Science.gov

Sample records for active vent fields

  1. An authoritative global database for active submarine hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.; Maffei, Andrew

    2013-11-01

    The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.

  2. Post-drilling hydrothermal vent and associated biological activities seen through artificial hydrothermal vents in the Iheya North field, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Takai, K.; Kawagucci, S.; Miyazaki, J.; Watsuji, T.; Ishibashi, J.; Yamamoto, H.; Nozaki, T.; Kashiwabara, T.; Shibuya, T.

    2012-12-01

    In 2010, IODP Expedition 331 was conducted in the Iheya North Field, the Okinawa Trough and drilled several sites in hydrothermally active subseafloor. In addition, during the IODP Expedition 331, four new hydrothermal vents were created. These post-drilling artificial hydrothermal vents provide excellent opportunities to investigate the physical, chemical and microbiological characteristics of the previously unexplored subseafloor hydrothermal fluid reservoirs, and to monitor and estimate how the anthropogenic drilling behaviors affect the deep-sea hydrothermal vent ecosystem. We were very much interested in the difference of hydrothermal fluid chemistry between the natural hydrothermal vents and the artificial hydrothermal vents. The IODP porewater chemistry of the cores pointed to the density-driven stratification of the phase-separated hydrothermal fluids and the natural vent fluids were likely derived only from the shallower vapor-enriched phases. However, the artificial hydrothermal vents had deeper fluid sources in the subseafloor hydrothermal fluid reservoirs composed of vapor-lost (Cl-enriched) phases. The fluids from the artificial hydrothermal vents were sampled by ROV at 5, 12 and 18 months after the IODP expedition. The artificial hydrothermal vent fluids were slightly enriched with Cl as compared to the natural hydrothermal vent fluids. Thus, the artificial hydrothermal vents successfully entrained the previously unexplored subseafloor hydrothermal fluids. The newly created hydrothermal vents also hosted the very quickly grown, enormous chimney structures, of which mineral compositions were highly variable among the vents. However, the quickly grown C0016B and C0016D vent chimneys were found to be typical Kuroko ore even though the chimney growth rates in the artificial vents were extremely faster than those in the natural vents. In addition, the IODP drilling operation not only created new hydrothermal vents by deep drilling but also induced the

  3. Discovery of Nascent Vents and Recent Colonization Associated with(Re)activated Hydrothermal Vent Fields by the GALREX 2011 Expedition on the Galápagos Rift

    NASA Astrophysics Data System (ADS)

    Shank, T. M.; Holden, J. F.; Herrera, S.; Munro, C.; Muric, T.; Lin, J.; Stuart, L.

    2011-12-01

    GALREX 2011 was a NOAA OER telepresence cruise that explored the diverse habitats and geologic settings of the deep Galápagos region. The expedition made12 Little Hercules ROV dives in July 2011.Abundant corals and a strong depth zonation of species (including deepwater coral communities) were found near 500 m depth on Paramount Seamount, likely influenced by past low sea level states, wave-cut terrace processes, and the historical presence of shallow reef structures. At fresh lava flows with associated (flocculent) hydrothermal venting near 88° W, now known as Uka Pacha and Pegasus Vent Fields, rocks were coated with white microbial mat and lacked sessile fauna, with few mobile fauna (e.g., bythograeid crabs, alvinocarid shrimp, polynoid worms, zoarcid fish, and dirivultid copepods). This suggests a recent creation of hydrothermal habitats through volcanic eruptions and/or diking events, which may have taken place over a 15 km span separating the two vent fields. The Rosebud vent field at 86°W was not observed and may have been covered with lava since last visited in 2005. A hydrothermal vent field near 86°W was discovered that is one of the largest vent fields known on the Rift (120m by 40m). Low-temperature vent habitats were colonized by low numbers of tubeworms including Riftia, Oasisia, and a potential Tevnia species (the latter not previously observed on the Galapagos Rift). Patches of tubeworms were observed with individuals less than 2cm in length, and the relatively few large Riftia had tube lengths near 70cm long. Large numbers of small (< 3cm long) bathymodiolin mussels lined cracks and crevices throughout the active part of the field. Live clams, at least four species of gastropod limpets, three species of polynoid polychaetes, juvenile and adult alvinocarid shrimp, actinostolid anemones, and white microbial communities were observed on the underside and vertical surfaces of basalt rock surfaces. There were at least 13 species of vent-endemic fauna

  4. Aqueous Volatiles in Hydrothermal fluids from the Main Endeavour Vent Field: Temporal Variability Following Earthquake Activity

    NASA Astrophysics Data System (ADS)

    Seewald, J. S.; Cruse, A. M.; Saccocia, P. J.

    2001-12-01

    Volatile species play a critical role in a broad spectrum of physical, chemical, and biological processes associated with hydrothermal circulation at oceanic spreading centers. Earthquake activity at the Main Endeavour vent field, northern Juan de Fuca Ridge in June 1999 [1] provided and opportunity to assess factors that regulate the flux of volatile species from the oceanic crust to the water column following a rapid change in subsurface reaction zone conditions. High temperature vent fluids were collected in gas-tight samplers at the Main Endeavour field in September 1999, approximately four months after the earthquakes, and again in July 2000, and were analyzed for the abundance of aqueous volatile and non-volatile species. Measured concentrations of aqueous H2, H2S, and CO2 increased substantially in September 1999 relative to pre-earthquake values [2,3], and subsequently decreased in July 2000, while aqueous Cl concentrations initially decreased in 1999 and subsequently increased in 2000. Concentrations of Cl in all fluids were depleted relative to seawater values. Aqueous CH4 and NH3 concentrations decreased in both the 1999 and 2000 samples relative to pre- earthquake values. Variations in Cl concentration of Endeavour fluids reflect varying degrees of phase separation under near critical temperature and pressure conditions. Because volatile species efficiently partition into the vapor phase, variations in their abundance as a function of Cl concentration can be used to constrain conditions of phase separation and fluid-rock interaction. For example, concentrations of volatile species that are not readily incorporated into minerals (CH4 and NH3) correlated weakly with Cl suggesting phase separation was occurring under supercritical conditions after the earthquake activity. In contrast, compositional data for fluids prior to the earthquakes indicate a strong negative correlation between these species and Cl suggesting phase separation under subcritical

  5. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lin, Jian; Chen, Yongshun J.; Tao, Chunhui; German, Christopher R.; Yoerger, Dana R.; Tivey, Maurice A.

    2010-09-01

    Inversion of near-bottom magnetic data reveals a well-defined low crustal magnetization zone (LMZ) near a local topographic high (37°47‧S, 49°39‧E) on the ultraslow-spreading Southwest Indian Ridge (SWIR). The magnetic data were collected by the autonomous underwater vehicle ABE on board R/V DaYangYiHao in February-March 2007. The first active hydrothermal vent field observed on the SWIR is located in Area A within and adjacent to the LMZ at the local topographic high, implying that this LMZ may be the result of hydrothermal alteration of magnetic minerals. The maximum reduction in crustal magnetization is 3 A/M. The spatial extent of the LMZ is estimated to be at least 6.7 × 104 m2, which is larger than that of the LMZs at the TAG vent field on the Mid-Atlantic Ridge (MAR), as well as the Relict Field, Bastille, Dante-Grotto, and New Field vent-sites on the Juan de Fuca Ridge (JdF). The calculated magnetic moment, i.e., the product of the spatial extent and amplitude of crustal magnetization reduction is at least -3 × 107 Am2 for the LMZ on the SWIR, while that for the TAG field on the MAR is -8 × 107 Am2 and that for the four individual vent fields on the JdF range from -5 × 107 to -3 × 107 Am2. Together these results indicate that crustal demagnetization is a common feature of basalt-hosted hydrothermal vent fields at mid-ocean ridges of all spreading rates. Furthermore, the crustal demagnetization of the Area A on the ultraslow-spreading SWIR is comparable in strength to that of the TAG area on the slow-spreading MAR.

  6. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge.

    PubMed

    Pedersen, Rolf B; Rapp, Hans Tore; Thorseth, Ingunn H; Lilley, Marvin D; Barriga, Fernando J A S; Baumberger, Tamara; Flesland, Kristin; Fonseca, Rita; Früh-Green, Gretchen L; Jorgensen, Steffen L

    2010-11-23

    The Arctic Mid-Ocean Ridge (AMOR) represents one of the most slow-spreading ridge systems on Earth. Previous attempts to locate hydrothermal vent fields and unravel the nature of venting, as well as the provenance of vent fauna at this northern and insular termination of the global ridge system, have been unsuccessful. Here, we report the first discovery of a black smoker vent field at the AMOR. The field is located on the crest of an axial volcanic ridge (AVR) and is associated with an unusually large hydrothermal deposit, which documents that extensive venting and long-lived hydrothermal systems exist at ultraslow-spreading ridges, despite their strongly reduced volcanic activity. The vent field hosts a distinct vent fauna that differs from the fauna to the south along the Mid-Atlantic Ridge. The novel vent fauna seems to have developed by local specialization and by migration of fauna from cold seeps and the Pacific.

  7. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge

    PubMed Central

    Pedersen, Rolf B.; Rapp, Hans Tore; Thorseth, Ingunn H.; Lilley, Marvin D.; Barriga, Fernando J. A. S.; Baumberger, Tamara; Flesland, Kristin; Fonseca, Rita; Früh-Green, Gretchen L.; Jorgensen, Steffen L.

    2010-01-01

    The Arctic Mid-Ocean Ridge (AMOR) represents one of the most slow-spreading ridge systems on Earth. Previous attempts to locate hydrothermal vent fields and unravel the nature of venting, as well as the provenance of vent fauna at this northern and insular termination of the global ridge system, have been unsuccessful. Here, we report the first discovery of a black smoker vent field at the AMOR. The field is located on the crest of an axial volcanic ridge (AVR) and is associated with an unusually large hydrothermal deposit, which documents that extensive venting and long-lived hydrothermal systems exist at ultraslow-spreading ridges, despite their strongly reduced volcanic activity. The vent field hosts a distinct vent fauna that differs from the fauna to the south along the Mid-Atlantic Ridge. The novel vent fauna seems to have developed by local specialization and by migration of fauna from cold seeps and the Pacific. PMID:21119639

  8. Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the Southern Mariana Trough.

    PubMed

    Kato, Shingo; Takano, Yoshinori; Kakegawa, Takeshi; Oba, Hironori; Inoue, Kazuhiko; Kobayashi, Chiyori; Utsumi, Motoo; Marumo, Katsumi; Kobayashi, Kensei; Ito, Yuki; Ishibashi, Jun-ichiro; Yamagishi, Akihiko

    2010-05-01

    The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and

  9. Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; EscartíN, Javier; Gracias, Nuno; Olive, Jean-Arthur; Barreyre, Thibaut; Davaille, Anne; Cannat, Mathilde; Garcia, Rafael

    2012-04-01

    The relative heat carried by diffuse versus discrete venting of hydrothermal fluids at mid-ocean ridges is poorly constrained and likely varies among vent sites. Estimates of the proportion of heat carried by diffuse flow range from 0% to 100% of the total axial heat flux. Here, we present an approach that integrates imagery, video, and temperature measurements to accurately estimate this partitioning at a single vent site, Tour Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperatures, photographic mosaics of the vent site, and video sequences of fluid flow were acquired during the Bathyluck'09 cruise (Fall, 2009) and the Momarsat'10 cruise (Summer, 2010) to the Lucky Strike hydrothermal field by the ROV Victor6000 aboard the French research vessel the "Pourquoi Pas"? (IFREMER, France). We use two optical methods to calculate the velocities of imaged hydrothermal fluids: (1) for diffuse venting, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time, and (2) for discrete jets, Particle Image Velocimetry tracks eddies by cross-correlation of pixel intensities between subsequent images. To circumvent video blurring associated with rapid velocities at vent orifices, exit velocities at discrete vents are calculated from the best fit of the observed velocity field to a model of a steady state turbulent plume where we vary the model vent radius and fluid exit velocity. Our results yield vertical velocities of diffuse effluent between 0.9 cm s-1 and 11.1 cm s-1 for fluid temperatures between 3°C and 33.5°C above that of ambient seawater, and exit velocities of discrete jets between 22 cm s-1 and 119 cm s-1 for fluid temperatures between 200°C and 301°C above ambient seawater. Using the calculated fluid velocities, temperature measurements, and photo mosaics of the actively venting areas, we calculate a heat flux due to diffuse venting from thin fractures of 3.15 ± 2.22 MW, discrete venting of

  10. 30,000 years of hydrothermal activity at the lost city vent field.

    PubMed

    Früh-Green, Gretchen L; Kelley, Deborah S; Bernasconi, Stefano M; Karson, Jeffrey A; Ludwig, Kristin A; Butterfield, David A; Boschi, Chiara; Proskurowski, Giora

    2003-07-25

    Strontium, carbon, and oxygen isotope data and radiocarbon ages document at least 30,000 years of hydrothermal activity driven by serpentinization reactions at Lost City. Serpentinization beneath this off-axis field is estimated to occur at a minimum rate of 1.2 x 10(-4) cubic kilometers per year. The access of seawater to relatively cool, fresh peridotite, coupled with faulting, volumetric expansion, and mass wasting processes, are crucial to sustain such systems. The amount of heat produced by serpentinization of peridotite massifs, typical of slow and ultraslow spreading environments, has the potential to drive Lost City-type systems for hundreds of thousands, possibly millions, of years.

  11. Flow fields of low pressure vent exhausts

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1989-01-01

    The flow field produced by low pressure gas vents are described based on experimental data obtained from tests in a large vacuum chamber. The gas density, pressure, and flux at any location in the flow field are calculated based on the vent plume description and the knowledge of the flow rate and velocity of the venting gas. The same parameters and the column densities along a specified line of sight traversing the plume are also obtained and shown by a computer-generated graphical representation. The fields obtained with a radially scanning Pitot probe within the exhausting gas are described by a power of the cosine function, the mass rate and the distance from the exit port. The field measurements were made for gas at pressures ranging from 2 to 50 torr venting from pipe fittings with diameters of 3/16 inch to 1-1/2 inches I.D. (4.76 mm to 38.1 mm). The N(2) mass flow rates ranged from 2E-4 to 3.7E-1 g/s.

  12. Flow fields of low pressure vent exhausts

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1990-01-01

    The flow field produced by low pressure gas vents are described based on experimental data obtained from tests in a large vacuum chamber. The gas density, pressure, and flux at any location in the flow field are calculated based on the vent plume description and the knowledge of the flow rate and velocity of the venting gas. The same parameters and the column densities along a specified line of sight traversing the plume are also obtained and shown by a computer generated graphical representation. The fields obtained with a radically scanning Pitot probe within the exhausting gas are described by a power of the cosine function, the mass rate, and the distance from the exit port. The field measurements were made for gas at pressures ranging from 2 to 50 torr venting from pipe fittings with diameters to 3/16 to 1-1/2 inches I.D. (4.76 to 38.1 mm). The N2 mass flow rates ranged from 2E-4 to 3.7E-1 g/s.

  13. Detection of active hydrothermal vent fields in the Pescadero Basin and on the Alarcon Rise using AUV multibeam and CTD data

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Troni, G.; Clague, D. A.; Paduan, J. B.; Martin, J. F.; Thomas, H. J.; Thompson, D.; Conlin, D.; Martin, E. J.; meneses-Quiroz, E.; Nieves-Cardoso, C.; Angel Santa Rosa del Rio, M.

    2015-12-01

    The MBARI AUV D. Allan B. collected high resolution bathymetry, sidescan, and subbottom profiles along the neovolcanic zone of the Alarcon Rise and across the southern Pescadero Basin during 2012 and 2015 MBARI expeditions to the Gulf of California (GOC). The combination of high resolution multibeam bathymetry and seawater temperature data has proven effective in identifying active high temperature vent fields, as validated by inspection and sampling during ROV dives. The AUV carries a 200 kHz multibeam sonar, 110 kHz chirp sidescan sonar, a 1-6 kHz chirp subbottom profiler, and a conductivity, temperature and depth (CTD) sensor for ~17-hour duration missions. Flying at 5.4 km/hr at 50 m altitude, the processed AUV bathymetry has a 0.1 m vertical precision and a 1 m lateral resolution. Chimneys taller than 1.5 m are sufficiently distinctive to allow provisional identification. The CTD temperature data have a nominal 0.002°C accuracy. Following calculation of potential temperature and correcting for average local variation of potential temperature with depth, anomalies greater than 0.05 °C can be reliably identified using a spike detection filter. MBARI AUV mapping surveys are typically planned using a 150 m survey line spacing, so the CTD data may be collected as much as 75 m away from any vent plume source. Five active high temperature vent fields were discovered in the southern GOC, with the Auka Field in the southern Pescadero Basin, and the Ja Sít, Pericú, Meyibó, and Tzab-ek Fields along the Alarcon Rise. In all five cases, hydrothermal vent chimneys are readily identifiable in the multibeam bathymetry, and temperature anomalies are observed above background variability. Other apparent hydrothermal chimneys were observed in the bathmetry that did not exhibit water temperature anomalies; most of these were visited during ROV dives and confirmed to be inactive sites. The maximum water column anomalies are 0.13°C observed above the Meyibó field and 0.25

  14. The geochemical controls on vent fluids from the Lucky Strike vent field, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Von Damm, K. L.; Bray, A. M.; Buttermore, L. G.; Oosting, S. E.

    1998-08-01

    Hydrothermal vent fluids were collected from the Lucky Strike site at 37°17'N on the Mid-Atlantic Ridge in both 1993 and 1996. Seven vents were sampled with the DSV Alvin in 1993 and six vents were sampled in 1996 using the ROV Jason during the LUSTRE '96 Cruise. As three of the vents were sampled in both 1993 and in 1996, a time series of vent fluid chemistry is also reported. Measured temperatures ranged from 202 to 333°C at the 1618-1726 m depth of the vent field, which is located on Lucky Strike Seamount. These fluids are either equal to or less than the local bottom seawater in chlorinity. While the range in fluid compositions at Lucky Strike is generally within that observed elsewhere, the unusual aspects of the fluid chemistries are the relatively high pH and low Fe, Mn, Li and Zn. We attribute this, as well as an usually low Sr/Ca ratio, to reaction with a highly altered substrate. The high Si and Cu contents suggest a deep, as well as hot, source for these fluids. The fluid compositions therefore suggest formation by super-critical phase separation at a depth not less than 1300 m below the seafloor, and reaction with a relatively oxic, and previously altered, substrate. There is temporal variability in some of the vent fluid compositions as Li, K, Ca and Fe concentrations have increased in some of the vents, as has the Fe/Mn (molar) ratio, although the chlorinities have remained essentially constant from 1993 to 1996. While there is not a simple relationship between vent fluid compositions (or temperatures) and distance from the lava lake at the summit of the seamount, the vent fluids from many of the vents can be shown to be related to others, often at distances >200 m. The most southeasterly vents (Eiffel Tower and the Marker/Mounds vents) are distinct in chlorinity and other chemical parameters from the rest of the vents, although closely related to each other within the southeastern area. Similarly all of the vents not in this one area, appear

  15. Vent Field Distribution and Evolution Along the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Kelley, D. S.; Delaney, J. R.; Lilley, M. D.; Butterfield, D. A.

    2001-12-01

    Five major vent fields have now been discovered along the Endeavour Segment of the Juan de Fuca Ridge. From the north to the south they include Sasquatch, Salty Dawg, High Rise, Main Endeavour, and Mothra. Spacing between the distinct, high-temperature fields increases from the north to the south. For example Sasquatch is located 1.6 km north of Salty Dawg and Mothra is 2.7 km south of the Main Endeavour Field. In addition to changes in spacing of the vent fields along axis there are also dramatic changes in the style, intensity, and thermal-chemical characteristics of venting. The newly discovered Sasquatch field extends for >200 m in length, and venting is limited to a few isolated, small structures that reach 284° C. Active venting is confined to the northern portion of the field. In contrast, extinct, massive sulfide edifices and oxidized sulfide talus can be followed continuously for over 200 m along a 25-30 m wide, 020 trending ridge indicating that this field was very active in the past. In contrast to the delicate active structures, older extinct structures reach at least 25 m in height and the aspect ratios are similar to active pillars in the Mothra Field 7.5 km, to the south. It is unclear if venting at this site represents rejuvenation of the field, or whether it is in a waning stage. Within Salty Dawg, vent fluid temperatures reach 296° C and vigorous venting is constrained to a few, multi-flanged edifices that reach 25 m in height and 25 m in length. The field hosts over 25 structures, oxidized sulfide is abundant, and diffuse flow is dominant. Fluid compositions and temperatures are consistent with Salty Dawg being in a waning stage of evolution. Venting intensity and incidence of venting increase dramatically at High Rise where numerous multi-flanged structures are active; temperatures reach 343° C. The most intense and active of the fields is the Main Endeavour, with at least 21 actively venting, multi-flanged edifices that contain at least 100

  16. The influence of vent fluid chemistry on trophic structure at two deep-sea hydrothermal vent fields on the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Bennett, Sarah; Van Dover, Cindy; Coleman, Max

    2014-05-01

    The two known deep-sea hydrothermal vent fields along the Mid-Cayman Rise are separated by a distance of only 21 km, yet their chemistry and faunal diversity are distinct. The deeper of the two vent fields, Piccard (with active venting from Beebe Vents, Beebe Woods and Beebe Sea), at 4980 m is basalt hosted. The shallower vent field, Von Damm, at 2300 m appears to have an ultramafic influence. The Von Damm vent field can be separated into two sites: The Spire and The Tubeworm Field. The dominant vent fluids at the Tubeworm Field are distinct from those at the Spire, as a result of fluid modification in the sub-surface. Von Damm and Piccard vent fields support abundant invertebrates, sharing the same biomass-dominant shrimp species, Rimicaris hybisae. Although there are some other shared species (squat lobsters (Munidopsis sp.) and gastropods (Provanna sp. and Iheyaspira sp.)) between the vent fields, they are much more abundant at one site than the other. In this study we have examined the bulk carbon, nitrogen and sulfur isotope composition of microbes and fauna at each vent field. With these data we have deduced the trophic structure of the communities and the influence of vent fluid chemistry. From stable isotope data and end-member vent fluid chemistry, we infer that the basis of the trophic structure at Piccard is dominated by sulfur, iron, and hydrogen-oxidizing microbial communities. In comparison, the basis of the Von Damm trophic structure is dominated by microbial communities of sulfur and hydrogen oxidizers, sulfate reducers and methanotrophs. This microbial diversity at the base of the trophic structure is a result of chemical variations in vent fluids and processes in the sub-surface that alter the vent fluid chemistry. These differences influence higher trophic levels and can be used to explain some of the variability as well as similarity in fauna at the vent sites. Part of this work was performed at the Jet Propulsion Laboratory, California

  17. Speciation of dissolved copper within an active hydrothermal edifice on the Lucky Strike vent field (MAR, 37 degrees N).

    PubMed

    Sarradin, Pierre-Marie; Waeles, Matthieu; Bernagout, Solène; Le Gall, Christian; Sarrazin, Jozée; Riso, Ricardo

    2009-01-01

    The objective of this study was to determine the concentrations of different fractions of dissolved copper (after filtration at 0.45 microm) along the cold part of the hydrothermal fluid-seawater mixing zone on the Tour Eiffel edifice (MAR). Dissolved copper was analyzed by stripping chronopotentiometry (SCP) after chromatographic C(18) extraction. Levels of total dissolved copper (0.03 to 5.15 microM) are much higher than those reported for deep-sea oceanic waters but in accordance with data previously obtained in this area. Speciation measurements show that the hydrophobic organic fraction (C(18)Cu) is very low (2+/-1%). Dissolved copper is present mainly as inorganic and hydrophilic organic complexes (nonC(18)Cu). The distribution of copper along the pH gradient shows the same pattern for each fraction. Copper concentrations increase from pH 5.6 to 6.5 and then remain relatively constant at pH>6.5. Concentrations of oxygen and total sulphides demonstrate that the copper anomaly corresponds to the transition between suboxic and oxic waters. The increase of dissolved copper should correspond to the oxidative redissolution of copper sulphide particles formed in the vicinity of the fluid exit. The presence of such a secondary dissolved copper source, associated with the accumulation of metal sulphide particles, could play a significant role in the distribution of fauna in the different habitats available at vents.

  18. Relationships between lava types, seafloor morphology, and the occurrence of hydrothermal venting in the ASHES vent field of Axial Volcano. [Axial Seamount Hydrothermal Emission Study

    SciTech Connect

    Hammond, S.R. )

    1990-08-10

    Deep-towed and submersible photographic surveys within the caldera of Axial Volcano have been integrated with high-resolution bathmetry to produce a geological map of the most active vent field in the caldera. Locations for over 2,000 photographs in and near the vent field were determined using a seafloor transponder network. Then each photograph was described utilizing a classification system which provides detailed information concerning lava type, hydrothermal activity, sediment cover, geological structure, and biology. Resulting data were entered into a digital data base, and computer-generated maps were created that portray spatial relationships between selected geological variables. In general, the entire ASHES field is characterized by pervasive low-temperature venting. The most vigorous venting is concentrated in an approximately 80 m {times} 80 m area where there are several high-temperature vents including some which are producing high-temperature vapor-phase fluids derived from a boiling hydrothermal system. Lava types within the ASHES vent field are grouped into three distinct morphologies: (1) smooth (flat-surfaced, ropy, and whorled) sheet flows, (2) lobate flows, and (3) jumbled-sheet flows. The most intense hydrothermal venting is concentrated in the smooth sheet flows and the lobate flows. The location of the ASHES field is mainly attributable to faulting which defines the southwest caldera wall, but the concentration of intense venting appears to be related also to the spatial distribution of lava types in the vent field and their contrasting permeabilities. Other structural trends of faults and fissures within the field also influence the location of individual events.

  19. On the global distribution of hydrothermal vent fields: One decade later

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Baker, E. T.; German, C. R.

    2012-12-01

    Since the last global compilation one decade ago, the known number of active submarine hydrothermal vent fields has almost doubled. At the end of 2009, a total of 518 active vent fields was catalogued, with about half (245) visually confirmed and others (273) inferred active at the seafloor. About half (52%) of these vent fields are at mid-ocean ridges (MORs), 25% at volcanic arcs, 21% at back-arc spreading centers (BASCs), and 2% at intra-plate volcanoes and other settings. One third are in high seas, and the nations with the most known active vent fields within EEZs are Tonga, USA, Japan, and New Zealand. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. Here, we have comprehensively documented the percentage of strike length at MORs and BASCs that has been systematically explored for hydrothermal activity. As of the end of 2009, almost 30% of the ~60,000 km of MORs had been surveyed at least with spaced vertical profiles to detect hydrothermal plumes. A majority of the vents discovered at MORs in the past decade occurred at segments with < 60 mm/yr full spreading rate. Discoveries at ultra-slow MORs in the past decade included the deepest known vent (Beebe at Mid-Cayman Rise) and high-temperature black smoker vents (e.g., Dragon at SWIR and Loki's Castle at Mohns Ridge), and the highest temperature vent was measured at the slow-spreading S MAR (Turtle Pits). Using a previously published equation for the linear relationship between the number of active vent fields per 100 km strike length (F_s) vs. weighted-average full spreading rate (u_s), we predicted 676 vent fields remaining to be discovered at MORs. Even accounting for the lower F_s at slower spreading rates, almost half of the vents that are predicted remaining to be discovered at MORs are at ultra-slow to slow spreading rates (< 40 mm/yr) and about 1/3 at intermediate rates (40-80 mm

  20. Decline of a Hydrothermal Vent Field - Escanaba Trough 12 Years Later

    NASA Astrophysics Data System (ADS)

    Zierenberg, R. A.; Clague, D. A.; Davis, A. S.; Lilley, M. D.; McClain, J. S.; Olson, E. S.; Ross, S. L.; Von Damm, K. L.

    2001-12-01

    Hydrothermal venting was discovered in Escanaba Trough, the southern sediment-covered portion of the Gorda Ridge, in 1988. Large pyrrhotite-rich massive sulfide mounds are abundant at each of the volcanic/intrusive centers that have been investigated in Escanaba Trough, but the only area of known hydrothermal venting is the NESCA site along the ridge axis at 41\\deg N. Hydrothermal fluids venting at 217\\deg C and 108\\deg C were sampled in 1988 on two sulfide mounds separated by about 275 m. The end-member fluid compositions were indistinguishable within analytical errors. Several sulfide mounds were observed in 1988 which had diffusely venting low temperature (< 20\\deg C) fluids that supported extensive vent communities dominated by fields of Ridgia. Nine holes were drilled in the NESCA area in 1996 on ODP Leg 169, including Hole 1036I that penetrated to basaltic basement at 405 m below sea floor (mbsf). Surveys of the area using the drill string camera located only one area of active venting at the same mound where 217\\deg C vent fluids were sampled from two active vents in 1988. Drill hole 1036A was spudded between the two active vents on this sulfide mound (approximately 4 and 8 m away) and penetrated to 115 mbsf. The NESCA site was revisited in 2000 using MBARI's R/V Western Flyer and ROV Tiburon. The hydrothermal vents appeared essentially identical to observations made from the drill string camera in 1996 despite the presence of a drill hole within meters of the two vents. The maximum vent temperature measured in 2000 was 212\\deg C. Fluid samples have major element and isotopic compositions very similar to those collected in 1988. The vent fluids have higher methane ( ~19 mmol/kg) than those from the geologically similar Middle Valley vent field, but lower values than those at Guaymas Basin. Drill hole 1036A was weakly venting, but the diffuse hydrothermal fluids could not be sampled with the equipment available. The walls of the drill hole were

  1. Fake ballistics and real explosions: field-scale experiments on the ejection and emplacement of volcanic bombs during vent-clearing explosive activity

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Valentine, G.; Gaudin, D.; Graettinger, A. H.; Lube, G.; Kueppers, U.; Sonder, I.; White, J. D.; Ross, P.; Bowman, D. C.

    2013-12-01

    Ballistics - bomb-sized pyroclasts that travel from volcanic source to final emplacement position along ballistic trajectories - represent a prime source of volcanic hazard, but their emplacement range, size, and density is useful to inverse model key eruption parameters related to their initial ejection velocity. Models and theory, however, have so far focused on the trajectory of ballistics after leaving the vent, neglecting the complex dynamics of their initial acceleration phase in the vent/conduit. Here, we use field-scale buried explosion experiments to study the ground-to-ground ballistic emplacement of particles through their entire acceleration-deceleration cycle. Twelve blasts were performed at the University at Buffalo Large Scale Experimental Facility with a range of scaled depths (burial depth divided by the cubic root of the energy of the explosive charge) and crater configurations. In all runs, ballistic analogs were placed on the ground surface at variable distance from the vertical projection of the buried charge, resulting in variable ejection angle. The chosen analogs are tennis and ping-pong balls filled with different materials, covering a limited range of sizes and densities. The analogs are tracked in multiple high-speed and high-definition videos, while Particle Image Velocimetry is used to detail ground motion in response to the buried blasts. In addition, after each blast the emplacement position of all analog ballistics was mapped with respect to the blast location. Preliminary results show the acceleration history of ballistics to be quite variable, from very short and relatively simple acceleration coupled with ground motion, to more complex, multi-stage accelerations possibly affected not only by the initial ground motion but also by variable coupling with the gas-particle mixture generated by the blasts. Further analysis of the experimental results is expected to provide new interpretative tools for ballistic deposits and better

  2. Cluster Analysis of vents in monogenetic volcanic fields, Lunar Crater Volcanic Field (Nevada)

    NASA Astrophysics Data System (ADS)

    Tadini, A.; Cortes, J. A.; Valentine, G. A.; Johnson, P. J.; Tibaldi, A.; Bonali, F. L.

    2012-12-01

    Monogenetic volcanic fields pose a serious risk to human activities and settlements due to their high occurrence around the world and because of the type of eruptive activity that they exhibit. The need of adequate tools to better undertake volcanic hazard assessment for volcanic fields, especially from a spatial point of view, is of key importance at the time of mitigate such hazard. Among these tools, a better understanding of the spatial distribution of cones and vents and any structural/tectonical relationship are essential to understand the plumbing system of the field and thus help to predict the likelihood location of future eruptions. In this study we have developed a spatial methodology, which is the combination of various methodologies developed for volcanic textures and other clustering goals [1,2], to study the clustering of volcanic vents and their relation with structural features from satellite images. The methodology first involves the statistical identification and removal of spatial outliers using a predictive elliptical area [2] and the generation of randomly distributed points in the same predictive area. A comparison of the Near Neighbor Distance (NND) between the generated data and the data measured in a volcanic field is used to determine whether the vents are clustered or not. If the vents are clustered, a combination of hierarchical clustering and K-means [3] is then used to identify the clusters and their related vents. Results are then further constrained with the study of lineaments and other structural features that can be affected and related with the clusters. The methodology was tested in the Lunar Crater Volcanic Field, Nevada (USA) and successfully has helped to identify tectonically controlled lineaments from those that are resultant of geomorphological processes such the drainage control imposed by the cone clusters. Theoretical approaches has been developed before to constrain the plumbing of a volcanic field [4], however these

  3. Geological and hydrothermal controls on the distribution of megafauna in Ashes Vent Field, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Arquit, Anne M.

    1990-08-01

    A computerized data base was constructed to aid in the interpretation of biological and geological observations recorded from 7662 photographs taken of Ashes vent field (located along the SW wall of the summit caldera of Axial Volcano, Juan de Fuca Ridge) during 1985-1986 using the Pisces IV submersible and a towed camera system. The transition region between the locus of high-temperature vents in Ashes vent field (i.e., Inferno, 326°C; Hell, 301°C; and Virgin Mound, 298°C) and more typical environmental conditions for the summit caldera of Axial Volcano as a whole is zoned spatially with respect to sediment type and organism assemblage. Three general ecological zones are identified within the vent field: (1) the central vent zone (within 100 m of a high-temperature vent), dominated by vent-associated organisms (vestimentiferan tube worms, clams, bacterial mats) and sedimentation (high-temperature, plume-derived and low-temperature, in situ deposits); (2) the distal vent zone (100-725 m from any high-temperature vent), characterized by extensive fields of iron oxide, iron silicate and silica chimneys and sediment (nontronite assemblage material), as well as maximum densities of most nonvent fauna; and (3) the nonvent impact zone (725-1300 m), indicated by elevated densities of nonvent organisms relative to regional (i.e., caldera-wide) values and maximum Bathydorus sp. sponge densities. The distribution of vestimentiferan tube worms is limited to within 90 m of known high-temperature venting (central vent zone); and anemones were observed only between 30 and 40 m from hot vents. Clams and microbial mats are concentrated in the central vent zone, as well, but occur sporadically up to 1250 m from the hot vents in association with hydrothermal nontronite that is probably precipitating in situ from <60°C vent fluid; thus megafaunal distributions are a useful indicator of poorly defined, often diffuse low-temperature hydrothermal activity on the seafloor. Maximum

  4. Geology, sulfide geochemistry and supercritical venting at the Beebe Hydrothermal Vent Field, Cayman Trough

    NASA Astrophysics Data System (ADS)

    Webber, Alexander P.; Roberts, Stephen; Murton, Bramley J.; Hodgkinson, Matthew R. S.

    2015-09-01

    The Beebe Vent Field (BVF) is the world's deepest known hydrothermal system, at 4960 m below sea level. Located on the Mid-Cayman Spreading Centre, Caribbean, the BVF hosts high temperature (˜401°C) "black smoker" vents that build Cu, Zn and Au-rich sulfide mounds and chimneys. The BVF is highly gold-rich, with Au values up to 93 ppm and an average Au:Ag ratio of 0.15. Gold precipitation is directly associated with diffuse flow through "beehive" chimneys. Significant mass-wasting of sulfide material at the BVF, accompanied by changes in metal content, results in metaliferous talus and sediment deposits. Situated on very thin (2-3 km thick) oceanic crust, at an ultraslow spreading centre, the hydrothermal system circulates fluids to a depth of ˜1.8 km in a basement that is likely to include a mixture of both mafic and ultramafic lithologies. We suggest hydrothermal interaction with chalcophile-bearing sulfides in the mantle rocks, together with precipitation of Au in beehive chimney structures, has resulted in the formation of a Au-rich volcanogenic massive sulfide (VMS) deposit. With its spatial distribution of deposit materials and metal contents, the BVF represents a modern day analogue for basalt hosted, Au-rich VMS systems.

  5. Fluid Flow and Sound Generation at Hydrothermal Vent Fields

    DTIC Science & Technology

    1988-04-01

    weeks or, the Ellen B. Scripps, to rendezvous with the Glomar Challenger and conduct the borehole seismic experiment south of the Costa Rica Rift in...H.P. Johnson, S.K. Juniper, J.L. Karsten, J.E. Lupton , S.D. Scott and V. Tunnicliffe. North caldera hydrothermal vent field, Axial Seamount, Juan de...Aikman, R. Embley, S. Hammond, A. Malahoff, and J. Lupton , The distribution of geothermal fields on the Juan de Fuca Ridge. J. Geophys, Res., 90, 727

  6. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge

    USGS Publications Warehouse

    Flores, Gilberto E.; Campbell, James H.; Kirshtein, Julie D.; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua I.; Seewald, Jeffrey S.; Tivey, Margaret Kingston; Voytek, Mary A.; Yang, Zamin K.; Reysenbach, Anna-Louise

    2011-01-01

    To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37°17'N, 32°16.3'W, depth 1600-1750m) and the ultramafic-hosted Rainbow (36°13'N, 33°54.1'W, depth 2270-2330m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

  7. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge

    SciTech Connect

    Flores, Gilberto E; Campbell, James H; Kirshtein, Julie D; Meneghin, Jennifer; Podar, Mircea; Steinberg, Joshua; Seewald, Jeffrey S; Tivey, Margaret Kingston; Voytek, Mary A; Reysenbach, Anna-Louise; Yang, Zamin Koo

    2011-01-01

    To evaluate the effects of local fluid geochemistry on microbial communities associated with active hydrothermal vent deposits, we examined the archaeal and bacterial communities of 12 samples collected from two very different vent fields: the basalt-hosted Lucky Strike (37 17'N, 32 16.3'W, depth 1600-1750 m) and the ultramafic-hosted Rainbow (36 13'N, 33 54.1'W, depth 2270-2330 m) vent fields along the Mid-Atlantic Ridge (MAR). Using multiplexed barcoded pyrosequencing of the variable region 4 (V4) of the 16S rRNA genes, we show statistically significant differences between the archaeal and bacterial communities associated with the different vent fields. Quantitative polymerase chain reaction (qPCR) assays of the functional gene diagnostic for methanogenesis (mcrA), as well as geochemical modelling to predict pore fluid chemistries within the deposits, support the pyrosequencing observations. Collectively, these results show that the less reduced, hydrogen-poor fluids at Lucky Strike limit colonization by strict anaerobes such as methanogens, and allow for hyperthermophilic microaerophiles, like Aeropyrum. In contrast, the hydrogen-rich reducing vent fluids at the ultramafic-influenced Rainbow vent field support the prevalence of methanogens and other hydrogen-oxidizing thermophiles at this site. These results demonstrate that biogeographical patterns of hydrothermal vent microorganisms are shaped in part by large scale geological and geochemical processes.

  8. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations

    NASA Astrophysics Data System (ADS)

    Baker, Edward T.; Resing, Joseph A.; Haymon, Rachel M.; Tunnicliffe, Verena; Lavelle, J. William; Martinez, Fernando; Ferrini, Vicki; Walker, Sharon L.; Nakamura, Koichi

    2016-09-01

    Decades of exploration for venting sites along spreading ridge crests have produced global datasets that yield estimated mean site spacings of ∼ 12- 220 km. This conclusion demands that sites where hydrothermal fluid leaks from the seafloor are improbably rare along the 66 000 km global ridge system, despite the high bulk permeability of ridge crest axes. However, to date, exploration methods have neither reliably detected plumes from isolated low-temperature, particle-poor, diffuse sources, nor differentiated individual, closely spaced (clustered within a few kilometers) sites of any kind. Here we describe a much lower mean discharge spacing of 3-20 km, revealed by towing real-time oxidation-reduction-potential and optical sensors continuously along four fast- and intermediate-rate (>55 mm/yr) spreading ridge sections totaling 1470 km length. This closer spacing reflects both discovery of isolated sites discharging particle-poor plumes (25% of all sites) and improved discrimination (at a spatial resolution of ∼1 km) among clustered discrete and diffuse sources. Consequently, the number of active vent sites on fast- and intermediate-rate spreading ridges may be at least a factor of 3-6 higher than now presumed. This increase provides new quantitative constraints for models of seafloor processes such as dispersal of fauna among seafloor and crustal chemosynthetic habitats, biogeochemical impacts of diffuse venting, and spatial patterns of hydrothermal discharge.

  9. The sound field near hydrothermal vents on Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Little, Sarah A.; Stolzenbach, Keith D.; Purdy, G. Michael

    1990-08-01

    High-quality acoustic noise measurements were obtained by two hydrophones located 3 m and 40 m from an active hydrothermal vent on Axial Seamount, Juan de Fuca Ridge, in an effort to determine the feasibility of monitoring hydrothermal vent activity through flow noise generation. Most of the measured noise field could be attributed to ambient ocean noise sources of microseisms, distant shipping, and weather, punctuated by local ships and biological sources. Long-period, low-velocity, water/rock interface waves were detected with high amplitudes which rapidly decayed with distance from the seafloor. Detection of vent signals was hampered by unexpected spatial nonstationarity due to the shadowing effects of the caldera wall. No continuous vent signals were deemed significant based on a criterion of 90% probability of detection and 5% probability of false alarm. However, a small signal near 40 Hz, with a power level of 10-4Pa2/Hz was noticed on two records taken within 3 m of the Inferno black smoker. Hie frequency of this signal is consistent with predictions, and the power level suggests the occurrence of jet noise amplification due to convected density inhomogeneities.

  10. Sound field near hydrothermal vents on Axial Seamount, Juan de Fuca Ridge. Technical report

    SciTech Connect

    Little, S.A.; Stolzenbach, K.D.; Purdy, G.M.

    1990-08-10

    High-quality acoustic noise measurements were obtained by two hydrophones located 3 m and 40 m from an active hydrothermal vent on Axial Seamount, Juan de Fuca Ridge, in an effort to determine the feasibility of monitoring hydrothermal vent activity through flow noise generation. Most of the measured noise field could be attributed to ambient ocean noise sources of microseisms, distant shipping, and weather, punctuated by local ships and biological sources. Long-period, low-velocity, water/rock interface waves were detected with high amplitudes which rapidly decayed with distance from the seafloor. Detection of vent signals was hampered by unexpected spatial nonstationarity due to the shadowing effects of the calders wall. No continuous vent signals were deemed significant based on a criterion of 90% probability of detection and 5% probability of false alarm. However, a small signal near 40 Hz, with a power level of 0.0001 Pa sq/Hz was noticed on two records taken within 3 m of the Inferno black smoker. The frequency of this signal is consistent with predictions, and the power level suggests the occurrence of jet noise amplification due to convected density inhomogeneities. Keywords: Seamounts; Flow noise; Underwater acoustics; Acoustic measurement; Geothermy/noise; Ocean ridges; Underwater sound signals; Reprints; North Pacific Ocean. (EDC).

  11. Volcanic field elongation, vent distribution and tectonic evolution of continental rift: The Main Ethiopian Rift example

    NASA Astrophysics Data System (ADS)

    Mazzarini, Francesco; Le Corvec, Nicolas; Isola, Ilaria; Favalli, Massimiliano

    2015-04-01

    Magmatism and faulting operate in continental rifts and interact at a variety of scales, however their relationship is complex. The African rift, being the best example for both active continental rifting and magmatism, provides the ideal location to study the interplay between the two mechanisms. The Main Ethiopian Rift (MER), which connects the Afar depression in the north with the Turkana depression and Kenya Rift to the south, consists of two distinct systems of normal faults and its floor is scattered with volcanic fields formed by tens to several hundreds monogenetic, generally basaltic, small volcanoes and composite volcanoes and small calderas. The distribution of vents defines the overall shape of the volcanic field. Previous work has shown that the distribution of volcanic vents and the shape of a field are linked to its tectonic environment and its magmatic system. In order to distinguish the impact of each mechanism, we analyzed four volcanic fields located at the boundary between the central and northern MER, three of them (Debre Zeyit, Wonji and Kone) grew in the rift valley and one (Akaki) on the western rift shoulder. The elongation and shape of the fields were analyzed based on their vent distribution using the Principal Component Analysis (PCA), the Vent-to-Vent Distance (VVD), and the two dimensional symmetric Gaussian kernel density estimate methods. We extracted from these methods several parameters characterizing the spatial distribution of points (e.g., eccentricity (e), eigenvector index (evi), angular dispersion (Da)). These parameters allow to define at least three types of shape for volcanic fields: strong elongate (line and ellipse), bimodal/medium elongate (ellipse) and dispersed (circle) shapes. Applied to the natural example, these methods well differentiate each volcanic field. For example, the elongation of the field increases from shoulder to rift axis inversely to the angular dispersion. In addition, the results show that none of

  12. Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre.

    PubMed

    Connelly, Douglas P; Copley, Jonathan T; Murton, Bramley J; Stansfield, Kate; Tyler, Paul A; German, Christopher R; Van Dover, Cindy L; Amon, Diva; Furlong, Maaten; Grindlay, Nancy; Hayman, Nicholas; Hühnerbach, Veit; Judge, Maria; Le Bas, Tim; McPhail, Stephen; Meier, Alexandra; Nakamura, Ko-Ichi; Nye, Verity; Pebody, Miles; Pedersen, Rolf B; Plouviez, Sophie; Sands, Carla; Searle, Roger C; Stevenson, Peter; Taws, Sarah; Wilcox, Sally

    2012-01-10

    The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 °C venting from the world's deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents.

  13. Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre

    PubMed Central

    Connelly, Douglas P.; Copley, Jonathan T.; Murton, Bramley J.; Stansfield, Kate; Tyler, Paul A.; German, Christopher R.; Van Dover, Cindy L.; Amon, Diva; Furlong, Maaten; Grindlay, Nancy; Hayman, Nicholas; Hühnerbach, Veit; Judge, Maria; Le Bas, Tim; McPhail, Stephen; Meier, Alexandra; Nakamura, Ko-ichi; Nye, Verity; Pebody, Miles; Pedersen, Rolf B.; Plouviez, Sophie; Sands, Carla; Searle, Roger C.; Stevenson, Peter; Taws, Sarah; Wilcox, Sally

    2012-01-01

    The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 °C venting from the world's deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents. PMID:22233630

  14. A comparison of black smoker hydrothermal plume behavior at Monolith Vent and at Clam Acres Vent Field: Dependence on source configuration

    NASA Astrophysics Data System (ADS)

    Bemis, Karen G.; Rona, Peter A.; Jackson, Darrell; Jones, Christopher; Silver, Deborah; Mitsuzawa, Kyohiko

    Quantitative visualization of acoustic images is used to compare the properties and behavior of high temperature hydrothermal plumes at two sites with different source configurations, increasing our understanding of how plume behavior reflects source configuration. Acoustic imaging experiments were conducted at the Clam Acres area of the Southwest Vent Field, 21°N East Pacific Rise and at Monolith Vent, North Cleft segment, Juan de Fuca Ridge. At Clam Acres, black smokers discharge from two adjacent chimneys which act as point sources, whereas multiple vents at Monolith Vent define a distributed elliptical source. Both plumes exhibit consistent dilution patterns, reasonable fits to the expected power law increase in centerline dilution with height, and simple bending of plume centerlines in response to ambient currents. Our data suggest that point source vents are associated with ordered plume structure, normal entrainment rates, and initial expansion of isosurfaces while distributed source vents are associated with disorganized plume structure, variable entrainment rates, and initial contraction of isosurfaces.

  15. Sustained volcanically-hosted venting at ultraslow ridges: Piccard Hydrothermal Field, Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Kinsey, James C.; German, Christopher R.

    2013-10-01

    At slow spreading mid-ocean ridges sustained submarine venting and the deposition of large seafloor massive sulfide deposits have previously been ascribed to tectonically-controlled hydrothermal circulation unrelated to young volcanic activity. Here, by contrast, we show that the Piccard Hydrothermal Field (PHF), on the ultraslow spreading Mid-Cayman Rise, represents a site of sustained fluid flow and sulfide formation hosted in a neovolcanic setting. The lateral extent and apparent longevity associated with the PHF are comparable to some of the largest tectonically-hosted vent sites known along the slow-spreading Mid-Atlantic Ridge. If such systems recur along all ultraslow ridges, which comprise ˜20% of the ˜55,000 km global ridge crest, potential implications would include (i) a higher probability of locating large, economically valuable, mineral deposits along ultraslow ridges together with (ii) larger fluxes than previously anticipated of chemicals released from high-temperature venting entering the oceans along the Atlantic-Indian Ocean sectors of the deep-ocean thermohaline conveyor.

  16. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean.

    PubMed

    Mitarai, Satoshi; Watanabe, Hiromi; Nakajima, Yuichi; Shchepetkin, Alexander F; McWilliams, James C

    2016-03-15

    Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth.

  17. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean

    PubMed Central

    Mitarai, Satoshi; Watanabe, Hiromi; Nakajima, Yuichi; Shchepetkin, Alexander F.; McWilliams, James C.

    2016-01-01

    Hydrothermal vent fields in the western Pacific Ocean are mostly distributed along spreading centers in submarine basins behind convergent plate boundaries. Larval dispersal resulting from deep-ocean circulations is one of the major factors influencing gene flow, diversity, and distributions of vent animals. By combining a biophysical model and deep-profiling float experiments, we quantify potential larval dispersal of vent species via ocean circulation in the western Pacific Ocean. We demonstrate that vent fields within back-arc basins could be well connected without particular directionality, whereas basin-to-basin dispersal is expected to occur infrequently, once in tens to hundreds of thousands of years, with clear dispersal barriers and directionality associated with ocean currents. The southwest Pacific vent complex, spanning more than 4,000 km, may be connected by the South Equatorial Current for species with a longer-than-average larval development time. Depending on larval dispersal depth, a strong western boundary current, the Kuroshio Current, could bridge vent fields from the Okinawa Trough to the Izu-Bonin Arc, which are 1,200 km apart. Outcomes of this study should help marine ecologists estimate gene flow among vent populations and design optimal marine conservation plans to protect one of the most unusual ecosystems on Earth. PMID:26929376

  18. The roar of Yasur: Handheld audio recorder monitoring of Vanuatu volcanic vent activity

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Turtle, Elizabeth P.; Howell, Robert; Radebaugh, Jani; Lopes, Rosaly M. C.

    2016-08-01

    We describe how near-field audio recording using a pocket digital sound recorder can usefully document volcanic activity, demonstrating the approach at Yasur, Vanuatu in May 2014. Prominent emissions peak at 263 Hz, interpreted as an organ-pipe mode. High-pass filtering was found to usefully discriminate volcano vent noise from wind noise, and autocorrelation of the high pass acoustic power reveals a prominent peak in exhalation intervals of 2.5, 4 and 8 s, with a number of larger explosive events at 200 s intervals. We suggest that this compact and inexpensive audio instrumentation can usefully supplement other field monitoring such as seismic or infrasound. A simple estimate of acoustic power interpreted with a dipole jet noise model yielded vent velocities too low to be compatible with pyroclast emission, suggesting difficulties with this approach at audio frequencies (perhaps due to acoustic absorption by volcanic gases).

  19. Microbial life associated with low-temperature hydrothermal venting and formation of barite chimneys at Loki's Castle vent field

    NASA Astrophysics Data System (ADS)

    Thorseth, I. H.; Steen, I.; Roalkvam, I.; Dahle, H.; Stokke, R.; Rapp, H.; Pedersen, R.

    2010-12-01

    A low-temperature diffuse venting area with numbers of small barite chimneys is located on the flank of the large sulphide mound of the Loki’s Castle black smoker vent field at the Arctic Mid-Ocean Ridge (AMOR). White cotton-like microbial mats on top of the barite chimneys and associated siboglinid tubeworms were observed. The temperature was determined to 20°C for the surface sediment and 0°C for the white microbial mats, just above the ambient bottom seawater temperature of -0.8°C. The microbial mats were sampled using a remote operating vehicle (ROV) equipped with a hydraulic sampling cylinder (biosyringe) and the chimneys using an aluminum scuffle box. Black colored interior flow channels surrounded by white outer sections of nearly pure barite, were observed. Scanning electron microscopy (SEM) of mats showed numerous microbial cells and large amounts of extracellular thread-like material with attached barite crystals. Inside the chimneys microbial cells are partially embedded in barite, and individual crystals are also frequently covered by extracellular material. The microbial activity could thus have an important influence on the nucleation and growth of the barite crystals and thus on the formation of the chimneys. To reveal the microbial community structure, 16S rRNA gene sequence tag-encoded pyrosequencing (1.1 x 104 - 3.5 x 104 amplicons per library) followed by taxonomic classification of the reads using the MEGAN software, were performed. Organisms assigned to a genus of sulfide oxidizers (Sulfurimonas) within the e-Proteobacteria were abundant in each chimney structure; the white microbial mats (86-96% of the reads), the white barite (36% of total reads); the black flow channel (9.9%). The second most dominating taxon in the white chimney barite, including 26% of the reads, was anaerobic methanotrophs (ANME) of the ANME-1 clade, indicating anaerobic methane oxidation (AOM) as a major microbial process. Furthermore, the novel AOM associated clade

  20. First Discovery and Investigation of a High-Temperature Hydrothermal Vent Field on the Ultra- Slow Spreading Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Tao, C.; Lin, J.; Guo, S.; Chen, Y. J.; Wu, G.; Han, X.; German, C. R.; Yoerger, D. R.; Zhu, J.; Zhou, N.; Su, X.; Baker, E. T.; Party, S.

    2007-12-01

    Two recent cruises on board the Chinese research vessel Dayang Yihao have successfully investigated the first active hydrothermal vent field to be located along the ultraslow spreading Southwest Indian Ridge (SWIR) and collected hydrothermal sulfide deposit samples. The newly discovered hydrothermal vent field is located on the western end of a magmatically robust spreading segment immediately west of the Gallieni transform fault. Preliminary evidence of strong turbidity anomalies was first measured during a Nov. 2005 cruise on board Dayang Yihao (InterRidge News, vol. 15, pp. 33-34, 2006). Color video footages of the seafloor in the vent-field area were first obtained by a deep-towed video camera in February 2007 during DY115-19 Leg 1, when significant water column turbidity anomalies, noticeable temperature anomalies and methane anomalies were also measured. The vent field was then precisely located, mapped, and photographed in great detail in February- March 2007 during the DY115-19 Leg 2, using the autonomous underwater vehicle ABE of the Woods Hole Oceanographic Institution. A high-resolution bathymetric map, more than 5,000 near-bottom color photos, and several types of water column data were all obtained during three phases of ABE dives. Within the approximately 120-m-long by 100-m-wide hydrothermal field, three groups of active high-temperature vents were identified and color images of black smokers and associated biological communities were obtained from ABE, flying 5 m above the seafloor. Hydrothermal sulfide deposits were then successfully obtained using a TV-guided grab.

  1. First Discovery and Investigation of a High-Temperature Hydrothermal Vent Field on the Ultra- Slow Spreading Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Tao, C.; Lin, J.; Guo, S.; Chen, Y. J.; Wu, G.; Han, X.; German, C. R.; Yoerger, D. R.; Zhu, J.; Zhou, N.; Su, X.; Baker, E. T.; Party, S.

    2004-12-01

    Two recent cruises on board the Chinese research vessel Dayang Yihao have successfully investigated the first active hydrothermal vent field to be located along the ultraslow spreading Southwest Indian Ridge (SWIR) and collected hydrothermal sulfide deposit samples. The newly discovered hydrothermal vent field is located on the western end of a magmatically robust spreading segment immediately west of the Gallieni transform fault. Preliminary evidence of strong turbidity anomalies was first measured during a Nov. 2005 cruise on board Dayang Yihao (InterRidge News, vol. 15, pp. 33-34, 2006). Color video footages of the seafloor in the vent-field area were first obtained by a deep-towed video camera in February 2007 during DY115-19 Leg 1, when significant water column turbidity anomalies, noticeable temperature anomalies and methane anomalies were also measured. The vent field was then precisely located, mapped, and photographed in great detail in February- March 2007 during the DY115-19 Leg 2, using the autonomous underwater vehicle ABE of the Woods Hole Oceanographic Institution. A high-resolution bathymetric map, more than 5,000 near-bottom color photos, and several types of water column data were all obtained during three phases of ABE dives. Within the approximately 120-m-long by 100-m-wide hydrothermal field, three groups of active high-temperature vents were identified and color images of black smokers and associated biological communities were obtained from ABE, flying 5 m above the seafloor. Hydrothermal sulfide deposits were then successfully obtained using a TV-guided grab.

  2. Heat flux estimates from the Gakkel Ridge 85E vent field from the AGAVE 2007 expedition

    NASA Astrophysics Data System (ADS)

    Stranne, C.; Winsor, P.; Sohn, R. A.; Liljebladh, B.

    2009-04-01

    During the Arctic Gakkel Vents Expedition (AGAVE) 2007, abundant hydrothermal venting was discovered on the Gakkel Ridge at 85E. Hydrothermal vents on the sea floor give rise to buoyant plumes which, when reaching neutral buoyancy, spreads horizontally over areas with length scales on the order of several kilometres and are therefore easily detected with a CTD rosette. The detected anomalies are consistent with the findings 6 years earlier during the Arctic Mid-Ocean Ridge Expedition (AMORE) 2001. The horizontal and vertical distribution of the anomalies is considered in order to establish the number of individual plumes detected. The objective of this paper is to estimate the minimum heat input required to reproduce the observed plumes, using a turbulent entrainment model. The model was run with a large number of combinations of boundary conditions (nozzle area, vertical velocity and temperature) in order to see which combinations that give rise to the observed plume characteristics (level of neutral buoyancy and temperature anomaly). For each individual plume, we estimate the minimum heat flux required to obtain the observed temperature anomaly. Adding the minimum heat flux from each vent together, the total heat flux for the vent field is estimated to be ~ 2 GW. The estimated value is comparable or larger than any other known vent field.

  3. Preliminary Modeling of Two-Phase Flow at the Main Endeavour Vent Field

    NASA Astrophysics Data System (ADS)

    Singh, S.; Lowell, R. P.

    2011-12-01

    The high temperature hydrothermal vents of Main Endeavour Field (MEF), Juan de Fuca ridge exhibited quasi-steady North-South trending spatial gradients of both temperature and salinity for more than a decade before a magmatic event changed the vent characteristics. In order to explain these observations, we construct two-dimensional numerical models of two-phase hydrothermal flow of the MEF. We consider both along-axis and across-axis simulations, taking into account the vent field geometry and incorporating various parameters, such as different basal temperature distributions and permeability structures that might affect the vent fluid temperature and chemistry. Preliminary results from across-axis models, in which the basal temperature decreases linearly away from the ridge axis and results in a single high-temperature plume, indicate that basal temperature alone does not affect steady-state vent temperature and salinity of the vents. Simulations that include the presence of a high-permeability extrusive layer 2A atop the spreading ridge results in a zone of narrower and lower temperature venting. The effect of a low permeability zone of anhydrite would tend to mitigate the decrease in temperature, however. Along-axis simulations performed to date, with an extended uniform high temperature basal boundary, produce multiple plumes; but the plumes do not exhibit a strong along-axis gradient in vent salinity or temperature as observed at the MEF. These preliminary results suggest that the observed N-S gradient in temperature and salinity at MEF reflects interplay between heat source and either near the surface or deep-seated heterogeneous permeability structures. Three-dimensional simulations might ultimately be required to understand hydrothermal circulation at the MEF.

  4. Influence of hydrothermal venting on water column properties in the crater of the Kolumbo submarine volcano, Santorini volcanic field (Greece)

    NASA Astrophysics Data System (ADS)

    Christopoulou, Maria E.; Mertzimekis, Theo J.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steven; Mandalakis, Manolis

    2016-02-01

    The Kolumbo submarine volcano, located 7 km northeast of the island of Santorini, is part of Santorini's volcanic complex in the south Aegean Sea, Greece. Kolumbo's last eruption was in 1650 AD. However, a unique and active hydrothermal vent field has been revealed in the northern part of its crater floor during an oceanographic survey by remotely operated vehicles (ROVs) in 2006. In the present study, conductivity-temperature-depth (CTD) data collected by ROV Hercules during three oceanographic surveys onboard E/V Nautilus in 2010 and 2011 have served to investigate the distribution of physicochemical properties in the water column, as well as their behavior directly over the hydrothermal field. Additional CTD measurements were carried out in volcanic cone 3 (VC3) along the same volcanic chain but located 3 km northeast of Kolumbo where no hydrothermal activity has been detected to date. CTD profiles exhibit pronounced anomalies directly above the active vents on Kolumbo's crater floor. In contrast, VC3 data revealed no such anomalies, essentially resembling open-sea (background) conditions. Steep increases of temperature (e.g., from 16 to 19 °C) and conductivity near the maximum depth (504 m) inside Kolumbo's cone show marked spatiotemporal correlation. Vertical distributions of CTD signatures suggest a strong connection to Kolumbo's morphology, with four distinct zones identified (open sea, turbid flow, invariable state, hydrothermal vent field). Additionally, overlaying the near-seafloor temperature measurements on an X-Y coordinate grid generates a detailed 2D distribution of the hydrothermal vent field and clarifies the influence of fluid discharges in its formation.

  5. Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center

    NASA Astrophysics Data System (ADS)

    Johnson, Kenneth S.; Childress, James J.; Hessler, Robert R.; Sakamoto-Arnold, Carole M.; Beehler, Carl L.

    1988-10-01

    The concentrations of a suite of redox reactive chemicals were measured in the Rose Garden hydrothermal vent field of the Galapagos spreading center. Sulfide, silicate, oxygen and temperature distributions were measured in situ with a submersible chemical analyser. In addition, 15 chemical species were measured in discrete samples. Variability in the slope of the temperature-silicate plots indicates that heat is lost from these relatively low temperatures (<15°C) solutions by conduction to the solid phase. Consumption of oxygen, sulfide and nitrate from the hydrothermal solution as it flows past the vent animals is apparent from the distributions measured in situ and in the discrete samples. The fraction of sulfide and nitrate removed from the solution by consumption appears to have increased between 1979-1985. Sulfide and oxygen appear to be consumed under different conditions: sulfide is removed primarily from the warmest solutions, and oxygen is consumed only from the cold seawater. This separation may be driven primarily by the increased gradients of each chemical under these conditions. There is no evidence for the consumption of significant amounts of manganese(II) by the vent organisms. The analysis of other data sets from this vent field indicate no significant consumption of methane by the vent organisms, as well.

  6. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N.

    PubMed

    Kelley, D S; Karson, J A; Blackman, D K; Früh-Green, G L; Butterfield, D A; Lilley, M D; Olson, E J; Schrenk, M O; Roe, K K; Lebon, G T; Rivizzigno, P

    2001-07-12

    Evidence is growing that hydrothermal venting occurs not only along mid-ocean ridges but also on old regions of the oceanic crust away from spreading centres. Here we report the discovery of an extensive hydrothermal field at 30 degrees N near the eastern intersection of the Mid-Atlantic Ridge and the Atlantis fracture zone. The vent field--named 'Lost City'--is distinctly different from all other known sea-floor hydrothermal fields in that it is located on 1.5-Myr-old crust, nearly 15 km from the spreading axis, and may be driven by the heat of exothermic serpentinization reactions between sea water and mantle rocks. It is located on a dome-like massif and is dominated by steep-sided carbonate chimneys, rather than the sulphide structures typical of 'black smoker' hydrothermal fields. We found that vent fluids are relatively cool (40-75 degrees C) and alkaline (pH 9.0-9.8), supporting dense microbial communities that include anaerobic thermophiles. Because the geological characteristics of the Atlantis massif are similar to numerous areas of old crust along the Mid-Atlantic, Indian and Arctic ridges, these results indicate that a much larger portion of the oceanic crust may support hydrothermal activity and microbial life than previously thought.

  7. Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge Hydrothermal Vents

    SciTech Connect

    Andrew Fowler

    2015-10-01

    Compilation of rare earth element and associated major and minor dissolved constituent analytical data for USA geothermal fields and global seafloor hydrothermal vents. Data is in original units. Reference to and use of this data should be attributed to the original authors and publications according to the provisions outlined therein.

  8. Field Testing of an Unvented Roof with Fibrous Insulation, Tiles, and Vapor Diffusion Venting

    SciTech Connect

    Ueno, K.; Lstiburek, J. W.

    2016-02-01

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane. As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design.

  9. Temporal and spatial variation in temperature experienced by macrofauna at Main Endeavour hydrothermal vent field

    NASA Astrophysics Data System (ADS)

    Lee, Raymond W.; Robert, Katleen; Matabos, Marjolaine; Bates, Amanda E.; Juniper, S. Kim

    2015-12-01

    A significant focus of hydrothermal vent ecological studies has been to understand how species cope with various stressors through physiological tolerance and biochemical resistance. Yet, the environmental conditions experienced by vent species have not been well characterized. This objective requires continuous observations over time intervals that can capture environmental variability at scales that are relevant to animals. We used autonomous temperature logger arrays (four roughly parallel linear arrays of 12 loggers spaced every 10-12 cm) to study spatial and temporal variations in the thermal regime experienced by hydrothermal vent macrofauna at a diffuse flow vent. Hourly temperatures were recorded over eight months from 2010 to 2011 at Grotto vent in the Main Endeavour vent field on the Juan de Fuca Ridge, a focus area of the Ocean Networks Canada cabled observatory. The conspicuous animal assemblages in video footage contained Ridgeia piscesae tubeworms, gastropods (primarily Lepetodrilus fucensis), and polychaetes (polynoid scaleworms and the palm worm Paralvinella palmiformis). Two dimensional spatial gradients in temperature were generally stable over the deployment period. The average temperature recorded by all arrays, and in some individual loggers, revealed distinctive fluctuations in temperature that often corresponded with the tidal cycle. We postulate that this may be related to changes in bottom currents or fluctuations in vent discharge. A marked transient temperature increase lasting over a period of days was observed in April 2011. While the distributions and behavior of Juan de Fuca Ridge vent invertebrates may be partially constrained by environmental temperature and temperature tolerance, except for the one transient high-temperature event, observed fluid temperatures were generally similar to the thermal preferences for some species, and typically well below lethal temperatures for all species. Average temperatures of the four arrays

  10. Microbial anaerobic methane cycling in the subseafloor at the Von Damm hydrothermal vent field, Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Reveillaud, J. C.; Stepanauskas, R.; McDermott, J. M.; Sylva, S. P.; Seewald, J.

    2013-12-01

    The Mid-Cayman Rise (MCR) is Earth's deepest and slowest spreading mid-ocean ridge located in the western Caribbean. With an axial rift valley floor at a depth of ~4200-6500 m, it represents one of the deepest sections of ridge crest worldwide. In 2009, the world's deepest hydrothermal vents (Piccard at 4960 m) and an ultramafic-influenced system only 20 km away on top of an oceanic core complex (Von Damm at 2350 m) were discovered along the MCR. Each site is hosted in a distinct geologic setting with different thermal and chemical regimes. The Von Damm site is a particularly interesting location to examine chemolithoautotrophic subseafloor microbial communities due to the abundant hydrogen, methane, and organic compounds in the venting fluids. Here, we used a combination of stable isotope tracing, next-generation sequencing, and single cell techniques to determine the identity, activity, and genomic repertoire of subseafloor anaerobic archaea involved in methane cycling in hydrothermal fluids venting at the Von Damm site. Molecular sequencing of phylogenetic marker genes revealed the presence of diverse archaea that both generate and consume methane across a geochemical and thermal spectrum of vents. Stable isotope tracing experiments were used to detect biological utilization of formate and dissolved inorganic carbon, and methane generation at 70 °C under anaerobic conditions. Results indicate that methanogenesis with formate as a substrate is occurring at 70 °C at two Von Damm sites, Ginger Castle and the Main Orifice. The results are consistent with thermodynamic predictions for carbon speciation at the temperatures encountered at the ultramafic-hosted Von Damm, where formate is predicted to be thermodynamically stable, and may thus serve as a an important source of carbon. Diverse thermophilic methanogenic archaea belonging to the genera Methanothermococcus were detected at all vent sites with both 16S rRNA tag sequencing and single cell sorting. Other

  11. An analysis of flaring and venting activity in the Alberta upstream oil and gas industry.

    PubMed

    Johnson, Matthew R; Coderre, Adam R

    2011-02-01

    Alberta, Canada, is an important global producer of petroleum resources. In association with this production, large amounts of gas (1.14 billion m3 in 2008) are flared or vented. Although the amount of flaring and venting has been measurably reduced since 2002, data from 2005 reveal sharp increases in venting, which have important implications in terms of resource conservation and greenhouse gas emissions (which exceeded 8 million tonnes of carbon dioxide equivalent in 2008). With use of extensive monthly production data for 18,203 active batteries spanning the years 2002-2008 obtained in close cooperation with the Alberta Energy Resources Conservation Board, a detailed analysis has been completed to examine activity patterns of flaring and venting and reasons behind these trends in the Alberta upstream oil and gas industry. In any given year, approximately 6000 batteries reported flaring and/or venting, but the distribution of volumes flared and vented at individual sites was highly skewed, such that small numbers of sites handled large fractions of the total gas flaring and venting in the Province. Examination of month-to-month volume variability at individual sites, cast in terms of a nominal turndown ratio that would be required for a compressor to capture that gas and direct it into a pipeline, further revealed that volumes at a majority of sites were reasonably stable and there was no evidence that larger or more stable sites had been preferentially reduced, leaving potential barriers to future mitigation. Through linking of geospatial data with production data coupled with additional statistical analysis, the 31.2% increase in venting volumes since 2005 was revealed to be predominantly associated with increased production of heavier oils and bitumen in the Lloydminster region of the Province. Overall, the data suggest that quite significant reductions in flaring and venting could be realized by seeking mitigation solutions for only the largest batteries in

  12. Fluid flow and sound generation at hydrothermal vent fields. Doctoral thesis

    SciTech Connect

    Little, S.A.

