example building is extracted based on the discrete wavelet transform. It is proved that the variation of the first level detail coefficients of the wavelet transform at damage instant is linearly proportional to the magnitude of the stiffness reduction. A new damage index is proposed and implemented to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. Numerical simulation using a five-story shear building under different types of excitation is carried out to assess the effectiveness and reliability of the proposed damage index for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also investigated. The made observations demonstrate that the proposed damage index can accurately identify the sudden damage events if the noise intensity is limited.
Effects of warm-up on hamstring muscles stiffness: Cycling vs foam rolling.
Morales-Artacho, A J; Lacourpaille, L; Guilhem, G
2017-12-01
This study investigated the effects of active and/or passive warm-up tasks on the hamstring muscles stiffness through elastography and passive torque measurements. On separate occasions, fourteen males randomly completed four warm-up protocols comprising Control, Cycling, Foam rolling, or Cycling plus Foam rolling (Mixed). The stiffness of the hamstring muscles was assessed through shear wave elastography, along with the passive torque-angle relationship and maximal range of motion (ROM) before, 5, and 30 minutes after each experimental condition. At 5 minutes, Cycling and Mixed decreased shear modulus (-10.3% ± 5.9% and -7.7% ± 8.4%, respectively; P≤.0003, effect size [ES]≥0.24) and passive torque (-7.17% ± 8.6% and -6.2% ± 7.5%, respectively; P≤.051, ES≥0.28), and increased ROM (+2.9% ± 2.9% and +3.2% ± 3.5%, respectively; P≤.001, ES≥0.30); 30 minutes following Mixed, shear modulus (P=.001, ES=0.21) and passive torque (P≤.068, ES≥0.2) were still slightly decreased, while ROM increased (P=.046, ES=0.24). Foam rolling induced "small" immediate short-term decreases in shear modulus (-5.4% ± 5.7% at 5 minutes; P=.05, ES=0.21), without meaningful changes in passive torque or ROM at any time point (P≥.12, ES≤0.23). These results suggest that the combined warm-up elicited no acute superior effects on muscle stiffness compared with cycling, providing evidence for the key role of active warm-up to reduce muscle stiffness. The time between warm-up and competition should be considered when optimizing the effects on muscle stiffness. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Inouye, Joshua M; Valero-Cuevas, Francisco J
2016-02-01
Much debate has arisen from research on muscle synergies with respect to both limb impedance control and energy consumption. Studies of limb impedance control in the context of reaching movements and postural tasks have produced divergent findings, and this study explores whether the use of synergies by the central nervous system (CNS) can resolve these findings and also provide insights on mechanisms of energy consumption. In this study, we phrase these debates at the conceptual level of interactions between neural degrees of freedom and tasks constraints. This allows us to examine the ability of experimentally-observed synergies--correlated muscle activations--to control both energy consumption and the stiffness component of limb endpoint impedance. In our nominal 6-muscle planar arm model, muscle synergies and the desired size, shape, and orientation of endpoint stiffness ellipses, are expressed as linear constraints that define the set of feasible muscle activation patterns. Quadratic programming allows us to predict whether and how energy consumption can be minimized throughout the workspace of the limb given those linear constraints. We show that the presence of synergies drastically decreases the ability of the CNS to vary the properties of the endpoint stiffness and can even preclude the ability to minimize energy. Furthermore, the capacity to minimize energy consumption--when available--can be greatly affected by arm posture. Our computational approach helps reconcile divergent findings and conclusions about task-specific regulation of endpoint stiffness and energy consumption in the context of synergies. But more generally, these results provide further evidence that the benefits and disadvantages of muscle synergies go hand-in-hand with the structure of feasible muscle activation patterns afforded by the mechanics of the limb and task constraints. These insights will help design experiments to elucidate the interplay between synergies and the mechanisms of learning, plasticity, versatility and pathology in neuromuscular systems.
Strength and stiffness assessment of standing trees using a nondestructive stress wave technique.
Xiping Wang; Robert J. Ross; Michael McClellan; R. James Barbour; John R. Erickson; John W. Forsman; Gary D. McGinnis
Natureas engineering of wood through genetics, stand conditions, and environment creates wide variability in wood as a material, which in turn introduces difficulties in wood processing and utilization. Manufacturers sometimes find it difficult to consistently process wood into quality products because of its wide range of properties. The primary objective of this...
The role of titin in eccentric muscle contraction.
Herzog, Walter
2014-08-15
Muscle contraction and force regulation in skeletal muscle have been thought to occur exclusively through the relative sliding of and the interaction between the contractile filaments actin and myosin. While this two-filament sarcomere model has worked well in explaining the properties of isometrically and concentrically contracting muscle, it has failed miserably in explaining experimental observations in eccentric contractions. Here, I suggest, and provide evidence, that a third filament, titin, is involved in force regulation of sarcomeres by adjusting its stiffness in an activation-dependent (calcium) and active force-dependent manner. Upon muscle activation, titin binds calcium at specific sites, thereby increasing its stiffness, and cross-bridge attachment to actin is thought to free up binding sites for titin on actin, thereby reducing titin's free-spring length, thus increasing its stiffness and force upon stretch of active muscle. This role of titin as a third force regulating myofilament in sarcomeres, although not fully proven, would account for many of the unexplained properties of eccentric muscle contraction, while simultaneously not affecting the properties predicted by the two-filament cross-bridge model in isometric and concentric muscle function. Here, I identify the problems of the two-filament sarcomere model and demonstrate the advantages of the three-filament model by providing evidence of titin's contribution to active force in eccentric muscle function. © 2014. Published by The Company of Biologists Ltd.
