Science.gov

Sample records for active virtual network

  1. Mobile Virtual Private Networking

    NASA Astrophysics Data System (ADS)

    Pulkkis, Göran; Grahn, Kaj; Mårtens, Mathias; Mattsson, Jonny

    Mobile Virtual Private Networking (VPN) solutions based on the Internet Security Protocol (IPSec), Transport Layer Security/Secure Socket Layer (SSL/TLS), Secure Shell (SSH), 3G/GPRS cellular networks, Mobile IP, and the presently experimental Host Identity Protocol (HIP) are described, compared and evaluated. Mobile VPN solutions based on HIP are recommended for future networking because of superior processing efficiency and network capacity demand features. Mobile VPN implementation issues associated with the IP protocol versions IPv4 and IPv6 are also evaluated. Mobile VPN implementation experiences are presented and discussed.

  2. Virtualized Network Control. Final Report

    SciTech Connect

    Ghani, Nasir

    2013-02-01

    This document is the final report for the Virtualized Network Control (VNC) project, which was funded by the United States Department of Energy (DOE) Office of Science. This project was also informally referred to as Advanced Resource Computation for Hybrid Service and TOpology NEtworks (ARCHSTONE). This report provides a summary of the project's activities, tasks, deliverable, and accomplishments. It also provides a summary of the documents, software, and presentations generated as part of this projects activities. Namely, the Appendix contains an archive of the deliverables, documents, and presentations generated a part of this project.

  3. Virtualized Network Control (VNC)

    SciTech Connect

    Lehman, Thomas; Guok, Chin; Ghani, Nasir

    2013-01-31

    The focus of this project was on the development of a "Network Service Plane" as an abstraction model for the control and provisioning of multi-layer networks. The primary motivation for this work were the requirements of next generation networked applications which will need to access advanced networking as a first class resource at the same level as compute and storage resources. A new class of "Intelligent Network Services" were defined in order to facilitate the integration of advanced network services into application specific workflows. This new class of network services are intended to enable real-time interaction between the application co-scheduling algorithms and the network for the purposes of workflow planning, real-time resource availability identification, scheduling, and provisioning actions.

  4. Network Virtualization - Opportunities and Challenges for Operators

    NASA Astrophysics Data System (ADS)

    Carapinha, Jorge; Feil, Peter; Weissmann, Paul; Thorsteinsson, Saemundur E.; Etemoğlu, Çağrı; Ingþórsson, Ólafur; Çiftçi, Selami; Melo, Márcio

    In the last few years, the concept of network virtualization has gained a lot of attention both from industry and research projects. This paper evaluates the potential of network virtualization from an operator's perspective, with the short-term goal of optimizing service delivery and rollout, and on a longer term as an enabler of technology integration and migration. Based on possible scenarios for implementing and using network virtualization, new business roles and models are examined. Open issues and topics for further evaluation are identified. In summary, the objective is to identify the challenges but also new opportunities for telecom operators raised by network virtualization.

  5. Scalable Virtual Network Mapping Algorithm for Internet-Scale Networks

    NASA Astrophysics Data System (ADS)

    Yang, Qiang; Wu, Chunming; Zhang, Min

    The proper allocation of network resources from a common physical substrate to a set of virtual networks (VNs) is one of the key technical challenges of network virtualization. While a variety of state-of-the-art algorithms have been proposed in an attempt to address this issue from different facets, the challenge still remains in the context of large-scale networks as the existing solutions mainly perform in a centralized manner which requires maintaining the overall and up-to-date information of the underlying substrate network. This implies the restricted scalability and computational efficiency when the network scale becomes large. This paper tackles the virtual network mapping problem and proposes a novel hierarchical algorithm in conjunction with a substrate network decomposition approach. By appropriately transforming the underlying substrate network into a collection of sub-networks, the hierarchical virtual network mapping algorithm can be carried out through a global virtual network mapping algorithm (GVNMA) and a local virtual network mapping algorithm (LVNMA) operated in the network central server and within individual sub-networks respectively with their cooperation and coordination as necessary. The proposed algorithm is assessed against the centralized approaches through a set of numerical simulation experiments for a range of network scenarios. The results show that the proposed hierarchical approach can be about 5-20 times faster for VN mapping tasks than conventional centralized approaches with acceptable communication overhead between GVNCA and LVNCA for all examined networks, whilst performs almost as well as the centralized solutions.

  6. Tensor Network Quantum Virtual Machine (TNQVM)

    SciTech Connect

    McCaskey, Alexander J.

    2016-11-18

    There is a lack of state-of-the-art quantum computing simulation software that scales on heterogeneous systems like Titan. Tensor Network Quantum Virtual Machine (TNQVM) provides a quantum simulator that leverages a distributed network of GPUs to simulate quantum circuits in a manner that leverages recent results from tensor network theory.

  7. Virtual atmospheric mercury emission network in China.

    PubMed

    Liang, Sai; Zhang, Chao; Wang, Yafei; Xu, Ming; Liu, Weidong

    2014-01-01

    Top-down analysis of virtual atmospheric mercury emission networks can direct efficient demand-side policy making on mercury reductions. Taking China-the world's top atmospheric mercury emitter-as a case, we identify key contributors to China's atmospheric mercury emissions from both the producer and the consumer perspectives. China totally discharged 794.9 tonnes of atmospheric mercury emissions in 2007. China's production-side control policies should mainly focus on key direct mercury emitters such as Liaoning, Hebei, Shandong, Shanxi, Henan, Hunan, Guizhou, Yunnan, and Inner Mongolia provinces and sectors producing metals, nonmetallic mineral products, and electricity and heat power, while demand-side policies should mainly focus on key underlying drivers of mercury emissions such as Shandong, Jiangsu, Zhejiang, and Guangdong provinces and sectors of construction activities and equipment manufacturing. China's interregional embodied atmospheric mercury flows are generally moving from the inland to the east coast. Beijing-Tianjin (with 4.8 tonnes of net mercury inflows) and South Coast (with 3.3 tonnes of net mercury inflows) are two largest net-inflow regions, while North (with 5.3 tonnes of net mercury outflows) is the largest net-outflow region. We also identify primary supply chains contributing to China's virtual atmospheric mercury emission network, which can be used to trace the transfers of production-side and demand-side policy effects.

  8. Case study of virtual private network

    NASA Astrophysics Data System (ADS)

    Hernandez, Harold; Chung, Ping-Tsai

    2001-07-01

    In this study, business benefits for this Virtual Private Network (VPN) and protocols, techniques, equipments used in this VPN are reported. In addition, our design experience for fault tolerance, security and network management and administration on this VPN are showed. Finally, the issues for future planning of this VPN is addressed.

  9. Libraries' Place in Virtual Social Networks

    ERIC Educational Resources Information Center

    Mathews, Brian S.

    2007-01-01

    Do libraries belong in the virtual world of social networking? With more than 100 million users, this environment is impossible to ignore. A rising philosophy for libraries, particularly in blog-land, involves the concept of being where the users are. Simply using new media to deliver an old message is not progress. Instead, librarians should…

  10. Developing a Virtual Network of Research Observatories

    NASA Astrophysics Data System (ADS)

    Hooper, R. P.; Kirschtl, D.

    2008-12-01

    The hydrologic community has been discussing the concept of a network of observatories for the advancement of hydrologic science in areas of scaling processes, in testing generality of hypotheses, and in examining non-linear couplings between hydrologic, biotic, and human systems. The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is exploring the formation of a virtual network of observatories, formed from existing field studies without regard to funding source. Such a network would encourage sharing of data, metadata, field methods, and data analysis techniques to enable multidisciplinary synthesis, meta-analysis, and scientific collaboration in hydrologic and environmental science and engineering. The virtual network would strive to provide both the data and the environmental context of the data through advanced cyberinfrastructure support. The foundation for this virtual network is Water Data Services that enable the publication of time-series data collected at fixed points using a services-oriented architecture. These publication services, developed in the CUAHSI Hydrologic Information Systems project, permit the discovery of data from both academic and government sources through a single portal. Additional services under consideration are publication of geospatial data sets, immersive environments based upon site digital elevation models, and a common web portal to member sites populated with structured data about the site (such as land use history and geologic setting) to permit understanding the environmental context of the data being shared.

  11. Ecological network analysis for a virtual water network.

    PubMed

    Fang, Delin; Chen, Bin

    2015-06-02

    The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.

  12. Management of optical virtual private networks

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Savoie, Michel; Campbell, Scott; Zhang, Hanzi; Figuerola, Sergi

    2007-11-01

    The Layer 1 Virtual Private Network (L1VPN) technology supports multiple user networks over a common carrier transport network. We present an L1VPN management architecture where network providers manage physical network infrastructures, service providers manage L1VPN services by composing individual network resources into L1VPNs, end users invoke L1VPN management services to configure operational L1VPNs. Using a Service-Oriented Architecture (SOA) and Web Services (WS), we implemented an L1VPN management tool, called User Controlled Light Paths (UCLP). Network providers use the tool to partition resources at the L1VPN level by assigning resources, together with the WS based management services for the resources, to service providers. Service providers use the tool to receive resource partitions from multiple network providers and partner service providers. Further resource partitioning or re-grouping can be conducted on the received resources, and leasing or trading resources with partner service providers is supported. After the service providers compose the use scenarios of resources, and make the use scenarios available to the L1VPN end users as WS, the end users reconfigure the L1VPN without intervention of either network or service providers.

  13. Social Networks in the Virtual Science Laboratory

    SciTech Connect

    Chin, George; Myers, James D.; Hoyt, David W.

    2002-08-01

    Located at the Pacific Northwest National Laboratory (PNNL), the High Field Magnetic Resonance Facility (HFMRF) houses 11 nuclear magnetic resonance (NMR) spectrometers. Additionally, the Virtual Nuclear Magnetic Resonance Facility (VNMRF) provides on-line Internet access to these HFMRF spectrometers. Through the VNMRF and its suite of computer-supported cooperative work (CSCW) tools, researchers may collaboratively set the controls of an NMR spectrometer, execute an NMR experiment, acquire data, analyze results, and communicate with other researchers all from the comforts of their home institutions and their own offices. Virtual science laboratories like the VNMRF promote a compelling vision. Consistent with Wulf's notion of a "collaboratory," a virtual science laboratory is a "'center without walls', in which the nation's researchers can perform their research without regard to geographical location." Such a laboratory strives to provide an open research environment in which scientists from different disciplines may collaborate on advanced research using leading-edge instruments and tools, while reducing the physical, organizational, and political boundaries that confront researchers as they amass their collective skills, capabilities, and brainpower to solve the world's most challenging scientific problems. In this article, we describe the social networks that have emerged from the VNMRF and the impacts and influences that CSCW technologies have had upon those networks. The development of social networks depends on various factors including personal and professional objectives, work functions, organizational roles, and afforded collaborative capabilities. As such, our results serve as a useful point of comparison and contrast in the analysis of social networks and CSCW impacts that evolve from scientific contexts as well as from other collaborative settings such as in business and education.

  14. Brain Activity on Navigation in Virtual Environments.

    ERIC Educational Resources Information Center

    Mikropoulos, Tassos A.

    2001-01-01

    Assessed the cognitive processing that takes place in virtual environments by measuring electrical brain activity using Fast Fourier Transform analysis. University students performed the same task in a real and a virtual environment, and eye movement measurements showed that all subjects were more attentive when navigating in the virtual world.…

  15. Survivable virtual optical network embedding with probabilistic network-element failures in elastic optical networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Cheng, Lei; Luo, Guangjun; Zhang, Jie; Zhao, Yongli; Ding, Huixia; Zhou, Jing; Wang, Yang

    2015-06-01

    The elastic optical networks can elastically allocate spectrum tailored for various bandwidth requirements. In addition, different virtual optical networks (VONs) formed by different applications or service providers need to be embedded on the common physical optical network, it brings virtual optical network embedding (VONE) problem. There is no precise standard to measure the survivability of VON from the failure probability view and take minimum VON failure probability as an objective in a VONE problem. In this paper, we investigate a survivable VONE problem from a new perspective. Considering probabilistic physical network-element failures, a novel metric, named virtual optical network failure probability (VON-FP), is introduced to evaluate the survivability of VONs in elastic optical networks. Moreover, a failure-probability-aware virtual optical network embedding (FPA-VONE) algorithm is proposed to deploy VONs on the physical network elements with small failure probability, and finally to decrease the VON-FP and enhance the spectrum utilization effectively.

  16. Virtual Networking for Career Development. Trends and Issues Alert.

    ERIC Educational Resources Information Center

    Kerka, Sandra

    The critical career development strategy of networking is being transformed by the Internet into virtual or e-networking. Virtual networking provides these advantages: it eliminates the fear of making initial contact and the stress of first impressions; it overcomes restrictions of location, time, or money; it makes responses faster and easier;…

  17. A Survey of Middleware for Sensor and Network Virtualization

    PubMed Central

    Khalid, Zubair; Fisal, Norsheila; Rozaini, Mohd.

    2014-01-01

    Wireless Sensor Network (WSN) is leading to a new paradigm of Internet of Everything (IoE). WSNs have a wide range of applications but are usually deployed in a particular application. However, the future of WSNs lies in the aggregation and allocation of resources, serving diverse applications. WSN virtualization by the middleware is an emerging concept that enables aggregation of multiple independent heterogeneous devices, networks, radios and software platforms; and enhancing application development. WSN virtualization, middleware can further be categorized into sensor virtualization and network virtualization. Middleware for WSN virtualization poses several challenges like efficient decoupling of networks, devices and software. In this paper efforts have been put forward to bring an overview of the previous and current middleware designs for WSN virtualization, the design goals, software architectures, abstracted services, testbeds and programming techniques. Furthermore, the paper also presents the proposed model, challenges and future opportunities for further research in the middleware designs for WSN virtualization. PMID:25615737

  18. A survey of middleware for sensor and network virtualization.

    PubMed

    Khalid, Zubair; Fisal, Norsheila; Rozaini, Mohd

    2014-12-12

    Wireless Sensor Network (WSN) is leading to a new paradigm of Internet of Everything (IoE). WSNs have a wide range of applications but are usually deployed in a particular application. However, the future of WSNs lies in the aggregation and allocation of resources, serving diverse applications. WSN virtualization by the middleware is an emerging concept that enables aggregation of multiple independent heterogeneous devices, networks, radios and software platforms; and enhancing application development. WSN virtualization, middleware can further be categorized into sensor virtualization and network virtualization. Middleware for WSN virtualization poses several challenges like efficient decoupling of networks, devices and software. In this paper efforts have been put forward to bring an overview of the previous and current middleware designs for WSN virtualization, the design goals, software architectures, abstracted services, testbeds and programming techniques. Furthermore, the paper also presents the proposed model, challenges and future opportunities for further research in the middleware designs for WSN virtualization.

  19. Building multiservice Internet protocol virtual private networks

    NASA Astrophysics Data System (ADS)

    Cheung, William

    1999-11-01

    Multiservice Internet Protocol-based Virtual Private Networks (MIP- VPNs) with Quality of Service (QoS) are becoming a reality due to the availability of new standards from the Internet Engineering Task Force (IETF). This paper describes how components including security models, IP tunneling protocols, and service differentiation schemes fit together in order to construct such a VPN. First, the concept and rationale of VPN is presented, followed by a discussion of its supporting components. A comparison is made among the various VPN technologies.

  20. Evolutionary epistemology and dynamical virtual learning networks.

    PubMed

    Giani, Umberto

    2004-01-01

    This paper is an attempt to define the main features of a new educational model aimed at satisfying the needs of a rapidly changing society. The evolutionary epistemology paradigm of culture diffusion in human groups could be the conceptual ground for the development of this model. Multidimensionality, multi-disciplinarity, complexity, connectivity, critical thinking, creative thinking, constructivism, flexible learning, contextual learning, are the dimensions that should characterize distance learning models aimed at increasing the epistemological variability of learning communities. Two multimedia educational software, Dynamic Knowledge Networks (DKN) and Dynamic Virtual Learning Networks (DVLN) are described. These two complementary tools instantiate these dimensions, and were tested in almost 150 online courses. Even if the examples are framed in the medical context, the analysis of the shortcomings of the traditional educational systems and the proposed solutions can be applied to the vast majority of the educational contexts.