    1988-04-01

    Several experiments in this thesis examine methods to measure and monitor fluid flow from hydrothermal vent fields. Simultaneous velocity temperature, and conductivity data were collected in the convective flow emanating from a hydrothermal vent field located on the East Pacific rise. The horizontal profiles obtained indicate that the flow field approaches an ideal plume in the temperature and velocity distribution. Such parameters as total heat flow and maximum plume height can be estimated using either the velocity or the temperature information. The results of these independent calculations are in close agreement, yielding a total heat capacity and volume changes slightly alter the calculations applied to obtain these values. In Guaymas Basin, a twelve day time series of temperature data was collected from a point three centimeters above a diffuse hydrothermal flow area. Using concurrent tidal gauge data from the town of Guaymas it is shown that the effects of tidal currents can be strong enough to dominate the time variability of a temperature signal at a fixed point in hydrothermal flow and are a plausible explanation for the variations seen in the Guaymas Basin temperature data. The increase in power due to convected flow inhomogeneities, however, was lower in the near field than expected. Indirect evidence of hydrothermal sound fields showing anomalous high power and low frequency noise associated with vents is due to processes other than jet noise.

  13. Field tests-low input, side-wall vented boiler

    SciTech Connect

    Litzke, W.L.; Butcher, T.A.; Celebi, Y.

    1996-07-01

    The Fan Atomized Burner (FAB) was developed at Brookhaven National Laboratory as part of the Oil Heat Combustion Equipment Technology Program to provide a practical low-firing rate technology leading to new, high efficiency oil-fired appliances. The development of the burner design and results of application testing have been presented in prior oil heat conferences over the past several years. This information is also summarized in a more comprehensive BNL report. The first field trial of a prototype unit was initiated during the 1994-95 heating season. This paper presents the results of the second year of testing, during the 1995-96 heating season. The field tests enable the demonstration of the reliability and performance of the FAB under practical, typical operating conditions. Another important objective of the field test was to demonstrate that the low input is adequate to satisfy the heating and hot water demands of the household. During the first field trial it was shown that at a maximum input rate of 0.4 gph (55,000 Btu/hr) the burner was able to heat a home with over 2,000 square feet of conditioned living space and provide adequate supply of domestic hot water for a family of six. The test is located in Long Island, NY.

  14. Monitoring Endeavour vent field deep-sea ecosystem dynamics through NEPTUNE Canada seafloor observatory

    NASA Astrophysics Data System (ADS)

    Matabos, M.; NC Endeavour Science Team

    2010-12-01

    Mid-ocean ridges are dynamic systems where the complex linkages between geological, biological, chemical, and physical processes are not yet well understood. Indeed, the poor accessibility to the marine environment has greatly limited our understanding of deep-sea ecosystems. Undersea cabled observatories offer the power and bandwidth required to conduct long-term and high-resolution time-series observations of the seafloor. Investigations of mid-ocean ridge hydrothermal ecosystem require interdisciplinary studies to better understand the dynamics of vent communities and the physico-chemical forces that influence them. NEPTUNE Canada (NC) regional observatory is located in the Northeast Pacific, off Vancouver Island (BC, Canada), and spans ecological environments from the beach to the abyss. In September-October 2010, NC will be instrumenting its 5th node, including deployment of a multi-disciplinary suite of instruments in two vent fields on the Endeavour Segment of the Juan de Fuca Ridge. These include a digital camera, an imaging sonar for vent plumes and flow characteristics (i.e. COVIS), temperature resistivity probes, a water sampler and seismometers. In 2011, the TEMPO-mini, a new custom-designed camera and sensor package created by IFREMER for real-time monitoring of hydrothermal faunal assemblages and their ecosystems (Sarrazin et al. 2007), and a microbial incubator, will added to the network in the Main Endeavour and Mothra vent fields. This multidisciplinary approach will involve a scientific community from different institutions and countries. Significant experience aids in this installation. For example, video systems connected to VENUS and NC have led to the development of new experimental protocols for time-series observations using seafloor cameras, including sampling design, camera calibration and image analysis methodologies (see communication by Aron et al. and Robert et al.). Similarly, autonomous deployment of many of the planned instruments

  15. Long-Lived Serpentinization and Carbonate Precipitation at the Lost City Hydrothermal Vent Field

    NASA Astrophysics Data System (ADS)

    Frueh-Green, G. L.; Kelley, D. S.; Karson, J. A.; Bernasconi, S. M.; Proskurowski, G.; Ludwig, K. A.

    2003-12-01

    The discovery of spectacular, actively venting carbonate chimneys at the Lost City hydrothermal vent field (LCHF) on the Atlantis Massif (MAR 30oN) has stimulated great interest in the role of serpentinization in driving hydrothermal circulation in peridotite-hosted systems and in the biological communities that may be supported in these environments. The top of this fault-bounded, dome-like massif consists of variably deformed, talc-bearing serpentinites and gabbroic rocks ( ˜1.5 Ma), unconformably overlain by polymictic sedimentary breccias and bedded pelagic limestones or chalks that form a flat-lying carbonate cap. The limestones and matrix of the breccias consist of highly indurated foraminiferal sand with a well-preserved sub-tropical fauna, which were at least locally deposited before the last glacial maximum. Calcite and/or aragonite veins are abundant; fractures in the basement are filled by carbonate sediments and lithic fragments. Veining generally pre-dates sedimentary fracture-infilling. The youngest hydrothermal phases include the LCHF chimneys and carbonate precipitates on outcrop surfaces, in cavities, and as growths protruding from fissures that are locally venting fluids. Sr-, C- and O-isotope analyses and radiocarbon age-dating indicate that this system is the integrated effect of tectonic activity, serpentinization, and hydrothermal flow that has lasted at least 30,000 years. C- and O-isotope compositions indicate a range of precipitation temperatures from ambient conditions up to ˜ 250oC at depth and reflect mixing of seawater and serpentinization-derived hydrothermal fluids. Analyses of separated fractions of sedimentary and hydrothermal components define a sedimentary end-member composition of δ 13C = 1.3 +/- 0.3 and δ 18O = 1.5 +/- 0.5‰ (VPDB) and a hydrothermal end-member composition of δ 13C = 3.3 and δ 18O = 5‰ . Based on the present-day degree of serpentinization, the geophysical structure and age of the lithosphere at the

  16. Mineralogical-geochemical features of sulfide ores from the Broken Spur hydrothermal vent field

    NASA Astrophysics Data System (ADS)

    Bogdanov, Yu. A.; Lein, A. Yu.; Maslennikov, V. V.; Li, Syaoli; Ul'Yanov, A. A.

    2008-10-01

    A representative collection of hydrothermal sediments was sampled practically from all the hydrothermal mounds of the Broken Spur hydrothermal vent field from the Mir manned submersibles during three cruises of R/V Akademik Mstislav Keldysh. Mineral associations characteristic of different morphological types of sulfide ores from hydrothermal pipes, plates, and diffusers are assessed. Particular attention is paid to the distribution of minor elements and their distribution patterns determined by the mineralogical zonation. The measured isotopic value of the sulfur in the sulfide minerals appeared to vary from 0.4 to 5.2‰, which indicates their similarity with the ores from the Snake Pit vent field and is related to the dilution of hot ore-bearing solutions by seawater and reduction of the water sulfate ions to H2S with a heavy isotopic composition.

  17. A Field Scale Investigation of Enhanced Petroleum Hydrocarbon Biodegradation in the Vadose Zone Combining Soil Venting as an Oxygen Source with Moisture and Nutrient Addition

    DTIC Science & Technology

    1990-01-01

    AND SUBTITLF A Field Scale Investigation of Enhanced 5. FUNDING NUMBERS Petroleum Hydrocarbon Biodegradation in the Vadose Zone Combining Soil Venting...24 Enhanced Biodegradation Through Soil Venting ...................... 30 MATERIALS AND METHODS...378 ABSTRACT xx’ A Field Scale Investigation of Enhanced Petroleum Hydrocarbon Biodegradation in the Vadose Zone Combining Soil Venting as an

  18. Fluid Geochemistry of the Capelinhos Vent Site. A Key to Understand the Lucky Strike Hydrothermal Vent Field (37°N, MAR).

    NASA Astrophysics Data System (ADS)

    Leleu, T.; Chavagnac, V.; Cannat, M.; Ceuleneer, G.; Castillo, A.; Menjot, L.

    2015-12-01

    The Lucky Strike hydrothermal field is situated at the mid-Atlantic ridge, south of the Azores, on top of a central volcano within the axial valley. The volcano is composed of a fossil lava lake surrounded by three volcanic cones. An Axial Magma Chamber (AMC) is reported 3.4km below the seafloor. The active venting sites are situated around the fossil lava lake and are directly linked to the heat supplied by the AMC. High temperature fluids from the Lucky Strike field were sampled in 2013, 2014 and 2015 in order to document the depth of the reaction zone, subsurface mixing, geographical control and magmatic degassing. A new active site named Capelinhos was discovered approximately 1.5km eastward from the lava lake, during exploration by ROV Victor6000 - MoMARsat cruise, 2013. It is composed of 10m-high chimneys discharging black smoker-type fluid. Fluid temperatures were 328°C in 2013 and decreased to 318°C in 2014 and 2015. Capelinhos fluids are Cl-depleted by 55% compared to seawater indicating phase separation at depth. In comparison, the other sites range from 6% enrichment (2608/Y3 site) to 22% depletion (Eiffel tower site). Si geothermobarometry of Y3 site estimates quartz equilibration at P=300 bars and T=360-380°C, coherent with Fe/Mn geothermometer (T=370±10°C). For Capelinhos, Fe/Mn suggests 398°C (±10°C) which is close to the critical point of seawater (P=300 bars and T=407°C). Other geothermobarometer uses Si/Cl vapor-like fluid to constrain depth of the top of reaction zone and predicts significant bias due to mixing along the up-flow zone. Application gives P=~370 bars, T=~435°C at Capelinhos and P=~390 bars, T=~440°C at Eiffel tower. This is further sustained by end-member 87Sr/86Sr=0.7038, which indicates little interaction of Capelinhos vent fluids with seawater-derived fluid, compared to other vapor-like sites with 87Sr/86Sr=0.7043. Because of its external location, Capelinhos site isn't influenced by the complex tectonic context of the

  19. Morphology of cone-fields in SW Elysium Planitia - Traces of hydrothermal venting on Mars?

    NASA Astrophysics Data System (ADS)

    Lanz, J. K.; Saric, M. B.

    2008-09-01

    Introduction Small cone-shaped features with summit pits can be found in several regions on Mars; mainly in Isidis Planitia; Elysium Planitia; Amazonis Planitia; Acidalia Planitia; in the Cydonia Region; in Cerberus Planum; the Phlegra Montes and on several volcanic flanks. They vary greatly in size and morphology and have been compared to terrestrial features of various origins; namely (1) cinder cones (e.g. [1]), (2) tuff cones or tuff rings (e.g. [2]), (3) rootless cones (pseudocraters) (e.g. [3], [4]), (4) pingos (e.g. [5], [6]) and (5) mud volcanoes (e.g. [7]). They are often found near volcanic centers and large lava fields or cluster in regions where the volatile content of the Martian regolith was/is supposedly high. This has led to the assumption that (ground-) water or ground ice was a trigger or driving force of cone formation. They could therefore, be an important indicator of the history of water on the planet. We have studied an area in western Elysium Planitia, bordering the Aeolis Planum plateau, which exhibits a large number of pitted cones, ridges and dome-like structures. Their distribution and morphology differs strongly from pitted cones elsewhere in Elysium Planitia, which have mainly been interpreted as hydrovolcanic rootless cones, and from other regions on Mars. Based on our observations, we present an alternative model for cone formation in the study area that might hint towards hydrothermal processes in the Aeolis Planum region and possibly young igneous activity. Aeolis Planum Cones The Aeolis Planum pitted cones (referred to as APCs from now on) cluster along the southern edges of the broad shallow valley that borders the Aeolis Planum Formation (APF) to the north. Cones along the northern edges of the valley are rare and can only be found in association with APF remnants where they strongly resemble the cones in the south. Along the southern border the cone coverage is almost continuous, describing a narrow band approximately 2 to 3 km

  20. The study of active submarine volcanoes and hydrothermal vents in the Southernmost Part of Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Tsai, C.; Lee, C.

    2004-12-01

    The study area is located in the Southernmost Part of Okinawa Trough (SPOT), which is a back-arc basin formed by extension of Eurasian plate. Previous research indicated two extensional stages in SPOT area. Many normal-fault structures were come into existence during both extensional processes. The SPOT is presently in an activity tectonic episode. Therefore, the area becomes a frequent earthquake and abundant magmatism. The purpose of this study is to discuss which relationship between tectonics, submarine volcanoes and hydrothermal vents in SPOT area. The investigations are continued from 1998 to 2004, we have found at least twelve active hydrothermal vents in study area. Compare the locations hydrothermal vents with fault systems, we find both of them have highly correlated. We can distinguish them into two shapes, pyramidal shape and non-pyramidal shape. According to plumes height, we are able to divide these vents into two groups near east longitude 122.5° . East of this longitude, the hydrothermal plumes are more powerful and west of it are the weaker. This is closely related to the present extensional axis (N80° E) of the southern part of the Okinawa Trough. This can be explained the reason of why the more powerful vents coming out of the east group. The east group is associated with the present back-arc spreading system. West of 122.5° , the spreading system are in a primary stage. The andesitic volcanic island, the Turtle Island, is a result of N60° E extensional tectonism with a lot of faults. Besides the pyramidal shape, this can be proved indirectly. The vents located in the west side were occurred from previous extensional faults and are weaker than the eastern. Therefore, we suggest that if last the extension keeps going on, the hydrothermal vents located at the west side of the longitude 122.5° will be intensified.

  1. Field Testing of an Unvented Roof with Fibrous Insulation, Tiles and Vapor Diffusion Venting

    SciTech Connect

    Ueno, K.; Lstiburek, J. W.

    2016-02-05

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane. As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).

  2. Active seafloor gas vents on the Shelf and upper Slope in Canadian Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Dallimore, S. R.; Hughes Clarke, J. E.; Blasco, S.; Taylor, A. E.; Melling, H.; Vagle, S.; Conway, K.; Riedel, M.; Lundsten, E.; Gwiazda, R.

    2012-12-01

    In the Canadian Arctic shelf and upper slope, a thermal disturbance caused by sea level rise at the end of the last glacial period, is still propagating into the subsurface and heating shelf sediments, where submerged terrestrial permafrost and gas hydrate, and marine gas hydrate are believed to occur in close proximity. On-going studies show evidence of gas venting in association with three distinct environments: Pingo-Like-Features (PLF) on the mid-shelf; along the shelf edge near the 100m contour; and ~1 km wide circular topographic features on the upper continental slope. Observations with a Remotely Operated Vehicle (ROV) show that methane is venting vigorously over point sources on the PLF's on the mid-shelf, and diffusely along the shelf edge. The stable isotopic composition of methane emanating from these environments indicates a microbial origin for the venting gas. Their negligible radiocarbon content indicates a geological source, as opposed to methangenisis associated with modern sediments. This is consistent with the change in the thermal regime produced by the last transgression. During glacial periods lower sea level exposed the current shelf to frigid sub-aerial temperatures. As a result, some areas of the shelf are underlain by >600m of ice-bonded permafrost with the base of methane hydrate stability at >1000m depths. The marine transgression imposed a change in mean annual surface temperature from -15°C or lower, to mean annual sea bottom temperatures near 0°C. The thermal disturbance is still propagating into the subsurface, stimulating the decomposition of both terrestrial permafrost and gas hydrate at depth and liberating methane. The PLF vents are believed to be sourced from the top of the gas hydrate stability field, while the gas emanating along the shelf edge can be from the decomposition of gas trapped in the permafrost or gas-hydrate underneath the continental shelf. The occurrence of water column flares over the distinctive circular

  3. Passive vs. active degassing modes at an open-vent volcano (Stromboli, Italy)

    NASA Astrophysics Data System (ADS)

    Tamburello, G.; Aiuppa, A.; Kantzas, E. P.; McGonigle, A. J. S.; Ripepe, M.

    2012-12-01

    We report here on a UV-camera based field experiment performed on Stromboli volcano during 7 days in 2010 and 2011, aimed at obtaining the very first simultaneous assessment of all the different forms (passive and active) of SO2 release from an open-vent volcano. Using the unprecedented spatial and temporal resolution of the UV camera, we obtained a 0.8 Hz record of the total SO2 flux from Stromboli over a timeframe of ∼14 h, which ranged between 0.4 and 1.9 kg s-1 around a mean value of 0.7 kg s-1 and we concurrently derived SO2 masses for more than 130 Strombolian explosions and 50 gas puffs. From this, we show erupted SO2 masses have a variability of up to one order of magnitude, and range between 2 and 55 kg (average ∼20 kg), corresponding to a time integrated flux of 0.05±0.01 kg s-1. Our experimental constraints on individual gas puff mass (0.03-0.42 kg of SO2, averaging 0.19 kg) are the first of their kind, equating to an emission rate ranging from 0.02 to 0.27 kg s-1. On this basis, we conclude that puffing is two times more efficient than Strombolian explosions in the magmatic degassing process, and that active degassing (explosions+puffing) accounts for ∼23% (ranging from 10% to 45%) of the volcano's total SO2 flux, e.g., passive degassing between the explosions contributes the majority (∼77%) of the released gas. We furthermore integrate our UV camera gas data for the explosions and puffs, with independent geophysical data (infrared radiometer data and very long period seismicity), to offer key and novel insights into the degassing dynamics within the shallow conduit systems of this open-vent volcano.

  4. Loki's Castle: Discovery and geology of a black smoker vent field at the Arctic Mid-Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Pedersen, R.; Thorseth, I. H.; Lilley, M. D.; Barriga, F. J.; Früh-Green, G.; Nakamura, K.

    2010-12-01

    Previous attempts to locate hydrothermal vent fields and unravel the nature of venting at the ultraslow spreading and magma starved parts of the Arctic Mid Ocean Ridge (AMOR) have been unsuccessful. A black smoker vent field was eventually discovered at the Mohns-Knipovich bend at 73.5°N in 2008, and the field was revisited in 2009 and 2010. The Loki’s Castle vent field is located on the crest of an axial volcanic ridge that is bordered by a tectonic terrain dominated by core complexes to the NW, and a ridge flank that is buried by sediments from the Bear Island Fan to the SE. Fluid compositions are anomalous to other basalt-hosted fields and indicate interactions with sediments at depths. The vent field is associated with an unusually large hydrothermal deposit, which documents that extensive venting occurs at ultraslow spreading ridges despite the strongly reduced magmatic heat budget. ROV surveys have shown that venting occurs in two areas separated by around 100 m. Micro-bathymetry acquired by a Hugin AUV documents that two 20-30 tall mounds that coalesce at the base have developed around the vent sites. The micro-bathymetry also shows that the venting is located above two normal faults that define the NW margin of a rift that runs along the crest of the volcano. The black smoker fluids reach 317 °C, with an end-member SiO2 content of 16 mmol/kg. End-member chlorinity is around 85% of seawater suggesting that the fluids have phase-separated at depth. The fluid compositions indicate that the rock-water reactions occur around 2 km below the seafloor. The crustal thickness is estimated to be 4 +/- 0.5 km in the area. Whereas the depth of the reaction zone is comparable with faster spreading ridges, the fraction of crust cooled convectively by hydrothermal circulation is two times that of vent fields at ridges with normal crustal thickness.

  5. Crustal magnetization and the subseafloor structure of the ASHES vent field, Axial Seamount, Juan de Fuca Ridge: Implications for the investigation of hydrothermal sites

    NASA Astrophysics Data System (ADS)

    Caratori Tontini, Fabio; Crone, Timothy J.; Ronde, Cornel E. J.; Fornari, Daniel J.; Kinsey, James C.; Mittelstaedt, Eric; Tivey, Maurice

    2016-06-01

    High-resolution geophysical data have been collected using the Autonomous Underwater Vehicle (AUV) Sentry over the ASHES (Axial Seamount Hydrothermal Emission Study) high-temperature (~348°C) vent field at Axial Seamount, on the Juan de Fuca Ridge. Multiple surveys were performed on a 3-D grid at different altitudes above the seafloor, providing an unprecedented view of magnetic data resolution as a function of altitude above the seafloor. Magnetic data derived near the seafloor show that the ASHES field is characterized by a zone of low magnetization, which can be explained by hydrothermal alteration of the host volcanic rocks. Surface manifestations of hydrothermal activity at the ASHES vent field are likely controlled by a combination of local faults and fractures and different lava morphologies near the seafloor. Three-dimensional inversion of the magnetic data provides evidence of a vertical, pipe-like upflow zone of the hydrothermal fluids with a vertical extent of ~100 m.

  6. Spatiotemporal signature of methane venting from lake sediments: from lab to field scale

    NASA Astrophysics Data System (ADS)

    Scandella, B.; Pillsbury, L.; Weber, T.; Ruppel, C. D.; Hemond, H.; Juanes, R.

    2015-12-01

    Methane is a potent greenhouse gas, and the production and emission of methane from sediments in inland waters and shallow oceans both contributes to and may be exacerbated by climate change. In some of these shallow-water settings, methane fluxes are often controlled by episodic free-gas venting. The fraction of the methane released from the sediments that bypasses dissolution in the water column and reaches the atmosphere impacts the magnitude of the climate forcing, and this fraction depends critically on the mode and spatiotemporal characteristics of the bubble releases. Here, we present measurements of the episodicity, spacing and persistence of ebullition from the laboratory scale (1-50 cm) to the field scale (0.5-20 m). Field observations were made using a fixed-location Imagenex DeltaT 837B multibeam sonar, which was calibrated to quantify gas fluxes with unprecedented spatial and temporal resolution (~0.5 m, 1 Hz). The field scale results show a pattern of short range spatiotemporal clustering (radius<2 m) in ebullition events that dissipates over time to a spatially homogenous process at the resolution of the sonar. The lack of persistent hotspots suggests a limited role for lateral methane transport within the sediments, and the spatiotemporal clustering implies a mechanism for triggering nearby aftershock ebullition episodes. The fine-scale (1-50 cm) experiment recorded ebullition from sediments that were dredged from the field site, reconstituted and incubated in the laboratory to generate methane. This experiment shows the degree of re-use of specific outlets, with implications for the scale of lateral methane transport and the role of hysteresis on sediment cohesion (healing of closed conduits). The details of the short range clustering process helps to identify the mechanism by which gas venting triggers nearby "aftershock" episodes of gas release. Taken together, these results point towards a better understanding of the microscale processes

  7. Distribution and composition of hydrothermal plume particles from the ASHES Vent Field at Axial Volcano, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Feely, R. A.; Geiselman, T. L.; Baker, E. T.; Massoth, G. J.; Hammond, S. R.

    1990-08-01

    In 1986 and 1987, buoyant and neutrally buoyant hydrothermal plume particles from the ASHES vent field within Axial Volcano were sampled to study their variations in composition with height above the seafloor. Individual mineral phases were identified using standard X ray diffraction procedures. Elemental composition and particle morphologies were determined by X ray fluorescence spectrometry and scanning electron microscopy/X ray energy spectrometry techniques. The vent particles were primarily composed of sphalerite, anhydrite, pyrite, pyrrhotite, chalcopyrite, barite, hydrous iron oxides, and amorphous silica. Grain size analyses of buoyant plume particles showed rapid particle growth in the first few centimeters above the vent orifice, followed by differential sedimentation of the larger sulfide and sulfate minerals out of the buoyant plume. The neutrally buoyant plume consisted of a lower plume, which was highly enriched in Fe, S, Zn, and Cu, and an upper plume, which was highly enriched in Fe and Mn. The upper plume was enriched in Fe and Mn oxyhydroxide particles, and the lower plume was enriched in suspended sulfide particles in addition to the Fe and Mn oxyhydroxide particles. The chemical data for the water column particles indicate that chemical scavenging and differential sedimentation processes are major factors controlling the composition of the dispersing hydrothermal particles. Short-term sediment trap experiments indicate that the fallout from the ASHES vent field is not as large as some of the other vent fields on the Juan de Fuca Ridge.

  8. Constraints on hydrocarbon and organic acid abundances in hydrothermal fluids at the Von Damm vent field, Mid-Cayman Rise (Invited)

    NASA Astrophysics Data System (ADS)

    McDermott, J. M.; Seewald, J.; German, C. R.; Sylva, S. P.

    2013-12-01

    The generation of organic compounds in vent fluids has been of interest since the discovery of seafloor hydrothermal systems, due to implications for the sustenance of present-day microbial populations and their potential role in the origin of life on early Earth. Possible sources of organic compounds in hydrothermal systems include microbial production, thermogenic degradation of organic material, and abiotic synthesis. Abiotic organic synthesis reactions may occur during active circulation of seawater-derived fluids through the oceanic crust or within olivine-hosted fluid inclusions containing carbon-rich magmatic volatiles. H2-rich end-member fluids at the Von Damm vent field on the Mid-Cayman Rise, where fluid temperatures reach 226°C, provide an exciting opportunity to examine the extent of abiotic carbon transformations in a highly reducing system. Our results indicate multiple sources of carbon compounds in vent fluids at Von Damm. An ultramafic-influenced hydrothermal system located on the Mount Dent oceanic core complex at 2350 m depth, Von Damm vent fluids contain H2, CH4, and C2+ hydrocarbons in high abundance relative to basalt-hosted vent fields, and in similar abundance to other ultramafic-hosted systems, such as Rainbow and Lost City. The CO2 content and isotopic composition in end-member fluids are virtually identical to bottom seawater, suggesting that seawater DIC is unchanged during hydrothermal circulation of seawater-derived fluids. Accordingly, end-member CH4 that is present in slightly greater abundance than CO2 cannot be generated from reduction of aqueous CO2 during hydrothermal circulation. We postulate that CH4 and C2+ hydrocarbons that are abundantly present in Von Damm vent fluids reflect leaching of fluids from carbon- and H2-rich fluid inclusions hosted in plutonic rocks. Geochemical modeling of carbon speciation in the Von Damm fluids suggests that the relative abundances of CH4, C2+ hydrocarbons, and CO2 are consistent with

  9. Noble Gas geochemistry of the newly discovered hydrothermal fields in the Gulf of California: preliminary He-isotope ratios from the Alarcon Rise and Pescadero basin vent sites

    NASA Astrophysics Data System (ADS)

    Spelz, R. M.; Lupton, J. E.; Evans, L. J.; Zierenberg, R. A.; Clague, D. A.; Neumann, F.; Paduan, J. B.

    2015-12-01

    Numerous submarine deep-sea hydrothermal vents related to volcanic activity of the East Pacific Rise (EPR) are situated along the Pacific margins of Mexico. Until recently, active hydrothermal venting was unknown between the Guaymas Basin and 21°N on the EPR. MBARI's recent oceanographic surveys have added 7 new active vent sites. In this study, we aimed to sample the high-temperature hydrothermal fluids emanating from two distinct vent sites, named Meyibo and Auka, located in the Alarcon Rise and Pescadero Basin, respectively. Mantle-derived He have long been identified in hydrothermal fluid releases. The presence of He in aqueous fluids with 3He/4He ratios greater than in-situ production values (~0.05 RA, where RA = air He or 1.4 x 10-6) indicates the presence of mantle-derived melts. Preliminary analyses of He-isotope ratios derived from the newly discovered Meyibo and Auka hydrothermal fields show high 3He/4He ratios (~8RA), typical of MORB's. Auka vent field, characterized by chimneys composed of light carbonate minerals and oil-like hydrocarbons, and temperatures between 250-290oC, show average values of ~7.87RA. In contrast, the black-smokers at the Meyibo field, composed of dark sulfide minerals and temperatures over 350oC, yielded a higher He ratio of ~8.24RA. Recently, it has become clear that regional maximum mantle He values correlate with the velocity structure in the mantle, therefore, He has the potential to map regions of the underlying mantle that are undergoing partial melting. Seismic records could then be compared with the geochemical He ratio signal and supply information regarding tectonics and other processes involved in the generation of these gases. The data presented here will be completing a totally new inventory of He results from hydrothermal vents in the EPR and fault-termination basins distributed along the P-NA plate boundary in the Gulf of California. The results will be further coupled with the analysis of other geochemical

  10. Hydrothermal flow at Main Endeavour Field imaged and measured with Cable Operated Vent Imaging Sonar

    NASA Astrophysics Data System (ADS)

    Rona, P. A.; Bemis, K. G.; Xu, G.; Jackson, D. R.; Jones, C. D.

    2011-12-01

    Initial acoustic monitoring of hydrothermal flow in the Main Endeavour Field (MEF) captures the spatial distribution of diffuse and focused discharge and shows potential for flux determinations. Our Cabled Observatory Vent Imaging Sonar (COVIS) was connected to the NEPTUNE Canada Endeavour Observatory in September 2010. Using a customized Reson 7125 multi-beam sonar, COVIS acquired a 29 day time series of black smoker plume and associated diffuse hydrothermal flow from Grotto, a 30 m diameter vent cluster in the MEF, Juan de Fuca Ridge. Detection of the spatial patterns of diffuse flow utilizes phase decorrelation of the acoustic signal (200kHz) by buoyancy-driven turbulence (acoustic scintillation) to produce a time series of maps. Substantial fluctuation in the detected diffuse flow area (0.1 - 18 m^2) was observed over the 29 days of observation, although position remained stable. Acoustic imaging of focused flow (400 kHz) utilizes high volume backscatter (attributed to particles and turbulent sound speed fluctuations) to image in 3D the initial tens of meters of rise of buoyant plumes. Spectral analysis of bending inclination of a strong plume from multiple fast smokers on the NW end of Grotto (north tower) indicates that the dominant modes correspond with the ambient mixed semi-diurnal tide (based on current meter data at a mooring 2.9 km to the north and on a tidal model), with at least one secondary mode attributable to sub-inertial flow related to inflow to the axial valley. A weaker plume from several slower smokers is present on the NE end of Grotto. On first analysis, the bending inclination of the weaker plume appears to be affected by the stronger plume. Quantification of flow velocity and volume flux of plumes begins with measuring the Doppler phase shift through plume cross-sections beginning at 5 m above source vents where discharge merges. The volume flux measurements enable calculation of entrainment coefficients, which prior work on the same

  11. Fluid composition of the sediment-influenced Loki's Castle vent field at the ultra-slow spreading Arctic Mid-Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Baumberger, Tamara; Früh-Green, Gretchen L.; Thorseth, Ingunn H.; Lilley, Marvin D.; Hamelin, Cédric; Bernasconi, Stefano M.; Okland, Ingeborg E.; Pedersen, Rolf B.

    2016-08-01

    The hydrothermal vent field Loki's Castle is located in the Mohns-Knipovich bend (73°N) of the ultraslow spreading Arctic Mid-Ocean Ridge (AMOR) close to the Bear Island sediment fan. The hydrothermal field is venting up to 320° C hot black smoker fluids near the summit of an axial volcanic ridge. Even though the active chimneys have grown on a basaltic ridge, geochemical fluid data show a strong sedimentary influence into the hydrothermal circulation at Loki's Castle. Compelling evidence for a sediment input is given by high alkalinity, high concentrations of NH4+, H2, CH4, C2+ hydrocarbons as well as low Mn and Fe contents. The low δ13C values of CO2 and CH4 and the thermogenic isotopic pattern of the C2+ hydrocarbons in the high-temperature vent fluids clearly point to thermal degradation of sedimentary organic matter and illustrate diminution of the natural carbon sequestration in sediments by hydrothermal circulation. Thus, carbon-release to the hydrosphere in Arctic regions is especially relevant in areas where the active Arctic Mid-Ocean Ridge system is in contact with the organic matter rich detrital sediment fans.

  12. The Arctic Gakkel Vents (AGAVE) Expedition: Technology Development and the Search for Deep-Sea Hydrothermal Vent Fields Under the Arctic Ice Cap

    NASA Astrophysics Data System (ADS)

    Reves-Sohn, R. A.; Singh, H.; Humphris, S.; Shank, T.; Jakuba, M.; Kunz, C.; Murphy, C.; Willis, C.

    2007-12-01

    Deep-sea hydrothermal fields on the Gakkel Ridge beneath the Arctic ice cap provide perhaps the best terrestrial analogue for volcanically-hosted chemosynthetic biological communities that may exist beneath the ice-covered ocean of Europa. In both cases the key enabling technologies are robotic (untethered) vehicles that can swim freely under the ice and the supporting hardware and software. The development of robotic technology for deep- sea research beneath ice-covered oceans thus has relevance to both polar oceanography and future astrobiological missions to Europa. These considerations motivated a technology development effort under the auspices of NASA's ASTEP program and NSF's Office of Polar Programs that culminated in the AGAVE expedition aboard the icebreaker Oden from July 1 - August 10, 2007. The scientific objective was to study hydrothermal processes on the Gakkel Ridge, which is a key target for global studies of deep-sea vent fields. We developed two new autonomous underwater vehicles (AUVs) for the project, and deployed them to search for vent fields beneath the ice. We conducted eight AUV missions (four to completion) during the 40-day long expedition, which also included ship-based bathymetric surveys, CTD/rosette water column surveys, and wireline photographic and sampling surveys of remote sections of the Gakkel Ridge. The AUV missions, which lasted 16 hours on average and achieved operational depths of 4200 meters, returned sensor data that showed clear evidence of hydrothermal venting, but for a combination of technical reasons and time constraints, the AUVs did not ultimately return images of deep-sea vent fields. Nevertheless we used our wireline system to obtain images and samples of extensive microbial mats that covered fresh volcanic surfaces on a newly discovered set of volcanoes. The microbes appear to be living in regions where reducing and slightly warm fluids are seeping through cracks in the fresh volcanic terrain. These discoveries

  13. Soil temperature and CO2 degassing, SO2 fluxes and field observations before and after the February 29, 2016 new vent inside Nyiragongo crater

    NASA Astrophysics Data System (ADS)

    Balagizi, Charles M.; Yalire, Mathieu M.; Ciraba, Honoré M.; Kajeje, Vicky B.; Minani, Abel S.; Kinja, Annie B.; Kasereka, Marcellin M.

    2016-09-01

    Nyiragongo volcano threatens ˜1.5 million inhabitants of Goma (DR Congo) and Gisenyi (Rwanda) cities and people living in the surrounding villages. In 2002, the volcano produced lava flows which invaded Goma and destroyed the economic district of the city, forced a mass exodus of the population and caused the loss of several lives. Nyiragongo volcanic activity is therefore closely followed by the inhabitants, and any news related to increased activity agitates people in the area, especially those in Goma. Here, we report a short time series of soil temperature and carbon dioxide degassing for four locations, and plume sulphur dioxide fluxes preceding and following the opening of a new vent inside the main Nyiragongo crater on February 29, 2016. The observed sudden and unexpected changes in Nyiragongo activity raised the fear of a new volcanic eruption and led to panic in Goma and the surroundings, inducing some people to leaving the city. We use the dataset and field observations before and after the opening of the new vent, in conjunction with published information about Nyiragongo's eruptive mechanism and of the volcano's plumbing system geometry (mainly the crater), to show that the new vent was fed by magma intruded from the lava lake or the upper conduit.

  14. First hydroacoustic evidence of marine, active fluid vents in the Naples Bay continental shelf (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Passaro, Salvatore; Genovese, Simona; Sacchi, Marco; Barra, Marco; Rumolo, Paola; Tamburrino, Stella; Mazzola, Salvatore; Basilone, Gualtiero; Placenti, Francesco; Aronica, Salvatore; Bonanno, Angelo

    2014-09-01

    We present the first results of a multidisciplinary research aimed at the detection and mapping of Active Fluid Vents (AFVs) at the seafloor of the Naples Bay, Italy. This segment of the Campania continental margin is characterised by severe Quaternary extension and intense volcanism at Ischia and Procida islands, the Campi Flegrei and Somma-Vesuvius volcanic complexes. High resolution hydroacoustic profilers were used to identify and localize fluid emission from the seafloor. ROV direct observation showed that each emission centre is generally composed by the coalescence of several emitting points. CTD probes showed that there are no significant gradients in temperature profiles. The results of this study include the detection and mapping of 54 fluid emission points all located in the - 71/- 158 m depth range, and spatially distributed into four main clusters. Three of the described clusters are located along the margin of a complex, toe-shaped seafloor morphology southwest of the Somma-Vesuvius, representing the shallow expression of partly buried, coalesced depositional features (namely, two flank collapses and one pyroclastic flow) associated with the Late Pleistocene activity of the volcano. The fourth AFV cluster was detected at the morphological - high, located about 8 km south of Naples (Banco della Montagna), represented by a field of volcaniclastic diapirs composed of massive pumiceous deposits originated from the Campi Flegrei intruding rising through the latest Quaternary-Holocene marine deposits. Our study suggests that the occurrence of AFV in this area could be genetically linked to the interaction between volcanic related seafloor morphologies and the main, NE striking faults present in the area, i.e. the Magnaghi-Sebeto line and the Vesuvian fault.

  15. Antimicrobial Activity of Marine Bacterial Symbionts Retrieved from Shallow Water Hydrothermal Vents.

    PubMed

    Eythorsdottir, Arnheidur; Omarsdottir, Sesselja; Einarsson, Hjorleifur

    2016-06-01

    Marine sponges and other sessile macro-organisms were collected at a shallow water hydrothermal site in Eyjafjörður, Iceland. Bacteria were isolated from the organisms using selective media for actinomycetes, and the isolates were screened for antimicrobial activity. A total of 111 isolates revealed antimicrobial activity displaying different antimicrobial patterns which indicates production of various compounds. Known test strains were grown in the presence of ethyl acetate extracts from one selected isolate, and a clear growth inhibition of Staphylococcus aureus was observed down to 0.1 % extract concentration in the medium. Identification of isolates shows different species of Actinobacteria with Streptomyces sp. playing the largest role, but also members of Bacilli, Alphaproteobacteria and Gammaproteobacteria. Sponges have an excellent record regarding production of bioactive compounds, often involving microbial symbionts. At the hydrothermal vents, however, the majority of active isolates originated from other invertebrates such as sea anemones or algae. The results indicate that antimicrobial assays involving isolates in full growth can detect activity not visible by other methods. The macro-organisms inhabiting the Eyjafjörður hydrothermal vent area host diverse microbial species in the phylum Actinobacteria with antimicrobial activity, and the compounds responsible for the activity will be subject to further research.

  16. Vent 7504 of the San Francisco Volcanic Field (SFVF), Arizona: Sample Geochemistry and Implications for Cone Formation

    NASA Astrophysics Data System (ADS)

    Needham, D. H.; Eppler, D. B.; Bleacher, J. E.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Whitson, P. A.; Janoiko, B. A.; Mertzman, S. A.

    2015-12-01

    Vent 7504 is a complex structure in the SFVF that has 3 unit classes: a central cone with exposed dikes and cinder-covered rheomorphic facies; a SE/NW-trending ridge north of the cone with cinder-covered rheomorphic facies; and three discrete lava flows that emanate to the N from the ridge and to the SW and NW from the cone. Field observations suggest the ridge was the northern crest of an initial, larger cone. The NW portion of this cone was most likely disrupted during a catastrophic breach of lava that had accumulated within the cone; this third of three lava flows carried rafted packages of the rheomorphic cone facies to the NW, forming the linear N ridge. The final phase of pyroclastic activity was concentrated in the SW portion of the original cone, covering the top of the cone with cinders and forming the more traditional conic-shaped construct observed today. This study describes the geochemistry of 9 samples collected from the mapped units (2 from the cone, 1 from the N ridge, 1 from the N lava flow, 2 from the SW lava flow, and 3 from the NW lava flow) to further constrain the formation of Vent 7504. Geochemical analyses including back-scatter electron scanning electron microscopy and laboratory X-ray fluorescence spectroscopy were conducted on the 9 collected samples to measure bulk rock and olivine phenocryst compositions. Major element concentrations in the bulk rock and olivine compositions are strongly clustered in all samples, indicating they likely originated from a single magmatic source. Bulk rock SiO2 (~47.5 wt%) and alkali (Na2O + K2O, ~2.7 wt% + 0.71 wt%) concentrations are consistent with a basaltic classification for these samples. Trends in major elements relative to MgO are observed for the olivine phenocrysts: SiO2, Al2O3, Na2O, and TiO2 remain constant relative to MgO, but strong linear trends are observed in MnO, FeO, and NiO relative to MgO. These linear trends are expected given the potential for bivalent cation exchanges in the

  17. Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites

    NASA Astrophysics Data System (ADS)

    Wirsen, Carl O.; Jannasch, Holger W.; Molyneaux, Stephen J.

    1993-06-01

    Chemosynthetic production of microbial biomass, determined by 14CO2 fixation and enzymatic (RuBisCo) activity, at the Mid-Atlantic Ridge (MAR) 23° and 26°N vent sites was found in various niches: warm water emissions, loosely rock-attached flocculent material, dense morphologically diverse bacterial mats covering the surfaces of polymetal sulfide deposits, and filamentous microbes on the carapaces of shrimp (Rimicaris exoculata). The bacterial mats on polymetal sulfide surfaces contained unicellular and filamentous bacteria which appeared to use as their chemolithotrophic electron or energy source either dissolved reduced minerals from vent emissions, mainly sulfur compounds, or solid metal sulfide deposits, mainly pyrite. Moderately thermophilic Chemosynthetic activity was observed in carbon dioxide fixation experiments and in enrichments, but no thermophilic aerobic sulfur oxidizers could be isolated. Both obligate and facultative chemoautotrophs growing at mesophilic temperatures were isolated from all chemosynthetically active surface scrapings. The obligate autotrophs could oxidize sterilized MAR natural sulfide deposits as well as technical pyrite at near neutral pH, in addition to dissolved reduced sulfur compounds. While the grazing by shrimp on the surface mats of MAR metal sulfide deposits was observed and deemed important, the animals' primary occurrence in dense swarms near vent emissions suggests that they were feeding at these sites, where conditions for Chemosynthetic growth of their filamentous microbial epiflora were optimal. The data show that the transformation of geothermal energy at the massive polymetal sulfide deposits of the MAR is based on the lithoautotrophic oxidation of soluble sulfides and pyrites into microbial biomass.

  18. PRex: An Experiment to Investigate Detection of Near-field Particulate Deposition from a Simulated Underground Nuclear Weapons Test Vent

    SciTech Connect

    Keillor, Martin E.; Arrigo, Leah M.; Baciak, James E.; Chipman, Veraun; Detwiler, Rebecca S.; Emer, Dudley F.; Kernan, Warnick J.; Kirkham, Randy R.; MacDougall, Matthew R.; Milbrath, Brian D.; Rishel, Jeremy P.; Seifert, Allen; Seifert, Carolyn E.; Smart, John E.

    2016-01-01

    An experiment to release radioactive particles representative of small-scale venting from an underground nuclear test was conducted to gather data in support of treaty capability development activities. For this experiment, a CO2-driven “air cannon” was used to release lanthanum-140 at ambient temperatures. The radioisotope 140La was chosen as a representative fission fragment with a short half-life and prominent gamma-ray emissions; the choice was also influenced by the successful production and use of 140La with low levels of radioactive contaminants in the Defence Research and Development Canada Field Trials. The source was created through activation of high-purity lanthanum oxide at the TRIGA research reactor of Washington State University, Pullman, Washington. Witness plates and air samplers were laid out in an irregular grid covering the area for which the plume was anticipated to deposit based on climatological wind records. A vehicle-mounted spectrometer, and handheld and backpack instruments ranging from polyvinyl toluene to high purity germanium, were used to survey the plume. Additionally, three soil sampling techniques were investigated. The relative sensitivity and utility of sampling and survey methods are discussed in the context of On-Site Inspection.

  19. Dissolved Carbon Species in Diffuse and Focused Flow Hydrothermal Vents at the Main Endeavour Field, Northern Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Foustoukos, D. I.; Seyfried, W. E.; Ding, K.; Pester, N. J.

    2006-12-01

    The magmatic and tectonic event of 1999 had a significant impact on the chemical composition of vent fluids issuing from the Main Endeavour Field (MEF), Juan de Fuca Ridge. Here, we report dissolved concentrations of H2, CO2, CO and C1-C3 alkanes measured in low and high-temperature hydrothermal fluids collected in August 2005 during an RV Atlantis/DSV Alvin expedition at MEF. In comparison with time series data, temperatures of the 2005 vent fluids were slightly lower than those recorded in the aftermaths of the tectonic event of 1999. The possible cooling of the hydrothermal subseafloor reaction zone is consistent with the observed increase in dissolved Cl to pre-1999 values. Converging compositional trends to pre-1999 conditions are also suggested for dissolved CO2 concentrations (~20 mmol/kg) in Puffer, Sully, Bastille and S&M vent fluids. In these focused flow and high-temperature vent fluids, dissolved CO2 is in thermodynamic equilibrium with CO(aq). The systematics of organic species in diffuse flow fluids, however, appears to be closely related to processes occurring within the near-seafloor environment. For example, excess CO(aq) observed in the diffuse flow fluids at Easter Island is attributed to sluggish CO- CO2(aq) equilibria at low temperatures, suggesting hydrothermal circulation of short-residence times. Short-lived hydrothermal circulation is further supported by the nearly identical C1/(C2+C3) ratios between focused and diffuse flow fluids. Furthermore, alkane distribution in the MEF diffuse flow fluids suggests direct mixing between seawater and hydrothermal fluid with minimal biological inputs, in contrast with the greater effect of microbial methanogenesis proposed in other ridge-crest hydrothermal environments. Thus, the coupling of CO2(aq)-CO(aq) redox equilibrium with dissolved carbon species in low- temperature vent fluids could provide a better understanding of the effect of subsurface microbial communities upon the composition of mid

  20. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.

    2015-11-01

    In nearly four decades since the discovery of deep-sea vents, one-third of the length of global oceanic spreading ridges has been surveyed for hydrothermal activity. Active submarine vent fields are now known along the boundaries of 46 out of 52 recognized tectonic plates. Hydrothermal survey efforts over the most recent decade were sparked by national and commercial interests in the mineral resource potential of seafloor hydrothermal deposits, as well as by academic research. Here we incorporate recent data for back-arc spreading centers and ultraslow- and slow-spreading mid-ocean ridges (MORs) to revise a linear equation relating the frequency of vent fields along oceanic spreading ridges to spreading rate. We apply this equation globally to predict a total number of vent fields on spreading ridges, which suggests that ~900 vent fields remain to be discovered. Almost half of these undiscovered vent fields (comparable to the total of all vent fields discovered during 35 years of research) are likely to occur at MORs with full spreading rates less than 60 mm/yr. We then apply the equation regionally to predict where these hydrothermal vents may be discovered with respect to plate boundaries and national jurisdiction, with the majority expected to occur outside of states' exclusive economic zones. We hope that these predictions will prove useful to the community in the future, in helping to shape continuing ridge-crest exploration.

  1. PRex: An Experiment to Investigate Detection of Near-field Particulate Deposition from a Simulated Underground Nuclear Weapons Test Vent.

    PubMed

    Keillor, Martin E; Arrigo, Leah M; Baciak, James E; Chipman, Veraun; Detwiler, Rebecca S; Emer, Dudley F; Kernan, Warnick J; Kirkham, Randy R; MacDougall, Matthew R; Milbrath, Brian D; Rishel, Jeremy P; Seifert, Allen; Seifert, Carolyn E; Smart, John E

    2016-05-01

    A radioactive particulate release experiment to produce a near-field ground deposition representative of small-scale venting from an underground nuclear test was conducted to gather data in support of treaty capability development activities. For this experiment, a CO2-driven "air cannon" was used to inject (140)La, a radioisotope of lanthanum with 1.7-d half-life and strong gamma-ray emissions, into the lowest levels of the atmosphere at ambient temperatures. Witness plates and air samplers were laid out in an irregular grid covering the area where the plume was anticipated to deposit based on climatological wind records. This experiment was performed at the Nevada National Security Site, where existing infrastructure, radiological procedures, and support personnel facilitated planning and execution of the work. A vehicle-mounted NaI(Tl) spectrometer and a polyvinyl toluene-based backpack instrument were used to survey the deposited plume. Hand-held instruments, including NaI(Tl) and lanthanum bromide scintillators and high purity germanium spectrometers, were used to take in situ measurements. Additionally, three soil sampling techniques were investigated and compared. The relative sensitivity and utility of sampling and survey methods are discussed in the context of on-site inspection.

  2. Loki's Castle: A sediment-influenced hydrothermal vent field at the ultra-slow spreading Arctic Mid-Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Baumberger, T.; Frueh-Green, G. L.; Pedersen, R.; Thorseth, I. H.; Lilley, M. D.; Moeller, K.

    2010-12-01

    The chemical composition as well as the stable and radiogenic isotope signatures of hydrothermal fluids from the Loki’s Castle vent field, located at the Mohns-Knipovich bend in the Norwegian-Greenland Sea (73°N), are substantially different from sediment-starved mid-ocean ridge hydrothermal systems. Geochemical studies of the hydrothermal vent fluids and the adjacent rift valley sediments provide insights into the influence of sediments on the hydrothermal fluid composition and provide constraints on acting redox conditions. Additionally, they reflect the degree of fluid-rock-sediment interaction at this arctic hydrothermal vent field. Here we present an overview of the geochemical characteristics of the hydrothermal and sedimentary components at Loki’s Castle, obtained during expeditions in 2008, 2009 and 2010, with emphasis on the stable and radiogenic isotope signatures. We compare these data with other sediment-influenced and sediment-starved mid-ocean ridge hydrothermal systems. The hydrothermal vent fluids are characterized by a pH of ˜ 5.5 and by elevated concentrations of methane, hydrogen and ammonia, which reflect a sedimentary contribution. δ13CDIC (dissolved inorganic carbon) are depleted relative to mantle carbon values, consistent with an organic carbon input. The δ18OH2O values of the vents fluids are enriched compared to background bottom seawater, whereas the δD values are not. 87Sr/86Sr ratios are more radiogenic than those characteristic of un-sedimented mid-ocean ridge vent fluids. S-isotope data reflect mixing of a MORB source with sulphide derived from reduced seawater sulphate. To document the background sediment input of the ridge system, short gravity cores and up to 18 m long piston cores were recovered from various localities in the rift valley. The pore-fluid isotope chemistries of the sediments show vertical gradients that primarily reflect diagenesis and degradation of organic matter. The vertical gradient is locally enhanced

  3. Pontibacter amylolyticus sp. nov., isolated from a deep-sea sediment hydrothermal vent field.

    PubMed

    Wu, Yue-Hong; Zhou, Peng; Jian, Shu-Ling; Liu, Zhen-Sheng; Wang, Chun-Sheng; Oren, Aharon; Xu, Xue-Wei

    2016-04-01

    A Gram-stain-negative, short rod-shaped bacterium, designated 9-2T, was isolated from a sediment sample collected from a hydrothermal vent field on the south-west Indian Ridge. It formed red colonies, produced carotenoid-like pigments and did not produce bacteriochlorophyll a. Strain 9-2T was positive for hydrolysis of DNA, gelatin and starch, but negative for hydrolysis of aesculin and Tween 60. The sole respiratory quinone was menaquinone-7 (MK-7). The main polar lipids consisted of phosphatidylethanolamine, one unidentified phospholipid and two unidentified polar lipids. The principal fatty acids (>5%) were summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B), iso-C15:0 and iso-C17:0 3-OH. The genomic DNA G+C content was 49.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 9-2T should be assigned to the genus Pontibacter. Levels of 16S rRNA gene sequence similarity between the new isolate and the type strains of Pontibacter species with validly published names were in the range 94.0-96.5%. On the basis of phenotypic and genotypic data, strain 9-2T represents a novel species of the genus Pontibacter, for which the name Pontibacter amylolyticus sp. nov. is proposed. The type strain is 9-2T (=CGMCC 1.12749T=JCM 19653T=MCCC 1K00278T).

  4. Field-scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as an oxygen source with moisture and nutrient addition. Appendices. Doctoral thesis

    SciTech Connect

    Miller, R.N.

    1990-01-01

    This document contains appendices regarding a reprint on a field scale investigation of enhanced petroleum hydrocarbon biodegradation in the vadose zone combining soil venting as a oxygen source with moisture and nutrient addition.

  5. Recent Investigation of In-Situ pH in Hydrothermal Vent Fluids at Main Endeavour Field (MEF) and ASHES Vent Field (ASHES): Implications for Dynamic Changes in Subseafloor Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Ding, K.; Seyfried, W. E., Jr.; Tan, C.; Schaen, A. T.; Luhmann, A. J.

    2014-12-01

    In-situ pH is among the key factors affecting chemical reactions involved with fluid-rock interaction and metal transport in hydrothermal systems. A small variation in pH will often result in a large difference in dissolved metal concentrations. For instance, at 400oC, a decrease of ~0.15 pH unit will cause dissolved Fe concentration to double in fluid coexisting with a Fe-bearing mineral assemblage. This parameter also offers us an opportunity to better understand processes controlling the temporal evolution of hydrothermal vent fluid chemistry at mid-ocean ridges. During our recent cruise AT 26-17 with newly upgraded DSV2 Alvin, in-situ measurements of pH were carried out along with gas-tight sampling of vent fluids. Our efforts were focused at MEF and ASHES on the Juan de Fuca Ridge. These hydrothermal systems have been shown to be particularly responsive to subseafloor seismic and magmatic events. The measured fluid temperature was approximately 333˚C and 300˚C at Dante vent orifice of MEF and Inferno vent orifice of ASHES, respectively. The corresponding measured in-situ pH values for both vents are: 4.94 and 4.88, respectively. Dissolved gases and other species were also measured from gas-tight fluid samples providing a means of comparison with the in-situ data. As we have known the earthquake and magmatic activity often places the system at higher temperature and more reducing conditions in connection with a new evolutionary cycle. Comparing these relatively low in-situ pH values with those measured in the past, especially with the ones obtained at MEF in 1999 after an intense swarm of earthquakes, we see the system trending towards more acidic conditions along with decreasing temperature and dissolved H2 and H2S. Taking an example from Dante vent site, in-situ pH value of 5.15 was recorded with a measured temperature of 363oC two month after the event in 1999, which gives 0.2 pH unit greater than the more recent data. Measured dissolved H2 and H2S

  6. Detoxification mechanisms in shrimp: comparative approach between hydrothermal vent fields and estuarine environments.

    PubMed

    Gonzalez-Rey, Maria; Serafim, Angela; Company, Rui; Gomes, Tânia; Bebianno, Maria João

    2008-07-01

    Hydrothermal vents are extreme deep-sea habitats that, due to their singular features, still intrigue scientific communities. Swift growth rates and profuse biomass of biological communities can be observed, despite of their inherently unstable physical-chemical and toxic conditions, indicating that organisms inhabiting this environment must be well adapted to these inhospitable conditions. The caridean shrimp, Chorocaris chacei, Mirocaris fortunata and Rimicaris exoculata, together with bathymodiolid mussels, dominate the vent fauna along the Mid-Atlantic Ridge (MAR). Crustacean species are widely used as biological indicators of environmental alterations, since they play a key ecological role as planktivorous grazers, epibenthic scavengers or as prey species. The biological consequences of the hydrothermal metal-rich environment in shrimp species are still largely unknown. Therefore, the aim of this study was the determination of the metal levels (Ag, Cd, Cu, Fe, Mn and Zn), metallothioneins (MT) and lipid peroxidation (LPO) in shrimp species collected in Rainbow, Lucky Strike and Menez-Gwen vent sites, in order to evaluate their different adaptation strategies toward metals when compared with two common coastal shrimp species (Palaemon elegans and Palaemonetes varians) from a fairly unpolluted estuarine system in south Portugal (Ria Formosa). Results show significant differences in metal concentrations, MT levels and lipid peroxidation between vent and coastal shrimp and also between shrimp species from the same site. This indicates that biochemical responses in both vent and coastal shrimp are affected not only by the environmental characteristics but also by inter-specific differences. Nevertheless, these responses apparently grant a successful adaptation for the survival in a metal-extreme environment.

  7. Cinnabar, arsenian pyrite and thallium-enrichment in active shallow submarine hydrothermal vents at Paleochori Bay, Milos Island, Greece

    NASA Astrophysics Data System (ADS)

    Kati, Marianna; Voudouris, Panagiotis; Valsami-Jones, Eugenia; Magganas, Andreas; Baltatzis, Emmanouil; Kanellopoulos, Christos; Mavrogonatos, Constantinos

    2015-04-01

    We herein report the discovery of active cinnabar-depositing hydrothermal vents in a submarine setting at Paleochori Bay, within the offshore southeastern extension of the Milos Island Geothermal Field, South Aegean Active Volcanic Arc. Active, low temperature (up to 115 °C) hydrothermal venting through volcaniclastic material has led to a varied assemblage of sulfide and alteration mineral phases in an area of approximately 1 km2. Our samples recovered from Paleochori Bay are hydrothermal edifices composed of volcaniclastic detrital material cemented by pyrite, or pure sulfide (mainly massive pyrite) mounts. Besides pyrite and minor marcasite, the hydrothermal minerals include cinnabar, amorphous silica, hydrous ferric oxides, carbonates (aragonite and calcite), alunite-jarosite solid solution and Sr-rich barite. Among others, growth textures, sieve-textured pyrite associated with barite, alunite-jarosite solid solution and hydrous ferric oxides rims colloform-banded pyrite layers. Overgrowths of arsenian pyrite layers (up to 3.2 wt. % As and/or up to 1.1 wt. % Mn) onto As-free pyrite indicate fluctuation in As content of the hydrothermal fluid. Mercury, in the form of cinnabar, occurs in up to 5 μm grains within arsenian pyrite layers, usually forming distinct cinnabar-enriched micro-layers. Hydrothermal Sr-rich barite (barite-celestine solid solution), pseudocubic alunite-jarosite solid solution and Mn- and Sr-enriched carbonates occur in various amounts and closely associated with pyrite and/or hydrous ferric oxides. Thallium-bearing sulfides and/or sulfosalts were not detected during our study; however, hydrous ferric oxides show thallium content of up to 0.5 wt. % Tl. The following scenarios may have played a role in pyrite precipitation at Paleochori: (a) H2S originally dissolved in the deep fluid but separated upon boiling could have reacted with oxygenated seawater under production of sulphuric acid, thus causing leaching and dissolution of primary iron

  8. Novel Barite Chimneys at the Loki's Castle Vent Field Shed Light on Key Factors Shaping Microbial Communities and Functions in Hydrothermal Systems

    PubMed Central

    Steen, Ida H.; Dahle, Håkon; Stokke, Runar; Roalkvam, Irene; Daae, Frida-Lise; Rapp, Hans Tore; Pedersen, Rolf B.; Thorseth, Ingunn H.

    2016-01-01

    In order to fully understand the cycling of elements in hydrothermal systems it is critical to understand intra-field variations in geochemical and microbiological processes in both focused, high-temperature and diffuse, low-temperature areas. To reveal important causes and effects of this variation, we performed an extensive chemical and microbiological characterization of a low-temperature venting area in the Loki's Castle Vent Field (LCVF). This area, located at the flank of the large sulfide mound, is characterized by numerous chimney-like barite (BaSO4) structures (≤ 1 m high) covered with white cotton-like microbial mats. Results from geochemical analyses, microscopy (FISH, SEM), 16S rRNA gene amplicon-sequencing and metatranscriptomics were compared to results from previous analyses of biofilms growing on black smoker chimneys at LCVF. Based on our results, we constructed a conceptual model involving the geochemistry and microbiology in the LCVF. The model suggests that CH4 and H2S are important electron donors for microorganisms in both high-temperature and low-temperature areas, whereas the utilization of H2 seems restricted to high-temperature areas. This further implies that sub-seafloor processes can affect energy-landscapes, elemental cycling, and the metabolic activity of primary producers on the seafloor. In the cotton-like microbial mats on top of the active barite chimneys, a unique network of single cells of Epsilonproteobacteria interconnected by threads of extracellular polymeric substances (EPS) was seen, differing significantly from the long filamentous Sulfurovum filaments observed in biofilms on the black smokers. This network also induced nucleation of barite crystals and is suggested to play an essential role in the formation of the microbial mats and the chimneys. Furthermore, it illustrates variations in how different genera of Epsilonproteobacteria colonize and position cells in different vent fluid mixing zones within a vent field

  9. Novel Barite Chimneys at the Loki's Castle Vent Field Shed Light on Key Factors Shaping Microbial Communities and Functions in Hydrothermal Systems.

    PubMed

    Steen, Ida H; Dahle, Håkon; Stokke, Runar; Roalkvam, Irene; Daae, Frida-Lise; Rapp, Hans Tore; Pedersen, Rolf B; Thorseth, Ingunn H

    2015-01-01

    In order to fully understand the cycling of elements in hydrothermal systems it is critical to understand intra-field variations in geochemical and microbiological processes in both focused, high-temperature and diffuse, low-temperature areas. To reveal important causes and effects of this variation, we performed an extensive chemical and microbiological characterization of a low-temperature venting area in the Loki's Castle Vent Field (LCVF). This area, located at the flank of the large sulfide mound, is characterized by numerous chimney-like barite (BaSO4) structures (≤ 1 m high) covered with white cotton-like microbial mats. Results from geochemical analyses, microscopy (FISH, SEM), 16S rRNA gene amplicon-sequencing and metatranscriptomics were compared to results from previous analyses of biofilms growing on black smoker chimneys at LCVF. Based on our results, we constructed a conceptual model involving the geochemistry and microbiology in the LCVF. The model suggests that CH4 and H2S are important electron donors for microorganisms in both high-temperature and low-temperature areas, whereas the utilization of H2 seems restricted to high-temperature areas. This further implies that sub-seafloor processes can affect energy-landscapes, elemental cycling, and the metabolic activity of primary producers on the seafloor. In the cotton-like microbial mats on top of the active barite chimneys, a unique network of single cells of Epsilonproteobacteria interconnected by threads of extracellular polymeric substances (EPS) was seen, differing significantly from the long filamentous Sulfurovum filaments observed in biofilms on the black smokers. This network also induced nucleation of barite crystals and is suggested to play an essential role in the formation of the microbial mats and the chimneys. Furthermore, it illustrates variations in how different genera of Epsilonproteobacteria colonize and position cells in different vent fluid mixing zones within a vent field

  10. Sonar backscatter differentiation of dominant macrohabitat types in a hydrothermal vent field.

    PubMed

    Durand, Sébastien; Legendre, Pierre; Juniper, S Kim

    2006-08-01

    Over the past 20 years, sonar remote sensing has opened ways of acquiring new spatial information on seafloor habitat and ecosystem properties. While some researchers are presently working to improve sonar methods so that broad-scale high-definition surveys can be effectively conducted for management purposes, others are trying to use these surveying techniques in more local areas. Because ecosystem management is scale-dependent, there is a need to acquire spatiotemporal knowledge over various scales to bridge the gap between already-acquired point-source data and information available at broader scales. Using a 675-kHz single-pencil-beam sonar mounted on the remotely operated vehicle ROPOS, 2200 m deep on the Juan de Fuca Ridge, East Pacific Rise, five dominant habitat types located in a hydrothermal vent field were identified and characterized by their sonar signatures. The data, collected at different altitudes from 1 to 10 m above the seafloor, were depth-normalized. We compared three ways of handling the echoes embedded in the backscatters to detect and differentiate the five habitat types; we examined the influence of footprint size on the discrimination capacity of the three methods; and we identified key variables, derived from echoes that characterize each habitat type. The first method used a set of variables describing echo shapes, and the second method used as variables the power intensity values found within the echoes, whereas the last method combined all these variables. Canonical discriminant analysis was used to discriminate among the five habitat types using the three methods. The discriminant models were constructed using 70% of the data while the remaining 30% were used for validation. The results showed that footprints 20-30 cm in diameter included a sufficient amount of spatial variation to make the sonar signatures sensitive to the habitat types, producing on average 82% correct classification. Smaller footprints produced lower percentages of

  11. Estimating the Heat and Mass Flux at the ASHES Hydrothermal Vent Field with the Sentry Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Kinsey, J. C.; Crone, T. J.; Mittelstaedt, E. L.; Medagoda, L.; Fourie, D.; Nakamura, K.

    2014-12-01

    Hydrothermal venting influences ocean chemistry, the thermal and chemical structure of the oceanic crust, the style of accretion at mid-ocean ridges, and the evolution of unique and diverse chemosynthetic ecosystems. Surprisingly, only a few studies have attempted to constrain the volume and heat flux of entire hydrothermal vent fields given that axially-hosted hydrothermal systems are estimated to be responsible for ~20-25% of the total heat flux out of the Earth's interior, as well as potentially playing a large role in global and local biogeochemical cycles. However, same-site estimates can vary greatly, such as at the Lucky Strike Field where estimates range from 100 MW to 3800 MW. We report a July 2014 field program with the Sentry AUV that obtains the water velocity and heat measurements necessary to estimate the total heat and mass flux emanating from the ASHES hydrothermal vent field. We equipped Sentry with a Nortek acoustic Doppler velocimeter (ADV) with an inertial measurement unit attached, two acoustic Doppler current profilers (ADCPs), and two SBE3 temperature probes, to measure the temperature and water velocity. This sensing suite provided more accurate measurements than previous AUV based studies. A control volume approach was employed in which Sentry was pre-programmed to survey a 150m by 150m box centered over the vent field flying a "mowing the lawn" pattern at 5m trackline spacing followed by a survey of the perimeter. During a 40 hour survey, the pattern was repeated 9 times allowing us to obtain observations over multiple tidal cycles. Concurrent lowered ADCP (LADCP) measurements were also obtained. Water velocity data obtained with Sentry was corrected for platform motion and then combined with the temperature measurements to estimate heat flux. Analysis of this data is on-going, however these experiments permit us to quantify the heat and mass exiting the control volume, and potentially provide the most accurate and highest resolution heat

  12. Geochemical characteristics of sinking particles in the Tonga arc hydrothermal vent field, southwestern Pacific

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Jeek; Kim, Jonguk; Pak, Sang Joon; Ju, Se-Jong; Yoo, Chan Min; Kim, Hyun Sub; Lee, Kyeong Yong; Hwang, Jeomshik

    2016-10-01

    Studies of sinking particles associated with hydrothermal vent fluids may help us to quantify mass transformation processes between hydrothermal vent plumes and deposits. Such studies may also help us understand how various types of hydrothermal systems influence particle flux and composition. However, the nature of particle precipitation out of hydrothermal vent plumes in the volcanic arcs of convergent plate boundaries has not been well studied, nor have the characteristics of such particles been compared with the characteristics of sinking particles at divergent boundaries. We examined sinking particles collected by sediment traps for about 10 days at two sites, each within 200 m of identified hydrothermal vents in the south Tonga arc of the southwestern Pacific. The total mass flux was several-fold higher than in the non-hydrothermal southwest tropical Pacific. The contribution of non-biogenic materials was dominant (over 72%) and the contribution of metals such as Fe, Mn, Cu, and Zn was very high compared to their average levels in the upper continental crust. The particle flux and composition indicate that hydrothermal authigenic particles are the dominant source of the collected sinking particles. Overall, our elemental ratios are similar to observations of particles at the divergent plate boundary in the East Pacific Rise (EPR). Thus, the nature of the hydrothermal particles collected in the south Tonga arc is probably not drastically different from particles in the EPR region. However, we observed consistent differences between the two sites within the Tonga arc, in terms of the contribution of non-biogenic material, the radiocarbon content of sinking particulate organic carbon, the ratios of iron to other metals (e.g. Cu/Fe and Zn/Fe), and plume maturity indices (e.g. S/Fe). This heterogeneity within the Tonga arc is likely caused by differences in physical environment such as water depth, phase separation due to subcritical boiling and associated sub

  13. Observations of Seafloor Deformation and Methane Venting within an Active Fault Zone Offshore Southern California

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Lundsten, E. M.; Paull, C. K.; Caress, D. W.; Thomas, H. J.; Brewer, P. G.; Vrijenhoek, R.; Lundsten, L.