Multanen, Juhani; Häkkinen, Arja; Heikkinen, Pauli; Kautiainen, Hannu; Mustalampi, Sirpa; Ylinen, Jari
2018-04-30
Low-energy pulsed electromagnetic field (PEMF) therapy has been suggested as a promising therapy to increase microcirculation, which is of great concern in patients with fibromyalgia. This study evaluated the effectiveness of PEMF therapy on the treatment of fibromyalgia. A group of 108 women with fibromyalgia were allocated to a 12-week treatment period with an active Bio-Electro-Magnetic-Energy-Regulation (BEMER) device and a similar treatment period with an inactive device. Each patient received active and sham treatments in a random order. Pain and stiffness were assessed on a visual analog scale (VAS, scale 0-100 mm), and functional status was assessed by the Fibromyalgia Impact Questionnaire (FIQ). Mean VAS pain scores before the active and sham treatment periods were 66 (SD 22) and 63 (SD 22), respectively. After treatment periods, mean VAS pain scores had decreased significantly in active treatment, -12, 95% CI [-18, -6], and in sham treatment, -11, 95% CI [-17, -5]. Similarly, the decrease in stiffness and FIQ index after both treatments was statistically significant. However, per-protocol analysis showed no differences between active and sham treatments at any of the outcomes. This study demonstrated that low-energy PEMF therapy was not efficient in reducing pain and stiffness or in improving functioning in women with fibromyalgia. Bioelectromagnetics. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Variable-Force Eddy-Current Damper
NASA Technical Reports Server (NTRS)
Cunningham, R. E.
1986-01-01
Variable damping achieved without problems of containing viscous fluids. Eddy-current damping obtained by moving copper or aluminum conductors through magnetic fields. Position of magnet carrier determines amount of field engagement and, therefore, amount of damping. Three advantages of concept: Magnitudes of stiffness and damping continously varied from maximum to zero without bringing rotor or shaft to stop; used in rotating machines not having viscous fluids available such as lubricating oils; produces sizable damping forces in machines that pump liquid hydrogen at - 246 degrees C and liquid oxygen at - 183 degrees C and are compact in size.
Shape control of structures with semi-definite stiffness matrices for adaptive wings
NASA Astrophysics Data System (ADS)
Austin, Fred; Van Nostrand, William C.; Rossi, Michael J.
1993-09-01
Maintaining an optimum-wing cross section during transonic cruise can dramatically reduce the shock-induced drag and can result in significant fuel savings and increased range. Our adaptive-wing concept employs actuators as truss elements of active ribs to reshape the wing cross section by deforming the structure. In our previous work, to derive the shape control- system gain matrix, we developed a procedure that requires the inverse of the stiffness matrix of the structure without the actuators. However, this method cannot be applied to designs where the actuators are required structural elements since the stiffness matrices are singular when the actuator are removed. Consequently, a new method was developed, where the order of the problem is reduced and only the inverse of a small nonsingular partition of the stiffness matrix is required to obtain the desired gain matrix. The procedure was experimentally validated by achieving desired shapes of a physical model of an aircraft-wing rib. The theory and test results are presented.
Numerical Study on Section Constitutive Relations of Members Reinforced by Steel-BFRP Composite Bars
NASA Astrophysics Data System (ADS)
Xiao, Tongliang; Qiu, Hongxing
2017-06-01
Steel-Basalt FRP Composite Bar (S-BFCB) is a new kind of substitute material for longitudinal reinforcement, with high elastic modulus, stable post-yield stiffness and excellent corrosive resistance. Based on mechanical properties of S-BFCB and the plane cross-section assumption, the moment-curvature curves of beam and column members are simulated. Some parameters such as equivalent rebar ratio, postyeild stiffness, concrete strength and axial compression ratio of column were discussed. Results show that the constitutive relation of the cross section is similar with RC member in elastic and cracking stages, while different in post-yield stage. With the increase of postyeild stiffness ratio of composite bar, the ultimate bearing capacity of component improved observably, member may turn out over-reinforced phenomenon, concrete crushing may appear before the fibersarefractured. The effect of concrete strength increase in lower postyeild stiffness ratio is not obvious than in higher. The increase of axial compression ratio has actively influence on bearing capacity of column, but decreases on the ductility.
Nonlinear Krylov and moving nodes in the method of lines
NASA Astrophysics Data System (ADS)
Miller, Keith
2005-11-01
We report on some successes and problem areas in the Method of Lines from our work with moving node finite element methods. First, we report on our "nonlinear Krylov accelerator" for the modified Newton's method on the nonlinear equations of our stiff ODE solver. Since 1990 it has been robust, simple, cheap, and automatic on all our moving node computations. We publicize further trials with it here because it should be of great general usefulness to all those solving evolutionary equations. Second, we discuss the need for reliable automatic choice of spatially variable time steps. Third, we discuss the need for robust and efficient iterative solvers for the difficult linearized equations (Jx=b) of our stiff ODE solver. Here, the 1997 thesis of Zulu Xaba has made significant progress.
Human-like Compliance for Dexterous Robot Hands
NASA Technical Reports Server (NTRS)
Jau, Bruno M.
1995-01-01
This paper describes the Active Electromechanical Compliance (AEC) system that was developed for the Jau-JPL anthropomorphic robot. The AEC system imitates the functionality of the human muscle's secondary function, which is to control the joint's stiffness: AEC is implemented through servo controlling the joint drive train's stiffness. The control strategy, controlling compliant joints in teleoperation, is described. It enables automatic hybrid position and force control through utilizing sensory feedback from joint and compliance sensors. This compliant control strategy is adaptable for autonomous robot control as well. Active compliance enables dual arm manipulations, human-like soft grasping by the robot hand, and opens the way to many new robotics applications.