  1. Link prediction in the network of global virtual water trade

    NASA Astrophysics Data System (ADS)

    Tuninetti, Marta; Tamea, Stefania; Laio, Francesco; Ridolfi, Luca

    2016-04-01

    Through the international food-trade, water resources are 'virtually' transferred from the country of production to the country of consumption. The international food-trade, thus, implies a network of virtual water flows from exporting to importing countries (i.e., nodes). Given the dynamical behavior of the network, where food-trade relations (i.e., links) are created and dismissed every year, link prediction becomes a challenge. In this study, we propose a novel methodology for link prediction in the virtual water network. The model aims at identifying the main factors (among 17 different variables) driving the creation of a food-trade relation between any two countries, along the period between 1986 and 2011. Furthermore, the model can be exploited to investigate the network configuration in the future, under different possible (climatic and demographic) scenarios. The model grounds the existence of a link between any two nodes on the link weight (i.e., the virtual water flow): a link exists when the nodes exchange a minimum (fixed) volume of virtual water. Starting from a set of potential links between any two nodes, we fit the associated virtual water flows (both the real and the null ones) by means of multivariate linear regressions. Then, links with estimated flows higher than a minimum value (i.e., threshold) are considered active-links, while the others are non-active ones. The discrimination between active and non-active links through the threshold introduces an error (called link-prediction error) because some real links are lost (i.e., missed links) and some non-existing links (i.e., spurious links) are inevitably introduced in the network. The major drivers are those significantly minimizing the link-prediction error. Once the structure of the unweighted virtual water network is known, we apply, again, linear regressions to assess the major factors driving the fluxes traded along (modelled) active-links. Results indicate that, on the one hand

  2. Teaching Network Security in a Virtual Learning Environment

    ERIC Educational Resources Information Center

    Bergstrom, Laura; Grahn, Kaj J.; Karlstrom, Krister; Pulkkis, Goran; Astrom, Peik

    2004-01-01

    This article presents a virtual course with the topic network security. The course has been produced by Arcada Polytechnic as a part of the production team Computer Networks, Telecommunication and Telecommunication Systems in the Finnish Virtual Polytechnic. The article begins with an introduction to the evolution of the information security…

  3. A distributed framework for inter-domain virtual network embedding

    NASA Astrophysics Data System (ADS)

    Wang, Zihua; Han, Yanni; Lin, Tao; Tang, Hui

    2013-03-01

    Network virtualization has been a promising technology for overcoming the Internet impasse. A main challenge in network virtualization is the efficient assignment of virtual resources. Existing work focused on intra-domain solutions whereas inter-domain situation is more practical in realistic setting. In this paper, we present a distributed inter-domain framework for mapping virtual networks to physical networks which can ameliorate the performance of the virtual network embedding. The distributed framework is based on a Multi-agent approach. A set of messages for information exchange is defined. We design different operations and IPTV use scenarios to validate the advantages of our framework. Use cases shows that our framework can solve the inter-domain problem efficiently.

  4. Propagation of crises in the virtual water trade network

    NASA Astrophysics Data System (ADS)

    Tamea, Stefania; Laio, Francesco; Ridolfi, Luca

    2015-04-01

    The international trade of agricultural goods is associated to the displacement of the water used to produce such goods and embedded in trade as a factor of production. Water virtually exchanged from producing to consuming countries, named virtual water, defines flows across an international network of 'virtual water trade' which enable the assessment of environmental forcings and implications of trade, such as global water savings or country dependencies on foreign water resources. Given the recent expansion of commodity (and virtual water) trade, in both displaced volumes and network structure, concerns have been raised about the exposure to crises of individuals and societies. In fact, if one country had to markedly decrease its export following a socio-economical or environmental crisis, such as a war or a drought, many -if not all- countries would be affected due to a cascade effect within the trade network. The present contribution proposes a mechanistic model describing the propagation of a local crisis into the virtual water trade network, accounting for the network structure and the virtual water balance of all countries. The model, built on data-based assumptions, is tested on the real case study of the Argentinean crisis in 2008-09, when the internal agricultural production (measured as virtual water volume) decreased by 26% and the virtual water export of Argentina dropped accordingly. Crisis propagation and effects on the virtual water trade are correctly captured, showing the way forward to investigations of crises impact and country vulnerability based on the results of the model proposed.

  5. A virtual water network of the Roman world

    NASA Astrophysics Data System (ADS)

    Dermody, B. J.; van Beek, R. P. H.; Meeks, E.; Klein Goldewijk, K.; Scheidel, W.; van der Velde, Y.; Bierkens, M. F. P.; Wassen, M. J.; Dekker, S. C.

    2014-12-01

    The Romans were perhaps the most impressive exponents of water resource management in preindustrial times with irrigation and virtual water trade facilitating unprecedented urbanization and socioeconomic stability for hundreds of years in a region of highly variable climate. To understand Roman water resource management in response to urbanization and climate variability, a Virtual Water Network of the Roman World was developed. Using this network we find that irrigation and virtual water trade increased Roman resilience to interannual climate variability. However, urbanization arising from virtual water trade likely pushed the Empire closer to the boundary of its water resources, led to an increase in import costs, and eroded its resilience to climate variability in the long term. In addition to improving our understanding of Roman water resource management, our cost-distance-based analysis illuminates how increases in import costs arising from climatic and population pressures are likely to be distributed in the future global virtual water network.

  6. Host Immunity via Mutable Virtualized Large-Scale Network Containers

    DTIC Science & Technology

    2016-07-25

    system for host immunity that combines virtualization , emulation, and mutable network configurations. This system is deployed on a single host, and...entire !Pv4 address space within 5 Host Immunity via Mutable Virtualized Large-Scale Network Containers 45 minutes from a single machine. Second, when...URL, and we call it URL marker. A URL marker records the information about its parent web page’s URL and the user ID who collects the URL. Thus, when

  7. Distributed virtual worlds in high-speed networks

    NASA Astrophysics Data System (ADS)

    Schiffner, Norbert

    1998-09-01

    Recent research efforts have concentrated on determining how the distributed workplace can be transformed into a shared virtual environment. Interaction among people and process virtual worlds has to be provided and improved. To enhance the usability of our virtual collaborative environment we integrated a multicast communication environment. With the availability of global information highways, 3D graphical intercontinental collaboration will become a part of our daily work routine. This paper describes the basics of our network infrastructure and the multicast support. As a proof of concept, a virtual world scenario is also presented in this paper.

  8. Research and development of network virtual instrument laboratory

    NASA Astrophysics Data System (ADS)

    Cui, Hongmei; Pei, Xichun; Ma, Hongyue; Ma, Shuoshi

    2006-11-01

    A software platform of the network virtual instrument test laboratory has been developed to realize the network function of the test and signal analysis as well as the share of the hardware based on the data transmission theory and the study of the present technologies of the network virtual instrument. The whole design procedure was also presented in this paper. The main work of the research is as follows. 1. A suitable scheme of the test system with B/S mode and the virtual instrument laboratory with BSDA (Browser/Server/Database/Application) mode was determined. 2. The functions were classified and integrated by adopting the multilayer structure. The application for the virtual instruments running in the client terminal and the network management server managing the multiuser in the test laboratory according to the "Concurrent receival, sequential implementation" strategy in Java as well as the code of the test server application responding the client's requests of test and signal analysis in LabWindows/CVI were developed. As the extending part of network function of the original virtual test and analysis instruments, a software platform of network virtual instrument test laboratory was built as well. 3. The communication of the network data between Java and the LabWindows/CVI was realized. 4. The database was imported to store the data as well as the correlative information acquired by the server and help the network management server to manage the multiuser in the test laboratory. 5. A website embedding Java Applet of virtual instrument laboratory with the on-line help files was designed.

  9. Structure and Controls of the Global Virtual Water Trade Network

    NASA Astrophysics Data System (ADS)

    Suweis, S. S.

    2011-12-01

    Recurrent or ephemeral water shortages are a crucial global challenge, in particular because of their impacts on food production. The global character of this challenge is reflected in the trade among nations of virtual water, i.e. the amount of water used to produce a given commodity. We build, analyze and model the network describing the transfer of virtual water between world nations for staple food products. We find that all the key features of the network are well described by a model, the fitness model, that reproduces both the topological and weighted properties of the global virtual water trade network, by assuming as sole controls each country's gross domestic product and yearly rainfall on agricultural areas. We capture and quantitatively describe the high degree of globalization of water trade and show that a small group of nations play a key role in the connectivity of the network and in the global redistribution of virtual water. Finally, we illustrate examples of prediction of the structure of the network under future political, economic and climatic scenarios, suggesting that the crucial importance of the countries that trade large volumes of water will be strengthened. Our results show the importance of incorporating a network framework in the study of virtual water trades and provide a model to study the structure and resilience of the GVWTN under future scenarios for social, economic and climate change.

  10. Supplier Selection in Virtual Enterprise Model of Manufacturing Supply Network

    NASA Astrophysics Data System (ADS)

    Kaihara, Toshiya; Opadiji, Jayeola F.

    The market-based approach to manufacturing supply network planning focuses on the competitive attitudes of various enterprises in the network to generate plans that seek to maximize the throughput of the network. It is this competitive behaviour of the member units that we explore in proposing a solution model for a supplier selection problem in convergent manufacturing supply networks. We present a formulation of autonomous units of the network as trading agents in a virtual enterprise network interacting to deliver value to market consumers and discuss the effect of internal and external trading parameters on the selection of suppliers by enterprise units.

  11. Physical environment virtualization for human activities recognition

    NASA Astrophysics Data System (ADS)

    Poshtkar, Azin; Elangovan, Vinayak; Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen

    2015-05-01

    Human activity recognition research relies heavily on extensive datasets to verify and validate performance of activity recognition algorithms. However, obtaining real datasets are expensive and highly time consuming. A physics-based virtual simulation can accelerate the development of context based human activity recognition algorithms and techniques by generating relevant training and testing videos simulating diverse operational scenarios. In this paper, we discuss in detail the requisite capabilities of a virtual environment to aid as a test bed for evaluating and enhancing activity recognition algorithms. To demonstrate the numerous advantages of virtual environment development, a newly developed virtual environment simulation modeling (VESM) environment is presented here to generate calibrated multisource imagery datasets suitable for development and testing of recognition algorithms for context-based human activities. The VESM environment serves as a versatile test bed to generate a vast amount of realistic data for training and testing of sensor processing algorithms. To demonstrate the effectiveness of VESM environment, we present various simulated scenarios and processed results to infer proper semantic annotations from the high fidelity imagery data for human-vehicle activity recognition under different operational contexts.

  12. Evolution of the global virtual water trade network.

    PubMed

    Dalin, Carole; Konar, Megan; Hanasaki, Naota; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-04-17

    Global freshwater resources are under increasing pressure from economic development, population growth, and climate change. The international trade of water-intensive products (e.g., agricultural commodities) or virtual water trade has been suggested as a way to save water globally. We focus on the virtual water trade network associated with international food trade built with annual trade data and annual modeled virtual water content. The evolution of this network from 1986 to 2007 is analyzed and linked to trade policies, socioeconomic circumstances, and agricultural efficiency. We find that the number of trade connections and the volume of water associated with global food trade more than doubled in 22 years. Despite this growth, constant organizational features were observed in the network. However, both regional and national virtual water trade patterns significantly changed. Indeed, Asia increased its virtual water imports by more than 170%, switching from North America to South America as its main partner, whereas North America oriented to a growing intraregional trade. A dramatic rise in China's virtual water imports is associated with its increased soy imports after a domestic policy shift in 2000. Significantly, this shift has led the global soy market to save water on a global scale, but it also relies on expanding soy production in Brazil, which contributes to deforestation in the Amazon. We find that the international food trade has led to enhanced savings in global water resources over time, indicating its growing efficiency in terms of global water use.

  13. Ubiquitous virtual private network: a solution for WSN seamless integration.

    PubMed

    Villa, David; Moya, Francisco; Villanueva, Félix Jesús; Aceña, Óscar; López, Juan Carlos

    2014-01-06

    Sensor networks are becoming an essential part of ubiquitous systems and applications. However, there are no well-defined protocols or mechanisms to access the sensor network from the enterprise information system. We consider this issue as a heterogeneous network interconnection problem, and as a result, the same concepts may be applied. Specifically, we propose the use of object-oriented middlewares to provide a virtual private network in which all involved elements (sensor nodes or computer applications) will be able to communicate as if all of them were in a single and uniform network.

  14. Ubiquitous Virtual Private Network: A Solution for WSN Seamless Integration

    PubMed Central

    Villa, David; Moya, Francisco; Villanueva, Félix Jesús; Aceña, Óscar; López, Juan Carlos

    2014-01-01

    Sensor networks are becoming an essential part of ubiquitous systems and applications. However, there are no well-defined protocols or mechanisms to access the sensor network from the enterprise information system. We consider this issue as a heterogeneous network interconnection problem, and as a result, the same concepts may be applied. Specifically, we propose the use of object-oriented middlewares to provide a virtual private network in which all involved elements (sensor nodes or computer applications) will be able to communicate as if all of them were in a single and uniform network. PMID:24399154

  15. Continuity Aware Spectrum Allocation Schemes for Virtual Optical Network Embedding in Elastic Optical Networks

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhao, Yongli; He, Ruiying; Yu, Xiaosong; Zhang, Jie; Zheng, Haomian; Lin, Yi; Han, Jianrui

    2016-05-01

    Optical network virtualization has been studied as a promising technique for optical network resources provisioning. In the virtualization context of Elastic Optical Network (EON), Virtual Optical Network Embedding (VONE) is investigated as a key issue for allocating spectrum resources to VON requests. This paper discusses the continuity constraint for the VONE problem in EONs, and presents three continuity-aware spectrum allocation schemes according to strict and relaxed continuity constraints. We have demonstrated the proposed schemes on emulated testbed to verify the feasibility of composing VON with discontiguous spectrum resources. Additionally, the performances of the proposed schemes are compared via simulation in terms of blocking probability, spectrum resource utilization and discontinuity degree.

  16. Virtual Network Embedding via Monte Carlo Tree Search.

    PubMed

    Haeri, Soroush; Trajkovic, Ljiljana

    2017-02-20

    Network virtualization helps overcome shortcomings of the current Internet architecture. The virtualized network architecture enables coexistence of multiple virtual networks (VNs) on an existing physical infrastructure. VN embedding (VNE) problem, which deals with the embedding of VN components onto a physical network, is known to be NP-hard. In this paper, we propose two VNE algorithms: MaVEn-M and MaVEn-S. MaVEn-M employs the multicommodity flow algorithm for virtual link mapping while MaVEn-S uses the shortest-path algorithm. They formalize the virtual node mapping problem by using the Markov decision process (MDP) framework and devise action policies (node mappings) for the proposed MDP using the Monte Carlo tree search algorithm. Service providers may adjust the execution time of the MaVEn algorithms based on the traffic load of VN requests. The objective of the algorithms is to maximize the profit of infrastructure providers. We develop a discrete event VNE simulator to implement and evaluate performance of MaVEn-M, MaVEn-S, and several recently proposed VNE algorithms. We introduce profitability as a new performance metric that captures both acceptance and revenue to cost ratios. Simulation results show that the proposed algorithms find more profitable solutions than the existing algorithms. Given additional computation time, they further improve embedding solutions.

  17. Implementing relevance feedback in ligand-based virtual screening using Bayesian inference network.

    PubMed

    Abdo, Ammar; Salim, Naomie; Ahmed, Ali

    2011-10-01

    Recently, the use of the Bayesian network as an alternative to existing tools for similarity-based virtual screening has received noticeable attention from researchers in the chemoinformatics field. The main aim of the Bayesian network model is to improve the retrieval effectiveness of similarity-based virtual screening. To this end, different models of the Bayesian network have been developed. In our previous works, the retrieval performance of the Bayesian network was observed to improve significantly when multiple reference structures or fragment weightings were used. In this article, the authors enhance the Bayesian inference network (BIN) using the relevance feedback information. In this approach, a few high-ranking structures of unknown activity were filtered from the outputs of BIN, based on a single active reference structure, to form a set of active reference structures. This set of active reference structures was used in two distinct techniques for carrying out such BIN searching: reweighting the fragments in the reference structures and group fusion techniques. Simulated virtual screening experiments with three MDL Drug Data Report data sets showed that the proposed techniques provide simple ways of enhancing the cost-effectiveness of ligand-based virtual screening searches, especially for higher diversity data sets.

  18. Structure and controls of the global virtual water trade network

    NASA Astrophysics Data System (ADS)

    Suweis, S.; Konar, M.; Dalin, C.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I.

    2011-05-01

    Recurrent or ephemeral water shortages are a crucial global challenge, in particular because of their impacts on food production. The global character of this challenge is reflected in the trade among nations of virtual water, i.e., the amount of water used to produce a given commodity. We build, analyze and model the network describing the transfer of virtual water between world nations for staple food products. We find that all the key features of the network are well described by a model that reproduces both the topological and weighted properties of the global virtual water trade network, by assuming as sole controls each country's gross domestic product and yearly rainfall on agricultural areas. We capture and quantitatively describe the high degree of globalization of water trade and show that a small group of nations play a key role in the connectivity of the network and in the global redistribution of virtual water. Finally, we illustrate examples of prediction of the structure of the network under future political, economic and climatic scenarios, suggesting that the crucial importance of the countries that trade large volumes of water will be strengthened.

  19. Methodology for implementing virtual sensors using neural networks

    NASA Astrophysics Data System (ADS)

    Perez-Mendez, Anna; Rivas-Echeverria, Francklin; Colina-Morles, Eliezer; Nava-Puente, Luis; Olivares-Labrador, Marianilca

    2001-03-01

    In this work a Methodology framework for implanting Virtual Sensors using Neural Networks will be presented, including the statistical analysis techniques that can be used for studying and processing the data. The proposed Methodology is based upon Software Engineering, Knowledge-based systems and neural networks methodologies. This methodological framework includes both technical and economical feasibility to build the virtual sensors and considers important aspects as the available computational platform, historical data files, data processing requirements such as filtering, pruning, set of variables that must be selected for the best performance of the virtual sensor, etc. There are also presented the statistical consideration and the corresponding techniques for data analysis and processing. The methodology includes techniques as principal components, cluster analysis, factorial analysis, etc.