    2013-12-01

    Detailed mapping surveys of the floor and flanks of the Santa Monica Basin, San Pedro Basin, and San Diego Trough were conducted during the past seven years using an Autonomous Underwater Vehicle (AUV) built and operated by MBARI specifically for seafloor mapping. The AUV collected data provide up to 1 m resolution multibeam bathymetric grids with a vertical precision of 0.15 m. Along with high-resolution multibeam, the AUV also collects chirp seismic reflection profiles. Structures within the uppermost 10-20 m of the seafloor, which in the surveys presented here is composed of recent sediment drape, can typically be resolved in the sub-bottom reflectors. Remotely operated vehicle (ROV) dives allowed for ground-truth observations and sampling within the surveyed areas. The objectives of these dives included finding evidence of recent seafloor deformation and locating areas where chemosynthetic biological communities are supported by fluid venting. Distinctive seafloor features within an active fault zone are revealed in unprecedented detail in the AUV generated maps and seismic reflection profiles. Evidence for recent fault displacements include linear scarps which can be as small as 20 cm high but traceable for several km, right lateral offsets within submarine channels and topographic ridges, and abrupt discontinuities in sub-bottom reflectors, which in places appear to displace seafloor sediments. Several topographic highs that occur within the fault zone appear to be anticlines related to step-overs in these faults. These topographic highs are, in places, topped with circular mounds that are up to 15 m high and have ~30° sloping sides. The crests of the topographic highs and the mounds both have distinctive rough morphologies produced by broken pavements of irregular blocks of methane-derived authigenic carbonates, and by topographic depressions, commonly more than 2 m deep. These areas of distinctive rough topography are commonly associated with living

  14. High connectivity of animal populations in deep-sea hydrothermal vent fields in the Central Indian Ridge relevant to its geological setting.

    PubMed

    Beedessee, Girish; Watanabe, Hiromi; Ogura, Tomomi; Nemoto, Suguru; Yahagi, Takuya; Nakagawa, Satoshi; Nakamura, Kentaro; Takai, Ken; Koonjul, Meera; Marie, Daniel E P

    2013-01-01

    Dispersal ability plays a key role in the maintenance of species in spatially and temporally discrete niches of deep-sea hydrothermal vent environments. On the basis of population genetic analyses in the eastern Pacific vent fields, dispersal of animals in the mid-oceanic ridge systems generally appears to be constrained by geographical barriers such as trenches, transform faults, and microplates. Four hydrothermal vent fields (the Kairei and Edmond fields near the Rodriguez Triple Junction, and the Dodo and Solitaire fields in the Central Indian Ridge) have been discovered in the mid-oceanic ridge system of the Indian Ocean. In the present study, we monitored the dispersal of four representative animals, Austinograea rodriguezensis, Rimicaris kairei, Alviniconcha and the scaly-foot gastropods, among these vent fields by using indirect methods, i.e., phylogenetic and population genetic analyses. For all four investigated species, we estimated potentially high connectivity, i.e., no genetic difference among the populations present in vent fields located several thousands of kilometers apart; however, the direction of migration appeared to differ among the species, probably because of different dispersal strategies. Comparison of the intermediate-spreading Central Indian Ridge with the fast-spreading East Pacific Rise and slow-spreading Mid-Atlantic Ridge revealed the presence of relatively high connectivity in the intermediate- and slow-spreading ridge systems. We propose that geological background, such as spreading rate which determines distance among vent fields, is related to the larval dispersal and population establishment of vent-endemic animal species, and may play an important role in controlling connectivity among populations within a biogeographical province.

  15. Marinitoga arctica sp. nov., a thermophilic, anaerobic heterotroph isolated from a Mid-Ocean Ridge vent field.

    PubMed

    Steinsbu, Bjørn O; Røyseth, Victoria; Thorseth, Ingunn H; Steen, Ida H

    2016-12-01

    A thermophilic, anaerobic, heterotrophic bacterium, designated 2PyrY55-1T, was isolated from the wall of an active hydrothermal white-smoker chimney in the Soria Moria vent field (71° N) at the Mohns Ridge in the Norwegian-Greenland Sea. Cells of the strain were Gram-negative, motile rods that possessed a polar flagellum and a sheath-like outer structure ('toga'). Growth was observed at 45-70 °C (optimum 65 °C), at pH 5.0-7.5 (optimum pH 5.5) and in 1.5-5.5 % (w/v) NaCl (optimum 2.5 %). The strain grew on pyruvate, complex proteinaceous substrates and various sugars. Cystine and elemental sulfur were used as electron acceptors, and sulfide was then produced. The G+C content of the genomic DNA was 27 mol% (Tm method). Cellular fatty acids included C16 : 0, C14 : 0, C16 : 1ω7c and/or iso-C15 : 0 2-OH, C16 : 1ω9c, C18 : 1ω9c, C18 : 0, C18 : 1ω7c and C12 : 0. Phylogenetic analyses of the 16S rRNA gene showed that the strain belonged to the genus Marinitoga in the family Petrotogaceae. Based on the phylogenetic and chemotaxonomic data, strain 2PyrY55-1T (=DSM 29778T=JCM 30566T) is the type strain of a novel species of the genus Marinitoga, for which the name Marinitoga arctica sp. nov. is proposed.

  16. Origin of Magnetic High at Basalt-Ultramafic Hosted Hydrothermal Vent Field in the Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Fujii, M.; Okino, K.; Sato, T.; Sato, H.; Nakamura, K.

    2014-12-01

    Hydrothermal alteration processes can change crustal magnetization by destruction and creation of magnetic minerals. In the Yokoniwa hydrothermal vent field (YHVF), located at the NTO-massif in the Central Indian Ridge, a high magnetization zone (with ~12 A/m in ~200 m-scale) was discovered by previous deepsea AUV survey. Basalts and ultramafic rocks were found around the YHVF, however the origin of magnetic high and its relationship with hydrothermal activity are remains to be investigated. Therefore, we conducted additional magnetic field measurement, rock sampling, and geological observation using submersible Shinkai 6500 during the YK09-13 and YK13-03 cruises. Vector geomagnetic field were obtained along the dive tracks at an altitude of ~ 10 m. The crustal absolute magnetization is estimated using the 2D and 3D forward modeling technique. The values of magnetization show ~10 A/m just around the YHVF. This value is consistent with that of equivalent magnetization deduced from AUV data. Rock magnetic characters were measured for 8 basalts, 4 dolerites, 5 sulfides, and 30 serpentinized peridotites (SPs). The measurements of NRM, magnetic susceptibility, magnetic hysteresis, low (6-300K) and high (50-700°C) temperature magnetization curves were performed. The estimated magnetization values are 0.1-6 A/m in basalts, 0.2-0.6 A/m in dolerites, and <0.1 A/m in sulfides. The SPs show strong magnetization of 0.4-11 A/m. The magnetic grain sizes ranges over single domain to pseudo-single domain. The temperature-magnetization curves clearly show the Verway transition and Currie temperature of 580 °C, therefore magnetic carrier of SPs is supposed as pure magnetite, which is created during serpentinization process. Serpentinization degree (Sd) was also estimated by grain density measurement based on empirical formula from Oufi et al., 2002. Amount of magnetite was also estimated from saturation magnetization. The results show that the values of Sd vary in a range from 17

  17. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    hydrocarbon species characteristic of these metalliferous sediments. These systems are also characterized by sharp physicochemical gradients that have been shown to have a pronounced effect on microbial ecology and activity. Sediments were collected from a Middle Valley field with relatively high concentrations of short-chain alkanes and incubated in anaerobic batch reactors with each individual alkane (C1, C2, C3 and C4, respectively) at a range of temperatures (25, 55 and 75 °C) to mimic environmental physico-chemical conditions in a closed system. Stable carbon isotope ratios and radiotracer incubations provide clear evidence for C2-C4 alkane oxidation in the sediments over time. Upon identifying sediments with anaerobic alkane oxidation activity, microbial communities were screened via 16S rRNA pyrosequencing, and key phylotypes were then quantified using both molecular and microscopic methods. There were shifts in overall community composition and putative alkane-oxidizing phylotypes after the incubation period with the alkane substrates. These are the first evidence to date indicating that anaerobic C2-C4 alkane oxidation occurs across a broad range of temperatures in metalliferous sediments.

  18. Time Series Measurements of Diffuse Hydrothermal Flow at the ASHES Vent Field Reveal Tidally Modulated Heat and Volume Flux

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E. L.; Fornari, D. J.; Crone, T. J.

    2015-12-01

    Existing time-series measurements of temperature and velocity of diffuse hydrothermal fluids exhibit variability over a range of periods from seconds to days. Frequency analysis of these measurements reveals differences between studies and field locations including nearly white spectra, as well as spectra with peaks at tidal and inertial periods. Based upon these results, previous authors have suggested several processes that may control diffuse flow rates, including tidally induced currents and 'tidal pumping', and have also suggested that there are no systematic controls. To further investigate the processes that control variability in diffuse flow, we use data from a new, deep-sea camera and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), deployed during the July, 2014 cruise of the R/V Atlantis. The DEMS was deployed with DSV Alvin above a fracture network at the Phoenix vent within the ASHES vent field (Axial Seamount, 1541 mbsl). The system collected 20 seconds of imagery at 20 Hz and 24 seconds of temperature measurements at 1 Hz each hour over the period between July 22 and August 2nd. Velocities of the upwelling fluids were calculated using Diffuse Fluid Velocimetry (DFV; Mittelstaedt et al., 2010). DFV is a cross correlation technique that tracks moving index of refraction anomalies (i.e., hot parcels of fluid) through time. Over the ~12 day deployment, median flow rates ranged from 0.5 cm/s to 6 cm/s and mean fluid temperature anomalies from 0°C up to ~6.5°C, yielding an average heat flux density of 0.23 MW/m2. Spectral analysis of both the measured temperatures and calculated velocities yield a peak in normalized power at the semi-diurnal lunar period (M2, 12.4hrs), but no other spectral peaks above the 95% confidence level. Here, we present these results and discuss their implications for the tidal current and tidal pressure models of diffuse flow variability at the ASHES vent field.

  19. Arsenic bioaccumulation and biotransformation in deep-sea hydrothermal vent organisms from the PACMANUS hydrothermal field, Manus Basin, PNG

    NASA Astrophysics Data System (ADS)

    Price, Roy E.; Breuer, Christian; Reeves, Eoghan; Bach, Wolfgang; Pichler, Thomas

    2016-11-01

    Hydrothermal vents are often enriched in arsenic, and organisms living in these environments may accumulate high concentrations of this and other trace elements. However, very little research to date has focused on understanding arsenic bioaccumulation and biotransformation in marine organisms at deep-sea vent areas; none to date have focused organisms from back-arc spreading centers. We present for the first time concentration and speciation data for As in vent biota from several hydrothermal vent fields in the eastern Manus basin, a back-arc basin vent field located in the Bismark Sea, western Pacific Ocean. The gastropods Alviniconcha hessleri and Ifremeria nautilei, and the mussel Bathymodiolus manusensis were collected from diffuse venting areas where pH was slightly lower (6.2-6.8), and temperature (26.8-10.5 °C) and arsenic concentrations (169.5-44.0 nM) were higher than seawater. In the tissues of these organisms, the highest total measured As concentrations were in the gills of A. hessleri (5580 mg kg-1), with 721 mg kg-1 and 43 mg kg-1 in digestive gland and muscle, respectively. I. nautilei contained 118 mg kg-1 in the gill, 108 mg kg-1 in the digestive gland and 22 mg kg-1 in the muscle. B. manusensis contained 15.7 mg kg-1 in the digestive gland, followed by 9.8 mg kg-1 and 4.5 mg kg-1 in its gill and muscle tissue, respectively. We interpret the decreasing overall total concentrations in each organism as a function of distance from the source of hydrothermally derived As. The high concentration of arsenic in A. hessleri gills may be associated with elemental sulfur known to occur in this organism as a result of symbiotic microorganisms. Arsenic extracted from freeze-dried A. hessleri tissue was dominated by AsIII and AsV in the digestive gland (82% and 16%, respectively) and gills (97% AsIII, 2.3% AsV), with only 1.8% and 0.2% arsenobetaine (As-Bet) in the digestive gland and gills, respectively. However, the muscle contained substantial amounts of

  20. Low-molecular weight hydrocarbons in vent fluids from the Main Endeavour Field, northern Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Cruse, Anna M.; Seewald, Jeffrey S.

    2010-11-01

    Despite its location on sediment-free basalt, vent fluids from the Main Endeavour Field (MEF) contain chemical species that indicate fluids have interacted with sediments during circulation. We report on the distribution and isotopic abundances of organic compounds ( C1- C3 alkanes and alkenes, benzene and toluene) in fluids collected from the Main Endeavour Field (MEF) in July, 2000, to understand the processes that regulate their abundances and characterize fluid sources. Aqueous organic compounds are derived from the thermal alteration of sedimentary organic matter and subsequently undergo further oxidation reactions during fluid flow. Fluid:sediment mass ratios calculated using ΣNH 4 concentrations indicate that the sediments are distal to the MEF, resulting in a common reservoir of fluids for all of the vents. Following the generation from sediment alteration, aqueous organic compounds undergo secondary alteration reactions via a stepwise oxidation reaction mechanism. Alkane distributions and isotopic compositions indicate that organic compounds in MEF fluids have undergone a greater extent of alteration as compared to Middle Valley fluids, either due to differences in subsurface redox conditions or the residence time of fluids at subsurface conditions. The distributions of the aromatic compounds benzene and toluene are qualitatively consistent with the subsurface conditions indicated by equilibration of aqueous alkanes and alkanes. However, benzene and toluene do not achieve chemical equilibrium in the subsurface. Methane and CO 2 also do not equilibrate chemically or isotopically at reaction zone temperatures, a likely result of an insufficient reaction time after addition of CO 2 from magmatic sources during upflow. The organic geochemistry supports the assumption that the sediments with which MEF fluids interact has the same composition as sediments present in Middle Valley itself, and highlight differences in subsurface reaction zone conditions and fluid

  1. Seismic structure at the Kairei Hydrothermal vent field near the Rodriguez Triple Junction in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Takata, H.; Sato, T.; Imai, Y.; Mori, T.; Noguchi, Y.; Kono, A.; Yamada, T.; Shinohara, M.

    2014-12-01

    Central Indian Ridge is located at the north of the Rodriguez Triple Junction and shows slow-intermediate spreading rate. The Kairei hydrothermal Field (KHF) was discovered in the first segment of Central Indian Ridge near the Rodriguez Triple Junction. The vent fluid which is extruding at the KHF has higher H2 content compared with other hydrothermal vent fluid in the world. Although The KHF itself exists above a basaltic rock massif, gabbro and mafic rocks were discovered on the seafloor around the KHF. These deep-seated rocks may contribute to the high H2concentration of the Kairei vent fluid .To understand how gabbro and mafic rocks are uplifted and exhumed on the seafloor, we conducted a seismic refraction/reflection survey using ocean bottom seismograms (OBSs). We conducted the seismic refraction/reflection survey from January 27 to March 19 in 2013 using S/V Yokosuka of Jamstec. In the experiment, we used 21 OBSs, an air gun (G.I.gun) and a single channel steamer cable. We obtained 5 survey lines NNW-SSE direction parallel to the ridge axis, 5 lines E-W direction and 5 lines NNE-SSW direction. In addition to these lines, we acquired other 5 lines passing through the point above the KHF or Yokoniwa Rise, which is the north of the KHF. In analysis of refraction data, firstly, we estimated 2D velocity model under survey lines, which are parallel to the ridge axis, using the progressive model development method developed by Sato and Kennett (2000). Then, we constructed a 3D initial model and run the 3D tomographic method developed by Zelt and Barton (1998). The 1D velocity profile of the KHF seems to be similar to that of mid ocean ridges such as Mid Atlantic Ridge, East Pacific Rise. Seismic velocities under the KHF and Yokoniwa Rise reach about 6km/s at depth of 1~2 km below seafloor, probably indicating uplift of deep-seated rocks. In this presentation we will show 3D seismic structure of this area.

  2. The use of photo-mosaics, bathymetry and sensor data into geographic information system for site description and faunal distribution analysis at the Menez Gwen Hydrothermal vent field

    NASA Astrophysics Data System (ADS)

    Marcon, Y.; Sahling, H.; Bohrmann, G.

    2012-04-01

    The Menez Gwen hydrothermal vent is located on the Mid-Atlantic Ridge at a depth of about 800m. Although it has been the focus of several expeditions and studies, the sites of active venting at Menez Gwen are still under described, and it is not possible to get a global picture of the sites from the published data. Exploration of deep-sea environments is commonly performed using remotely operated vehicles (ROV) equipped with sensors, cameras and powerful lights. But strong attenuation of light in the deep-sea constrains visual surveys to be carried out from a few meters only above the seafloor, thus limiting the extent of the field of view. Moreover, ROV-mounted positioning systems usually lack accuracy and cannot be relied on for accurate relative positioning of sensor measurements, samplings, and features of interest. Such limitations are hindrances for many applications. In particular, site description or mapping of deep-sea benthic fauna over an area of study usually requires lengthy surveys, and reliability of navigation data becomes a major issue. Also, studying small-scale spatial variations of a physicochemical parameter needs positions of sensor measurements or samplings to be known precisely. To overcome this problem, maps of the seafloor can be generated in the form of geo-referenced video- or photo-mosaics. Mosaics are constructed by assembling overlapping images together into a larger image of the scene. To reduce the effects of drift in the navigation data, the construction of the mosaics uses robust feature detection and mapping capabilities to precisely relate consecutive images together. After geo-referencing in a Geographic Information System (GIS), points of measurements and sampling can be accurately pinpointed onto the mosaics to allow for spatial analyses. During cruise M82/3 to the Menez Gwen hydrothermal vent system, high-resolution photo-mosaics of several sites of hydrothermal activity were constructed and geo-referenced into GIS systems

  3. Sources of organic carbon for Rimicaris hybisae: Tracing individual fatty acids at two hydrothermal vent fields in the Mid-Cayman rise

    NASA Astrophysics Data System (ADS)

    Streit, Kathrin; Bennett, Sarah A.; Van Dover, Cindy L.; Coleman, Max

    2015-06-01

    Hydrothermal vents harbor ecosystems mostly decoupled from organic carbon synthesized with the energy of sunlight (photosynthetic carbon source) but fueled instead by oxidation of reduced compounds to generate a chemosynthetic carbon source. Our study aimed to disentangle photosynthetic and chemosynthetic organic carbon sources for the shrimp species Rimicaris hybisae, a primary consumer presumed to obtain its organic carbon mainly from ectosymbiotic chemoautotrophic bacteria living on its gill cover membrane. To provide ectosymbionts with ideal conditions for chemosynthesis, these shrimp live in dense clusters around vent chimneys; they are, however, also found sparsely distributed adjacent to diffuse vent flows, where they might depend on alternative food sources. Densely and sparsely distributed shrimp were sampled and dissected into abdominal tissue and gill cover membrane, covered with ectosymbiotic bacteria, at two hydrothermal vent fields in the Mid-Cayman rise that differ in vent chemistry. Fatty acids (FA) were extracted from shrimp tissues and their carbon isotopic compositions assessed. The FA data indicate that adult R. hybisae predominantly rely on bacteria for their organic carbon needs. Their FA composition is dominated by common bacterial FA of the n7 family (~41%). Bacterial FA of the n4 FA family are also abundant and found to constitute good biomarkers for gill ectosymbionts. Sparsely distributed shrimp contain fractions of n4 FA in gill cover membranes ~4% lower than densely packed ones (~18%) and much higher fractions of photosynthetic FA in abdominal tissues, ~4% more (compared with 1.6%), suggesting replacement of ectosymbionts along with exoskeletons (molt), while they take up alternative diets of partly photosynthetic organic carbon. Abdominal tissues also contain photosynthetic FA from a second source taken up presumably during an early dispersal phase and still present to c. 3% in adult shrimp. The contribution of photosynthetic carbon to

  4. Intra-vent peperites related to the phreatomagmatic 71 Gulch Volcano, western Snake River Plain volcanic field, Idaho (USA)

    NASA Astrophysics Data System (ADS)

    Németh, Károly; White, Craig M.

    2009-05-01

    The western Snake River Plain volcanic field in SW Idaho contains up to 400 basaltic vents and centers that produced lava shields, pahoehoe lava fields, scoria cones, and a great variety of phreatomagmatic volcanoes between late Miocene and middle Pleistocene time. Tephra deposits produced by phreatomagmatic eruptions are particularly well exposed in the walls of the Snake River canyon, where thick accumulations of pyroclastic rocks indicate widespread phreatomagmatic eruptive events throughout most of the volcanic history of the region. Previously, many of the phreatomagmatic deposits were considered to be the products of subaqueous eruptions that took place on the floor of one or more large freshwater intra-continental lakes. Recent field based observations confirm the presence of widespread phreatomagmatic pyroclastic rocks; however, some that had been interpreted as being subaqueous exhibit textural features that are more consistent with subaerial depositional environments. Intrusive and extrusive magmatic bodies with features associated with peperite formation have also been identified. Most of these peperites can be attributed to magma-sediment mixing in intra-crater/conduit or vent settings, and therefore they can only be used as widespread paleoenvironmental indicators with limitations to demonstrate magma and surface water (e.g. lake) non-explosive interaction. One of the studied sites ("71 Gulch Volcano") was previously used to indicate the presence of a shallow lake. At this site there is clear field evidence that peperitic feeder dykes contacted muddy, sandy siliciclastic sediments forming globular peperite. The peperitic feeder dykes transition to pillowed, ponded lava up section. The ponded lavas are partially surrounded by a ~ 5-m-thick unit composed of gently dipping, dune bedded, volcanic glass shard-rich, unsorted, tuff and lapilli tuff containing abundant impact sags caused by volcanic lithics. We suggest that the 3D architecture of the erosional

  5. Vented Capacitor

    DOEpatents

    Brubaker, Michael Allen; Hosking, Terry Alan

    2006-04-11

    A technique of increasing the corona inception voltage (CIV), and thereby increasing the operating voltage, of film/foil capacitors is described. Intentional venting of the capacitor encapsulation improves the corona inception voltage by allowing internal voids to equilibrate with the ambient environment.

  6. Numerical Modeling of Two-Phase Flow at the Main Endeavour Field, Juan de Fuca Ridge: Quasi-Steady State and Thermal Decline of the Vent Field

    NASA Astrophysics Data System (ADS)

    Singh, S.; Lowell, R. P.; Lewis, K. C.

    2012-12-01

    The Main Endeavour Field (MEF) on the Juan de Fuca Ridge consists of a large number of chimney structures occupying an area approximately 400 m x 150 m along the ridge axis. For nearly a decade, the MEF exhibited quasi-steady north-south trending spatial gradients of both temperature and salinity. We have constructed 2-D across-axis numerical models of two-phase flow using the code FISHES to investigate possible causes for this variation. We considered the effect of bottom boundary temperature and both a homogeneous permeability structure and a geometry incorporating a more-permeable layer 2A. From these model results we argue that such a trend is more likely to be the result of heterogeneous permeability structure of the shallow oceanic crust than a result of bottom boundary temperature variations. After a magmatic event in 1999, this trend was disrupted; and thermal data using the Autonomous Benthic Explorer (ABE) indicates that there has been a significant decline in the heat output from a value of approximately 450 MW in 2000 to approximately 300 MW in 2004. In the southern part of the vent field, vent salinities have also increased from values well below those of seawater to values close to seawater. We therefore extend our investigation to include the effect of a temporally-decaying basal heat flow, which may result from cooling, crystallizing magma chamber, on the system. Our aim is to determine whether such a phenomenon could cause the observed rapid decline of heat flow and changes in vent salinity at the MEF. We find that the thermal inertia in the system is such that changes in basal heat flow would be difficult to detect in the given time frame, if magma replenishment ceased following the 1999 magmatic event. The time delay between changes in bottom conditions and the observed decay in observed heat output suggests that the 1999 event represented a small replenishment event and that the AMC may have begun cooling some time before that. Moreover, because

  7. Rhabdothermus arcticus gen. nov., sp. nov., a member of the family Thermaceae isolated from a hydrothermal vent chimney in the Soria Moria vent field on the Arctic Mid-Ocean Ridge.

    PubMed

    Steinsbu, Bjørn O; Tindall, Brian J; Torsvik, Vigdis L; Thorseth, Ingunn H; Daae, Frida L; Pedersen, Rolf B

    2011-09-01

    A novel thermophilic member of the family Thermaceae, designated strain 2M70-1(T), was isolated from the wall of an active white smoker chimney collected in the Soria Moria vent field at 71 °N in the Norwegian-Greenland Sea. Cells of the strain were Gram-negative, non-motile rods. Growth was observed at 37-75 °C (optimum 65 °C), at pH 6-8 (optimum pH 7.3) and in 1-5 % (w/v) NaCl (optimum 2.5-3.5 %). The isolate was aerobic but could also grow anaerobically using nitrate or elemental sulfur as electron acceptors. The strain was obligately heterotrophic, growing on complex organic substrates like yeast extract, Casamino acids, tryptone and peptone. Pyruvate, acetate, butyrate, sucrose, rhamnose and maltodextrin were used as complementary substrates. The G+C content of the genomic DNA was 68 mol%. Cells possessed characteristic phospholipids and glycolipids. Major fatty acids constituted saturated and unsaturated iso-branched and saturated anteiso-branched forms. Menaquinone 8 was the sole respiratory lipoquinone. Phylogenetic analysis of 16S rRNA gene sequences placed the strain in the family Thermaceae in the phylum 'Deinococcus-Thermus', which is consistent with the chemotaxonomic data. On the basis of phenotypic and phylogenetic data, strain 2M70-1(T) ( = JCM 15963(T)  = DSM 22268(T)) represents the type strain of a novel species of a novel genus, for which the name Rhabdothermus arcticus gen. nov., sp. nov. is proposed.

  8. Behavioural study of two hydrothermal crustacean decapods: Mirocaris fortunata and Segonzacia mesatlantica, from the Lucky Strike vent field (Mid-Atlantic Ridge)

    NASA Astrophysics Data System (ADS)

    Matabos, M.; Cuvelier, D.; Brouard, J.; Shillito, B.; Ravaux, J.; Zbinden, M.; Barthelemy, D.; Sarradin, P. M.; Sarrazin, J.

    2015-11-01

    Identifying the factors driving community dynamics in hydrothermal vent communities, and in particular biological interactions, is challenged by our ability to make direct observations and the difficulty to conduct experiments in those remote ecosystems. As a result, we have very limited knowledge on species' behaviour and interactions in these communities and how they in turn influence community dynamics. Interactions such as competition or predation significantly affect community structure in vent communities, and video time-series have successfully been used to gain insights in biological interactions and species behaviour, including responses to short-term changes in temperature or feeding strategies. In this study, we combined in situ and ex situ approaches to characterise the behaviour and interactions among two key species encountered along the Mid-Atlantic Ridge (MAR): the shrimp Mirocaris fortunata and the crab Segonzacia mesatlantica. In situ, species small-scale distribution, interactions and behaviour were studied using the TEMPO observatory module deployed on the seafloor at the base of the active Eiffel Tower edifice in the Lucky Strike vent field as part of the EMSO-Açores MoMAR observatory. TEMPO sampled 2 min of video four times a day from July 2011 to April 2012. One week of observations per month was used for 'long-term' variations, and a full video data set was analysed for January 2012. In addition, observations of crab and shrimp individuals maintained for the first time under controlled conditions in atmospheric pressure (classic tank) and pressurised (AbyssBox) aquaria allowed better characterisation and description of the different types of behaviour and interactions observed in nature. While the identified in situ spatial distribution pattern was stable over the nine months, both species displayed a significant preference for mussel bed and anhydrite substrata, and preferentially occupied the area located directly in the fluid flow axis

  9. Violent Gas Venting on the Heng-Chun Mud Volcano, South China Sea Active Continental Margin offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, S.; Cheng, W. Y.; Tseng, Y. T.; Chen, N. C.; Hsieh, I. C.; Yang, T. F.

    2014-12-01

    Accumulation of methane as gas hydrate under the sea floor has been considered a major trap for both thermal and biogenic gas in marine environment. Aided by rapid AOM process near the sea floor, fraction of methane escaping the sea floor has been considered at minuscule. However, most studies focused mainly on deepwater gas hydrate systems where gas hydrate remain relatively stable. We have studied methane seeps on the active margin offshore Taiwan, where rapid tectonic activities occur. Our intention is to evaluate the scale and condition of gas seeps in the tectonic active region. Towcam, coring, heat probe, chirp, multibeam bathymetric mapping and echo sounding were conducted at the study areas. Our results showed that gas is violently venting at the active margin, not only through sediments, but also through overlying sea water, directly into the atmosphere. Similar ventings, but, not in this scale, have also been identified previously in the nearby region. High concentrations of methane as well as traces of propane were found in sediments and in waters with flares. In conjunction, abundant chemosynthetic community, life mussel, clams, tube worms, bacterial mats together with high concentrations of dissolve sulfide, large authigenic carbonate buildups were also found. Our results indicate that methane could be another major green house gas in the shallow water active margin region.

  10. Temporal and spatial variation of local stress fields before and after the 1992 eruptions of Crater Peak vent, Mount Spurr volcano, Alaska

    USGS Publications Warehouse

    Roman, D.C.; Moran, S.C.; Power, J.A.; Cashman, K.V.

    2004-01-01

    We searched for changes in local stress-field orientation at Mount Spurr volcano, Alaska, between August 1991 and December 2001. This study focuses on the stress-field orientation beneath Crater Peak vent, the site of three eruptions in 1992, and beneath the summit of Mount Spurr. Local stress tensors were calculated by inverting subsets of 140 fault-plane solutions for earthquakes beneath Crater Peak and 96 fault-plane solutions for earthquakes beneath Mount Spurr. We also calculated an upper-crustal regional stress tensor by inverting fault-plane solutions for 66 intraplate earthquakes located near Mount Spurr during 1991-2001. Prior to the 1992 eruptions, and for 11 months beginning with a posteruption seismic swarm, the axis of maximum compressive stress beneath Crater Peak was subhorizontal and oriented N67-76??E, approximately perpendicular to the regional axis of maximum compressive stress (N43??W). The strong temporal correlation between this horizontal stress-field rotation (change in position of the ??1/ ??3 axes relative to regional stress) and magmatic activity indicates that the rotation was related to magmatic activity, and we suggest that the Crater Peak stress-field rotation resulted from pressurization of a network of dikes. During the entire study period, the stress field beneath the summit of Mount Spurr also differed from the regional stress tensor and was characterized by a vertical axis of maximum compressive stress. We suggest that slip beneath Mount Spurr's summit occurs primarily on a major normal fault in response to a combination of gravitational loading, hydrothermal circulation, and magmatic processes beneath Crater Peak. Online material: Regional and local fault-plane solutions.

  11. Molecular Diversity and Activity of Methanogens in the Subseafloor at Deep-Sea Hydrothermal Vents of the Pacific Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Merkel, A.; Holden, J. F.; Lilley, M. D.; Butterfield, D. A.

    2009-12-01

    Methanogenesis is thought to represent one of the most ancient metabolic pathways on Earth, and methanogens may serve as important primary producers in warm crustal habitats at deep-sea hydrothermal vents. Many of these obligate chemolithoautotrophs depend solely on geochemically-derived energy and carbon sources and grow at high temperatures under strictly anaerobic conditions. A combined geochemical and microbiological approach was used to determine the distribution and molecular diversity of methanogens in low temperature diffuse vent fluids from the Endeavour Segment R2K ISS site, as well as Axial Seamount and volcanoes of the Mariana Arc. Geochemical data from hot and adjacent warm diffuse vent fluids provided chemical indicators to guide sample selection for detailed polymerase chain reaction (PCR)-based analysis of the key enzyme for methane formation, methyl-coenzyme M reductase (mcrA), as well as archaeal 16S rRNA genes. At most Endeavour vent sites, hydrogen concentrations were too low to support hydrogenotrophic methanogensis directly and only one diffuse site, Easter Island, had a positive signal for the mcrA gene. These sequences were most closely related to members of the order Methanococcales, as well as anaerobic methane oxidizers (ANME-1). The presence of ANME, which are rarely found in non-sedimented marine environments, is another line of evidence supporting the occurrence of buried sediments at Endeavour. At Axial, a number of diffuse vents have strong chemical indicators of methanogenesis. Methanogenic communities were detected at 3 sites on the southeast side of the caldera: the northern end of the 1998 lava flow, the International District, and on the pre-1987 lava flow. Time series work at Marker 113 showed that in 4 different years over the last 6 years methanogenic communities are active and abundant, suggesting a stable anaerobic, warm subseafloor habitat. Results show that members of the order Methanococcales dominate at this site

  12. Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean.

    PubMed

    Csotonyi, Julius T; Stackebrandt, Erko; Yurkov, Vladimir

    2006-07-01

    This paper reports the discovery of anaerobic respiration on tellurate by bacteria isolated from deep ocean (1,543 to 1,791 m) hydrothermal vent worms. The first evidence for selenite- and vanadate-respiring bacteria from deep ocean hydrothermal vents is also presented. Enumeration of the anaerobic metal(loid)-resistant microbial community associated with hydrothermal vent animals indicates that a greater proportion of the bacterial community associated with certain vent fauna resists and reduces metal(loid)s anaerobically than aerobically, suggesting that anaerobic metal(loid) respiration might be an important process in bacteria that are symbiotic with vent fauna. Isolates from Axial Volcano and Explorer Ridge were tested for their ability to reduce tellurate, selenite, metavanadate, or orthovanadate in the absence of alternate electron acceptors. In the presence of metal(loid)s, strains showed an ability to grow and produce ATP, whereas in the absence of metal(loid)s, no growth or ATP production was observed. The protonophore carbonyl cyanide m-chlorophenylhydrazone depressed metal(loid) reduction. Anaerobic tellurate respiration will be a significant component in describing biogeochemical cycling of Te at hydrothermal vents.

  13. [Field Learning Activities].

    ERIC Educational Resources Information Center

    Nolde Forest Environmental Education Center, Reading, PA.

    Seventy field activities, pertinent to outdoor, environmental studies, are described in this compilation. Designed for elementary and junior high school students, the activities cover many discipline areas--science, social studies, language arts, health, history, mathematics, and art--and many are multidisciplinary in use. Topics range from soil…

  14. Hydrothermal Activity on the Southern Mid-Atlantic Ridge: Tectonically- and Volcanically-Hosted High Temperature Venting at 2-7 Degrees S

    NASA Astrophysics Data System (ADS)

    German, C. R.; Parson, L. M.; Murton, B. J.; Bennett, S. A.; Connelly, D. P.; Evans, A. J.; Prien, R. D.; Ramirez-Llodra, E. Z.; Shank, T. M.; Yoerger, D. R.; Jakuba, M.; Bradley, A. M.; Baker, E. T.; Nakamura, K.

    2005-12-01

    We have conducted a systematic investigation for hydrothermal activity along the southern Mid-Atlantic Ridge, 2°30-6°50 S. Our initial approach was to use a combination of multi-beam swath mapping, deep-tow sidescan sonar imaging and water column plume-detection using MAPRs and CTD-rosette system to locate new sites of hydrothermal activity immediately south of the Romanche and Chain Fracture zones. We wanted to test whether these geologic features represent a significant barrier to gene-flow along-axis away from northern MAR vent ecosystems. During the first leg of our research cruise (RRS Charles Darwin cruise CD169, Feb-Mar 2005) we used this approach to identify two hydrothermally active regions, one in a non-transform discontinuity near 4°S and the other in a segment centre characterised by very fresh sheet-flows near 5°S. During Leg 2 we returned to the second of these areas and deployed ABE, WHOI's autonomous underwater vehicle, in a three-phase strategy to prospect for, locate, and image new hydrothermal fields. During Phase 1 two discrete target areas were located ca. 1km apart along strike within the segment centre. During Phase 2 these two areas were each mapped in detail using an SM2000 system while in situ optical back scatter, Eh, temperature, Mn and Fe(II) sensors were used to confirm the interception of buoyant hydrothermal plumes rising from the seafloor. Finally we redeployed ABE (Phase 3) to collect photo-mosaics of each of two new vent-areas whilst simultaneously sampling their buoyant plumes by CTD-rosette for TDMn, Fe and CH4 analyses.

  15. Microdistribution of Faunal Assemblages at Deep-Sea Hydrothermal Vents in the Southern Ocean

    PubMed Central

    Marsh, Leigh; Copley, Jonathan T.; Huvenne, Veerle A. I.; Linse, Katrin; Reid, William D. K.; Rogers, Alex D.; Sweeting, Christopher J.; Tyler, Paul A.

    2012-01-01

    Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents, with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of 2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures with varying levels of hydrothermal activity, and a mosaic image of >250 m2 of seafloor co-registered with temperature measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly dominated by a new species of anomuran crab, Kiwa n. sp. (abundance >700 individuals m−2), followed by a peltospiroid gastropod (>1,500 individuals m−2), eolepadid barnacle (>1,500 individuals m−2), and carnivorous actinostolid anemone (>30 individuals m−2). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase in δ34S values of primary consumers with distance from vent sources, and variation in their δ13C values also indicate possible zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of a vent environment over a greater extent than previous studies

  16. Microdistribution of faunal assemblages at deep-sea hydrothermal vents in the Southern Ocean.

    PubMed

    Marsh, Leigh; Copley, Jonathan T; Huvenne, Veerle A I; Linse, Katrin; Reid, William D K; Rogers, Alex D; Sweeting, Christopher J; Tyler, Paul A

    2012-01-01

    Chemosynthetic primary production by microbes supports abundant faunal assemblages at deep-sea hydrothermal vents, with zonation of invertebrate species typically occurring along physico-chemical gradients. Recently discovered vent fields on the East Scotia Ridge (ESR) in the Southern Ocean represent a new province of vent biogeography, but the spatial dynamics of their distinct fauna have yet to be elucidated. This study determines patterns of faunal zonation, species associations, and relationships between faunal microdistribution and hydrothermal activity in a vent field at a depth of 2,400 m on the ESR. Remotely operated vehicle (ROV) dives obtained high-definition imagery of three chimney structures with varying levels of hydrothermal activity, and a mosaic image of >250 m(2) of seafloor co-registered with temperature measurements. Analysis of faunal microdistribution within the mosaiced seafloor reveals a consistent pattern of faunal zonation with increasing distance from vent sources and peak temperatures. Assemblages closest to vent sources are visibly dominated by a new species of anomuran crab, Kiwa n. sp. (abundance >700 individuals m(-2)), followed by a peltospiroid gastropod (>1,500 individuals m(-2)), eolepadid barnacle (>1,500 individuals m(-2)), and carnivorous actinostolid anemone (>30 individuals m(-2)). Peripheral fauna are not dominated by a single taxon, but include predatory and scavenger taxa such as stichasterid seastars, pycnogonids and octopus. Variation in faunal microdistribution on chimneys with differing levels of activity suggests a possible successional sequence for vent fauna in this new biogeographic province. An increase in δ(34)S values of primary consumers with distance from vent sources, and variation in their δ(13)C values also indicate possible zonation of nutritional modes of the vent fauna. By using ROV videography to obtain a high-resolution representation of a vent environment over a greater extent than previous studies

  17. Activity of antioxidant enzymes in response to atmospheric pressure induced physiological stress in deep-sea hydrothermal vent mussel Bathymodiolus azoricus.

    PubMed

    Martins, Inês; Romão, Célia V; Goulart, Joana; Cerqueira, Teresa; Santos, Ricardo S; Bettencourt, Raul

    2016-03-01

    Deep sea hydrothermal Bathymodiolus azoricus mussels from Portuguese EEZ Menez Gwen hydrothermal field possess the remarkable ability to overcome decompression and survive successfully at atmospheric pressure conditions. We investigated the potential use of antioxidant defense enzymes in mussel B. azoricus as biomarkers of oxidative stress induced by long term acclimatization to atmospheric pressure conditions. Mussels collected at Menez Gwen hydrothermal field were acclimatized for two weeks in three distinct conditions suitable of promoting physiological stress, (i) in plain seawater for concomitant endosymbiont bacteria loss, (ii) in plain seawater under metal iron exposure, (iii) constant bubbling methane and pumped sulfide for endosymbiont bacteria survival. The enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and iron storage proteins in addition to electrophoretic profiles were examined in vent mussel gills and digestive gland. Gills showed approximately 3 times more SOD specific activity than digestive glands. On the other hand, digestive glands showed approximately 6 times more CAT specific activity than gills. Iron storage proteins were identified in gill extracts from all experimental conditions mussels. However, in digestive gland extracts only fresh collected mussels and after 2 weeks in FeSO4 showed the presence of iron storage proteins. The differences between SOD, CAT specific activities and the presence of iron storage proteins in the examined tissues reflect dissimilar metabolic and antioxidant activities, as a result of tissue specificities and acclimatization conditions influences on the organism.

  18. Reduction of Carbon Dioxide in Filtering Facepiece Respirators with an Active-Venting System: A Computational Study.

    PubMed

    Birgersson, Erik; Tang, Ee Ho; Lee, Wei Liang Jerome; Sak, Kwok Jiang

    2015-01-01

    During expiration, the carbon dioxide (CO2) levels inside the dead space of a filtering facepiece respirator (FFR) increase significantly above the ambient concentration. To reduce the CO2 concentration inside the dead space, we attach an active lightweight venting system (AVS) comprising a one-way valve, a blower and a battery in a housing to a FFR. The achieved reduction is quantified with a computational-fluid-dynamics model that considers conservation of mass, momentum and the dilute species, CO2, inside the FFR with and without the AVS. The results suggest that the AVS can reduce the CO2 levels inside the dead space at the end of expiration to around 0.4% as compared to a standard FFR, for which the CO2 levels during expiration reach the same concentration as that of the expired alveolar air at around 5%. In particular, during inspiration, the average CO2 volume fraction drops to near-to ambient levels of around 0.08% with the AVS. Overall, the time-averaged CO2 volume fractions inside the dead space for the standard FFR and the one with AVS are around 3% and 0.3% respectively. Further, the ability of the AVS to vent the dead-space air in the form of a jet into the ambient - similar to the jets arising from natural expiration without a FFR - ensures that the expired air is removed and diluted more efficiently than a standard FFR.

  19. Reduction of Carbon Dioxide in Filtering Facepiece Respirators with an Active-Venting System: A Computational Study

    PubMed Central

    Birgersson, Erik; Tang, Ee Ho; Lee, Wei Liang Jerome; Sak, Kwok Jiang

    2015-01-01

    During expiration, the carbon dioxide (CO2) levels inside the dead space of a filtering facepiece respirator (FFR) increase significantly above the ambient concentration. To reduce the CO2 concentration inside the dead space, we attach an active lightweight venting system (AVS) comprising a one-way valve, a blower and a battery in a housing to a FFR. The achieved reduction is quantified with a computational-fluid-dynamics model that considers conservation of mass, momentum and the dilute species, CO2, inside the FFR with and without the AVS. The results suggest that the AVS can reduce the CO2 levels inside the dead space at the end of expiration to around 0.4% as compared to a standard FFR, for which the CO2 levels during expiration reach the same concentration as that of the expired alveolar air at around 5%. In particular, during inspiration, the average CO2 volume fraction drops to near-to ambient levels of around 0.08% with the AVS. Overall, the time-averaged CO2 volume fractions inside the dead space for the standard FFR and the one with AVS are around 3% and 0.3% respectively. Further, the ability of the AVS to vent the dead-space air in the form of a jet into the ambient – similar to the jets arising from natural expiration without a FFR – ensures that the expired air is removed and diluted more efficiently than a standard FFR. PMID:26115090

  20. Risk-Free Volcano Observations Using an Unmanned Autonomous Helicopter: seismic observations near the active vent of Sakurajima volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ohminato, T.; Kaneko, T.; Koyama, T.; Yasuda, A.; Watanabe, A.; Takeo, M.; Honda, Y.; Kajiwara, K.; Kanda, W.; Iguchi, M.; Yanagisawa, T.

    2010-12-01

    Observations in the vicinity of summit area of active volcanoes are important not only for understanding physical processes in the volcanic conduit but also for eruption prediction and volcanic hazards mitigation. It is, however, challenging to install observation sensors near active vents because of the danger of sudden eruptions. We need safe and efficient ways of installing sensors near the summit of active volcanoes. We have been developing an volcano observation system based on an unmanned autonomous vehicle (UAV) for risk-free volcano observations. Our UAV is an unmanned autonomous helicopter manufactured by Yamaha-Motor Co., Ltd. The UAV is 3.6m long and weighs 84kg with maximum payload of 10kg. The UAV can aviate autonomously along a previously programmed path within a meter accuracy using real-time kinematics differential GPS equipment. The maximum flight time and distance from the operator are 90 minutes and 5km, respectively. We have developed various types of volcano observation techniques adequate for the UAV, such as aeromagnetic survey, taking infrared and visible images from onboard high-resolution cameras, volcanic ash sampling in the vicinity of active vents. Recently, we have developed an earthquake observation module (EOM), which is exclusively designed for the UAV installation in the vicinity of active volcanic vent. In order to meet the various requirements for UAV installation, the EOM is very compact, light-weight (5-6kg), and is solar-powered. It is equipped with GPS for timing, a communication device using cellular-phone network, and triaxial accelerometers. Our first application of the EOM installation using the UAV is one of the most active volcanoes in Japan, Sakurajima volcano. Since 2006, explosive eruptions have been continuing at the reopened Showa crater at the eastern flank near the summit of Sakurajima. Entering the area within 2 km from the active craters is prohibited, and thus there were no observation station in the vicinity

  1. Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields

    NASA Astrophysics Data System (ADS)

    Johannessen, Karen C.; Vander Roost, Jan; Dahle, Håkon; Dundas, Siv H.; Pedersen, Rolf B.; Thorseth, Ingunn H.

    2017-04-01

    Diffuse low-temperature hydrothermal vents on the seafloor host neutrophilic microaerophilic Fe-oxidizing bacteria that utilize the Fe(II) supplied by hydrothermal fluids and produce intricate twisted and branching extracellular stalks. The growth behavior of Fe-oxidizing bacteria in strongly opposing gradients of Fe(II) and O2 have been thoroughly investigated in laboratory settings to assess whether extracellular stalks and aligned biomineralized fabrics may serve as biosignatures of Fe-oxidizing bacteria and indications of palaeo-redox conditions in the rock record. However, the processes controlling the growth of biogenic Fe-oxyhydroxide deposits in natural, modern hydrothermal systems are still not well constrained. In this study, we aimed to establish how variations in the texture of stratified hydrothermal Fe-oxyhydroxide deposits are linked to the physicochemical conditions of the hydrothermal environment. We conducted 16S rRNA gene analyses, microscopy and geochemical analyses of laminated siliceous Fe-mounds from the Jan Mayen Vent Fields at the Arctic Mid-Ocean Ridge. Chemical analyses of low- and high-temperature hydrothermal fluids were performed to characterize the hydrothermal system in which the Fe-deposits form. Our results reveal synchronous inter-laminar variations in texture and major and trace element geochemistry. The Fe-deposits are composed of alternating porous laminae of mineralized twisted stalks and branching tubes, Mn-rich horizons with abundant detrital sediment, domal internal cavities and thin P- and REE-enriched lamina characterized by networks of ≪1 μm wide fibers. Zetaproteobacteria constitute one third of the microbial community in the surface layer of actively forming mounds, indicating that microbial Fe-oxidation is contributing to mound accretion. We suggest that Mn-oxide precipitation and detrital sediment accumulation take place during periodically low hydrothermal fluid discharge conditions. The elevated concentrations

  2. A natural analogue for CO2 leakage: The release and fate of CO2 at the Jan Mayen vent fields (AMOR)

    NASA Astrophysics Data System (ADS)

    Baumberger, T.; Lilley, M. D.; Pedersen, R. B.; Thorseth, I. H.

    2013-12-01

    Carbon dioxide capture and storage (CCS) is seen as a new possible technique for reducing the emission of industrial CO2 to the atmosphere. To evaluate the risks of sub-seabed CO2 storage, the European Commission is supporting the international and multi-disciplinary ECO2 project. Among other objectives, this project is dealing with evaluating the likelihood of leakage and the resulting possible impacts on marine ecosystems. In the framework of the ECO2 project, the release and dispersal of CO2 have been studied at several natural seep sites. In this study, we present geochemical data collected at the natural CO2 leakage analogue, Jan Mayen vent fields (JMVF). The basalt-hosted JMVF are located at 71° N on the southern end of the ultra-slow spreading Mohns Ridge, which is part of the Arctic Mid-Ocean Ridge (AMOR) system. The JMVF are composed of several venting sites, spread over a large area. These venting areas include focused high-temperature venting and diffuse low-temperature fluid flow vents as well as areas where free gas bubbles are released. Over the past few years, we have repeatedly visited and extensively sampled these vent fields to study the release and fate of CO2 in this natural seep area. One of our main objectives was to constrain the CO2 content of the widely emitted gas and to study its dispersion and fate in the water column. We have also investigated hydrate formation, which is observed at various locations. The venting fluids are chemically characterized by CO2 concentrations of up to 110 mmol/kg, having an associated isotopic composition representing a mantle carbon source. Thus, the CO2 concentrations measured at the JMVF represent the high-end compared to the concentration range of most other basalt-hosted hydrothermal mid-ocean ridge systems. Even though the concentrations of the emitted CO2 vary over time and with the type of venting (focused flow, diffuse flow or bubbles), the overall release is continuously high. The dispersion of the

  3. Insights into life-history traits of Munidopsis spp. (Anomura: Munidopsidae) from hydrothermal vent fields in the Okinawa Trough, in comparison with the existing data

    NASA Astrophysics Data System (ADS)

    Nakamura, Masako; Chen, Chong; Mitarai, Satoshi

    2015-06-01

    Squat lobsters in the genus Munidopsis are commonly found at, and near, hydrothermal vents. However, the reproductive traits of most Munidopsis spp. are unknown. This study examined the reproductive features of two Munidopsis species sampled from hydrothermal vent fields in the southern Okinawa Trough in February 2014. Three ovigerous females were collected: two Munidopsis ryukyuensis at Irabu Knoll (1661-1675 m depth) and one M. longispinosa at Hatoma Knoll (1482 m depth). Carapace sizes and egg volumes were measured and compared with those of other Munidopsis species. The ovigerous M. ryukyuensis specimens had postorbital carapace lengths of 10.3 and 11.8 mm, without the rostrum, and carapace widths of 8.6 and 9.7 mm. Mean egg volumes of M. ryukyuensis and M. longispinosa were ~4 mm3. These results are consistent with early sexual maturity in M. ryukyuensis and lecithotrophic development in both species, as described in other species of the genus. These life-history traits may enable these vent species to maximize their reproductive and dispersive potential.

  4. Ferrous iron- and ammonium-rich diffuse vents support habitat-specific communities in a shallow hydrothermal field off the Basiluzzo Islet (Aeolian Volcanic Archipelago).

    PubMed

    Bortoluzzi, G; Romeo, T; La Cono, V; La Spada, G; Smedile, F; Esposito, V; Sabatino, G; Di Bella, M; Canese, S; Scotti, G; Bo, M; Giuliano, L; Jones, D; Golyshin, P N; Yakimov, M M; Andaloro, F

    2017-04-06

    Ammonium- and Fe(II)-rich fluid flows, known from deep-sea hydrothermal systems, have been extensively studied in the last decades and are considered as sites with high microbial diversity and activity. Their shallow-submarine counterparts, despite their easier accessibility, have so far been under-investigated, and as a consequence, much less is known about microbial communities inhabiting these ecosystems. A field of shallow expulsion of hydrothermal fluids has been discovered at depths of 170-400 meters off the base of the Basiluzzo Islet (Aeolian Volcanic Archipelago, Southern Tyrrhenian Sea). This area consists predominantly of both actively diffusing and inactive 1-3 meters-high structures in the form of vertical pinnacles, steeples and mounds covered by a thick orange to brown crust deposits hosting rich benthic fauna. Integrated morphological, mineralogical, and geochemical analyses revealed that, above all, these crusts are formed by ferrihydrite-type Fe(3+) oxyhydroxides. Two cruises in 2013 allowed us to monitor and sampled this novel ecosystem, certainly interesting in terms of shallow-water iron-rich site. The main objective of this work was to characterize the composition of extant communities of iron microbial mats in relation to the environmental setting and the observed patterns of macrofaunal colonization. We demonstrated that iron-rich deposits contain complex and stratified microbial communities with a high proportion of prokaryotes akin to ammonium- and iron-oxidizing chemoautotrophs, belonging to Thaumarchaeota, Nitrospira, and Zetaproteobacteria. Colonizers of iron-rich mounds, while composed of the common macrobenthic grazers, predators, filter-feeders, and tube-dwellers with no representatives of vent endemic fauna, differed from the surrounding populations. Thus, it is very likely that reduced electron donors (Fe(2+) and NH4(+) ) are important energy sources in supporting primary production in microbial mats, which form a habitat

  5. Evidence of sub-vent biosphere: enzymatic activities in 308 °C deep-sea hydrothermal systems at Suiyo seamount, Izu Bonin Arc, Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Takano, Yoshinori; Edazawa, Yae; Kobayashi, Kensei; Urabe, Tetsuro; Marumo, Katsumi

    2005-01-01

    A high-temperature deep-sea hydrothermal system related to dacitic arc-volcanism was drilled using a tethered, submarine rock-drill system as a part of the Archaean Park Project. The benthic multi-coring system (BMS) employed allowed for direct sampling of microorganisms, rocks and fluids beneath hydrothermal vents. The samples examined in this study were from sites APSK 05 and APSK 07 on the Suiyo Seamount of the Izu-Bonin Arc in the Pacific Ocean. Based on the vertical distribution of samples derived from this vigorous sub-vent environment, a model of deep-sea subterranean chemistry and biology was determined detailing optimal microbial activities. Deep-sea hydrothermal sub-vent core samples of dacitic arc-volcanism obtained at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific Ocean were analyzed for acid and alkaline phosphatase enzymatic activities. Useful biomarkers of acid phosphatase (ACP) and alkaline phosphatase (ALP) enzymatic activities were positively correlated against each other and was greatest at the partial middle core sequences; ACP and ALP activities determined were as high as 5.10 and 6.80 nmol/min/g rock, respectively. Biochemical indicators of ACP and ALP were consistent with the origin of biogenic amino acids occupied in the sub-vent region and microbial cell number in the fluid. The significant enzymatic activities demonstrated in this study provides crucial evidence that sub-vent regions represent part of the previously unknown extreme-environment biosphere, extending the known subterranean habitable spaces of, for example, extremophilic microbes. This boring trial was first example of discharging high temperature hydrothermal activities at the frontal arc volcanoes.

  6. 3D photo mosaicing of Tagiri shallow vent field by an autonomous underwater vehicle (3rd report) - Mosaicing method based on navigation data and visual features -

    NASA Astrophysics Data System (ADS)

    Maki, Toshihiro; Ura, Tamaki; Singh, Hanumant; Sakamaki, Takashi

    Large-area seafloor imaging will bring significant benefits to various fields such as academics, resource survey, marine development, security, and search-and-rescue. The authors have proposed a navigation method of an autonomous underwater vehicle for seafloor imaging, and verified its performance through mapping tubeworm colonies with the area of 3,000 square meters using the AUV Tri-Dog 1 at Tagiri vent field, Kagoshima bay in Japan (Maki et al., 2008, 2009). This paper proposes a post-processing method to build a natural photo mosaic from a number of pictures taken by an underwater platform. The method firstly removes lens distortion, invariances of color and lighting from each image, and then ortho-rectification is performed based on camera pose and seafloor estimated by navigation data. The image alignment is based on both navigation data and visual characteristics, implemented as an expansion of the image based method (Pizarro et al., 2003). Using the two types of information realizes an image alignment that is consistent both globally and locally, as well as making the method applicable to data sets with little visual keys. The method was evaluated using a data set obtained by the AUV Tri-Dog 1 at the vent field in Sep. 2009. A seamless, uniformly illuminated photo mosaic covering the area of around 500 square meters was created from 391 pictures, which covers unique features of the field such as bacteria mats and tubeworm colonies.

  7. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent

    PubMed Central

    Fortunato, Caroline S; Huber, Julie A

    2016-01-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched 13C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent. PMID:26872039

  8. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent.

    PubMed

    Fortunato, Caroline S; Huber, Julie A

    2016-08-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched (13)C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent.

  9. Brucite chimney formation and carbonate alteration at the Shinkai Seep Field, a serpentinite-hosted vent system in the southern Mariana forearc

    NASA Astrophysics Data System (ADS)

    Okumura, T.; Ohara, Y.; Stern, R. J.; Yamanaka, T.; Onishi, Y.; Watanabe, H.; Chen, C.; Bloomer, S. H.; Pujana, I.; Sakai, S.; Ishii, T.; Takai, K.

    2016-09-01

    Brucite-carbonate chimneys were discovered from the deepest known (˜5700 m depth) serpentinite-hosted ecosystem—the Shinkai Seep Field (SSF) in the southern Mariana forearc. Textural observations and geochemical analysis reveal three types (I-III) of chimneys formed by the precipitation and dissolution of constitutive minerals. Type I chimneys are bright white to light yellow, have a spiky crystalline and wrinkled surface with microbial mat and contain more brucite; these formed as a result of rapid precipitation under high fluid discharge conditions. Type II chimneys exhibit white to dull brown coloration, tuberous textures like vascular bundles, and are covered with grayish microbial mats and dense colonies of Phyllochaetopterus. This type of chimney is characterized by inner brucite-rich and outer carbonate rich zones and is thought to have precipitated from lower fluid discharge conditions than type I chimneys. Type III chimneys are ivory colored, have surface depressions and lack living microbial mats or animals. This type of chimney mainly consists of carbonate, and is in a dissolution stage. Stable carbon isotope compositions of carbonates in the two types (I and II) of active chimneys are extremely 13C-enriched (up to +24.1‰), which may reflect biological 12C consumption under extremely low dissolved inorganic carbon concentrations in alkaline fluids. Type III chimneys have 13C compositions indicating re-equilibration with seawater. Our findings demonstrate for the first time that carbonate chimneys can form below the carbonate compensation depth and provide new insights about linked geologic, hydrologic, and biological processes of the global deep-sea serpentinite-hosted vent systems.

  10. Diffuse venting at the ASHES hydrothermal field: Heat flux and tidally modulated flow variability derived from in situ time-series measurements

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Fornari, Daniel J.; Crone, Timothy J.; Kinsey, James; Kelley, Deborah; Elend, Mitch

    2016-04-01

    Time-series measurements of diffuse exit-fluid temperature and velocity collected with a new, deep-sea camera, and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), were examined from a fracture network within the ASHES hydrothermal field located in the caldera of Axial Seamount, Juan de Fuca Ridge. The DEMS was installed using the HOV Alvin above a fracture near the Phoenix vent. The system collected 20 s of 20 Hz video imagery and 24 s of 1 Hz temperature measurements each hour between 22 July and 2 August 2014. Fluid velocities were calculated using the Diffuse Fluid Velocimetry (DFV) technique. Over the ˜12 day deployment, median upwelling rates and mean fluid temperature anomalies ranged from 0.5 to 6 cm/s and 0°C to ˜6.5°C above ambient, yielding a heat flux of 0.29 ± 0.22 MW m-2 and heat output of 3.1± 2.5 kW. Using a photo mosaic to measure fracture dimensions, the total diffuse heat output from cracks across ASHES field is estimated to be 2.05 ± 1.95 MW. Variability in temperatures and velocities are strongest at semidiurnal periods and show significant coherence with tidal height variations. These data indicate that periodic variability near Phoenix vent is modulated both by tidally controlled bottom currents and seafloor pressure, with seafloor pressures being the dominant influence. These results emphasize the importance of local permeability on diffuse hydrothermal venting at mid-ocean ridges and the need to better quantify heat flux associated with young oceanic crust.

  11. Hydrothermal activity on the southern Mid-Atlantic Ridge: Tectonically- and volcanically-controlled venting at 4 5°S

    NASA Astrophysics Data System (ADS)

    German, C. R.; Bennett, S. A.; Connelly, D. P.; Evans, A. J.; Murton, B. J.; Parson, L. M.; Prien, R. D.; Ramirez-Llodra, E.; Jakuba, M.; Shank, T. M.; Yoerger, D. R.; Baker, E. T.; Walker, S. L.; Nakamura, K.

    2008-09-01

    We report results from an investigation of the geologic processes controlling hydrothermal activity along the previously-unstudied southern Mid-Atlantic Ridge (3-7°S). Our study employed the NOC (UK) deep-tow sidescan sonar instrument, TOBI, in concert with the WHOI (USA) autonomous underwater vehicle, ABE, to collect information concerning hydrothermal plume distributions in the water column co-registered with geologic investigations of the underlying seafloor. Two areas of high-temperature hydrothermal venting were identified. The first was situated in a non-transform discontinuity (NTD) between two adjacent second-order ridge-segments near 4°02'S, distant from any neovolcanic activity. This geologic setting is very similar to that of the ultramafic-hosted and tectonically-controlled Rainbow vent-site on the northern Mid-Atlantic Ridge. The second site was located at 4°48'S at the axial-summit centre of a second-order ridge-segment. There, high-temperature venting is hosted in an ˜ 18 km 2 area of young lava flows which in some cases are observed to have flowed over and engulfed pre-existing chemosynthetic vent-fauna. In both appearance and extent, these lava flows are directly reminiscent of those emplaced in Winter 2005-06 at the East Pacific Rise, 9°50'N and reference to global seismic catalogues reveals that a swarm of large (M 4.6-5.6) seismic events was centred on the 5°S segment over a ˜ 24 h period in late June 2002, perhaps indicating the precise timing of this volcanic eruptive episode. Temperature measurements at one of the vents found directly adjacent to the fresh lava flows at 5°S MAR (Turtle Pits) have subsequently revealed vent-fluids that are actively phase separating under conditions very close to the Critical Point for seawater, at ˜ 3000 m depth and 407 °C: the hottest vent-fluids yet reported from anywhere along the global ridge crest.

  12. Deposition of talc - kerolite-smectite - smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies

    USGS Publications Warehouse

    Dekov, V.M.; Cuadros, J.; Shanks, Wayne C.; Koski, R.A.

    2008-01-01

    controls on the precipitation of this sequence are the silica activity and Mg/Al ratio (i.e. the degree of mixing of seawater with hydrothermal fluid). Higher silica activity favors the formation of talc relative to tri-octahedral smectite. Vent structures and sedimentary cover preclude complete mixing of hydrothermal fluid and ambient seawater, resulting in lower Mg/Al ratios in the interior parts of the chimneys and deeper in the sediment which leads to the precipitation of phyllosilicates with lower Mg contents. Talc and kerolite-smectite have very low trace- and rare earth element contents. Some exhibit a negative or flat Eu anomaly, which suggests Eu depletion in the original hydrothermal fluid. Such Eu depletion could be caused by precipitation of anhydrite or barite (sinks for Eu2+) deeper in the system. REE abundances and distribution patterns indicate that chlorite and chlorite-smectite are hydrothermal alteration products of the background turbiditic sediment. ?? 2007 Elsevier B.V. All rights reserved.

  13. Barite in hydrothermal environments as a recorder of subseafloor processes: a multiple-isotope study from the Loki's Castle vent field.

    PubMed

    Eickmann, B; Thorseth, I H; Peters, M; Strauss, H; Bröcker, M; Pedersen, R B

    2014-07-01

    Barite chimneys are known to form in hydrothermal systems where barium-enriched fluids generated by leaching of the oceanic basement are discharged and react with seawater sulfate. They also form at cold seeps along continental margins, where marine (or pelagic) barite in the sediments is remobilized because of subseafloor microbial sulfate reduction. We test the possibility of using multiple sulfur isotopes (δ34S, Δ33S, ∆36S) of barite to identify microbial sulfate reduction in a hydrothermal system. In addition to multiple sulfur isotopes, we present oxygen (δ18O) and strontium (87Sr/86Sr) isotopes for one of numerous barite chimneys in a low-temperature (~20 °C) venting area of the Loki's Castle black smoker field at the ultraslow-spreading Arctic Mid-Ocean Ridge (AMOR). The chemistry of the venting fluids in the barite field identifies a contribution of at least 10% of high-temperature black smoker fluid, which is corroborated by 87Sr/86 Sr ratios in the barite chimney that are less radiogenic than in seawater. In contrast, oxygen and multiple sulfur isotopes indicate that the fluid from which the barite precipitated contained residual sulfate that was affected by microbial sulfate reduction. A sulfate reduction zone at this site is further supported by the multiple sulfur isotopic composition of framboidal pyrite in the flow channel of the barite chimney and in the hydrothermal sediments in the barite field, as well as by low SO4 and elevated H2S concentrations in the venting fluids compared with conservative mixing values. We suggest that the mixing of ascending H2- and CH4-rich high-temperature fluids with percolating seawater fuels microbial sulfate reduction, which is subsequently recorded by barite formed at the seafloor in areas where the flow rate is sufficient. Thus, low-temperature precipitates in hydrothermal systems are promising sites to explore the interactions between the geosphere and biosphere in order to evaluate the microbial impact on

  14. Microearthquakes beneath the Hydrothermal Vent Fields on the Endeavour Segment of the Juan de Fuca Ridge: Results from the Keck Seismic/Hydrothermal Observatory

    NASA Astrophysics Data System (ADS)

    Bowman, D.; Parker, J.; Wilcock, W.; Hooft, E.; Barclay, A.; Toomey, D.; McGill, P.; Stakes, D.; Schmidt, C.; Patel, H.

    2005-12-01

    The W.M. Keck Foundation is supporting the operation of a small seismic network in the vicinity of the hydrothermal vent fields on the central portion of the Endeavour Segment of the Juan de Fuca Ridge. This is part of a program to conduct prototype seafloor observatory experiments to monitor the relationships between episodic deformation, fluid venting and microbial productivity at oceanic plate boundaries. The Endeavour seismic network was installed in the summer of 2003 and comprises seven GEOSense three-component short-period corehole seismometers and one buried Guralp CMG-1T broadband seismometer. A preliminary analysis of the first year of data was undertaken as part of an undergraduate research apprenticeship class taught at the University of Washington's Friday Harbor Laboratories and additional analysis has since been completed by two of the apprentices and by two IRIS undergraduate interns. Over 12,000 earthquakes were located along the ridge-axis of the Endeavour, of which ~3,000 occur within or near the network and appear to be associated with the hydrothermal systems. The levels of seismicity are strongly correlated with the intensity of venting with particularly high rates of seismicity beneath the Main and High Rise Fields and substantially lower rates to the north beneath the relatively inactive Salty Dawg and Sasquatch fields. We have used both HYPOINVERSE and a grid search algorithm to investigate the distribution of focal depths assuming a variety of one-dimensional velocity models. The preliminary results show that the majority of earthquakes occur within a narrow depth range and may represent an intense zone of seismicity within a reaction overlying the axial magma chamber at ~2.5 km depth. However, the mean focal depth is strongly dependent on the relative weights assigned to the S arrivals. We infer from the inspection of residuals that no combination of the P- and S-wave velocity models we have so far investigated are fully consistent with

  15. 40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): Toward a new chronostratigraphic reconstruction of the Holocene volcanic activity

    USGS Publications Warehouse

    Fedele, L.; Insinga, D.D.; Calvert, A.T.; Morra, V.; Perrotta, A.; Scarpati, C.

    2011-01-01

    The Campi Flegrei hosts numerous monogenetic vents inferred to be younger than the 15 ka Neapolitan Yellow Tuff. Sanidine crystals from the three young Campi Flegrei vents of Fondi di Baia, Bacoli and Nisida were dated using 40Ar/39Ar geochronology. These vents, together with several other young edifices, occur roughly along the inner border of the Campi Flegrei caldera, suggesting that the volcanic conduits are controlled by caldera-bounding faults. Plateau ages of ∼9.6 ka (Fondi di Baia), ∼8.6 ka (Bacoli) and ∼3.9 ka (Nisida) indicate eruptive activity during intervals previously interpreted as quiescent. A critical revision, involving calendar age correction of literature 14C data and available 40Ar/39Ar age data, is presented. A new reference chronostratigraphic framework for Holocene Phlegrean activity, which significantly differs from the previously adopted ones, is proposed. This has important implications for understanding the Campi Flegrei eruptive history and, ultimately, for the evaluation of related volcanic risk and hazard, for which the inferred history of its recent activity is generally taken into account.