Oosterveld, Fredrikus G J; Rasker, Johannes J; Floors, Mark; Landkroon, Robert; van Rennes, Bob; Zwijnenberg, Jan; van de Laar, Mart A F J; Koel, Gerard J
2009-01-01
To study the effects of infrared (IR) Sauna, a form of total-body hyperthermia in patients with rheumatoid arthritis (RA) and ankylosing spondylitis (AS) patients were treated for a 4-week period with a series of eight IR treatments. Seventeen RA patients and 17 AS patients were studied. IR was well tolerated, and no adverse effects were reported, no exacerbation of disease. Pain and stiffness decreased clinically, and improvements were statistically significant (p < 0.05 and p < 0.001 in RA and AS patients, respectively) during an IR session. Fatigue also decreased. Both RA and AS patients felt comfortable on average during and especially after treatment. In the RA and AS patients, pain, stiffness, and fatigue also showed clinical improvements during the 4-week treatment period, but these did not reach statistical significance. No relevant changes in disease activity scores were found, indicating no exacerbation of disease activity. In conclusion, infrared treatment has statistically significant short-term beneficial effects and clinically relevant period effects during treatment in RA and AS patients without enhancing disease activity. IR has good tolerability and no adverse effects.
McGill, Stuart M; Chaimberg, Jon D; Frost, David M; Fenwick, Chad M J
2010-02-01
The main issue addressed here is the paradox of muscle contraction to optimize speed and strike force. When muscle contracts, it increases in both force and stiffness. Force creates faster movement, but the corresponding stiffness slows the change of muscle shape and joint velocity. The purpose of this study was to investigate how this speed strength is accomplished. Five elite mixed martial arts athletes were recruited given that they must create high strike force very quickly. Muscle activation using electromyography and 3-dimensional spine motion was measured. A variety of strikes were performed. Many of the strikes intend to create fast motion and finish with a very large striking force, demonstrating a "double peak" of muscle activity. An initial peak was timed with the initiation of motion presumably to enhance stiffness and stability through the body before motion. This appeared to create an inertial mass in the large "core" for limb muscles to "pry" against to initiate limb motion. Then, some muscles underwent a relaxation phase as speed of limb motion increased. A second peak was observed upon contact with the opponent (heavy bag). It was postulated that this would increase stiffness through the body linkage, resulting in a higher effective mass behind the strike and likely a higher strike force. Observation of the contract-relax-contract pulsing cycle during forceful and quick strikes suggests that it may be fruitful to consider pulse training that involves not only the rate of muscle contraction but also the rate of muscle relaxation.
Simon, Ann M.; Hargrove, Levi J.
2016-01-01
Powered knee-ankle prostheses are capable of providing net-positive mechanical energy to amputees. Yet, there are limitless ways to deliver this energy throughout the gait cycle. It remains largely unknown how different combinations of active knee and ankle assistance affect the walking mechanics of transfemoral amputees. This study assessed the relative contributions of stance phase knee swing initiation, increasing ankle stiffness and powered plantarflexion as three unilateral transfemoral amputees walked overground at their self-selected walking speed. Five combinations of knee and ankle conditions were evaluated regarding the kinematics and kinetics of the amputated and intact legs using repeated measures analyses of variance. We found eliminating active knee swing initiation or powered plantarflexion was linked to increased compensations of the ipsilateral hip joint during the subsequent swing phase. The elimination of knee swing initiation or powered plantarflexion also led to reduced braking ground reaction forces of the amputated and intact legs, and influenced both sagittal and frontal plane loading of the intact knee joint. Gradually increasing prosthetic ankle stiffness influenced the shape of the prosthetic ankle plantarflexion moment, more closely mirroring the intact ankle moment. Increasing ankle stiffness also corresponded to increased prosthetic ankle power generation (despite a similar maximum stiffness value across conditions) and increased braking ground reaction forces of the amputated leg. These findings further our understanding of how to deliver assistance with powered knee-ankle prostheses and the compensations that occur when specific aspects of assistance are added/removed. PMID:26807889
Plantarflexor passive-elastic properties related to BMI and walking performance in older women.
LaRoche, Dain P
2017-03-01
The objective of this study was to examine the influence of BMI on the passive-elastic properties of the ankle plantarflexors in older women. Twenty-three women, 65-80 yr, were separated into normal weight (NW, BMI <25.0kgm -2 , n=11) and overweight-obese (OW, BMI≥25.0kgm -2 , n=12) groups. Resistive torque of the ankle plantarflexors was recorded on an isokinetic dynamometer by passively moving the ankle into dorsiflexion. Stiffness, work absorption, and hysteresis were calculated across an ankle dorsiflexion angle of 10-15°. Maximal plantarflexor strength was assessed, then participants walked at maximal speed on an instrumented gait analysis treadmill while muscle activation (EMG) was recorded. Plantarflexor stiffness was 34% lower in OW (26.4±12.7Nmrad -1 ) than NW (40.0±15.7Nmrad -1 , p=0.032). Neither work absorption nor hysteresis were different between OW and NW. Stiffness per kg was positively correlated to strength (r=0.66, p<0.001), peak vertical ground reaction force during walking (r=0.72, p<0.001), weight acceptance rate of force (r=0.51, p=0.007), push-off rate of force (r=0.41, p=0.026), maximal speed (r=0.61, p=0.001), and inversely correlated to BMI (r=-0.61, p=0.001), and peak plantarflexor EMG (r=-0.40, p=0.046). Older women who are OW have low plantarflexor stiffness, which may limit propulsive forces during walking and necessitate greater muscle activation for active force generation. Copyright © 2017 Elsevier B.V. All rights reserved.
A stochastic Iwan-type model for joint behavior variability modeling
NASA Astrophysics Data System (ADS)
Mignolet, Marc P.; Song, Pengchao; Wang, X. Q.