  20. The Integrated Distributed Virtual Research Network: An Introduction

    DTIC Science & Technology

    2014-06-01

    Tom Kile , Theron Trout, and Gary Cohn for their extensive contribution to this document to include reviews, comments, and edits, which contributed...to the quality of the document. The ARL Integrated Distributed Virtual Research Testbed (IDVRT) team, consisting of Alex Tarantin, Khoa Bui, Tom Kile ...n. Network Engineer (non-voting member) Tom Kile o. Network Engineer (non-voting member) Theron Trout p. Non-voting members (serving at the

  1. Virtualized Optical Network (VON) for Future Internet and Applications

    NASA Astrophysics Data System (ADS)

    Jinno, Masahiko; Tsukishima, Yukio; Takara, Hidehiko; Kozicki, Bartlomiej; Sone, Yoshiaki; Sakano, Toshikazu

    A virtualized optical network (VON) is proposed as a key to implementing increased agility and flexibility into the future Internet and applications by providing any-to-any connectivity with the appropriate optical bandwidth at the appropriate time. The VON is enabled by introducing optical transparentization and optical fine granular grooming based on optical orthogonal frequency division multiplexing.

  2. How to Create a Low-Cost Virtual Reality Network.

    ERIC Educational Resources Information Center

    Moore, Noel

    1993-01-01

    Describes a project which developed a shared electronic environment of virtual reality using satellite telecommunications technologies to create desktop multimedia networking. The origins of the concept of shared electronic space are explained, and the importance for human communication of sharing both audio and visual space simultaneously is…

  3. A Survey on Virtualization of Wireless Sensor Networks

    PubMed Central

    Islam, Md. Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam

    2012-01-01

    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization. PMID:22438759

  4. A survey on virtualization of Wireless Sensor Networks.

    PubMed

    Islam, Md Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam

    2012-01-01

    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization.

  5. Addressing security issues related to virtual institute distributed activities

    NASA Astrophysics Data System (ADS)

    Stytz, Martin R.; Banks, Sheila B.

    2008-03-01

    One issue confounding the development and experimentation of distributed modeling and simulation environments is the inability of the project team to identify and collaborate with resources, both human and technical, from outside the United States. This limitation is especially significant within the human behavior representation area where areas such as cultural effects research and joint command team behavior modeling require the participation of various cultural and national representatives. To address this limitation, as well as other human behavior representation research issues, NATO Research and Technology Organization initiated a project to develop a NATO virtual institute that enables more effective and more collaborative research into human behavior representation. However, in building and operating a virtual institute one of the chief concerns must be the cyber security of the institute. Because the institute "exists" in cyberspace, all of its activities are susceptible to cyberattacks, subterfuge, denial of service and all of the vulnerabilities that networked computers must face. In our opinion, for the concept of virtual institutes to be successful and useful, their operations and services must be protected from the threats in the cyber environment. A key to developing the required protection is the development and promulgation of standards for cyber security. In this paper, we discuss the types of cyber standards that are required, how new internet technologies can be exploited and can benefit the promulgation, development, maintenance, and robustness of the standards. This paper is organized as follows. Section One introduces the concept of the virtual institutes, the expected benefits, and the motivation for our research and for research in this area. Section Two presents background material and a discussion of topics related to VIs, uman behavior and cultural modeling, and network-centric warfare. Section Three contains a discussion of the

  6. QoS for virtual private networks (VPN) over optical WDM networks

    NASA Astrophysics Data System (ADS)

    Qin, Yang; Sivalingam, Krishna M.; Li, Bo

    2000-09-01

    In this paper, we study the problem of employing virtual private network (VPN) over wavelength division multiplexing networks to facilitate the guarantee of diverse quality of service requirements of different VPNs. A wavelength routed backbone network is considered. A VPN is specified by the desired logical topology and an a priori traffic matrix.

  7. Cyber-Physical System Security With Deceptive Virtual Hosts for Industrial Control Networks

    SciTech Connect

    Vollmer, Todd; Manic, Milos

    2014-05-01

    A challenge facing industrial control network administrators is protecting the typically large number of connected assets for which they are responsible. These cyber devices may be tightly coupled with the physical processes they control and human induced failures risk dire real-world consequences. Dynamic virtual honeypots are effective tools for observing and attracting network intruder activity. This paper presents a design and implementation for self-configuring honeypots that passively examine control system network traffic and actively adapt to the observed environment. In contrast to prior work in the field, six tools were analyzed for suitability of network entity information gathering. Ettercap, an established network security tool not commonly used in this capacity, outperformed the other tools and was chosen for implementation. Utilizing Ettercap XML output, a novel four-step algorithm was developed for autonomous creation and update of a Honeyd configuration. This algorithm was tested on an existing small campus grid and sensor network by execution of a collaborative usage scenario. Automatically created virtual hosts were deployed in concert with an anomaly behavior (AB) system in an attack scenario. Virtual hosts were automatically configured with unique emulated network stack behaviors for 92% of the targeted devices. The AB system alerted on 100% of the monitored emulated devices.

  8. Cyber-Physical System Security With Deceptive Virtual Hosts for Industrial Control Networks

    DOE PAGES

    Vollmer, Todd; Manic, Milos

    2014-05-01

    A challenge facing industrial control network administrators is protecting the typically large number of connected assets for which they are responsible. These cyber devices may be tightly coupled with the physical processes they control and human induced failures risk dire real-world consequences. Dynamic virtual honeypots are effective tools for observing and attracting network intruder activity. This paper presents a design and implementation for self-configuring honeypots that passively examine control system network traffic and actively adapt to the observed environment. In contrast to prior work in the field, six tools were analyzed for suitability of network entity information gathering. Ettercap, anmore » established network security tool not commonly used in this capacity, outperformed the other tools and was chosen for implementation. Utilizing Ettercap XML output, a novel four-step algorithm was developed for autonomous creation and update of a Honeyd configuration. This algorithm was tested on an existing small campus grid and sensor network by execution of a collaborative usage scenario. Automatically created virtual hosts were deployed in concert with an anomaly behavior (AB) system in an attack scenario. Virtual hosts were automatically configured with unique emulated network stack behaviors for 92% of the targeted devices. The AB system alerted on 100% of the monitored emulated devices.« less

  9. Dynamics of the global virtual water trade network

    NASA Astrophysics Data System (ADS)

    Dalin, C.; Konar, M.; Hanasaki, N.; Rodriguez-Iturbe, I.

    2011-12-01

    Water resources are under increasing pressure from population growth, socio-economic development and climate change. Since agriculture is by far the most freshwater-consuming process, the international food trade may be a way of transferring water resources to water-scarce countries, and of saving water globally by encouraging trade from water-efficient countries to less water-efficient countries. We applied complex network theory to analyze the dynamics of the global virtual water trade network. Our goal was to assess how the properties of the virtual water trade network changed in time, and how these changes are related to national policies, economic and weather conditions or events. We found that, on average, the number of trade partners of each country in the network doubled from 1986 to 2007, while the volume of water associated with food trade tripled. Despite this growth of the network, we found that the shape of the network properties distributions remained similar: for all years studied, the degree distribution is well fitted by an exponential distribution and the strength distribution compares well with a stretched exponential distribution, indicating high heterogeneity of flows between nations. Other global network structure characteristics, such as the power law relationship between node strength and node degree, dissasortative behavior and weighted rich club phenomenon were also stable through the 22 year-period. However, there are significant changes at the country and link scale of analysis. The USA has remained the world's top exporter of virtual water, while, since 2001, China has been the world's largest virtual water importer, a position formerly occupied by Russia and Japan. The sharp increase in China's virtual water imports is mostly due to its increased soybean imports, following a domestic policy shift regarding the soy trade in 2000 and 2001. Importantly, the food trade has led to enhanced savings in global water resources over the last few

  10. Performance verification of network function virtualization in software defined optical transport networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Hu, Liyazhou; Wang, Wei; Li, Yajie; Zhang, Jie

    2017-01-01

    With the continuous opening of resource acquisition and application, there are a large variety of network hardware appliances deployed as the communication infrastructure. To lunch a new network application always implies to replace the obsolete devices and needs the related space and power to accommodate it, which will increase the energy and capital investment. Network function virtualization1 (NFV) aims to address these problems by consolidating many network equipment onto industry standard elements such as servers, switches and storage. Many types of IT resources have been deployed to run Virtual Network Functions (vNFs), such as virtual switches and routers. Then how to deploy NFV in optical transport networks is a of great importance problem. This paper focuses on this problem, and gives an implementation architecture of NFV-enabled optical transport networks based on Software Defined Optical Networking (SDON) with the procedure of vNFs call and return. Especially, an implementation solution of NFV-enabled optical transport node is designed, and a parallel processing method for NFV-enabled OTN nodes is proposed. To verify the performance of NFV-enabled SDON, the protocol interaction procedures of control function virtualization and node function virtualization are demonstrated on SDON testbed. Finally, the benefits and challenges of the parallel processing method for NFV-enabled OTN nodes are simulated and analyzed.

  11. Virtual Network Computing Testbed for Cybersecurity Research

    DTIC Science & Technology

    2015-08-17

    traffic on the network, either by using mathematical formulas or by replaying packet streams. As a result, simulators depend deeply on the assumptions...Summary of the most important results We obtained a powerful machine, which has 768 cores and 1.25 TB memory . RBG has been implemented on the machine...is configured with 1GB memory , 10 GB disk space, and one 100M Ethernet interface. The server nodes include web servers, database servers, email

  12. Network worlds : from link analysis to virtual places.

    SciTech Connect

    Joslyn, C.

    2002-01-01

    Significant progress is being made in knowledge systems through recent advances in the science of very large networks. Attention is now turning in many quarters to the potential impact on counter-terrorism methods. After reviewing some of these advances, we will discuss the difference between such 'network analytic' approaches, which focus on large, homogeneous graph strucures, and what we are calling 'link analytic' approaches, which focus on somewhat smaller graphs with heterogeneous link types. We use this venue to begin the process of rigorously defining link analysis methods, especially the concept of chaining of views of multidimensional databases. We conclude with some speculation on potential connections to virtual world architectures.

  13. The Effect of Social Network Diagrams on a Virtual Network of Practice: A Korean Case

    ERIC Educational Resources Information Center

    Jo, Il-Hyun

    2009-01-01

    This study investigates the effect of the presentation of social network diagrams on virtual team members' interaction behavior via e-mail. E-mail transaction data from 22 software developers in a Korean IT company was analyzed and depicted as diagrams by social network analysis (SNA), and presented to the members as an intervention. Results…

  14. Constructing Social Networks from Unstructured Group Dialog in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Shah, Fahad; Sukthankar, Gita

    Virtual worlds and massively multi-player online games are rich sources of information about large-scale teams and groups, offering the tantalizing possibility of harvesting data about group formation, social networks, and network evolution. However these environments lack many of the cues that facilitate natural language processing in other conversational settings and different types of social media. Public chat data often features players who speak simultaneously, use jargon and emoticons, and only erratically adhere to conversational norms. In this paper, we present techniques for inferring the existence of social links from unstructured conversational data collected from groups of participants in the Second Life virtual world. We present an algorithm for addressing this problem, Shallow Semantic Temporal Overlap (SSTO), that combines temporal and language information to create directional links between participants, and a second approach that relies on temporal overlap alone to create undirected links between participants. Relying on temporal overlap is noisy, resulting in a low precision and networks with many extraneous links. In this paper, we demonstrate that we can ameliorate this problem by using network modularity optimization to perform community detection in the noisy networks and severing cross-community links. Although using the content of the communications still results in the best performance, community detection is effective as a noise reduction technique for eliminating the extra links created by temporal overlap alone.

  15. Triadic motifs in the dependence networks of virtual societies.

    PubMed

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-10

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  16. Triadic motifs in the dependence networks of virtual societies

    PubMed Central

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-01-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs. PMID:24912755

  17. Name-Based Address Mapping for Virtual Private Networks

    NASA Astrophysics Data System (ADS)

    Surányi, Péter; Shinjo, Yasushi; Kato, Kazuhiko

    IPv4 private addresses are commonly used in local area networks (LANs). With the increasing popularity of virtual private networks (VPNs), it has become common that a user connects to multiple LANs at the same time. However, private address ranges for LANs frequently overlap. In such cases, existing systems do not allow the user to access the resources on all LANs at the same time. In this paper, we propose name-based address mapping for VPNs, a novel method that allows connecting to hosts through multiple VPNs at the same time, even when the address ranges of the VPNs overlap. In name-based address mapping, rather than using the IP addresses used on the LANs (the real addresses), we assign a unique virtual address to each remote host based on its domain name. The local host uses the virtual addresses to communicate with remote hosts. We have implemented name-based address mapping for layer 3 OpenVPN connections on Linux and measured its performance. The communication overhead of our system is less than 1.5% for throughput and less than 0.2ms for each name resolution.

  18. Ecological network analysis on global virtual water trade.

    PubMed

    Yang, Zhifeng; Mao, Xufeng; Zhao, Xu; Chen, Bin

    2012-02-07

    Global water interdependencies are likely to increase with growing virtual water trade. To address the issues of the indirect effects of water trade through the global economic circulation, we use ecological network analysis (ENA) to shed insight into the complicated system interactions. A global model of virtual water flow among agriculture and livestock production trade in 1995-1999 is also built as the basis for network analysis. Control analysis is used to identify the quantitative control or dependency relations. The utility analysis provides more indicators for describing the mutual relationship between two regions/countries by imitating the interactions in the ecosystem and distinguishes the beneficiary and the contributor of virtual water trade system. Results show control and utility relations can well depict the mutual relation in trade system, and direct observable relations differ from integral ones with indirect interactions considered. This paper offers a new way to depict the interrelations between trade components and can serve as a meaningful start as we continue to use ENA in providing more valuable implications for freshwater study on a global scale.

  19. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm

    PubMed Central

    Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A.; Przekwas, Andrzej; Francis, Joseph T.; Lytton, William W.

    2015-01-01

    Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of

  20. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm.

    PubMed

    Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A; Przekwas, Andrzej; Francis, Joseph T; Lytton, William W

    2015-01-01

    Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of

  1. Multisensory Integration in the Virtual Hand Illusion with Active Movement

    PubMed Central

    Satoh, Satoru; Hachimura, Kozaburo

    2016-01-01

    Improving the sense of immersion is one of the core issues in virtual reality. Perceptual illusions of ownership can be perceived over a virtual body in a multisensory virtual reality environment. Rubber Hand and Virtual Hand Illusions showed that body ownership can be manipulated by applying suitable visual and tactile stimulation. In this study, we investigate the effects of multisensory integration in the Virtual Hand Illusion with active movement. A virtual xylophone playing system which can interactively provide synchronous visual, tactile, and auditory stimulation was constructed. We conducted two experiments regarding different movement conditions and different sensory stimulations. Our results demonstrate that multisensory integration with free active movement can improve the sense of immersion in virtual reality. PMID:27847822

  2. Stochastic Prediction and Feedback Control of Router Queue Size in a Virtual Network Environment

    DTIC Science & Technology

    2014-09-18

    STOCHASTIC PREDICTION AND FEEDBACK CONTROL OF ROUTER QUEUE SIZE IN A VIRTUAL NETWORK ENVIRONMENT THESIS Muflih Alqahtani, First...AFIT-ENG-T-14-S-10 STOCHASTIC PREDICTION AND FEEDBACK CONTROL OF ROUTER QUEUE SIZE IN A VIRTUAL NETWORK ENVIRONMENT THESIS Presented to the...UNLIMITED AFIT-ENG-T-14-S-10 STOCHASTIC PREDICTION AND FEEDBACK CONTROL OF ROUTER QUEUE SIZE IN A VIRTUAL NETWORK ENVIRONMENT Muflih Alqahtani

  3. Virtual water trade and country vulnerability: A network perspective

    NASA Astrophysics Data System (ADS)

    Sartori, Martina; Schiavo, Stefano

    2015-04-01

    This work investigates the relationship between countries' participation in virtual water trade and their vulnerability to external shocks from a network perspective. In particular, we investigate whether (i) possible sources of local national crises may interact with the system, propagating through the network and affecting the other countries involved; (ii) the topological characteristics of the international agricultural trade network, translated into virtual water-equivalent flows, may favor countries' vulnerability to external crises. Our work contributes to the debate on the potential merits and risks associated with openness to trade in agricultural and food products. On the one hand, trade helps to ensure that even countries with limited water (and other relevant) resources have access to sufficient food and contribute to the global saving of water. On the other hand, there are fears that openness may increase the vulnerability to external shocks and thus make countries worse off. Here we abstract from political considerations about food sovereignty and independence from imports and focus instead on investigating whether the increased participation in global trade that the world has witnessed in the last 30 years has made the system more susceptible to large shocks. Our analysis reveals that: (i) the probability of larger supply shocks has not increased over time; (ii) the topological characteristics of the VW network are not such as to favor the systemic risk associated with shock propagation; and (iii) higher-order interconnections may reveal further important information about the structure of a network. Regarding the first result, fluctuations in output volumes, among the sources of shock analyzed here, are more likely to generate some instability. The first implication is that, on one side, past national or regional economic crises were not necessarily brought about or strengthened by global trade. The second, more remarkable, implication is that, on

  4. Virtual private networks can provide reliable IT connections.

    PubMed

    Kabachinski, Jeff

    2006-01-01

    A VPN is a private network that uses a public network, such as the Internet, to connect remote sites and users together. Instead of using a dedicated hard-wired connection as in a trusted connection or leased lines, a VPN uses a virtual connection routed through the Internet from the organization's private network to the remote site or employee. Typical VPN services allow for security in terms of data encryption as well as means to authenticate, authorize, and account for all the traffic. VPN services allow the organization to use whatever network operating system they wish as it also encapsulate your data into the protocols needed to transport data across public lines. The intention of this IT World article was to give the reader an introduction to VPNs. Keep in mind that there are no standard models for a VPN. You're likely to come across many vendors presenting the virtues of their VPN applications and devices when you Google "VPN." However the general uses, concepts, and principles outlined here should give you a fighting chance to read through the marketing language in the online ads and "white papers."