  16. Major and trace element distributions around active volcanic vents determined by analyses of grasses: implications for element cycling and bio-monitoring

    NASA Astrophysics Data System (ADS)

    Martin, R. S.; Mather, T. A.; Pyle, D. M.; Day, J. A.; Witt, M. L. I.; Collins, S. J.; Hilton, R. G.

    2010-10-01

    Samples of grass were collected at Masaya Volcano (Nicaragua; Rhynchelytrum repens and Andropogon angustatus) and the Piton de La Fournaise (around the April 2007 eruptive vent, La Réunion; Vetiveria zizanioides) to investigate the controls on major and trace element concentrations in plants around active volcanic vents. Samples were analysed using inductively coupled plasma mass spectrometry for a wide range of elements, and atomic absorption spectroscopy for Hg. At Masaya, As, Cu, Mo, Tl and K concentrations in both grass species showed a simple pattern of variability consistent with exposure to the volcanic plume. Similar variability was found in A. angustatus for Al, Co, Cs, Hg and Mg. At the Piton de La Fournaise, the patterns of variability in V. zizanioides were more complex and related to variable exposures to emissions from both the active vent and lava flow. These results suggest that exposure to volcanic emissions is, for many elements, the main control on compositional variability in vegetation growing on active volcanoes. Thus, vegetation may be an important environmental reservoir for elements emitted by volcanoes and should be considered as part of the global biogeochemical cycles.

  17. Detection of diffuse sea floor venting using structured light imaging

    NASA Astrophysics Data System (ADS)

    Inglis, G.; Smart, C.; Roman, C.; Carey, S.

    2011-12-01

    images over active vents are compared to typical sea floor images, allowing for allowing areas of venting to be identified from sequences of images taken during a standard grid survey over the vent field. The use of structured light laser image offers potential for broad area vehicle surveys. The method would also complement direct visual surveys and other acoustic coherence methods that are used to identify the location of fluid flow.

  18. Diversity of Microorganisms Associated With low Temperature Iron Deposits at the 71°N Hydrothermal Vent Field Along the Arctic Mid-Ocean Ridge

    NASA Astrophysics Data System (ADS)

    Ovreas, L.; Johannessen, T.; Jorgensen, S.; Thorseth, I. H.; Pedersen, R. B.

    2007-12-01

    Rust coloured mounds and chimney-like deposits of the newly discovered71°N hydrothermal vent fields at the south-western part of the Mohns Ridge have been investigated. Iron is the fourth most abundant element in the Earth's crust and thus represents one of the most abundant redox active metals widely available for microbial energy generation. Microbial Fe-oxidation is a widespread process in the deep-sea environments, but only recently have studies begun to elucidate these processes and describe the phylogenetic and physiological diversity of the microbial communities that mediate them. Therefore studying the process by which iron is oxidised and how this influence these cold deep-sea communities is of significant importance. We have studied the microbial communities present in these low-temperature rust coloured deposits in order to elucidate the phylogenetic and physiological diversity of the microbial populations inhabiting these deep-sea environments. Polyphasic characterisations by using geochemical and biological analyses have been performed. The deposited material has a highly porous microtexture of branching, twisted filaments resembling stalks of the iron- oxidising Gallionella sp, but numerous other unidentified filamentous structures were also found to be present. Phylogenetic analysis of clone libraries has so far demonstrated that the bacterial community is dominated by members of the Proteobacteria, Planctomycetes and Chloroflexi. The archaeal community consists of both Crenarchaeota and Euryarchaeota. The Crenarchaeota sequences affiliates with other reported uncultivated Deep-Sea archaeal sequences. To further investigate the ecological impact of these iron mounds and their interaction with microorganisms cultivation experiments have been applied. We are specifically focusing on enrichment of iron oxidizing bacteria. Preliminary results indicates that iron oxidizers related to the newly described Mariprofundus ferrooxidans as well as iron reducers

  19. Development and field application of a 6-bottle serial gas-tight fluid sampler for collecting seafloor cold seep and hydrothermal vent fluids with autonomous operation capability

    NASA Astrophysics Data System (ADS)

    Wu, S.; Ding, K.; Yang, C.; Seyfried, W. E., Jr.; Tan, C.; Schaen, A. T.; Luhmann, A. J.

    2014-12-01

    A 6-bottle serial gas-tight sampler (so-called "six-shooter") was developed for application with deep-sea vent fluids. The new device is composed of a custom-made 6-channel valve manifold and six sampling bottles which are circularly distributed around the valve manifold. Each valve channel consists of a high-pressure titanium cartridge valve and a motor-driven actuator. A sampling snorkel is connected to the inlet of the manifold that delivers the incoming fluid to different bottles. Each sampling bottle has a 160 ml-volume chamber and an accumulator chamber inside where compressed nitrogen is used to maintain the sample at near in-situ pressure. An electronics chamber that is located at the center of the sampler is used to carry out all sampling operations, autonomously, if desired. The sampler is of a compact circular configuration with a diameter of 26 cm and a length of 54 cm. During the SVC cruise AT 26-12, the sampler was deployed by DSV2 Alvin at a cold seep site MC036 with a depth of 1090 m in the Gulf of Mexico. The sampler collected fluid samples automatically following the tidal cycle to monitor the potential impact of the tide cycle on the fluid chemistry of cold seep in a period of two day. During the cruise AT 26-17, the sampler was used with newly upgraded DSV2 Alvin three times at the hydrothermal vent sites along Axial Seamount and Main Endeavor Field on Juan de Fuca Ridge. During a 4-day deployment at Anemone diffuse site (Axial Caldera), the sampler was set to work in an autonomous mode to collect fluid samples according to the preset interval. During other dives, the sampler was manually controlled via ICL (Inductively Coupled Link) communication through the hull. Gas-tight fluid samples were collected from different hydrothermal vents with temperatures between 267 ℃ and 335 ℃ at the depth up to 2200 m. The field results indicate unique advantages of the design. It can be deployed in extended time period with remote operation or working

  20. The formation, oxidation and distribution of pyrite nanoparticles emitted from hydrothermal vents: A laboratory and field based approach

    NASA Astrophysics Data System (ADS)

    Gartman, Amy

    Recent research identified the presence of nanoparticulate pyrite in hydrothermal vent black smoker emissions, and suggested that these nanoparticles may be a transport pathway for iron from hydrothermal vents to the larger ocean basin. Here, nanoparticulate pyrite was synthesized via a hydrothermal method and oxidized in air- saturated seawater, in order to explore how hydrothermally emitted pyrite forms, and may behave in oxic seawater. Additionally, hydrothermal emissions from the Mid- Atlantic Ridge were investigated for iron and sulfide speciation and reactions relating to pyrite formation. Pyrite was synthesized via both the Fe(II) + S(0) and the FeS + H 2S pathways of pyrite formation, and factors including surfactant and synthesis time were varied in order to modify morphology. The FeS + H 2S formation pathway, which is likely the pathway of pyrite formation occurring at hydrothermal sites, reproduces the pyrite nano and sub- micron particles found in black smoker emissions most closely. The oxidation of these pyrite particles results in an initial oxidation rate that is first order with respect to both the pyrite and oxygen concentration in seawater. This work is unique to previous studies on pyrite oxidation in that it uses synthesized, rather than ground and sieved pyrite, and uses seawater as the medium of oxidation. Along with the rate data, this study also demonstrates that the initial oxide formed from pyrite oxidation under these conditions is poorly crystalline and contains Fe(II) and Fe(III). Pyrite nanoparticles were identified at each of the three sites investigated at the Mid-Atlantic Ridge (Rainbow, TAG and Snakepit), and their presence at these sites, when combined with previous data from Lau Basin and EPR 9 °N demonstrates that they are likely to be a ubiquitous component of black- smoker hydrothermal emissions. The Rainbow site exhibited the highest concentration of nanoparticulate pyrite measured anywhere to date (1.15 mM). The potential

  1. Genetic diversity and connectivity of deep-sea hydrothermal vent metapopulations.

    PubMed

    Vrijenhoek, Robert C

    2010-10-01

    Deep-sea hydrothermal vents provide ephemeral habitats for animal communities that depend on chemosynthetic primary production. Sporadic volcanic and tectonic events destroy local vent fields and create new ones. Ongoing dispersal and cycles of extirpation and colonization affect the levels and distribution of genetic diversity in vent metapopulations. Several species exhibit evidence for stepping-stone dispersal along relatively linear, oceanic, ridge axes. Other species exhibit very high rates of gene flow, although natural barriers associated with variation in depth, deep-ocean currents, and lateral offsets of ridge axes often subdivide populations. Various degrees of impedance to dispersal across such boundaries are products of species-specific life histories and behaviours. Though unrelated to the size of a species range, levels of genetic diversity appear to correspond with the number of active vent localities that a species occupies within its range. Pioneer species that rapidly colonize nascent vents tend to be less subdivided and more diverse genetically than species that are slow to establish colonies at vents. Understanding the diversity and connectivity of vent metapopulations provides essential information for designing deep-sea preserves in regions that are under consideration for submarine mining of precious metals.

  2. The Physical and Petrologic Evolution of a Multi-vent Volcanic Field Associated With Yellowstone-Newberry Volcanism

    NASA Astrophysics Data System (ADS)

    Brueseke, M. E.; Hart, W. K.

    2004-12-01

    The Santa Rosa-Calico volcanic field (SC) of northern Nevada is perhaps the most chemically and physically diverse of all volcanic fields associated with mid-Miocene northwestern USA volcanism. SC volcanism occurred from 16.5 to 14 Ma and was characterized by the eruption of a complete compositional spectrum from basalt through high-Si rhyolite. Locally derived tholeiitic lava flows and shallow intrusive bodies are chemically and isotopically identical to the Steens Basalt (87/86Sri=<0.7040), the Oregon Plateau-wide mid-Miocene flood basalt. Andesite-dacite lava flows are exposed as at least four geographically and chemically distinct packages representing products of multiple, discrete magmatic systems. The most voluminous of these is calc-alkaline and characterized by abundant granitoid and mafic xenoliths/xenocrysts and radiogenic Sr isotopic ratios. Subalkaline silicic lava flows, domes, and shallow intrusive bodies define three diffuse north-south trending zones. Textural, chemical, and isotopic variability within the silicic units is linked to their spatial and temporal distribution, again necessitating the existence of multiple magmatic systems. The youngest locally derived silicic units are ash flows exposed in the central portion of the SC that erupted in actively forming sedimentary basins at ˜15.4 Ma. Underlying the 400-1500m thick package of SC volcanic rocks are temporally ( ˜103 and ˜85 Ma), chemically, and isotopically (87/86Sr at 16 Ma= 0.7045 to 0.7058 and 0.7061 to >0.7070) heterogeneous granitoid plutons and a package of ˜20-23 Ma calc-alkaline, arc-related intermediate lava flows. The observed disequilibrium textures, xenoliths, and chemical/isotopic diversity suggests that upwelling Steens magma interacted with local crust, siliceous crustal melts, and the mafic plutonic roots of early Miocene arc volcanism in multiple magmatic systems characterized by heterogeneous open system processes. The formation of these systems is tectonically

  3. Dynamics of an open basaltic magma system: The 2008 activity of the Halema‘uma‘u Overlook vent, Kīlauea Caldera

    USGS Publications Warehouse

    Eychenne, Julia; Houghton, Bruce; Swanson, Don; Carey, Rebecca; Swavely, Lauren

    2015-01-01

    On March 19, 2008 a small explosive event accompanied the opening of a 35-m-wide vent (Overlook vent) on the southeast wall of Halema‘uma‘u Crater in Kīlauea Caldera, initiating an eruptive period that extends to the time of writing. The peak of activity, in 2008, consisted of alternating background open-system outgassing and spattering punctuated by sudden, short-lived weak explosions, triggered by collapses of the walls of the vent and conduit. Near-daily sampling of the tephra from this open system, along with exceptionally detailed observations, allow us to study the dynamics of the activity during two eruptive sequences in late 2008. Each sequence includes background activity preceding and following one or more explosions in September and October 2008 respectively. Componentry analyses were performed for daily samples to characterise the diversity of the ejecta. Nine categories of pyroclasts were identified in all the samples, including wall-rock fragments. The six categories of juvenile clasts can be grouped in three classes based on vesicularity: (1) poorly, (2) uniformly highly to extremely, and (3) heterogeneously highly vesicular. The wall-rock and juvenile clasts show dissimilar grainsize distributions, reflecting different fragmentation mechanisms. The wall-rock particles formed by failure of the vent and conduit walls above the magma free surface and were then passively entrained in the eruptive plume. The juvenile componentry reveals consistent contrasts in degassing and fragmentation processes before, during and after the explosive events. We infer a crude ‘layering’ developed in the shallow melt, in terms of both rheology and bubble and volatile contents, beneath a convecting free surface during background activity. A tens-of-centimetres thick viscoelastic surface layer was effectively outgassed and relatively cool, while at depths of less than 100 m, the melt remained slightly supersaturated in volatiles and actively vesiculating

  4. Preliminary results on the reproduction of a deep-sea snailfish Careproctus rhodomelas around the active hydrothermal vent on the Hatoma Knoll, Okinawa, Japan.

    PubMed

    Takemura, A; Tamotsu, S; Miwa, T; Yamamoto, H

    2010-11-01

    Deep-sea snailfish Careproctus rhodomelas were collected from an active hydrothermal vent using a remotely operated vehicle (R.O.V. Hyper-dolphin) and a pressurized device (Deep-Aquarium). Careproctus rhodomelas exhibited a cystovarian-type ovary containing a small number of developing oocytes at different stages, suggesting that the fish is a batch-spawner that spawns large eggs (c. 6·0 mm) several times within its life span. In vitro culture of the oocytes in the presence of human chorionic gonadotropin showed that oestradiol-17β production fluctuated with oocyte development, suggesting that the oocytes were at the vitellogenic stage.

  5. Neutron-induced prompt gamma activation analysis (PGAA) of metalsand non-metals in ocean floor geothermal vent-generated samples

    SciTech Connect

    Perry, D.L.; Firestone, R.B.; Molnar, G.L.; Revay, Zs.; Kasztovszky, Zs.; Gatti, R.C.; Wilde, P.

    2002-12-05

    Neutron-induced prompt gamma activation analysis (PGAA) hasbeen used to analyze ocean floor geothermal vent-generated samples thatare composed of mixed metal sulfides, silicates, and aluminosilicates.The modern application of the PGAA technique is discussed, and elementalanalytical results are given for 25 elements observed in the samples. Theelemental analysis of the samples is consistent with the expectedmineralogical compositions, and very consistent results are obtained forcomparable samples. Special sensitivity to trace quantities of hydrogen,boron, cadmium, dysprosium, gadolinium, and samarium isdiscussed.

  6. Battery Vent Mechanism And Method

    DOEpatents

    Ching, Larry K. W.

    2000-02-15

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  7. Battery venting system and method

    DOEpatents

    Casale, Thomas J.; Ching, Larry K. W.; Baer, Jose T.; Swan, David H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  8. Battery venting system and method

    DOEpatents

    Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

  9. Origin of temporal compositional trends in monogenetic vent eruptions: Insights from the crystal cargo in the Papoose Canyon sequence, Big Pine Volcanic Field, CA

    NASA Astrophysics Data System (ADS)

    Gao, Ruohan; Lassiter, John C.; Ramirez, Gabrielle

    2017-01-01

    Many monogenetic vents display systematic temporal-compositional variations over the course of eruption. Previous studies have proposed that these trends may reflect variable degrees of crustal assimilation, or melting and mixing of heterogeneous mantle source(s). Discrimination between these two endmember hypotheses is critical for understanding the plumbing systems of monogenetic volcanoes, which pose a significant volcanic hazard in many areas. In this study, we examine the Papoose Canyon (PC) monogenetic vent in the Big Pine Volcanic Field (BPVF), which had been well characterized for temporal-compositional variations in erupted basalts. We present new major and trace element and Sr-Nd-Pb-O isotopic data from the PC "crystal cargo" (phenocrysts and xenoliths). Comparison of "crystal cargo" and host basalt provides new constraints on the history of magma storage, fractionation, and crustal contamination that are obscured in the bulk basalts due to pre- and syn-eruptive magma mixing processes. The abundances of phenocrysts and ultramafic xenoliths in the PC sequence decrease up-section. Olivine and clinopyroxene phenocrysts span a wide range of Mg# (77-89). The majority of phenocrysts are more evolved than olivine or clinopyroxene in equilibrium with their host basalts (Mg# = 68- 71, equilibrium Fo ≈ 85- 89). In addition, the ultramafic xenoliths display cumulate textures. Olivine and clinopyroxene from ultramafic xenoliths have Mg# (73-87) similar to the phenocrysts, and lower than typical mantle peridotites. Sr-Nd-Pb isotope compositions of the xenoliths are similar to early PC basalts. Finally, many clinopyroxene phenocrysts and clinopyroxene in xenoliths have trace element abundances in equilibrium with melts that are more enriched than the erupted basalts. These features suggest that the phenocrysts and xenoliths derive from melt that is more fractionated and enriched than erupted PC basalts. Pressure constraints suggest phenocrysts and ultramafic

  10. Methanocaldococcus bathoardescens sp. nov., a hyperthermophilic methanogen isolated from a volcanically active deep-sea hydrothermal vent.

    PubMed

    Stewart, Lucy C; Jung, Jong-Hyun; Kim, You-Tae; Kwon, Soon-Wo; Park, Cheon-Seok; Holden, James F

    2015-04-01

    A hyperthermophilic methanogen, strain JH146(T), was isolated from 26 °C hydrothermal vent fluid emanating from a crack in basaltic rock at Marker 113 vent, Axial Seamount in the northeastern Pacific Ocean. It was identified as an obligate anaerobe that uses only H2 and CO2 for growth. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain is more than 97% similar to other species of the genus Methanocaldococcus . Therefore, overall genome relatedness index analyses were performed to establish that strain JH146(T) represents a novel species. For each analysis, strain JH146(T) was most similar to Methanocaldococcus sp. FS406-22, which can fix N2 and also comes from Marker 113 vent. However, strain JH146(T) differs from strain FS406-22 in that it cannot fix N2. The average nucleotide identity score for strain JH146(T) was 87%, the genome-to-genome direct comparison score was 33-55% and the species identification score was 93%. For each analysis, strain JH146(T) was below the species delineation cut-off. Full-genome gene synteny analysis showed that strain JH146(T) and strain FS406-22 have 97% genome synteny, but strain JH146(T) was missing the operons necessary for N2 fixation and assimilatory nitrate reduction that are present in strain FS406-22. Based on its whole genome sequence, strain JH146(T) is suggested to represent a novel species of the genus Methanocaldococcus for which the name Methanocaldococcus bathoardescens is proposed. The type strain is JH146(T) ( = DSM 27223(T) = KACC 18232(T)).

  11. Geomicrobiology of sublacustrine thermal vents in Yellowstone Lake: geochemical controls on microbial community structure and function

    PubMed Central

    Inskeep, William P.; Jay, Zackary J.; Macur, Richard E.; Clingenpeel, Scott; Tenney, Aaron; Lovalvo, David; Beam, Jacob P.; Kozubal, Mark A.; Shanks, W. C.; Morgan, Lisa A.; Kan, Jinjun; Gorby, Yuri; Yooseph, Shibu; Nealson, Kenneth

    2015-01-01

    Yellowstone Lake (Yellowstone National Park, WY, USA) is a large high-altitude (2200 m), fresh-water lake, which straddles an extensive caldera and is the center of significant geothermal activity. The primary goal of this interdisciplinary study was to evaluate the microbial populations inhabiting thermal vent communities in Yellowstone Lake using 16S rRNA gene and random metagenome sequencing, and to determine how geochemical attributes of vent waters influence the distribution of specific microorganisms and their metabolic potential. Thermal vent waters and associated microbial biomass were sampled during two field seasons (2007–2008) using a remotely operated vehicle (ROV). Sublacustrine thermal vent waters (circa 50–90°C) contained elevated concentrations of numerous constituents associated with geothermal activity including dissolved hydrogen, sulfide, methane and carbon dioxide. Microorganisms associated with sulfur-rich filamentous “streamer” communities of Inflated Plain and West Thumb (pH range 5–6) were dominated by bacteria from the Aquificales, but also contained thermophilic archaea from the Crenarchaeota and Euryarchaeota. Novel groups of methanogens and members of the Korarchaeota were observed in vents from West Thumb and Elliot's Crater (pH 5–6). Conversely, metagenome sequence from Mary Bay vent sediments did not yield large assemblies, and contained diverse thermophilic and nonthermophilic bacterial relatives. Analysis of functional genes associated with the major vent populations indicated a direct linkage to high concentrations of carbon dioxide, reduced sulfur (sulfide and/or elemental S), hydrogen and methane in the deep thermal ecosystems. Our observations show that sublacustrine thermal vents in Yellowstone Lake support novel thermophilic communities, which contain microorganisms with functional attributes not found to date in terrestrial geothermal systems of YNP. PMID:26579074

  12. Geomicrobiology of sublacustrine thermal vents in Yellowstone Lake: geochemical controls on microbial community structure and function.

    PubMed

    Inskeep, William P; Jay, Zackary J; Macur, Richard E; Clingenpeel, Scott; Tenney, Aaron; Lovalvo, David; Beam, Jacob P; Kozubal, Mark A; Shanks, W C; Morgan, Lisa A; Kan, Jinjun; Gorby, Yuri; Yooseph, Shibu; Nealson, Kenneth

    2015-01-01

    Yellowstone Lake (Yellowstone National Park, WY, USA) is a large high-altitude (2200 m), fresh-water lake, which straddles an extensive caldera and is the center of significant geothermal activity. The primary goal of this interdisciplinary study was to evaluate the microbial populations inhabiting thermal vent communities in Yellowstone Lake using 16S rRNA gene and random metagenome sequencing, and to determine how geochemical attributes of vent waters influence the distribution of specific microorganisms and their metabolic potential. Thermal vent waters and associated microbial biomass were sampled during two field seasons (2007-2008) using a remotely operated vehicle (ROV). Sublacustrine thermal vent waters (circa 50-90°C) contained elevated concentrations of numerous constituents associated with geothermal activity including dissolved hydrogen, sulfide, methane and carbon dioxide. Microorganisms associated with sulfur-rich filamentous "streamer" communities of Inflated Plain and West Thumb (pH range 5-6) were dominated by bacteria from the Aquificales, but also contained thermophilic archaea from the Crenarchaeota and Euryarchaeota. Novel groups of methanogens and members of the Korarchaeota were observed in vents from West Thumb and Elliot's Crater (pH 5-6). Conversely, metagenome sequence from Mary Bay vent sediments did not yield large assemblies, and contained diverse thermophilic and nonthermophilic bacterial relatives. Analysis of functional genes associated with the major vent populations indicated a direct linkage to high concentrations of carbon dioxide, reduced sulfur (sulfide and/or elemental S), hydrogen and methane in the deep thermal ecosystems. Our observations show that sublacustrine thermal vents in Yellowstone Lake support novel thermophilic communities, which contain microorganisms with functional attributes not found to date in terrestrial geothermal systems of YNP.

  13. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-04-01

    Little is known about nitrogen (N) transformations in general, and the elimination of N in particular, at diffuse vents where anoxic hydrothermal fluids have mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N-loss pathways (denitrification, anammox) and dissimilative nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e. temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N-loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always <5 nmol N l-1 day-1 and below the detection limit at most of the sites. DNRA rates were up to 152 nmol N l-1 day-1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that γ-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlation existed between fixed N-loss (i.e., denitrification, anammox) rates and in-situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N-loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence

  14. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-11-01

    Little is known about fixed nitrogen (N) transformation and elimination at diffuse hydrothermal vents where anoxic fluids are mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N loss pathways (denitrification, anammox) and dissimilatory nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e., temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithoautotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always < 5 nmol N l-1 day-1 and below the detection limit at most of the sites. DNRA rates were up to ~150 nmol N l-1 day-1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that γ-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlations were found between fixed N loss (i.e., denitrification, anammox) rates and in situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence times, we estimated

  15. Implementation and evaluation of an inexpensive low-power low-noise infrasound sensor and its use in a dense sensor network around an active volcanic vent

    NASA Astrophysics Data System (ADS)

    Marcillo, O. E.; Johnson, J. B.; Hart, D. M.

    2011-12-01

    The development and evaluation of a low-cost infrasound sensor, the infraNMT, and its use as part of a dense (45-element) sensor network around an active volcanic vent, are described. This sensor is based on a commercial micro-machined piezo-resistive differential pressure transducer that uses a mechanical high-pass filter to reject low-frequency out-band energy. The sensor features low noise, 2.02 mPa rms (0.5-2 Hz), 5.47 mPa RMS (0.1-20 Hz), or 5.62 mPa rms (0.05-20 Hz), flat response between 0.01 Hz to at least 40 Hz, inband sensitivity of 45.13 +/-0.23 μV/Pa, and nominal linear range of -124.5 to +124.5 Pa. The sensor consumes a minimum of 24 mW, and operates with voltages above 8V while drawing 3mA of current. The infraNMT specifications described above were independently verified using the infrasound test chamber at the Sandia National Laboratories' Facility for Acceptance, Calibration, and Testing (SNL-FACT) and following procedures for comparison calibration against traceable reference stands in voltage and pressure. Due to the intended broad frequency response of this sensor the testing chamber was configured in a double reference sensor scheme. A well-characterized MB2000 micro-barometer (with a flat amplitude response between 0.01 and 8 Hz) and microphone (with a flat amplitude response above 8Hz) were used simultaneously in this double reference test configuration. The characteristics of the infraNMT, including small size, low power consumption, high dynamic range, and low cost, favor its use in array or network configurations for near source and/or higher noise environments. This sensor has been used for infrasound array studies associated with various sources, including volcanic and chemical explosions, glacier earthquakes, and thunder. In this study we report on the Summer 2010 deployment of a network of 45 infraNMT sensors at Kilauea volcano to study the infrasound generated by degassing of the active Halema'uma'u vent. For this experiment, the

  16. Variable explosive energy partitioning during open vent activity at Fuego volcano, Guatemala 2007-2009: constraining explosion source processes and implications for monitoring

    NASA Astrophysics Data System (ADS)

    Lyons, J. J.; Waite, G. P.; Rose, W. I.

    2009-12-01

    Fuego volcano, Guatemala is a 3800 m-high stratovolcano that has displayed open vent behavior since 1999, and has had several periods of historic open vent activity as well as more than 60 historical subplinian eruptions. Two years of continuous visual observations (2005-2007) and six months of seismic and acoustic data (2007) showed a repeating cycle of eruptive behavior that consisted of 1) passive lava effusion and minor strombolian explosions, 2) paroxysmal eruptions lasting 24-48 hours, and 3) degassing explosions with no associated effusion. The strombolian explosions that occurred during periods of passive lava effusion are characteristically distinct from degassing explosions. In this study, we quantify the ratio of radiated infrasound to seismic energy for each class of eruption during study periods in 2007, 2008 and 2009 to distinguish between potential models for the events. More than 25,000 people inhabit the high hazard zone around Fuego volcano, and the potential to track activity using explosive energy partitioning has monitoring and hazard implications. Strombolian explosions during passive effusion typically occur several times per hour, eject incandescent bombs, and produce ash-poor eruptive clouds. Degassing explosions characteristically occur once per hour, produce ash-rich eruptive clouds, and eject primarily lithic blocks. Two general types of degassing explosions are observed, 1) impulsive events with high excess pressure and 2) emergent, lower pressure transients in the acoustic traces without clear ground-coupled airwaves in the seismic data. On the other hand, strombolian explosions are nearly always impulsive in the acoustic traces but the seismic expressions of these events are variable. During the 2007 experiment, degassing explosions recorded at ~7 km from the vent show stable seismic-to-acoustic amplitude ratios ranging over less than an order of magnitude, while the energy partitioning during strombolian explosions varies widely with

  17. Biosignatures in chimney structures and sediment from the Loki's Castle low-temperature hydrothermal vent field at the Arctic Mid-Ocean Ridge.

    PubMed

    Jaeschke, Andrea; Eickmann, Benjamin; Lang, Susan Q; Bernasconi, Stefano M; Strauss, Harald; Früh-Green, Gretchen L

    2014-05-01

    We investigated microbial life preserved in a hydrothermally inactive silica–barite chimney in comparison with an active barite chimney and sediment from the Loki's Castle low-temperature venting area at the Arctic Mid-Ocean Ridge (AMOR) using lipid biomarkers. Carbon and sulfur isotopes were used to constrain possible metabolic pathways. Multiple sulfur (dδ34S, Δ33S) isotopes on barite over a cross section of the extinct chimney range between 21.1 and 22.5 % in δ34S, and between 0.020 and 0.034 % in Δ33S, indicating direct precipitation from seawater. Biomarker distributions within two discrete zones of this silica–barite chimney indicate a considerable difference in abundance and diversity of microorganisms from the chimney exterior to the interior. Lipids in the active and inactive chimney barite and sediment were dominated by a range of 13C-depleted unsaturated and branched fatty acids with δ13C values between -39.7 and -26.7 %, indicating the presence of sulfur-oxidizing and sulfate-reducing bacteria. The majority of lipids (99.5 %) in the extinct chimney interior that experienced high temperatures were of archaeal origin. Unusual glycerol monoalkyl glycerol tetraethers (GMGT) with 0–4 rings were the dominant compounds suggesting the presence of mainly (hyper-) thermophilic archaea. Isoprenoid hydrocarbons with δ13C values as low as -46 % also indicated the presence of methanogens and possibly methanotrophs.

  18. (210)Po and (210)Pb in the tissues of the deep-sea hydrothermal vent mussel Bathymodiolus azoricus from the Menez Gwen field (Mid-Atlantic Ridge).

    PubMed

    Charmasson, Sabine; Le Faouder, Antoine; Loyen, Jeanne; Cosson, Richard P; Sarradin, Pierre-Marie

    2011-01-15

    The hydrothermal deep-sea vent fauna is naturally exposed to a highly specific environment enriched in potentially toxic species such as sulfides, metals and natural radionuclides due to the convective seawater circulation inside the oceanic crust and its interaction with basaltic or ultramafic host rocks. However, data on radionuclides in biota from such environment are very limited. An investigation was carried out on tissue partitioning of (210)Po and (210)Pb, two natural radionuclides within the (238)U decay chain, in Bathymodiolus azoricus specimens from the Mid-Atlantic Ridge (Menez Gwen field). These two elements showed different distributions with high (210)Pb levels in gills and high (210)Po levels in both gills and especially in the remaining parts of the body tissue (including the digestive gland). Various factors that may explain such partitioning are discussed. However, (210)Po levels encountered in B. azoricus were not exceptionally high, leading to weighted internal dose rate in the range 3 to 4 μGy h⁻¹. These levels are slightly higher than levels characterizing coastal mussels (~1 μGy h⁻¹).

  19. Functional genes as markers for sulfur cycling and CO2 fixation in microbial communities of hydrothermal vents of the Logatchev field.

    PubMed

    Hügler, Michael; Gärtner, Andrea; Imhoff, Johannes F

    2010-09-01

    Life at deep-sea hydrothermal vents depends on chemolithoautotrophic microorganisms as primary producers mediating the transfer of energy from hydrothermal fluids to higher trophic levels. A comprehensive molecular survey was performed with microbial communities in a mussel patch at the Irina II site of the Logatchev hydrothermal field by combining the analysis of 16S rRNA gene sequences with studies of functional key genes involved in biochemical pathways of sulfur oxidation-reduction (soxB, aprA) and autotrophic carbon fixation (aclB, cbbM, cbbL). Most significantly, major groups of chemoautotrophic sulfur oxidizers in the diffuse fluids differed in their biosynthetic pathways of both carbon fixation and sulfur oxidation. One important component of the community, the Epsilonproteobacteria, has the potential to grow chemoautotrophically by means of the reductive tricarboxylic acid cycle and to gain energy through the oxidation of reduced sulfur compounds using the Sox pathway. The majority of soxB and all retrieved aclB gene sequences were assigned to this group. Another important group in this habitat, the Gammaproteobacteria, may use the adenosine 5'-phosphosulfate pathway and the Calvin-Benson-Bassham cycle, deduced from the presence of aprA and cbbM genes. Hence, two important groups of primary producers at the investigated site might use different pathways for sulfur oxidation and carbon fixation.

  20. 3D photo mosaicing of Tagiri shallow vent field by an autonomous underwater vehicle(2nd report) - Wide area visual mapping through multiple dives -

    NASA Astrophysics Data System (ADS)

    Maki, Toshihiro; Kondo, Hayato; Ura, Tamaki; Sakamaki, Takashi; Mizushima, Hayato; Yanagisawa, Masao

    The authors have proposed an innovative method to navigate an autonomous underwater vehicle (AUV) for visual mapping of seafloor with high positioning accuracy without using any vision-based matching. The proposed method was implemented in the AUV Tri-Dog 1 and sea experiments were carried out at Tagiri vent field, Kagoshima bay in Japan (Maki et al., 2008). Based on the success of the experiments, a series of dives was carried out at the same place. The AUV Tri-Dog 1 succeeded in 12 fully autonomous dives with a total duration of 29 hours. The vehicle took 9,288 pictures of the seafloor, keeping the altitude of 1.2 m with a surge speed of 0.08 m/s. A photomosaic of the seafloor was created by mapping 7,289 pictures based on the real-time estimates of the AUV state, without any pictorial correlation. The distributions of detailed features such as tube-worm colonies and bacteria mats are clearly shown. The photomosaic covers around 3,000 square meters. To the knowledge of the authors, this is one of the largest underwater photomosaic ever reported. The mapping accuracy was estimated to be 0.3 to 0.8 m based on the comparison of the photomosaic between dives.

  1. Geochemical constraints on the diversity and activity of H2 -oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and an ultramafic-hosted vent.

    PubMed

    Perner, Mirjam; Petersen, Jillian M; Zielinski, Frank; Gennerich, Hans-Hermann; Seifert, Richard

    2010-10-01

    Mixing processes of reduced hydrothermal fluids with oxygenated seawater and fluid-rock reactions contribute to the chemical signatures of diffuse venting and likely determine the geochemical constraints on microbial life. We examined the influence of fluid chemistry on microbial diversity and activity by sampling diffuse fluids emanating through mussel beds at two contrasting hydrothermal vents. The H(2) concentration was very low at the basalt-hosted Clueless site, and mixing models suggest O(2) availability throughout much of the habitat. In contrast, effluents from the ultramafic-hosted Quest site were considerably enriched in H(2) , while O(2) is likely limited to the mussel layer. Only two different hydrogenase genes were identified in clone libraries from the H(2) -poor Clueless fluids, but these fluids exhibited the highest H(2) uptake rates in H(2) -spiked incubations (oxic conditions, at 18 °C). In contrast, a phylogenetically diverse H(2) -oxidizing potential was associated with distinct thermal conditions in the H(2) -rich Quest fluids, but under oxic conditions, H(2) uptake rates were extremely low. Significant stimulation of CO(2) fixation rates by H(2) addition was solely illustrated in Quest incubations (P-value <0.02), but only in conjunction with anoxic conditions (at 18 °C). We conclude that the factors contributing toward differences in the diversity and activity of H(2) oxidizers at these sites include H(2) and O(2) availability.

  2. Effects of Hemagglutination Activity in the Serum of a Deep-Sea Vent Endemic Crab, Shinkaia Crosnieri, on Non-Symbiotic and Symbiotic Bacteria.

    PubMed

    Fujiyoshi, So; Tateno, Hiroaki; Watsuji, Tomoo; Yamaguchi, Hideyuki; Fukushima, Daisuke; Mino, Sayaka; Sugimura, Makoto; Sawabe, Tomoo; Takai, Ken; Sawayama, Shigeki; Nakagawa, Satoshi

    2015-01-01

    In deep-sea hydrothermal environments, most invertebrates associate with dense populations of symbiotic microorganisms in order to obtain nutrition. The molecular interactions between deep-sea animals and environmental microbes, including their symbionts, have not yet been elucidated in detail. Hemagglutinins/lectins, which are carbohydrate-binding proteins, have recently been reported to play important roles in a wide array of biological processes, including the recognition and control of non-self materials. We herein assessed hemagglutination activity in the serum of a deep-sea vent endemic crab, Shinkaia crosnieri, which harbors chemosynthetic epibionts on its plumose setae. Horse and rabbit erythrocytes were agglutinated using this serum (opt. pH 7.5 and opt. temperature 15°C). Agglutinating activity was inhibited by eight kinds of sugars and several divalent cations, did not require any divalent metal ions, and remained detectable even after heating the serum at 100°C for 30 min. By using fluorescently labeled serum, we demonstrated that deep-sea crab serum components bound to the epibionts even in the presence of sugars. This study represents the first immunological assessment of a deep-sea vent endemic crab and demonstrated the possibility of a non-lectin-mediated symbiont-host interaction.

  3. Effects of Hemagglutination Activity in the Serum of a Deep-Sea Vent Endemic Crab, Shinkaia Crosnieri, on Non-Symbiotic and Symbiotic Bacteria

    PubMed Central

    Fujiyoshi, So; Tateno, Hiroaki; Watsuji, Tomoo; Yamaguchi, Hideyuki; Fukushima, Daisuke; Mino, Sayaka; Sugimura, Makoto; Sawabe, Tomoo; Takai, Ken; Sawayama, Shigeki; Nakagawa, Satoshi

    2015-01-01

    In deep-sea hydrothermal environments, most invertebrates associate with dense populations of symbiotic microorganisms in order to obtain nutrition. The molecular interactions between deep-sea animals and environmental microbes, including their symbionts, have not yet been elucidated in detail. Hemagglutinins/lectins, which are carbohydrate-binding proteins, have recently been reported to play important roles in a wide array of biological processes, including the recognition and control of non-self materials. We herein assessed hemagglutination activity in the serum of a deep-sea vent endemic crab, Shinkaia crosnieri, which harbors chemosynthetic epibionts on its plumose setae. Horse and rabbit erythrocytes were agglutinated using this serum (opt. pH 7.5 and opt. temperature 15°C). Agglutinating activity was inhibited by eight kinds of sugars and several divalent cations, did not require any divalent metal ions, and remained detectable even after heating the serum at 100°C for 30 min. By using fluorescently labeled serum, we demonstrated that deep-sea crab serum components bound to the epibionts even in the presence of sugars. This study represents the first immunological assessment of a deep-sea vent endemic crab and demonstrated the possibility of a non-lectin-mediated symbiont-host interaction. PMID:26212518

  4. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.

    PubMed

    Perner, M; Hansen, M; Seifert, R; Strauss, H; Koschinsky, A; Petersen, S

    2013-07-01

    Hydrothermal fluids passing through basaltic rocks along mid-ocean ridges are known to be enriched in sulfide, while those circulating through ultramafic mantle rocks are typically elevated in hydrogen. Therefore, it has been estimated that the maximum energy in basalt-hosted systems is available through sulfide oxidation and in ultramafic-hosted systems through hydrogen oxidation. Furthermore, thermodynamic models suggest that the greatest biomass potential arises from sulfide oxidation in basalt-hosted and from hydrogen oxidation in ultramafic-hosted systems. We tested these predictions by measuring biological sulfide and hydrogen removal and subsequent autotrophic CO2 fixation in chemically distinct hydrothermal fluids from basalt-hosted and ultramafic-hosted vents. We found a large potential of microbial hydrogen oxidation in naturally hydrogen-rich (ultramafic-hosted) but also in naturally hydrogen-poor (basalt-hosted) hydrothermal fluids. Moreover, hydrogen oxidation-based primary production proved to be highly attractive under our incubation conditions regardless whether hydrothermal fluids from ultramafic-hosted or basalt-hosted sites were used. Site-specific hydrogen and sulfide availability alone did not appear to determine whether hydrogen or sulfide oxidation provides the energy for primary production by the free-living microbes in the tested hydrothermal fluids. This suggests that more complex features (e.g., a combination of oxygen, temperature, biological interactions) may play a role for determining which energy source is preferably used in chemically distinct hydrothermal vent biotopes.

  5. Hydrothermal activity at the Trans-Atlantic Geotraverse Hydrothermal Field, Mid-Atlantic Ridge crest at 26°N

    NASA Astrophysics Data System (ADS)

    Rona, P. A.; Thompson, G.; Mottl, M. J.; Karson, J. A.; Jenkins, W. J.; Graham, D.; Mallette, M.; von Damm, K.; Edmond, J. M.

    1984-12-01

    The first submersible observations of the only known active submarine hydrothermal field on a slow-spreading oceanic ridge are incorporated with results of 10 prior years of investigation to derive an understanding of periodicity, duration, and varying intensity of hydrothermal activity at the Trans-Atlantic Geotraverse (TAG) Hydrothermal Field on the Mid-Atlantic Ridge crest near latitude 26°N. Hydrothermal activity has persisted at this location for at least 1×106 years based on the distribution of hydrothermal and hydrogenous mineralization with respect to crustal age. The hydrothermal activity has been cyclic, multistage, and episodic. Prior high-temperature hydrothermal venting stages with a periodicity of the order of 1×104 years and duration of the order of 101 years are deduced from the estimated ages of discrete sedimentary layers anomalously enriched in Cu, Fe, and Zn and correspond with the independently determined periodicity of volcanic eruptive cycles on the Mid-Atlantic Ridge. The most recent episode of high-temperature venting is inferred to have ceased in the recent past based on metal enrichment (Cu, Fe, Zn) in the surficial sediment layer. Low-temperature hydrothermal venting stages with a duration of the order of 1×104 years intervene between the short high-temperature stages and produce stratiform deposits of layered and earthy manganese oxide, iron oxide, hydroxide, and silicate. Bivalve-like forms with the characteristics of vent clams in various stages of dissolution are identified on bottom photographs. The fresh appearance of intact tubules composed of iron hydroxide that acted as vents on relict deposits, conductive heat flow anomalies in the sediment column, and the record of temperature anomalies and excess 3He in the near-bottom water column, suggest that the low-temperature hydrothermal discharge is intermittent at individual vents on a time scale of years.

  6. Ecology of deep-sea hydrothermal vent communities: A review

    SciTech Connect

    Lutz, R.A.; Kennish, M.J. )

    1993-08-01

    The present article reviews studies of the past 15 years of active and inactive hydrothermal vents. The focus of the discussion is on the ecology of the biological communities inhabiting hydrothermal vents. These communities exhibit high densities and biomass, low species diversity, rapid growth rates, and high metabolic rates. The authors attempt to relate the biology of hydrothermal vent systems to geology. Future directions for hydrothermal vent research are suggested. Since many vent populations are dependent on hydrothermal fluids and are consequently unstable, both short- and long-term aspects of the ecology of the vent organisms and the influence of chemical and geological factors on the biology of vent systems need to be established. 200 refs., 28 figs.

  7. Ecology and biogeography of megafauna and macrofauna at the first known deep-sea hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Copley, J. T.; Marsh, L.; Glover, A. G.; Hühnerbach, V.; Nye, V. E.; Reid, W. D. K.; Sweeting, C. J.; Wigham, B. D.; Wiklund, H.

    2016-12-01

    The Southwest Indian Ridge is the longest section of very slow to ultraslow-spreading seafloor in the global mid-ocean ridge system, but the biogeography and ecology of its hydrothermal vent fauna are previously unknown. We collected 21 macro- and megafaunal taxa during the first Remotely Operated Vehicle dives to the Longqi vent field at 37° 47‧S 49° 39‧E, depth 2800 m. Six species are not yet known from other vents, while six other species are known from the Central Indian Ridge, and morphological and molecular analyses show that two further polychaete species are shared with vents beyond the Indian Ocean. Multivariate analysis of vent fauna across three oceans places Longqi in an Indian Ocean province of vent biogeography. Faunal zonation with increasing distance from vents is dominated by the gastropods Chrysomallon squamiferum and Gigantopelta aegis, mussel Bathymodiolus marisindicus, and Neolepas sp. stalked barnacle. Other taxa occur at lower abundance, in some cases contrasting with abundances at other vent fields, and δ13C and δ15N isotope values of species analysed from Longqi are similar to those of shared or related species elsewhere. This study provides baseline ecological observations prior to mineral exploration activities licensed at Longqi by the United Nations.

  8. Ecology and biogeography of megafauna and macrofauna at the first known deep-sea hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge

    PubMed Central

    Copley, J. T.; Marsh, L.; Glover, A. G.; Hühnerbach, V.; Nye, V. E.; Reid, W. D. K.; Sweeting, C. J.; Wigham, B. D.; Wiklund, H.

    2016-01-01

    The Southwest Indian Ridge is the longest section of very slow to ultraslow-spreading seafloor in the global mid-ocean ridge system, but the biogeography and ecology of its hydrothermal vent fauna are previously unknown. We collected 21 macro- and megafaunal taxa during the first Remotely Operated Vehicle dives to the Longqi vent field at 37° 47′S 49° 39′E, depth 2800 m. Six species are not yet known from other vents, while six other species are known from the Central Indian Ridge, and morphological and molecular analyses show that two further polychaete species are shared with vents beyond the Indian Ocean. Multivariate analysis of vent fauna across three oceans places Longqi in an Indian Ocean province of vent biogeography. Faunal zonation with increasing distance from vents is dominated by the gastropods Chrysomallon squamiferum and Gigantopelta aegis, mussel Bathymodiolus marisindicus, and Neolepas sp. stalked barnacle. Other taxa occur at lower abundance, in some cases contrasting with abundances at other vent fields, and δ13C and δ15N isotope values of species analysed from Longqi are similar to those of shared or related species elsewhere. This study provides baseline ecological observations prior to mineral exploration activities licensed at Longqi by the United Nations. PMID:27966649

  9. Ecology and biogeography of megafauna and macrofauna at the first known deep-sea hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge.

    PubMed

    Copley, J T; Marsh, L; Glover, A G; Hühnerbach, V; Nye, V E; Reid, W D K; Sweeting, C J; Wigham, B D; Wiklund, H

    2016-12-14

    The Southwest Indian Ridge is the longest section of very slow to ultraslow-spreading seafloor in the global mid-ocean ridge system, but the biogeography and ecology of its hydrothermal vent fauna are previously unknown. We collected 21 macro- and megafaunal taxa during the first Remotely Operated Vehicle dives to the Longqi vent field at 37° 47'S 49° 39'E, depth 2800 m. Six species are not yet known from other vents, while six other species are known from the Central Indian Ridge, and morphological and molecular analyses show that two further polychaete species are shared with vents beyond the Indian Ocean. Multivariate analysis of vent fauna across three oceans places Longqi in an Indian Ocean province of vent biogeography. Faunal zonation with increasing distance from vents is dominated by the gastropods Chrysomallon squamiferum and Gigantopelta aegis, mussel Bathymodiolus marisindicus, and Neolepas sp. stalked barnacle. Other taxa occur at lower abundance, in some cases contrasting with abundances at other vent fields, and δ(13)C and δ(15)N isotope values of species analysed from Longqi are similar to those of shared or related species elsewhere. This study provides baseline ecological observations prior to mineral exploration activities licensed at Longqi by the United Nations.

  10. Metal concentrations in the shell of Bathymodiolus azoricus from contrasting hydrothermal vent fields on the Mid-Atlantic Ridge.

    PubMed

    Cravo, A; Foster, P; Almeida, C; Bebianno, M J; Company, R

    2008-05-01

    Specimens of Bathymodiolus azoricus were sampled along the Mid-Atlantic Ridge at the Menez Gwen, Lucky Strike and Rainbow hydrothermal fields. Individual shells (n = 51), through the weight range 0.62 to 15.70 g, were analyzed for their magnesium, strontium, iron, manganese, copper, zinc and cadmium concentrations. Amongst the marine molluscs the shell of B. azoricus is confirmed as being particularly impoverished in strontium (mean 943 microg g(-1)). Trace metal concentrations in the shells decreased in the order Fe> Mn> Zn> Cu> Cd. Despite originating from trace metal rich environments mean concentrations were low (37.9, 13.2, 10.7, 1.1 and 0.7 microg g(-1), respectively). Irrespective of geographical origin magnesium, strontium and copper concentrations were primarily dictated by shell weight. In contrast cadmium concentrations were elevated in shells from the Rainbow field and ambient seawater chemistry imparted site specific chemical fingerprints to the shells with respect to the iron to manganese ratio.

  11. Variations in the Characteristics of Craters of the Moon Lava Flows from Vent to Termination: Remotely Sensed Spectra and Field Observations

    NASA Astrophysics Data System (ADS)

    Hobson, V. R.; Shervais, J. W.

    2004-12-01

    from the source vent or fissure. Several flows were selected for further examination in the field, based on accessibility and scientific interest.

  12. Field Calibration of the δ11B-pH Proxy in Corals and Calcified Algae at a Shallow Hydrothermal Vent and Adjacent Coral Reef

    NASA Astrophysics Data System (ADS)

    Day, R. D.; Christopher, S. J.; Young, C.; Brainard, R. E.; Butterfield, D. A.; Stewart, J.

    2015-12-01

    There is increasing interest in using the boron isotopic composition (δ11B) of biogenic carbonates as a proxy for seawater pH to better understand recent ocean acidification. The utility of this proxy hinges on the production of robust species-specific δ11B-pH calibrations; yet, challenges remain in the interpretation of boron isotope data due to biases introduced by physiological, environmental, and analytical factors. The shallow hydrothermal vents in the Maug Islands caldera (Marianas Islands) and the adjacent coral reefs exhibit a localized gradient > 1 pH unit. This gradient was used as a natural laboratory to assess the efficacy of using skeletal δ11B in a variety of corals (Porites spp., Pocillipora spp., Acropora spp.) and calcified algae (Halimeda spp. and Corallinales) as biosensors of seawater pH. Three sites were selected representing oceanic background, intermediate, and low pH zones, and direct seawater pH measurements were recorded for 3 months using SeaFETs. Corals and algae growing naturally in situ were collected from these 3 sites. In addition, corals and algae collected from a background location were stained and transplanted to these sites and allowed to grow for 3 months. Measurements of δ11B in skeletal material made by multi-collector inductively coupled mass spectrometry are compared to direct seawater pH measurements to assess the sensitivity and robustness of the δ11B proxy in these candidate biosensors in predicting ambient pH in the field. These data will inform ongoing efforts by the Archive of Coral Ecosystem Specimens (ACES) to collect marine carbonates for analysis and archival in the Marine Environmental Specimen Bank for broad-scale, long-term monitoring of ocean acidification and the associated impacts to coral reefs. Concurrent analyses of other trace elements, heavy metals, and isotopes in these samples will also be performed to assess their utility as biosensors for additional water chemistry parameters on coral reefs.

  13. The vent microbiome: patterns and drivers

    NASA Astrophysics Data System (ADS)

    Pachiadaki, M.

    2015-12-01

    Microbial processes within deep-sea hydrothermal vents affect the global biogeochemical cycles. Still, there are significant gaps in our understanding of the microbiology and the biogeochemistry of deep-sea hydrothermal systems. Vents differ in temperature, host rock composition and fluid chemistry; factors that are hypothesized to shape the distribution of the microbial communities, their metabolic capabilities and their activities. Using large-scale single cell genomics, we obtained insights into the genomic content of several linkages of a diffuse flow vent. The genomes show high metabolic versatility. Sulfur oxidation appears to be predominant but there is the potential of using a variety of e- donors and acceptors to obtain energy. To further assess the ecological importance of the vent auto- and heterotrophs, the global biogeography of the analyzed lineages will be investigated by fragment recruitment of metagenomes produced from the same site as well as other hydrothermal systems. Metatranscriptomic and metaproteomic data will be integrated to examine the expression of the predominant metabolic pathways and thus the main energy sources driving chemoautotrophic production. The comparative analysis of the key players and associated pathways among various vent sites that differ in physicochemical characteristics is anticipated to decipher the patterns and drivers of the global dispersion and the local diversification of the vent microbiome.

  14. Constrained circulation at Endeavour ridge facilitates colonization by vent larvae.

    PubMed

    Thomson, Richard E; Mihály, Steven F; Rabinovich, Alexander B; McDuff, Russell E; Veirs, Scott R; Stahr, Frederick R

    2003-07-31

    Understanding how larvae from extant hydrothermal vent fields colonize neighbouring regions of the mid-ocean ridge system remains a major challenge in oceanic research. Among the factors considered important in the recruitment of deep-sea larvae are metabolic lifespan, the connectivity of the seafloor topography, and the characteristics of the currents. Here we use current velocity measurements from Endeavour ridge to examine the role of topographically constrained circulation on larval transport along-ridge. We show that the dominant tidal and wind-generated currents in the region are strongly attenuated within the rift valley that splits the ridge crest, and that hydrothermal plumes rising from vent fields in the valley drive a steady near-bottom inflow within the valley. Extrapolation of these findings suggests that the suppression of oscillatory currents within rift valleys of mid-ocean ridges shields larvae from cross-axis dispersal into the inhospitable deep ocean. This effect, augmented by plume-driven circulation within rift valleys having active hydrothermal venting, helps retain larvae near their source. Larvae are then exported preferentially down-ridge during regional flow events that intermittently over-ride the currents within the valley.

  15. Coil spring venting arrangement

    DOEpatents

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  16. Evaluation of Soil Venting Application

    EPA Pesticide Factsheets

    The ability of soil venting to inexpensively remove large amounts of volatile organic compounds (VOCs) from contaminated soils is well established. However, the time required using venting to remediate soils to low contaminant levels often required by..

  17. The Evaluation of Antibacterial, Antifungal and Antioxidant Activity of Methanolic Extract of Mindium Laevigatum (Vent.) Rech. F., From Central Part of Iran

    PubMed Central

    Modaressi, Masoud; Shahsavari, Roia; Ahmadi, Farhad; Rahimi-Nasrabadi, Mehdi; Abiri, Ramin; Mikaeli, Ali; Batoli, Hossein

    2013-01-01

    Background Mindium laevigatum (Vent.) Rech. F. plant grows in central part of Iran. And used by local people as medical plant. Objectives The purpose of this study was to investigate the in vitro antibacterial, antifungal and antioxidant activities of the methanolic extracts of aerial and flower parts of plant. Materials and Methods The leaves and stem and flower of bark from M. laevigatum were separately collected, air-dried and powdered. Then the plant species extracts were prepared with methanol, water 80:20 and two polar and non-polar subfractions were realized. The antioxidant activity was evaluated by scavenging the radicals 1, 1-diphenyl-2-picrylhydrazyl radical (DPPH), β-Carotene linoleic acid assay and reducing power methods. The antifungal and antibacterial evaluation was performed by disc diffusion and minimum inhibitory concentration methods. Results The total phenolic analysis of subfractions found 182 ± 4.2 µg.gr-1 for polar and 158 ± 3.9 µg.gr-1 for non-polar extracts. The antifungal activity of the extracts against the various fungal varied from 14.0 to 34 mm. MIC values from 50 to 400 µg.mL-1 were satisfactory when compared with other plant products. The antibacterial results revealed that the subfraction extracts are mostly effective against Staphylococcus aureus. The antioxidant results showed polar subfraction has more activity against non-polar subfraction. Conclusion These findings demonstrated that the extract of Mindium laevigatum has remarkable in vitro antifungal and antioxidant activity. PMID:24624184

  18. Scientists as stakeholders in conservation of hydrothermal vents.

    PubMed

    Godet, Laurent; Zelnio, Kevin A; VAN Dover, Cindy L

    2011-04-01

    Hydrothermal vents are deep-sea ecosystems that are almost exclusively known and explored by scientists rather than the general public. Continuing scientific discoveries arising from study of hydrothermal vents are concommitant with the increased number of scientific cruises visiting and sampling vent ecosystems. Through a bibliometric analysis, we assessed the scientific value of hydrothermal vents relative to two of the most well-studied marine ecosystems, coral reefs and seagrass beds. Scientific literature on hydrothermal vents is abundant, of high impact, international, and interdisciplinary and is comparable in these regards with literature on coral reefs and seagrass beds. Scientists may affect hydrothermal vents because their activities are intense and spatially and temporally concentrated in these small systems. The potential for undesirable effects from scientific enterprise motivated the creation of a code of conduct for environmentally and scientifically benign use of hydrothermal vents for research. We surveyed scientists worldwide engaged in deep-sea research and found that scientists were aware of the code of conduct and thought it was relevant to conservation, but they did not feel informed or confident about the respect other researchers have for the code. Although this code may serve as a reminder of scientists' environmental responsibilities, conservation of particular vents (e.g., closures to human activity, specific human management) may effectively ensure sustainable use of vent ecosystems for all stakeholders.

  19. Measure Guideline: Passive Vents

    SciTech Connect

    Berger, David; Neri, Robin

    2016-02-05

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated source of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.

  20. Spatial Compilation of Holocene Volcanic Vents in the Western Conterminous United States

    NASA Astrophysics Data System (ADS)

    Ramsey, D. W.; Siebert, L.

    2015-12-01

    A spatial compilation of all known Holocene volcanic vents in the western conterminous United States has been assembled. This compilation records volcanic vent location (latitude/longitude coordinates), vent type (cinder cone, dome, etc.), geologic map unit description, rock type, age, numeric age and reference (if dated), geographic feature name, mapping source, and, where available, spatial database source. Primary data sources include: USGS geologic maps, USGS Data Series, the Smithsonian Global Volcanism Program (GVP) catalog, and published journal articles. A total of 726 volcanic vents have been identified from 45 volcanoes or volcanic fields spanning ten states. These vents are found along the length of the Cascade arc in the Pacific Northwest, widely around the Basin and Range province, and at the southern margin of the Colorado Plateau into New Mexico. The U.S. Geological Survey (USGS) National Volcano Early Warning System (NVEWS) identifies 28 volcanoes and volcanic centers in the western conterminous U.S. that pose moderate, high, or very high threats to surrounding communities based on their recent eruptive histories and their proximity to vulnerable people, property, and infrastructure. This compilation enhances the understanding of volcano hazards that could threaten people and property by providing the context of where Holocene eruptions have occurred and where future eruptions may occur. Locations in this compilation can be spatially compared to located earthquakes, used as generation points for numerical hazard models or hazard zonation buffering, and analyzed for recent trends in regional volcanism and localized eruptive activity.

  1. Biodiversity and biogeography of hydrothermal vent species in the western Pacific: a biological perspective of TAIGA project

    NASA Astrophysics Data System (ADS)

    Seo, M.; Watanabe, H.; Nakamura, M.; Sasaki, T.; Ogura, T.; Yahagi, T.; Takahashi, Y.; Ishibashi, J.; Kojima, S.

    2012-12-01

    Deep-sea hydrothermal vents are scientifically interesting environments where strong interactions of geology, chemistry, and biology can be observed. The hydrothermal vents are geologically controlled in association with magmatic activities while diversity of chemicals (such as hydrogen sulfide) contained in hydrothermal fluid is controlled by geochemical interaction between heated seawater and surrounding rocks. In addition to those geological and chemical characters of hydrothermal vents, high biomasses of chemosynthetic community have been known around many vents since the first discovery in the 1970s. To understand the unique system and diversity of biological communities associated with vents is highly valuable in geological, chemical, and biological sciences. As an activity of the research project "TAIGA (Trans-crustal Advection & In-situ bio-geochemical processes of Global sub-seafloor Aquifer)" (Representative: Tetsuro Urabe, Department of Earth & Planetary Science, the University of Tokyo), we analyzed population structures and connectivity as well as larval ecology of various hydrothermal vent species in the Okinawa Trough and the Mariana Trough in an attempt to estimate faunal transitional history associated with hydrothermal activities. The specimens analyzed in the present study were collected by R/V Yokosuka with manned submersible Shinkai6500 and R/V Natsushima with ROV Hyper-Dolphin during YK10-11 and NT11-20 cruises, respectively. In the Mariana Trough (YK10-11), benthic and planktonic faunas were investigated by multiple sampling and use of plankton samplers in three hydrothermal vents (Snail, Archaean, and Urashima-Pika fields). Faunal compositions were then compared as well as size compositions and genetic diversities of major vent species among local populations. In the Okinawa Trough (NT11-20), multiple quantitative sampling was made with simultaneous environmental measurements at more than two sites in five hydrothermal vents (Minami

  2. Hydrothermal vent yields multitude of manganese

    NASA Astrophysics Data System (ADS)

    A rising plume of water from an active submarine hydrothermal spring discovered 500 km west of Newport, Ore., contains the highest concentrations of manganese yet reported, according to researchers at the U.S. Geological Survey in Menlo Park and at the University of Washington in Seattle. The vent, one of many submarine springs that have deposited large deposits of zinc- and silver-rich metals along the Juan de Fuca Ridge, may be a source of renewable minerals.‘The discovery of the active water discharge from the vent sites is particularly significant because it indicates that the polymetallic deposits are still being deposited and may represent a renewable mineral deposit,’ according to William R. Normark, a marine geologist with the USGS and chief scientist aboard the S. P. Lee, the USGS research ship that was used to collect water samples above the hydrothermal vent.

  3. Mercury accumulation in hydrothermal vent mollusks from the southern Tonga Arc, southwestern Pacific Ocean.

    PubMed

    Lee, Seyong; Kim, Se-Joo; Ju, Se-Jong; Pak, Sang-Joon; Son, Seung-Kyu; Yang, Jisook; Han, Seunghee

    2015-05-01

    We provide the mercury (Hg) and monomethylmercury (MMHg) levels of the plume water, sulfide ore, sediment, and mollusks located at the hydrothermal vent fields of the southern Tonga Arc, where active volcanism and intense seismic activity occur frequently. Our objectives were: (1) to address the potential release of Hg from hydrothermal fluids and (2) to examine the distribution of Hg and MMHg levels in hydrothermal mollusks (mussels and snails) harboring chemotrophic bacteria. While high concentrations of Hg in the sediment and Hg, As, and Sb in the sulfide ore indicates that their source is likely hydrothermal fluids, the MMHg concentration in the sediment was orders of magnitude lower than the Hg (<0.001%). It suggests that Hg methylation may have not been favorable in the vent field sediment. In addition, Hg concentrations in the mollusks were much higher (10-100 times) than in other hydrothermal vent environments, indicating that organisms located at the Tonga Arc are exposed to exceedingly high Hg levels. While Hg concentration was higher in the gills and digestive glands than in the mantles and residues of snails and mussels, the MMHg concentrations in the gills and digestive glands were orders of magnitude lower (0.004-0.04%) than Hg concentrations. In summary, our results suggest that the release of Hg from the hydrothermal vent fields of the Tonga Arc and subsequent bioaccumulation are substantial, but not for MMHg.

  4. The Sasquatch Hydrothermal Field: Linkages Between Seismic Activity, Hydrothermal Flow, and Geology

    NASA Astrophysics Data System (ADS)

    Glickson, D. A.; Kelley, D. S.; Delaney, J. R.

    2006-12-01

    The Sasquatch Hydrothermal Field is the most northern known vent field along the central Endeavour Segment of the Juan de Fuca Ridge, located 6 km north of the Main Endeavour Field (MEF) near 47° 59.8'N, 129° 4.0'W. It was discovered in 2000, after two large earthquake swarms in June 1999 and January 2000 caused increased venting temperatures in the MEF and significant changes in volatile composition along the entire axis [Johnson et al., 2000; Lilley et al., 2003; Proskurowski et al., 2004]. From 2004-2006, Sasquatch and the surrounding axial valley were comprehensively mapped with SM2000 multibeam sonar system and Imagenex scanning sonar at a resolution of 1-5 m. These data were combined with visual imagery from Alvin and ROV dives to define the eruptive, hydrothermal, and tectonic characteristics of the field and distal areas. Based on multibeam sonar results, bathymetric relief of the segment near Sasquatch is subdued. The broad axial valley is split by a central high that rises 30-40 m above the surrounding seafloor. Simple pattern analysis of the valley shows two fundamentally different regions, distinguished by low and high local variance. Areas of low variance correspond to a collapse/drainback landscape characterized by ropy sheet flow, basalt pillars, and bathtub rings capped by intact and drained lobate flows. Areas of high variance generally correspond to three types of ridge structures: 1) faulted basalt ridges composed of truncated pillow basalt, rare massive flows, and widespread pillow talus; 2) constructional basalt ridges composed of intact pillow flow fronts; and 3) extinct sulfide ridges covered by varying amounts of sulfide talus and oxidized hydrothermal sediment. Sasquatch is located in a depression among truncated pillow ridges, and is comprised of ~10, 1-6 m high, fragile sulfide chimneys that vent fluids up to 289°C. The active field extends only ~25 x 25 m, although a linear, N-S trending ridge of nearly continuous extinct sulfide

  5. 24 CFR 4100.3 - Field activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Field activities. 4100.3 Section...) NEIGHBORHOOD REINVESTMENT CORPORATION ORGANIZATION AND CHANNELING OF FUNCTIONS § 4100.3 Field activities. The Corporation conducts its field activities from district and field offices around the country. District...

  6. 24 CFR 4100.3 - Field activities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Field activities. 4100.3 Section...) NEIGHBORHOOD REINVESTMENT CORPORATION ORGANIZATION AND CHANNELING OF FUNCTIONS § 4100.3 Field activities. The Corporation conducts its field activities from district and field offices around the country. District...

  7. 24 CFR 4100.3 - Field activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Field activities. 4100.3 Section...) NEIGHBORHOOD REINVESTMENT CORPORATION ORGANIZATION AND CHANNELING OF FUNCTIONS § 4100.3 Field activities. The Corporation conducts its field activities from district and field offices around the country. District...

  8. 24 CFR 4100.3 - Field activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Field activities. 4100.3 Section...) NEIGHBORHOOD REINVESTMENT CORPORATION ORGANIZATION AND CHANNELING OF FUNCTIONS § 4100.3 Field activities. The Corporation conducts its field activities from district and field offices around the country. District...

  9. 24 CFR 4100.3 - Field activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Field activities. 4100.3 Section...) NEIGHBORHOOD REINVESTMENT CORPORATION ORGANIZATION AND CHANNELING OF FUNCTIONS § 4100.3 Field activities. The Corporation conducts its field activities from district and field offices around the country. District...

  10. Atacamite and paratacamite from the ultramafic-hosted Logatchev seafloor vent field (14°45′N, Mid-Atlantic Ridge)

    USGS Publications Warehouse

    Dekov, Vesselin; Boycheva, Tanya; Halenius, Ulf; Petersen, Sven; Billstrom, Kjell; Stummeyer, Jens; Kamenov, G.; Shanks, W.

    2011-01-01

    Atacamite and paratacamite are ubiquitous minerals associated with Cu-rich massive sulfides at the Logatchev hydrothermal field (Mid-Atlantic Ridge). In this work we provide new details on the mineralogy and geochemistry of these basic cupric chlorides. Our data support the notion that atacamite and paratacamite formation at submarine vent fields is an alteration process of hydrothermal Cu-sulfides. Secondary Cu-sulfides (bornite, covellite) are unstable at ambient seawater conditions and will dissolve. Dissolution is focused at the sulfide–seawater contact, leading to release of Fe2+ and Cu+ and formation of residual chalcocite through an intermediate Cu5S4 phase. Most of the released Fe2+ oxidizes immediately and precipitates as FeOOH directly on the chalcocite rims whereas Cu as chloride complexes (CuCl2−, CuCl32-) remains in solution at the same Eh. Cuprous–chloride complexes migrate from the reaction zone and upon increasing Eh precipitate as Cu2Cl(OH)3. As a consequence of this, the sulfide–seawater reaction interface is clearly marked by thin chalcocite–FeOOH bands and the entire assemblage is mantled by atacamite (or paratacamite). Our mineralogical, petrographic, geochemical and isotopic studies suggest that there are two types of atacamite (and/or paratacamite) depending on their mode of precipitation. Type 1 atacamite precipitated directly on the parent sulfides as evidenced by mantling of the sulfides, absence of detrital mineral grains, a preserved conspicuous positive Eu anomaly and a negligible negative Ce anomaly similar to those of the parent sulfide. In addition, Au concentrations are slightly lower than those of the parent sulfides, which suggest minimal transport of Au-ions after their release from the sulfides. Furthermore, the low content of the rare earth elements implies short contact time with the ambient seawater. The Sr–Nd–Pb-isotopic signatures of type 1 atacamite confirm the genetic association with the parent sulfides and

  11. Fluid dynamics in explosive volcanic vents and craters

    NASA Astrophysics Data System (ADS)

    Ogden, Darcy

    2011-12-01

    Explosive volcanic jets can transition to buoyant plumes or collapse to form pyroclastic density currents depending on their ability to entrain and heat the ambient air. Recent one-dimensional (1D) analysis shows that fluid acceleration through volcanic vents and craters changes the velocity and pressures within these jets sufficiently enough to be a first order control on plume dimensions and therefore air entrainment and column stability (Koyaguchi et al., 2010). These 1D studies are only applicable to craters and vents with angles of less than about 30° to vertical. Using analytical formulations and numerical simulations, this study describes 2D effects of shallowly dipping vents and craters on volcanic eruptions. The effect of vents on acceleration and expansion of eruptive mixtures of ash and gas is described as a force imparted on the fluid by the vent wall, the wall force ( Fw). This force is a measure of the momentum coupling between an eruption and the solid earth that takes place in the vent. Rapid divergence of supersonic eruptive fluid within shallowly dipping vents occurs via Prandtl-Meyer expansion, which results in different pressure and velocity fields than those predicted by 1D analysis. This expansion decreases Fw and the vertical acceleration experienced by the eruptive fluid in the vent. For jets predicted by 1D analysis to exit the vent at supersonic velocities and at atmospheric pressure, this decrease in Fw will cause an increase in the predicted plume area, decreasing column stability. The complex 2D shape of volcanic vents can change jet structure (presence and location of shock waves) and preclude the development of jets that exit the vent supersonically with no internal standing shock waves (i.e., perfectly expanded or pressure balanced jets). These significant complications in jet structure and increase in plume radius may result in changes to air entrainment, plume stability, and tephra distribution.