2015-08-01
This paper focuses overall on the development and validation of a stochastic model to describe the dissipation and stiffness properties of a bolted joint for which experimental data is available and exhibits a large scatter. An extension of the deterministic parallel-series Iwan model for the characterization of the force-displacement behavior of joints is first carried out. This new model involves dynamic and static coefficients of friction differing from each other and a broadly defined distribution of Jenkins elements. Its applicability is next investigated using the experimental data, i.e. stiffness and dissipation measurements obtained in harmonic testing of 9 nominally identical bolted joints. The model is found to provide a very good fit of the experimental data for each bolted joint notwithstanding the significant variability of their behavior. This finding suggests that this variability can be simulated through the randomization of only the parameters of the proposed Iwan-type model. The distribution of these parameters is next selected based on maximum entropy concepts and their corresponding parameters, i.e. the hyperparameters of the model, are identified using a maximum likelihood strategy. Proceeding with a Monte Carlo simulation of this stochastic Iwan model demonstrates that the experimental data fits well within the uncertainty band corresponding to the 5th and 95th percentiles of the model predictions which well supports the adequacy of the modeling effort.
Heel pain and Achilles tendonitis - aftercare
... the length of the tendon when walking or running. Your pain and stiffness might increase in the ... or decrease activities that cause pain, such as running or jumping. Do activities that do not strain ...
Pingel, Jessica; Wienecke, Jacob; Lorentzen, Jakob; Nielsen, Jens Bo
2016-12-01
Botulinum toxin is used with the intention of diminishing spasticity and reducing the risk of development of contractures. Here, we investigated changes in muscle stiffness caused by reflex activity or elastic muscle properties following botulinum toxin injection in the triceps surae muscle in rats. Forty-four rats received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the noninjected contralateral side in all rats. Acute experiments were performed, 1, 2, 4, and 8 wk following injection. The triceps surae muscle was dissected free, and the Achilles tendon was cut and attached to a muscle puller. The resistance of the muscle to stretches of different amplitudes and velocities was systematically investigated. Reflex-mediated torque was normalized to the maximal muscle force evoked by supramaximal stimulation of the tibial nerve. Botulinum toxin injection caused severe atrophy of the triceps surae muscle at all time points. The force generated by stretch reflex activity was also strongly diminished but not to the same extent as the maximal muscle force at 2 and 4 wk, signifying a relative reflex hyperexcitability. Passive muscle stiffness was unaltered at 1 wk but increased at 2, 4, and 8 wk (P < 0.01). These data demonstrate that botulinum toxin causes a relative increase in reflex stiffness, which is likely caused by compensatory neuroplastic changes. The stiffness of elastic elements in the muscles also increased. The data are not consistent with the ideas that botulinum toxin is an efficient antispastic medication or that it may prevent development of contractures. Copyright © 2016 the American Physiological Society.
Kinetic changes during a six-week minimal footwear and gait-retraining intervention in runners.
Warne, Joe P; Smyth, Barry P; Fagan, John O'C; Hone, Michelle E; Richter, Chris; Nevill, Alan M; Moran, Kieran A; Warrington, Giles D
2017-08-01
An evaluation of a six-week Combined minimal footwear transition and gait-retraining combination vs. gait retraining only on impact characteristics and leg stiffness. Twenty-four trained male runners were randomly assigned to either (1) Minimalist footwear transition Combined with gait-retraining over a six-week period ("Combined" group; n = 12) examined in both footwear, or (2) a gait-retraining group only with no minimalist footwear exposure ("Control"; n = 12). Participants were assessed for loading rate, impact peak, vertical, knee and ankle stiffness, and foot-strike using 3D and kinetic analysis. Loading rate was significantly higher in the Combined group in minimal shoes in pre-tests compared to a Control (P ≤ 0.001), reduced significantly in the Combined group over time (P ≤ 0.001), and was not different to the Control group in post-tests (P = 0.16). The impact peak (P = 0.056) and ankle stiffness reduced in both groups (P = 0.006). Loading rate and vertical stiffness was higher in minimalist footwear than conventional running shoes both pre (P ≤ 0.001) and post (P = 0.046) the intervention. There has a higher tendency to non-rearfoot strike in both interventions, but more acute changes in the minimalist footwear. A Combined intervention can potentially reduce impact variables. However, higher loading rate initially in minimalist footwear may increase the risk of injury in this condition.
Vanlommel, L; Luyckx, T; Vercruysse, G; Bellemans, J; Vandenneucker, H
2017-11-01
Flexion in a stiff total knee arthroplasty (TKA) can be improved by manipulation under anaesthesia (MUA). Although this intervention usually results in an improvement in range of motion, the expected result is not always achieved. The purpose of this study is to determine which factors affect range of motion after manipulation in patients with a stiff total knee. After exclusion (n = 22), the data of 158 patients (138 knees) with a stiff knee after TKA who received a manipulation under anaesthesia between 2004 and 2014 were retrospectively analysed. Pre-, peri- and post-operative variables were identified and examined for their influence on flexion after the manipulation using Kruskal-Wallis and Mann-Whitney U tests and Spearman correlations. After MUA, a mean improvement in flexion of 30.3° was observed at the final follow-up. Preoperative TKA flexion, design of TKA and interval between TKA procedure and MUA were positive associated with an increase in flexion after MUA. MUA performed 12 weeks or more after TKA procedure deteriorated the outcome. Three factors, pre-TKA flexion type of prosthesis and interval between TKA procedure and manipulation under anaesthesia, were found to have impact on flexion after TKA and MUA were identified. Results are expected to be inferior in patients with low flexion before TKA procedure or with a long interval (>12 weeks) between the TKA procedure and the manipulation under anaesthesia. IV.