  5. The Effectiveness of Using Virtual Laboratories to Teach Computer Networking Skills in Zambia

    ERIC Educational Resources Information Center

    Lampi, Evans

    2013-01-01

    The effectiveness of using virtual labs to train students in computer networking skills, when real equipment is limited or unavailable, is uncertain. The purpose of this study was to determine the effectiveness of using virtual labs to train students in the acquisition of computer network configuration and troubleshooting skills. The study was…

  6. Characterizing Mobility and Contact Networks in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Machado, Felipe; Santos, Matheus; Almeida, Virgílio; Guedes, Dorgival

    Virtual worlds have recently gained wide recognition as an important field of study in Computer Science. In this work we present an analysis of the mobility and interactions among characters in World of Warcraft (WoW) and Second Life based on the contact opportunities extracted from actual user data in each of those domains. We analyze character contacts in terms of their spatial and temporal characteristics, as well as the social network derived from such contacts. Our results show that the contacts observed may be more influenced by the nature of the interactions and goals of the users in each situation than by the intrinsic structure of such worlds. In particular, observations from a city in WoW are closer to those of Second Life than to other areas in WoW itself.

  7. Actively stressed marginal networks.

    PubMed

    Sheinman, M; Broedersz, C P; MacKintosh, F C

    2012-12-07

    We study the effects of motor-generated stresses in disordered three-dimensional fiber networks using a combination of a mean-field theory, scaling analysis, and a computational model. We find that motor activity controls the elasticity in an anomalous fashion close to the point of marginal stability by coupling to critical network fluctuations. We also show that motor stresses can stabilize initially floppy networks, extending the range of critical behavior to a broad regime of network connectivities below the marginal point. Away from this regime, or at high stress, motors give rise to a linear increase in stiffness with stress. Finally, we demonstrate that our results are captured by a simple, constitutive scaling relation highlighting the important role of nonaffine strain fluctuations as a susceptibility to motor stress.

  8. Design of virtual private networks (VPNs) over optical wavelength-division-multiplexed (WDM) networks

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Byrav; Ramakrishnan, Ashok

    2000-09-01

    The bandwidth requirements of the Internet are increasing every day and there are newer and more bandwidth-thirsty applications emerging on the horizon. Wavelength division multiplexing (WDM) is the next step towards leveraging the capabilities of the optical fiber, especially for wide-area backbone networks. Virtual private networks are seen as the killer applications of tomorrow, and a great amount of research and development effort is being channeled into finding efficient ways for implementing them. In our work, we introduce the notion of VPNs operating over optical wavelength-routed WDM backbone networks. We formulate the problem of VPN design over optical WDM networks as an integer linear problem. A new method to deal with traffic from diverse VPNs is introduced and its performance analyzed.

  9. Neuronal Correlates of a Virtual-Reality-Based Passive Sensory P300 Network

    PubMed Central

    Chen, Chun-Chuan; Syue, Kai-Syun; Li, Kai-Chiun; Yeh, Shih-Ching

    2014-01-01

    P300, a positive event-related potential (ERP) evoked at around 300 ms after stimulus, can be elicited using an active or passive oddball paradigm. Active P300 requires a person’s intentional response, whereas passive P300 does not require an intentional response. Passive P300 has been used in incommunicative patients for consciousness detection and brain computer interface. Active and passive P300 differ in amplitude, but not in latency or scalp distribution. However, no study has addressed the mechanism underlying the production of passive P300. In particular, it remains unclear whether the passive P300 shares an identical active P300 generating network architecture when no response is required. This study aims to explore the hierarchical network of passive sensory P300 production using dynamic causal modelling (DCM) for ERP and a novel virtual reality (VR)-based passive oddball paradigm. Moreover, we investigated the causal relationship of this passive P300 network and the changes in connection strength to address the possible functional roles. A classical ERP analysis was performed to verify that the proposed VR-based game can reliably elicit passive P300. The DCM results suggested that the passive and active P300 share the same parietal-frontal neural network for attentional control and, underlying the passive network, the feed-forward modulation is stronger than the feed-back one. The functional role of this forward modulation may indicate the delivery of sensory information, automatic detection of differences, and stimulus-driven attentional processes involved in performing this passive task. To our best knowledge, this is the first study to address the passive P300 network. The results of this study may provide a reference for future clinical studies on addressing the network alternations under pathological states of incommunicative patients. However, caution is required when comparing patients’ analytic results with this study. For example, the task

  10. Building a Virtual Learning Network for Teachers in a Suburban School District

    ERIC Educational Resources Information Center

    Kurtzworth-Keen, Kristin A.

    2011-01-01

    Emerging research indicates that learning management systems such as Moodle can function as virtual, collaborative environments, where collegial interactions promote professional learning opportunities. This study deployed a mixed methods design in order to describe and analyze teacher participation in a virtual learning network (VLN) that was…

  11. A Social Network Analysis of Teaching and Research Collaboration in a Teachers' Virtual Learning Community

    ERIC Educational Resources Information Center

    Lin, Xiaofan; Hu, Xiaoyong; Hu, Qintai; Liu, Zhichun

    2016-01-01

    Analysing the structure of a social network can help us understand the key factors influencing interaction and collaboration in a virtual learning community (VLC). Here, we describe the mechanisms used in social network analysis (SNA) to analyse the social network structure of a VLC for teachers and discuss the relationship between face-to-face…

  12. Teaching Advanced Concepts in Computer Networks: VNUML-UM Virtualization Tool

    ERIC Educational Resources Information Center

    Ruiz-Martinez, A.; Pereniguez-Garcia, F.; Marin-Lopez, R.; Ruiz-Martinez, P. M.; Skarmeta-Gomez, A. F.

    2013-01-01

    In the teaching of computer networks the main problem that arises is the high price and limited number of network devices the students can work with in the laboratories. Nowadays, with virtualization we can overcome this limitation. In this paper, we present a methodology that allows students to learn advanced computer network concepts through…

  13. A Virtual Global Magnetic Observatory Network: VGMO.NET

    NASA Astrophysics Data System (ADS)

    Papitashvili, Vladimir O.; Petrov, Valeriy G.; Saxena, Anshuman B.; Clauer, C. Robert; Papitashvili, Natalia E.

    2006-06-01

    Since the mid-1990s, many geomagnetic datasets began appearing on the World Wide Web. Often these data were not submitted to the World Data Centers as recommended since the International Geophysical Year (1957- 58). As a result, existing data become naturally distributed creating an urgent need for more sophisticated search engines capable of identifying and retrieving the data from Web for scientific analyses. We introduce a Virtual Global Magnetic Observatory concept for "pulling" geomagnetic data distributed worldwide. The VGMO moves information exchange from simple file transfers to a higher level of abstraction, forming the distributed databases through establishment of self-organizing data nodes. We present the first working VGMO prototype: an "on-demand" objects-building Internet application that is transparent in its internal data management to the external users/clients. The VGMO server continuously builds data-objects only from client requests by going through a pre-set list of Web-based data nodes (including WDCs). As the retrieved data are added to the server (or node) database, future requests of the same interval would not force a new Web search. Furthermore, new nodes can be made available to others through the VGMO network, building the worldwide geomagnetic data "fabric" in a platform-independent and location-neutral environment of newly "webbed" digital data. Application is on a server at http://mist.engin.umich.edu.

  14. The Virtual Liver Network: systems understanding from bench to bedside.

    PubMed

    Henney, Adriano; Coaker, Hannah

    2014-01-01

    Adriano Henney speaks to Hannah Coaker, Commissioning Editor. After achieving a PhD in medicine and spending many years in academic research in the field of cardiovascular disease, Adriano Henney was recruited by Zeneca Pharmaceuticals from a British Heart Foundation Senior Fellowship, where he led the exploration of new therapeutic approaches in atherosclerosis, specifically focusing on his research interests in vascular biology. Following the merger with Astra to form AstraZeneca, Henney became responsible for exploring strategic improvements to the company's approaches to pharmaceutical target identification and the reduction of attrition in early development, directing projects across research sites and across functional project teams in the USA, Sweden and the UK. This resulted in the creation of a new multidisciplinary department that focused on pathway mapping, modeling and simulation and supporting projects across research and development, which evolved into the establishment of the practice of systems biology within the company. Here, projects prototyped the application of mechanistic disease-modeling approaches in order to support the discovery of innovative new medicines, such as Iressa®. Since leaving AstraZeneca, Henney has continued his interest in systems biology, synthetic biology and systems medicine through his company, Obsidian Biomedical Consulting Ltd. He now directs a major €50 million German national flagship program – the Virtual Liver Network – which is currently the largest systems biology program in Europe.

  15. Virtual Fiber Networking and Impact of Optical Path Grooming on Creating Efficient Layer One Services

    NASA Astrophysics Data System (ADS)

    Naruse, Fumisato; Yamada, Yoshiyuki; Hasegawa, Hiroshi; Sato, Ken-Ichi

    This paper presents a novel “virtual fiber” network service that exploits wavebands. This service provides virtual direct tunnels that directly convey wavelength paths to connect customer facilities. To improve the resource utilization efficiency of the service, a network design algorithm is developed that can allow intermediate path grooming at limited nodes and can determine the best node location. Numerical experiments demonstrate the effectiveness of the proposed service architecture.

  16. Wearable Virtual White Cane Network for navigating people with visual impairment.

    PubMed

    Gao, Yabiao; Chandrawanshi, Rahul; Nau, Amy C; Tse, Zion Tsz Ho

    2015-09-01

    Navigating the world with visual impairments presents inconveniences and safety concerns. Although a traditional white cane is the most commonly used mobility aid due to its low cost and acceptable functionality, electronic traveling aids can provide more functionality as well as additional benefits. The Wearable Virtual Cane Network is an electronic traveling aid that utilizes ultrasound sonar technology to scan the surrounding environment for spatial information. The Wearable Virtual Cane Network is composed of four sensing nodes: one on each of the user's wrists, one on the waist, and one on the ankle. The Wearable Virtual Cane Network employs vibration and sound to communicate object proximity to the user. While conventional navigation devices are typically hand-held and bulky, the hands-free design of our prototype allows the user to perform other tasks while using the Wearable Virtual Cane Network. When the Wearable Virtual Cane Network prototype was tested for distance resolution and range detection limits at various displacements and compared with a traditional white cane, all participants performed significantly above the control bar (p < 4.3 × 10(-5), standard t-test) in distance estimation. Each sensor unit can detect an object with a surface area as small as 1 cm(2) (1 cm × 1 cm) located 70 cm away. Our results showed that the walking speed for an obstacle course was increased by 23% on average when subjects used the Wearable Virtual Cane Network rather than the white cane. The obstacle course experiment also shows that the use of the white cane in combination with the Wearable Virtual Cane Network can significantly improve navigation over using either the white cane or the Wearable Virtual Cane Network alone (p < 0.05, paired t-test).

  17. Postcolonial Practices for a Global Virtual Group: The Case of the International Network for Learning and Teaching Geography in Higher Education (INLT)

    ERIC Educational Resources Information Center

    Hay, Iain

    2008-01-01

    This paper offers a critical review of the role of the International Network for Learning and Teaching geography in higher education (INLT) in the production of geographical knowledge. Through an examination of the Network's membership and activities, it explores some of the ways in which INLT--as a global virtual group--may be inadvertently…

  18. The Virtual Brain: a simulator of primate brain network dynamics

    PubMed Central

    Sanz Leon, Paula; Knock, Stuart A.; Woodman, M. Marmaduke; Domide, Lia; Mersmann, Jochen; McIntosh, Anthony R.; Jirsa, Viktor

    2013-01-01

    We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications. PMID:23781198

  19. The Virtual Brain: a simulator of primate brain network dynamics.

    PubMed

    Sanz Leon, Paula; Knock, Stuart A; Woodman, M Marmaduke; Domide, Lia; Mersmann, Jochen; McIntosh, Anthony R; Jirsa, Viktor

    2013-01-01

    We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications.

  20. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases.

    PubMed

    Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo

    2014-04-15

    Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients' brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies.

  1. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases

    PubMed Central

    Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo

    2014-01-01

    Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients’ brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies. PMID:25206907

  2. Links between real and virtual networks: a comparative study of online communities in Japan and Korea.

    PubMed

    Ishii, Kenichi; Ogasahara, Morihiro

    2007-04-01

    The present study explores how online communities affect real-world personal relations based on a cross-cultural survey conducted in Japan and Korea. Findings indicate that the gratifications of online communities moderate the effects of online communities on social participation. Online communities are categorized into a real-group-based community and a virtual-network-based community. The membership of real-group-based online community is positively correlated with social bonding gratification and negatively correlated with information- seeking gratification. Japanese users prefer more virtual-network-based online communities, while their Korean counterparts prefer real-group-based online communities. Korean users are more active in online communities and seek a higher level of socializing gratifications, such as social bonding and making new friends, when compared with their Japanese counterparts. These results indicate that in Korea, personal relations via the online community are closely associated with the real-world personal relations, but this is not the case in Japan. This study suggests that the effects of the Internet are culture-specific and that the online community can serve a different function in different cultural environments.

  3. Mathematical framework for large-scale brain network modeling in The Virtual Brain.

    PubMed

    Sanz-Leon, Paula; Knock, Stuart A; Spiegler, Andreas; Jirsa, Viktor K

    2015-05-01

    In this article, we describe the mathematical framework of the computational model at the core of the tool The Virtual Brain (TVB), designed to simulate collective whole brain dynamics by virtualizing brain structure and function, allowing simultaneous outputs of a number of experimental modalities such as electro- and magnetoencephalography (EEG, MEG) and functional Magnetic Resonance Imaging (fMRI). The implementation allows for a systematic exploration and manipulation of every underlying component of a large-scale brain network model (BNM), such as the neural mass model governing the local dynamics or the structural connectivity constraining the space time structure of the network couplings. Here, a consistent notation for the generalized BNM is given, so that in this form the equations represent a direct link between the mathematical description of BNMs and the components of the numerical implementation in TVB. Finally, we made a summary of the forward models implemented for mapping simulated neural activity (EEG, MEG, sterotactic electroencephalogram (sEEG), fMRI), identifying their advantages and limitations.

  4. Making Wireless Networks Secure for NASA Mission Critical Applications using Virtual Private Network (VPN) Technology

    NASA Technical Reports Server (NTRS)

    Nichols, Kelvin F.; Best, Susan; Schneider, Larry

    2004-01-01

    With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their offices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (IAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing

  5. Making Wireless Networks Secure for NASA Mission Critical Applications Using Virtual Private Network (VPN) Technology

    NASA Technical Reports Server (NTRS)

    Nichols, Kelvin F.; Best, Susan; Schneider, Larry

    2004-01-01

    With so many security issues involved with wireless networks, the technology has not been fully utilized in the area of mission critical applications. These applications would include the areas of telemetry, commanding, voice and video. Wireless networking would allow payload operators the mobility to take computers outside of the control room to their off ices and anywhere else in the facility that the wireless network was extended. But the risk is too great of having someone sit just inside of your wireless network coverage and intercept enough of your network traffic to steal proprietary data from a payload experiment or worse yet hack back into your system and do even greater harm by issuing harmful commands. Wired Equivalent Privacy (WEP) is improving but has a ways to go before it can be trusted to protect mission critical data. Today s hackers are becoming more aggressive and innovative, and in order to take advantage of the benefits that wireless networking offer, appropriate security measures need to be in place that will thwart hackers. The Virtual Private Network (VPN) offers a solution to the security problems that have kept wireless networks from being used for mission critical applications. VPN provides a level of encryption that will ensure that data is protected while it is being transmitted over a wireless local area network (LAN). The VPN allows a user to authenticate to the site that the user needs to access. Once this authentication has taken place the network traffic between that site and the user is encapsulated in VPN packets with the Triple Data Encryption Standard (3DES). 3DES is an encryption standard that uses a single secret key to encrypt and decrypt data. The length of the encryption key is 168 bits as opposed to its predecessor DES that has a 56-bit encryption key. Even though 3DES is the common encryption standard for today, the Advance Encryption Standard (AES), which provides even better encryption at a lower cycle cost is growing

  6. Effects of Collaborative Activities on Group Identity in Virtual World

    ERIC Educational Resources Information Center

    Park, Hyungsung; Seo, Sumin

    2013-01-01

    The purpose of this study was to analyze the effects of collaborative activities on group identity in a virtual world such as "Second Life." To achieve this purpose, this study adopted events that promoted participants' interactions using tools inherent in "Second Life." The interactive tools given to the control group in this…

  7. Using Highly Interactive Virtual Environments for Safeguards Activities

    SciTech Connect

    Weil, Bradley S; Alcala, Benjamin S; Alcala, Scott; Eipeldauer, Mary D; Weil, Logan B

    2010-01-01

    Highly interactive virtual environment (HIVE) is a term that refers to interactive educational simulations, serious games and virtual worlds. Studies indicate that learning with the aid of interactive environments produces better retention and depth of knowledge by promoting improved trainee engagement and understanding. Virtual reality or three dimensional (3D) visualization is often used to promote the understanding of something when personal observation, photographs, drawings, and/or sketches are not possible or available. Subjects and situations, either real or hypothetical, can be developed using a 3D model. Models can be tailored to the audience allowing safeguards and security features to be demonstrated for educational purposes in addition to engineering evaluation and performance analysis. Oak Ridge National Laboratory (ORNL) has begun evaluating the feasibility of HIVEs for improving safeguards activities such as training, mission planning, and evaluating worker task performance. This paper will discuss the development workflow of HIVEs and present some recent examples.