  12. Sulfur isotope systematics of microbial mats in shallow-sea hydrothermal vents, Milos Island, Greece

    NASA Astrophysics Data System (ADS)

    Gilhooly, W. P.; Fike, D. A.; Amend, J. P.; Price, R. E.; Druschel, G.

    2011-12-01

    Milos is an island arc volcano venting submarine magmatic fluids directly into overlying seawater. Our study sites are located in an extensive shallow-water hydrothermal vent field less than 200 m offshore of Paleochori Bay in 5 m water depth. The vent fluids are highly sulfidic (> 3mM), at high-temperature (50-115C), and acidic (pH 5). The seafloor vent features include large patches (> 1 m2) of white microbial mats, patches of yellow elemental sulfur, and sediments stained orange by arsenic sulfides. The microbial communities that populate the shallow-sea hydrothermal vents stand in stark contrast to other nearshore environments typically found at wave base and within the photic zone. We explore sulfur isotope patterns along sharp environmental gradients established between ambient seawater and the efflux of vent fluids in the effort to better understand resource exploitation by microbial mat communities living in extreme conditions. Pore water samples, push-cores, biofilms, and water column samples were collected by SCUBA along sampling transects radiating out from the center of white mats into background sediments. We analyzed these samples for δ34S of dissolved sulfate, sulfide, elemental sulfur, and mineral sulfides (iron monosulfides and pyrite). Free gas sulfides collected directly from vents had δ34S values ranging +2.1 to +2.8%. Pore water sulfide, collected from below white mats with δ34S values ranging +1.9 to +2.9%, was isotopically similar to free gas samples. High pore water sulfate concentrations (8-25 mM) coupled with 34S-enriched pore water sulfides are not geochemical signatures indicative of dissimilatory sulfate reduction (where δ34Ssulfide <<0%). The δ34S of pore water sulfates collected across one dive site show a mixing trend, ranging from +18% in the center, +20% mid-transect, and +21% in sediments outside of the mat. This trend may be caused by oxidation of vent sulfides by entrained seawater (δ34S = +21.2%). We continue to target

  13. DETAIL OF WEST END SLIDING DOOR AND EAVE VENTS ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF WEST END SLIDING DOOR AND EAVE VENTS ON THE SOUTH SIDE - Hickam Field, Practice Bomb Loading Shed, Bomb Storage Road near the intersection of Moffet and Kamakahi Streets, Honolulu, Honolulu County, HI

  14. Building No. 902, detail of Mechanical Room door, including vent ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building No. 902, detail of Mechanical Room door, including vent and conduit - Presidio of San Francisco, Enlisted Men's Barracks Type, West end of Crissy Field, between Pearce & Maudlin Streets, San Francisco, San Francisco County, CA

  15. Airbag vent valve and system

    NASA Technical Reports Server (NTRS)

    Peterson, Leslie D. (Inventor); Zimmermann, Richard E. (Inventor)

    2001-01-01

    An energy absorbing airbag system includes one or more vent valve assemblies for controlling the release of airbag inflation gases to maintain inflation gas pressure within an airbag at a substantially constant pressure during a ride-down of an energy absorbing event. Each vent valve assembly includes a cantilever spring that is flat in an unstressed condition and that has a free end portion. The cantilever spring is secured to an exterior surface of the airbag housing and flexed to cause the second free end portion of the cantilever spring to be pressed, with a preset force, against a vent port or a closure covering the vent port to seal the vent port until inflation gas pressure within the airbag reaches a preselected value determined by the preset force whereupon the free end portion of the cantilever spring is lifted from the vent port by the inflation gases within the airbag to vent the inflation gases from within the airbag. The resilience of the cantilever spring maintains a substantially constant pressure within the airbag during a ride-down portion of an energy absorbing event by causing the cantilever spring to vent gases through the vent port whenever the pressure of the inflation gases reaches the preselected value and by causing the cantilever spring to close the vent port whenever the pressure of the inflation gases falls below the preselected value.

  16. Antarctic marine biodiversity and deep-sea hydrothermal vents.

    PubMed

    Chown, Steven L

    2012-01-01

    The diversity of many marine benthic groups is unlike that of most other taxa. Rather than declining from the tropics to the poles, much of the benthos shows high diversity in the Southern Ocean. Moreover, many species are unique to the Antarctic region. Recent work has shown that this is also true of the communities of Antarctic deep-sea hydrothermal vents. Vent ecosystems have been documented from many sites across the globe, associated with the thermally and chemically variable habitats found around these, typically high temperature, streams that are rich in reduced compounds and polymetallic sulphides. The animal communities of the East Scotia Ridge vent ecosystems are very different to those elsewhere, though the microbiota, which form the basis of vent food webs, show less differentiation. Much of the biological significance of deep-sea hydrothermal vents lies in their biodiversity, the diverse biochemistry of their bacteria, the remarkable symbioses among many of the marine animals and these bacteria, and the prospects that investigations of these systems hold for understanding the conditions that may have led to the first appearance of life. The discovery of diverse and unusual Antarctic hydrothermal vent ecosystems provides opportunities for new understanding in these fields. Moreover, the Antarctic vents south of 60°S benefit from automatic conservation under the Convention on the Conservation of Antarctic Marine Living Resources and the Antarctic Treaty. Other deep-sea hydrothermal vents located in international waters are not protected and may be threatened by growing interests in deep-sea mining.

  17. Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge.

    PubMed

    Forget, Nathalie L; Kim Juniper, S

    2013-04-01

    We systematically studied free-living bacterial diversity within aggregations of the vestimentiferan tubeworm Ridgeia piscesae sampled from two contrasting flow regimes (High Flow and Low Flow) in the Endeavour Hydrothermal Vents Marine Protected Area (MPA) on the Juan de Fuca Ridge (Northeast Pacific). Eight samples of particulate detritus were recovered from paired tubeworm grabs from four vent sites. Most sequences (454 tag and Sanger methods) were affiliated to the Epsilonproteobacteria, and the sulfur-oxidizing genus Sulfurovum was dominant in all samples. Gammaproteobacteria were also detected, mainly in Low Flow sequence libraries, and were affiliated with known methanotrophs and decomposers. The cooccurrence of sulfur reducers from the Deltaproteobacteria and the Epsilonproteobacteria suggests internal sulfur cycling within these habitats. Other phyla detected included Bacteroidetes, Actinobacteria, Chloroflexi, Firmicutes, Planctomycetes, Verrucomicrobia, and Deinococcus-Thermus. Statistically significant relationships between sequence library composition and habitat type suggest a predictable pattern for High Flow and Low Flow environments. Most sequences significantly more represented in High Flow libraries were related to sulfur and hydrogen oxidizers, while mainly heterotrophic groups were more represented in Low Flow libraries. Differences in temperature, available energy for metabolism, and stability between High Flow and Low Flow habitats potentially explain their distinct bacterial communities.

  18. Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge

    PubMed Central

    Forget, Nathalie L; Kim Juniper, S

    2013-01-01

    We systematically studied free-living bacterial diversity within aggregations of the vestimentiferan tubeworm Ridgeia piscesae sampled from two contrasting flow regimes (High Flow and Low Flow) in the Endeavour Hydrothermal Vents Marine Protected Area (MPA) on the Juan de Fuca Ridge (Northeast Pacific). Eight samples of particulate detritus were recovered from paired tubeworm grabs from four vent sites. Most sequences (454 tag and Sanger methods) were affiliated to the Epsilonproteobacteria, and the sulfur-oxidizing genus Sulfurovum was dominant in all samples. Gammaproteobacteria were also detected, mainly in Low Flow sequence libraries, and were affiliated with known methanotrophs and decomposers. The cooccurrence of sulfur reducers from the Deltaproteobacteria and the Epsilonproteobacteria suggests internal sulfur cycling within these habitats. Other phyla detected included Bacteroidetes, Actinobacteria, Chloroflexi, Firmicutes, Planctomycetes, Verrucomicrobia, and Deinococcus–Thermus. Statistically significant relationships between sequence library composition and habitat type suggest a predictable pattern for High Flow and Low Flow environments. Most sequences significantly more represented in High Flow libraries were related to sulfur and hydrogen oxidizers, while mainly heterotrophic groups were more represented in Low Flow libraries. Differences in temperature, available energy for metabolism, and stability between High Flow and Low Flow habitats potentially explain their distinct bacterial communities. PMID:23401293

  19. Safe venting of hydrogen

    SciTech Connect

    Stewart, W.F.; Dewart, J.M.; Edeskuty, F.J.

    1990-01-01

    The disposal of hydrogen is often required in the operation of an experimental facility that contains hydrogen. Whether the vented hydrogen can be discharged to the atmosphere safely depends upon a number of factors such as the flow rate and atmospheric conditions. Calculations have been made that predict the distance a combustible mixture can extend from the point of release under some specified atmospheric conditions. Also the quantity of hydrogen in the combustible cloud is estimated. These results can be helpful in deciding of the hydrogen can be released directly to the atmosphere, or if it must be intentionally ignited. 15 refs., 5 figs., 2 tabs.

  20. Enhanced Emergency Smoke Venting

    DTIC Science & Technology

    1988-07-01

    Boeing Airworthiness Offices in both Renton and Everett. The search disclosed at least 26 letters between Boeing and the FAA on the subject of smoke...the ventilation airflow rates and utilizing the effect of the additional outflow valve. .-. 12 FAA Report No. DOT/ FAA /CT-86/41-I, " Aircraft ...lTr !r DOT/ FAA !CT-88/22 Enhanced Emergency FAA Technical Center Sm oke Atlantic City International Airport Venting N.J. 08405 T.DTIC, Q\\SEP 0 21988

  1. Tornado protection by venting

    SciTech Connect

    Cavanagh, C.A.

    1987-01-01

    The purpose of this paper is to demonstrate the ability to protect a modern nuclear power plant from the effects of a tornado by the use of a system of venting in all safety-related structures outside of the containment. The paper demonstrates this by presenting a method of analysis and of equipment selection that fully complies with the intent and the letter of applicable federal regulatory guides. A report of an actual tornado in the City of Kalamazoo, Michigan, suggests that the concept of sealing a plant during a tornado may not always be applicable.

  2. Anti-arthritic activity of root bark of Oroxylum indicum (L.) vent against adjuvant-induced arthritis

    PubMed Central

    Karnati, Mamatha; Chandra, Rodda H; Veeresham, Ciddi; Kishan, Bookya

    2013-01-01

    Background: Oroxylum indicum (Bignoniaceae) also known as Sonapatha is an indigenous medicinal plant widely used in Ayurvedic medicine for over thousands of years. It is an active ingredient of well-known Ayurvedic formulations such as Chyawanprash and Dasamula. Root bark of this plant has tonic and astringent properties and it is also used in rheumatism. Objective: The present investigation was carried out to evaluate the anti-arthritic activity of different extracts of root bark of Oroxylum indicum against adjuvant - induced arthritis in rats. Materials and Methods: Male Wistar rats were used in this study. Arthritis was induced by injecting 0.1 ml Freund's complete adjuvant intra-dermally into the left hind paw of the rats. The paw volume, hematological, biochemical, radiographic and histopathological aspects were evaluated. Results: The relative percentage inhibition potential of paw volume in rats treated with various extracts of Oroxylum indicum was found to be ethyl acetate extract (67.69%) >chloroform extract (64.61%) >n-butanol extract (58.46%) respectively. The hematological parameters like RBC count, hemoglobin content showed significant increase while there was a significant decrease in total WBC count and ESR in all the groups of animals pretreated with root bark extracts. The biochemical parameters such as catalase, glutathione contents showed a significant increase while the lipid peroxide and Cathepsin-D content decreased significantly only in case of ethyl acetate pretreated rats when compared to others. Conclusion: The present study suggests that the chloroform, ethyl acetate and n-butanol extracts of root bark of Oroxylum indicum exhibit anti-arthritic activity. The order of activity of extracts was found to be ethyl acetate >chloroform >n-butanol respectively. PMID:23798888

  3. 24 CFR 3280.611 - Vents and venting.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Case Iron Soil Pipe and Fittings, or, Silicone Rubber, Low and High Temperature and Tear Resistant... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Vents and venting. 3280.611 Section 3280.611 Housing and Urban Development Regulations Relating to Housing and Urban Development...

  4. 24 CFR 3280.611 - Vents and venting.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... this section and as otherwise required by this standard. (b) Materials—(1) Pipe. Vent piping shall be... listed materials. (2) Fittings. Appropriate fittings shall be used for all changes in direction or size and where pipes are joined. The material and design of vent fittings shall conform to the type...

  5. Biogeography of hydrothermal vent communities along seafloor spreading centers.

    PubMed

    Van Dover, C L

    1990-08-01

    Compared to terrestrial and shallow-water habitats, deep-sea hydrothermal vents are unique environments characterized by their local insularity, global distribution, individual ephemerality, collective geological longevity, geochemical homogeneity, and their physical and energetic isolation from the catastrophic events implicated in the extinction and speciation of terrestrial and shallow-water forms. Development of vent communities has thus occurred in novel biogeographical contexts that challenge our ability to understand evolutionary processes in the deep sea. Recent field work by French, Canadian, German, Japanese and American scientists has revealed intriguing patterns in the taxonomic composition and distribution of vent organisms at geographically disjunct study sites.

  6. 46 CFR 151.15-5 - Venting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... vents must penetrate into tanks at the top of the vapor space, the following methods of venting and the... the vent shall terminate in a gooseneck bend and shall be located at a reasonable height above...

  7. Water vent design for Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Miernik, Janie H.; Worden, Edson A.; Bedard, John E.; Lieu, Bing H.

    1992-07-01

    Space Stadon Freedom (SSF) will be required to vent water during non-quiescent periods. During Man Tended Configuration (MTC), before the Environmental Control and Life Support System (ECLSS) water loop is closed, humidity condensate will be periodically vented. At Permanently Manned Configuration (PMC), water will be vented on contingency if there is excess water on SSF. The thrust due to venting must be minimized to be considered non-propulsive. Also, ice formation and clogging of the vent nozzle must be avoided. Many aspects of the Space Shuttle water vent design were utilized in development of the preliminary SSF water vent design presented in this paper. Design modifications which improved the shuttle vent as well as those necessary for SSF are discussed. The exterior vent location, direction and environment on SSF are unique compared to previous space water vent designs. From data collected in the vent tests and analyses, a finalized SSF water vent design will be developed.

  8. EVALUATION OF SOIL VENTING APPLICATION

    EPA Science Inventory

    The ability of soil venting to inexpensively remove large amounts of volatile organic compounds (VOCs) from contaminated soils is well established. However, the time required using venting to remediate soils to low contaminant levels often required by state and federal regulators...

  9. Retrieving eruptive vent conditions from dynamical properties of unsteady volcanic plume using high-speed imagery and numerical simulations

    NASA Astrophysics Data System (ADS)

    Tournigand, Pierre-Yves; Taddeucci, Jacopo; José Peña Fernandez, Juan; Gaudin, Damien; Sesterhenn, Jörn; Scarlato, Piergiorgio; Del Bello, Elisabetta

    2016-04-01

    Vent conditions are key parameters controlling volcanic plume dynamics and the ensuing different hazards, such as human health issues, infrastructure damages, and air traffic disruption. Indeed, for a given magma and vent geometry, plume development and stability over time mainly depend on the mass eruption rate, function of the velocity and density of the eruptive mixture at the vent, where direct measurements are impossible. High-speed imaging of eruptive plumes and numerical jet simulations were here non-dimensionally coupled to retrieve eruptive vent conditions starting from measurable plume parameters. High-speed videos of unsteady, momentum-driven volcanic plumes (jets) from Strombolian to Vulcanian activity from three different volcanoes (Sakurajima, Japan, Stromboli, Italy, and Fuego, Guatemala) were recorded in the visible and the thermal spectral ranges by using an Optronis CR600x2 (1280x1024 pixels definition, 500 Hz frame rate) and a FLIR SC655 (640x480 pixels definition, 50 Hz frame rate) cameras. Atmospheric effects correction and pre-processing of the thermal videos were performed to increase measurement accuracy. Pre-processing consists of the extraction of the plume temperature gradient over time, combined with a temperature threshold in order to remove the image background. The velocity and the apparent surface temperature fields of the plumes, and their changes over timescales of tenths of seconds, were then measured by particle image velocimetry and thermal image analysis, respectively, of the pre-processed videos. The parameters thus obtained are representative of the outer plume surface, corresponding to its boundary shear layer at the interface with the atmosphere, and may significantly differ from conditions in the plume interior. To retrieve information on the interior of the plume, and possibly extrapolate it even at the eruptive vent level, video-derived plume parameters were non-dimensionally compared to the results of numerical

  10. Visual Observations and Geologic Settings of the Newly-Discovered Black Smoker Vent Sites Across the Galapagos Ridge-Hotspot Intersection

    NASA Astrophysics Data System (ADS)

    Anderson, P.; Haymon, R.; MacDonald, K.; White, S.

    2006-12-01

    Nearly one-fifth of the global mid-ocean ridge is hotspot-affected, yet very little is known about how hotspots affect quantity and distribution of high-temperature hydrothermal vents along the ridge. During the 2005-06 GalAPAGoS expedition, acoustic and plume sensor surveys were conducted across the Galapagos ridge- hotspot intersection, lon. 94.5ºW- lon. 89.5ºW, to map fine scale geologic features and locate hydrothermal plumes emanating from the ridge crest. Where significant plumes were detected, the Medea fiber-optic camera sled was used successfully to find and image high-temperature vents on the seafloor. With Medea we discovered and imaged the first active and recently extinct black smokers known along the entire Galapagos Spreading Center (GSC), and documented the geologic setting of these vents. The Medea survey imaged numerous inactive vents as well as 3 active high-temperature vent fields along the ridge at 94º 04.5'W (Navidad Site), 91º56.2'W (Iguanas Site) and 91º54.3'W (Pinguinos Site). Two recently extinct vent fields also were identified at 91º23.4'-23.7'W and 91º13.8'W. All of the high-temperature vent sites that we identified along the GSC are found above relatively shallow AMC reflectors and are located in the middle 20% of ridge segments. Without exception the vent sites are located along fissures atop constructional axial volcanic ridges (AVR's) composed of relatively young pillow basalts. In some cases, the vents were associated with collapses adjacent to the fissures. The fissures appear to be eruptive sources of the pillow lavas comprising the AVR's. Video images of the chimneys show mature, cylindrical structures, up to 14m high; little diffuse flow; few animals; and some worm casts and dead clam shells, suggesting prior habitation. We conclude that distribution of the vents is controlled by magmatic processes, (i.e., by locations of shallow AMC magma reservoirs and eruptive fissures above dike intrusions), and that there is

  11. Field Agent Activities: Level 1.

    ERIC Educational Resources Information Center

    Gussett, James

    One of a series of monographs providing information about the Delaware Model: A Systems Approach to Science Education (Del Mod System), this monograph describes the role of field agents. These agents are responsible for individual teachers who express a desire for involvement in improving teacher effectiveness and to be involved in the teaching of…

  12. Microbial diversity in deep-sea sediments from the Menez Gwen hydrothermal vent system of the Mid-Atlantic Ridge.

    PubMed

    Cerqueira, Teresa; Pinho, Diogo; Egas, Conceição; Froufe, Hugo; Altermark, Bjørn; Candeias, Carla; Santos, Ricardo S; Bettencourt, Raul

    2015-12-01

    Deep-sea hydrothermal sediments are known to support remarkably diverse microbial consortia. Cultureindependent sequence-based technologies have extensively been used to disclose the associated microbial diversity as most of the microorganisms inhabiting these ecosystems remain uncultured. Here we provide the first description of the microbial community diversity found on sediments from Menez Gwen vent system. We compared hydrothermally influenced sediments, retrieved from an active vent chimney at 812 m depth, with non-hydrothermally influenced sediments, from a 1400 m depth bathyal plain. Considering the enriched methane and sulfur composition of Menez Gwen vent fluids, and the sediment physicochemical properties in each sampled area, we hypothesized that the site-associated microbes would be different. To address this question, taxonomic profiles of bacterial, archaeal and micro-eukaryotic representatives were studied by rRNA gene tag pyrosequencing. Communities were shown to be significantly different and segregated by sediment geographical area. Specific mesophilic, thermophilic and hyperthermophilic archaeal (e.g., Archaeoglobus, ANME-1) and bacterial (e.g., Caldithrix, Thermodesulfobacteria) taxa were highly abundant near the vent chimney. In contrast, bathyal-associated members affiliated to more ubiquitous phylogroups from deep-ocean sediments (e.g., Thaumarchaeota MGI, Gamma- and Alphaproteobacteria). This study provides a broader picture of the biological diversity and microbial biogeography, and represents a preliminary approach to the microbial ecology associated with the deep-sea sediments from the Menez Gwen hydrothermal vent field.

  13. Mafic monogenetic vents at the Descabezado Grande volcanic field (35.5°S-70.8°W): the northernmost evidence of regional primitive volcanism in the Southern Volcanic Zone of Chile

    NASA Astrophysics Data System (ADS)

    Salas, Pablo A.; Rabbia, Osvaldo M.; Hernández, Laura B.; Ruprecht, Philipp

    2016-06-01

    In the Andean Southern Volcanic Zone (SVZ), the broad distribution of mafic compositions along the recent volcanic arc occurs mainly south of 37°S, above a comparatively thin continental crust (≤~35 km) and mostly associated with the dextral strike-slip regime of the Liquiñe-Ofqui Fault Zone (LOFZ). North of 36°S, mafic compositions are scarce. This would be in part related to the effect resulting from protracted periods of trapping of less evolved ascending magmas beneath a thick Meso-Cenozoic volcano-sedimentary cover that lead to more evolved compositions in volcanic rocks erupted at the surface. Here, we present whole-rock and olivine mineral chemistry data for mafic rocks from four monogenetic vents developed above a SVZ segment of thick crust (~45 km) in the Descabezado Grande volcanic field (~35.5°S). Whole-rock chemistry (MgO > 8 wt%) and compositional variations in olivine (92 ≥ Fo ≥ 88 and Ni up to ~3650 ppm) indicate that some of the basaltic products erupted through these vents (e.g., Los Hornitos monogenetic cones) represent primitive arc magmas reaching high crustal levels. The combined use of satellite images, regional data analysis and field observations allow to recognize at least 38 mafic monogenetic volcanoes dispersed over an area of about 5000 km2 between 35.5° and 36.5°S. A link between ancient structures inherited from pre-Andean tectonics and the emplacement and distribution of this mafic volcanism is suggested as a first-order structural control that may explain the widespread occurrence of mafic volcanism in this Andean arc segment with thick crust.

  14. The Origin of Life in Alkaline Hydrothermal Vents.

    PubMed

    Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick

    2016-02-01

    Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea.

  15. Galapagos rift at 86 /sup 0/W: 4. Structure and morphology of hydrothermal fields and their relationship to the volcanic and tectonic processes of the rift valley

    SciTech Connect

    Crane, K.; Ballard, R.D.

    1980-03-10

    The Angus camera system is used to investigate the detailed structure and morphology of the active hydrothermal vent fields of the Galapagos Rift. Precision navigational data are combined with microtopographic information and detailed geological and biological observations obtained from an analysis of the color bottom pictures to create a series of three-dimensional models for each vent field.

  16. Macrofauna of shallow hydrothermal vents on the Arctic Mid-Ocean Ridge at 71N

    NASA Astrophysics Data System (ADS)

    Schander, C.; Rapp, H. T.; Pedersen, R. B.

    2007-12-01

    Deep-sea hydrothermal vents are usually associated with a highly specialized fauna and since their discovery in 1977, more than 400 species of animals have been described. Specialized vent fauna includes various animal phyla, but the most conspicuous and well known are annelids, mollusks and crustaceans. We have investigated the fauna collected around newly discovered hydrothermal vents on the Mohns Ridge north of Jan Mayen. The venting fields are located at 71°N and the venting takes place within two main areas separated by 5 km. The shallowest vent area is at 500-550 m water depth and is located at the base of a normal fault. This vent field stretches approximately 1 km along the strike of the fault, and it is composed of 10-20 major vent sites each with multiple chimney constructions discharging up to 260°C hot fluids. A large area of diffuse, low- temperature venting occurs in the area surrounding the high-temperature field. Here, partly microbial mediated iron-oxide-hydroxide deposits are abundant. The hydrothermal vent sites do not show any high abundance of specialized hydrothermal vent fauna. Single groups (i.e. Porifera and Mollusca) have a few representatives but groups otherwise common in hydrothermal vent areas (e.g. vestimentifera, Alvinellid worms, mussels, clams, galathaeid and brachyuran crabs) are absent. Up until now slightly more than 200 species have been identified from the vent area. The macrofauna found in the vent area is, with few exceptions, an assortment of bathyal species known in the area. One endemic, yet undescribed, species of mollusc has been found so far, an gastropod related to Alvania incognita Warén, 1996 and A. angularis Warén, 1996 (Rissoidae), two species originally described from pieces of sunken wood north and south of Iceland. It is by far the most numerous mollusc species at the vents and was found on smokers, in the bacterial mats, and on the ferric deposits. A single specimen of an undescribed tanaidacean has also

  17. Cryptic species of Archinome (Annelida: Amphinomida) from vents and seeps.

    PubMed

    Borda, Elizabeth; Kudenov, Jerry D; Chevaldonné, Pierre; Blake, James A; Desbruyères, Daniel; Fabri, Marie-Claire; Hourdez, Stéphane; Pleijel, Fredrik; Shank, Timothy M; Wilson, Nerida G; Schulze, Anja; Rouse, Greg W

    2013-11-07

    Since its description from the Galapagos Rift in the mid-1980s, Archinome rosacea has been recorded at hydrothermal vents in the Pacific, Atlantic and Indian Oceans. Only recently was a second species described from the Pacific Antarctic Ridge. We inferred the identities and evolutionary relationships of Archinome representatives sampled from across the hydrothermal vent range of the genus, which is now extended to cold methane seeps. Species delimitation using mitochondrial cytochrome c oxidase subunit I (COI) recovered up to six lineages, whereas concatenated datasets (COI, 16S, 28S and ITS1) supported only four or five of these as clades. Morphological approaches alone were inconclusive to verify the identities of species owing to the lack of discrete diagnostic characters. We recognize five Archinome species, with three that are new to science. The new species, designated based on molecular evidence alone, include: Archinome levinae n. sp., which occurs at both vents and seeps in the east Pacific, Archinome tethyana n. sp., which inhabits Atlantic vents and Archinome jasoni n. sp., also present in the Atlantic, and whose distribution extends to the Indian and southwest Pacific Oceans. Biogeographic connections between vents and seeps are highlighted, as are potential evolutionary links among populations from vent fields located in the east Pacific and Atlantic Oceans, and Atlantic and Indian Oceans; the latter presented for the first time.

  18. Antarctic Marine Biodiversity and Deep-Sea Hydrothermal Vents

    PubMed Central

    Chown, Steven L.

    2012-01-01

    The diversity of many marine benthic groups is unlike that of most other taxa. Rather than declining from the tropics to the poles, much of the benthos shows high diversity in the Southern Ocean. Moreover, many species are unique to the Antarctic region. Recent work has shown that this is also true of the communities of Antarctic deep-sea hydrothermal vents. Vent ecosystems have been documented from many sites across the globe, associated with the thermally and chemically variable habitats found around these, typically high temperature, streams that are rich in reduced compounds and polymetallic sulphides. The animal communities of the East Scotia Ridge vent ecosystems are very different to those elsewhere, though the microbiota, which form the basis of vent food webs, show less differentiation. Much of the biological significance of deep-sea hydrothermal vents lies in their biodiversity, the diverse biochemistry of their bacteria, the remarkable symbioses among many of the marine animals and these bacteria, and the prospects that investigations of these systems hold for understanding the conditions that may have led to the first appearance of life. The discovery of diverse and unusual Antarctic hydrothermal vent ecosystems provides opportunities for new understanding in these fields. Moreover, the Antarctic vents south of 60°S benefit from automatic conservation under the Convention on the Conservation of Antarctic Marine Living Resources and the Antarctic Treaty. Other deep-sea hydrothermal vents located in international waters are not protected and may be threatened by growing interests in deep-sea mining. PMID:22235192

  19. Fluid and gas fluxes from the Logatchev hydrothermal vent area

    NASA Astrophysics Data System (ADS)

    Schmale, Oliver; Walter, Maren; Schneider von Deimling, Jens; Sültenfuß, Jürgen; Walker, Sharon; Rehder, Gregor; Keir, Robin

    2012-07-01

    The Logatchev hydrothermal field at 14°45'N on the MAR is characterized by gas plumes that are enriched in methane and helium compared to the oceanic background. We investigated CH4 concentration and δ13C together with δ3He in the water column of that region. These data and turbidity measurements indicate that apart from the known vent fields, another vent site exists northeast of the vent field Logatchev 1. The distribution of methane and 3He concentrations along two sections were used in combination with current measurements from lowered acoustic Doppler current profilers (LADCP) to calculate the horizontal plume fluxes of these gases. According to these examinations 0.02 μmol s-1 of 3He and 0.21 mol s-1 of methane are transported in a plume that flows into a southward direction in the central part of the valley. Based on 3He measurements of vent fluid (22 ± 6 pM), we estimate a total vent flux in this region of about 900 L s-1 and a total flux of CH4 of 3.2 mol s-1.

  20. Discovery of New Hydrothermal Venting Sites in the Lau Basin, Tonga Back Arc

    NASA Astrophysics Data System (ADS)

    Crowhurst, P. V.; Arculus, R. J.; Massoth, G. J.; Baptista, L.; Stevenson, I.; Angus, R.; Baker, E. T.; Walker, S. L.; Nakamura, K.

    2009-12-01

    Between 22 April and 25 June 2009, a systematic search for hydrothermal venting along 1340 km of back-arc features was conducted throughout the Lau Basin aboard the CSIRO owned RV Southern Surveyor. The selection of survey areas was based on bathymetry, sidescan and water column anomaly datasets collected during previous marine science research and commercial exploration voyages. During 54 operational days, 76 CTD tows were completed using real-time plume mapping protocols, augmented with mini autonomous plume recorders, to discern anomalies in light scattering, and oxidation-reduction potential with water samples collected within the peak anomalies. Coincident with CTD towing at an average speed of 1.1 knots high resolution EM300 bathymetry and backscatter data was collected which significantly enhanced geological interpretation of possible source sites for follow up cross tows. 32 venting sites were detected, 24 of which are believed to be new discoveries. 13 dredge operations were conducted on 7 of these sites. Sulfides were recovered from 2 sites, one being a new discovery on the NE Lau spreading centre, ~14 km north of the commercial discovery by Teck and ~7km north of the eruption site discovery during a RV Thompson NOAA survey, both during 2008. The new venting field discoveries at North Mata, northern extent of the CLSC and far southern Valu Fa ridge are beyond any previously known areas of hydrothermal activity and further enhances the reputation of the Lau Basin as one of the most productive back arc regions for hydrothermally active spreading centers. A significant number of filter residue samples collected from the vent sites yielded greater than background values for metals including Cu and Zn, which is interpreted to imply they were sourced from active seafloor massive sulfide systems rather than volcanic activity.

  1. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2015-07-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. We summarize the published evidence from observation and modeling of the influence of meridional flow variations and decaying active region flux's spatial distribution, such as the Joy's law tilt angle. Using NSO Kitt Peak synoptic magnetograms covering cycles 21-24, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed trailing-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with trailing-polarity flux located poleward of leading-polarity flux. The activity complexes of the cycle 21 and 22 maxima were larger and longer-lived than those of the cycle 23 and 24 maxima, and the poleward surges were stronger and more unipolar and the polar field changes larger and faster. The cycle 21 and 22 polar reversals were dominated by only a few long-lived complexes whereas the cycle 23 and 24 reversals were the cumulative effects of more numerous, shorter-lived regions. We conclude that sizes and lifetimes of activity complexes are key to

  2. Electricity generation from hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Aryadi, Y.; Rizal, I. S.; Fadhli, M. N.

    2016-09-01

    Hydrothermal vent is a kind of manifestation of geothermal energy on seabed. It produces high temperature fluid through a hole which has a diameter in various range between several inches to tens of meters. Hydrothermal vent is mostly found over ocean ridges. There are some 67000 km of ocean ridges, 13000 of them have been already studied discovering more than 280 sites with geothermal vents. Some of them have a thermal power of up to 60 MWt. These big potential resources of energy, which are located over subsea, have a constraint related to environmental impact to the biotas live around when it becomes an object of exploitation. Organic Rankine Cycle (ORC) is a method of exploiting heat energy to become electricity using organic fluid. This paper presents a model of exploitation technology of hydrothermal vent using ORC method. With conservative calculation, it can give result of 15 MWe by exploiting a middle range diameter of hydrothermal vent in deep of 2000 meters below sea level. The technology provided here really has small impact to the environment. With an output energy as huge as mentioned before, the price of constructing this technology is low considering the empty of cost for drilling as what it should be in conventional exploitation. This paper also presents the comparison in several equipment which is more suitable to be installed over subsea.

  3. Geologic evolution of the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Denny, Alden R.; Kelley, Deborah S.; Früh-Green, Gretchen L.

    2016-02-01

    The Lost City Hydrothermal Field (LCHF) is a novel serpentinite-hosted vent field located on the Atlantis Massif southern wall. Results of 2 m resolution bathymetry, side scan, and video and still imagery, integrated with direct submersible observations provide the first high-resolution geologic map of the LCHF. These data form the foundation for an evolutionary model for the vent system over the past >120,000 years. The field is located on a down-dropped bench 70 m below the summit of the massif. The bench is capped by breccia and pelagic carbonate deposits underlain by variably deformed and altered serpentinite and gabbroic rocks. Hydrothermal activity is focused at the 60 m tall, 100 m across, massive carbonate edifice "Poseidon," which is venting 91°C fluid. Hydrothermal activity declines south and west of the Poseidon complex and dies off completely at distances greater than 200 m. East of Poseidon, the most recent stage of hydrothermal flow is characterized by egress of diffuse fluids from narrow fissures within a low-angle, anastomosing mylonite zone. South of the area of current hydrothermal activity, there is evidence of two discrete previously unrecognized relict fields. Active venting sites defined by carbonate-filled fissures that cut the carbonate cap rock at the summit of the massif mark the present-day northernmost extent of venting. These spatial relationships reflect multiple stages of field development, the northward migration of venting over time, and the likely development of a nascent field at the massif summit.

  4. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  5. Hot vents in an ice-cold ocean: Indications for phase separation at the southernmost area of hydrothermal activity, Bransfield Strait, Antarctica

    NASA Astrophysics Data System (ADS)

    Dählmann, A.; Wallmann, K.; Sahling, H.; Sarthou, G.; Bohrmann, G.; Petersen, S.; Chin, C. S.; Klinkhammer, G. P.

    2001-12-01

    During the expeditions ANT-XV/2 with R/V Polarstern in 1997/98 and NBP 99-04 with R/V IB N.B. Palmer in 1999, the first samples of hydrothermally influenced sediments of Bransfield Strait were obtained at Hook Ridge, a volcanic edifice in the Central Basin of the Strait. The vent sites are characterized by white siliceous crusts on top of the sediment layer and temperatures measured immediately on deck are up to 48.5°C. The shallow depth of these vent sites (1050 m) particularly controls the chemistry of the pore fluids that are enriched in silica and sulfide and show low pH values. Chloride is depleted up to 20% and the calculated hydrothermal endmember concentration is in the range of 1-84 mM. Since other mechanisms for Cl depletion can be ruled out clearly, the composition of this fluid is attributed to phase separation. While the Cl-depleted fluid is emanating at Hook Ridge, a Cl-enriched fluid can be identified in the adjacent King George Basin. Using a p,x diagram the two corresponding endmember concentrations reveal that the phase separation takes place at subcritical conditions (total depth: ˜2500 m), probably along the whole volcanic edifice.

  6. Effect of cadmium, copper and mercury on antioxidant enzyme activities and lipid peroxidation in the gills of the hydrothermal vent mussel Bathymodiolus azoricus.

    PubMed

    Company, R; Serafim, A; Bebianno, M J; Cosson, R; Shillito, B; Fiala-Médioni, A

    2004-01-01

    Metals are known to influence lipid peroxidation and oxidative status of marine organisms. Hydrothermal vent mussels Bathymodiolus azoricus live in deep-sea environments with anomalous conditions, including high metal concentrations. Although B. azoricus are aerobic organisms they possess abundant methano and thioautotrophic symbiotic bacteria in the gills. The enzymatic defences (superoxide dismutase (SOD), catalase (CAT), total glutathione peroxidase (Total GPx) and selenium-dependent glutathione peroxidase (Se-GPx)) and lipid peroxidation were determined in the gills of B. azoricus exposed to Cd (0.9 microM), Cu (0.4 microM) and Hg (0.1 microM) with different times of exposure. The experiments were performed in pressurized containers at 9+/-1 degrees C and 85 bars. Results show that vent mussels possess antioxidant enzymatic protection in the gills. Cd and Cu had an inhibitory effect in the enzymatic defence system, contrarily to Hg. These enzymatic systems are not completely understood in the B. azoricus, since reactive oxygen species might be produced through other processes than natural redox cycling, due to hydrogen sulphide and oxygen content present. Also the symbiotic bacteria may play an important contribution in the antioxidant protection of the gills.

  7. Video monitoring reveals pulsating vents and propagation path of fissure eruption during the March 2011 Pu'u 'Ō'ō eruption, Kilauea volcano

    NASA Astrophysics Data System (ADS)

    Witt, Tanja; Walter, Thomas R.

    2017-01-01

    Lava fountains are a common eruptive feature of basaltic volcanoes. Many lava fountains result from fissure eruptions and are associated with the alignment of active vents and rising gas bubbles in the conduit. Visual reports suggest that lava fountain pulses may occur in chorus at adjacent vents. The mechanisms behind such a chorus of lava fountains and the underlying processes are, however, not fully understood. The March 2011 eruption at Pu'u 'Ō'ō (Kilauea volcano) was an exceptional fissure eruption that was well monitored and could be closely approached by field geologists. The fissure eruption occurred along groups of individual vents aligned above the feeding dyke. We investigate video data acquired during the early stages of the eruption to measure the height, width and velocity of the ejecta leaving eight vents. Using a Sobel edge-detection algorithm, the activity level of the lava fountains at the vents was determined, revealing a similarity in the eruption height and frequency. Based on this lava fountain time series, we estimate the direction and degree of correlation between the different vents. We find that the height and velocity of the eruptions display a small but systematic shift in time along the vents, indicating a lateral migration of lava fountaining at a rate of 11 m/s from W to E. This finding is in agreement with a propagation model of a pressure wave originating at the Kilauea volcano and propagating through the dyke at 10 m/s from W to E. Based on this approach from videos only 30 s long, we are able to obtain indirect constraints on the physical dyke parameters, with important implications for lateral magma flow processes at depth. This work shows that the recording and analysis of video data provide important constraints on the mechanisms of lava fountain pulses. Even though the video sequence is short, it allows for the confirmation of the magma propagation direction and a first-order estimation of the dyke dimensions.

  8. A biogeographic network reveals evolutionary links between deep-sea hydrothermal vent and methane seep faunas.

    PubMed

    Kiel, Steffen

    2016-12-14

    Deep-sea hydrothermal vents and methane seeps are inhabited by members of the same higher taxa but share few species, thus scientists have long sought habitats or regions of intermediate character that would facilitate connectivity among these habitats. Here, a network analysis of 79 vent, seep, and whale-fall communities with 121 genus-level taxa identified sedimented vents as a main intermediate link between the two types of ecosystems. Sedimented vents share hot, metal-rich fluids with mid-ocean ridge-type vents and soft sediment with seeps. Such sites are common along the active continental margins of the Pacific Ocean, facilitating connectivity among vent/seep faunas in this region. By contrast, sedimented vents are rare in the Atlantic Ocean, offering an explanation for the greater distinction between its vent and seep faunas compared with those of the Pacific Ocean. The distribution of subduction zones and associated back-arc basins, where sedimented vents are common, likely plays a major role in the evolutionary and biogeographic connectivity of vent and seep faunas. The hypothesis that decaying whale carcasses are dispersal stepping stones linking these environments is not supported.

  9. Polar Field Reversals and Active Region Decay

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Ettinger, Sophie

    2015-04-01

    We study the relationship between polar field reversals and decayed active region magnetic flux. Photospheric active region flux is dispersed by differential rotation and turbulent diffusion, and is transported poleward by meridional flows and diffusion. Using NSO Kitt Peak synoptic magnetograms, we investigate in detail the relationship between the transport of decayed active region flux to high latitudes and changes in the polar field strength, including reversals in the magnetic polarity at the poles. By means of stack plots of low- and high-latitude slices of the synoptic magnetograms, the dispersal of flux from low to high latitudes is tracked, and the timing of this dispersal is compared to the polar field changes. In the most abrupt cases of polar field reversal, a few activity complexes (systems of active regions) are identified as the main cause. The poleward transport of large quantities of decayed lagging-polarity flux from these complexes is found to correlate well in time with the abrupt polar field changes. In each case, significant latitudinal displacements were found between the positive and negative flux centroids of the complexes, consistent with Joy's law bipole tilt with lagging-polarity flux located poleward of leading-polarity flux. This work is carried out through the National Solar Observatory Summer Research Assistantship (SRA) Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  10. A Feasibility Study of H{sub 2}S Abatement by Incineration of Noncondensable Gases in Vented Steam Flow from Davies-State 5206-1 Geothermal Steam Well, Geysers Geothermal Steam Field, Lake County, California

    SciTech Connect

    2006-08-25

    Determine feasibility of using an incineration-type device to accomplish the required reduction in vent steam H{sub 2}S content to meet ICAPCO rules. This approach is to be the only method considered in this feasibility study.

  11. Reactor pressure vessel vented head

    DOEpatents

    Sawabe, James K.

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell.

  12. Modeling of zero gravity venting

    NASA Technical Reports Server (NTRS)

    Merte, H., Jr.

    1984-01-01

    The venting of cylindrical containers partially filled with initially saturated liquids was conducted under zero gravity conditions and compared with an analytical model which determined the effect of interfacial mass transfer on the ullage pressure response during venting. A model is proposed to improve the estimation of the interfacial mass transfer. Duhammel's superposition integral is incorporated in this analysis to approximate the transient temperature response of the interface, treating the liquid as a semiinfinite solid with conduction heat transfer. This approach to estimating interfacial mass transfer gives improved response when compared to previous models. The model still predicts a pressure decrease greater than those in the experiments reported.

  13. Phreatic activity on Dominica (Lesser Antilles) - constraints from field investigations and experimental volcanology

    NASA Astrophysics Data System (ADS)

    Mayer, K.; Scheu, B.; Rott, S.; Dingwell, D. B.; Gilg, H. A.

    2015-12-01

    Dominica has one of the highest concentrations of potentially active volcanoes worldwide. In addition to this activity, abundant geothermal manifestations are observed at the surface, especially in the southern part of the Island. The Boiling Lake - Valley of Desolation area is one of the most vigorous ones, hosting hot springs, mud pools, fumaroles, and steam vents. Intense alteration and many, predominantly phreatic explosive features, of varying scales characterize the whole area. The most prominent manifestation of such a phreatic eruption is the Boiling Lake, a high temperature volcanic crater lake and popular tourist attraction. Thus phreatic activity is one of the main volcanic hazards on the Island, to date largely unpredictable in time and magnitude. The conditions causing these eruptions, as well as their trigger mechanisms and magnitude need to be better understood. Field mapping, together with the determination of in situ physical (density, humidity, permeability) and mechanical (strength, stiffness) properties yield the characterization of 3 main active areas with high probabilities for phreatic events. Rapid decompression experiments on samples from these areas gave insights into the fragmentation and ejection behavior. These experiments were flanked by chemical analyses and laboratory characterization (porosity, granulometry). The results show that hydrothermal alteration likely plays a crucial role in determining the probability of explosive events. High temperature acidic fluids, which lead to an intense alteration of the host rock's mineralogy, change the rock properties favoring the formation of a low permeability layer above the vent and increasing the likelihood of the site experiencing a steam-blast eruption. The contribution of these results to constraining the conditions for and the dynamics involved in phreatic eruptions provides valuable input to hazard assessment of these frequently visited sites on Dominica and similar hydrothermally

  14. High abundances of viruses in a deep-sea hydrothermal vent system indicates viral mediated microbial mortality

    NASA Astrophysics Data System (ADS)

    Ortmann, Alice C.; Suttle, Curtis A.

    2005-08-01

    Little is known about the distribution and abundance of viruses at deep-sea hydrothermal vents. Based on estimates made using epifluorescence microscopy and the dye YoPro-1, much higher viral abundances were observed at active hydrothermal vents than in the surrounding deep sea. This indicates that viral production was occurring and that viruses were a source of microbial mortality. Samples collected from three actively venting sites (Clam Bed, S&M and Salut) within the Endeavour Ridge system off the west coast of North America had viral abundances ranging from 1.45×10 5 to 9.90×10 7 ml -1, while the abundances of prokaryotes ranged from 1.30×10 5 to 4.46×10 6 ml -1. The abundances of viruses and prokaryotes in samples collected along the neutrally buoyant plume associated with the Main Endeavour Field were lower than at actively venting sites, with a mean of 5.3×10 5 prokaryotes ml -1 (s.d. 2.9×10 5, n=64) and 3.50×10 6 viruses ml -1 (s.d. 1.89×10 6, n=64), but were higher than non-plume samples (2.7×10 5 prokaryotes ml -1, s.d. 5.0×10 4, n=15 and 2.94×10 6 viruses ml -1, s.d. 1.08×10 6, n=15). Prokaryotic and viral abundances in non-hydrothermal regions were as much as 10-fold higher than found in previous studies, in which sample fixation likely resulted in underestimates. This suggests that viral infection may be a greater source of prokaryotic mortality throughout the deep sea than previously recognized. Overall, our results indicate that virus-mediated mortality of prokaryotes at these hydrothermal-vent environments is significant and may reduce energy flow to higher trophic levels.

  15. Fill and vent quick disconnect

    NASA Technical Reports Server (NTRS)

    Boerner, R. Y.; Hedrick, R. W.

    1972-01-01

    Hydraulic disconnect coupling on ground serving half of spacecraft refrigeration cooling system employs movable center stem for venting and closing nipple poppet. Self sealing poppet quickly connects cooling system to spacecraft without manual work. Recessed sealing surface insures open poppet when stem retracts.

  16. 46 CFR 151.15-5 - Venting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Venting. 151.15-5 Section 151.15-5 Shipping COAST GUARD...) Pressure-vacuum venting. A normally closed venting system fitted with a device to automatically limit the pressure or vacuum in the tank to design limits. Pressure-vacuum relief valves shall comply with...

  17. 33 CFR 159.61 - Vents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Vents. 159.61 Section 159.61 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.61 Vents. Vents must be designed and...

  18. 33 CFR 159.61 - Vents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vents. 159.61 Section 159.61 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.61 Vents. Vents must be designed and...

  19. 33 CFR 159.61 - Vents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Vents. 159.61 Section 159.61 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.61 Vents. Vents must be designed and...

  20. 33 CFR 159.61 - Vents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Vents. 159.61 Section 159.61 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.61 Vents. Vents must be designed and...

  1. 33 CFR 159.61 - Vents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Vents. 159.61 Section 159.61 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.61 Vents. Vents must be designed and...

  2. Did the Mississippian Lodgepole buildup at Dickinson Field (North Dakota) form as a gas seep ({open_quotes}vent{close_quotes}) community?

    SciTech Connect

    Longman, M.W.

    1996-10-01

    The Lower Mississippian Lodgepole carbonate buildup reservoir at Dickinson Field in Stark County, North Dakota, has been widely reported as being a Waulsortian (or Waulsortian-like) mound. The term {open_quotes}Waulsortian mound{close_quotes} is used for a variety of Early Mississippian carbonate buildups that share a number of features including an abundance of carbonate mud, a {open_quotes}framework{close_quotes} of organisms such as fenestrate bryozoans and crinoids that tended to trap or baffle sediment, and a general absence of marine-cemented reef framework. Although the age of the Lodgepole mound at Dickinson Field qualifies it to be a Waulsortian mound, petrographic study of cores reveals that the reservoir rocks are quite unlike those in true Waulsortian mounds. Instead of being dominated by carbonate mud, the Lodgepole mound core is dominated by marine cement. Furthermore, ostracods and microbial limestones are common in the mound core where they occur with crinoid debris and small amounts of bryozoan, coral, and brachiopod debris. The abundant microbial limestones and marine cement indicate that the Dickinson mound formed as a lithified reef on the sea floor rather than as a Waulsortian mud mound. The microbial limestones, marine cement, and common ostracods in the mount core, and the fact that the mound nucleated almost directly o top of the Bakken Shale, suggest that the Dickinson Lodgepole mound formed at the site of a submarine spring and gas seep.

  3. Mapping Planetary Volcanic Deposits: Identifying Vents and Distingushing between Effects of Eruption Conditions and Local Lava Storage and Release on Flow Field Morphology

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts [1-3]. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  4. Mapping Planetary Volcanic Deposits: Identifying Vents and Distinguishing between Effects of Eruption Conditions and Local Storage and Release on Flow Field Morphology

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  5. The Prevention of Ice Formation on Gasoline Tank Vents

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Clay, William C

    1931-01-01

    This investigation was conducted in the refrigerated wind tunnel at the Langley Memorial Aeronautical Laboratory, Langley Field, Va., to determine a suitable method for preventing the formation of ice on the vents of airplane gasoline tanks. Tests were made on a variety of vent forms arranged in a number of different orientations relative to the direction of the air stream. Both the size of the tube and its orientation were found to be of great importance. Small tubes, under equal circumstances, were found to freeze over far more rapidly than large ones. Tubes pointing downstream, or shielded in other ways, appear to be perfectly immune against this hazard. A tube 3/4 inch in diameter with the opening pointing downstream is finally recommended as being the safest choice of gas tank vent.

  6. Deep-sea hydrothermal vents: potential hot spots for natural products discovery?

    PubMed

    Thornburg, Christopher C; Zabriskie, T Mark; McPhail, Kerry L

    2010-03-26

    Deep-sea hydrothermal vents are among the most extreme and dynamic environments on Earth. However, islands of highly dense and biologically diverse communities exist in the immediate vicinity of hydrothermal vent flows, in stark contrast to the surrounding bare seafloor. These communities comprise organisms with distinct metabolisms based on chemosynthesis and growth rates comparable to those from shallow water tropical environments, which have been rich sources of biologically active natural products. The geological setting and geochemical nature of deep-sea vents that impact the biogeography of vent organisms, chemosynthesis, and the known biological and metabolic diversity of Eukarya, Bacteria, and Archaea, including the handful of natural products isolated to date from deep-sea vent organisms, are considered here in an assessment of deep-sea hydrothermal vents as potential hot spots for natural products investigations. Of critical importance too are the logistics of collecting deep vent organisms, opportunities for re-collection considering the stability and longevity of vent sites, and the ability to culture natural product-producing deep vent organisms in the laboratory. New cost-effective technologies in deep-sea research and more advanced molecular techniques aimed at screening a more inclusive genetic assembly are poised to accelerate natural product discoveries from these microbial diversity hot spots.

  7. Hydrothermal Fluxes at the Turtle Pits Vent Site, southern MAR

    NASA Astrophysics Data System (ADS)

    Köhler, J.; Walter, M.; Mertens, C.; Sültenfuß, J.; Rhein, M.

    2009-04-01

    The Turtle Pits vent fields are located in a north-south orientated rift valley at the Mid-Atlantic Ridge (MAR) near 5oS. The site consists of three known hydrothermal fields: Turtle Pits, Comfortless Cove, and Red Lion. Data collected during a Meteor cruise in May 2006 and a L' Atalante cruise in January 2008 are used to calculate the total emission of volume, heat, and helium of the site. The data sets consist of vertical profiles and towed transsects of temperature, salinity, and turbidity, as well as direct velocity measurements with a lowered acoustic Doppler current profiler (LADCP) and water samples for Helium isotope analysis. Vent fluid samples for noble gas analysis where taken with an ROV. The particle plume is confined to the rift valley since the depth of the valley exceeds the rise height of the plume. Therefore the fluxes of heat and volume can be estimated from the helium fluxes at the vent sites in comparison with the horizontal helium transport in the valley. The comparison of the 3He concentration measured south of the hydrothermal vents with the 3He signal north of the hydrothermal vents suggests a rather strong northward flow. This is confirmed by the tide corrected velocities observed with the LADCP during the Meteor cruise. The northward volume transport has been calculated using the local bathymetry and tide corrected velocities from the Meteor cruise. In combination with the 3He concentrations and an average 3He end member concentration a flux of 900 l/s is estimated, which corresponds to a heat flux of 450 MW. The rise height of the particle plume estimated from the turbidity data combined with the known background stratification yields an estimate of the total flux of the hydrothermal vents which is one order of magnitude lower.

  8. A quaternary monogenetic volcanic field in the Xalapa region, eastern Trans-Mexican volcanic belt: Geology, distribution and morphology of the volcanic vents

    NASA Astrophysics Data System (ADS)

    Rodríguez, S. R.; Morales-Barrera, W.; Layer, P.; González-Mercado, E.

    2010-11-01

    The most abundant volcanic manifestations along the east-west trending Trans-Mexican Volcanic Belt (TMVB) are the scoria cones. These have been grouped by other authors in extended monogenetic volcanic fields such as Michoacán-Guanajuato, Chichinautzin, Apan and Los Tuxtlas. Here we present geological and morphological data of a relatively unknown group of monogenetic volcanoes located on the east flank of the Cofre de Perote volcano (CP), around the city of Xalapa in the state of Veracruz, Mexico. Within an area of about 2400 km 2, the "Xalapa Monogenetic Volcanic Field" (XMVF) contains over 50 late Quaternary volcanoes. Most of them are scoria cones, but small shield volcanoes and tuff rings also occur. The lava flows produced by these volcanoes are constrained by an abrupt topography and cover a great percentage of the surface on the eastern and northeastern flanks of CP, between 3000 and 500 m a.s.l. The representative rocks of the different volcanic centers include olivine basalt, basaltic andesite with phenocrysts of plagioclase, pyroxene and minor olivine, and andesite with phenocrysts of plagioclase and pyroxene. SiO 2 and Al 2O 3 contents of the rocks vary between 45 and 62 wt% and 15 to 18 wt%, respectively. Most of the basaltic rocks have MgO contents between 4.2 and 9 wt%, Ni and Cr concentrations between 23 and 180 and 10 to 380 ppm, respectively, with a typical calc-alkaline behavior. Trace elements suggest two types of magmas; the most abundant are characterized by an enrichment of LILE and LREE with negative anomalies of Nb and Ti, which denote a calc-alkaline affinity. Others are LILE depleted and show high concentrations of MgO, Cr, and Ni, which is typical of primary calc-alkaline magmas. The mean scoria cone morphological values are: cone height (Hco) = 90.8 m, cone diameter (Wco) = 686.38 m, crater diameter (Wcr) = 208.49 m and 0.12 km 3 for the cone volume. We dated twelve different scoria cones using the 40Ar/ 39Ar method; for the other

  9. Living with the Heat. Submarine Ring of Fire--Grades 5-6. Hydrothermal Vent Ecology.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    This activity is designed to teach about hydrothermal vent ecology. Students are expected to describe how hydrothermal vents are formed and characterize the physical conditions at these sites, explain chemosynthesis and contrast this process with photosynthesis, identify autotrophic bacteria as the basis for food webs in hydrothermal vent…

  10. Natural hot spots for gain of multiple resistances: arsenic and antibiotic resistances in heterotrophic, aerobic bacteria from marine hydrothermal vent fields.

    PubMed

    Farias, Pedro; Espírito Santo, Christophe; Branco, Rita; Francisco, Romeu; Santos, Susana; Hansen, Lars; Sorensen, Soren; Morais, Paula V

    2015-04-01

    Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment's total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the "Rapid Annotation using the Subsystems Technology" server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics β-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population.

  11. Natural Hot Spots for Gain of Multiple Resistances: Arsenic and Antibiotic Resistances in Heterotrophic, Aerobic Bacteria from Marine Hydrothermal Vent Fields

    PubMed Central

    Farias, Pedro; Espírito Santo, Christophe; Branco, Rita; Francisco, Romeu; Santos, Susana; Hansen, Lars; Sorensen, Soren

    2015-01-01

    Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite resistance traits in phenotypically resistant strains, in a nonanthropogenically impacted environment. The hydrothermal Lucky Strike field in the Azores archipelago (North Atlantic, between 11°N and 38°N), at the Mid-Atlantic Ridge, protected under the OSPAR Convention, was sampled as a metal-rich pristine environment. A total of 35 strains from 8 different species were isolated in the presence of arsenate, arsenite, and antimonite. ACR3 and arsB genes were amplified from the sediment's total DNA, and 4 isolates also carried ACR3 genes. Phenotypic multiple resistances were found in all strains, and 7 strains had recoverable plasmids. Purified plasmids were sequenced by Illumina and assembled by EDENA V3, and contig annotation was performed using the “Rapid Annotation using the Subsystems Technology” server. Determinants of resistance to copper, zinc, cadmium, cobalt, and chromium as well as to the antibiotics β-lactams and fluoroquinolones were found in the 3 sequenced plasmids. Genes coding for heavy metal resistance and antibiotic resistance in the same mobile element were found, suggesting the possibility of horizontal gene transfer and distribution of theses resistances in the bacterial population. PMID:25636836

  12. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents

    USGS Publications Warehouse

    Reysenbach, A.-L.; Liu, Yajing; Banta, A.B.; Beveridge, T.J.; Kirshtein, J.D.; Schouten, S.; Tivey, M.K.; Von Damm, Karen L.; Voytek, M.A.

    2006-01-01

    Deep-sea hydrothermal vents are important in global biogeochemical cycles, providing biological oases at the sea floor that are supported by the thermal and chemical flux from the Earth's interior. As hot, acidic and reduced hydrothermal fluids mix with cold, alkaline and oxygenated sea water, minerals precipitate to form porous sulphide-sulphate deposits. These structures provide microhabitats for a diversity of prokaryotes that exploit the geochemical and physical gradients in this dynamic ecosystem. It has been proposed that fluid pH in the actively venting sulphide structures is generally low (pH < 4.5), yet no extreme thermoacidophile has been isolated from vent deposits. Culture-independent surveys based on ribosomal RNA genes from deep-sea hydrothermal deposits have identified a widespread euryarchaeotal lineage, DHVE2 (deep-sea hydrothermal vent euryarchaeotic 2). Despite the ubiquity and apparent deep-sea endemism of DHVE2, cultivation of this group has been unsuccessful and thus its metabolism remains a mystery. Here we report the isolation and cultivation of a member of the DHVE2 group, which is an obligate thermoacidophilic sulphur- or iron-reducing heterotroph capable of growing from pH 3.3 to 5.8 and between 55 and 75??C. In addition, we demonstrate that this isolate constitutes up to 15% of the archaeal population, providing evidence that thermoacidophiles may be key players in the sulphur and iron cycling at deep-sea vents. ?? 2006 Nature Publishing Group.

  13. Diffuse flow from hydrothermal vents. Doctoral thesis

    SciTech Connect

    Trivett, D.A.

    1991-08-01

    The effluent from a collection of diffuse hydrothermal vents was modelled to determine the fate of the source of flow under typical environmental conditions at seafloor spreading centers. A laboratory simulation was conducted to test an analytic model of diffuse plume rise. The results showed that diffuse plumes are likely to remain near the seafloor, with their maximum rise height scaled with the diameter of the source of diffuse flow. The entrainment of ambient seawater into these plumes is limited by the proximity to the seafloor, thus slowing the rate of dilution. The model of diffuse plume behaviour was used to guide the design and implementation of a scheme for monitoring the flow from diffuse hydrothermal vents in the ocean. A deployment of an array at the Southern Juan de Fuca Ridge yielded measurements of a variety of diffuse plume properties, including total heat output. Two distinct sources of hydrothermal flow were detected during the field deployment. The larger source was 1-1.5km north of the instrument array, and its energy output was 450 + or - 270MW. A smaller source was located 100m east of one instrument in the array. The energy output of the source was 12 + or - 8MW. The rise heights of the centerlines of these plumes were 45m and 10m, respectively.

  14. Population ecology of the tonguefish Symphurus thermophilus (Pisces; Pleuronectiformes; Cynoglossidae) at sulphur-rich hydrothermal vents on volcanoes of the northern Mariana Arc

    NASA Astrophysics Data System (ADS)

    Tunnicliffe, Verena; Tyler, Jennifer; Dower, John F.

    2013-08-01

    Flatfish are a major component of the hydrothermal vent community on three seamounts of the northern Mariana Volcanic Arc in the northwest Pacific. Nikko, Kasuga-2 and Daikoku seamounts host vent fields between 375 and 480 m depth where high temperature vents release molten sulphur. The small cynoglossid tonguefish, Symphurus thermophilus Munroe and Hashimoto, is ubiquitous in all vent habitats observed on these seamounts: among extensive fields of tubeworms and mussels and on solid sulphur surfaces on Nikko; on sulphur-rich sediments and barnacle-covered boulders on Kasuga-2; and on recent sulphur flows and on broad areas of loose and semi-consolidated sediments on Daikoku. We recorded repeated forays by individuals onto flows of molten sulphur as these surfaces cooled. Based on observations using ROVs, the mean density is 90 fish/m2 with maximum counts over 200 fish/m2 on Daikoku sediments. Compared to collected tonguefish from Daikoku and Kasuga-2, those from Nikko have significantly greater lengths and, on average, six times the mass. Otolith data indicate upper ages of 13 years with Nikko tonguefish growing significantly faster. Diets of tonguefish on the three seamounts reflect the different habitats and prey availability; in Daikoku specimens, small crustaceans and polychaetes are most common while on Nikko, gut contents are predominantly larger shrimp. We made the unusual observation of stunned midwater fish falling to the seafloor near the vents where S. thermophilus immediately attacked them. This tonguefish has a wide diet range and foraging behaviour that likely influence the differing growth rates and sizes of fish inhabiting the different vent sites. Limited genetic data suggest that larval exchange probably occurs among sites where the common habitat factor is high levels of elemental sulphur forming hard and partly unconsolidated substrata. Here, in the northern range of the Mariana Trench Marine National Monument, S. thermophilus, despite having an

  15. Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field.

    PubMed

    Takai, Ken; Gamo, Toshitaka; Tsunogai, Urumu; Nakayama, Noriko; Hirayama, Hisako; Nealson, Kenneth H; Horikoshi, Koki

    2004-08-01

    Subsurface microbial communities supported by geologically and abiologically derived hydrogen and carbon dioxide from the Earth's interior are of great interest, not only with regard to the nature of primitive life on Earth, but as potential analogs for extraterrestrial life. Here, for the first time, we present geochemical and microbiological evidence pointing to the existence of hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) dominated by hyperthermophilic methanogens beneath an active deep-sea hydrothermal field in the Central Indian Ridge. Geochemical and isotopic analyses of gaseous components in the hydrothermal fluids revealed heterogeneity of both concentration and carbon isotopic compositions of methane between the main hydrothermal vent (0.08 mM and -13.8 per thousand PDB, respectively) and the adjacent divergent vent site (0.2 mM and -18.5 per thousand PDB, respectively), representing potential subsurface microbial methanogenesis, at least in the divergent vent emitting more 13C-depleted methane. Extremely high abundance of magmatic energy sources such as hydrogen (2.5 mM) in the fluids also encourages a hydrogen-based, lithoautotrophic microbial activity. Both cultivation and cultivation-independent molecular analyses suggested the predominance of Methanococcales members in the superheated hydrothermal emissions and chimney interiors along with the other major microbial components of Thermococcales members. These results imply that a HyperSLiME, consisting of methanogens and fermenters, occurs in this tectonically active subsurface zone, strongly supporting the existence of hydrogen-driven subsurface microbial communities.

  16. Reactor pressure vessel vented head

    DOEpatents

    Sawabe, J.K.

    1994-01-11

    A head for closing a nuclear reactor pressure vessel shell includes an arcuate dome having an integral head flange which includes a mating surface for sealingly mating with the shell upon assembly therewith. The head flange includes an internal passage extending therethrough with a first port being disposed on the head mating surface. A vent line includes a proximal end disposed in flow communication with the head internal passage, and a distal end disposed in flow communication with the inside of the dome for channeling a fluid therethrough. The vent line is fixedly joined to the dome and is carried therewith when the head is assembled to and disassembled from the shell. 6 figures.

  17. A vented inverted fuel assembly design for an SFR

    SciTech Connect

    Vitillo, F.; Todreas, N. E.; Driscoll, M. J.

    2012-07-01

    The inverted geometry (fuel outside coolant tubes) has been previously investigated at MIT for application in gas-cooled fast reactors and pressurized water-cooled thermal reactors. Venting has also been studied for conventional fuel pins and was employed for those in the Dounreay Fast Reactor. In the present work the inverted fuel approach was adopted because it allows high fuel volume fraction, reduction of the coolant void reactivity, neutron leakage and enrichment, as well as lower pressure drop for the same channel length because grids and wire wraps are no longer necessary. Furthermore most results also apply to venting of conventional fuel pins. Physical and chemical behavior of volatile fission products in sodium was investigated to determine the maximum activity inventory which would eventually be released into the primary sodium. Results of this analysis show that the most troublesome radionuclides in terms of propensity to escape from the venting system are noble gases ({sup 85}Kr and {sup 133}Xe), and cesium ({sup 134}Cs and {sup 137}Cs). A final vented inverted fuel assembly design is proposed which meets all the design goals which have been set. Additionally purification systems were devised to reduce radionuclide activity of the coolant and the cover gas to tolerable levels. It is concluded that vented inverted (or vented conventional pin) fuel is a feasible concept and has sufficiently promising advantages - increasing fuel volume fraction to 50% and core outlet temperature by 20 deg. C, hence incrementing plant thermal efficiency by about 1% - to warrant serious consideration for future SFR designs. (authors)

  18. Abundant Hydrothermal Venting in the Southern Ocean Near 62°S/159°E on the Australian-Antarctic Ridge

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Hahm, D.; Rhee, T. S.; Park, S. H.; Lupton, J. E.; Walker, S. L.; Choi, H.

    2014-12-01

    Circum-Antarctic Ridges (CARs) comprise almost one-third of the global Mid-Ocean Ridge, yet remain terra incognita for hydrothermal activity and chemosynthetic ecosystems. The InterRidge Vents Database lists only 3 confirmed (visualized) and 35 inferred (plume evidence) active sites along the ~21,000 km of CARs. Here, we report on a multi-year effort to locate and characterize hydrothermal activity on two 1st-order segments of the Australian-Antarctic Ridge that are perhaps more isolated from other known vent fields than any other vent site on the Mid-Ocean Ridge. KR1 is a 300-km-long segment near 62°S/159°E, and KR2 a 90-km-long segment near 60°S/152.5°E. We used profiles collected by Miniature Autonomous Plume Recorders (MAPRs) on rock corers in March and December of 2011 to survey each segment, and an intensive CTD survey in Jan/Feb 2013 to pinpoint sites and sample plumes on KR1. Optical and oxidation-reduction potential (ORP, aka Eh) anomalies indicate multiple active sites on both segments. Seven profiles on KR2 found 3 sites, each separated by ~25 km. Forty profiles on KR1 identified 13 sites, some within a few km of each other. The densest site concentration on KR1 occurred along a relatively inflated, 90-km-long section near the segment center. CTD tows covered 20 km of the eastern, most inflated portion of this area, finding two 6-km-long zones centered near 158.6°E and 158.8°E with multiple plume anomalies. Three ORP anomalies within 50 m of the seafloor indicate precise venting locations. We call this area the Mujin "Misty Harbor" vent field. Vent frequency sharply decreases away from Mujin. 3He/heat ratios determined from 20 plume samples in the Mujin field were mostly <0.015 fM/J, indicative of chronic venting, but 3 samples, 0.021-0.034 fM/J, are ratios typical of a recent eruption. The spatial density of hydrothermal activity along KR1 and KR2 is similar to other intermediate-rate spreading ridges. We calculate the plume incidence (ph) along

  19. Evidence for a chemoautotrophically based food web at inactive hydrothermal vents (Manus Basin)

    NASA Astrophysics Data System (ADS)

    Erickson, K. L.; Macko, S. A.; Van Dover, C. L.