Satoh, Hiroki; Kishi, Reiko; Tsutsui, Hiroyuki
2009-12-01
Metabolic syndrome (MetS) has been recognized as a risk factor for cardiovascular disease; however, the impact of MetS on arterial stiffness has not been fully established in the general Japanese population. We analyzed the relationship between MetS and the severity of arterial stiffness using brachial-ankle pulse wave velocity (baPWV) in 2744 male and 358 female subjects aged 38-62 years, adjusted for conventional risk factors and C-reactive protein. The prevalence rates of MetS identified by Japanese criteria were 22.7% (n=624) and 7.8% (n=28) in male and female subjects, respectively. The subjects with MetS had significantly greater mean values of baPWV than those without MetS among both male and female subjects (1444+/-209 vs. 1294+/-165 cm/s in male subjects, P<0.001; 1379+/-151 vs. 1220+/-171 cm/s in female subjects, P<0.001). After adjustment for atherosclerotic variables such as age, smoking habits, total cholesterol and C-reactive protein, the odds ratio (OR) of MetS for increased baPWV was 3.65 in male subjects (95% confidence interval (CI): 2.99-4.47, P<0.001) and 8.02 in female subjects (95% CI: 3.18-20.25 P<0.001). In conclusion, MetS was identified as a significant and independent risk factor for increased arterial stiffness in both the male and female general population in Japan.
NASA Astrophysics Data System (ADS)
Wang, Dengfeng; Cai, Kefang
2018-04-01
This article presents a hybrid method combining a modified non-dominated sorting genetic algorithm (MNSGA-II) with grey relational analysis (GRA) to improve the static-dynamic performance of a body-in-white (BIW). First, an implicit parametric model of the BIW was built using SFE-CONCEPT software, and then the validity of the implicit parametric model was verified by physical testing. Eight shape design variables were defined for BIW beam structures based on the implicit parametric technology. Subsequently, MNSGA-II was used to determine the optimal combination of the design parameters that can improve the bending stiffness, torsion stiffness and low-order natural frequencies of the BIW without considerable increase in the mass. A set of non-dominated solutions was then obtained in the multi-objective optimization design. Finally, the grey entropy theory and GRA were applied to rank all non-dominated solutions from best to worst to determine the best trade-off solution. The comparison between the GRA and the technique for order of preference by similarity to ideal solution (TOPSIS) illustrated the reliability and rationality of GRA. Moreover, the effectiveness of the hybrid method was verified by the optimal results such that the bending stiffness, torsion stiffness, first order bending and first order torsion natural frequency were improved by 5.46%, 9.30%, 7.32% and 5.73%, respectively, with the mass of the BIW increasing by 1.30%.
Compression Stiffening of Brain and its Effect on Mechanosensing by Glioma Cells
NASA Astrophysics Data System (ADS)
Pogoda, Katarzyna
The stiffness of tissues, often characterized by their time-dependent elastic properties, is tightly controlled under normal condition and central nervous system tissue is among the softest tissues. Changes in tissue and organ stiffness occur in some physiological conditions and are frequently symptoms of diseases such as fibrosis, cardiovascular disease and many forms of cancer. Primary cells isolated from various tissues often respond to changes in the mechanical properties of their substrates, and the range of stiffness over which these responses occur appear to be limited to the tissue elastic modulus from which they are derived. Our goal was to test the hypotheses that the stiffness of tumors derived from CNS tissue differs from that of normal brain, and that transformed cells derived from such tumors exhibit mechanical responses that differ from those of normal glial cells. Unlike breast and some other cancers where the stroma and the tumor itself is substantially stiffer than the surrounding normal tissue, our data suggest that gliomas can arise without a gross change in the macroscopic tissue stiffness when measured at low strains without compression. However, both normal brain and glioma samples stiffen with compression, but not in elongation and increased shear strains. On the other hand, different classes of immortalized cells derived from human glioblastoma show substantially different responses to the stiffness of substrates in vitrowhen grown on soft polyacrylamide and hyaluronic acid gels. This outcome supports the hypothesis that compression stiffening, which might occur with increased vascularization and interstitial pressure gradients that are characteristic of tumors, effectively stiffens the environment of glioma cells, and that in situ, the elastic resistance these cells sense might be sufficient to trigger the same responses that are activated in vitro by increased substrate stiffness.
Modifiable Risk Factors for Increased Arterial Stiffness in Outpatient Nephrology
Elewa, Usama; Fernandez-Fernandez, Beatriz; Alegre, Raquel; Sanchez-Niño, Maria D.; Mahillo-Fernández, Ignacio; Perez-Gomez, Maria Vanessa; El-Fishawy, Hussein; Belal, Dawlat; Ortiz, Alberto
2015-01-01
Arterial stiffness, as measured by pulse wave velocity (PWV), is an independent predictor of cardiovascular events and mortality. Arterial stiffness increases with age. However, modifiable risk factors such as smoking, BP and salt intake also impact on PWV. The finding of modifiable risk factors may lead to the identification of treatable factors, and, thus, is of interest to practicing nephrologist. We have now studied the prevalence and correlates of arterial stiffness, assessed by PWV, in 191 patients from nephrology outpatient clinics in order to identify modifiable risk factors for arterial stiffness that may in the future guide therapeutic decision-making. PWV was above normal levels for age in 85/191 (44.5%) patients. Multivariate analysis showed that advanced age, systolic BP, diabetes mellitus, serum uric acid and calcium polystyrene sulfonate therapy or calcium-containing medication were independent predictors of PWV. A new parameter, Delta above upper limit of normal PWV (Delta PWV) was defined to decrease the weight of age on PWV values. Delta PWV was calculated as (measured PWV) - (upper limit of the age-adjusted PWV values for the general population). Mean±SD Delta PWV was 0.76±1.60 m/sec. In multivariate analysis, systolic blood pressure, active smoking and calcium polystyrene sulfonate therapy remained independent predictors of higher delta PWV, while age, urinary potassium and beta blocker therapy were independent predictors of lower delta PWV. In conclusion, arterial stiffness was frequent in nephrology outpatients. Systolic blood pressure, smoking, serum uric acid, calcium-containing medications, potassium metabolism and non-use of beta blockers are modifiable factors associated with increased arterial stiffness in Nephrology outpatients. PMID:25880081
Perception of force and stiffness in the presence of low-frequency haptic noise
Gurari, Netta; Okamura, Allison M.; Kuchenbecker, Katherine J.