  8. Enhancing Sensorimotor Activity by Controlling Virtual Objects with Gaze

    PubMed Central

    Modroño, Cristián; Plata-Bello, Julio; Zelaya, Fernando; García, Sofía; Galván, Iván; Marcano, Francisco; Navarrete, Gorka; Casanova, Óscar; Mas, Manuel; González-Mora, José Luis

    2015-01-01

    This fMRI work studies brain activity of healthy volunteers who manipulated a virtual object in the context of a digital game by applying two different control methods: using their right hand or using their gaze. The results show extended activations in sensorimotor areas, not only when participants played in the traditional way (using their hand) but also when they used their gaze to control the virtual object. Furthermore, with the exception of the primary motor cortex, regional motor activity was similar regardless of what the effector was: the arm or the eye. These results have a potential application in the field of the neurorehabilitation as a new approach to generate activation of the sensorimotor system to support the recovery of the motor functions. PMID:25799431

  9. Analysis of the social network development of a virtual community for Australian intensive care professionals.

    PubMed

    Rolls, Kaye Denise; Hansen, Margaret; Jackson, Debra; Elliott, Doug

    2014-11-01

    Social media platforms can create virtual communities, enabling healthcare professionals to network with a broad range of colleagues and facilitate knowledge exchange. In 2003, an Australian state health department established an intensive care mailing list to address the professional isolation experienced by senior intensive care nurses. This article describes the social network created within this virtual community by examining how the membership profile evolved from 2003 to 2009. A retrospective descriptive design was used. The data source was a deidentified member database. Since 2003, 1340 healthcare professionals subscribed to the virtual community with 78% of these (n = 1042) still members at the end of 2009. The membership profile has evolved from a single-state nurse-specific network to an Australia-wide multidisciplinary and multiorganizational intensive care network. The uptake and retention of membership by intensive care clinicians indicated that they appeared to value involvement in this virtual community. For healthcare organizations, a virtual community may be a communications option for minimizing professional and organizational barriers and promoting knowledge flow. Further research is, however, required to demonstrate a link between these broader social networks, enabling the exchange of knowledge and improved patient outcomes.

  10. Modeling past and future structure of the global virtual water trade network

    NASA Astrophysics Data System (ADS)

    Dalin, C.; Suweis, S.; Konar, M.; Hanasaki, N.; Rodriguez-Iturbe, I.

    2012-12-01

    Climate change and socio-economic development place an increasing pressure on essential natural resources, such as arable land and freshwater. The international food trade can save water globally by redistributing commodities produced relatively more water-efficiently. We focus on the global virtual water trade network associated with international staple food trade from 1986-2008. This study aims to determine which variables control the network's structure and temporal evolution, and to estimate changes in the network under future scenarios. Our fitness model reproduces both the topological and weighted characteristics of the network for the whole period. Undirected and directed network properties are well reproduced in each year, assuming as sole controls each nation's GDP, mean annual rainfall, agricultural area and population. The future structure of the network is estimated using climate and socio-economic projections, showing that volumes of virtual water traded will become increasingly heterogeneous and the importance of dominant importing nations will further strengthen.

  11. Virtual First Impressions Matter: The Effect of Social Networking Sites on Impression Formation in Virtual Teams

    ERIC Educational Resources Information Center

    Cummings, Jeffrey

    2012-01-01

    The introduction of social media has changed the way individuals communicate and collaborate both within and outside the organization. While social media has the potential to change how organizations interact internally, minimal research has examined the impact this media may have within a virtual team environment. This dissertation examines a…

  12. Virtual interactive simulation and inspection tool (VISIT) Modeling sensor networks in a virtual city

    SciTech Connect

    Moore, D. M.

    2004-01-01

    The U.S. government is currently investigating the deployment of radiation sensor systems to protect cities against nuclear and radiological threats. Due to the high cost of installing such systems, there is a need to analyze the effectiveness of a variety of sensor configurations in detecting such threats before installing such systems in the field. The Virtual Interactive Simulation and Inspection Tool (VISIT) is a computer program developed for various virtual-reality applications in national security programs, and is presently being adapted to test the efficacy of a variety of sensor configurations in a virtual urban environment. The value of a particular sensor configuration will be assessed by running virtual exercises in which a threat team will choose a radiological device and route to a target and a detection team will specify the locations and types of sensors to be placed in the city to attempt detection of the threat prior to it reaching its target. This paper will discuss the VISIT package, its proposed application, and lessons learned from modeling done to date.

  13. Mapping, Awareness, and Virtualization Network Administrator Training Tool (MAVNATT) Architecture and Framework

    DTIC Science & Technology

    2015-06-01

    than Angry IP Scanner. Nmap is a command line tool, although a graphical user interface called Zenmap is available to simplify Nmap usability. Figure...instead of creating a full- fledged virtual machine. These containers do not have the overhead of a regular type-II hypervisor and are therefore extremely...because they closely relate to two MAVNATT functional areas -- mapping and virtualization. Network simulators can use both GUI and command line

  14. Who Networks? The Social Psychology of Virtual Communities

    DTIC Science & Technology

    2004-06-01

    and MOOs is the fact that programmers can enact virtual crimes such as the often-cited instances of virtual rape . A non-comprehensive list of such...child porn group is illegitimate but can be open or closed as the FBI notes. A group of law enforcement officials or intelligence officers may be...I felt raped ,’ one said. ‘I felt that my deepest secrets had been violated.’ Several went so far as to repudiate the genuine gains they had made in

  15. Fiber networks amplify active stress

    PubMed Central

    Ronceray, Pierre; Broedersz, Chase P.

    2016-01-01

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks’ disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue. PMID:26921325

  16. Virtual Spaces and Networks in Geographical Education and Research

    ERIC Educational Resources Information Center

    Chalmers, Lex

    2009-01-01

    This paper relates developments in the use of Internet-based communication technologies to contemporary exchanges of geographical ideas and content. A brief history of the Internet provides the basis for a review of uses of broadband Internet in contemporary Geography. Two themes are explored: the first is the concept of virtual communities of…

  17. Community and Virtual Community.

    ERIC Educational Resources Information Center

    Ellis, David; Oldridge, Rachel; Vasconcelos, Ana

    2004-01-01

    Presents a literature review that covers the following topics related to virtual communities: (1) information and virtual community; (2) virtual communities and communities of practice; (3) virtual communities and virtual arenas, including virtual community networks; and (4) networked virtual communities. (Contains 175 references.) (MES)

  18. Fast Virtual Stenting with Active Contour Models in Intracranical Aneurysm

    PubMed Central

    Zhong, Jingru; Long, Yunling; Yan, Huagang; Meng, Qianqian; Zhao, Jing; Zhang, Ying; Yang, Xinjian; Li, Haiyun

    2016-01-01

    Intracranial stents are becoming increasingly a useful option in the treatment of intracranial aneurysms (IAs). Image simulation of the releasing stent configuration together with computational fluid dynamics (CFD) simulation prior to intervention will help surgeons optimize intervention scheme. This paper proposed a fast virtual stenting of IAs based on active contour model (ACM) which was able to virtually release stents within any patient-specific shaped vessel and aneurysm models built on real medical image data. In this method, an initial stent mesh was generated along the centerline of the parent artery without the need for registration between the stent contour and the vessel. Additionally, the diameter of the initial stent volumetric mesh was set to the maximum inscribed sphere diameter of the parent artery to improve the stenting accuracy and save computational cost. At last, a novel criterion for terminating virtual stent expanding that was based on the collision detection of the axis aligned bounding boxes was applied, making the stent expansion free of edge effect. The experiment results of the virtual stenting and the corresponding CFD simulations exhibited the efficacy and accuracy of the ACM based method, which are valuable to intervention scheme selection and therapy plan confirmation. PMID:26876026

  19. Rhode Island: Multi-library Networks and the Virtual Library.

    ERIC Educational Resources Information Center

    Weaver, Barbara; And Others

    1996-01-01

    Describes the multilibrary network in Rhode Island which provides electronic access to public information. Highlights include the role of the Department of State Library Services; Internet access issues; a network for elementary and secondary schools that provides access to university and public libraries; a higher education library network; a…

  20. Dynamic virtual optical network embedding in spectral and spatial domains over elastic optical networks with multicore fibers

    NASA Astrophysics Data System (ADS)

    Zhu, Ruijie; Zhao, Yongli; Yang, Hui; Tan, Yuanlong; Chen, Haoran; Zhang, Jie; Jue, Jason P.

    2016-08-01

    Network virtualization can eradicate the ossification of the infrastructure and stimulate innovation of new network architectures and applications. Elastic optical networks (EONs) are ideal substrate networks for provisioning flexible virtual optical network (VON) services. However, as network traffic continues to increase exponentially, the capacity of EONs will reach the physical limitation soon. To further increase network flexibility and capacity, the concept of EONs is extended into the spatial domain. How to map the VON onto substrate networks by thoroughly using the spectral and spatial resources is extremely important. This process is called VON embedding (VONE).Considering the two kinds of resources at the same time during the embedding process, we propose two VONE algorithms, the adjacent link embedding algorithm (ALEA) and the remote link embedding algorithm (RLEA). First, we introduce a model to solve the VONE problem. Then we design the embedding ability measurement of network elements. Based on the network elements' embedding ability, two VONE algorithms were proposed. Simulation results show that the proposed VONE algorithms could achieve better performance than the baseline algorithm in terms of blocking probability and revenue-to-cost ratio.

  1. Architecture and design of optical path networks utilizing waveband virtual links

    NASA Astrophysics Data System (ADS)

    Ito, Yusaku; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi

    2016-02-01

    We propose a novel optical network architecture that uses waveband virtual links, each of which can carry several optical paths, to directly bridge distant node pairs. Future photonic networks should not only transparently cover extended areas but also expand fiber capacity. However, the traversal of many ROADM nodes impairs the optical signal due to spectrum narrowing. To suppress the degradation, the bandwidth of guard bands needs to be increased, which degrades fiber frequency utilization. Waveband granular switching allows us to apply broader pass-band filtering at ROADMs and to insert sufficient guard bands between wavebands with minimum frequency utilization offset. The scheme resolves the severe spectrum narrowing effect. Moreover, the guard band between optical channels in a waveband can be minimized, which increases the number of paths that can be accommodated per fiber. In the network, wavelength path granular routing is done without utilizing waveband virtual links, and it still suffers from spectrum narrowing. A novel network design algorithm that can bound the spectrum narrowing effect by limiting the number of hops (traversed nodes that need wavelength path level routing) is proposed in this paper. This algorithm dynamically changes the waveband virtual link configuration according to the traffic distribution variation, where optical paths that need many node hops are effectively carried by virtual links. Numerical experiments demonstrate that the number of necessary fibers is reduced by 23% compared with conventional optical path networks.

  2. Vulnerability of countries to food-production crises propagating in the virtual water trade network

    NASA Astrophysics Data System (ADS)

    Tamea, S.; Laio, F.; Ridolfi, L.

    2015-12-01

    In recent years, the international trade of food and agricultural commodities has undergone a marked increase of exchanged volumes and an expansion of the trade network. This globalization of trade has both positive and negative effects, but the interconnectedness and external dependency of countries generate complex dynamics which are often difficult to understand and model. In this study we consider the volume of water used for the production of agricultural commodities, virtually exchanged among countries through commodity trade, i.e. the virtual water trade. Then, we set up a parsimonious mechanistic model describing the propagation, into the global trade network, of food-production crises generated locally by a social, economic or environmental event (such as war, economic crisis, drought, pest). The model, accounting for the network structure and the virtual water balance of all countries, bases on rules derived from observed virtual water flows and on data-based and statistically verified assumption. It is also tested on real case studies that prove its capability to capture the main features of crises propagation. The model is then employed as the basis for the development of an index of country vulnerability, measuring the exposure of countries to crises propagating in the virtual water trade network. Results of the analysis are discussed within the context of socio-economic and environmental conditions of countries, showing that not only water-scarce, but also wealthy and globalized countries, are among the most vulnerable to external crises. The temporal analysis for the period 1986-2011 reveals that the global average vulnerability has strongly increased over time, confirming the increased exposure of countries to external crises which may occur in the virtual water trade network.

  3. Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI.

    PubMed

    Hoffman, Hunter G; Richards, Todd L; Coda, Barbara; Bills, Aric R; Blough, David; Richards, Anne L; Sharar, Sam R

    2004-06-07

    This study investigated the neural correlates of virtual reality analgesia. Virtual reality significantly reduced subjective pain ratings (i.e. analgesia). Using fMRI, pain-related brain activity was measured for each participant during conditions of no virtual reality and during virtual reality (order randomized). As predicted, virtual reality significantly reduced pain-related brain activity in all five regions of interest; the anterior cingulate cortex, primary and secondary somatosensory cortex, insula, and thalamus (p<0.002, corrected). Results showed direct modulation of human brain pain responses by virtual reality distraction.

  4. Fiber networks amplify active stress

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Ronceray, Pierre; Broedersz, Chase

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. I will present a comprehensive theoretical study of force transmission in these networks. I will show that the linear, small-force response of the networks is remarkably simple, as the macroscopic active stress depends only on the geometry of the force-exerting unit. In contrast, as non-linear buckling occurs around these units, local active forces are rectified towards isotropic contraction and strongly amplified. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. I will show that our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks, and that they shed light on the role of the network microstructure in shaping active stresses in cells and tissue.

  5. Virtual prototyping of a semi-active transfemoral prosthetic leg.

    PubMed

    Lui, Zhen Wei; Awad, Mohammed I; Abouhossein, Alireza; Dehghani-Sanij, Abbas A; Messenger, Neil

    2015-05-01

    This article presents a virtual prototyping study of a semi-active lower limb prosthesis to improve the functionality of an amputee during prosthesis-environment interaction for level ground walking. Articulated ankle-foot prosthesis and a single-axis semi-active prosthetic knee with active and passive operating modes were considered. Data for level ground walking were collected using a photogrammetric method in order to develop a base-line simulation model and with the hip kinematics input to verify the proposed design. The simulated results show that the semi-active lower limb prosthesis is able to move efficiently in passive mode, and the activation time of the knee actuator can be reduced by approximately 50%. Therefore, this semi-active system has the potential to reduce the energy consumption of the actuators required during level ground walking and requires less compensation from the amputee due to lower deviation of the vertical excursion of body centre of mass.

  6. Network Analysis of a Virtual Community of Learning of Economics Educators

    ERIC Educational Resources Information Center

    Fontainha, Elsa; Martins, Jorge Tiago; Vasconcelos, Ana Cristina

    2015-01-01

    Introduction: This paper aims at understanding virtual communities of learning in terms of dynamics, types of knowledge shared by participants, and network characteristics such as size, relationships, density, and centrality of participants. It looks at the relationships between these aspects and the evolution of communities of learning. It…

  7. Second Line of Defense Virtual Private Network Guidance for Deployed and New CAS Systems

    SciTech Connect

    Singh, Surya V.; Thronas, Aaron I.

    2010-01-01

    This paper discusses the importance of remote access via virtual private network (VPN) for the Second Line of Defense (SLD) Central Alarm System (CAS) sites, the requirements for maintaining secure channels while using VPN and implementation requirements for current and future sites.

  8. Investigating Factors Related to Virtual Private Network Adoption in Small Businesses

    ERIC Educational Resources Information Center

    Lederer, Karen

    2012-01-01

    The purpose of this quantitative study was to investigate six factors that may influence adoption of virtual private network (VPN) technologies in small businesses with fewer than 100 employees. Prior research indicated small businesses employing fewer than 100 workers do not adopt VPN technology at the same rate as larger competitors, and the…

  9. Virtual Learning Environments as Sociomaterial Agents in the Network of Teaching Practice

    ERIC Educational Resources Information Center

    Johannesen, Monica; Erstad, Ola; Habib, Laurence

    2012-01-01

    This article presents findings related to the sociomaterial agency of educators and their practice in Norwegian education. Using actor-network theory, we ask how Virtual Learning Environments (VLEs) negotiate the agency of educators and how they shape their teaching practice. Since the same kinds of VLE tools have been widely implemented…

  10. Virtual Cortical Resection Reveals Push-Pull Network Control Preceding Seizure Evolution.

    PubMed

    Khambhati, Ankit N; Davis, Kathryn A; Lucas, Timothy H; Litt, Brian; Bassett, Danielle S

    2016-09-07

    In ∼20 million people with drug-resistant epilepsy, focal seizures originating in dysfunctional brain networks will often evolve and spread to surrounding tissue, disrupting function in otherwise normal brain regions. To identify network control mechanisms that regulate seizure spread, we developed a novel tool for pinpointing brain regions that facilitate synchronization in the epileptic network. Our method measures the impact of virtually resecting putative control regions on synchronization in a validated model of the human epileptic network. By applying our technique to time-varying functional networks, we identified brain regions whose topological role is to synchronize or desynchronize the epileptic network. Our results suggest that greater antagonistic push-pull interaction between synchronizing and desynchronizing brain regions better constrains seizure spread. These methods, while applied here to epilepsy, are generalizable to other brain networks and have wide applicability in isolating and mapping functional drivers of brain dynamics in health and disease.