    2009-09-01

    Hydrothermal vents are ephemeral systems. When venting shuts down, sulfide-dependent taxa die off, and non-vent taxa can colonize the hard substrata. In Manus Basin (Papua New Guinea), where hydrothermally active and inactive sites are interspersed, hydroids, cladorhizid sponges, barnacles, bamboo corals, and other invertebrate types may occupy inactive sites. Carbon and nitrogen isotopic compositions of animals occupying inactive sites are consistent with nutritional dependence on either chemoautotrophically or photosynthetically produced organic material, but sulfur isotopic compositions of these animals point to a chemoautotrophic source of sulfur from dissolved sulfide in vent fluids rather than sulfur derived from seawater sulfate through photosynthesis. Given that suspension-feeding and micro-carnivorous invertebrates are the biomass dominants at inactive sites, the primary source of chemoautotrophic nutrition is likely suspended particulates and organisms delivered from nearby active vents.

  20. Evidence for a Chemoautotrophically Based Food Web at Inactive Hydrothermal Vents (Manus Basin)

    NASA Astrophysics Data System (ADS)

    van Dover, C. L.; Erickson, K.; Macko, S.

    2008-12-01

    Hydrothermal vents are ephemeral systems. When venting shuts down, sulfide-dependent taxa die off, and non-vent taxa can colonize the hard substrata. In Manus Basin (Papua New Guinea), where active and inactive sulfide mounds are interspersed, hydroids, cladorhizid sponges, barnacles, and bamboo sponges, and other invertebrate types may occupy inactive sulfide mounds. Carbon and nitrogen isotopic compositions of animals occupying inactive sulfide mounds are consistent with nutritional dependence on either chemoautotrophically or photosynthetically produced organic material, but sulfur isotopic compositions of these animals point to a chemoautotrophic source of sulfur from dissolved sulfide in vent fluids rather than sulfur derived from seawater sulfate through photosynthesis. Given that suspension-feeding and micro- carnivorous invertebrates are the biomass dominants at inactive sulfide mounds, the primary source of chemoautotrophic nutrition is likely suspended particulates and organisms delivered from nearby active vents.

  1. Chapter A9. Safety in Field Activities

    USGS Publications Warehouse

    Lane, Susan L.; Ray, Ronald G.

    1998-01-01

    The National Field Manual for the Collection of Water-Quality Data (National Field Manual) describes protocols (requirements and recommendations) and provides guidelines for U.S. Geological Survey (USGS) personnel who collect data used to assess the quality of the Nation's surface-water and ground-water resources. This chapter of the manual addresses topics related to personal safety to be used in the collection of water-quality data, including: policies and general regulations on field safety; transportation of people and equipment; implementation of surface-water and ground-water activities; procedures for handling chemicals; and information on potentially hazardous environmental conditions, animals, and plants. Each chapter of the National Field Manual is published separately and revised periodically. Newly published and revised chapters will be announced on the USGS Home Page on the World Wide Web under 'New Publications of the U.S. Geological Survey.' The URL for this page is http://pubs.usgs.gov/publications/ index.html.

  2. Phreatic activity in the Valley of Desolation, Dominica (Lesser Antilles) - constraints from field investigations and experimental volcanology

    NASA Astrophysics Data System (ADS)

    Mayer, Klaus; Scheu, Bettina; Montanaro, Cristian; Yilmaz, Tim; Aßbichler, Donja; Gilg, H. Albert; Dingwell, Donald B.

    2016-04-01

    Dominica has one of the highest concentrations of potentially active volcanoes worldwide, flanked by abundant surficial geothermal manifestations: The Boiling Lake - Valley of Desolation area represents one of the most vigorous ones, hosting hot springs, mud pools, fumaroles, and steam vents. Intense alteration, together with predominantly phreatic explosive features of varying scales, characterize the whole area. The last historic eruptions in Dominica occurred at the Valley of Desolation. Phreatic eruptions are also the most likely type of volcanic activity to occur in the near future at Dominica in general and the Valley of Desolation in particular. Phreatic eruptions are up to date largely unpredictable in time and magnitude, strongly asking for constraints of eruptive conditions as well as trigger mechanisms. We conducted sampling and field mapping, together with the determination of in situ physical (density, humidity, permeability) and mechanical (strength, stiffness) properties to characterize the main active surficial area which possesses a high probability for a phreatic event. Rapid decompression experiments performed on selected samples from this area give insight into the fragmentation and ejection behavior of steam driven eruptions. These experiments were flanked by chemical analyses and laboratory measurements as porosity and granulometry. The results indicate that advanced argillic alteration in the proximity of degassing vents significantly changes the rock properties, which in turn play a crucial role for the degassing of hydrothermal systems. High-temperature acidic fluids lead to an intense alteration of the host rocks, and thereby cause the formation of a kaolinite-rich, low permeable layer above the vent. In addition, alteration enhances slope instabilities causing landslides which may cover and clog the outgassing vents. Such processes increase the likelihood of the site experiencing a pressurization, which may result in a steam

  3. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    SciTech Connect

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.

    1994-12-31

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  4. Investigations of a novel fauna from hydrothermal vents along the Arctic Mid-Ocean Ridge (AMOR) (Invited)

    NASA Astrophysics Data System (ADS)

    Rapp, H.; Schander, C.; Halanych, K. M.; Levin, L. A.; Sweetman, A.; Tverberg, J.; Hoem, S.; Steen, I.; Thorseth, I. H.; Pedersen, R.

    2010-12-01

    The Arctic deep ocean hosts a variety of habitats ranging from fairly uniform sedimentary abyssal plains to highly variable hard bottoms on mid ocean ridges, including biodiversity hotspots like seamounts and hydrothermal vents. Deep-sea hydrothermal vents are usually associated with a highly specialized fauna, and since their discovery in 1977 more than 400 species of animals have been described. This fauna includes various animal groups of which the most conspicuous and well known are annelids, mollusks and crustaceans. The newly discovered deep sea hydrothermal vents on the Mohns-Knipovich ridge north of Iceland harbour unique biodiversity. The Jan Mayen field consists of two main areas with high-temperature white smoker venting and wide areas with low-temperature seepage, located at 5-700 m, while the deeper Loki Castle vent field at 2400 m depth consists of a large area with high temperature black smokers surrounded by a sedimentary area with more diffuse low-temperature venting and barite chimneys. The Jan Mayen sites show low abundance of specialized hydrothermal vent fauna. Single groups have a few specialized representatives but groups otherwise common in hydrothermal vent areas are absent. Slightly more than 200 macrofaunal species have been identified from this vent area, comprising mainly an assortment of bathyal species known from the surrounding area. Analysis of stable isotope data also indicates that the majority of the species present are feeding on phytodetritus and/or phytoplankton. However, the deeper Loki Castle vent field contains a much more diverse vent endemic fauna with high abundances of specialized polychaetes, gastropods and amphipods. These specializations also include symbioses with a range of chemosynthetic microorganisms. Our data show that the fauna composition is a result of high degree of local specialization with some similarities to the fauna of cold seeps along the Norwegian margin and wood-falls in the abyssal Norwegian Sea

  5. Venting test analysis using Jacob`s approximation

    SciTech Connect

    Edwards, K.B.

    1996-03-01

    There are many sites contaminated by volatile organic compounds (VOCs) in the US and worldwide. Several technologies are available for remediation of these sites, including excavation, pump and treat, biological treatment, air sparging, steam injection, bioventing, and soil vapor extraction (SVE). SVE is also known as soil venting or vacuum extraction. Field venting tests were conducted in alluvial sands residing between the water table and a clay layer. Flow rate, barometric pressure, and well-pressure data were recorded using pressure transmitters and a personal computer. Data were logged as frequently as every second during periods of rapid change in pressure. Tests were conducted at various extraction rates. The data from several tests were analyzed concurrently by normalizing the well pressures with respect to extraction rate. The normalized pressures vary logarithmically with time and fall on one line allowing a single match of the Jacob approximation to all tests. Though the Jacob approximation was originally developed for hydraulic pump test analysis, it is now commonly used for venting test analysis. Only recently, however, has it been used to analyze several transient tests simultaneously. For the field venting tests conducted in the alluvial sands, the air permeability and effective porosity determined from the concurrent analysis are 8.2 {times} 10{sup {minus}7} cm{sup 2} and 20%, respectively.

  6. Investigating the Relationship Between Fin and Blue Whale Locations, Zooplankton Concentrations and Hydrothermal Venting on the Juan de Fuca Ridge

    DTIC Science & Technology

    2009-09-30

    Locations, Zooplankton Concentrations and Hydrothermal Venting on the Juan de Fuca Ridge William S. D. Wilcock School of Oceanography University...are investigating the potential correlation between whale tracks, enhanced zooplankton concentrations and hydrothermal vents above the Juan de Fuca...preferentially found above the hydrothermal vent fields where the bio-acoustical data show that the zooplankton concentrations are higher at all depths. 3

  7. Submarine venting of magmatic volatiles in the Eastern Manus Basin, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Seewald, Jeffrey S.; Reeves, Eoghan P.; Bach, Wolfgang; Saccocia, Peter J.; Craddock, Paul R.; Shanks, Wayne C.; Sylva, Sean P.; Pichler, Thomas; Rosner, Martin; Walsh, Emily

    2015-08-01

    The SuSu Knolls and DESMOS hydrothermal fields are located in the back-arc extensional transform zone of the Eastern Manus Basin. In 2006, highly acidic and ΣSO4-rich vent fluids were collected at both sites and analyzed for the chemical and isotopic composition of major and trace species. Fluids exiting the seafloor have measured temperatures from 48 to 215 °C and are milky white in appearance due to precipitation of elemental S0. Vent fluid concentrations of Na, K, and Mg are depleted by as much as 30% relative to seawater, but have the same relative abundance. In contrast, the fluids are highly enriched in dissolved ΣCO2, Cl, SiO2(aq), Fe, and Al relative to seawater. Measured pH (25 °C) ranged from 0.95 to 1.87 and aqueous ΣSO4 ranged from 35 to 135 mmol/kg. The chemical and isotopic composition points to formation via subsurface mixing of seawater with a Na-, K-, Mg-, and Ca-free, volatile-rich magmatic fluid exsolved from subsurface magma bodies during a process analogous to subaerial fumarole discharge. Estimates of the magmatic end-member composition indicate a fluid phase where H2O > SO2 > CO2 ≈ Cl > F. The hydrogen and oxygen isotopic composition of H2O and carbon isotopic composition of ΣCO2 in the vent fluids strongly suggest a contribution of slab-derived H2O and CO2 to melts generated in the mantle beneath the Eastern Manus volcanic zone. Abundant magmatically-derived SO2 undergoes disproportionation during cooling in upflow zones and contributes abundant acidity, SO42-, and S0 to the venting fluids. Interaction of these highly acidic fluids with highly altered mineral assemblages in the upflow zone are responsible for extensive aqueous mobilization of SiO2(aq), Fe, and Al. Temporal variability in the speciation and abundance of aqueous S species between 1995 and 2006 at the DESMOS vent field suggests an increase in the relative abundance of SO2 in the magmatic end-member that has mixed with seawater in the subsurface. Results of this study

  8. Why does a mature volcano need new vents? The case of the New Southeast Crater at Etna

    NASA Astrophysics Data System (ADS)

    Acocella, Valerio; Neri, Marco; Behncke, Boris; Bonforte, Alessandro; Del Negro, Ciro; Ganci, Gaetana

    2016-06-01

    Mature volcanoes usually erupt from a persistent summit crater. Permanent shifts in vent location are expected to occur after significant structural variations and are seldom documented. Here we provide such an example that recently occurred at Etna. Eruptive activity at Mount Etna during 2007 focused at the Southeast Crater (SEC), the youngest (formed in 1971) and most active of the four summit craters, and consisted of six paroxysmal episodes. The related erupted volumes, determined by field-based measurements and radiant heat flux curves measured by satellite, totalled 8.67 x 106 m3. The first four episodes occurred, between late-March and early-May, from the summit of the SEC and short fissures on its flanks. The last two episodes occurred, in September and November, from a new vent ("pit crater" or "proto-NSEC") at the SE base of the SEC cone; this marked the definitive demise of the old SEC and the shift to the new vent. The latter, fed by NW-SE striking dikes propagating from the SEC conduit, formed since early 2011 an independent cone (the New Southeast Crater, or "NSEC") at the base of the SEC. Detailed geodetic reconstruction and structural field observations allow defining the surface deformation pattern of Mount Etna in the last decade. These suggest that the NSEC developed under the NE-SW trending tensile stresses on the volcano summit promoted by accelerated instability of the NE flank of the volcano during inflation periods. The development of the NSEC is not only important from a structural point of view, as its formation may also lead to an increase in volcanic hazard. The case of the NSEC at Etna here reported shows how flank instability may control the distribution and impact of volcanism, including the prolonged shift of the summit vent activity in a mature volcano.

  9. In Situ Soil Venting - Full Scale Test, Hill AFB, Guidance Document. Volume 2

    DTIC Science & Technology

    1991-08-01

    reverse if necessary and identity by block number)FIELD GROUP SJBGROuP FI06 13 Soil Venting Fuel Spill Remediation06 Bioremediation Vacuum Extraction...The first volume is a complete literature review of previous soil venting research and field work. Volume II is a guidance manual which provides...removal of volatile contaminant spills in unsaturated zone soils. In this technique , the soil is decontaminated in place by pulling air through the

  10. Hydrothermal vents of Yellowstone Lake, Yellowstone National Park, Wyoming

    SciTech Connect

    Kaplinski, M.A.; Morgan, P. . Geology Dept.)

    1993-04-01

    Hydrothermal vent systems within Yellowstone Lake are located within the Yellowstone caldera in the northeastern and West Thumb sections of the lake. The vent systems lie within areas of extremely high geothermal gradients (< 1,000 C/km) in the lake sediments and occur as clusters of individual vents that expel both hydrothermal fluids and gas. Regions surrounding the vents are colonized by unique, chemotropic biologic communities and suggest that hydrothermal input plays an important role in the nutrient dynamics of the lake's ecosystem. The main concentration of hydrothermal activity occurs in the northeast region of the main lake body in a number of locations including: (1) along the shoreline from the southern edge of Sedge Bay to the inlet of Pelican Creek; (2) the central portion of the partially submerged Mary Bay phreatic explosion crater, within deep (30--50 m) fissures; (3) along the top of a 3 km long, steep-sided ridge that extends from the southern border of Mary Bay, south-southeast into the main lake basin; and (4) east of Stevenson Island along the lower portion of the slope (50--107 m) into the lake basin, within an anastomosing series of north to northwest trending, narrow troughs or fissures. Hydrothermal vents were also located within, and surrounding the West Thumb of Yellowstone Lake, with the main concentration occurring the offshore of the West Thumb and Potts Geyser Basin. Hydrothermal vents in Yellowstone Lake occur along fractures that have penetrated the lake sediments or along the tops of ridges and near shore areas. Underneath the lake, rising hydrothermal fluids encounter a semi-permeable cap of lake sediments. Upwardly convecting hydrothermal fluid flow may be diverted by the impermeable lake sediments along the buried, pre-existing topography. These fluids may continue to rise along topography until fractures are encountered, or the lake sediment cover is thinned sufficiently to allow egress of the fluids.

  11. Carbon fluxes from hydrothermal vents off Milos, Aegean Volcanic Arc, and the influence of venting on the surrounding ecosystem.

    NASA Astrophysics Data System (ADS)

    Dando, Paul; Aliani, Stefano; Bianchi, Nike; Kennedy, Hilary; Linke, Peter; Morri, Carla

    2014-05-01

    The island of Milos, in the Aegean Sea, has extensive hydrothermal fields to the east and southeast of the island with additional venting areas near the entrance to and within the central caldera. A calculation of the total area of the vent fields, based on ship and aerial surveys, suggested that the hydrothermal fields occupy 70 km2, twice the area previously estimated. The vents ranged in water depth from the intertidal to 300 m. As a result of the low depths there was abundant free gas release: in places water boiled on the seabed. The stream of gas bubbles rising through the sandy seabed drove a shallow re-circulation of bottom seawater. The majority of the water released with the gas, with a mean pH of 5.5, was re-circulated bottom water that had become acidified in contact with CO2 gas and was often diluted by admixture with the vapour phase from the deeper fluids. The major component of the free gas, 80%, was CO2, with an estimated total flux of 1.5-7.5 x 1012 g a-1. The methane flux, by comparison, was of the order of 1010 g a.-1 Using methane as a tracer it was shown that the major gas export from the vents was below the thermocline towards the southwest, in agreement with the prevailing currents. Areas of hydrothermal brine seepage occurred between the gas vents and occasional brine pools were observed in seabed depressions. Under relatively calm conditions, many of the brine seeps were covered by thick minero-bacterial mats consisting of silica and sulphur and surrounded by mats of diatoms and cyanobacteria. The minerals were not deposited in the absence of bacteria. Storms disrupted the mats, leading to an export of material to the surrounding area. Stable isotope data from sediments and sediment trap material suggested that exported POM was processed by zooplankton. The combined effects of the geothermal heating of the seabed, the large gas flux, variation in the venting and the effect of the brine seeps had a dramatic effect on the surrounding

  12. Time Series Studies of Faunal Colonization and Temperature Variations at Diffuse-Flow Hydrothermal Vent Sites Near 9° 50'N, EPR

    NASA Astrophysics Data System (ADS)

    Shank, T. M.; Scheirer, D.; Fornari, D. J.

    2001-12-01

    The April 1991 discovery of newly-formed hydrothermal vents in areas of intense volcanic activity along the East Pacific Rise (EPR) between 9\\deg 45' and 9\\deg 52'N provided a unique opportunity to follow temporal changes in biological community structure and vent fluid temperature and chemistry since the birth of numerous deep-sea hydrothermal vents. Discrete high resolution biological imaging and fluid chemistry samples have been collected in conjunction with autonomous temperature probe arrays that have monitored the fluid temperature at 10-15 minute intervals since 1993, within four diffuse-flow regions of the BioTransect at 9\\deg 50'N on the EPR. During ~1 year deployments between 1993 and 2000, active vent invertebrate colonization by greater than 500 individuals (representing 8 species) occurred on more than 60 recovered temperature probes comprising 12 arrays. On each temperature probe, the position and length of individual organisms were mapped to correlate the position of settlement and growth rates with the environmental temperatures experienced by these colonists. Regressions of colonization parameters with temperature measures (such as average, minimum, and maximum T) from multiple communities, along with size-frequency histograms and growth rates, indicate that the abundance of the vestimentiferan Tevnia jerichonana was greater than Riftia pachyptila tube worms and bathymodiolid mussels on temperature probes bathed in significantly higher average and maximum temperatures. Results strongly suggest that Tevnia has a greater physiological tolerance to higher temperatures and elevated geochemical concentrations (e.g., sulfide species) than Riftia and mussels. Significant differential colonization onto probes within an array demonstrates thermal and chemical habitat preferences by vestimentiferan tubeworms and mussels. Thus, patterns of active faunal colonization in hydrothermal areas vary with differing temperature regimes and associated environmental

  13. Filtered-vented containment systems. [PWR; BWR

    SciTech Connect

    Benjamin, A S; Walling, H C; Cybulskis, P; DiSalvo, R

    1980-01-01

    The potential benefits of filtered-vented containment systems as a means for mitigating the effects of severe accidents are analyzed. Studies so far have focused upon two operating reactor plants in the United States, a large-containment pressurized water reactor and a Mark I containment boiling water reactor. Design options that could be retrofitted to these plants are described including single-component once-through venting systems, multiple-component systems with vent and recirculation capabilities, and totally contained venting systems. A variety of venting strategies are also described which include simple low-volume containment pressure relief strategies and more complicated, high-volume venting strategies that require anticipatory actions. The latter type of strategy is intended for accidents that produce containment-threatening pressure spikes.

  14. Evaluation of aperture cover tank vent nozzles for the IRAS spacecraft

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1983-01-01

    The influence of coefficients for the three axes of the Infrared Astronomical Satellite (IRAS) were established to determine the maximum allowable thrust difference between the two vent nozzles of the aperture cover tank low thrust vent system and their maximum misalignment. Test data generated by flow and torque measurements permitted the selection of two nozzles whose thrust differential was within the limit of the attitude control capability. Based on thrust stand data, a thrust vector misalignment was indicated that was slightly higher than permissible for the worst case, i.e., considerable degradation of the torque capacity of the attitude control system combined with venting of helium at its upper limit. The probability of destabilizing the IRAS spacecraft by activating the venting system appeared to be very low. The selection and mounting of the nozzles have satisfied all the requirements for the safe venting of helium.

  15. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean.

    PubMed

    Edmonds, H N; Michael, P J; Baker, E T; Connelly, D P; Snow, J E; Langmuir, C H; Dick, H J B; Mühe, R; German, C R; Graham, D W

    2003-01-16

    Submarine hydrothermal venting along mid-ocean ridges is an important contributor to ridge thermal structure, and the global distribution of such vents has implications for heat and mass fluxes from the Earth's crust and mantle and for the biogeography of vent-endemic organisms. Previous studies have predicted that the incidence of hydrothermal venting would be extremely low on ultraslow-spreading ridges (ridges with full spreading rates <2 cm x yr(-1)-which make up 25 per cent of the global ridge length), and that such vent systems would be hosted in ultramafic in addition to volcanic rocks. Here we present evidence for active hydrothermal venting on the Gakkel ridge, which is the slowest spreading (0.6-1.3 cm x yr(-1)) and least explored mid-ocean ridge. On the basis of water column profiles of light scattering, temperature and manganese concentration along 1,100 km of the rift valley, we identify hydrothermal plumes dispersing from at least nine to twelve discrete vent sites. Our discovery of such abundant venting, and its apparent localization near volcanic centres, requires a reassessment of the geologic conditions that control hydrothermal circulation on ultraslow-spreading ridges.

  16. A Mouthful of Dirt: Feedbacks Between the Presence and Nature of In-Vent Debris and the Dynamics of Strombolian Explosions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Capponi, A.; Scarlato, P.; Palladino, D. M.

    2015-12-01

    Textural, modelling and observational evidences indicate the presence of loose to molten debris capping the magma column in the conduit of Strombolian-type volcanoes. This debris is thought to have a role in controlling the release of gas during one explosion and the amount and grain size of the eruption products. Here we report direct observations on the behaviour of debris covering the eruptive vents during Strombolian explosions at Stromboli volcano, Italy. During several field campaigns from 2008 onwards, the eruptive vents were in direct view from our observation point, and volcanic activity was recorded using a variety of video equipment, including high-speed and thermal cameras. Debris-covered vents were observed in several cases. In such cases the explosion was preceded by the gradual, time-exponential bulging of the debris cover, followed, in some cases, by a deflation and in-vent collapse of the debris. The amount and grain size distribution of the debris control the eruptive behaviour. Often, blocks and lapilli may not be entirely removed by explosions, which may occur through the debris and around the larger blocks. In such cases the explosions tend to erupt relatively cold (non-plastic) bombs and lapilli, and minor amounts of ash. Finer-grained debris covers are entirely removed by explosions, and can be entrained in the explosions and collapse separately to form small pyroclastic density currents. The ensuing explosions are invariably ash-rich. Both fine and coarse debris is observed to fall back in the vent after each explosion but also to gravitationally accumulate in between the explosions from the seep crater flanks. In contrast, open-vent eruptions tend to erupt hotter (plastically deforming) pyroclasts at a higher exit velocity.

  17. New Frontiers in Arctic Exploration: Autonomous Location and Sampling of Hydrothermal Vents Under the Ice at Earth's Slowest Spreading Ridge (IPY Project 173)

    NASA Astrophysics Data System (ADS)

    Edmonds, H. N.; Reves-Sohn, R.; Singh, H.; Shank, T. M.; Humphris, S.; Seewald, J.; Akin, D.; Bach, W.; Nogi, Y.; Pedersen, R.

    2006-12-01

    As part of IPY project #173, we are planning an international expedition for 2007 to locate and study hydrothermal vents on the ultraslow-spreading Gakkel Ridge, at depths greater than 4000 m beneath the permanent ice cap. This effort necessitates the development of novel exploration technologies, because the Gakkel Ridge rift valley is inaccessible to traditional deep submergence tools. With funding from NASA, NSF, and the private sector we have developed two new autonomous underwater vehicles that will find and map hydrothermal plumes in the water column, trace the buoyant plume stem to the seafloor source, and then map, photograph, and collect samples from the vent sites. The Gakkel Ridge is a key target for hydrothermal exploration not only because of its spreading rate but also because its geographic and hydrographic isolation from other portions of the mid-ocean ridge system have important implications for novel endemic vent fauna. Our major scientific themes are the geological diversity and biogeography of hydrothermal vents on the Arctic mid-ocean ridge system. Our major technology theme is autonomous exploration and sample return with an explicit mandate to develop techniques and methods for eventual use in astrobiology missions to search for life under the ice covered oceans of Europa, a moon of Jupiter. In addition to the US-led Gakkel Ridge expedition, a Norway-led expedition will target sites in seasonally ice-free water over the Mohns Ridge. The results of these two expeditions will be combined to reveal systematic patterns regarding biogeography (through both community-level and genetic-level investigations) of vent-endemic fauna, to study the differences between basalt vs. peridotite hosted vent fields, and to improve our understanding of hydrothermal circulation at ultra- slow spreading plate boundaries where amagmatic extension and long-lived faulting predominate. The expeditions will provide educational and outreach activities through the award

  18. Hydrothermal vents and methane seeps: Rethinking the sphere of influence

    USGS Publications Warehouse

    Levin, Lisa A.; Baco, Amy; Bowden, David; Colaco, Ana; Cordes, Erik E.; Cunha, Marina; Demopoulos, Amanda; Gobin, Judith; Grupe, Ben; Le, Jennifer; Metaxas, Anna; Netburn, Amanda; Rouse, Greg; Thurber, Andrew; Tunnicliffe, Verena; Van Dover, Cindy L.; Vanreusel, Ann; Watling, Les

    2016-01-01

    Although initially viewed as oases within a barren deep ocean, hydrothermal vent and methane seep communities are now recognized to interact with surrounding ecosystems on the sea floor and in the water column, and to affect global geochemical cycles. The importance of understanding these interactions is growing as the potential rises for disturbance from oil and gas extraction, seabed mining and bottom trawling. Here we synthesize current knowledge of the nature, extent and time and space scales of vent and seep interactions with background systems. We document an expanded footprint beyond the site of local venting or seepage with respect to elemental cycling and energy flux, habitat use, trophic interactions, and connectivity. Heat and energy are released, global biogeochemical and elemental cycles are modified, and particulates are transported widely in plumes. Hard and biotic substrates produced at vents and seeps are used by “benthic background” fauna for attachment substrata, shelter, and access to food via grazing or through position in the current, while particulates and fluid fluxes modify planktonic microbial communities. Chemosynthetic production provides nutrition to a host of benthic and planktonic heterotrophic background species through multiple horizontal and vertical transfer pathways assisted by flow, gamete release, animal movements, and succession, but these pathways remain poorly known. Shared species, genera and families indicate that ecological and evolutionary connectivity exists among vents, seeps, organic falls and background communities in the deep sea; the genetic linkages with inactive vents and seeps and background assemblages however, are practically unstudied. The waning of venting or seepage activity generates major transitions in space and time that create links to surrounding ecosystems, often with identifiable ecotones or successional stages. The nature of all these interactions is dependent on water depth, as well as

  19. Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse

    2010-01-01

    Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.

  20. Previously unsuspected dietary habits of hydrothermal vent fauna: the bactivorous shrimp Rimicaris hybisae can be carnivorous or even cannibalistic

    NASA Astrophysics Data System (ADS)

    Versteegh, Emma; Van Dover, Cindy; Coleman, Max

    2014-05-01

    Most hydrothermal vents support productive communities, with chemosynthetic bacteria at the base of the food web. They form a potentially important link in global geochemical cycles. However, few data yet exist on their significance in ocean biogeochemistry and related ecological processes. We present results on the structure of part of the food web around hydrothermal vents of the Mid-Cayman Rise (MCR), revealing previously unknown life-history traits of the alvinocarid shrimp species Rimicaris hybisae. We also demonstrate that stable carbon isotope ratios (δ13C values) are an excellent tracer of trophic positions in these ecosystems, in spite of recent findings arguing otherwise. Two hydrothermal vent fields have been described at the ultra-slow spreading ridge of the MCR. These include the world's deepest hydrothermal vents (Piccard field ~4985 m), which support a food web, which includes bactivorous shrimp and carnivorous anemones. The nearby Von Damm vent field (~2300 m) supports a more complex food web, with more primary producers, and probably some influx of photosynthetically produced carbon. Rimicaris hybisae is abundant at both known MCR vent fields and shows a high degree of spatial variability in population structure and reproductive features. In previous work it has been considered bactivorous. Large variations in tissue δ13C values remained largely unexplained, and it has been argued that δ13C values are not a good food web tracer in hydrothermal vent ecosystems. We observed that shrimp tended to be either in dense aggregations on active chimneys or more sparsely distributed, peripheral shrimp in ambient or near-ambient temperatures. With the hypothesis that varying δ13C values show real differences in food sources between individuals and that shrimp in different locales might have different diets, we collected shrimp from both environments at the Von Damm site during E/V Nautilus (NA034, August 2013) and examined their gut contents. Stomach

  1. Heat and Volume Fluxes at the Turtle Pits Vent Site, southern Mid Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Köhler, Janna; Walter, Maren; Mertens, Christian; Sültenfuß, Jürgen; Rhein, Monika

    2010-05-01

    The Turtle Pits vent site consists of eight known high temperature vents and several diffuse vent sites which are distributed over three hydrothermal fields: Turtle Pits, Comfortless Cove, and Red Lion. These vent fields are located in a north-south orientated rift valley at the Mid-Atlantic Ridge (MAR) near 5°S. The total volume and heat emissions of the entire Turtle Pits site have been calculated with three different approaches using data collected during a Meteor cruise in May 2006 and a L'Atalante cruise in January 2008. The data sets consist of vertical profiles and towed transects of temperature, salinity, and turbidity, as well as direct velocity measurements with a lowered acoustic Doppler current profiler (LADCP) and water samples for Helium isotope analysis. Vent fluid samples for noble gas analysis where taken with ROVs. Since the vent fluid is highly enriched in primordial 3He this noble gas can be used as a conservative tracer for vent fluid. The geographical setting of the vent site confines the particle plume to the rift valley since the depth of the valley exceeds the rise height of the plume. Therefore the fluxes of heat and volume can be estimated from the horizontal helium transport in the valley in combination with a mean 3He endmember concentration determined from the water samples taken with the ROVs. The comparison of the 3He concentrations measured south of the hydrothermal vents with the 3He signal north of the hydrothermal vents suggests a rather strong northward flow. This is confirmed by the tide corrected velocities observed with the LADCP during the Meteor cruise. The northward volume transport has been calculated using the local bathymetry and tide corrected velocities from the Meteor cruise. In combination with the 3He concentrations and the average 3He endmember concentration a flux of 1000 l/s is estimated, which corresponds to a heat flux of 1400 MW. The measured temperature anomalies within the plume combined with the known

  2. An active antenna for ELF magnetic fields

    NASA Technical Reports Server (NTRS)

    Sutton, John F.; Spaniol, Craig

    1994-01-01

    The work of Nikola Tesla, especially that directed toward world-wide electrical energy distribution via excitation of the earth-ionosphere cavity resonances, has stimulated interest in the study of these resonances. Not only are they important for their potential use in the transmission of intelligence and electrical power, they are important because they are an integral part of our natural environment. This paper describes the design of a sensitive, untuned, low noise active antenna which is uniquely suited to modern earth-ionosphere cavity resonance measurements employing fast-Fourier transform techniques for near-real-time data analysis. It capitalizes on a little known field-antenna interaction mechanism. Recently, the authors made preliminary measurements of the magnetic fields in the earth-ionosphere cavity. During the course of this study, the problem of designing an optimized ELF magnetic field sensor presented itself. The sensor would have to be small, light weight (for portable use), and capable of detecting the 5-50 Hz picoTesla-level signals generated by the natural excitations of the earth-ionosphere cavity resonances. A review of the literature revealed that past researchers had employed very large search coils, both tuned and untuned. Hill and Bostick, for example, used coils of 30,000 turns wound on high permeability cores of 1.83 m length, weighing 40 kg. Tuned coils are unsuitable for modern fast-Fourier transform data analysis techniques which require a broad spectrum input. 'Untuned' coils connected to high input impedance voltage amplifiers exhibit resonant responses at the resonant frequency determined by the coil inductance and the coil distributed winding capacitance. Also, considered as antennas, they have effective areas equal only to their geometrical areas.

  3. Field Operations Program Activities Status Report

    SciTech Connect

    J. E. Francfort; D. V. O'Hara; L. A. Slezak

    1999-05-01

    The Field Operations Program is an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed by the Idaho National Engineering and Environmental Laboratory. The Program's goals are to evaluate electric vehicles in real-world applications and environments, support electric vehicle technology advancement, develop infrastructure elements necessary to support significant electric vehicle use, support increased use of electric vehicles in federal fleets, and increase overall awareness and acceptance of electric vehicles. This report covers Program activities from fiscal year 1997 through mid-fiscal year 1999. The Field Operations Program succeeded the Site Operator Program, which ended in September 1996. Electric vehicle testing conducted by the Program includes baseline performance testing (EV America testing), accelerated reliability (life-cycle) testing, and fleet testing. The baseline performance parameters include accelerations, braking, range, energy efficiency, and charging time. The Program collects accelerated reliability and fleet operations data on electric vehicles operated by the Program's Qualified Vehicle Testing (QVT) partners. The Program's QVT partners have over 3 million miles of electric vehicle operating experience.

  4. Temporal behavior and temperatures of Yasur volcano, Vanuatu from field remote sensing observations, May 2014

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Lopes, R. M. C.; Lorenz, R. D.; Radebaugh, J.; Howell, R. R.

    2016-08-01

    We documented eruption activity at three primary vents at Yasur volcano, Tanna Island, Vanuatu using portable instrumentation in the field over a period of 5 h on 21 May 2014, and acquired aerial images of the craters and vents on 22 May 2014. Although limited in duration, our observations of eruption intervals, durations, temperatures, and speeds of ejected material illustrate the characteristics of the activity at the time at each of the primary vents, providing a useful snapshot of eruption behavior and revealing continued variability at Yasur in comparison to other observation campaigns. Hand-held, high-resolution, near-infrared observations of one of the vents gave peak temperatures of 850 °C to 930 °C for ejected clasts, with a maximum temperature of 1033 °C. These temperatures are significantly higher than previous measurements because exposed lavas could be resolved at timescales less than a second. Our aerial near-infrared images allowed us to estimate the combined area of the active vents within the crater to be 150 m2, and comparison to MODIS radiance measurements in the same time frame yields temperatures, averaged over the combined vent area, of 530-730 °C. In the context of previous observations at Yasur, the activity in May 2014 exhibited lower overall intensity, as well as differences in the nature of the eruptions at the various vents, providing insight regarding the temporal variability of Yasur's activity.

  5. Integrated thermal and geochemical export from a single vent-site: new constraints on axial hydrothermal fluxes.

    NASA Astrophysics Data System (ADS)

    German, C. R.; Amores Theme 1 Science Team

    2003-04-01

    During the first 25 years of hydrothermal research, more than 100 different sites of hydrothermal activity have been located, in all ocean basins and at all ridge-spreading rates. What has remained elusive, however, has been calculation of the total thermal and chemical fluxes emitted to the deep-ocean from any one vent-site. Here we combine long-term physical oceanographic investigations with detailed plume-process studies to calculate integrated physical and biogeochemical fluxes from the Rainbow hydrothermal field, 36N, Mid-Atlantic Ridge. The Rainbow vent-site is situated at a water depth of ca. 2300 m close to the NE limit of the S.AMAR segment, near 36^o12'N (ca.200nm SW of the Azores). This site, which is located at the intersection between the MAR rift-valley and a cross-cutting non-transform discontinuity, exhibits high-temperature venting hosted in serpentinised ultramafic rocks resulting in chemically distinctive fluid compositions (Douville et al., 2002). Our calculated fluxes from this study allow new constraints to be placed upon the partitioning of axial hydrothermal flow between focussed (geochemically enriched) high-temperature discharge and more "spent" diffuse axial flow. In terms of heat-flow, the global axial hydrothermal flux of ˜2.8 TW (Elderfield &Schultz, 1996) could be accommodated by ge1000 Rainbow-size vents at a net spacing of ca. 50-60 km around the global ridge-crest. By contrast, global geochemical fluxes of Fe, CH_4 and Cu could all be balanced if as little as ˜10% of the global axial heat-flux were provided by Rainbow-like systems. Because those tracers are all unusually enriched in vent-fluids at Rainbow, however, a more representative value is probably that obtained from a consideration of Mn, P, V &U fluxes. Those data all indicate balance if ˜33% of the global axial heat-flux occurs as Rainbow-like focussed flow. This would imply a total of ca. 400 large high-temperature vent-fields, worldwide, at spacings of 100-600 km

  6. Subsurface magma pathways inferred from statistical analysis of volcanic vent distribution and numerical model of magma ascent

    NASA Astrophysics Data System (ADS)

    Germa, Aurelie; Connor, Laura; Connor, Chuck; Malservisi, Rocco

    2015-04-01

    One challenge of volcanic hazard assessment in distributed volcanic fields (large number of small-volume basaltic volcanoes along with one or more silicic central volcanoes) is to constrain the location of future activity. Although the extent of the source of melts at depth can be known using geophysical methods or the location of past eruptive vents, the location of preferential pathways and zones of higher magma flux are still unobserved. How does the spatial distribution of eruptive vents at the surface reveal the location of magma sources or focusing? When this distribution is investigated, the location of central polygenetic edifices as well as clusters of monogenetic volcanoes denote zones of high magma flux and recurrence rate, whereas areas of dispersed monogenetic vents represent zones of lower flux. Additionally, central polygenetic edifices, acting as magma filters, prevent dense mafic magmas from reaching the surface close to their central silicic system. Subsequently, the spatial distribution of mafic monogenetic vents may provide clues to the subsurface structure of a volcanic field, such as the location of magma sources, preferential magma pathways, and flux distribution across the field. Gathering such data is of highly importance in improving the assessment of volcanic hazards. We are developing a modeling framework that compares output of statistical models of vent distribution with outputs form numerical models of subsurface magma transport. Geologic data observed at the Earth's surface are used to develop statistical models of spatial intensity (vents per unit area), volume intensity (erupted volume per unit area) and volume-flux intensity (erupted volume per unit time and area). Outputs are in the form of probability density functions assumed to represent volcanic flow output at the surface. These are then compared to outputs from conceptual models of the subsurface processes of magma storage and transport. These models are using Darcy's law

  7. Islands in the Sea: the Patchy Distribution and Physiological Poise of Vent Microbes and the Implications for Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Girguis, P. R.

    2014-12-01

    The last thirty-five years have been a watershed for deep-sea microbiology. The discovery of hydrothermal vents and their extraordinarily productive communities, along with the discovery of the deep subsurface biosphere and their slow-growing, energy-starved microbial communities have changed our ideas about the nature and extent of microbial life in the deep sea. Moreover, the avent of genomics and other -omics further reshaped our understanding of microbial evolution and ecology. Nevertheless, after decades of research, there remain a number of long-standing questions regarding the distribution and activity of microbes in situ. For example, we know that hydrothermal vents are energy-rich environments, and the energy for microbial primary productivity at hydrothermal vents is primarily derived from compounds that are in disequilibria between hot, reduced thermal fluids and the ambient, oxidized bottom seawater. However, we have a rudimentary understanding of how microbes are distributed within this geochemical gradient, and how temporal variability in fluid flow and even eruptions influences primary and secondary productivity. At the other extreme, deep subsurface environs can be very energy limiting, and microbes are seemingly limited in their access to either electron donors (e.g. dissolved organic matter, or DOM) or electron acceptors (e.g. oxygen). Yet here, recent data revealed patterns of microbial activity in the deep subsurface that are inconsistent with our conventional wisdom, and suggest that the availability of electron donors/acceptors may be greater than previously thought. Here we present our latest data, as well as the technologies and methods that allow us to synoptically measure geochemistry and microbial processes (community composition and gene expression) over space and time. Our findings reveal striking patterns of microbial distribution, gene expression and activity within a vent field and in the deep subsurface that begin to shed some light

  8. Molecular isotopic evidence for anaerobic oxidation of methane in deep-sea hydrothermal vent environment in Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Uchida, M.; Takai, K.; Inagaki, F.

    2003-04-01

    Large amount of methane in anoxic marine sediments as well as cold seeps and hydrothermal vents is recycled through for an anoxic oxidation of methane processes. Now that combined results of field and laboratory studies revealed that microbiological activity associated with syntrophic consortium of archaea performing reversed methanogenesis and sulfate-reducing bacteria is significant roles in methane recycling, anaerobic oxidation of methane (AOM). In this study, we examined the diversity of archaeal and bacterial assemblages of AOM using compound-specific stable carbon isotopic and phylogenetic analyses. "Iheya North" in Okinawa Trough is sediment-rich, back arc type hydrothermal system (27^o47'N, 126^o53'E). Sediment samples were collected from three sites where are "bubbling sites", yellow-colored microbial mats are formed with continuous bubbling from the seafloor bottom, vent mussel's colonies site together with slowly venting and simmering, and control site off 100 m distance from thermal vent. This subsea floor structure has important effect in the microbial ecosystem and interaction between their activity and geochemical processes in the subseafloor habitats. Culture-independent, molecular biological analysis clearly indicated the presence of thermophilic methanogens in deeper area having higher temperatures and potential activity of AMOs consortium in the shallower area. AMO is composed with sulfate-reducing bacterial components (Desulfosarcina spp.) and anoxic methane oxidizing archaea (ANME-2). These results were consistent with the results of compound-specific carbon analysis of archaeal biomarkers. They showed extremely depleted 13C contents (-80 ppm ˜ -100 ppm), which also appeared to be capable of directly oxidizing methane.

  9. DUCKS: Low cost thermal monitoring units for near-vent deployment

    USGS Publications Warehouse

    Harris, A.; Pirie, D.; Horton, K.; Garbeil, H.; Pilger, E.; Ramm, H.; Hoblitt, R.; Thornber, C.; Ripepe, M.; Marchetti, E.; Poggi, P.

    2005-01-01

    During 1999 we designed and tested a thermal monitoring system to provide a cheap, robust, modular, real-time system capable of surviving the hostile conditions encountered proximal to active volcanic vents. In November 2000 the first system was deployed at Pu'u 'O'o (Kilauea, Hawai'i) to target persistently active vents. Aside from some minor problems, such as sensor damage due to tampering, this system remained operational until January 2004. The success of the prototype system led us to use the blueprint for a second installation at Stromboli (Aeolian Islands, Italy). This was deployed, dug into a bomb-proof bunker, during May 2002 and survived the April 2003 paroxysmal eruption despite being located just 250 m from the vent. In both cases, careful waterproofing of connectors and selection of suitable protection has prevented water damage and corrosion in the harsh atmosphere encountered at the crater rim. The Pu'u 'O'o system cost ???US$10,000 and comprises four modules: sensors, transmission and power hub, repeater station and reception site. The sensor component consists of three thermal infrared thermometers housed in Pelican??? cases fitted with Germanium-Arsenide-Selenium windows. Two 1?? field of view (FOV) sensors allow specific vents to be targeted and a 60?? FOV sensor provides a crater floor overview. A hard wire connection links to a Pelican???-case-housed microprocessor, modem and power module. From here data are transmitted, via a repeater site, to a dedicated PC at the Hawaiian Volcano Observatory. Here data are displayed with a delay of ???3 s between acquisition and display. The modular design allows for great flexibility. At Stromboli, 1?? and 15?? FOV sensor modules can be switched depending changes in activity style and crater geometry. In addition a direct line of site to the Stromboli reception center negates the repeater site requirement, reducing the cost to US$5500 for a single sensor system. We have also constructed self-contained units

  10. DUCKS: Low cost thermal monitoring units for near-vent deployment

    NASA Astrophysics Data System (ADS)

    Harris, Andrew; Pirie, Dawn; Horton, Keith; Garbeil, Harold; Pilger, Eric; Ramm, Hans; Hoblitt, Rick; Thornber, Carl; Ripepe, Maurizio; Marchetti, Emanuele; Poggi, Pasquale

    2005-05-01

    During 1999 we designed and tested a thermal monitoring system to provide a cheap, robust, modular, real-time system capable of surviving the hostile conditions encountered proximal to active volcanic vents. In November 2000 the first system was deployed at Pu'u 'O'o (Kilauea, Hawai'i) to target persistently active vents. Aside from some minor problems, such as sensor damage due to tampering, this system remained operational until January 2004. The success of the prototype system led us to use the blueprint for a second installation at Stromboli (Aeolian Islands, Italy). This was deployed, dug into a bomb-proof bunker, during May 2002 and survived the April 2003 paroxysmal eruption despite being located just 250 m from the vent. In both cases, careful waterproofing of connectors and selection of suitable protection has prevented water damage and corrosion in the harsh atmosphere encountered at the crater rim. The Pu'u 'O'o system cost ˜US10,000 and comprises four modules: sensors, transmission and power hub, repeater station and reception site. The sensor component consists of three thermal infrared thermometers housed in Pelican™ cases fitted with Germanium-Arsenide-Selenium windows. Two 1° field of view (FOV) sensors allow specific vents to be targeted and a 60° FOV sensor provides a crater floor overview. A hard wire connection links to a Pelican™-case-housed microprocessor, modem and power module. From here data are transmitted, via a repeater site, to a dedicated PC at the Hawaiian Volcano Observatory. Here data are displayed with a delay of ˜3 s between acquisition and display. The modular design allows for great flexibility. At Stromboli, 1° and 15° FOV sensor modules can be switched depending changes in activity style and crater geometry. In addition a direct line of site to the Stromboli reception center negates the repeater site requirement, reducing the cost to US5500 for a single sensor system. We have also constructed self-contained units

  11. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: (1) An integral vent system listed or certified as part of the appliance. (2) A venting system... roof line or outside the wall line may be installed at the site. Sectional venting systems shall...

  12. 46 CFR 151.15-5 - Venting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Pressure-vacuum venting. A normally closed venting system fitted with a device to automatically limit the pressure or vacuum in the tank to design limits. Pressure-vacuum relief valves shall comply with the... devices in accordance with the requirements of § 54.15-13 of this chapter. (2) When a...

  13. Hydro-Thermal Vent Mapping with Multiple AUV’s

    DTIC Science & Technology

    2016-06-07

    Lisbon (IST) have a long standing memorandum of agreement dating back to 1994 for the exchange of scientific ideas, visits of faculty and students...and to perform collaborative work . In the past we have collaborated on joint papers, the shared supervision of doctoral work , and a shared effort on the...a scientific need to study the vents with more detail than possible using divers and cameras, this also presents a parallel to the mine field

  14. Hydrothermal Vents in Yellowstone Lake: Chemical Fluxes, Siliceous Deposits, and Collapse Structures

    NASA Astrophysics Data System (ADS)

    Shanks, W. P.; Morgan, L. A.; Balistrieri, L.; Alt, J.; Meeker, G.

    2002-12-01

    The geochemistry of Yellowstone Lake is strongly influenced by sublacustrine hydrothermal vent activity. The hydrothermal source fluid is identified using Cl and dD data on water column and sublacustrine hydrothermal vent fluid samples. Silica-rich hydrothermal deposits occur on the lake bottom near active and presently inactive hydrothermal vents. Pipe- and flange-like deposits contain cemented and recrystallized diatoms and represent pathways for hydrothermal fluid migration. Another major type of hydrothermal deposit comprises hard, porous siliceous spires up to 7 m tall that occur in 15 m of water in Bridge Bay. Bridge Bay spires are hydrothermal silica deposits formed in place by growth of chimney-like features from lake-bottom hydrothermal vents. The Cl concentrations indicate that Yellowstone Lake water is about 1 percent hydrothermal source fluid and 99 percent inflowing stream water and that the flux is about 10 percent of the total hydrothermal water flux in Yellowstone National Park. With recent swath-sonar mapping studies that show numerous new hydrothermal features, Yellowstone Lake should now be considered one of the most significant hydrothermal basins in the Park. Many lake-bottom hydrothermal vents occur in small depressions that are clearly imaged on multibeam sonar, some of which are interpreted as collapse structures based on seismic reflection data. Sediments collected from such vents show chemical evidence of leaching of 60-70 wt. percent SiO2, which may result in volume reductions up to 80 percent and provides a mechanism for vent structure formation.

  15. Testing of an Ammonia EVA Vent Tool for the International Space Station

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Stanewich, Brett J.; Wilhelm, Sheri Munekata

    2000-01-01

    When components of the International Space Station ammonia External Active Thermal Control System are replaced on-orbit, they must be vented immediately after removal from the system. Venting ensures that the component is not hard packed with liquid and thus does not pose a hazard. An extravehicular activity (EVA) vent tool has been developed to perform this function. However, there were concerns that the tool could whip, posing a hazard to the EVA astronaut, or would freeze. The ammonia vent tool was recently tested in a thermal/vacuum chamber to demonstrate that it would operate safely and would not freeze during venting. During the test, ammonia mimicking the venting conditions for six different heat exchanger initial conditions was passed through representative test articles. In the present work, the model that was used to develop the ammonia state and flow for the test points is discussed and the test setup and operation is described. The qualitative whipping and freezing results of the test are discussed and vent plume pressure measurements are described and interpreted.

  16. Google Earth locations of USA and seafloor hydrothermal vents with associated rare earth element data

    SciTech Connect

    Andrew Fowler

    2016-02-10

    Google Earth .kmz files that contain the locations of geothermal wells and thermal springs in the USA, and seafloor hydrothermal vents that have associated rare earth element data. The file does not contain the actual data, the actual data is available through the GDR website in two tier 3 data sets entitled "Compilation of Rare Earth Element Analyses from US Geothermal Fields and Mid Ocean Ridge (MOR) Hydrothermal Vents" and "Rare earth element content of thermal fluids from Surprise Valley, California"

  17. Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids

    PubMed Central

    Akerman, Nancy H.; Butterfield, David A.; Huber, Julie A.

    2013-01-01

    Microorganisms throughout the dark ocean use reduced sulfur compounds for chemolithoautotrophy. In many deep-sea hydrothermal vents, sulfide oxidation is quantitatively the most important chemical energy source for microbial metabolism both at and beneath the seafloor. In this study, the presence and activity of vent endemic Epsilonproteobacteria was examined in six low-temperature diffuse vents over a range of geochemical gradients from Axial Seamount, a deep-sea volcano in the Northeast Pacific. PCR primers were developed and applied to target the sulfur oxidation soxB gene of Epsilonproteobacteria. soxB genes belonging to the genera Sulfurimonas and Sulfurovum are both present and expressed at most diffuse vent sites, but not in background seawater. Although Sulfurovum-like soxB genes were detected in all fluid samples, the RNA profiles were nearly identical among the vents and suggest that Sulfurimonas-like species are the primary Epsilonproteobacteria responsible for actively oxidizing sulfur via the Sox pathway at each vent. Community patterns of subseafloor Epsilonproteobacteria 16S rRNA genes were best matched to methane concentrations in vent fluids, as well as individual vent locations, indicating that both geochemistry and geographical isolation play a role in structuring subseafloor microbial populations. The data show that in the subseafloor at Axial Seamount, Epsilonproteobacteria are expressing the soxB gene and that microbial patterns in community distribution are linked to both vent location and chemistry. PMID:23847608

  18. Heat flux measured acoustically at Grotto Vent, a hydrothermal vent cluster on the Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Xu, G.; Jackson, D. R.; Bemis, K. G.; Rona, P. A.

    2013-12-01

    Over the past several decades, quantifying the heat output has been a unanimous focus of studies at hydrothermal vent fields discovered around the global ocean. Despite their importance, direct measurements of hydrothermal heat flux are very limited due to the remoteness of most vent sites and the complexity of hydrothermal venting. Moreover, almost all the heat flux measurements made to date are snapshots and provide little information on the temporal variation that is expected from the dynamic nature of a hydrothermal system. The Cabled Observatory Vent Imaging Sonar (COVIS, https://sites.google.com/a/uw.edu/covis/) is currently connected to the Endeavour node of the NEPTUNE Canada observatory network (http://www.neptunecanada.ca) to monitor the hydrothermal plumes issuing from a vent cluster (Grotto) on the Endeavour Segment of the Juan de Fuca Ridge. COVIS is acquiring a long-term (20-months to date) time series of the vertical flow rate and volume flux of the hydrothermal plume above Grotto through the Doppler analysis of the acoustic backscatter data (Xu et al., 2013). We then estimate the plume heat flux from vertical flow rate and volume flux using our newly developed inverse method. In this presentation, we will briefly summarize the derivation of the inverse method and present the heat-flux time series obtained consequently with uncertainty quantification. In addition, we compare our heat-flux estimates with the one estimated from the plume in-situ temperatures measured using a Remotely Operative Vehicle (ROV) in 2012. Such comparison sheds light on the uncertainty of our heat flux estimation. Xu, G., Jackson, D., Bemis, K., and Rona, P., 2013, Observations of the volume flux of a seafloor hydrothermal plume using an acoustic imaging sonar, Geochemistry, Geophysics Geosystems, 2013 (in press).

  19. Wind tunnel investigation of a Centaur standard shroud compartment vent from Mach number of 0.70 to 1.96

    NASA Technical Reports Server (NTRS)

    Johns, A. L.; Jones, M. L.

    1975-01-01

    An experimental investigation was conducted in the Lewis Research Center 8- by 6-foot supersonic wind tunnel to determine the vent discharge coefficient for the Centaur standard shroud/liquid hydrogen tank compartment vent. The test was conducted from Mach 0.70 to 1.96 with the vent mounted in a flat plate. Full scale simulated flight hardware, such as the vent, corrugations, aft field joint ring and ice bag clip was used. Air was discharged from a plenum chamber, located on the tunnel sidewall behind the plate, through five 6.35 cm diameter vent orifices into the free stream. Boundary layer thickeners, analytically predicted displacement thickness for the vehicle nominal flight trajectory could be simulated over the Mach number range. The highest vent discharge coefficient for any given Mach number and vent pressure ratio generally occurred at the maximum displacement thickness.

  20. Subtidal gastropods consume sulfur-oxidizing bacteria: evidence from coastal hydrothermal vents

    SciTech Connect

    Stein, J.L.

    1984-02-17

    The black abalone (Haliotis cracherodii), a commercially important shallow-water gastropod common off White Point, Southern California, is found frequently at subtidal hydrothermal vents within mats of filamentous sulfur-oxidizing bacteria. Foraging vent abalones actively consume the bacteria and confine their nightly feeding forays to bacterial mats surrounding the vents. The growth of abalones consuming the sulfur bacteria exceeds that of control individuals consuming microalgae and is comparable to reported growth rates of abalones consuming macroalgae. Thus, off White Point, the black abalone may derive a portion of its nutrition from the subsidy of geothermal energy.

  1. Spatial variation in the population structure and reproductive biology of Rimicaris hybisae (Caridea: Alvinocarididae) at hydrothermal vents on the Mid-Cayman Spreading Centre.

    PubMed

    Nye, Verity; Copley, Jonathan T; Tyler, Paul A

    2013-01-01

    The dynamics and microdistribution of faunal assemblages at hydrothermal vents often reflect the fine-scale spatial and temporal heterogeneity of the vent environment. This study examined the reproductive development and population structure of the caridean shrimp Rimicaris hybisae at the Beebe and Von Damm Vent Fields (Mid-Cayman Spreading Centre, Caribbean) using spatially discrete samples collected in January 2012. Rimicaris hybisae is gonochoric and exhibits iteroparous reproduction. Oocyte size-frequency distributions (21-823 µm feret diameters) varied significantly among samples. Embryo development was asynchronous among females, which may result in asynchronous larval release for the populations. Specimens of R. hybisae from the Von Damm Vent Field (2294 m) were significantly larger than specimens from the Beebe Vent Field. Brooding females at Von Damm exhibited greater size-specific fecundity, possibly as a consequence of a non-linear relationship between fecundity and body size that was consistent across both vent fields. Samples collected from several locations at the Beebe Vent Field (4944-4972 m) revealed spatial variability in the sex ratios, population structure, size, and development of oocytes and embryos of this mobile species. Samples from the Von Damm Vent Field and sample J2-613-24 from Beebe Woods exhibited the highest frequencies of ovigerous females and significantly female-biased sex ratios. Environmental variables within shrimp aggregations may influence the distribution of ovigerous females, resulting in a spatially heterogeneous pattern of reproductive development in R. hybisae, as found in other vent taxa.

  2. Spatial Variation in the Population Structure and Reproductive Biology of Rimicaris hybisae (Caridea: Alvinocarididae) at Hydrothermal Vents on the Mid-Cayman Spreading Centre

    PubMed Central

    Nye, Verity; Copley, Jonathan T.; Tyler, Paul A.

    2013-01-01

    The dynamics and microdistribution of faunal assemblages at hydrothermal vents often reflect the fine-scale spatial and temporal heterogeneity of the vent environment. This study examined the reproductive development and population structure of the caridean shrimp Rimicaris hybisae at the Beebe and Von Damm Vent Fields (Mid-Cayman Spreading Centre, Caribbean) using spatially discrete samples collected in January 2012. Rimicaris hybisae is gonochoric and exhibits iteroparous reproduction. Oocyte size-frequency distributions (21-823 µm feret diameters) varied significantly among samples. Embryo development was asynchronous among females, which may result in asynchronous larval release for the populations. Specimens of R. hybisae from the Von Damm Vent Field (2294 m) were significantly larger than specimens from the Beebe Vent Field. Brooding females at Von Damm exhibited greater size-specific fecundity, possibly as a consequence of a non-linear relationship between fecundity and body size that was consistent across both vent fields. Samples collected from several locations at the Beebe Vent Field (4944–4972 m) revealed spatial variability in the sex ratios, population structure, size, and development of oocytes and embryos of this mobile species. Samples from the Von Damm Vent Field and sample J2-613-24 from Beebe Woods exhibited the highest frequencies of ovigerous females and significantly female-biased sex ratios. Environmental variables within shrimp aggregations may influence the distribution of ovigerous females, resulting in a spatially heterogeneous pattern of reproductive development in R. hybisae, as found in other vent taxa. PMID:23555955

  3. Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 1. Vent opening maps

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Andrea; Isaia, Roberto; Neri, Augusto; Vitale, Stefano; Aspinall, Willy P.; Bisson, Marina; Flandoli, Franco; Baxter, Peter J.; Bertagnini, Antonella; Esposti Ongaro, Tomaso; Iannuzzi, Enrico; Pistolesi, Marco; Rosi, Mauro

    2015-04-01

    Campi Flegrei is an active volcanic area situated in the Campanian Plain (Italy) and dominated by a resurgent caldera. The great majority of past eruptions have been explosive, variable in magnitude, intensity, and in their vent locations. In this hazard assessment study we present a probabilistic analysis using a variety of volcanological data sets to map the background spatial probability of vent opening conditional on the occurrence of an event in the foreseeable future. The analysis focuses on the reconstruction of the location of past eruptive vents in the last 15 ka, including the distribution of faults and surface fractures as being representative of areas of crustal weakness. One of our key objectives was to incorporate some of the main sources of epistemic uncertainty about the volcanic system through a structured expert elicitation, thereby quantifying uncertainties for certain important model parameters and allowing outcomes from different expert weighting models to be evaluated. Results indicate that past vent locations are the most informative factors governing the probabilities of vent opening, followed by the locations of faults and then fractures. Our vent opening probability maps highlight the presence of a sizeable region in the central eastern part of the caldera where the likelihood of new vent opening per kilometer squared is about 6 times higher than the baseline value for the whole caldera. While these probability values have substantial uncertainties associated with them, our findings provide a rational basis for hazard mapping of the next eruption at Campi Flegrei caldera.

  4. Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc seamounts.

    PubMed

    Huber, Julie A; Cantin, Holly V; Huse, Susan M; Welch, David B Mark; Sogin, Mitchell L; Butterfield, David A

    2010-09-01

    Low-temperature hydrothermal vent fluids represent access points to diverse microbial communities living in oceanic crust. This study examined the distribution, relative abundance, and diversity of Epsilonproteobacteria in 14 low-temperature vent fluids from five volcanically active seamounts of the Mariana Arc using a 454 tag sequencing approach. Most vent fluids were enriched in cell concentrations compared with background seawater, and quantitative PCR results indicated that all fluids were dominated by bacteria. Operational taxonomic unit-based statistical tools applied to 454 data show that all vents from the northern end of the Mariana Arc grouped together, to the exclusion of southern arc seamounts, which were as distinct from one another as they were from northern seamounts. Statistical analysis also showed a significant relationship between seamount and individual vent groupings, suggesting that community membership may be linked to geographical isolation and not geochemical parameters. However, while there may be large-scale geographic differences, distance is not the distinguishing factor in the microbial community composition. At the local scale, most vents host a distinct population of Epsilonproteobacteria, regardless of seamount location. This suggests that there may be barriers to exchange and dispersal for these vent endemic microorganisms at hydrothermal seamounts of the Mariana Arc.

  5. Preliminary Results on Mineralogy and Geochemistry of Loki's Castle Arctic Vents and Host Sediments

    NASA Astrophysics Data System (ADS)

    Barriga, Fernando; Carvalho, Carlos; Inês Cruz, M.; Dias, Ágata; Fonseca, Rita; Relvas, Jorge; Pedersen, Rolf

    2010-05-01

    The Loki's Castle hydrothermal vent field was discovered in the summer of 2008, during a cruise led by the Centre of Geobiology of the University of Bergen, integrated in the H2Deep Project (Eurocores, ESF). Loki's Castle is the northernmost hydrothermal vent field discovered to date. It is located at the junction between the Mohns Ridge and the South Knipovich Ridge, in the Norwegian-Greenland Sea, at almost 74°N. This junction shows unique features and apparently there is no transform fault to accommodate the deformation generated by the bending of the rift valley from WSW-ENE to almost N-S. The Knipovich Rigde, being a complex structure, is an ultra-slow spreading ridge, with an effective spreading rate of only ~ 6 mm/y. It is partly masked by a substantial cover of glacial and post-glacial sediments, estimated to be between 12 and 20 ky old, derived from the nearby Bear Island fan, to the East of the ridge. The Loki's Castle vent site is composed of several active, over 10 m tall chimneys, producing up to 320°C fluid, at the top of a very large sulphide mound, which is estimated to be around 200 m in diameter. About a dozen gravity cores were obtained in the overall area. From these we collected nearly 200 subsamples. Eh and pH were measured in all subsamples. The Portuguese component of the H2Deep project is aimed at characterizing, chemically and mineralogically, the sulphide chimneys and the collected sediments around the vents (up to 5 meters long gravity cores). These studies are aimed at understanding the ore-forming system, and its implications for submarine mineral exploration, as well as the relation of the microbial population with the hydrothermal component of sediments. Here we present an overview of preliminary data on the mineralogical assemblage found in the analyzed sediments and chimneys. The identification of the different mineral phases was obtained through petrographic observations of polished thin sections under the microscope (with both

  6. Design and integrated operation of an innovative thermodynamic vent system concept

    NASA Technical Reports Server (NTRS)

    Fazah, Michel M.; Lak, Tibor; Nguyen, Han; Wood, Charles C.

    1993-01-01

    A unique zero-g thermodynamic vent system (TVS) is being developed by NASA's Marshall Space Flight Center (MSFC) and Rockwell International to meet cryogenic propellant management requirements for future space missions. The design is highly innovative in that it integrates the functions of a spray-bar tank mixer and a TVS. This concept not only satisfies the requirement for efficient tank mixing and zero-g venting but also accommodates thermal conditioning requirements for other components (e.g., engine feed lines, turbopumps, and liquid acquisition devices). In addition, operations can be extended to accomplish tank chill-down, no-vent fill, and emergency venting during zero-g propellant transfer. This paper describes the system performance characterization and future test activities that are part of MSFC's Multipurpose Hydrogen Test Bed (MHTB) program. The testing will demonstrate the feasibility and merit of the design, and serve as a proof-of-concept development activity.

  7. Characterizing Microbial Community and Geochemical Dynamics at Hydrothermal Vents Using Osmotically Driven Continuous Fluid Samplers

    SciTech Connect

    Robidart, Julie C.; Callister, Stephen J.; Song, Peng F.; Nicora, Carrie D.; Wheat, Charles G.; Girguis, Peter R.

    2013-05-07

    Microbes play a key role in mediating all aquatic biogeochemical cycles, and ongoing efforts are aimed at better understanding the relationships between microbial phylogenetic and physiological diversity, and habitat physical and chemical characteristics. Establishing such relationships is facilitated by sampling and studying microbiology and geochemistry at the appropriate spatial and temporal scales, to access information on the past and current environmental state that contributes to observed microbial abundances and activities. A modest number of sampling systems exist to date, few of which can be used in remote, harsh environments such as hydrothermal vents, where the ephemeral nature of venting underscores the necessity for higher resolution sampling. We have developed a robust, continuous fluid sampling system for co-registered microbial and biogeochemical analyses. The osmosis-powered bio-osmosampling system (BOSS) use no electricity, collects fluids with daily resolution or better, can be deployed in harsh, inaccessible environments and can sample fluids continuously for up to five years. Here we present a series of tests to examine DNA, RNA and protein stability over time, as well as material compatability, via lab experiments. We also conducted two field deployments at deep-sea hydrothermal vents to assess changes in microbial diversity and protein expression as a function of the physico-chemical environment. Our data reveal significant changes in microbial community composition co-occurring with relatively modest changes in the geochemistry. These data additionally provide new insights into the distribution of an enigmatic sulfur oxidizing symbiont in its free-living state. Data from the second deployment reveal differences in the representation of peptides over time, underscoring the utility of the BOSS in meta-proteomic studies. In concert, these data demonstrate the efficacy of this approach, and illustrate the value of using this method to study

  8. Venting of Pressure through Perforated Plates

    DTIC Science & Technology

    1978-09-01

    2623, May 1976. (AD #BO11616L) 4. W.A. Keenan and J.A. Tamareto, "Blaat Envirowaent from Fully and Partially Vented Exploaions in Cubicles". Civil...the scatter of experimental results obtained from vented structures and high explosives. In Reference 4, Keenan and Tamareto developed an equation to...May 1976. (AD #BO11616L) 4. W.A. Keenan and J.A. Tamareto, "Blast Environment from l’ullyand Partially Vented Explosions in Cubicles". Civil

  9. Monitoring arrangement for vented nuclear fuel elements

    DOEpatents

    Campana, Robert J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180.degree. rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements.

  10. Conjugating effects of symbionts and environmental factors on gene expression in deep-sea hydrothermal vent mussels

    PubMed Central

    2011-01-01

    Background The deep-sea hydrothermal vent mussel Bathymodiolus azoricus harbors thiotrophic and methanotrophic symbiotic bacteria in its gills. While the symbiotic relationship between this hydrothermal mussel and these chemoautotrophic bacteria has been described, the molecular processes involved in the cross-talking between symbionts and host, in the maintenance of the symbiois, in the influence of environmental parameters on gene expression, and in transcriptome variation across individuals remain poorly understood. In an attempt to understand how, and to what extent, this double symbiosis affects host gene expression, we used a transcriptomic approach to identify genes potentially regulated by symbiont characteristics, environmental conditions or both. This study was done on mussels from two contrasting populations. Results Subtractive libraries allowed the identification of about 1000 genes putatively regulated by symbiosis and/or environmental factors. Microarray analysis showed that 120 genes (3.5% of all genes) were differentially expressed between the Menez Gwen (MG) and Rainbow (Rb) vent fields. The total number of regulated genes in mussels harboring a high versus a low symbiont content did not differ significantly. With regard to the impact of symbiont content, only 1% of all genes were regulated by thiotrophic (SOX) and methanotrophic (MOX) bacteria content in MG mussels whereas 5.6% were regulated in mussels collected at Rb. MOX symbionts also impacted a higher proportion of genes than SOX in both vent fields. When host transcriptome expression was analyzed with respect to symbiont gene expression, it was related to symbiont quantity in each field. Conclusions Our study has produced a preliminary description of a transcriptomic response in a hydrothermal vent mussel host of both thiotrophic and methanotrophic symbiotic bacteria. This model can help to identify genes involved in the maintenance of symbiosis or regulated by environmental parameters. Our

  11. Genomic variation of subseafloor archaeal and bacterial populations from venting fluids at the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Anderson, R. E.; Eren, A. M.; Stepanauskas, R.; Huber, J. A.; Reveillaud, J.