2017-01-01
Objective This work lays the foundation for future research on quantitative modeling of human stiffness perception. Our goal was to develop a method by which a human’s ability to perceive suprathreshold haptic force stimuli and haptic stiffness stimuli can be affected by adding haptic noise. Methods Five human participants performed a same-different task with a one-degree-of-freedom force-feedback device. Participants used the right index finger to actively interact with variations of force (∼5 and ∼8 N) and stiffness (∼290 N/m) stimuli that included one of four scaled amounts of haptically rendered noise (None, Low, Medium, High). The haptic noise was zero-mean Gaussian white noise that was low-pass filtered with a 2 Hz cut-off frequency; the resulting low-frequency signal was added to the force rendered while the participant interacted with the force and stiffness stimuli. Results We found that the precision with which participants could identify the magnitude of both the force and stiffness stimuli was affected by the magnitude of the low-frequency haptically rendered noise added to the haptic stimulus, as well as the magnitude of the haptic stimulus itself. The Weber fraction strongly correlated with the standard deviation of the low-frequency haptic noise with a Pearson product-moment correlation coefficient of ρ > 0.83. The mean standard deviation of the low-frequency haptic noise in the haptic stimuli ranged from 0.184 N to 1.111 N across the four haptically rendered noise levels, and the corresponding mean Weber fractions spanned between 0.042 and 0.101. Conclusions The human ability to perceive both suprathreshold haptic force and stiffness stimuli degrades in the presence of added low-frequency haptic noise. Future work can use the reported methods to investigate how force perception and stiffness perception may relate, with possible applications in haptic watermarking and in the assessment of the functionality of peripheral pathways in individuals with haptic impairments. PMID:28575068
Chen, Wan-Chun; Lin, Hsi-Hui; Tang, Ming-Jer
2014-09-15
To explore whether matrix stiffness affects cell differentiation, proliferation, and transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in primary cultures of mouse proximal tubular epithelial cells (mPTECs), we used a soft matrix made from monomeric collagen type I-coated polyacrylamide gel or matrigel (MG). Both kinds of soft matrix benefited primary mPTECs to retain tubular-like morphology with differentiation and growth arrest and to evade TGF-β1-induced EMT. However, the potent effect of MG on mPTEC differentiation was suppressed by glutaraldehyde-induced cross-linking and subsequently stiffening MG or by an increasing ratio of collagen in the soft mixed gel. Culture media supplemented with MG also helped mPTECs to retain tubular-like morphology and a differentiated phenotype on stiff culture dishes as soft MG did. We further found that the protein level and activity of ERK were scaled with the matrix stiffness. U-0126, a MEK inhibitor, abolished the stiff matrix-induced dedifferentiation and proliferation. These data suggest that the ERK signaling pathway plays a vital role in matrix stiffness-regulated cell growth and differentiation. Taken together, both compliant property and specific MG signals from the matrix are required for the regulation of epithelial differentiation and proliferation. This study provides a basic understanding of how physical and chemical cues derived from the extracellular matrix regulate the physiological function of proximal tubules and the pathological development of renal fibrosis. Copyright © 2014 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juneja, P; Harris, E; Bamber, J
2014-06-01
Purpose: There is substantial observer variability in the delineation of target volumes for post-surgical partial breast radiotherapy because the tumour bed has poor x-ray contrast. This variability may result in substantial variations in planned dose distribution. Ultrasound elastography (USE) has an ability to detect mechanical discontinuities and therefore, the potential to image the scar and distortion in breast tissue architecture. The goal of this study was to compare USE techniques: strain elastography (SE), shear wave elastography (SWE) and acoustic radiation force impulse (ARFI) imaging using phantoms that simulate features of the tumour bed, for the purpose of incorporating USE inmore » breast radiotherapy planning. Methods: Three gelatine-based phantoms (10% w/v) containing: a stiff inclusion (gelatine 16% w/v) with adhered boundaries, a stiff inclusion (gelatine 16% w/v) with mobile boundaries and fluid cavity inclusion (to mimic seroma), were constructed and used to investigate the USE techniques. The accuracy of the elastography techniques was quantified by comparing the imaged inclusion with the modelled ground-truth using the Dice similarity coefficient (DSC). For two regions of interest (ROI), the DSC measures their spatial overlap. Ground-truth ROIs were modelled using geometrical measurements from B-mode images. Results: The phantoms simulating stiff scar tissue with adhered and mobile boundaries and seroma were successfully developed and imaged using SE and SWE. The edges of the stiff inclusions were more clearly visible in SE than in SWE. Subsequently, for all these phantoms the measured DSCs were found to be higher for SE (DSCs: 0.91–0.97) than SWE (DSCs: 0.68–0.79) with an average relative difference of 23%. In the case of seroma phantom, DSC values for SE and SWE were similar. Conclusion: This study presents a first attempt to identify the most suitable elastography technique for use in breast radiotherapy planning. Further analysis will include comparison of ARFI with SE and SWE. This work is supported by the EPSRC Platform Grant, reference number EP/H046526/1.« less
NASA Astrophysics Data System (ADS)
Seyum, S.