  11. Approach of virtual observations generation of a multi-reference GPS station network

    NASA Astrophysics Data System (ADS)

    Yu, Guorong

    2007-11-01

    The generation of virtual reference station observations to relay the corrections to the rover receiver for use with standard RTK software is one of important architectures of reference station networks RTK positioning. The approach of virtual observations generation based on a multi-reference GPS station network is presented in this paper. Ambiguities for the baselines in the reference network are determined firstly. The inter-reference-station differential spatially-correlated errors are estimated using highly accurate coordinates of the reference stations and resolved ambiguities. These spatially-correlated errors are interpolated among the network region as corrections. These network-generated corrections are used to correct the zero-differential observables of one reference station, which is usually the closest one to the rover (the so-called primary reference station). These corrected zero-differential observables, named virtual observations, are processed using conventional single reference station differential GPS algorithms. A test conducted using regional reference networks in Jiangsu(China) demonstrates the effectiveness of the approach to reduce the time to integer ambiguity resolution, and to increase the distance over which centimeter level accuracies can be achieved.

  12. Taming Wild Horses: The Need for Virtual Time-based Scheduling of VMs in Network Simulations

    SciTech Connect

    Yoginath, Srikanth B; Perumalla, Kalyan S; Henz, Brian J

    2012-01-01

    The next generation of scalable network simulators employ virtual machines (VMs) to act as high-fidelity models of traffic producer/consumer nodes in simulated networks. However, network simulations could be inaccurate if VMs are not scheduled according to virtual time, especially when many VMs are hosted per simulator core in a multi-core simulator environment. Since VMs are by default free-running, on the outset, it is not clear if, and to what extent, their untamed execution affects the results in simulated scenarios. Here, we provide the first quantitative basis for establishing the need for generalized virtual time scheduling of VMs in network simulators, based on an actual prototyped implementations. To exercise breadth, our system is tested with multiple disparate applications: (a) a set of message passing parallel programs, (b) a computer worm propagation phenomenon, and (c) a mobile ad-hoc wireless network simulation. We define and use error metrics and benchmarks in scaled tests to empirically report the poor match of traditional, fairness-based VM scheduling to VM-based network simulation, and also clearly show the better performance of our simulation-specific scheduler, with up to 64 VMs hosted on a 12-core simulator node.

  13. Euro-VO-Coordination of virtual observatory activities in Europe

    NASA Astrophysics Data System (ADS)

    Genova, Françoise; Allen, Mark G.; Arviset, Christophe; Lawrence, Andy; Pasian, Fabio; Solano, Enrique; Wambsganss, Joachim

    2015-06-01

    The European Virtual Observatory Euro-VO has been coordinating European VO activities through a series of projects co-funded by the European Commission over the last 15 years. The bulk of VO work in Europe is ensured by the national VO initiatives and those of intergovernmental agencies. VO activities at the European level coordinate the work in support of the three "pillars" of the Virtual Observatory: support to the scientific community, take-up by the data providers, and technological activities. Several Euro-VO projects have also provided direct support to selected developments and prototyping. This paper explains the methodology used by Euro-VO over the years. It summarises the activities which were performed and their evolutions at different stages of the development of the VO, explains the Euro-VO role with respect to the international and national levels of VO activities, details the lessons learnt for best practices for the coordination of the VO building blocks, and the liaison with other European initiatives, documenting the added-value of European coordination. Finally, the current status and next steps of Euro-VO are briefly addressed.

  14. Performance of static positioning for medium distances based on data from a virtual reference station and ASG-PL Network

    NASA Astrophysics Data System (ADS)

    Bakula, M.

    The use of a network of reference stations instead of a single reference station allows the modelling of some systematic errors in a region and allows a user to increase the distance between the rover receiver and reference stations. In some countries, GPS reference stations exist and GPS observations are available for users in real-time mode and in post-processing. Observations from several GPS reference stations in a regional network enable modelling spatially-correlated errors and their modelling on an epoch-by-epoch and satellite-by-satellite basis. As a result, observations of a virtual reference station can be created at a rover's approximate position and its observations can be used in the precise baseline positioning of the rover. This paper presents the performance of the static positioning of a rover station, its quality and reliability for two different baselines. Single-baseline and network static solutions are presented and compared. Network solutions are based on data from a virtual reference station (VRS) obtained by the Wasoft/Virtuall software. In both cases, the same strategy of ambiguity resolution was used. These approaches have been tested with the use of 24-hour GPS data from the Polish Active Geodetic Network (ASG-PL). The data from three reference stations with medium-range separation were used in the process of generating VRS data. GPS data of the rover station were divided into 20, 10 and 5-min. sessions with a sampling interval of 5 sec. Practical calculations and analyses of horizontal and vertical accuracy of coordinates clearly show the improvement of static positioning in terms of time observation span and ambiguity reliability.

  15. Automatic Camera Calibration Using Active Displays of a Virtual Pattern.

    PubMed

    Tan, Lei; Wang, Yaonan; Yu, Hongshan; Zhu, Jiang

    2017-03-27

    Camera calibration plays a critical role in 3D computer vision tasks. The most commonly used calibration method utilizes a planar checkerboard and can be done nearly fully automatically. However, it requires the user to move either the camera or the checkerboard during the capture step. This manual operation is time consuming and makes the calibration results unstable. In order to solve the above problems caused by manual operation, this paper presents a full-automatic camera calibration method using a virtual pattern instead of a physical one. The virtual pattern is actively transformed and displayed on a screen so that the control points of the pattern can be uniformly observed in the camera view. The proposed method estimates the camera parameters from point correspondences between 2D image points and the virtual pattern. The camera and the screen are fixed during the whole process; therefore, the proposed method does not require any manual operations. Performance of the proposed method is evaluated through experiments on both synthetic and real data. Experimental results show that the proposed method can achieve stable results and its accuracy is comparable to the standard method by Zhang.

  16. Innovative Active Networking Services

    DTIC Science & Technology

    2004-03-01

    Integrating IKE We use the “ pluto ” implementation from Freeswan [Freeswan] as our IKE module. Pluto runs as a daemon on a Linux Network node. This base...implementation though incomplete with respect to some features of IKE is still sufficient in order to inter-operate with other pluto implementations...and many other IKE 30 implementations. Commands to pluto are given using a control interface to the daemon, called “whack”. Pluto uses either shared

  17. Quality of service policy control in virtual private networks

    NASA Astrophysics Data System (ADS)

    Yu, Yiqing; Wang, Hongbin; Zhou, Zhi; Zhou, Dongru

    2004-04-01

    This paper studies the QoS of VPN in an environment where the public network prices connection-oriented services based on source, destination and grade of service, and advertises these prices to its VPN customers (users). As different QoS technologies can produce different QoS, there are according different traffic classification rules and priority rules. The internet service provider (ISP) may need to build complex mechanisms separately for each node. In order to reduce the burden of network configuration, we need to design policy control technologies. We considers mainly directory server, policy server, policy manager and policy enforcers. Policy decision point (PDP) decide its control according to policy rules. In network, policy enforce point (PEP) decide its network controlled unit. For InterServ and DiffServ, we will adopt different policy control methods as following: (1) In InterServ, traffic uses resource reservation protocol (RSVP) to guarantee the network resource. (2) In DiffServ, policy server controls the DiffServ code points and per hop behavior (PHB), its PDP distributes information to each network node. Policy server will function as following: information searching; decision mechanism; decision delivering; auto-configuration. In order to prove the effectiveness of QoS policy control, we make the corrective simulation.

  18. Virtualization in network and servers infrastructure to support dynamic system reconfiguration in ALMA

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Ovando, Nicolás.; Bartsch, Marcelo; Simmond, Max; Vélez, Gastón; Robles, Manuel; Soto, Rubén.; Ibsen, Jorge; Saldias, Christian

    2012-09-01

    ALMA is the first astronomical project being constructed and operated under industrial approach due to the huge amount of elements involved. In order to achieve the maximum through put during the engineering and scientific commissioning phase, several production lines have been established to work in parallel. This decision required modification in the original system architecture in which all the elements are controlled and operated within a unique Standard Test Environment (STE). The advance in the network industry and together with the maturity of virtualization paradigm allows us to provide a solution which can replicate the STE infrastructure without changing their network address definition. This is only possible with Virtual Routing and Forwarding (VRF) and Virtual LAN (VLAN) concepts. The solution allows dynamic reconfiguration of antennas and other hardware across the production lines with minimum time and zero human intervention in the cabling. We also push the virtualization even further, classical rack mount servers are being replaced and consolidated by blade servers. On top of them virtualized server are centrally administrated with VMWare ESX. Hardware costs and system administration effort will be reduced considerably. This mechanism has been established and operated successfully during the last two years. This experience gave us confident to propose a solution to divide the main operation array into subarrays using the same concept which will introduce huge flexibility and efficiency for ALMA operation and eventually may simplify the complexity of ALMA core observing software since there will be no need to deal with subarrays complexity at software level.

  19. Large-scale P2P network based distributed virtual geographic environment (DVGE)

    NASA Astrophysics Data System (ADS)

    Tan, Xicheng; Yu, Liang; Bian, Fuling

    2007-06-01

    Virtual Geographic Environment has raised full concern as a kind of software information system that helps us understand and analyze the real geographic environment, and it has also expanded to application service system in distributed environment--distributed virtual geographic environment system (DVGE), and gets some achievements. However, limited by the factor of the mass data of VGE, the band width of network, as well as numerous requests and economic, etc. DVGE still faces some challenges and problems which directly cause the current DVGE could not provide the public with high-quality service under current network mode. The Rapid development of peer-to-peer network technology has offered new ideas of solutions to the current challenges and problems of DVGE. Peer-to-peer network technology is able to effectively release and search network resources so as to realize efficient share of information. Accordingly, this paper brings forth a research subject on Large-scale peer-to-peer network extension of DVGE as well as a deep study on network framework, routing mechanism, and DVGE data management on P2P network.

  20. Virtual Wireless Sensor Networks: Adaptive Brain-Inspired Configuration for Internet of Things Applications

    PubMed Central

    Toyonaga, Shinya; Kominami, Daichi; Murata, Masayuki

    2016-01-01

    Many researchers are devoting attention to the so-called “Internet of Things” (IoT), and wireless sensor networks (WSNs) are regarded as a critical technology for realizing the communication infrastructure of the future, including the IoT. Against this background, virtualization is a crucial technique for the integration of multiple WSNs. Designing virtualized WSNs for actual environments will require further detailed studies. Within the IoT environment, physical networks can undergo dynamic change, and so, many problems exist that could prevent applications from running without interruption when using the existing approaches. In this paper, we show an overall architecture that is suitable for constructing and running virtual wireless sensor network (VWSN) services within a VWSN topology. Our approach provides users with a reliable VWSN network by assigning redundant resources according to each user’s demand and providing a recovery method to incorporate environmental changes. We tested this approach by simulation experiment, with the results showing that the VWSN network is reliable in many cases, although physical deployment of sensor nodes and the modular structure of the VWSN will be quite important to the stability of services within the VWSN topology. PMID:27548177

  1. Building a sense of virtual community: the role of the features of social networking sites.

    PubMed

    Chen, Chi-Wen; Lin, Chiun-Sin

    2014-07-01

    In recent years, social networking sites have received increased attention because of the potential of this medium to transform business by building virtual communities. However, theoretical and empirical studies investigating how specific features of social networking sites contribute to building a sense of virtual community (SOVC)-an important dimension of a successful virtual community-are rare. Furthermore, SOVC scales have been developed, and research on this issue has been called for, but few studies have heeded this call. On the basis of prior literature, this study proposes that perceptions of the three most salient features of social networking sites-system quality (SQ), information quality (IQ), and social information exchange (SIE)-play a key role in fostering SOVC. In particular, SQ is proposed to increase IQ and SIE, and SIE is proposed to enhance IQ, both of which thereafter build SOVC. The research model was examined in the context of Facebook, one of the most popular social networking sites in the world. We adopted Blanchard's scales to measure SOVC. Data gathered using a Web-based questionnaire, and analyzed with partial least squares, were utilized to test the model. The results demonstrate that SIE, SQ, and IQ are the factors that form SOVC. The findings also suggest that SQ plays a fundamental role in supporting SIE and IQ in social networking sites. Implications for theory, practice, and future research directions are discussed.

  2. Virtual Wireless Sensor Networks: Adaptive Brain-Inspired Configuration for Internet of Things Applications.

    PubMed

    Toyonaga, Shinya; Kominami, Daichi; Murata, Masayuki

    2016-08-19

    Many researchers are devoting attention to the so-called "Internet of Things" (IoT), and wireless sensor networks (WSNs) are regarded as a critical technology for realizing the communication infrastructure of the future, including the IoT. Against this background, virtualization is a crucial technique for the integration of multiple WSNs. Designing virtualized WSNs for actual environments will require further detailed studies. Within the IoT environment, physical networks can undergo dynamic change, and so, many problems exist that could prevent applications from running without interruption when using the existing approaches. In this paper, we show an overall architecture that is suitable for constructing and running virtual wireless sensor network (VWSN) services within a VWSN topology. Our approach provides users with a reliable VWSN network by assigning redundant resources according to each user's demand and providing a recovery method to incorporate environmental changes. We tested this approach by simulation experiment, with the results showing that the VWSN network is reliable in many cases, although physical deployment of sensor nodes and the modular structure of the VWSN will be quite important to the stability of services within the VWSN topology.

  3. Traffic routing for multicomputer networks with virtual cut-through capability

    NASA Technical Reports Server (NTRS)

    Kandlur, Dilip D.; Shin, Kang G.

    1992-01-01

    Consideration is given to the problem of selecting routes for interprocess communication in a network with virtual cut-through capability, while balancing the network load and minimizing the number of times that a message gets buffered. An approach is proposed that formulates the route selection problem as a minimization problem with a link cost function that depends upon the traffic through the link. The form of this cost function is derived using the probability of establishing a virtual cut-through route. The route selection problem is shown to be NP-hard, and an algorithm is developed to incrementally reduce the cost by rerouting the traffic. The performance of this algorithm is exemplified by two network topologies: the hypercube and the C-wrapped hexagonal mesh.

  4. Establishment of a network-based intra-hospital virtual cancer biobank.

    PubMed

    Zhang, Lianhai; Wu, Xiaojiang; Hu, Ying; Wang, Xiaohong; He, Zhonghu; Xie, Yuntao; Pan, Kaifeng; Wang, Ning; Dong, Zhihua; Zhang, Lei; Ji, Jiafu

    2015-02-01

    There is a growing interest in integrating biomaterial repositories into larger infrastructures in order to meet research demands. However, even for a single hospital or institute, where both population-based and multiple disease-based biobanks have existed for a long time, the integration of existing separate biobanks into a virtual cancer biobank is still challenging. The guidelines and procedures for biobanking are varied and not universally enforced or followed in separate biobanks. Within the last 2 years, we initiated a project to establish a centralized biobank facility in a common storage environment. Analyzing the challenges and interests of stakeholders for the biobanks, a working group comprised of representatives from the central and separate banks, ethic committees, and research administration offices reached an agreement to implement a central facility by following the ISBER best practices for biobanking, and including regular project reviews by the ethical and scientific boards. Furthermore, by implementing a modified minimum information system with biobank data sharing, a network based intra-hospital virtual cancer bank was established to facilitate sharing information of samples held by separate banks. Meanwhile, this virtual biobank network, which has integrated patient information from hospital health care systems, will gradually integrate follow-up information from the cancer registry office and data from epidemiology studies, providing controlled access for sample providers and resource users. In the future, this infrastructure designed for a single hospital may be helpful for building a broader virtual network for data and specimen exchanges.

  5. The Potential of Using Virtual Reality Technology in Physical Activity Settings

    ERIC Educational Resources Information Center

    Pasco, Denis

    2013-01-01

    In recent years, virtual reality technology has been successfully used for learning purposes. The purposes of the article are to examine current research on the role of virtual reality in physical activity settings and discuss potential application of using virtual reality technology to enhance learning in physical education. The article starts…

  6. An Intelligent Active Video Surveillance System Based on the Integration of Virtual Neural Sensors and BDI Agents

    NASA Astrophysics Data System (ADS)

    Gregorio, Massimo De

    In this paper we present an intelligent active video surveillance system currently adopted in two different application domains: railway tunnels and outdoor storage areas. The system takes advantages of the integration of Artificial Neural Networks (ANN) and symbolic Artificial Intelligence (AI). This hybrid system is formed by virtual neural sensors (implemented as WiSARD-like systems) and BDI agents. The coupling of virtual neural sensors with symbolic reasoning for interpreting their outputs, makes this approach both very light from a computational and hardware point of view, and rather robust in performances. The system works on different scenarios and in difficult light conditions.