    2015-12-01

    Deep-sea hydrothermal vent systems serve as windows to a dynamic, gradient-dominated deep biosphere that is home to a wide diversity of archaea, bacteria, and viruses. Until recently the majority of these microbial lineages were uncultivated, resulting in a poor understanding of how the physical and geochemical context shapes microbial evolution in the deep subsurface. By comparing metagenomes, metatranscriptomes and single-cell genomes between geologically distinct vent fields, we can better understand the relationship between the environment and the evolution of subsurface microbial communities. An ideal setting in which to use this approach is the Mid-Cayman Rise, located on the world's deepest and slowest-spreading mid-ocean ridge, which hosts both the mafic-influenced Piccard and ultramafic-influenced Von Damm vent fields. Previous work has shown that Von Damm has higher taxonomic and metabolic diversity than Piccard, consistent with geochemical model expectations, and the fluids from all vents are enriched in hydrogen (Reveillaud et al., submitted). Mapping of both metagenomes and metatranscriptomes to a combined assembly showed very little overlap among the Von Damm samples, indicating substantial variability that is consistent with the diversity of potential metabolites in this ultramafic vent field. In contrast, the most consistently abundant and active lineage across the Piccard samples was Sulfurovum, a sulfur-oxidizing chemolithotroph that uses nitrate or oxygen as an electron acceptor. Moreover, analysis of point mutations within individual lineages suggested that Sulfurovumat Piccard is under strong selection, whereas microbial genomes at Von Damm were more variable. These results are consistent with the hypothesis that the subsurface environment at Piccard supports the emergence of a dominant lineage that is under strong selection pressure, whereas the more geochemically diverse microbial habitat at Von Damm creates a wider variety of stable

  12. Degassing during magma ascent in the Mule Creek vent (USA)

    USGS Publications Warehouse

    Stasiuk, M.V.; Barclay, J.; Carroll, M.R.; Jaupart, Claude; Ratte, J.C.; Sparks, R.S.J.; Tait, S.R.

    1996-01-01

    The structures and textures of the rhyolite in the Mule Creek vent (New Mexico, USA) indicate mechanisms by which volatiles escape from silicic magma during eruption. The vent outcrop is a 300-m-high canyon wall comprising a section through the top of a feeder conduit, vent and the base of an extrusive lava dome. Field relations show that eruption began with an explosive phase and ended with lava extrusion. Analyses of glass inclusions in quartz phenocrysts from the lava indicate that the magma had a pre-eruptive dissolved water content of 2.5-3.0 wt% and, during eruption, the magma would have been water-saturated over the vertical extent of the present outcrop. However, the vesicularity of the rhyolite is substantially lower than that predicted from closed-system models of vesiculation under equilibrium conditions. At a given elevation in the vent, the volume fraction of primary vesicles in the rhyolite increases from zero close to the vent margin to values of 20-40 vol.% in the central part. In the centre the vesicularity increases upward from approximately 20 vol.% at 300 m below the canyon rim to approximately 40 vol.% at 200 m, above which it shows little increase. To account for the discrepancy between observed vesicularity and measured water content, we conclude that gas escaped during ascent, probably beginning at depths greater than exposed, by flow through the vesicular magma. Gas escape was most efficient near the vent margin, and we postulate that this is due both to the slow ascent of magma there, giving the most time for gas to escape, and to shear, favouring bubble coalescence. Such shear-related permeability in erupting magma is supported by the preserved distribution of textures and vesicularity in the rhyolite: Vesicles are flattened and overlapping near the dense margins and become progressively more isolated and less deformed toward the porous centre. Local zones have textures which suggest the coalescence of bubbles to form permeable

  13. Geology and hydrothermal evolution of the Mothra Hydrothermal Field, Endeavour Segment, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Glickson, Deborah A.; Kelley, Deborah S.; Delaney, John R.

    2007-06-01

    Detailed characterization of the Mothra Hydrothermal Field, the most southern and spatially extensive field on the Endeavour Segment of the Juan de Fuca Ridge, provides new insights into its geologic and hydrothermal development. Meter-scale bathymetry, side-scan sonar imagery, and direct dive observations show that Mothra is composed of six actively venting sulfide clusters spaced 40-200 m apart. Chimneys within each cluster have similar morphology and venting characteristics, and all clusters host a combination of active and extinct sulfide structures. Black smoker chimneys venting fluids above 300°C are rare, while more common lower-temperature, diffusely venting chimneys support dense colonies of macrofauna and bacterial mat. Hydrothermal sediment and extinct sulfide debris cover 10-15 m of the seafloor surrounding each vent cluster, obscuring the underlying basaltic substrate of light to moderately sedimented pillow, lobate, sheet, and chaotic flows, basalt talus, and collapse terrain. Extinct sulfide chimneys and debris between the clusters indicate that hydrothermal flow was once more widespread and that it has shifted spatially over time. The most prominent structural features in the axial valley at Mothra are regional (020°) trending faults and fissures and north-south trending collapse basins. The location of actively venting clusters within the field is controlled by (1) localization of fluid upflow along the western boundary fault zone, and diversion of these fluids by antithetic faults to feed vent clusters near the western valley wall, and (2) tapping of residual magmatic heat in the central part of the axial valley, which drives flow beneath vent clusters directly adjacent to the collapse basins 70-90 m east of the western valley wall. These processes form the basis for a model of axial valley and hydrothermal system development at Mothra, in which the field is initiated by an eruptive-diking episode and sustained through intense microseismicity

  14. Distribution, abundance, and diversity patterns of the thermoacidophilic "deep-sea hydrothermal vent euryarchaeota 2".

    PubMed

    Flores, Gilberto E; Wagner, Isaac D; Liu, Yitai; Reysenbach, Anna-Louise

    2012-01-01

    Cultivation-independent studies have shown that taxa belonging to the "deep-sea hydrothermal vent euryarchaeota 2" (DHVE2) lineage are widespread at deep-sea hydrothermal vents. While this lineage appears to be a common and important member of the microbial community at vent environments, relatively little is known about their overall distribution and phylogenetic diversity. In this study, we examined the distribution, relative abundance, co-occurrence patterns, and phylogenetic diversity of cultivable thermoacidophilic DHVE2 in deposits from globally distributed vent fields. Results of quantitative polymerase chain reaction assays with primers specific for the DHVE2 and Archaea demonstrate the ubiquity of the DHVE2 at deep-sea vents and suggest that they are significant members of the archaeal communities of established vent deposit communities. Local similarity analysis of pyrosequencing data revealed that the distribution of the DHVE2 was positively correlated with 10 other Euryarchaeota phylotypes and negatively correlated with mostly Crenarchaeota phylotypes. Targeted cultivation efforts resulted in the isolation of 12 axenic strains from six different vent fields, expanding the cultivable diversity of this lineage to vents along the East Pacific Rise and Mid-Atlantic Ridge. Eleven of these isolates shared greater than 97% 16S rRNA gene sequence similarity with one another and the only described isolate of the DHVE2, Aciduliprofundum boonei T469(T). Sequencing and phylogenetic analysis of five protein-coding loci, atpA, EF-2, radA, rpoB, and secY, revealed clustering of isolates according to geographic region of isolation. Overall, this study increases our understanding of the distribution, abundance, and phylogenetic diversity of the DHVE2.

  15. 30 CFR 77.304 - Explosion release vents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosion release vents. 77.304 Section 77.304... Dryers § 77.304 Explosion release vents. Drying chambers, dry-dust collectors, ductwork connecting dryers... explosion release vents which open directly to the outside atmosphere, and all such vents shall be:...

  16. 46 CFR 153.355 - PV venting systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false PV venting systems. 153.355 Section 153.355 Shipping... Systems § 153.355 PV venting systems. When Table 1 requires a PV venting system, the cargo tank must have a PV valve in its vent line. The PV valve must be located between the tank and any connection...

  17. 46 CFR 153.355 - PV venting systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false PV venting systems. 153.355 Section 153.355 Shipping... Systems § 153.355 PV venting systems. When Table 1 requires a PV venting system, the cargo tank must have a PV valve in its vent line. The PV valve must be located between the tank and any connection...

  18. 46 CFR 153.358 - Venting system flow capacity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Venting Systems § 153.358 Venting system flow capacity. (a) The cross-sectional flow area of any vent system segment, including any PV or SR valve, must at no point be less than that of a pipe whose inside... 46 Shipping 5 2011-10-01 2011-10-01 false Venting system flow capacity. 153.358 Section...

  19. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air...

  20. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air...

  1. The Evolution of the Physical Activity Field

    ERIC Educational Resources Information Center

    Blair, Steven N.; Powell, Kenneth E.

    2014-01-01

    This article includes an historical review of research on physical activity and health, and how the findings have contributed to physical activity participation and promotion today. In the 20th century, research began to accumulate on the effects of exercise on physiological functions, and later on the relation between regular activity and various…

  2. Magnetic fields, radicals and cellular activity.

    PubMed

    Montoya, Ryan D

    2017-01-01

    Some effects of low-intensity magnetic fields on the concentration of radicals and their influence on cellular functions are reviewed. These fields have been implicated as a potential modulator of radical recombination rates. Experimental evidence has revealed a tight coupling between cellular function and radical pair chemistry from signaling pathways to damaging oxidative processes. The effects of externally applied magnetic fields on biological systems have been extensively studied, and the observed effects lack sufficient mechanistic understanding. Radical pair chemistry offers a reasonable explanation for some of the molecular effects of low-intensity magnetic fields, and changes in radical concentrations have been observed to modulate specific cellular functions. Applied external magnetic fields have been shown to induce observable cellular changes such as both inhibiting and accelerating cell growth. These and other mechanisms, such as cell membrane potential modulation, are of great interest in cancer research due to the variations between healthy and deleterious cells. Radical concentrations demonstrate similar variations and are indicative of a possible causal relationship. Radicals, therefore, present a possible mechanism for the modulation of cellular functions such as growth or regression by means of applied external magnetic fields.

  3. External Tank GH2 Vent Arm

    NASA Technical Reports Server (NTRS)

    Reichle, G. E.; Glassburn, C. W.

    1985-01-01

    Because the venting of free hydrogen gas to the atmosphere presents an extremely hazardous situation, it was necessary to devise a means for safe, controlled venting of the shuttle external tank gaseous hydrogen during and after liquid hydrogen tank loading. Several design concepts that were considered initially were discarded as unfeasible because of vehicle weight restrictions, high cost, and because the proposed structure was itself deemed a hazard due to the vehicle's nonvertical launch trajectory. These design concepts are discussed. A design employing a support structure/access arm attached to the fixed service structure was finally selected. The various design problems resolved included vent arm disconnect/drop interference, minimizing refurbishment due to launch damage, disconnect reliability, vehicle movement tracking, minimizing vent line pressure drop, and the presence of other vehicle services at the same centralized supply area. Six launches have proven the system to be reliable, efficient, and of nearly zero refurbishment cost.

  4. Shallow Water Hydrothermal Vents in the Gulf of California: Natural Laboratories for Multidisciplinary Research

    NASA Astrophysics Data System (ADS)

    Forrest, M.; Hilton, D. R.; Price, R. E.; Kulongoski, J. T.

    2015-12-01

    Modern and fossil examples of shallow water submarine hydrothermal vents occur throughout the Gulf of California. These sites offer important information about the processes involved in the extensional tectonics that created the Gulf of California and continue to shape the region to this day. Due to their accessibility, shallow water marine hydrothermal vents are far easier to access and study than their deeper analogs, and these settings can provide natural laboratories to study biogeochemical processes. Certain biogeochemical and biomineralizing processes occurring at shallow vents are very similar to those observed around deep-sea hydrothermal vents. In some cases, authigenic carbonates form around shallow vents. However, the hydrothermal precipitates are generally composed of Fe-oxyhydroxides, Mn-oxides, opal, calcite, pyrite and cinnabar, and their textural and morphological characteristics suggest microbial mediation for mineral deposition. Modern shallow-water hydrothermal vents also support complex biotic communities, characterized by the coexistence of chemosynthetic and photosynthetic organisms. These shallow vents are highly productive and provide valuable resources to local fishermen. Extant shallow water hydrothermal activity has been studied in Bahía Concepción, San Felipe, Punta Estrella, El Coloradito, Puertecitos, and around the Islas Encantadas. Discrete streams of gas bubbles are often discharged along with hot liquids at shallow water vents. The vent liquids generally exhibit lower salinities than seawater, and their isotopic compositions indicate that they contain meteoric water mixed with seawater. The composition of the shallow vent gas is primarily made up of CO2, but may also be enriched in N2, H2S, CH4, and other higher hydrocarbons. The geochemistry of these gases can be informative in determining the sources and processes involved in their generation. In particular, 3He/4He ratios may provide valuable information about the origin of

  5. Endogenous Electric Fields May Guide Neocortical Network Activity

    PubMed Central

    Fröhlich, Flavio; McCormick, David A.

    2011-01-01

    Local field potentials and the underlying endogenous electric fields (EFs) are traditionally considered to be epiphenomena of structured neuronal network activity. Recently, however, externally applied EFs have been shown to modulate pharmacologically evoked network activity in rodent hippocampus. In contrast, very little is known about the role of endogenous EFs during physiological activity states in neocortex. Here we used the neocortical slow oscillation in vitro as a model system to show that weak sinusoidal and naturalistic EFs enhance and entrain physiological neocortical network activity with an amplitude threshold within the range of in vivo endogenous field strengths. Modulation of network activity by positive and negative feedback fields based on the network activity in real-time provide direct evidence for a feedback loop between neuronal activity and endogenous EF. This significant susceptibility of active networks to EFs that only cause small changes in membrane potential in individual neurons suggests that endogenous EFs could guide neocortical network activity. PMID:20624597

  6. Chemistry of hydrothermal solutions from Pele's Vents, Loihi Seamount, Hawaii

    SciTech Connect

    Sedwick, P.N.; McMurtry, G.M. ); Macdougall, J.D. )

    1992-10-01

    Hydrothermal fluids were sampled from Pele's Vents on the summit of Loihi Seamount, an intraplate, hotspot volcano, on four occasions from February 1987 to September 1990. The warm ([le]31C) vent solutions are enriched in dissolved Si, CO[sub 2], H[sub 2]S, alkalinity, K[sup +], Li[sup +], Rb[sup +], Ca[sup 2+], Ba[sup 2+], Fe[sup 2+], Mn[sup 2+], NH[sup +][sub 4], and possibly Ni[sup 2+], and depleted in SO[sup 2-][sub 4], O[sub 2], Mg[sup 2+], [sup 87]Sr/[sup 86]Sr, NO[sup -][sub 3], and sometimes Cl[sup -] and Na[sup +] (calculated), relative to ambient seawater. Dissolved Si correlates linearly with sample temperature, suggesting that the solutions sampled from numerous vents in the [approximately]20 m diameter field have a common source and that Si can be used as a conservative tracer for mixing of the vent fluids with ambient seawater. These juvenile inputs likely reflect the shallow, hotspot setting of this hydrothermal system. A simple quantitative fluid-history model is considered and shown to be consistent with mass-balance constraints and saturation-state calculations, which suggest that the Si concentration of the fluids may be controlled by amorphous silica saturation at [approximately]31C. Observed temporal variations in fluid composition between expeditions - specifically, in Cl[sup -], A[sub T], C[sub T], Na[sup +] (calculated), Mg[sup 2+], Ca[sup 2+], Sr[sup 2+], [sup 87]Sr/[sup 86]Sr, Fe[sup 2+], Mn[sup 2+] and perhaps NH[sup +][sub 4], relative to Si - are, excepting Mg[sup 2+], [sup 87]Sr/[sup 86]Sr, and Mn[sup 2+], consistent with the effects of variable phase segregation at the proposed high-temperature endmember.

  7. Development of assemblages associated with alvinellid colonies on the walls of high-temperature vents at the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Pradillon, F.; Zbinden, M.; Le Bris, N.; Hourdez, S.; Barnay, A.-S.; Gaill, F.

    2009-09-01

    increases the mineral content of the assemblage. Active colonies do not seem to persist longer than 5 months, highlighting the rapid turnover of this habitat. Colonies collected had different species compositions, but community structures exhibited no significant variations with vent field (9°N/13°N), deployment duration (< or >1 month), or type of colony. However, multivariate analysis revealed that mineral content would best explain community structure variations. Biodiversity indexes increased quickly within the first weeks of TRAC deployment time, as well as with the amount of Alvinella tube. The development of a complex architecture may thus promote the installation of species lacking adaptations to temperature. However, our results do not support a succession pattern but rather the development of communities with slight differences in species compositions that may reflect local environmental conditions.

  8. Des Vents et des Jets Astrophysiques

    NASA Astrophysics Data System (ADS)

    Sauty, C.

    Plasma outflows from a central gravitating object are a widespread phenomenon in astrophysics. They include the solar and stellar winds, jets from Young Stellar Objects, jets from compact stellar objects and extra-galactic jets associated with Active Galactic Nuclei and quasars. Beyond this huge zoology, a common theoretical ground exists. The aim of this review is to present qualitatively the various theories of winds (Part 1) and how different astrophysical domains interplay. A more or less complete catalog of the ideas proposed for explaining the acceleration and the morphologies of winds and jets is intended. All this part avoids getting into any mathematical formalism. Some macroscopic properties of such outflows may be described by solving the time-independent and axisymmetric magnetohydrodynamic equations. This formalism, underlying most of the theories, is presented in Part 2. It helps to introduce quantitatively the free integrals that such systems possess. Those integrals play an important role in the basic physics of acceleration and collimation, in particular the mass loss rate, the angular momentum loss rate and the energy of the magnetic rotator. Most of the difficulty in modelling flows lies in the necessity to cross critical points, characteristic of non linear equations. The physical nature and the location of such critical points is debated because they are the clue towards the resolution. We thus introduce the notions of topology and critical points (Parts 3 and 4) from the simplest hydrodynamic and spherically symmetric case to the most sophisticated, MHD and axisymmetric cases. Particular attention is given to self-similar models which allows to give some general and simple ideas on the problem due to their semi-analytical treatment. With the use of these notions, a more quantitative comparison of the various models is given (Parts 3 and 4), especially on the shape of the flows. It is thus shown that magnetic collimation of winds into jets is a

  9. Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents.

    PubMed

    Frank, Kiana L; Rogers, Daniel R; Olins, Heather C; Vidoudez, Charles; Girguis, Peter R

    2013-07-01

    Few studies have directly measured sulfate reduction at hydrothermal vents, and relatively little is known about how environmental or ecological factors influence rates of sulfate reduction in vent environments. A better understanding of microbially mediated sulfate reduction in hydrothermal vent ecosystems may be achieved by integrating ecological and geochemical data with metabolic rate measurements. Here we present rates of microbially mediated sulfate reduction from three distinct hydrothermal vents in the Middle Valley vent field along the Juan de Fuca Ridge, as well as assessments of bacterial and archaeal diversity, estimates of total biomass and the abundance of functional genes related to sulfate reduction, and in situ geochemistry. Maximum rates of sulfate reduction occurred at 90 °C in all three deposits. Pyrosequencing and functional gene abundance data revealed differences in both biomass and community composition among sites, including differences in the abundance of known sulfate-reducing bacteria. The abundance of sequences for Thermodesulfovibro-like organisms and higher sulfate reduction rates at elevated temperatures suggests that Thermodesulfovibro-like organisms may have a role in sulfate reduction in warmer environments. The rates of sulfate reduction presented here suggest that--within anaerobic niches of hydrothermal deposits--heterotrophic sulfate reduction may be quite common and might contribute substantially to secondary productivity, underscoring the potential role of this process in both sulfur and carbon cycling at vents.

  10. Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents

    PubMed Central

    Frank, Kiana L; Rogers, Daniel R; Olins, Heather C; Vidoudez, Charles; Girguis, Peter R

    2013-01-01

    Few studies have directly measured sulfate reduction at hydrothermal vents, and relatively little is known about how environmental or ecological factors influence rates of sulfate reduction in vent environments. A better understanding of microbially mediated sulfate reduction in hydrothermal vent ecosystems may be achieved by integrating ecological and geochemical data with metabolic rate measurements. Here we present rates of microbially mediated sulfate reduction from three distinct hydrothermal vents in the Middle Valley vent field along the Juan de Fuca Ridge, as well as assessments of bacterial and archaeal diversity, estimates of total biomass and the abundance of functional genes related to sulfate reduction, and in situ geochemistry. Maximum rates of sulfate reduction occurred at 90 °C in all three deposits. Pyrosequencing and functional gene abundance data revealed differences in both biomass and community composition among sites, including differences in the abundance of known sulfate-reducing bacteria. The abundance of sequences for Thermodesulfovibro-like organisms and higher sulfate reduction rates at elevated temperatures suggests that Thermodesulfovibro-like organisms may have a role in sulfate reduction in warmer environments. The rates of sulfate reduction presented here suggest that—within anaerobic niches of hydrothermal deposits—heterotrophic sulfate reduction may be quite common and might contribute substantially to secondary productivity, underscoring the potential role of this process in both sulfur and carbon cycling at vents. PMID:23535916

  11. Genomic and population genetic analysis of deep-sea vent chemoautotrophs

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Shimamura, S.; Takaki, Y.; Mino, S.; Makita, H.; Sawabe, T.; Takai, K.

    2012-12-01

    Deep-sea vents are the light-independent, highly productive ecosystems driven primarily by chemoautotrophs. Most of the invertebrates thrive there through their relationship with symbiotic chemoautotrophs. Chemoautotrophs are microorganisms that are able to fix inorganic carbon using a chemical energy obtained through the oxidation of reduced compounds. Following the discovery of deep-sea vent ecosystems in 1977, there has been an increasing knowledge that deep-sea vent chemoautotrophs display remarkable physiological and phylogenetic diversity. Recent microbiological studies have led to an emerging view that the majority of deep-sea vent chemoautotrophs have the ability to derive energy from multiple redox couples other than the conventional sulfur-oxygen couple. Genomic, metagenomic and postgenomic studies have considerably accelerated the comprehensive understanding of molecular mechanisms of deep-sea vent chemoautotrophy, even in unculturable endosymbionts of vent fauna. For example, genomic analysis suggested that there were previously unrecognized evolutionary links between deep-sea vent chemoautotrophs and important human/animal pathogens. However, relatively little is known about the genome of horizontally transmitted endosymbionts. In this study, we sequenced whole genomes of the probably horizontally transmitted endosymbionts of two different gastropod species from a deep-sea hydrothermal field, as an effort to address questions about 1) the genome evolution of horizontally transmitted, facultative endosymbionts, 2) their genomic variability, and 3) genetic differences among symbionts of various deep-sea vent invertebrates. Both endosymbiont genomes display features consistent with ongoing genome reduction such as large proportions of pseudogenes and transposable elements. The genomes encode multiple functions for chemoautotrophic respirations, probably reflecting their adaptation to their niches with continuous changes in environmental conditions. When

  12. VentDB: A Global Online Synthesis Database of Seafloor Hydrothermal Spring Geochemistry

    NASA Astrophysics Data System (ADS)

    Mottl, M. J.; Lehnert, K. A.; Johansson, A. K.; Hsu, L.

    2011-12-01

    Chemical data for seafloor hydrothermal springs are fundamental to the study of mid-ocean ridge and seafloor processes, ocean water chemistry, and global geochemical cycles, as well as vent ecosystems and the sub-seafloor biosphere. So far, these data have been accessible only in the scientific literature or in online data catalogs where they are widely dispersed in individual data tables, and are often insufficiently documented for re-use. We have developed VentDB as an online data system for geochemical data for hydrothermal springs that will facilitate access and analysis of these data. VentDB uses the concept and architecture of the popular PetDB database for seafloor igneous and metamorphic rock geochemistry (www.petdb.org) to provide easy and fast access to a global synthesis of seafloor hydrothermal spring geochemical data. The VentDB database contains concentrations of major and trace species, dissolved gases, and radiogenic and isotopic ratios for hydrothermal vents on the seafloor. Further chemical or physical properties of hydrothermal springs can be included in the future if desired. The database comprises both the calculated hydrothermal end-member solution compositions as estimated by extrapolation of the concentrations of individual chemical species to a Mg concentration of zero, and the raw data for hydrothermal solution samples as collected, where available. Data quality is documented by including information for the raw analytical data about the analytical method, precision, and reference material measurements, and quality control parameters for end-member compositions including the lowest Mg measured in any sample, the number of samples and correlation coefficient of the linear regression, and the charge balance for the extrapolated zero-Mg composition. The database also includes information about the sampled locations (geospatial coordinates, vent or vent field names, names of other physiographic features), temperature, flow and vent type

  13. Geological and geochemical controls on the distribution of Alviniconcha vent snail symbioses: Have we finally linked mantle to microbe? (Invited)

    NASA Astrophysics Data System (ADS)

    Girguis, P. R.; Beinart, R.; Sanders, J.; Seewald, J.

    2010-12-01

    Gastropods of the genus Alviniconcha are found at hydrothermal vent fields in the Western Pacific, and have been reported to associate with either γ- or ɛ-Proteobacterial endosymbionts. These symbionts harness energy from the oxidation of chemicals in vent fluid to fix inorganic carbon and are the primary source of nutrition for the holobiont. An extensive sampling effort during a recent expedition to the Eastern Lau Spreading Center (ELSC) has revealed that Alviniconcha host both previously observed symbiont types, as well as an additional γ- proteobacterial symbiont. Specifically, we collected 266 Alviniconcha individuals from four vent fields along the spreading center (30-140km apart) which span the north-south transition from fast spreading, basalt-hosted to slower spreading, andesite-hosted fields. Vent fluids from each field were also analyzed for the abundances of aqueous volatile and non-volatile species. The symbionts of all collected Alviniconcha were genotyped using restriction fragment length polymorphism analysis as well as quantitative PCR. Individuals were found to primarily host one of the three symbiont genotypes (two γ- and one ɛ-Proteobacteria). Notably, we found that the two northern-most sites (basalt-hosted vents) were greatly dominated by individuals with the ɛ-Proteobacterial symbiont, while the two southern sites (andesite-hosted vents) were dominated by individuals hosting one of the two γ-Proteobacterial symbionts. This pattern corresponds to differences in the aqueous chemistry of the vent fluids along the spreading center. In particular, we have measured higher concentrations of hydrogen and hydrogen sulfide in the vent fluids at the northern sites than in the fluids of the southern sites. We posit that vent chemistry -which is influenced by subsurface water-rock interactions- may be influencing the dominance of each symbiont type along the ELSC. The putative implications for the role that geology and geochemistry plays in

  14. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank vents and carburetor vapor vents. 29.975 Section 29.975 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System §...

  15. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank vents and carburetor vapor vents. 29.975 Section 29.975 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System §...

  16. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank vents and carburetor vapor vents. 25.975 Section 25.975 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System §...

  17. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank vents and carburetor vapor vents. 25.975 Section 25.975 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System §...

  18. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank vents and carburetor vapor vents. 29.975 Section 29.975 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System §...

  19. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank vents and carburetor vapor vents. 29.975 Section 29.975 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System §...

  20. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank vents and carburetor vapor vents. 25.975 Section 25.975 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System §...

  1. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank vents and carburetor vapor vents. 25.975 Section 25.975 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System §...

  2. 14 CFR 23.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... will constitute a fire hazard or from which fumes may enter personnel compartments; and (7) Vents must... a separate vent line to lead vapors back to the top of one of the fuel tanks. If there is more than... line must lead back to the fuel tank to be used first, unless the relative capacities of the tanks...

  3. 14 CFR 25.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... may end at any point— (i) Where the discharge of fuel from the vent outlet would constitute a fire... carburetor with vapor elimination connections must have a vent line to lead vapors back to one of the fuel... return line must lead back to the fuel tank used for takeoff and landing....

  4. 14 CFR 29.975 - Fuel tank vents and carburetor vapor vents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... end at any point— (i) Where the discharge of fuel from the vent outlet would constitute a fire hazard... with vapor elimination connections must have a vent line to lead vapors back to one of the fuel tanks... line must lead back to the fuel tank used for takeoff and landing....

  5. ANALYSIS OF VENTING OF A RESIN SLURRY

    SciTech Connect

    Laurinat, J.; Hensel, S.

    2012-03-27

    A resin slurry venting analysis was conducted to address safety issues associated with overpressurization of ion exchange columns used in the Purex process at the Savannah River Site (SRS). If flow to these columns were inadvertently interrupted, an exothermic runaway reaction could occur between the ion exchange resin and the nitric acid used in the feed stream. The nitric acid-resin reaction generates significant quantities of noncondensable gases, which would pressurize the column. To prevent the column from rupturing during such events, rupture disks are installed on the column vent lines. The venting analysis models accelerating rate calorimeter (ARC) tests and data from tests that were performed in a vented test vessel with a rupture disk. The tests showed that the pressure inside the test vessel continued to increase after the rupture disk opened, though at a slower rate than prior to the rupture. Calculated maximum discharge rates for the resin venting tests exceeded the measured rates of gas generation, so the vent size was sufficient to relieve the pressure in the test vessel if the vent flow rate was constant. The increase in the vessel pressure is modeled as a transient phenomenon associated with expansion of the resin slurry/gas mixture upon rupture of the disk. It is postulated that the maximum pressure at the end of this expansion is limited by energy minimization to approximately 1.5 times the rupture disk burst pressure. The magnitude of this pressure increase is consistent with the measured pressure transients. The results of this analysis demonstrate the need to allow for a margin between the design pressure and the rupture disk burst pressure in similar applications.

  6. Goldstone field test activities: Target search

    NASA Technical Reports Server (NTRS)

    Tarter, J.

    1986-01-01

    In March of this year prototype SETI equipment was installed at DSS13, the 26 meter research and development antenna at NASA's Goldstone complex of satellite tracking dishes. The SETI equipment will remain at this site at least through the end of the summer so that the hardware and software developed for signal detection and recognition can be fully tested in a dynamic observatory environment. The field tests are expected to help understand which strategies for observing and which signal recognition algorithms perform best in the presence of strong man-made interfering signals (RFI) and natural astronomical sources.

  7. Hydrothermal vents is Lake Tanganyika, East African Rift system

    SciTech Connect

    Tiercelin, J.J.; Pflumio, C.; Castrec, M.

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 {degrees}C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza, active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO{sub 3}-enriched fluid similar to the NaHCO{sub 3} thermal fluids form lakes Magadi and Bogoria in the eastern branch of the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction of 219 and 179 {degrees}C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130{degrees}N normal-dextral faults that intersect the north-south major rift trend. The sources of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza. 21 refs., 2 figs.

  8. Lava-flow hazard with optimized non-uniform grid of vents

    NASA Astrophysics Data System (ADS)

    Lucà, Federica; Rongo, Rocco; Lupiano, Valeria; Iovine, Giulio

    2016-10-01

    The aim of the study is to assess the sensitivity to vents (in terms of number and distribution) of sectors affected by lava flows and of hazard values at Mount Etna. The proposed methodology relies on the application of the Cellular Automata model SCIARA, and on the adoption of an optimization algorithm for progressively integrating an initial uniform distribution of 1006 vents (1-km spaced) with 500 additional sources. Vents have iteratively been added, at steps of 50, through spatial simulated annealing, using slope roughness as weigh function. For each vent, 41 types of simulations have been executed to take into proper account the potential behaviour of the volcano, based on historical records. The performed simulations have been further processed to derive lava-flow hazard, by assigning each simulation: i) a spatial likelihood of vent opening; ii) a magnitude probability, depending on the type of eruption; and iii) a temporal probability of source activation, based on historical occurrences in the past 400 years. First results are discussed, and the influence of the number and distribution of additional vents is preliminarily investigated.

  9. Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise

    PubMed Central

    German, C. R.; Bowen, A.; Coleman, M. L.; Honig, D. L.; Huber, J. A.; Jakuba, M. V.; Kinsey, J. C.; Kurz, M. D.; Leroy, S.; McDermott, J. M.; de Lépinay, B. Mercier; Nakamura, K.; Seewald, J. S.; Smith, J. L.; Sylva, S. P.; Van Dover, C. L.; Whitcomb, L. L.; Yoerger, D. R.

    2010-01-01

    Thirty years after the first discovery of high-temperature submarine venting, the vast majority of the global mid-ocean ridge remains unexplored for hydrothermal activity. Of particular interest are the world’s ultraslow spreading ridges that were the last to be demonstrated to host high-temperature venting but may host systems particularly relevant to prebiotic chemistry and the origins of life. Here we report evidence for previously unknown, diverse, and very deep hydrothermal vents along the ∼110 km long, ultraslow spreading Mid-Cayman Rise (MCR). Our data indicate that the MCR hosts at least three discrete hydrothermal sites, each representing a different type of water-rock interaction, including both mafic and ultramafic systems and, at ∼5,000 m, the deepest known hydrothermal vent. Although submarine hydrothermal circulation, in which seawater percolates through and reacts with host lithologies, occurs on all mid-ocean ridges, the diversity of vent types identified here and their relative geographic isolation make the MCR unique in the oceans. These new sites offer prospects for an expanded range of vent-fluid compositions, varieties of abiotic organic chemical synthesis and extremophile microorganisms, and unparalleled faunal biodiversity—all in close proximity. PMID:20660317

  10. Are midwater shrimp trapped in the craters of submarine volcanoes by hydrothermal venting?

    NASA Astrophysics Data System (ADS)

    Wishner, Karen F.; Graff, Jason R.; Martin, Joel W.; Carey, S.; Sigurdsson, H.; Seibel, B. A.

    2005-08-01

    The biology of Kick'em Jenny (KEJ) submarine volcano, part of the Lesser Antilles volcanic arc and located off the coast of Grenada in the Caribbean Sea, was studied during a cruise in 2003. Hydrothermal venting and an associated biological assemblage were discovered in the volcanic crater (˜250 m depth). Warm water with bubbling gas emanated through rock fissures and sediments. Shrimp (some of them swimming) were clustered at vents, while other individuals lay immobile on sediments. The shrimp fauna consisted of 3 mesopelagic species that had no prior record of benthic or vent association. We suggest that these midwater shrimp, from deeper water populations offshore, were trapped within the crater during their downward diel vertical migration. It is unknown whether they then succumbed to the hostile vent environment (immobile individuals) or whether they are potentially opportunistic vent residents (active individuals). Given the abundance of submarine arc volcanoes worldwide, this phenomenon suggests that volcanic arcs could be important interaction sites between oceanic midwater and vent communities.

  11. Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise.

    PubMed

    German, C R; Bowen, A; Coleman, M L; Honig, D L; Huber, J A; Jakuba, M V; Kinsey, J C; Kurz, M D; Leroy, S; McDermott, J M; de Lépinay, B Mercier; Nakamura, K; Seewald, J S; Smith, J L; Sylva, S P; Van Dover, C L; Whitcomb, L L; Yoerger, D R

    2010-08-10

    Thirty years after the first discovery of high-temperature submarine venting, the vast majority of the global mid-ocean ridge remains unexplored for hydrothermal activity. Of particular interest are the world's ultraslow spreading ridges that were the last to be demonstrated to host high-temperature venting but may host systems particularly relevant to prebiotic chemistry and the origins of life. Here we report evidence for previously unknown, diverse, and very deep hydrothermal vents along the approximately 110 km long, ultraslow spreading Mid-Cayman Rise (MCR). Our data indicate that the MCR hosts at least three discrete hydrothermal sites, each representing a different type of water-rock interaction, including both mafic and ultramafic systems and, at approximately 5,000 m, the deepest known hydrothermal vent. Although submarine hydrothermal circulation, in which seawater percolates through and reacts with host lithologies, occurs on all mid-ocean ridges, the diversity of vent types identified here and their relative geographic isolation make the MCR unique in the oceans. These new sites offer prospects for an expanded range of vent-fluid compositions, varieties of abiotic organic chemical synthesis and extremophile microorganisms, and unparalleled faunal biodiversity--all in close proximity.

  12. Tissue partitioning of micro-essential metals in the vent bivalve Bathymodiolus azoricus and associated organisms (endosymbiont bacteria and a parasite polychaete) from geochemically distinct vents of the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Kádár, Enikõ; Costa, Valentina; Santos, Ricardo S.; Powell, Jonathan J.

    2006-07-01

    Hydrothermal communities are built on highly specialised organisms possessing effective adaptation mechanisms to tolerate elevated levels of toxic heavy metals typical of these extreme habitats. Bioavailability and tissue compartmentalisation of micro-essential metals (Cu, Zn, and Fe) were investigated in the bivalve Bathymodiolus azoricus from three geochemically distinct hydrothermal vents (Rainbow, Lucky Strike, Menez Gwen). Additionally , in order to make inferences on the effect of biological interactions on the metal uptake, the bivalves' endosymbiont bacteria and commensal parasite Branchipolynoe seepensis were analysed for metal bioaccumulation. Micro-essential metal concentrations in byssus threads exceeded many-fold concentrations in the gill and digestive gland, which in turn were consistently one order of magnitude above levels measured in the mantle. In spite of its high metal concentrations, the byssus is unlikely to be an active bioaccumulator. Its high surface to mass ratio and its binding sites for metals suggest a reversible adsorption of micro-essential metals in the vent mussel. Inter-site comparison showed highest Fe concentrations in tissues of mussels from the Rainbow site, whereas Zn and Cu in all tissues were highest in mussels from the Lucky Strike site, reflecting metal concentrations in the water surrounding macro-invertebrates at these vent sites. The omnipresence of the commensal parasite polychaete in gills of B. azoricus from the Lucky Strike vent field, unlike the other sites, is suggested to be an adaptation to the typically elevated Fe concentrations in the water column near mussel beds. Unprecedented Fe concentrations measured in the digestive gland of mussels from the Rainbow site (4000 μg g - 1 , three times higher than levels in bivalves from polluted sites) call for further post-capture ecotoxicological investigations of potentially novel Fe-handling strategies. We provide the first information on the bioaccumulation

  13. Influence of Geologic Setting on the Morphology, Mineralogy, and Geochemistry of Vent Deposits Along the Eastern Lau Spreading Center and Valu Fa Ridge

    NASA Astrophysics Data System (ADS)

    Tivey, M. K.; Evans, G. N.; Ferrini, V. L.

    2014-12-01

    Establishment of links between lithology, vent fluid chemistry, and vent deposit characteristics along the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) was made possible using deep submergence vehicles and technology. ROV Jason was used to collect ultrahigh-resolution (submeter) bathymetric data sufficient to quantify characteristics of volcanic, tectonic and hydrothermal features; differences within vent fields from north to south include a change from low-relief volcanic domes cut by faults and fissures to higher aspect ratio volcanic domes dominated by aa-type lava morphologies (Ferrini et al., G-cubed, 2008). Highest temperature fluids are associated with crosscutting faults at all but Mariner vent field where faults are not observed. The detailed maps were used to target areas within vent fields for observations and sampling. Vent deposit morphologies are similar at the northernmost vent fields (Kilo Moana, TowCam, Tahi Moana), with black smokers and diffusers present on branched edifices. Vent deposits at the more southerly ABE, Tui Malila and Mariner vent fields vary in morphology, despite similar substrate lithology. Examples include abundant flanges at ABE and Tui Malila and ~20m-tall spires and squat barite-rich edifices at Mariner. Geochemical analyses and petrographic observations document the influence of lithology, fluid temperature, pH, and extents of seawater mixing on deposit formation. Concentrations of As, which increase from north to south, reflect lithologic control. Sb, Pb, and Ba concentrations also reflect lithologic control, but are affected as well by low pH and/or extents of seawater mixing. The significant differences in Mariner deposits reflect formation from very high temperature, low pH (<3 vs >4) fluids that keep Zn in solution, combined with local subsurface mixing. Overall, results document the influence of the Tonga Subduction Zone on vent deposits through its affects on lithology and vent fluid composition.

  14. Effects of Vent Asymmetry on Explosive Eruptions

    NASA Astrophysics Data System (ADS)

    Sim, S.; Ogden, D. E.

    2012-12-01

    Current computer models of volcanic eruptions are typically based on symmetric vent and conduit geometries. However, in natural settings, these features are rarely perfectly symmetric. For example, the May 18, 1980 eruption of Mount St Helens (MSH) took place through a highly asymmetrical crater due to the preceding landslide and subsequent vent erosion. In supersonic, high pressure eruptions, such as what may have occurred at MSH, vent and crater asymmetry can strongly affect the directionality of the gas-thrust region. These effects on eruption direction may have implications for the formation of lateral blasts and pyroclastic density currents (PDCs). Here, we present preliminary results from numerical simulations using CartaBlanca, a Java based simulation tool for non-linear physics as developed at Los Alamos National Laboratory. Using 2D time-dependent simulations of explosive volcanic eruptions, we study the effects of vent asymmetry on a variety of eruptive conditions. Preliminary results suggest that asymmetric vent shape may provide an additional mechanism for the formation of lateral blasts and PDCs.

  15. Characterization of vent fauna at the Mid-Cayman Spreading Center

    NASA Astrophysics Data System (ADS)

    Plouviez, Sophie; Jacobson, Alixandra; Wu, Mengyou; Van Dover, Cindy L.

    2015-03-01

    Hydrothermal vents in the deep sea have a global distribution on mid-ocean ridges and comprise at least six biogeographic provinces. A geographically isolated vent system was recently discovered on the Mid-Cayman Spreading Center (MCSC). Here, we describe the faunal assemblages associated with this system and their relationship to known biogeographic provinces. Taxa from MCSC vents were sorted based on morphology and barcoded using the cytochrome oxidase I (COI) and 16S ribosomal RNA (16S) genes for identification. Distinct faunal assemblages were recognized around vent chimneys at two hydrothermal vent fields (Von Damm and Beebe) separated by a distance of ~13 km and >2.5-km depth along the Mid-Cayman Spreading Center. These results suggest that depth and/or local conditions structure faunal assemblages in this region. COI and microsatellite markers were then used to explore the genetic structure of the shrimp Rimicaris hybisae, the only abundant species shared between the shallow Von Damm and the deep Beebe vent fields. R. hybisae was not genetically differentiated between the Von Damm Spire and Beebe chimneys, suggesting this species is better adapted for bathymetric dispersal and the differences in local conditions than other MCSC species. In addition, a third faunal assemblage dominated by two species of tubeworms was identified at Von Damm in association with weakly diffuse flow sites (including the site known as "Marker X18"). The Marker X18 assemblage shares species with seeps in the region. Fauna shared with both vents and seeps at the MCSC reinforces the need for a global biogeographic study of deep-sea chemosynthetic fauna that is not focused on specific habitats.

  16. Prokaryote diversity and virus abundance in shallow hydrothermal vents of the Mediterranean Sea (Panarea Island) and the Pacific Ocean (north Sulawesi-Indonesia).

    PubMed

    Manini, E; Luna, G M; Corinaldesi, C; Zeppilli, D; Bortoluzzi, G; Caramanna, G; Raffa, F; Danovaro, R

    2008-05-01

    Despite their ubiquitous distribution in tectonically active coastal zones, shallow water hydrothermal vents have been less investigated than deep-sea vents. In the present study, we investigated the role of viral control and fluid emissions on prokaryote abundance, diversity, and community structure (total Archaea, total Bacteria, and sulphate-reducing bacteria) in waters and sediments surrounding the caldera of four different shallow-water hydrothermal vents (three located in the Mediterranean Sea and one in the Pacific Ocean). All vents, independent of their location, generally displayed a significant decrease of benthic prokaryote abundance, as well as its viable fraction, with increasing distance from the vent. Prokaryote assemblages were always dominated by Bacteria. Benthic Archaea accounted for 23-33% of total prokaryote abundance in the Mediterranean Sea and from 13 to 29% in the Pacific Ocean, whereas in the water column they accounted for 25-38%. The highest benthic bacterial ribotype richness was observed in close proximity of the vents (i.e., at 10-cm distance from the emissions), indicating that vent fluids might influence bacterial diversity in surrounding sediments. Virioplankton and viriobenthos abundances were low compared to other marine systems, suggesting that temperature and physical-chemical conditions might influence viral survival in these vent systems. We thus hypothesize that the high bacterial diversity observed in close proximity of the vents is related with the highly variable vent emissions, which could favor the coexistence of several prokaryotic species.

  17. Wind tunnel investigation of the Titan Forward Skirt compartment vent from a free-stream Mach number of 0.80 to 1.96. [conducted in the Lewis Research Center 8 by 6 foot supersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Johns, A. L.

    1980-01-01

    A test was conducted to determine the flow characteristics of the Titan forward skirt compartment vent over a free stream Mach number range of 0.80 to 1.96. The vent was mounted in a flat plate and the plate was flush mounted to the tunnel side wall with coinciding center lines. Air was discharged from a duct, located on the tunnel side wall behind the plate, through a canted aft 30 deg honeycomb vent into the free stream. Data for the analysis of the Titan forward skirt compartment venting during ascent through the atmosphere are provided. Full scale simulated flight hardware, such as the honeycomb vent, duct corrugations and field joint ring were used. Boundary layer thicknesses were used to vary boundary height. The highest vent discharge coefficient for any given Mach number and vent pressure ratio generally occurred at the maximum displacement thickness. With no vent flow the static pressure in the vent region was generally less than the free stream static pressure. With vent flow, the static pressures upstream of the vent increased, and those downstream of the vent decreased.

  18. Hydrothermal Activity and Volcanism on the Southern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Haase, K. M.; Scientific Party, M.

    2005-12-01

    In April 2005 four recently discovered different hydrothermal fields on the slow-spreading Mid-Atlantic Ridge (MAR) south of the Equator were studied and sampled using a remotely operated vehicle (ROV) during cruise METEOR 64/1. Three of these hydrothermally active fields (called Turtle Pits, Red Lion, and Wideawake) occur at about 3000 m water depth in the centre of a MAR segment at 4° 48'S which appears to be volcanically very active. The youngest lava flow partly covers the low-temperature, diffuse flow Wideawake mussel field and is thus probably only a few years old. The high-temperature Turtle Pits hydrothermal field with four active vent structures lies some 300 m west of the diffuse vent field and is characterized by boiling fluids with temperatures close to 400° C. The mineral assemblage recovered from inactive hydrothermal mounds includes massive magnetite+hematite+sulfate and differs from that of the presently active vents and indicates more oxidizing conditions during the earlier activity. The vent fluids at Turtle Pits contain relatively high contents of hydrogen which may have formed during iron oxidation processes when basaltic magmas crystallized. The high fluid temperatures, the change to more reducing conditions, and the relatively high hydrogen contents in the fluids are most likely due to the ascent of magmas from the mantle that fed the very recent eruption. The high-temperature Red Lion hydrothermal field lies some 2 km north of the Turtle Pits field and consists of at least four active black smokers surrounded by several inactive sulfide mounds. The composition of the Red Lion fluids differs significantly from the Turtle Pits fluids, possibly owing largely to a difference in the temperature of the two systems. The fourth hydrothermally active field on the southern MAR, the Liliput field, was discovered near 9° 33'S in a water depth of 1500 m and consists of several low-temperature vents. A shallow hydrothermal plume in the water column

  19. Medium Fidelity Simulation of Oxygen Tank Venting

    NASA Technical Reports Server (NTRS)

    Sweet, Adam; Kurien, James; Lau, Sonie (Technical Monitor)

    2001-01-01

    The item to he cleared is a medium-fidelity software simulation model of a vented cryogenic tank. Such tanks are commonly used to transport cryogenic liquids such as liquid oxygen via truck, and have appeared on liquid-fueled rockets for decades. This simulation model works with the HCC simulation system that was developed by Xerox PARC and NASA Ames Research Center. HCC has been previously cleared for distribution. When used with the HCC software, the model generates simulated readings for the tank pressure and temperature as the simulated cryogenic liquid boils off and is vented. Failures (such as a broken vent valve) can be injected into the simulation to produce readings corresponding to the failure. Release of this simulation will allow researchers to test their software diagnosis systems by attempting to diagnose the simulated failure from the simulated readings. This model does not contain any encryption software nor can it perform any control tasks that might be export controlled.

  20. Investigations Into Tank Venting for Propellant Resupply

    NASA Technical Reports Server (NTRS)

    Hearn, H. C.; Harrison, Robert A. (Technical Monitor)

    2002-01-01

    Models and simulations have been developed and applied to the evaluation of propellant tank ullage venting, which is integral to one approach for propellant resupply. The analytical effort was instrumental in identifying issues associated with resupply objectives, and it was used to help develop an operational procedure to accomplish the desired propellant transfer for a particular storable bipropellant system. Work on the project was not completed, and several topics have been identified as requiring further study; these include the potential for liquid entrainment during the low-g and thermal/freezing effects in the vent line and orifice. Verification of the feasibility of this propellant venting and resupply approach still requires additional analyses as well as testing to investigate the fluid and thermodynamic phenomena involved.

  1. The importance of hydrothermal venting to water-column secondary production in the northeast Pacific

    NASA Astrophysics Data System (ADS)

    Burd, Brenda J.; Thomson, Richard E.

    2015-11-01

    The purpose of this study is to show that seafloor hydrothermal venting in the open northeast Pacific Ocean has a marked impact on secondary biomass and production within the overlying water column. Specifically, we use net tows and concurrently measured acoustic backscatter data collected over six summers to examine the effects of hydrothermal venting from the Endeavour Segment of Juan de Fuca Ridge on macro-zooplankton biomass and production throughout the entire 2000 m depth range. Previous research shows that ontogenetic diapausing migrators and their predators from the upper ocean aggregate above the neutrally buoyant plumes in summer and resume feeding on plume and bottom upwelled particles, resulting in increased zooplankton reproductive output to the upper ocean. Within the limitations of our sampling methodology, net tows reveal a statistically significant exponential decline in total water-column biomass with increasing lateral distance from the vent fields. The acoustic backscatter data show a similar decline, but only below 800 m depth. Near-surface biomass was highly variable throughout the region, but values near vents consistently ranged higher than summer values found elsewhere in the offshore northeast Pacific. Water-column biomass was similar in magnitude above and below 800 m depth throughout the region. Because epiplume biomass can be advected a considerable distance from vent fields, biomass enhancement of the water column from hydrothermal venting may extend considerable distances to the west and northwest of the vent sites, in the prevailing directions of the subsurface flow. Based on the extensive acoustic Doppler current profiler (ADCP) data collected, and the strong correlation between zooplankton production derived from net sample biomass and acoustic backscatter intensity, we estimate that daily macro-zooplankton production in the upper 400 m of the water column within 10 km of the vent fields averages approximately 16% of photosynthetic

  2. Vented Cavity Radiant Barrier Assembly And Method

    DOEpatents

    Dinwoodie, Thomas L.; Jackaway, Adam D.

    2000-05-16

    A vented cavity radiant barrier assembly (2) includes a barrier (12), typically a PV module, having inner and outer surfaces (18, 22). A support assembly (14) is secured to the barrier and extends inwardly from the inner surface of the barrier to a building surface (14) creating a vented cavity (24) between the building surface and the barrier inner surface. A low emissivity element (20) is mounted at or between the building surface and the barrier inner surface. At least part of the cavity exit (30) is higher than the cavity entrance (28) to promote cooling air flow through the cavity.

  3. Hydrothermal vents and the origin of life.

    PubMed

    Martin, William; Baross, John; Kelley, Deborah; Russell, Michael J

    2008-11-01

    Submarine hydrothermal vents are geochemically reactive habitats that harbour rich microbial communities. There are striking parallels between the chemistry of the H(2)-CO(2) redox couple that is present in hydrothermal systems and the core energy metabolic reactions of some modern prokaryotic autotrophs. The biochemistry of these autotrophs might, in turn, harbour clues about the kinds of reactions that initiated the chemistry of life. Hydrothermal vents thus unite microbiology and geology to breathe new life into research into one of biology's most important questions - what is the origin of life?

  4. Detailed dynamics and seasonal persistence of methane venting from lakes

    NASA Astrophysics Data System (ADS)

    Scandella, B. P.; Wood, H. G.; Ruppel, C. D.; Hemond, H.; Juanes, R.

    2012-12-01

    Lake-bottom sediments emit methane, a potent greenhouse gas, into the overlying water column and atmosphere. A large fraction of the methane is released as bubbles, but constraining the magnitude of this methane flux is challenging because ebullition is patchy in space and episodic in time. Extrapolating observations from individual methane seeps to a larger scale in time or space can result in severe over- or under-estimation of the methane flux, yet to date observations have not combined large, complete spatial coverage with multiple-season deployment periods. We present methane ebullition data from a fixed-location multibeam sonar, which observes a large area (420 m2) over a deployment period of over 6 months and with sufficient spatiotemporal resolution to detect individual bubbles. The large amount of data generated by the system presents a challenge to identify bubble signals that are infrequent, short in duration, and spatially compact. Addressing this challenge yields processed ebullition signals, which are compared against vents detected in the water column and near-surface sediment during geophysical surveys that utilize a commercial fishfinder sonar and a 4-24 kHz chirp seismic towfish. The ebullition signals are then used to develop conceptual models relating distributed methanogenesis to ebullition at localized sites. In particular, the spacing and persistence of vents implies potential mechanisms for their creation and maintenance, while the ebullitive response to hydrostatic pressure variations is used to validate a conduit dilation model of methane venting. Finally, the level of synchronicity in activity between distant venting sites suggests the relative importance of the external hydrostatic forcing over internal dynamics of methane generation. The mechanistic understanding provided by this work is critical to upscaling gas flow measurements from individual vents to infer lake-wide fluxes to the water column and atmosphere. Map of maximum sonar

  5. In Situ Observations of Dissolved Manganese in Hydrothermal Vent Plumes at Mariana Trough.

    NASA Astrophysics Data System (ADS)

    Okamura, K.; Yanai, K.; Sohrin, Y.; Ishibashi, J.; Watanabe, M.; Ura, T.

    2004-12-01

    We studied for hydrothermal plumes in Mariana Trough by using in situ Mn-Fe analyzers (GAMOS-II). GAMOS-II (Geochemical Anomalies MOnitoring system) is an in-situ chemical analyzer used to detect manganese and/or iron anomalies in neutrally buoyant plumes and to map distributions in bottom seawater over vent fields. During TN167 (ROV ROPOS / R/V Thomas G Thompson) cruise, GAMOS-II measurements were conducted for plume observation at the Yamanaka and Fryer sites. GAMOS-II was attached on the sampling stage of the ROPOS at dive #'777. ROPOS arrived at the bottom at 0:50, and left the bottom at 10:55. Active manganese and temperature anomalies were detected around 2:00 - 5:00 and 7:00 - 11:00, when the ROPOS passed through hydrothermally active areas. The anomaly of temperature and manganese concentration was observed coincidentally, but the relation ship is not consistently proportional. Wide variation in Mn vs. temperature ratio implies diversity between geochemical flux and heat flux depending on the type of venting in the hydrothermal sites. During KH-04-02 Leg2 (AUV r2D4 / R/V Hakuho-Maru) cruise, GAMOS-II measurements were also conducted for plume observation at NW ROTA #1 seamount. GAMOS-II was attached in the AUV r2D4 with CTD. During four successive dives, the fine structure of hydrothermal plumes changed drastically, probably reflecting temporal variation of hydrothermal activity. Continuous sampling by using GAMOS-II was also done successfully. We will also discuss about the data of this continuous sampling.

  6. Do We Need More "Doing" Activities or "Thinking" Activities in the Field Practicum?

    ERIC Educational Resources Information Center

    Lee, Mingun; Fortune, Anne E.

    2013-01-01

    How do MSW students learn new professional skills in the field practicum? Does students' reflection affect the use of other learning activities during the field practicum? Students in field practica participate in activities that involve observation, doing (participatory), and conceptual linkage. In this study of MSW students, conceptual linkage…

  7. Magnetic-field variations and solar flare activity

    NASA Astrophysics Data System (ADS)

    Grigor'eva, I. Yu.; Shakhovskaya, A. N.; Livshits, M. A.; Knyazeva, I. S.

    2012-11-01

    Solar filtergrams obtained at the Crimean Astrophysical Observatory at the center and wings of the H α line are used to study variations in filaments, in particular, in arch filament systems (AFSs). These are considered as an indicator of emerging new magnetic flux, providing information about the spatial locations of magnetic-field elements. Magnetic-field maps for the active region NOAA 10030 are analyzed as an example. A method developed earlier for detecting elements of emerging flux using SOHO/MDI magnetograms indicates a close link between the increase in flare activity in theNOAA 10030 group during July 14-18, 2002 and variations in the topological disconnectedness of the magnetograms. Moreover, variations in the flare activity one day before a flare event are correlated with variations in the topological complexity of the field (the Euler characteristic) in regions with high field strengths (more than 700 G). Analysis of multi-wavelength polarization observations on the RATAN-600 radio telescope during July 13-17, 2002 indicate dominance of the radio emission above the central spot associated with the increase in flare activity. In addition to the flare site near the large spot in the group, numerous weak flares developed along an extended local neutral line, far from the central line of the large-scale field. The statistical characteristics of the magnetic-field maps analyzed were determined, and show flare activity of both types, i.e., localized in spot penumbras and above the neutral line of the field.

  8. 46 CFR 38.20-1 - Venting-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... relief valve and the vent outlets. (h) Provisions shall be made to drain condensate from the vent header piping. Special precautions shall insure that condensate does not accumulate at or near the relief...

  9. 46 CFR 38.20-1 - Venting-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... relief valve and the vent outlets. (h) Provisions shall be made to drain condensate from the vent header piping. Special precautions shall insure that condensate does not accumulate at or near the relief...

  10. 46 CFR 38.20-1 - Venting-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... relief valve and the vent outlets. (h) Provisions shall be made to drain condensate from the vent header piping. Special precautions shall insure that condensate does not accumulate at or near the relief...

  11. 40 CFR 63.690 - Standards: Process vents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... process vent through a closed-vent system to a control device that meets the standards specified in § 63... a control device; however, a second condenser or other organic recovery device that is...

  12. Laboratory quantification of permeability-porosity relationships for seafloor vent deposits: anisotropy in flange, slab, and crust samples

    NASA Astrophysics Data System (ADS)

    Gribbin, J. L.; Zhu, W.; Tivey, M. K.

    2010-12-01

    Seafloor hydrothermal vents accommodate the convective transfer of material from Earth’s interior to the oceans. A variety of seafloor deposits form at vent fields, including flanges, slabs, and crust. Flanges recovered from Guaymas Basin and the Main Endeavour Field (MEF) are horizontal ledges that protrude from the sides of larger structures. Fluid pools under and can percolate upwards through the flanges. Slabs taken from the Lucky Strike Vent Field are layered silicified deposits rich in sulfides, barite, and volcanic fragments; fluids can percolate upward through the cracked slab layers. Crust samples recovered from the Trans-Atlantic Geotraverse (TAG) active mound are composed of re-cemented older vent debris, and, again, fluids can percolate upward through the crust layers. Permeability and porosity measurements were made on a suite of flange, slab, and crust samples to determine evolution of permeability-porosity relationships (EPPRs). EPPRs are power-law relationships relating permeability and porosity through an exponent, α, that varies with changes in pore geometry - the higher the α value, the greater the change in permeability with respect to changes in porosity. Two trends were identified for the measured permeability and porosity data. First, measurements made on cores taken parallel to flange/slab/crust layers had consistently higher permeabilities (≈ 10-12 m2) and porosities (30-40%), and followed a trend of α ≈ 2. This trend differs significantly from the trend determined for measurements made on cores taken perpendicular to layering (representing most of the sample measurements): permeabilities ranged from 10-16-10-12 m2 and porosities from 20-45%, with a trend of α ≈ 4. The two distinct trends are consistent with the primary fluid flow direction having been parallel to layering (the α ≈ 2 trend), with flow perpendicular to layering (the α ≈ 4 trend) having been restricted to serial pathways that intersected the various layers

  13. Electrochemical cell having improved pressure vent

    DOEpatents

    Dean, Kevin; Holland, Arthur; Fillmore, Donn

    1993-01-01

    The electrochemical cell of the instant invention includes a case having a gas outlet, one or more positive electrodes positioned within the case, one or more negative electrodes positioned within the case electrode separators positioned between the positive and negative electrodes, electrolyte positioned within the case, and a pressure vent for releasing internal pressure occurring in the case to the surrounding atmosphere. The pressure vent is affixed to the case covering the gas outlet, the pressure vent includes a vent housing having a hollow interior area in gaseous communication with the surrounding atmosphere and the interior of the case via the gas outlet, a pressure release piston positioned within the hollow interior area, the pressure release piston sized to surround the gas outlet and having a seal groove configured to encapsulate all but one surface of a seal mounted within the seal groove, leaving the non-encapsulated surface of the seal exposed, and a compression spring positioned to urge the pressure release piston to compress the seal in the seal groove and block the gas outlet in the case.

  14. Computer controlled vent and pressurization system

    NASA Technical Reports Server (NTRS)

    Cieslewicz, E. J.

    1975-01-01

    The Centaur space launch vehicle airborne computer, which was primarily used to perform guidance, navigation, and sequencing tasks, was further used to monitor and control inflight pressurization and venting of the cryogenic propellant tanks. Computer software flexibility also provided a failure detection and correction capability necessary to adopt and operate redundant hardware techniques and enhance the overall vehicle reliability.

  15. Preoperational test report, vent building ventilation system

    SciTech Connect

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  16. 46 CFR 98.25-70 - Venting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Venting. 98.25-70 Section 98.25-70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk §...

  17. 46 CFR 98.25-70 - Venting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Venting. 98.25-70 Section 98.25-70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk §...

  18. 46 CFR 98.25-70 - Venting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Venting. 98.25-70 Section 98.25-70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk §...

  19. 46 CFR 98.25-70 - Venting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Venting. 98.25-70 Section 98.25-70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk §...

  20. 46 CFR 98.25-70 - Venting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Venting. 98.25-70 Section 98.25-70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk §...

  1. 40 CFR 63.1408 - Aggregate batch vent stream provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Aggregate batch vent stream provisions... § 63.1408 Aggregate batch vent stream provisions. (a) Emission standards. Owners or operators of aggregate batch vent streams at a new or existing affected source shall comply with either paragraph...

  2. 40 CFR 63.1408 - Aggregate batch vent stream provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Aggregate batch vent stream provisions... § 63.1408 Aggregate batch vent stream provisions. (a) Emission standards. Owners or operators of aggregate batch vent streams at a new or existing affected source shall comply with either paragraph...

  3. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... ventilation shall be installed within a horizontal distance of not more than ten feet from the vertical...

  4. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... ventilation shall be installed within a horizontal distance of not more than ten feet from the vertical...

  5. 46 CFR 153.358 - Venting system flow capacity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Venting system flow capacity. 153.358 Section 153.358... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.358 Venting system flow capacity. (a) The cross-sectional flow area of any...

  6. 46 CFR 182.450 - Vent pipes for fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Vent pipes for fuel tanks. 182.450 Section 182.450... TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.450 Vent pipes for fuel tanks. (a) Each unpressurized fuel tank must be fitted with a vent pipe connected to the highest point of the...

  7. 14 CFR 27.975 - Fuel tank vents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank vents. 27.975 Section 27.975... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System § 27.975 Fuel tank vents. (a) Each fuel tank... system must be designed to minimize spillage of fuel through the vents to an ignition source in the...

  8. 33 CFR 183.520 - Fuel tank vent systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank vent systems. 183.520...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.520 Fuel tank vent systems. (a) Each fuel tank must have a vent system that prevents pressure in the tank from exceeding...

  9. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions...

  10. 40 CFR 63.1406 - Reactor batch process vent provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Reactor batch process vent provisions... § 63.1406 Reactor batch process vent provisions. (a) Emission standards. Owners or operators of reactor... reactor batch process vent located at a new affected source shall control organic HAP emissions...

  11. 46 CFR 153.463 - Vent system discharges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Vent system discharges. 153.463 Section 153.463 Shipping... Requirements for Flammable Or Combustible Cargoes § 153.463 Vent system discharges. The discharge of a venting system must be at least 10 m (approx. 32.8 ft) from an ignition source if: (a) The cargo tank is...

  12. 46 CFR 153.463 - Vent system discharges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vent system discharges. 153.463 Section 153.463 Shipping... Requirements for Flammable Or Combustible Cargoes § 153.463 Vent system discharges. The discharge of a venting system must be at least 10 m (approx. 32.8 ft) from an ignition source if: (a) The cargo tank is...

  13. 40 CFR 63.1429 - Process vent monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Process vent monitoring requirements....1429 Process vent monitoring requirements. (a) Monitoring equipment requirements. The owner or operator... vent control requirements in § 63.1425(b)(1), (b)(2), (c)(1), (c)(3), or (d) shall install...

  14. 40 CFR 63.1429 - Process vent monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Process vent monitoring requirements....1429 Process vent monitoring requirements. (a) Monitoring equipment requirements. The owner or operator... vent control requirements in § 63.1425(b)(1), (b)(2), (c)(1), (c)(3), or (d) shall install...

  15. 40 CFR 264.1032 - Standards: Process vents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Process vents. 264.1032 Section 264.1032 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Air Emission Standards for Process Vents § 264.1032 Standards: Process vents. (a) The owner...

  16. 40 CFR 264.1032 - Standards: Process vents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Standards: Process vents. 264.1032 Section 264.1032 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Air Emission Standards for Process Vents § 264.1032 Standards: Process vents. (a) The owner...

  17. 40 CFR 264.1032 - Standards: Process vents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Standards: Process vents. 264.1032 Section 264.1032 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Air Emission Standards for Process Vents § 264.1032 Standards: Process vents. (a) The owner...

  18. 40 CFR 264.1032 - Standards: Process vents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Standards: Process vents. 264.1032 Section 264.1032 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Air Emission Standards for Process Vents § 264.1032 Standards: Process vents. (a) The owner...

  19. 40 CFR 264.1032 - Standards: Process vents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Standards: Process vents. 264.1032 Section 264.1032 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Air Emission Standards for Process Vents § 264.1032 Standards: Process vents. (a) The owner...

  20. 33 CFR 183.520 - Fuel tank vent systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tank vent systems. 183.520...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.520 Fuel tank vent systems. (a) Each fuel tank must have a vent system that prevents pressure in the tank from exceeding...

  1. 14 CFR 34.11 - Standard for fuel venting emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Engine Fuel Venting Emissions (New and In-Use Aircraft Gas Turbine Engines) § 34.11 Standard for fuel venting emissions. (a) No... turbine engine subject to the subpart. This paragraph is directed at the elimination of...

  2. 14 CFR 34.11 - Standard for fuel venting emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Engine Fuel Venting Emissions (New and In-Use Aircraft Gas Turbine Engines) § 34.11 Standard for fuel venting emissions. (a) No... turbine engine subject to the subpart. This paragraph is directed at the elimination of...

  3. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    NASA Astrophysics Data System (ADS)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  4. Evidence for Hydrothermal Vents as "Biogeobatteries" (Invited)

    NASA Astrophysics Data System (ADS)

    Nielsen, M. E.; Girguis, P. R.

    2010-12-01

    Hydrothermal vents are unique systems that play an important role in oceanic biogeochemical cycles. As chemically reduced hydrothermal fluid mixes with cold oxic seawater, minerals precipitate out of solution resulting in chimney structures composed largely of metal sulfides and anhydrite. Pyrite, which is a natural semi-conductor, is the primary sulfide mineral, but other minerals within chimneys are also conductive (e.g. chalcopyrite, wurtzite, and some iron oxides). Sulfide chimneys are also known to host an extensive endolithic microbial community. Accordingly, submarine hydrothermal systems appear to be examples of biogeobatteries, wherein conductive mineral assemblages span naturally occuring redox gradients and enable anaerobic microbes to access oxygen as an oxidant via extracellular electron transfer (or EET). To test this hypothesis, we ran a series of electrochemical laboratory experiments in which pyrite was used as an anode (in a vessel flushed with hydrothermal-like fluid). When placed in continuity with a carbon fiber cathode, pyrite was found to accept and conduct electrons from both abiotic and biological processes (microbial EET). Specifically, electrical current increased 4-fold (5 nA/m2 to 20 nA/m2) in response to inoculation with a slurry prepared from a hydrothermal vent sample. Inspection of the pyrite anode with SEM revealed ubiquitous coverage by microbes. DNA was extracted from the anodes and the inoculum, and was subjected to pyrosequencing to examine prokaryotic diversity. These data suggest that key microbial phylotypes were enriched upon the pyrite, implicating them in EET. In addition, we deployed an in situ experiment based on microbial fuel cell architecture with a graphite anode inserted into a vent wall coupled to a carbon fiber cathode outside the vent. We observed current production over the course of one year, implying microbial EET in situ. Via pyrosequencing, we observed that the microbial community on the anode was

  5. Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: a review.