2017-12-01
This study is a description of the fracture distribution in laterally discontinuous chalk and chert layers, with an investigation on how fracture lengths and apertures vary as a function of applied stresses, material properties, and interface properties. Natural fractures intersect laterally extensive, discontinuous, chalk-chert material interfaces in 62 million-year old to 72 million-year old Chalk Group formations exposed at Stevns Klint, Denmark. Approximately one-third of Denmark's fresh water use is from chalk and limestone regional aquifers of the Chalk Group formations, where rock permeability is dominantly a function of open fracture connectivities. Fractured, centimeter- to decimeter-thick chert layers and inclusions (101 GPa elastic stiffness) are interlayered with fractured, meter-thick chalk layers (100 GPa elastic stiffness). Fractures are observed to terminate against and cross chalk-chert interfaces, affecting the vertical flow of water and pollutants between aquifers. The discontinuous and variably thin nature of chert layers at Stevns Klint effectively merges adjacent fracture-confining layers of chalk along discrete position intervals, resulting in lateral variability of fracture spacing. Finite element numerical models are designed to describe fracture interactions with stiff, chert inclusions of various shapes, thicknesses, widths, orientations, and interface friction and fracture toughness values. The models are two-dimensional with isotropic, continuous material in plane strain and uniformly applied remote principal stresses. These characteristics are chosen based on interpretations of the petrophysics of chalk and chert, the burial history of the rock, and the scale of investigation near fracture tips relative to grain sizes. The result are value ranges for relative stiffness contrasts, applied stresses, and material interface conditions that would cause fractures to cross, terminate at, or form along chalk-chert interfaces, with emphasis on conditions that reproduce measured fracture geometries. The results of this study provide predictive, field-supported fracture geometries for flow models and, with appropriate changes to the parameters, the methodology is applicable to describing fracture geometries in chalk hydrocarbon systems.
Ashor, Ammar W; Siervo, Mario; Lara, Jose; Oggioni, Clio; Mathers, John C
2014-10-01
Several studies tested the effects of supplementation with antioxidant vitamins on arterial stiffness, but the results were contradictory. The aim of our study was to conduct a systematic review and meta-analysis investigating the effect of antioxidant vitamins on arterial stiffness and to determine whether the effects on arterial stiffness vary according to dose, duration of intervention, and health or nutritional status of the included participants. We searched 3 databases (Medline, Embase, and Scopus) for articles that potentially met the following eligibility criteria: 1) randomized controlled trials comparing antioxidant vitamins (vitamins C, E, and A and β-carotene) to either placebo or no active control in 2) adult participants aged ≥18 y; 3) antioxidant vitamins administered alone or in combination, irrespective of dose, duration, and route of administration; and 4) changes in arterial stiffness or arterial compliance. Data were pooled as standardized mean differences (SMDs) and analyzed using fixed- and random-effects models. Data synthesis showed that antioxidant vitamins reduced arterial stiffness significantly (SMD: -0.17; 95% CI: -0.26, -0.08; P < 0.001). This effect was significant in experimental (SMD: -1.02; 95% CI: -1.54, -0.49; P < 0.001) and primary prevention (SMD: -0.14; 95% CI: -0.24, -0.04; P < 0.01) studies, whereas a trend for reduced arterial stiffness was observed in studies including participants with diseases (SMD: -0.19; 95% CI: -0.40, 0.02; P = 0.08). Vitamin supplementation improved arterial stiffness irrespective of age group and duration of intervention. Antioxidant vitamins were more effective in participants with low baseline plasma concentrations of vitamins C (SMD: -0.35; 95% CI: -0.62, -0.07; P < 0.016) and E (SMD: -0.79; 95% CI: -1.23, -0.33; P < 0.01). Supplementation with antioxidant vitamins has a small, protective effect on arterial stiffness. The effect may be augmented in those with lower baseline plasma vitamin E and C concentrations. This trial was registered at PROSPERO as CRD42014007260. © 2014 American Society for Nutrition.
Duan, Bin; Yin, Ziying; Hockaday Kang, Laura; Magin, Richard L; Butcher, Jonathan T
2016-05-01
Calcific aortic valve disease (CAVD) progression is a highly dynamic process whereby normally fibroblastic valve interstitial cells (VIC) undergo osteogenic differentiation, maladaptive extracellular matrix (ECM) composition, structural remodeling, and tissue matrix stiffening. However, how VIC with different phenotypes dynamically affect matrix properties and how the altered matrix further affects VIC phenotypes in response to physiological and pathological conditions have not yet been determined. In this study, we develop 3D hydrogels with tunable matrix stiffness to investigate the dynamic interplay between VIC phenotypes and matrix biomechanics. We find that VIC populated within hydrogels with valve leaflet like stiffness differentiate towards myofibroblasts in osteogenic media, but surprisingly undergo osteogenic differentiation when cultured within lower initial stiffness hydrogels. VIC differentiation progressively stiffens the hydrogel microenvironment, which further upregulates both early and late osteogenic markers. These findings identify a dynamic positive feedback loop that governs acceleration of VIC calcification. Temporal stiffening of pathologically lower stiffness matrix back to normal level, or blocking the mechanosensitive RhoA/ROCK signaling pathway, delays the osteogenic differentiation process. Therefore, direct ECM biomechanical modulation can affect VIC phenotypes towards and against osteogenic differentiation in 3D culture. These findings highlight the importance of the homeostatic maintenance of matrix stiffness to restrict pathological VIC differentiation. We implement 3D hydrogels with tunable matrix stiffness to investigate the dynamic interaction between valve interstitial cells (VIC, major cell population in heart valve) and matrix biomechanics. This work focuses on how human VIC responses to changing 3D culture environments. Our findings identify a dynamic positive feedback loop that governs acceleration of VIC calcification, which is the hallmark of calcific aortic valve disease. Temporal stiffening of pathologically lower stiffness matrix back to normal level, or blocking the mechanosensitive signaling pathway, delays VIC osteogenic differentiation. Our findings provide an improved understanding of VIC-matrix interactions to aid in interpretation of VIC calcification studies in vitro and suggest that ECM disruption resulting in local tissue stiffness decreases may promote calcific aortic valve disease. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Implicit Multibody Penalty-BasedDistributed Contact.