  7. Virtual History: A Socially Networked Pedagogy of Enlightenment

    ERIC Educational Resources Information Center

    Ellison, Katherine; Matthews, Carol

    2010-01-01

    Background: Twenty-first-century undergraduates often find eighteenth-century culture difficult to access and, influenced by popular assumptions about the period in current media theory, characterise the century as individualist, underestimating the cultural significance of social networking in literary and political history. Purpose: This study…

  8. Virtual Representation of IID Observations in Bayesian Belief Networks

    DTIC Science & Technology

    1994-04-01

    programs for structuring and using Bayesian inference include ERGO ( Noetic Systems, Inc., 1991) and HUGIN (Andersen, Jensen, Olesen, & Jensen, 1989...Andreassen, S., Jensen, F.V., & Olesen, K.G. (1990). Medical expert systems based on causal probabilistic networks. Aalborg, Denmark: Institute of...Nichols, S.. Chipman, & R. Brennan (Eds.), Cognitively diagnostic assessment. Hillsdale, NJ: Erlbaum. Noetic Systems, Inc. (1991). ERGO [computer

  9. Summarizing scale-free networks based on virtual and real links

    NASA Astrophysics Data System (ADS)

    Bei, Yijun; Lin, Zhen; Chen, Deren

    2016-02-01

    Techniques to summarize and cluster graphs are indispensable to understand the internal characteristics of large complex networks. However, existing methods that analyze graphs mainly focus on aggregating strong-interaction vertices into the same group without considering the node properties, particularly multi-valued attributes. This study aims to develop a unified framework based on the concept of a virtual graph by integrating attributes and structural similarities. We propose a summarizing graph based on virtual and real links (SGVR) approach to aggregate similar nodes in a scale-free graph into k non-overlapping groups based on user-selected attributes considering both virtual links (attributes) and real links (graph structures). An effective data structure called HB-Graph is adopted to adjust the subgroups and optimize the grouping results. Extensive experiments are carried out on actual and synthetic datasets. Results indicate that our proposed method is both effective and efficient.

  10. Inequalities in the networks of virtual water flow

    NASA Astrophysics Data System (ADS)

    Carr, Joel; D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca; Seekell, David

    2012-08-01

    The globalization of water associated with the trade of food commodities [Hoekstra and Chapagain, 2008] has often been acclaimed as a means to save water, mitigate the effect of regional- and local-scale water scarcity, and meet the demand for food in overpopulated and water-poor countries [Allan, 1998]. However, there are negative implications for water use from globalization of trade. For instance, globalization disconnects populations from local sustainable freshwater use [Allan, 1998; D'Odorico et al., 2010]. This distance between societies and the resources on which they rely is a major obstacle to the emergence of behaviors that foster ecosystem stewardship [Chapin et al., 2009] through a responsible management of the environment. The globalization of water is also expected to reduce societal resilience to drought by decreasing the redundancy of freshwater resources, thereby limiting opportunities to meet human needs during periods of crisis [D'Odorico et al., 2010]. Overall, globalization enhances inequalities in the way different societies may have access to freshwater resources [Chapin et al., 2009]. In fact, only a few countries control most of the water that is virtually exchanged—through food trade—in the global market.

  11. Theorizing Network-Centric Activity in Education

    ERIC Educational Resources Information Center

    HaLevi, Andrew

    2011-01-01

    Networks and network-centric activity are increasingly prevalent in schools and school districts. In addition to ubiquitous social network tools like Facebook and Twitter, educational leaders deal with a wide variety of network organizational forms that include professional development, advocacy, informational networks and network-centric reforms.…

  12. First field trial of Virtual Network Operator oriented network on demand (NoD) service provisioning over software defined multi-vendor OTN networks

    NASA Astrophysics Data System (ADS)

    Li, Yajie; Zhao, Yongli; Zhang, Jie; Yu, Xiaosong; Chen, Haoran; Zhu, Ruijie; Zhou, Quanwei; Yu, Chenbei; Cui, Rui

    2017-01-01

    A Virtual Network Operator (VNO) is a provider and reseller of network services from other telecommunications suppliers. These network providers are categorized as virtual because they do not own the underlying telecommunication infrastructure. In terms of business operation, VNO can provide customers with personalized services by leasing network infrastructure from traditional network providers. The unique business modes of VNO lead to the emergence of network on demand (NoD) services. The conventional network provisioning involves a series of manual operation and configuration, which leads to high cost in time. Considering the advantages of Software Defined Networking (SDN), this paper proposes a novel NoD service provisioning solution to satisfy the private network need of VNOs. The solution is first verified in the real software defined multi-domain optical networks with multi-vendor OTN equipment. With the proposed solution, NoD service can be deployed via online web portals in near-real time. It reinvents the customer experience and redefines how network services are delivered to customers via an online self-service portal. Ultimately, this means a customer will be able to simply go online, click a few buttons and have new services almost instantaneously.

  13. Application of the dynamically allocated virtual clustering management system to emulated tactical network experimentation

    NASA Astrophysics Data System (ADS)

    Marcus, Kelvin

    2014-06-01

    The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.

  14. Virtual reality exposure therapy for active duty soldiers.

    PubMed

    Reger, Greg M; Gahm, Gregory A

    2008-08-01

    Virtual reality exposure (VRE) therapy is a promising treatment for a variety of anxiety disorders and has recently been extended to the treatment of posttraumatic stress disorder (PTSD). In this article, the authors briefly review the rationale for VRE and its key processes. They illustrate the treatment with an active-duty Army soldier diagnosed with combat-related PTSD. Six sessions of VRE were provided using an immersive simulation of a military convoy in Iraq. Self-reported PTSD symptoms and psychological distress were reduced at posttreatment relative to pretreatment reports, as assessed by the PTSD Checklist-Military Version and the Behavior and Symptom Identification Scale-24. The case outcomes parallel those reported in the research with other disorders and suggest the applicability of VRE in treating active duty soldiers with combat-related PTSD.

  15. Modeling past and future structure of the global virtual water trade network

    NASA Astrophysics Data System (ADS)

    Dalin, C.; Suweis, S.; Konar, M.; Hanasaki, N.; Rodriguez-Iturbe, I.

    2012-12-01

    Climate change and socio-economic development place an increasing pressure on essential natural resources, such as arable land and freshwater. The international food trade can save water globally by redistributing commodities produced relatively more water-efficiently. We focus on the global virtual water trade network associated with international food trade from 1986-2008. This study aims to determine which variables control the network's structure and temporal evolution, and to estimate changes in the network under future scenarios. Our fitness model reproduces both the topological and weighted characteristics of the network for the whole period. Undirected and directed network properties are well reproduced in each year, assuming as sole controls simple national-level variables. The future structure of the network is estimated using climate and socio-economic projections, showing that volumes of virtual water traded will become increasingly heterogeneous and the importance of dominant importing nations will further strengthen. Exceedance probability distribution of the undirected node degree (k, panel a) and strength (s, panel b): comparison of data and model results in 1986, 1992, 2000 and 2008, respectively. The similarity between data and model is confirmed in each year by a Kolgmogorov - Smirnov statistical test, the results of this test are shown in the "KS test'' box.

  16. The European Virtual Broadband Seismic Network (VEBSN) and ORFEUS

    NASA Astrophysics Data System (ADS)

    van Eck, Torild; Sleeman, Reinoud; van den, Gert-Jan Hazel; Networks, Contributing

    2010-05-01

    Since 2002 ORFEUS has been coordinating the VEBSN concept, in which (near) real-time data is exchanged between Seismological observatory networks and the Orfeus Data Center (ODC). Seismological observatories in and around Europe have usually as primary objective the monitoring and analysis of current local and regional seismicity and seismic hazard. The data gathered by the observatories is, however, also valuable for fundamental research within global and European scale seismology; and therefore a primary data source for Academic seismological research. Within the VEBSN concept, the ODC provides and improves Quality control procedures for the observatories and the observatories provide real-time data for long-term secure waveform data archives at the ODC accessible for seismological research. In this concept the data remains ownership of the contributing network, while the ODC provides a secure back-up archive of waveform data. By facilitating a few data exchange mechanism with emphasis on SeedLink, the VEBSN strategy also enables observatories to exchange data between each other, thus enhancing the capabilities of the local or regional network and improving its performance for their monitoring and hazard objectives More recently, the ODC has been enlarged into the European Distributed waveform Data Archive (EIDA) in which currently GFZ/GEOFON, INGV and RESIF participate in an effort to extend the accessible waveform archive beyond only the VEBSN data. Currently the VEBSN consists of more then 450 3-component stations, each channel well defined with a full up-to-date SEED volume, providing all relevant metadata for a full reconstruction of the true ground motion. This encompases only about 45% of the operational BB stations in the European-Mediterranean area and our goal is to enlarge this.

  17. Virtual optical network provisioning with unified service logic processing model for software-defined multidomain optical networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Li, Shikun; Song, Yinan; Sun, Ji; Zhang, Jie

    2015-12-01

    Hierarchical control architecture is designed for software-defined multidomain optical networks (SD-MDONs), and a unified service logic processing model (USLPM) is first proposed for various applications. USLPM-based virtual optical network (VON) provisioning process is designed, and two VON mapping algorithms are proposed: random node selection and per controller computation (RNS&PCC) and balanced node selection and hierarchical controller computation (BNS&HCC). Then an SD-MDON testbed is built with OpenFlow extension in order to support optical transport equipment. Finally, VON provisioning service is experimentally demonstrated on the testbed along with performance verification.

  18. Growing a Professional Network to Over 3000 Members in Less Than 4 Years: Evaluation of InspireNet, British Columbia’s Virtual Nursing Health Services Research Network

    PubMed Central

    Atherton, Pat; Borycki, Elizabeth; Mickelson, Grace; Cordeiro, Jennifer; Novak Lauscher, Helen; Black, Agnes

    2014-01-01

    Background Use of Web 2.0 and social media technologies has become a new area of research among health professionals. Much of this work has focused on the use of technologies for health self-management and the ways technologies support communication between care providers and consumers. This paper addresses a new use of technology in providing a platform for health professionals to support professional development, increase knowledge utilization, and promote formal/informal professional communication. Specifically, we report on factors necessary to attract and sustain health professionals’ use of a network designed to increase nurses’ interest in and use of health services research and to support knowledge utilization activities in British Columbia, Canada. Objective “InspireNet”, a virtual professional network for health professionals, is a living laboratory permitting documentation of when and how professionals take up Web 2.0 and social media. Ongoing evaluation documents our experiences in establishing, operating, and evaluating this network. Methods Overall evaluation methods included (1) tracking website use, (2) conducting two member surveys, and (3) soliciting member feedback through focus groups and interviews with those who participated in electronic communities of practice (eCoPs) and other stakeholders. These data have been used to learn about the types of support that seem relevant to network growth. Results Network growth exceeded all expectations. Members engaged with varying aspects of the network’s virtual technologies, such as teams of professionals sharing a common interest, research teams conducting their work, and instructional webinars open to network members. Members used wikis, blogs, and discussion groups to support professional work, as well as a members’ database with contact information and areas of interest. The database is accessed approximately 10 times per day. InspireNet public blog posts are accessed roughly 500 times

  19. A threat to a virtual hand elicits motor cortex activation.

    PubMed

    González-Franco, Mar; Peck, Tabitha C; Rodríguez-Fornells, Antoni; Slater, Mel

    2014-03-01

    We report an experiment where participants observed an attack on their virtual body as experienced in an immersive virtual reality (IVR) system. Participants sat by a table with their right hand resting upon it. In IVR, they saw a virtual table that was registered with the real one, and they had a virtual body that substituted their real body seen from a first person perspective. The virtual right hand was collocated with their real right hand. Event-related brain potentials were recorded in two conditions, one where the participant's virtual hand was attacked with a knife and a control condition where the knife only struck the virtual table. Significantly greater P450 potentials were obtained in the attack condition confirming our expectations that participants had a strong illusion of the virtual hand being their own, which was also strongly supported by questionnaire responses. Higher levels of subjective virtual hand ownership correlated with larger P450 amplitudes. Mu-rhythm event-related desynchronization in the motor cortex and readiness potential (C3-C4) negativity were clearly observed when the virtual hand was threatened-as would be expected, if the real hand was threatened and the participant tried to avoid harm. Our results support the idea that event-related potentials may provide a promising non-subjective measure of virtual embodiment. They also support previous experiments on pain observation and are placed into context of similar experiments and studies of body perception and body ownership within cognitive neuroscience.

  20. Virtual Social Networking and Interoperability in the Canadian Forces Netcentric Environment

    DTIC Science & Technology

    2009-07-01

    Defence R& D Canada – Atlantic DEFENCE DÉFENSE & Virtual Social Networking and Interoperability in the Canadian Forces Netcentric Environment Sylvain...entirely the responsibility of the Contractor and the contents do not necessarily have the approval or endorsement of Defence R& D Canada. Contract...Contract Report is entirely the responsibility of the Contractor and the contents do not necessarily have the approval or endorsement of Defence R& D

  1. Active Gaming: Is "Virtual" Reality Right for Your Physical Education Program?

    ERIC Educational Resources Information Center

    Hansen, Lisa; Sanders, Stephen W.

    2012-01-01

    Active gaming is growing in popularity and the idea of increasing children's physical activity by using technology is largely accepted by physical educators. Teachers nationwide have been providing active gaming equipment such as virtual bikes, rhythmic dance machines, virtual sporting games, martial arts simulators, balance boards, and other…

  2. Cross-frequency coupling in real and virtual brain networks

    PubMed Central

    Jirsa, Viktor; Müller, Viktor

    2013-01-01

    Information processing in the brain is thought to rely on the convergence and divergence of oscillatory behaviors of widely distributed brain areas. This information flow is captured in its simplest form via the concepts of synchronization and desynchronization and related metrics. More complex forms of information flow are transient synchronizations and multi-frequency behaviors with metrics related to cross-frequency coupling (CFC). It is supposed that CFC plays a crucial role in the organization of large-scale networks and functional integration across large distances. In this study, we describe different CFC measures and test their applicability in simulated and real electroencephalographic (EEG) data obtained during resting state. For these purposes, we derive generic oscillator equations from full brain network models. We systematically model and simulate the various scenarios of CFC under the influence of noise to obtain biologically realistic oscillator dynamics. We find that (i) specific CFC-measures detect correctly in most cases the nature of CFC under noise conditions, (ii) bispectrum (BIS) and bicoherence (BIC) correctly detect the CFCs in simulated data, (iii) empirical resting state EEG show a prominent delta-alpha CFC as identified by specific CFC measures and the more classic BIS and BIC. This coupling was mostly asymmetric (directed) and generally higher in the eyes closed (EC) than in the eyes open (EO) condition. In conjunction, these two sets of measures provide a powerful toolbox to reveal the nature of couplings from experimental data and as such allow inference on the brain state dependent information processing. Methodological advantages of using CFC measures and theoretical significance of delta and alpha interactions during resting and other brain states are discussed. PMID:23840188

  3. Case-Based Learning in Virtual Groups--Collaborative Problem Solving Activities and Learning Outcomes in a Virtual Professional Training Course

    ERIC Educational Resources Information Center

    Kopp, Birgitta; Hasenbein, Melanie; Mandl, Heinz

    2014-01-01

    This article analyzes the collaborative problem solving activities and learning outcomes of five groups that worked on two different complex cases in a virtual professional training course. In this asynchronous virtual learning environment, all knowledge management content was delivered virtually and collaboration took place through forums. To…

  4. Principle and verification of novel optical virtual private networks over multiprotocol label switching/optical packet switching networks

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Wang, Zhengsuan; Jin, Wei; Qiu, Kun

    2012-11-01

    A novel realization method of the optical virtual private networks (OVPN) over multiprotocol label switching/optical packet switching (MPLS/OPS) networks is proposed. In this scheme, the introduction of MPLS control plane makes OVPN over OPS networks more reliable and easier; OVPN makes use of the concept of high reconfiguration of light-paths offered by MPLS, to set up secure tunnels of high bandwidth across intelligent OPS networks. Through resource management, the signal mechanism, connection control, and the architecture of the creation and maintenance of OVPN are efficiently realized. We also present an OVPN architecture with two traffic priorities, which is used to analyze the capacity, throughput, delay time of the proposed networks, and the packet loss rate performance of the OVPN over MPLS/OPS networks based on full mesh topology. The results validate the applicability of such reliable connectivity to high quality services in the OVPN over MPLS/OPS networks. Along with the results, the feasibility of the approach as the basis for the next generation networks is demonstrated and discussed.

  5. Interpreting collective neural activity underlying spatial navigation in virtual reality

    NASA Astrophysics Data System (ADS)

    Meshulam, Leenoy; Gauthier, Jeff; Tank, David; Bialek, William

    2015-03-01

    Traditionally, cognitive- demanding processes like spatial navigation were studied by recording the activity of single neurons. However, recent technological progress allows imaging the simultaneous activity of large neuronal populations in awake behaving animals. This progress in experimental work calls for a similar adjustments of the modeling frameworks. To achieve a description of the ``real thermodynamics'' of the neural system, we construct maximum entropy models for optical imaging data taken in vivo, from the hippocampus of mice navigating in a virtual reality environment. This provides a natural extension of statistical mechanics applicable to brain activity, by focusing on the interactions between cells rather than on single cell's activity. We aim to determine how the topology of the energy landscape predicted by the model corresponds to the location of the animal in the environment. Since large subpopulations of the neurons in this area are spatially modulated, we expect the landscape to exhibit a large ``valley'' structure of local minima, corresponding to the animal's position along the environment. Such a finding is especially of interest because the location information emerges solely from the activity patterns that are accessible to the brain.

  6. Enterprise virtual private network (VPN) with dense wavelength division multiplexing (DWDM) design

    NASA Astrophysics Data System (ADS)

    Carranza, Aparicio

    An innovative computer simulation and modeling tool for metropolitan area optical data communication networks is presented. These models address the unique requirements of Virtual Private Networks for enterprise data centers, which may comprise a mixture of protocols including ESCON, FICON, Fibre Channel, Sysplex protocols (ETR, CLO, ISC); and other links interconnected over dark fiber using Dense Wavelength Division Multiplexing (DWDM). Our models have the capability of designing a network with minimal inputs; to compute optical link budgets; suggest alternative configurations; and also optimize the design based on user-defined performance metrics. The models make use of Time Division Multiplexing (TDM) wherever possible for lower data rate traffics. Simulation results for several configurations are presented and they have been validated by means of experiments conducted on the IBM enterprise network testbed in Poughkeepsie, N.Y.