    PubMed

    Van Dover, Cindy Lee

    2014-12-01

    Deep-sea hydrothermal-vent ecosystems have stimulated decades of scientific research and hold promise of mineral and genetic resources that also serve societal needs. Some endemic taxa thrive only in vent environments, and vent-associated organisms are adapted to a variety of natural disturbances, from tidal variations to earthquakes and volcanic eruptions. In this paper, physicochemical and biological impacts of a range of human activities at vents are considered. Mining is currently the only anthropogenic activity projected to have a major impact on vent ecosystems, albeit at a local scale, based on our current understanding of ecological responses to disturbance. Natural recovery from a single mining event depends on immigration and larval recruitment and colonization; understanding processes and dynamics influencing life-history stages may be a key to effective minimization and mitigation of mining impacts. Cumulative impacts on benthic communities of several mining projects in a single region, without proper management, include possible species extinctions and shifts in community structure and function.

  6. Mud volcano venting induced gas hydrate formation at the upper slope accretionary wedge, offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Saulwood; Tseng, Yi-Ting; Cheng, Wan-Yen; Chou, Cheng-Tien; Chen, NeiChen; Hsieh, I.-Chih

    2016-04-01

    TsanYao Mud Volcano (TYMV) is the largest mud volcano cone in the Hengchun Mud Volcano Group (HCMVG), located at the upper slope of the accrretionary wedge, southwest of Taiwan. The region is under active tectonic activity with the Philippine Plate, moving northwestward at a rate of ~8 cm/year. This region also receives huge quantity of suspended particle load of ~100 mT/year at present time from adjacent small rivers of the Island of Taiwan. Large loads of suspended sediments influx become a major source of organic carbon and later gas and other hydrocarbon. Gas and fluid in the mud volcano are actively venting from deep to the sea floor on the upper slope of the accretionary wedge. In order to understand venting on the HCMVG, echo sounder, towcam and coring were carried out. Pore water sulfate, chloride, potassium, calcium, stable isotope O-18, gas compositions, dissolved sulfide were analysed. The HCMVG consists of 12 volcano cones of different sizes. Large quantity of gas and fluid are venting directly from deep to the TYMV structure high, as well as 50+ other vents as appeared as flares on the echo sounder. Some flares are reaching to the atmosphere and likely a source of green house gases to the atmosphere. Venting fluids include gas bubbles, suspended particle, mud, and breccia. Breccia size could reach more than 12 cm in diameter. Circular bands in different color appeared around the cone may represent stages of vent eruptions. Compositions of vent gas include methane, ethane and propane. High proportions of ethane and propane in the vent gas demonstrated that source of gas are thermogenic in origin. Patchy authigenic carbonate, bacterial mats, bivalves, tube worms and other chemosynthesis organisms were supported by venting gas AOM process near the sea floor. Pore water chloride concentrations show distinct variation pattern from center cone to the side of the volcano, with low in the center and high away from the cone. Pore water with higher than seawater

  7. A Guided Inquiry Activity for Teaching Ligand Field Theory

    ERIC Educational Resources Information Center

    Johnson, Brian J.; Graham, Kate J.

    2015-01-01

    This paper will describe a guided inquiry activity for teaching ligand field theory. Previous research suggests the guided inquiry approach is highly effective for student learning. This activity familiarizes students with the key concepts of molecular orbital theory applied to coordination complexes. Students will learn to identify factors that…

  8. Observations and coupled models of flow, salinity, and hydrate formation in deepwater Gulf of Mexico vents

    NASA Astrophysics Data System (ADS)

    Smith, A. J.; Flemings, P. B.; Fulton, P. M.

    2010-12-01

    Natural vents in the Gulf of Mexico are actively expelling water, and hydrocarbons. They are ubiquitous across the deepwater and we characterize them in 3 locations: the Auger Basin, the Popeye Basin, and the Ursa Basin. In seismic data, they look like volcanic edifices. Vents are elevated as much as 100 meters relative to the surrounding area and their cores have negative amplitudes that record lower impedance than the overlying water column: this low impedance is interpreted to record the presence of gas. The bottom simulating reflector, which is interpreted to record the boundary between hydrate above and gas and water below, rises toward to the seafloor at the center of the vent. Studies of these vents at Ursa have documented significant temperature anomalies, flow, and high salinities (Paull et al., 2005; Ruppel et al. 2005). We model the coexistence of high salinity fluids, elevated temperatures, and an uplifted bottom simulating reflector with two approaches. First, we assume that high salinity fluids are generated by dissolution of salt bodies at depth and that these hot, saline, fluids are expelled vertically. Second, we model the solidification of gas hydrate during upward flow of gas and water. In this model, free gas combines with water to generate hydrate: salt is excluded, resulting in the generation of a high salinity brine. The two models result in predictable differences of salinity and possibly temperature. A better understanding of the hydrogeological processes at vent zones is important for understanding the fluxes of heat and mass from submarine vents, and it is important for understanding the conditions under which deep sea biological communities exist at these vent locations.

  9. Global rhythmic activities in hippocampal neural fields and neural coding.

    PubMed

    Ventriglia, Francesco

    2006-01-01

    Global oscillations of the neural field represent some of the most interesting expressions of the hippocampal activity, being related also to learning and memory. To study oscillatory activities of the CA3 field in theta range, a model of this sub-field of Hippocampus has been formulated. The model describes the firing activity of CA3 neuronal populations within the frame of a kinetic theory of neural systems and it has been used for computer simulations. The results show that the propagation of activities induced in the neural field by hippocampal afferents occurs only in narrow time windows confined by inhibitory barrages, whose time-course follows the theta rhythm. Moreover, during each period of a theta wave, the entire CA3 field bears a firing activity with peculiar space-time patterns, a sort of specific imprint, which can induce effects with similar patterns on brain regions driven by the hippocampal formation. The simulation has also demonstrated the ability of medial septum to influence the global activity of the CA3 pyramidal population through the control of the population of inhibitory interneurons. At last, the possible involvement of global population oscillations in neural coding has been discussed.

  10. In Situ Soil Venting - Full Scale Test Hill AFB, Guidance Document, Literature Review. Volume 1

    DTIC Science & Technology

    1991-08-01

    high bulk density to reduce diffusive path length. AWARE, Inc., (now Eckenfelder , Inc.) has performed experimental and theoretical work on in situ soil...operating guidance. The Eckenfelder work has continued with a one-year field study (Reference 33), consisting of a single 4-inch vent 20-foot-deep

  11. Iron-Oxidizing Bacteria Found at Slow-Spreading Ridge: a Case Study of Capelinhos Hydrothermal Vent (Lucky Strike, MAR 37°N)

    NASA Astrophysics Data System (ADS)

    Henri, P. A.; Rommevaux, C.; Lesongeur, F.; Emerson, D.; Leleu, T.; Chavagnac, V.

    2015-12-01

    Iron-oxidizing bacteria becomes increasingly described in different geological settings from volcanically active seamounts, coastal waters, to diffuse hydrothermal vents near seafloor spreading centers [Emerson et al., 2010]. They have been mostly identified and described in Pacific Ocean, and have been only recently found in hydrothermal systems associated to slow spreading center of the Mid-Atlantic Ridge (MAR) [Scott et al., 2015]. During the MoMARSAT'13 cruise at Lucky Strike hydrothermal field (MAR), a new hydrothermal site was discovered at about 1.5 km eastward from the lava lake and from the main hydrothermal vents. This active venting site, named Capelinhos, is therefore the most distant from the volcano, features many chimneys, both focused and diffuses. The hydrothermal end-member fluids from Capelinhos are different from those of the other sites of Lucky Strike, showing the highest content of iron (Fe/Mn≈3.96) and the lowest chlorinity (270 mmol/l) [Leleu et al., 2015]. Most of the chimneys exhibit rust-color surfaces and bacterial mats near diffuse flows. During the MoMARSAT'15 cruise, an active chimney, a small inactive one, and rust-color bacterial mat near diffuse flow were sampled at Capelinhos. Observations by SEM of the hydrothermal samples revealed the presence of iron oxides in an assemblage of tubular "sheaths", assembled "stalks", helical "stalks" and amorphous aggregates. These features are similar to those described from the Loihi iron-mats deposits and argue for the occurrence of iron-oxidizing bacteria. Cultures under micro-aerobic and neutral pH conditions allowed us to isolate strains from the small inactive chimney. Pyrosequencing of the 16S rRNA gene of the isolates and environmental samples will soon be performed, which should confirm the presence of iron-oxidizing bacteria and reveal the organization of bacterial communities in this original and newly discovered hydrothermal site of the slow spreading Mid-Atlantic Ridge. Emerson

  12. The sound generated by mid-ocean ridge black smoker hydrothermal vents.

    PubMed

    Crone, Timothy J; Wilcock, William S D; Barclay, Andrew H; Parsons, Jeffrey D

    2006-12-27

    Hydrothermal flow through seafloor black smoker vents is typically turbulent and vigorous, with speeds often exceeding 1 m/s. Although theory predicts that these flows will generate sound, the prevailing view has been that black smokers are essentially silent. Here we present the first unambiguous field recordings showing that these vents radiate significant acoustic energy. The sounds contain a broadband component and narrowband tones which are indicative of resonance. The amplitude of the broadband component shows tidal modulation which is indicative of discharge rate variations related to the mechanics of tidal loading. Vent sounds will provide researchers with new ways to study flow through sulfide structures, and may provide some local organisms with behavioral or navigational cues.

  13. Plume mapping and shipboard chemical data used to locate new vent sites in the Lau Basin

    NASA Astrophysics Data System (ADS)

    Edmonds, H. N.; German, C. R.; Breier, J. A.; Connelly, D. P.; Townsend-Small, A.; Resing, J. A.; Aumack, C.; Baker, E. T.; Langmuir, C. H.

    2004-12-01

    A central goal of the second Ridge2000 cruise (September-October 2004) to the Lau backarc basin in the southwest Pacific is to locate, map, and image new vent sites on the East Lau Spreading Center and the northern portion of the Valu Fa Ridge. Our primary tool for plume mapping and vent location is the Autonomous Benthic Explorer (ABE), including novel in situ chemical sensors (see abstracts by Yoerger et al. and German et al. in this session). In addition, we are using MAPRs (Miniature Autonomous Plume Recorders) to measure profiles of temperature and optical backscatter on dredge and rock core lowerings, and shipboard analysis of methane, hydrogen, pH, iron, and manganese from CTD casts, to locate and characterize the plumes. This presentation will focus on the profile data and chemical analyses, which we use to provide a preliminary comparison of chemical characteristics between vent fields.

  14. Background magnetic fields during last three cycles of solar activity

    NASA Astrophysics Data System (ADS)

    Andryeyeva, O. A.; Stepanian, N. N.

    2008-07-01

    This paper describes our studies of evolution of the solar magnetic field with different sign and field strength in the range from -100 G to 100 G. The structure and evolution of large-scale magnetic fields on the Sun during the last 3 cycles of solar activity is investigated using magnetograph data from the Kitt Peak Solar Observatory. This analysis reveals two groups of the large-scale magnetic fields evolving differently during the cycles. The first group is represented by relatively weak background fields, and is best observed in the range of 3-10 Gauss. The second group is represented by stronger fields of 75-100 Gauss. The spatial and temporal properties of these groups are described and compared with the total magnetic flux. It is shown that the anomalous behaviour of the total flux during the last cycle can be found only in the second group

  15. Metaproteomic Analysis of a Chemosynthetic Hydrothermal Vent Community Reveals Insights into Key-Metabolic Processes

    NASA Astrophysics Data System (ADS)

    Steen, I.; Stokke, R.; Lanzen, A.; Pedersen, R.; Øvreås, L.; Urich, T.

    2010-12-01

    In 2005 researchers at the Centre for Geobiology, University of Bergen, Norway, discovered two active vent fields at the southwestern Mohns Ridge in the Norwegian-Greenland Sea. The fields harbours both low-temperature iron deposits and high-temperature white smoker vents. Distinct microbial mats were abundantly present and located in close vicinity to the hydrothermal vent sites. Characteristics of the mat environment were steep physical and chemical gradients with temperatures ranging from 10°C in the top layer to 90°C at 10 cm bsf and high concentrations of hydrogen sulfide and methane. The work presented here focus on the In situ community activities, and is part of an integrated strategy combining metagenomics, metatranscriptomics and metaproteomics to in-depth characterise these newly discovered hydrothermal vent communities. Extracted proteins were separated via SDS-PAGE. Peptides extracted after In-gel tryptic digest was injected into an Ultimate 3000 nanoLC system connected to a linear quadropole ion trap-orbitrap (LTQ-Orbitrap XL) mass spectrometer equipped with a nanoelectrospray ion source. A custom database of open reading frames (ORFs) from the combined metatranscriptome and metagenome datasets was implemented and searched against using Mascot 2.2; the IRMa tool box [1] was used in peptide validation. Validated ORFs were subjected to a Blastp search against Refseq with an E-value cut-off of 0.001. A total of 1097 proteins with ≥ 2 peptides were identified of which 921 gave a hit against Refseq, containing 519 unique proteins. Key enzymes of the sulfur oxidation pathway (sox) were found, which were taxonomically affiliated to Epsilonproteobacteria. In addition, this group actively expressed hydrogenases and membrane proteins involved in aerobic and anaerobic respiratory chains. Enzymes of dissimilatory sulfate-reduction (APS-reductase, AprAB and DsrA2) were found with closest hit to members of the Deltaproteobacteria. These findings indicate an

  16. Detecting the Influence of Initial Pioneers on Succession at Deep-Sea Vents

    PubMed Central

    Mullineaux, Lauren S.; Le Bris, Nadine; Mills, Susan W.; Henri, Pauline; Bayer, Skylar R.; Secrist, Richard G.; Siu, Nam

    2012-01-01

    Deep-sea hydrothermal vents are subject to major disturbances that alter the physical and chemical environment and eradicate the resident faunal communities. Vent fields are isolated by uninhabitable deep seafloor, so recolonization via dispersal of planktonic larvae is critical for persistence of populations. We monitored colonization near 9°50′N on the East Pacific Rise following a catastrophic eruption in order to address questions of the relative contributions of pioneer colonists and environmental change to variation in species composition, and the role of pioneers at the disturbed site in altering community structure elsewhere in the region. Pioneer colonists included two gastropod species: Ctenopelta porifera, which was new to the vent field, and Lepetodrilus tevnianus, which had been rare before the eruption but persisted in high abundance afterward, delaying and possibly out-competing the ubiquitous pre-eruption congener L. elevatus. A decrease in abundance of C. porifera over time, and the arrival of later species, corresponded to a decrease in vent fluid flow and in the sulfide to temperature ratio. For some species these successional changes were likely due to habitat requirements, but other species persisted (L. tevnianus) or arrived (L. elevatus) in patterns unrelated to their habitat preferences. After two years, disturbed communities had started to resemble pre-eruption ones, but were lower in diversity. When compared to a prior (1991) eruption, the succession of foundation species (tubeworms and mussels) appeared to be delayed, even though habitat chemistry became similar to the pre-eruption state more quickly. Surprisingly, a nearby community that had not been disturbed by the eruption was invaded by the pioneers, possibly after they became established in the disturbed vents. These results indicate that the post-eruption arrival of species from remote locales had a strong and persistent effect on communities at both disturbed and undisturbed

  17. Investigating pyroclast ejection dynamics using shock-tube experiments: temperature, grain size and vent geometry effects.

    NASA Astrophysics Data System (ADS)

    Cigala, V.; Kueppers, U.; Dingwell, D. B.

    2015-12-01

    Explosive volcanic eruptions eject large quantities of gas and particles into the atmosphere. The portion directly above the vent commonly shows characteristics of underexpanded jets. Understanding the factors that influence the initial pyroclast ejection dynamics is necessary in order to better assess the resulting near- and far-field hazards. Field observations are often insufficient for the characterization of volcanic explosions due to lack of safe access to such environments. Fortunately, their dynamics can be simulated in the laboratory where experiments are performed under controlled conditions. We ejected loose natural particles from a shock-tube while controlling temperature (25˚ and 500˚C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), sample-to-vent distance and vent geometry. For each explosion we quantified the velocity of individual particles, the jet spreading angle and the production of fines. Further, we varied the setup to allow for different sample-to-gas ratios and deployed four different vent geometries: 1) cylindrical, 2) funnel with a flaring of 30˚, 3) funnel with a flaring of 15˚ and 4) nozzle. The results showed maximum particle velocities up to 296 m/s, gas spreading angles varying from 21˚ to 37˚ and particle spreading angles from 3˚ to 40˚. Moreover we observed dynamically evolving ejection characteristics and variations in the production of fines during the course of individual experiments. Our experiments mechanistically mimic the process of pyroclast ejection. Thus the capability for constraining the effects of input parameters (fragmentation conditions) and conduit/vent geometry on ballistic pyroclastic plumes has been clearly established. These data obtained in the presence of well-documented conduit and vent conditions, should greatly enhance our ability to numerically model explosive ejecta in nature.

  18. The Animal Exhibits at the Field Museum. Activities for Focused Field Trips.

    ERIC Educational Resources Information Center

    Wickland, Thomas, J.

    Museum visits allow students to see animals from South America, North America, Africa, Asia, and the North Pole without rain, snow, or mosquitoes. This activity guide was developed for teachers, chaperones, and students to use with the animal exhibits in the Daniel F. and Ada L. Rice Wing of the Field Museum of Chicago. Activities are designed for…

  19. A molecular gut content study of Themisto abyssorum (Amphipoda) from Arctic hydrothermal vent and cold seep systems.

    PubMed

    Olsen, Bernt Rydland; Troedsson, Christofer; Hadziavdic, Kenan; Pedersen, Rolf B; Rapp, Hans Tore

    2014-08-01

    The use of DNA as a marker for prey inside the gut of predators has been instrumental in further understanding of known and unknown interactions. Molecular approaches are in particular useful in unavailable environments like the deep sea. Trophic interactions in the deep sea are difficult to observe in situ, correct deep-sea experimental laboratory conditions are difficult to obtain, animals rarely survive the sampling, or the study organisms feed during the sampling due to long hauls. Preliminary studies of vent and seep systems in the Nordic Seas have identified the temperate-cold-water pelagic amphipod Themisto abyssorum as a potentially important predator in these chemosynthetic habitats. However, the prey of this deep-sea predator is poorly known, and we applied denaturing high performance liquid chromatography (DHPLC) to investigate the predator-prey interactions of T. abyssorum in deep-water vent and seep systems. Two deep-water hydrothermally active localities (The Jan Mayen and Loki's Castle vent fields) and one cold seep locality (The Håkon Mosby mud volcano) in the Nordic Seas were sampled, genomic DNA of the stomachs of T. abyssorum was extracted, and 18S rDNA gene was amplified and used to map the stomach content. We found a wide range of organisms including micro-eukaryotes, metazoans and detritus. Themisto abyssorum specimens from Loki's Castle had the highest diversity of prey. The wide range of prey items found suggests that T. abyssorum might be involved in more than one trophic level and should be regarded as an omnivore and not a strict carnivore as have previously been suggested.

  20. Enormous enhancement of electric field in active gold nanoshells

    NASA Astrophysics Data System (ADS)

    Jiang, Shu-Min; Wu, Da-Jian; Wu, Xue-Wei; Liu, Xiao-Jun

    2014-04-01

    The electric field enhancement properties of an active gold nanoshell with gain material inside have been investigated by using Mie theory. As the gain coefficient of the inner core increases to a critical value, a super-resonance appears in the active gold nanoshell, and enormous enhancements of the electric fields can be found near the surface of the particle. With increasing shell thickness, the critical value of the gain coefficient for the super-resonance of the active gold nanoshell first decreases and then increases, and the corresponding surface enhanced Raman scattering (SERS) enhancement factor (G factor) also first increases and then decreases. The optimized active gold nanoshell can be obtained with an extremely high SERS G factor of the order of 1019-1020. Such an optimized active gold nanoshell possesses a high-efficiency SERS effect and may be useful for single-molecule detection.

  1. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents.

    PubMed

    Meier, Dimitri V; Pjevac, Petra; Bach, Wolfgang; Hourdez, Stephane; Girguis, Peter R; Vidoudez, Charles; Amann, Rudolf; Meyerdierks, Anke

    2017-04-04

    At deep-sea hydrothermal vents, primary production is carried out by chemolithoautotrophic microorganisms, with the oxidation of reduced sulfur compounds being a major driver for microbial carbon fixation. Dense and highly diverse assemblies of sulfur-oxidizing bacteria (SOB) are observed, yet the principles of niche differentiation between the different SOB across geochemical gradients remain poorly understood. In this study niche differentiation of the key SOB was addressed by extensive sampling of active sulfidic vents at six different hydrothermal venting sites in the Manus Basin, off Papua New Guinea. We subjected 33 diffuse fluid and water column samples and 23 samples from surfaces of chimneys, rocks and fauna to a combined analysis of 16S rRNA gene sequences, metagenomes and real-time in situ measured geochemical parameters. We found Sulfurovum Epsilonproteobacteria mainly attached to surfaces exposed to diffuse venting, while the SUP05-clade dominated the bacterioplankton in highly diluted mixtures of vent fluids and seawater. We propose that the high diversity within Sulfurimonas- and Sulfurovum-related Epsilonproteobacteria observed in this study derives from the high variation of environmental parameters such as oxygen and sulfide concentrations across small spatial and temporal scales.The ISME Journal advance online publication, 4 April 2017; doi:10.1038/ismej.2017.37.

  2. Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents

    NASA Astrophysics Data System (ADS)

    Lauritano, C.; Ruocco, M.; Dattolo, E.; Buia, M. C.; Silva, J.; Santos, R.; Olivé, I.; Costa, M. M.; Procaccini, G.

    2015-03-01

    Submarine volcanic vents are being used as natural laboratories to assess the effects of CO2 on marine organisms and communities, as this gas is the main component of emissions. Seagrasses should positively react to increased dissolved carbon, but in vicinity of volcanic vents there may be toxic substances, that can have indirect effects on seagrasses. Here we analysed the expression of 35 stress-related genes in the Mediterranean keystone seagrass species P. oceanica in the vicinity of submerged volcanic vents located in the Islands of Ischia and Panarea, Italy, and compared them with those from control sites away from the influence of vents. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR) was used to characterize the expression levels of genes. Fifty one per cent of genes analysed showed significant expression changes. Metal detoxification genes were mostly down-regulated in relation to controls both in Ischia and Panarea locations, indicating that P. oceanica does not increase the synthesis of heavy metal detoxification proteins in response to the environmental conditions present at the two vents. The expression levels of genes involved in free radical detoxification indicate that, in contrast with Ischia, P. oceanica at the Panarea vent face stressors that result in the production of reactive oxygen species triggering antioxidant responses. In addition, heat shock proteins were also activated at Panarea and not at Ischia. Overall, our study reveals that P. oceanica is generally under higher stress in the vicinity of the vents at Panarea than at Ischia, possibly resulting from environmental and evolutionary differences existing between the two volcanic sites. This is the first study analysing gene responses in marine plants living near natural CO2 vents and our results call for a careful consideration of factors, other than CO2 and acidification, that can cause stress to seagrasses and other organisms near volcanic vents.

  3. Sediment Microbial Diversity of Three Deep-Sea Hydrothermal Vents Southwest of the Azores.

    PubMed

    Cerqueira, Teresa; Pinho, Diogo; Froufe, Hugo; Santos, Ricardo S; Bettencourt, Raul; Egas, Conceição

    2017-01-31

    Menez Gwen, Lucky Strike and Rainbow are the three most visited and well-known deep-sea hydrothermal vent fields in the Azores region, located in the Mid-Atlantic Ridge. Their distinct geological and ecological features allow them to support a diversity of vent communities, which are largely dependent on Bacteria and Archaea capable of anaerobic or microaerophilic metabolism. These communities play important ecological roles through chemoautotrophy, feeding and in establishing symbiotic associations. However, the occurrence and distribution of these microbes remain poorly understood, especially in deep-sea sediments. In this study, we provide for the first time a comparative survey of the sediment-associated microbial communities from these three neighbouring vent fields. Sediment samples collected in the Menez Gwen, Lucky Strike and Rainbow vent fields showed significant differences in trace-metal concentrations and associated microbiomes. The taxonomic profiles of bacterial, archaeal and eukaryotic representatives were assessed by rRNA gene-tag pyrosequencing, identified anaerobic methanogens and microaerobic Epsilonproteobacteria, particularly at the Menez Gwen site, suggesting sediment communities potentially enriched in sub-seafloor microbes rather than from pelagic microbial taxa. Cosmopolitan OTUs were also detected mostly at Lucky Strike and Rainbow sites and affiliated with the bacterial clades JTB255, Sh765B-TzT-29, Rhodospirillaceae and OCS155 marine group and with the archaeal Marine Group I. Some variations in the community composition along the sediment depth were revealed. Elemental contents and hydrothermal influence are suggested as being reflected in the composition of the microbial assemblages in the sediments of the three vent fields. Altogether, these findings represent valuable information for the understanding of the microbial distribution and potential ecological roles in deep-sea hydrothermal fields.

  4. Interactions Between Serpentinization, Hydrothermal Activity and Microbial Community at the Lost City Hydrothermal Field

    NASA Astrophysics Data System (ADS)

    Delacour, A.; Frueh-Green, G. L.; Bernasconi, S. M.; Schaeffer, P.; Frank, M.; Gutjahr, M.; Kelley, D. S.

    2008-12-01

    Seafloor investigations of slow- and ultraslow-spreading ridges have reported many occurrences of exposed mantle peridotites and gabbroic rocks on the ocean floor. Along the Mid-Atlantic Ridge, these uplifted portions of oceanic crust host high-temperature black smoker-type hydrothermal systems (e.g., Rainbow, Logatchev, Saldanha), and the more distinct low-temperature Lost City Hydrothermal Field (LCHF). Built on a southern terrace of the Atlantis Massif, the LCHF is composed of carbonate-brucite chimneys that vent alkaline and low-temperature (40-90°C) hydrothermal fluids. These fluids are related to serpentinization of mantle peridotites, which together with minor gabbroic intrusions form the basement of the LCHF. Long-lived hydrothermal activity at Lost City led to extensive seawater-rock interaction in the basement rocks, as indicated by seawater-like Sr- and mantle to unradiogenic Nd-isotope compositions of the serpentinites. These high fluid fluxes in the southern part of the massif influenced the conditions of serpentinization and have obliterated the early chemical signatures in the serpentinites, especially those of carbon and sulfur. Compared to reducing conditions commonly formed during the first stages of serpentinization, serpentinization at Lost City is characterized by relatively oxidizing conditions resulting in a predominance of magnetite, the mobilization/dissolution and oxidation of igneous sulfides to secondary pyrite, and the incorporation of seawater sulfate, all leading to high bulk-rock S-isotope compositions. The Lost City hydrothermal fluids contain high concentrations in methane, hydrogen, and low-molecular weight hydrocarbons considered as being produced abiotically. In contrast, organic compounds in the serpentinites are dominated by the occurrences of isoprenoids (pristane, phytane, and squalane), polycyclic compounds (hopanes and steranes), and higher abundances of C16 to C20 n-alkanes indicative of a marine organic input. We

  5. Hysteretic dynamics of active particles in a periodic orienting field

    PubMed Central

    Romensky, Maksym; Scholz, Dimitri; Lobaskin, Vladimir

    2015-01-01

    Active motion of living organisms and artificial self-propelling particles has been an area of intense research at the interface of biology, chemistry and physics. Significant progress in understanding these phenomena has been related to the observation that dynamic self-organization in active systems has much in common with ordering in equilibrium condensed matter such as spontaneous magnetization in ferromagnets. The velocities of active particles may behave similar to magnetic dipoles and develop global alignment, although interactions between the individuals might be completely different. In this work, we show that the dynamics of active particles in external fields can also be described in a way that resembles equilibrium condensed matter. It follows simple general laws, which are independent of the microscopic details of the system. The dynamics is revealed through hysteresis of the mean velocity of active particles subjected to a periodic orienting field. The hysteresis is measured in computer simulations and experiments on unicellular organisms. We find that the ability of the particles to follow the field scales with the ratio of the field variation period to the particles' orientational relaxation time, which, in turn, is related to the particle self-propulsion power and the energy dissipation rate. The collective behaviour of the particles due to aligning interactions manifests itself at low frequencies via increased persistence of the swarm motion when compared with motion of an individual. By contrast, at high field frequencies, the active group fails to develop the alignment and tends to behave like a set of independent individuals even in the presence of interactions. We also report on asymptotic laws for the hysteretic dynamics of active particles, which resemble those in magnetic systems. The generality of the assumptions in the underlying model suggests that the observed laws might apply to a variety of dynamic phenomena from the motion of

  6. Coupled pulsing of lava fountains: Video monitoring reveals systematic height and velocity variations of adjacent vents

    NASA Astrophysics Data System (ADS)

    Witt, Tanja; Walter, Thomas R.

    2014-05-01

    Lava fountains are a common eruption form at basaltic volcanoes. Many of the lava fountains occur at fissure eruptions, associated with the alignment of active vents. We observed that the lava fountain pulses may occur in chorus at several adjacent vents, implying that activity at these vents is coupled. The mechanisms behind such a coupling of adjacent lava fountains and the underlying connection between the different craters are not fully understood, however. Here we employ video images to measure the height, width and velocity of the ejecta leaving the vent. With a Sobel edge-detection algorithm, our aim is to measure the height of the different fountains occurring along fissure eruptions. Video data acquired from Puu'oo (Hawaii) and from Eyjafjallajökull (Iceland) are showing major similarities in fountaining behavior. Based on the fountain activity times series we estimate the sign and degree of correlation of the different vents. We find that the height and velocity of adjacent lava fountains are often in chorus. The velocity is calculated by a correlation in the Fourier space of contiguous images. We observed that episodically and sporadically the correlation regime can change. Despite these changes, both the frequency of the lava pulses and the eruption and rest time between the pulses remain similar for adjacent lava fountains, implying, a controlling process in the magma feeder system itself. We interpret the initial vertical velocity at the vent to be proportional to the extent of bubbles, and layers of bubbles rising. Lateral migration of fountains and their dynamics, in turn, is associated to lateral magma and gas flow or inclined layers of bubbles developing along the fissure at depth. Systematic recording and analysis of video data from different volcanoes hence result in a better understanding of the mechanisms of parallel and non-parallel lava fountain pulses.

  7. Distribution, Abundance, and Diversity Patterns of the Thermoacidophilic “Deep-Sea Hydrothermal Vent Euryarchaeota 2”

    PubMed Central

    Flores, Gilberto E.; Wagner, Isaac D.; Liu, Yitai; Reysenbach, Anna-Louise

    2011-01-01

    Cultivation-independent studies have shown that taxa belonging to the “deep-sea hydrothermal vent euryarchaeota 2” (DHVE2) lineage are widespread at deep-sea hydrothermal vents. While this lineage appears to be a common and important member of the microbial community at vent environments, relatively little is known about their overall distribution and phylogenetic diversity. In this study, we examined the distribution, relative abundance, co-occurrence patterns, and phylogenetic diversity of cultivable thermoacidophilic DHVE2 in deposits from globally distributed vent fields. Results of quantitative polymerase chain reaction assays with primers specific for the DHVE2 and Archaea demonstrate the ubiquity of the DHVE2 at deep-sea vents and suggest that they are significant members of the archaeal communities of established vent deposit communities. Local similarity analysis of pyrosequencing data revealed that the distribution of the DHVE2 was positively correlated with 10 other Euryarchaeota phylotypes and negatively correlated with mostly Crenarchaeota phylotypes. Targeted cultivation efforts resulted in the isolation of 12 axenic strains from six different vent fields, expanding the cultivable diversity of this lineage to vents along the East Pacific Rise and Mid-Atlantic Ridge. Eleven of these isolates shared greater than 97% 16S rRNA gene sequence similarity with one another and the only described isolate of the DHVE2, Aciduliprofundum boonei T469T. Sequencing and phylogenetic analysis of five protein-coding loci, atpA, EF-2, radA, rpoB, and secY, revealed clustering of isolates according to geographic region of isolation. Overall, this study increases our understanding of the distribution, abundance, and phylogenetic diversity of the DHVE2. PMID:22363325

  8. Rapid growth of mineral deposits at artificial seafloor hydrothermal vents.

    PubMed

    Nozaki, Tatsuo; Ishibashi, Jun-Ichiro; Shimada, Kazuhiko; Nagase, Toshiro; Takaya, Yutaro; Kato, Yasuhiro; Kawagucci, Shinsuke; Watsuji, Tomoo; Shibuya, Takazo; Yamada, Ryoichi; Saruhashi, Tomokazu; Kyo, Masanori; Takai, Ken

    2016-02-25

    Seafloor massive sulphide deposits are potential resources for base and precious metals (Cu-Pb-Zn ± Ag ± Au), but difficulties in estimating precise reserves and assessing environmental impacts hinder exploration and commercial mining. Here, we report petrological and geochemical properties of sulphide chimneys less than 2 years old that formed where scientific boreholes vented hydrothermal fluids in the Iheya-North field, Okinawa Trough, in East China Sea. One of these infant chimneys, dominated by Cu-Pb-Zn-rich sulphide minerals, grew a height of 15 m within 25 months. Portions of infant chimneys are dominated by sulphate minerals. Some infant chimneys are sulphide-rich similar to high-grade Cu-Pb-Zn bodies on land, albeit with relatively low As and Sb concentrations. The high growth rate reaching the 15 m height within 25 months is attributed to the large hydrothermal vent more than 50 cm in diameter created by the borehole, which induced slow mixing with the ambient seawater and enhanced efficiency of sulphide deposition. These observations suggest the possibility of cultivating seafloor sulphide deposits and even controlling their growth and grades through manipulations of how to mix and quench hydrothermal fluids with the ambient seawater.

  9. Rapid growth of mineral deposits at artificial seafloor hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Nozaki, Tatsuo; Ishibashi, Jun-Ichiro; Shimada, Kazuhiko; Nagase, Toshiro; Takaya, Yutaro; Kato, Yasuhiro; Kawagucci, Shinsuke; Watsuji, Tomoo; Shibuya, Takazo; Yamada, Ryoichi; Saruhashi, Tomokazu; Kyo, Masanori; Takai, Ken

    2016-02-01

    Seafloor massive sulphide deposits are potential resources for base and precious metals (Cu-Pb-Zn ± Ag ± Au), but difficulties in estimating precise reserves and assessing environmental impacts hinder exploration and commercial mining. Here, we report petrological and geochemical properties of sulphide chimneys less than 2 years old that formed where scientific boreholes vented hydrothermal fluids in the Iheya-North field, Okinawa Trough, in East China Sea. One of these infant chimneys, dominated by Cu-Pb-Zn-rich sulphide minerals, grew a height of 15 m within 25 months. Portions of infant chimneys are dominated by sulphate minerals. Some infant chimneys are sulphide-rich similar to high-grade Cu-Pb-Zn bodies on land, albeit with relatively low As and Sb concentrations. The high growth rate reaching the 15 m height within 25 months is attributed to the large hydrothermal vent more than 50 cm in diameter created by the borehole, which induced slow mixing with the ambient seawater and enhanced efficiency of sulphide deposition. These observations suggest the possibility of cultivating seafloor sulphide deposits and even controlling their growth and grades through manipulations of how to mix and quench hydrothermal fluids with the ambient seawater.

  10. Rapid growth of mineral deposits at artificial seafloor hydrothermal vents

    PubMed Central

    Nozaki, Tatsuo; Ishibashi, Jun-Ichiro; Shimada, Kazuhiko; Nagase, Toshiro; Takaya, Yutaro; Kato, Yasuhiro; Kawagucci, Shinsuke; Watsuji, Tomoo; Shibuya, Takazo; Yamada, Ryoichi; Saruhashi, Tomokazu; Kyo, Masanori; Takai, Ken

    2016-01-01

    Seafloor massive sulphide deposits are potential resources for base and precious metals (Cu-Pb-Zn ± Ag ± Au), but difficulties in estimating precise reserves and assessing environmental impacts hinder exploration and commercial mining. Here, we report petrological and geochemical properties of sulphide chimneys less than 2 years old that formed where scientific boreholes vented hydrothermal fluids in the Iheya-North field, Okinawa Trough, in East China Sea. One of these infant chimneys, dominated by Cu-Pb-Zn-rich sulphide minerals, grew a height of 15 m within 25 months. Portions of infant chimneys are dominated by sulphate minerals. Some infant chimneys are sulphide-rich similar to high-grade Cu-Pb-Zn bodies on land, albeit with relatively low As and Sb concentrations. The high growth rate reaching the 15 m height within 25 months is attributed to the large hydrothermal vent more than 50 cm in diameter created by the borehole, which induced slow mixing with the ambient seawater and enhanced efficiency of sulphide deposition. These observations suggest the possibility of cultivating seafloor sulphide deposits and even controlling their growth and grades through manipulations of how to mix and quench hydrothermal fluids with the ambient seawater. PMID:26911272

  11. Using Spatial Density to Characterize Volcanic Fields on Mars

    NASA Technical Reports Server (NTRS)

    Richardson, J. A.; Bleacher, J. E.; Connor, C. B.; Connor, L. J.

    2012-01-01

    We introduce a new tool to planetary geology for quantifying the spatial arrangement of vent fields and volcanic provinces using non parametric kernel density estimation. Unlike parametricmethods where spatial density, and thus the spatial arrangement of volcanic vents, is simplified to fit a standard statistical distribution, non parametric methods offer more objective and data driven techniques to characterize volcanic vent fields. This method is applied to Syria Planum volcanic vent catalog data as well as catalog data for a vent field south of Pavonis Mons. The spatial densities are compared to terrestrial volcanic fields.

  12. Cryogenic fluid management technologies for space transportation. Zero G thermodynamic vent system

    NASA Technical Reports Server (NTRS)

    1994-01-01

    -g liquid hydrogen TVS. The primary objective of the zero-g TVS contract (Contract NAS8-39202) was to design a zero-g vent system that is innovative, simple, efficient, lightweight, and can be characterized through one-g tests. The TVS concept defined by Rockwell International was selected by NASA for further design evaluation. The 30 month activity was initiated in November 1991 and concluded on May 1994.

  13. Testing Geyser Models using Down-vent Data

    NASA Astrophysics Data System (ADS)

    Wang, C.; Munoz, C.; Ingebritsen, S.; King, E.

    2013-12-01

    Geysers are often studied as an analogue to magmatic volcanoes because both involve the transfer of mass and energy that leads to eruption. Several conceptual models have been proposed to explain geyser eruption, but no definitive test has been performed largely due to scarcity of down-vent data. In this study we compare simulated time histories of pressure and temperature against published data for the Old Faithful geyser in the Yellowstone National Park and new down-vent measurements from geysers in the El Tatio geyser field of northern Chile. We test two major types of geyser models by comparing simulated and field results. In the chamber model, the geyser system is approximated as a fissure-like conduit connected to a subsurface chamber of water and steam. Heat supplied to the chamber causes water to boil and drives geyser eruptions. Here the Navier-Stokes equation is used to simulate the flow of water and steam. In the fracture-zone model, the geyser system is approximated as a saturated fracture zone of high permeability and compressibility, surrounded by rock matrix of relatively low permeability and compressibility. Heat supply from below causes pore water to boil and drives geyser eruption. Here a two-phase form of Darcy's law is assumed to describe the flow of water and steam (Ingebritsen and Rojstaczer, 1993). Both models can produce P-T time histories qualitatively similar to field results, but the simulations are sensitive to assumed parameters. Results from the chamber model are sensitive to the heat supplied to the system and to the width of the conduit, while results from the fracture-zone model are most sensitive to the permeability of the fracture zone and the adjacent wall rocks. Detailed comparison between field and simulated results, such as the phase lag between changes of pressure and temperature, may help to resolve which model might be more realistic.

  14. Vent evolution and lag breccia formation during the Cape Riva eruption of Santorini, Greece.

    USGS Publications Warehouse

    Druitt, T.H.

    1985-01-01

    The 18 500 yr BP Cape Riva (CR) eruption of Santorini vented several km3 or more of magma, generating 4 eruption units, each of which is discussed. The eruption sampled a zoned magma chamber containing rhyodacite overlying andesite, and leaks of these magmas were manifested as the Skaros-Therasia lavas preceding the CR eruption. Plinian and initial ignimbrite stages occurred while the magma chamber was overpressured; subsequent underpressuring, due to magma discharge, caused fracturing of the chamber roof, caldera collapse, and eruption of pyroclastic flows from multiple vents. Activation and widening of new conduits during collapse resulted in the rapid escalation of discharge rate favoring the formation of lag breccias by: 1) promoting erosion of lithic debris at the surface vent; and 2) raising surface exit pressures, thereby resulting in a dramatic increase in the grain size of the ejecta.-from Author

  15. Holocene eolian activity in the Minot dune field, North Dakota

    USGS Publications Warehouse

    Muhs, D.R.; Stafford, Thomas W.; Been, J.; Mahan, S.A.; Burdett, J.; Skipp, G.; Rowland, Z.M.

    1997-01-01

    Stabilized eolian sand is common over much of the Great Plains region of the United States and Canada, including a subhumid area of ??? 1500 km2 near Minot, North Dakota. Eolian landforms consist of sand sheets and northwest-trending parabolic dunes. Dunes and sand sheets in the Minot field are presently stabilized by a cover of prairie grasses or oak woodland. Stratigraphic studies and accelerator mass spectrometry radiocarbon dating of paleosols indicate at least two periods of eolian sand movement in the late Holocene. Pedologic data suggest that all of the dune field has experienced late Holocene dune activity, though not all parts of the dune field may have been active simultaneously. Similar immobile element (Ti, Zr, La, Ce) concentrations support the interpretation that eolian sands are derived from local glaciofluvial and glaciolacustrine sediments. However, glaciolacustrine and glaciofluvial source sediments have high Ca concentrations from carbonate minerals, whereas dune sands are depleted in Ca. Because noneolian-derived soils in the area are calcareous, these data indicate that the Minot dune field may have had extended periods of activity in the Holocene, such that eolian abrasion removed soft carbonate minerals. The southwest-facing parts of some presently stabilized dunes were active during the 1930s drought, but were revegetated during the wetter years of the 1940s. These observations indicate that severe droughts accompanied by high temperatures are the most likely cause of Holocene eolian activity.

  16. Mineralogical and Fluid Inclusion Studies on Seafloor Hydrothermal Vents at TA25 Caldera, Tonga Arc

    NASA Astrophysics Data System (ADS)

    Choi, S. K.; Pak, S. J.; Choi, S. H.; Lee, K. Y.; Kim, H. S.; Lee, I. K.

    2015-12-01

    The extensive hydrothermal vent field was discovered at TA25("V18s-HR" in the SO-167 cruise) caldera in the Tonga arc, southwest Pacific. The TA25 caldera is a submarine volcano of dacitic composition and hosts the NE- and NW-trending hydrothermal vent on the western caldera wall. These active hydrothermal crusters are mostly small (chimney: <0.5m in tall; sulfide mound: <3m in diameter) and immature, and emit the transparent fluids of which temperature range from 150℃ to 242℃ (average = 203℃). The hydrothermal sulfide ores, recovered by ROV and/or TV-grab, are mainly composed of sphalerite, pyrite, marcasite, galena, chalcopyrite, covellite, tennantite, enargite and sulfates such as barite, gypsum/anhydrite. It is observed that three distinct mineralogical zonation from exterior to interior of the chimneys: (1) barite-gypsum/anhydrite-pyrite-sphalerite; (2) sphalerite-pyrite-galena±chalcopyrite; (3) sphaleirte-pyrite-chalcopyrite-enargite-tennantite±galena±covellite. FeS content in sphalerite increases from chimney exterior to interior. Chalcopyrite is more abundant in the mound than in the chimney, implying fluid temperatures in mound are greater than in the chimney. The enargite assemblage (pyrite-chalcopyrite-enargite-tennantite) is indicative of high-sulfidation epithermal deposits. Fluid inclusions on barite crystals from mound samples show mono-type inclusion (two-phase liquid-rich inclusions) which is less than 20㎛ in diameter. Homogenization temperatures and salinities from fluid inclusion study range from 148℃ to 341℃ (average = 213℃) and 0.4 to 3.6 equiv. wt.% NaCl, respectively. The main mineralization temperature in mound might be greater than 200℃ since barite on fluid inclusion is early stage mineral.

  17. Provisions for containment venting in Germany

    SciTech Connect

    Wilhelm, J.G.

    1997-08-01

    In this short paper an overlook is given of the systems developed in Germany for filtered containment venting and their implementation in nuclear power plants. More information on the development can be found in the Proceedings of the DOE/NRC Aircleaning Conferences. In Germany, 28.8 % of the electric energy is produced by 19 nuclear power reactors. No new power reactor is expected to be built at least within the next ten years, but France and Germany cooperate in the development of a future European Power Reactor (ERP). This reactor type will be fitted with a core catcher and passive cooling in order to avoid serious consequences of a hypothetical core meltdown accident so that provisions for containment venting are not required. 3 refs., 6 figs., 1 tab.

  18. Cameras on the NEPTUNE Canada seafloor observatory: Towards monitoring hydrothermal vent ecosystem dynamics

    NASA Astrophysics Data System (ADS)

    Robert, K.; Matabos, M.; Sarrazin, J.; Sarradin, P.; Lee, R. W.; Juniper, K.

    2010-12-01

    Hydrothermal vent environments are among the most dynamic benthic habitats in the ocean. The relative roles of physical and biological factors in shaping vent community structure remain unclear. Undersea cabled observatories offer the power and bandwidth required for high-resolution, time-series study of the dynamics of vent communities and the physico-chemical forces that influence them. The NEPTUNE Canada cabled instrument array at the Endeavour hydrothermal vents provides a unique laboratory for researchers to conduct long-term, integrated studies of hydrothermal vent ecosystem dynamics in relation to environmental variability. Beginning in September-October 2010, NEPTUNE Canada (NC) will be deploying a multi-disciplinary suite of instruments on the Endeavour Segment of the Juan de Fuca Ridge. Two camera and sensor systems will be used to study ecosystem dynamics in relation to hydrothermal discharge. These studies will make use of new experimental protocols for time-series observations that we have been developing since 2008 at other observatory sites connected to the VENUS and NC networks. These protocols include sampling design, camera calibration (i.e. structure, position, light, settings) and image analysis methodologies (see communication by Aron et al.). The camera systems to be deployed in the Main Endeavour vent field include a Sidus high definition video camera (2010) and the TEMPO-mini system (2011), designed by IFREMER (France). Real-time data from three sensors (O2, dissolved Fe, temperature) integrated with the TEMPO-mini system will enhance interpretation of imagery. For the first year of observations, a suite of internally recording temperature probes will be strategically placed in the field of view of the Sidus camera. These installations aim at monitoring variations in vent community structure and dynamics (species composition and abundances, interactions within and among species) in response to changes in environmental conditions at different

  19. Investigating microbial colonization in actively forming hydrothermal deposits using thermocouple arrays

    NASA Astrophysics Data System (ADS)

    Tivey, M. K.; Reysenbach, A. L.; Hirsch, M.; Steinberg, J.; Flores, G. E.

    2010-12-01

    Investigations of microbial colonization of very young hydrothermal deposits were carried out in 2009 at hydrothermal vents in the Lau Basin (SW Pacific), and in Guaymas Basin, Gulf of California, with a test deployment at the Rainbow vent field on the Mid-Atlantic Ridge in 2008. Our method entailed razing active chimneys and placing arrays of temperature probes (8 titanium-encased probes with their tips placed within a titanium cage) over the active flow. The chimneys that grew back through each array, encasing the temperature probe tips, were recovered after 2 to 15 days, along with temperature records. Molecular phylogenetic methods are being used to reveal the members of the microbial communities that developed in each chimney of known age and thermal history. A total of 15 array deployments were made at 10 vents in 6 different vent fields. Similar morphology beehives (with porous fine-grained interiors and steep temperature gradients across the outermost more-consolidated “wall”) formed at 2 of the 3 vents in Guaymas Basin (in 2 and 5 days at one vent and 3 and 15 days at a second), and at one vent each in the Kilo Moana (in 3 days), Tahi Moana (in 2.5 days), and Tui Malila (in 3 and 8 days) vent fields in the Lau Basin. In contrast, open conduit, thin walled chimneys grew within arrays at the Mariner vent field, Lau Basin, at 3 different vents (in 3 days at one vent, in 3 and 11 days at a second vent, and in 13 days at a third vent). A lower temperature (<280C) diffuser/spire with a filamentous biofilm formed in 15 days in an array at a hydrocarbon-rich vent in the Guaymas Basin. A similar biofilm formed after 6 days within an array placed earlier at this same vent, with little mineralization. Preliminary diversity data from the 6 and 15 day Guaymas deployments show an increased diversity of bacteria with time with initial colonizers being primarily sulfur-oxidizing Epsilonproteobacteria, with members of the Aquificales and Deltaproteobacteria appearing

  20. Sparger system for MMH-helium vents

    NASA Technical Reports Server (NTRS)

    Rakow, A.

    1983-01-01

    Based on a calculated vent flow rate and MMH concentration, a TI-59 program was run to determine total sparger hole area for a given sparger inlet pressure. Hole diameter is determined from a mass transfer analysis in the holding tank to achieve complete capture of MMH. In addition, based on oxidation kinetics and vapor pressure data, MMh atmospheric concentrations are determined 2 ft above the holding tank.

  1. Comparative Study of Vented vs. Unvented Crawlspaces

    SciTech Connect

    Biswas, Kaushik; Christian, Jeffrey E; Gehl, Anthony C

    2011-10-01

    There has been a significant amount of research in the area of building energy efficiency and durability. However, well-documented quantitative information on the impact of crawlspaces on the performance of residential structures is lacking. The objective of this study was to evaluate and compare the effects of two crawlspace strategies on the whole-house performance of a pair of houses in a mixed humid climate. These houses were built with advanced envelope systems to provide energy savings of 50% or more compared to traditional 2010 new construction. One crawlspace contains insulated walls and is sealed and semi-conditioned. The other is a traditional vented crawlspace with insulation in the crawlspace ceiling. The vented (traditional) crawlspace contains fiberglass batts installed in the floor chase cavities above the crawl, while the sealed and insulated crawlspace contains foil-faced polyisocyanurate foam insulation on the interior side of the masonry walls. Various sensors to measure temperatures, heat flux through crawlspace walls and ceiling, and relative humidity were installed in the two crawlspaces. Data from these sensors have been analyzed to compare the performance of the two crawlspace designs. The analysis results indicated that the sealed and insulated crawlspace design is better than the traditional vented crawlspace in the mixed humid climate.

  2. Colonization of nascent, deep-sea hydrothermal vents by a novel Archaeal and Nanoarchaeal assemblage.

    PubMed

    McCliment, Elizabeth A; Voglesonger, Kenneth M; O'Day, Peggy A; Dunn, Eileen E; Holloway, John R; Cary, S Craig

    2006-01-01

    Active deep-sea hydrothermal vents are areas of intense mixing and severe thermal and chemical gradients, fostering a biotope rich in novel hyperthermophilic microorganisms and metabolic pathways. The goal of this study was to identify the earliest archaeal colonizers of nascent hydrothermal chimneys, organisms that may be previously uncharacterized as they are quickly replaced by a more stable climax community. During expeditions in 2001 and 2002 to the hydrothermal vents of the East Pacific Rise (EPR) (9 degrees 50'N, 104 degrees 17'W), we removed actively venting chimneys and in their place deployed mineral chambers and sampling units that promoted the growth of new, natural hydrothermal chimneys and allowed their collection within hours of formation. These samples were compared with those collected from established hydrothermal chimneys from EPR and Guaymas Basin vent sites. Using molecular and phylogenetic analysis of the 16S rDNA, we show here that at high temperatures, early colonization of a natural chimney is dominated by members of the archaeal genus Ignicoccus and its symbiont, Nanoarchaeum. We have identified 19 unique sequences closely related to the nanoarchaeal group, and five archaeal sequences that group closely with Ignicoccus. These organisms were found to colonize a natural, high temperature protochimney and vent-like mineral assemblages deployed over high temperature outflows within 92 h. When compared phylogenetically, several of these colonizing organisms form a unique clade independent of those found in mature chimneys and low-temperature mineral chamber samples. As a model ecosystem, the identification of pioneering consortia in deep-sea hydrothermal vents may help advance the understanding of how early microbial life forms gained a foothold in hydrothermal systems on early Earth and potentially on other planetary bodies.

  3. Investigating the role of small vent volcanism during the development of Tharsis Province, Mars

    NASA Astrophysics Data System (ADS)

    Richardson, J. A.; Bleacher, J. E.; Connor, C.; Connor, L.; Glaze, L. S.

    2014-12-01

    Clusters of tens to hundreds of small volcanic vents have recently been recognized as a major component of Tharsis Province volcanism. These volcanic fields are formed from distributed-style, possibly monogenetic, volcanism and are composed of low sloped edifices with diameters of tens of kilometers and heights of tens to hundreds of meters. We report a new catalog of these small volcanic vents, now available through the USGS Astrogeology Science Center. This catalog was created with the use of gridded topographic data from the Mars Orbiter Laser Altimeter (MOLA) and images from the Thermal Emission Imaging System (THEMIS) and the High Resolution Stereo Camera (HRSC). We are now investigating isolated clusters of distributed volcanism in Tharsis with this dataset. We hypothesize that these clusters are formed from significant magmatic events that played a large role in the development of Tharsis. Currently, the catalog contains 1075 unique volcanic vents in the Tharsis Province. With the catalog, potentially isolated volcano clusters are identified with vent density estimation. Vent intensity for clusters is found to be 1 vent per 1000 sq km or less. Crater retention rates for one such cluster, Syria Planum, indicates that these distributed volcanic systems might continue as long as 700 Ma, or that monogenetic volcanic systems overprint older systems. Using a modified basal outlining algorithm with MOLA gridded data, shield volumes are found to be between 1-20 cubic km. Current results show distributed-style volcanism occuring in Tharsis orders of magnitude more dispersed than analogous volcano clusers on Earth, while individual edifices are found to be an order of magnitude larger than volcanoes in Earth clusters. Proof of concept results are reported for three identified clusters: Arsia Mons Caldera, Syria Planum, and Southern Pavonis Mons.

  4. E region electric field dependence of the solar activity

    NASA Astrophysics Data System (ADS)

    Denardini, C. M.; Moro, J.; Resende, L. C. A.; Chen, S. S.; Schuch, N. J.; Costa, J. E. R.

    2015-10-01

    We have being studying the zonal and vertical E region electric field components inferred from the Doppler shifts of type 2 echoes (gradient drift irregularities) detected with the 50 MHz backscatter coherent radar set at São Luis, Brazil (SLZ, 2.3°S, 44.2°W) during the solar cycle 24. In this report we present the dependence of the vertical and zonal components of this electric field with the solar activity, based on the solar flux F10.7. For this study we consider the geomagnetically quiet days only (Kp ≤ 3+). A magnetic field-aligned-integrated conductivity model was developed for proving the conductivities, using the IRI-2007, the MISIS-2000, and the IGRF-11 models as input parameters for ionosphere, neutral atmosphere, and Earth magnetic field, respectively. The ion-neutron collision frequencies of all the species are combined through the momentum transfer collision frequency equation. The mean zonal component of the electric field, which normally ranged from 0.19 to 0.35 mV/m between the 8 and 18 h (LT) in the Brazilian sector, show a small dependency with the solar activity. Whereas the mean vertical component of the electric field, which normally ranges from 4.65 to 10.12 mV/m, highlights the more pronounced dependency of the solar flux.

  5. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece.

    PubMed

    Kilias, Stephanos P; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe(3+)-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe(2+)-oxidation, dependent on microbially produced nitrate.

  6. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece

    PubMed Central

    Kilias, Stephanos P.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Polymenakou, Paraskevi N.; Godelitsas, Athanasios; Argyraki, Ariadne; Carey, Steven; Gamaletsos, Platon; Mertzimekis, Theo J.; Stathopoulou, Eleni; Goettlicher, Joerg; Steininger, Ralph; Betzelou, Konstantina; Livanos, Isidoros; Christakis, Christos; Bell, Katherine Croff; Scoullos, Michael

    2013-01-01

    We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits. Iron microbial-mat analyses reveal dominating ferrihydrite-type phases, and high-proportion of microbial sequences akin to "Nitrosopumilus maritimus", a mesophilic Thaumarchaeota strain capable of chemoautotrophic growth on hydrothermal ammonia and CO2. Our findings highlight that acidic shallow-submarine hydrothermal vents nourish marine ecosystems in which nitrifying Archaea are important and suggest ferrihydrite-type Fe3+-(hydrated)-oxyhydroxides in associated low-temperature iron mats are formed by anaerobic Fe2+-oxidation, dependent on microbially produced nitrate. PMID:23939372

  7. Submarine fissure eruptions and hydrothermal vents on the southern Juan de Fuca Ridge: preliminary observations from the submersible Alvin

    USGS Publications Warehouse

    Normark, W.R.

    1986-01-01

    The submersible Alvin was used to investigate 3 active hydrothermal discharge sites along the S Juan de Fuca Ridge in September 1984. The hydrothermal zones occur within a 10-30m-deep, 30-50m-wide cleft marking the center of the axial valley. This cleft is the eruptive locus for the axial valley. The hydrothermal vents coincide with the main eruptive vents along the cleft. Each hydrothermal zone has multiple discharge sites extending as much as 500m along the cleft. Sulfide deposits occur as clusters (15-100m2 area) of small chimneys (= or <2m high) and as individual and clustered fields of large, branched chimneys (= or <10m high). Recovered sulfide samples are predominantly the tops of chimneys and spires and typically contain more than 80% sphalerite and wurtzite with minor pyrrhotite, pyrite, marcasite, isocubanite, chalcopyrite, anhydrite, anhydrite, and amorphous silica. The associated hydrothermal fluids have the highest chlorinity of any reported to date.-Authors

  8. Annual Report for 2003 Wild Horse Research and Field Activities

    USGS Publications Warehouse

    Ransom, Jason; Singer, Francis J.; Zeigenfuss, Linda C.

    2004-01-01

    This report is meant to highlight the activities of the 2003 field season, as well as to provide a general overview of the data collected. More in-depth data analysis will be conducted following the conclusion of each I phase of the research project, and in many cases will not be possible until several seasons of data are collected.

  9. The connection between stellar activity cycles and magnetic field topology

    NASA Astrophysics Data System (ADS)

    See, V.; Jardine, M.; Vidotto, A. A.; Donati, J.-F.; Boro Saikia, S.; Bouvier, J.; Fares, R.; Folsom, C. P.; Gregory, S. G.; Hussain, G.; Jeffers, S. V.; Marsden, S. C.; Morin, J.; Moutou, C.; do Nascimento, J. D.; Petit, P.; Waite, I. A.

    2016-11-01

    Zeeman-Doppler imaging (ZDI) has successfully mapped the large-scale magnetic fields of stars over a large range of spectral types, rotation periods and ages. When observed over multiple epochs, some stars show polarity reversals in their global magnetic fields. On the Sun, polarity reversals are a feature of its activity cycle. In this paper, we examine the magnetic properties of stars with existing chromospherically determined cycle periods. Previous authors have suggested that cycle periods lie on multiple branches, either in the cycle period-Rossby number plane or the cycle period-rotation period plane. We find some evidence that stars along the active branch show significant average toroidal fields that exhibit large temporal variations while stars exclusively on the inactive branch remain dominantly poloidal throughout their entire cycle. This lends credence to the idea that different shear layers are in operation along each branch. There is also evidence that the short magnetic polarity switches observed on some stars are characteristic of the inactive branch while the longer chromospherically determined periods are characteristic of the active branch. This may explain the discrepancy between the magnetic and chromospheric cycle periods found on some stars. These results represent a first attempt at linking global magnetic field properties obtained from ZDI and activity cycles.

  10. Controls of surface topography on submarine and subaerial hydrothermal fluid flow and vent-site location

    NASA Astrophysics Data System (ADS)

    Bani Hassan, N.; Rupke, L.; Iyer, K. H.; Borgia, A.

    2010-12-01

    Hydrothermal convection is an important process that occurs in the oceanic lithosphere as well as within continents where the geothermal gradient is high enough to drive fluid flow. This process efficiently mines heat from the lithosphere, sustains life in the otherwise bleak settings at oceanic depths and is associated with mineral deposits. Although recent focus on hydrothermal systems has greatly improved our understanding on how they work, the detailed effects of topography on these systems has largely been ignored. While the qualitative effects of topography on hydrothermal flow are largely known (e.g. Ingebritsen 2006), we here present results from systematic numerical modeling on the importance of topography for both, subaerial and submarine hydrothermal convection. The model is based on a 2-D Finite Element Method (FEM) solver for fully compressible, single-phase, porous media fluid flow and is used to simulate hydrothermal convection in a number of synthetic studies as well as for two case studies for the Lucky Strike vent field (submarine) and the Amiata volcano (subaerial). The results of synthetic studies using sinusoidal topography variations show that topography indeed has a profound effect on the distribution and flow field of the convection cells. In the submarine case, fluid venting occurs at the topographic highs while the recharge zones are restricted to the lows. For the subaerial scenarios, the opposite occurs where groundwater flow focuses venting at flank regions and the recharge zones are situated at the highs. For example, in the submarine case, ~90% of the hydrothermal fluids vent at upper 50% of topographic highs if the number of topographic highs equals the number of plumes in a flat-top reference simulation. The results show that the focusing effect into topographic highs (submarine) and lows (subaerial) is highly dependent on the wavelength and amplitude of topography, i.e. wavelengths that are too high or low result in venting at

  11. Twist of Magnetic Fields in Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqi; Bao, Shudong; Kuzanyan, Kirill M.

    2002-05-01

    We study the twist properties of photospheric magnetic fields in solar active regions using magnetographic data on 422 active regions obtained at the Huairou Solar Observing Station in 1988 1997. We calculate the mean twist (force-free field αf) of the active regions and compare it with the mean current-helicity density of these same active regions, h c =B ∥·(∇×B)∥. The latitude and longitude distributions and time dependence of these quantities is analyzed. These parameters represent two different tracers of the α effect in dynamo theory, so we might expect them to possess similar properties. However, apart from differences in their definitions, they also display differences associated with the technique used to recalculate the magnetographic data and with their different physical meanings. The distributions of the mean αf and h c both show hemispherical asymmetry—negative (positive) values in the northern (southern) hemisphere—although this tendency is stronger for h c. One reason for these differences may be the averaging procedure, when twists of opposite sign in regions with weak fields make a small contribution to the mean current-helicity density. Such transequatorial regularity is in agreement with the expectations of dynamo theory. In some active regions, the average αf and h c do not obey this transequatorial rule. As a whole, the mean twist of the magnetic fields αf of active regions does not vary significantly with the solar cycle. Active regions that do not follow the general behavior for αf do not show any appreciable tendency to cluster at certain longitudes, in contrast to results for h c noted in previous studies. We analyze similarities and differences in the distributions of these two quantities. We conclude that using only one of these tracers, such as αf, to search for signatures of the α effect can have disadvantages, which should be taken into account in future studies.

  12. Chromospheric magnetic fields of an active region filament

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Solanki, S.; Lagg, A.

    2012-06-01

    Vector magnetic fields of an active region filament are co-spatially and co-temporally mapped in photosphere and upper chromosphere, by using spectro-polarimetric observations made by Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope (VTT). A Zeeman-based ME inversion is performed on the full Stokes vectors of both the photospheric Si I 1082.7 nm and the chromospheric He I 1083.0 nm lines. We found that the strong magnetic fields, with the field strength of 600 - 800 G in the He I line formation height, are not uncommon among AR filaments. But such strong magnetic field is not always found in AR filaments.

  13. Characterization of Dissolved Organic Matter from Deep-sea Floor Hydrothermal Vents in South Mariana Backarc Spreading Center

    NASA Astrophysics Data System (ADS)

    Kitajima, F.; Yamanaka, T.

    2004-12-01

    In South Mariana Backarc Spreading Center, a few active hydrothermal fields are located. We investigated a characterization of dissolved organic matter (DOM) from hydrothermal vents in this area, in order to clarify the biosphere beneath deep-sea floor. Hot water sample was collected from a drilled hole (APM01 located in Fryer site, 12o 55.22fN, 143o 37.16fE, depth 2850m) during the ROPOS/TN167A cruise in March 2004. The hole had been drilled during Hakurei-Maru 2 cruise in January 2004. Another hot water sample was collected from a natural black smoker located in Pika site (12o 55.15fN, 143o 36.96fE, depth 2773m) during YK03-09 cruise. In this investigation, we developed a standalone filtration system in order to collect and enrich dissolved organic matter of quite low concentration. This system was designed to be put near hydrothermal vents for at least 24h. This system has an ODS disk (EmporeTM High Performance Extraction Disk C18 90mmφ) with a pre-filter (Whatman GMF 1 μ)m filter paper) to adsorb dilute organics. We collected DOM from the APM01 casing pipe for about 30h (Tmax = 25-30 o C, the estimated volume of filtrated water is max. 300L) using this filtration system. Adsorbed organics were eluted with methanol for 12h twice and toluene once using soxhlet extractor. Recovered amounts of methanol eluents are 72.8mg for APM01, and 89.7mg for the black smoker. Prior to GCMS analysis, we carried out high resolution 1 H-NMR measurement (400MHz), together with the DOM samples collected from the Suiyo Seamount in July-August 2001 and August 2002. Most of the samples show signals in the region of 3-4 ppm, and the samples from the vents of relatively low temperatures (APM01 and AP04: the natural vent at the Suiyo Seamount, temperature 8-48o C ) show signals also in the region of 0.8-1.6 ppm.

  14. Adaptive wave field synthesis for active sound field reproduction: experimental results.

    PubMed

    Gauthier, Philippe-Aubert; Berry, Alain

    2008-04-01

    Sound field reproduction has applications in music reproduction, spatial audio, sound environment reproduction, and experimental acoustics. Sound field reproduction can be used to artificially reproduce the spatial character of natural hearing. The objective is then to reproduce a sound field in a real reproduction environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. The room response thus reduces the quality of the physical sound field reproduction by WFS. In recent research papers, adaptive wave field synthesis (AWFS) was defined as a potential solution to compensate for these quality reductions from which WFS objective performance suffers. In this paper, AWFS is experimentally investigated as an active sound field reproduction system with a limited number of reproduction error sensors to compensate for the response of the listening environment. Two digital signal processing algorithms for AWFS are used for comparison purposes, one of which is based on independent radiation mode control. AWFS performed propagating sound field reproduction better than WFS in three tested reproduction spaces (hemianechoic chamber, standard laboratory space, and reverberation chamber).

  15. Implications of historical eruptive-vent migration on the northeast rift zone of Mauna Loa Volcano, Hawaii

    SciTech Connect

    Lockwood, J.P. )

    1990-07-01

    Five times within the past 138 yr (1852, 1855-1856, 1880-1881, 1942, and 1984), lava flows from vents on the northeast rift zone of Mauna Loa Volcano have reached within a few kilometres of Hilo (the largest city on the Island of Hawaii). Most lavas erupted on this right zone in historical time have traveled northeastward (toward Hilo), because their eruptive vents have been concentrated north of the rift zone's broad topographic axis. However, with few exceptions each successive historical eruption on the northeast rift zone has occurred farther southeast than the preceding one. Had the 1984 eruptive vents (the most southeasterly yet) opened less than 200 m farther southeast, the bulk of the 1984 lavas would have flowed away from Hilo. If this historical vent-migration pattern continues, the next eruption on the northeast rift zone could send lavas to the southeast, toward less populated areas. The historical Mauna Loa vent-migration patterns mimic southeastern younging of the Hawaiian-Emperor volcanic chain and may be cryptically related to northwestward movement of the Pacific plate. Systematic temporal-spatial vent-migration patterns may characterize eruptive activity at other volcanoes with flank activity and should be considered as an aid to long-term prediction of eruption sites.

  16. The magnetic field of gastrointestinal smooth muscle activity

    NASA Astrophysics Data System (ADS)

    Bradshaw, Alan; Ladipo, Jk; Richards, William; Wikswo, John

    1997-11-01

    The gastrointestinal (GI) tract controls the absorption and transport of ingested materials. Its function is determined largely by the electrical activity of the smooth muscle that lines the GI tract. GI electrical activity consists of an omnipresent slowly oscillating wave known as the basic electrical rhythm (BER) that modulates a higher-frequency spiking activity associated with muscle contraction. The BER has been shown to be a reliable indicator of intestinal viability, and thus, recording of smooth muscle activity may have clinical value. The BER is difficult to measure with cutaneous electrodes because layers of low-conductivity fat between the GI tract and the abdominal surface attenuate the potential. On the other hand, the magnetic field associated with GI electrical activity is mostly unaffected by intervening fat layers. We recorded the magnetic fields from GI activity in 12 volunteers using a multichannel Superconducting QUantum Interference Device (SQUID) magnetometer. Characteristics typical of gastric and intestinal BER were apparent in the data. Channels near the epigastrium recorded gastric BER, and channels in intestinal areas recorded small bowel BER. These results suggest that a single multichannel SQUID magnetometer is able to measure gastrointestinal electrical activity from multiple locations around the abdomen simultaneously.

  17. RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Sy