Xu, Hongyi; Zhao, Yili; Barbic, Jernej
2014-09-01
The penalty method is a simple and popular approach to resolving contact in computer graphics and robotics. Penalty-based contact, however, suffers from stability problems due to the highly variable and unpredictable net stiffness, and this is particularly pronounced in simulations with time-varying distributed geometrically complex contact. We employ semi-implicit integration, exact analytical contact gradients, symbolic Gaussian elimination and a SVD solver to simulate stable penalty-based frictional contact with large, time-varying contact areas, involving many rigid objects and articulated rigid objects in complex conforming contact and self-contact. We also derive implicit proportional-derivative control forces for real-time control of articulated structures with loops. We present challenging contact scenarios such as screwing a hexbolt into a hole, bowls stacked in perfectly conforming configurations, and manipulating many objects using actively controlled articulated mechanisms in real time.
Mechanical behaviour of hamstring muscles in low-back pain patients and control subjects.
Tafazzoli, F; Lamontagne, M
1996-01-01
The purpose of this study was to measure and compare the passive elastic moment, the stiffness and the damping coefficient of the hip joint, as functions of the hip and knee joint angles in men with and without low-back pain. Two conventional tests, the straight-leg-raising test and the trunk forward flexion, were also performed and compared between these subjects. The passive elastic moment was measured using an isokinetic device in the passive mode. This device raised the lower limb from the horizontal position to the straight-leg-raising angle at a slow and constant angular velocity. A custom-made splint connected with the lever arm of the isokinetic device maintained the knee in extension and the ankle in the neutral position. The damping coefficient of the hip joint was measured for 0, 15, 45, 60, 75 and 90% of straight leg raising angle of each subject, using the suspension method based on small oscillation theory. To ensure that muscles were inactive during the passive hip moment tests, muscle activity was monitored with surface EMG. The stiffness was computed as the ratio of the change in passive elastic moment to the change in the hip angle. The passive elastic moment, the stiffness and the normalized trunk flexion were significantly different between the two groups respectively. There was, however, no difference between the two groups in the results of straight-leg-raise and damping coefficient of the hip. The passive elastic moment was a nonlinear function of the hip flexion angle and showed large intersubject differences, especially as the joint limit was approached. The damping coefficient was a polynomial function of the hip flexion angle. The measured variables were analysed using a discriminant function and it was shown that the two groups were clearly discriminable in a meaningful manner.
Older women track and field athletes have enhanced calcaneal stiffness.
Welch, J M; Rosen, C J
2005-08-01
Vigorous weight-bearing exercise is recommended to women as a method of osteoporosis prevention. This study examined older women athletes to see if they indeed were less likely to develop osteoporosis than those in the general population, and to investigate which factors could have contributed to these results. One hundred and thirty-nine women 40-88 years old, all competitors in a USA National Masters Track and Field Championships, volunteered for the study. Masters refers to competitors > or =40 years old. Their calcaneal stiffness (SI) was measured by a Lunar Achilles+ ultrasonometer. Subjects were also measured for height and weight, and completed a questionnaire on exercise history, diet, lifestyle factors, medical and menopausal issues, and use of hormone replacement therapy (HRT). The women, mean age 57.3 years, had an overall average SI of 99.5 (T-score = 0.04) which is equivalent to that of a 20-year-old woman and 20.8% higher than expected for women of their age. Their median SI remained not different from expected peak bone SI until the age of 70. For analysis, this cohort of women was divided into two groups: premenopausal and postmenopausal athletes. The SI of both groups was correlated with the earliest age at which they had first participated in sports or exercises that impart moderate to high strain rates to the lower limbs and with current participation in high impact track and field events. Variables correlated with SI in the general population, such as weight, HRT, previous fracture, hysterectomy, and current menopausal status, did not predict SI in this cohort. In conclusion, women competing in Masters track and field at the national level had calcaneal stiffness substantially higher than expected for women of their age in the general population, and their participation in vigorous sports and activities, either currently or at a younger age, was predictive of this association.
The acute effects of heavy back squats on mechanical variables during a series of bilateral hops.
Moir, Gavin L; Dale, Jonathan R; Dietrich, Wendy W
2009-07-01
The purpose of the present study was to investigate the acute effects of performing a heavy resistance exercise (HRE) protocol on the mechanical variables during a series of bilateral hops. In a block-randomized design, 10 strength trained men performed an HRE or a control treatment before performing 5 series of bilateral hops separated by 2 minutes of passive recovery. Each series of bilateral hops was performed for 15 seconds on a force platform with the subject hopping at a frequency of 2.0 Hz. From the vertical force trace, the vertical force during the countermovement phase of each hop, the negative displacement during the countermovement phase, and the vertical stiffness were calculated. The HRE treatment consisted of performing parallel back squats with 40, 50, 60, and 80% of each subject's 1-repetition maximum after a series of dynamic stretches. The control treatment consisted of the dynamic stretches only. No significant differences in any of the mechanical variables were reported after the 2 treatments (p > 0.05). There were no significant correlations between the absolute maximal strength values and the percent change in any of the mechanical variables after the 2 treatments. Despite the lack of significant changes reported for the group, there were some notable individual responses. It is possible that increases in vertical stiffness during bilateral hops can be achieved after an HRE protocol in certain individuals. However, practitioners should be aware of the specificity issues and the individual nature of the responses to such protocols.