  7. Performance analysis of cooperative virtual MIMO systems for wireless sensor networks.

    PubMed

    Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan

    2013-05-28

    Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs.

  8. Performance Analysis of Cooperative Virtual MIMO Systems for Wireless Sensor Networks

    PubMed Central

    Rafique, Zimran; Seet, Boon-Chong; Al-Anbuky, Adnan

    2013-01-01

    Multi-Input Multi-Output (MIMO) techniques can be used to increase the data rate for a given bit error rate (BER) and transmission power. Due to the small form factor, energy and processing constraints of wireless sensor nodes, a cooperative Virtual MIMO as opposed to True MIMO system architecture is considered more feasible for wireless sensor network (WSN) applications. Virtual MIMO with Vertical-Bell Labs Layered Space-Time (V-BLAST) multiplexing architecture has been recently established to enhance WSN performance. In this paper, we further investigate the impact of different modulation techniques, and analyze for the first time, the performance of a cooperative Virtual MIMO system based on V-BLAST architecture with multi-carrier modulation techniques. Through analytical models and simulations using real hardware and environment settings, both communication and processing energy consumptions, BER, spectral efficiency, and total time delay of multiple cooperative nodes each with single antenna are evaluated. The results show that cooperative Virtual-MIMO with Binary Phase Shift Keying-Wavelet based Orthogonal Frequency Division Multiplexing (BPSK-WOFDM) modulation is a promising solution for future high data-rate and energy-efficient WSNs. PMID:23760087

  9. Research on the efficiency of distributed virtual geographic environment in P2P network

    NASA Astrophysics Data System (ADS)

    Duan, Lian; Hu, Baoqing

    2008-12-01

    Now most of distributed virtual geographic environments (DVGE) applications still adopt the centralized pattern, which brings the network congestion or single point of failure to the side of center server. But the P2P technique takes away the bottleneck in data transmission exists in traditional C/S model by virtue of its multilink self-adaptive mechanism of the data transmission, which has a magnitude meaning for researches on the spatial data delivering in distributed virtual geographic environment. As the spatial data has the characteristic of the massive volumes and client change the interesting spatial area in virtual scene so frequently that the spatial application efficiency is sharply decreased, the author brought forward a layered P2P architecture of the spatial data interoperation and flexible group mode in P2P network. A mechanism of layered query of oriented suit (LQOS) and the self-adapted cache mode were introduced to adjust the peer loading and the link numbers for the reliable data capture. In this way, we provide DVGE the rapid data transmission speed among peers, the great data transmission reliability and the better user experience. A DVGE prototype was developed and it proved the efficiency of this P2P DVGE framework. At last the futures of involved techniques and methods are concluded.

  10. Virtualization of event sources in wireless sensor networks for the internet of things.

    PubMed

    Lucas Martínez, Néstor; Martínez, José-Fernán; Hernández Díaz, Vicente

    2014-12-01

    Wireless Sensor Networks (WSNs) are generally used to collect information from the environment. The gathered data are delivered mainly to sinks or gateways that become the endpoints where applications can retrieve and process such data. However, applications would also expect from a WSN an event-driven operational model, so that they can be notified whenever occur some specific environmental changes instead of continuously analyzing the data provided periodically. In either operational model, WSNs represent a collection of interconnected objects, as outlined by the Internet of Things. Additionally, in order to fulfill the Internet of Things principles, Wireless Sensor Networks must have a virtual representation that allows indirect access to their resources, a model that should also include the virtualization of event sources in a WSN. Thus, in this paper a model for a virtual representation of event sources in a WSN is proposed. They are modeled as internet resources that are accessible by any internet application, following an Internet of Things approach. The model has been tested in a real implementation where a WSN has been deployed in an open neighborhood environment. Different event sources have been identified in the proposed scenario, and they have been represented following the proposed model.

  11. Virtualization of Event Sources in Wireless Sensor Networks for the Internet of Things

    PubMed Central

    Martínez, Néstor Lucas; Martínez, José-Fernán; Díaz, Vicente Hernández

    2014-01-01

    Wireless Sensor Networks (WSNs) are generally used to collect information from the environment. The gathered data are delivered mainly to sinks or gateways that become the endpoints where applications can retrieve and process such data. However, applications would also expect from a WSN an event-driven operational model, so that they can be notified whenever occur some specific environmental changes instead of continuously analyzing the data provided periodically. In either operational model, WSNs represent a collection of interconnected objects, as outlined by the Internet of Things. Additionally, in order to fulfill the Internet of Things principles, Wireless Sensor Networks must have a virtual representation that allows indirect access to their resources, a model that should also include the virtualization of event sources in a WSN. Thus, in this paper a model for a virtual representation of event sources in a WSN is proposed. They are modeled as internet resources that are accessible by any internet application, following an Internet of Things approach. The model has been tested in a real implementation where a WSN has been deployed in an open neighborhood environment. Different event sources have been identified in the proposed scenario, and they have been represented following the proposed model. PMID:25470489

  12. Real world navigation independence in the early blind correlates with differential brain activity associated with virtual navigation.

    PubMed

    Halko, Mark A; Connors, Erin C; Sánchez, Jaime; Merabet, Lotfi B

    2014-06-01

    Navigating is a complex cognitive task that places high demands on spatial abilities, particularly in the absence of sight. Significant advances have been made in identifying the neural correlates associated with various aspects of this skill; however, how the brain is able to navigate in the absence of visual experience remains poorly understood. Furthermore, how neural network activity relates to the wide variability in navigational independence and skill in the blind population is also unknown. Using functional magnetic resonance imaging, we investigated the neural correlates of audio-based navigation within a large scale, indoor virtual environment in early profoundly blind participants with differing levels of spatial navigation independence (assessed by the Santa Barbara Sense of Direction scale). Performing path integration tasks in the virtual environment was associated with activation within areas of a core network implicated in navigation. Furthermore, we found a positive relationship between Santa Barbara Sense of Direction scores and activation within right temporal parietal junction during the planning and execution phases of the task. These findings suggest that differential navigational ability in the blind may be related to the utilization of different brain network structures. Further characterization of the factors that influence network activity may have important implications regarding how this skill is taught in the blind community.

  13. Active Learning through the Use of Virtual Environments

    ERIC Educational Resources Information Center

    Mayrose, James

    2012-01-01

    Immersive Virtual Reality (VR) has seen explosive growth over the last decade. Immersive VR attempts to give users the sensation of being fully immersed in a synthetic environment by providing them with 3D hardware, and allowing them to interact with objects in virtual worlds. The technology is extremely effective for learning and exploration, and…

  14. Global detection of live virtual machine migration based on cellular neural networks.

    PubMed

    Xie, Kang; Yang, Yixian; Zhang, Ling; Jing, Maohua; Xin, Yang; Li, Zhongxian

    2014-01-01

    In order to meet the demands of operation monitoring of large scale, autoscaling, and heterogeneous virtual resources in the existing cloud computing, a new method of live virtual machine (VM) migration detection algorithm based on the cellular neural networks (CNNs), is presented. Through analyzing the detection process, the parameter relationship of CNN is mapped as an optimization problem, in which improved particle swarm optimization algorithm based on bubble sort is used to solve the problem. Experimental results demonstrate that the proposed method can display the VM migration processing intuitively. Compared with the best fit heuristic algorithm, this approach reduces the processing time, and emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI) implementation allowing the VM migration detection to be performed better.

  15. Networked Virtual Organizations: A Chance for Small and Medium Sized Enterprises on Global Markets

    NASA Astrophysics Data System (ADS)

    Cellary, Wojciech

    Networked Virtual Organizations (NVOs) are a right answer to challenges of globalized, diversified, and dynamic contemporary economy. NVOs need more than e-trade and outsourcing, namely, they need out-tasking and e-collaboration. To out-task, but retain control on the way a task is performed by an external partner, two integrations are required: (1) integration of computer management systems of enterprises cooperating within an NVO; and (2) integration of cooperating representatives of NVO member enterprises into a virtual team. NVOs provide a particular chance to Small and Medium size Enterprises (SMEs) to find their place on global markets and to play a significant role on them. Requirements for SMEs to be able to successfully join an NVO are analyzed in the paper.

  16. All-optical virtual private network and ONUs communication in optical OFDM-based PON system.

    PubMed

    Zhang, Chongfu; Huang, Jian; Chen, Chen; Qiu, Kun

    2011-11-21

    We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible.

  17. Active contraction of microtubule networks

    PubMed Central

    Foster, Peter J; Fürthauer, Sebastian; Shelley, Michael J; Needleman, Daniel J

    2015-01-01

    Many cellular processes are driven by cytoskeletal assemblies. It remains unclear how cytoskeletal filaments and motor proteins organize into cellular scale structures and how molecular properties of cytoskeletal components affect the large-scale behaviors of these systems. Here, we investigate the self-organization of stabilized microtubules in Xenopus oocyte extracts and find that they can form macroscopic networks that spontaneously contract. We propose that these contractions are driven by the clustering of microtubule minus ends by dynein. Based on this idea, we construct an active fluid theory of network contractions, which predicts a dependence of the timescale of contraction on initial network geometry, a development of density inhomogeneities during contraction, a constant final network density, and a strong influence of dynein inhibition on the rate of contraction, all in quantitative agreement with experiments. These results demonstrate that the motor-driven clustering of filament ends is a generic mechanism leading to contraction. DOI: http://dx.doi.org/10.7554/eLife.10837.001 PMID:26701905

  18. Students' Personal Networks in Virtual and Personal Learning Environments: A Case Study in Higher Education Using Learning Analytics Approach

    ERIC Educational Resources Information Center

    Casquero, Oskar; Ovelar, Ramón; Romo, Jesús; Benito, Manuel; Alberdi, Mikel

    2016-01-01

    The main objective of this paper is to analyse the effect of the affordances of a virtual learning environment and a personal learning environment (PLE) in the configuration of the students' personal networks in a higher education context. The results are discussed in light of the adaptation of the students to the learning network made up by two…

  19. Virtual machine-based simulation platform for mobile ad-hoc network-based cyber infrastructure

    SciTech Connect

    Yoginath, Srikanth B.; Perumalla, Kayla S.; Henz, Brian J.

    2015-09-29

    In modeling and simulating complex systems such as mobile ad-hoc networks (MANETs) in de-fense communications, it is a major challenge to reconcile multiple important considerations: the rapidity of unavoidable changes to the software (network layers and applications), the difficulty of modeling the critical, implementation-dependent behavioral effects, the need to sustain larger scale scenarios, and the desire for faster simulations. Here we present our approach in success-fully reconciling them using a virtual time-synchronized virtual machine(VM)-based parallel ex-ecution framework that accurately lifts both the devices as well as the network communications to a virtual time plane while retaining full fidelity. At the core of our framework is a scheduling engine that operates at the level of a hypervisor scheduler, offering a unique ability to execute multi-core guest nodes over multi-core host nodes in an accurate, virtual time-synchronized manner. In contrast to other related approaches that suffer from either speed or accuracy issues, our framework provides MANET node-wise scalability, high fidelity of software behaviors, and time-ordering accuracy. The design and development of this framework is presented, and an ac-tual implementation based on the widely used Xen hypervisor system is described. Benchmarks with synthetic and actual applications are used to identify the benefits of our approach. The time inaccuracy of traditional emulation methods is demonstrated, in comparison with the accurate execution of our framework verified by theoretically correct results expected from analytical models of the same scenarios. In the largest high fidelity tests, we are able to perform virtual time-synchronized simulation of 64-node VM-based full-stack, actual software behaviors of MANETs containing a mix of static and mobile (unmanned airborne vehicle) nodes, hosted on a 32-core host, with full fidelity of unmodified ad-hoc routing protocols, unmodified application

  20. Virtual machine-based simulation platform for mobile ad-hoc network-based cyber infrastructure

    DOE PAGES

    Yoginath, Srikanth B.; Perumalla, Kayla S.; Henz, Brian J.

    2015-09-29

    In modeling and simulating complex systems such as mobile ad-hoc networks (MANETs) in de-fense communications, it is a major challenge to reconcile multiple important considerations: the rapidity of unavoidable changes to the software (network layers and applications), the difficulty of modeling the critical, implementation-dependent behavioral effects, the need to sustain larger scale scenarios, and the desire for faster simulations. Here we present our approach in success-fully reconciling them using a virtual time-synchronized virtual machine(VM)-based parallel ex-ecution framework that accurately lifts both the devices as well as the network communications to a virtual time plane while retaining full fidelity. At themore » core of our framework is a scheduling engine that operates at the level of a hypervisor scheduler, offering a unique ability to execute multi-core guest nodes over multi-core host nodes in an accurate, virtual time-synchronized manner. In contrast to other related approaches that suffer from either speed or accuracy issues, our framework provides MANET node-wise scalability, high fidelity of software behaviors, and time-ordering accuracy. The design and development of this framework is presented, and an ac-tual implementation based on the widely used Xen hypervisor system is described. Benchmarks with synthetic and actual applications are used to identify the benefits of our approach. The time inaccuracy of traditional emulation methods is demonstrated, in comparison with the accurate execution of our framework verified by theoretically correct results expected from analytical models of the same scenarios. In the largest high fidelity tests, we are able to perform virtual time-synchronized simulation of 64-node VM-based full-stack, actual software behaviors of MANETs containing a mix of static and mobile (unmanned airborne vehicle) nodes, hosted on a 32-core host, with full fidelity of unmodified ad-hoc routing protocols, unmodified

  1. Using Virtual Pets to Promote Physical Activity in Children: An Application of the Youth Physical Activity Promotion Model.

    PubMed

    Ahn, Sun Joo Grace; Johnsen, Kyle; Robertson, Tom; Moore, James; Brown, Scott; Marable, Amanda; Basu, Aryabrata

    2015-01-01

    A virtual pet was developed based on the framework of the youth physical activity promotion model and tested as a vehicle for promoting physical activity in children. Children in the treatment group interacted with the virtual pet for three days, setting physical activity goals and teaching tricks to the virtual pet when their goals were met. The virtual pet became more fit and learned more sophisticated tricks as the children achieved activity goals. Children in the control group interacted with a computer system presenting equivalent features but without the virtual pet. Physical activity and goal attainment were evaluated using activity monitors. Results indicated that children in the treatment group engaged in 1.09 more hours of daily physical activity (156% more) than did those in the control group. Physical activity self-efficacy and beliefs served as mediators driving this increase in activity. Children that interacted with the virtual pet also expressed higher intentions than children in the control group to continue physical activity in the future. Theoretical and practical potentials of using a virtual pet to systematically promote physical activity in children are discussed.

  2. Understanding interactions in virtual HIV communities: a social network analysis approach.

    PubMed

    Shi, Jingyuan; Wang, Xiaohui; Peng, Tai-Quan; Chen, Liang

    2017-02-01

    This study investigated the driving mechanism of building interaction ties among the people living with HIV/AIDS in one of the largest virtual HIV communities in China using social network analysis. Specifically, we explained the probability of forming interaction ties with homophily and popularity characteristics. The exponential random graph modeling results showed that members in this community tend to form homophilous ties in terms of shared location and interests. Moreover, we found a tendency away from popularity effect. This suggests that in this community, resources and information were not disproportionally received by a few of members, which could be beneficial to the overall community.

  3. Virtualization of open-source secure web services to support data exchange in a pediatric critical care research network

    PubMed Central

    Sward, Katherine A; Newth, Christopher JL; Khemani, Robinder G; Cryer, Martin E; Thelen, Julie L; Enriquez, Rene; Shaoyu, Su; Pollack, Murray M; Harrison, Rick E; Meert, Kathleen L; Berg, Robert A; Wessel, David L; Shanley, Thomas P; Dalton, Heidi; Carcillo, Joseph; Jenkins, Tammara L; Dean, J Michael

    2015-01-01

    Objectives To examine the feasibility of deploying a virtual web service for sharing data within a research network, and to evaluate the impact on data consistency and quality. Material and Methods Virtual machines (VMs) encapsulated an open-source, semantically and syntactically interoperable secure web service infrastructure along with a shadow database. The VMs were deployed to 8 Collaborative Pediatric Critical Care Research Network Clinical Centers. Results Virtual web services could be deployed in hours. The interoperability of the web services reduced format misalignment from 56% to 1% and demonstrated that 99% of the data consistently transferred using the data dictionary and 1% needed human curation. Conclusions Use of virtualized open-source secure web service technology could enable direct electronic abstraction of data from hospital databases for research purposes. PMID:25796596

  4. Real and virtual robot head for active vision research

    NASA Astrophysics Data System (ADS)

    Marapane, Suresh B.; Lassiter, Nils T.; Trivedi, Mohan M.

    1992-11-01

    In the emerging paradigm of animate vision, the visual processes are not thought of as being independent of cognitive or motor processing, but as an integrated system within the context of visual behavior. Intimate coupling of sensory and motor systems have found to improve significantly the performance of behavior based vision systems. In order to conduct research in animate vision one requires an active image acquisition platform. This platform should possess the capability to change vision geometrical and optical parameters of the sensors under the control of a computer. This has led to the development of several robotic sensory-motor systems with multiple degrees of freedoms (DOF). In this paper we describe the status of on going work in developing a sensory-motor robotic system, R2H, with ten degrees of freedoms (DOF) for research in active vision. A Graphical Simulation and Animation (GSA) environment is also presented. The objective of building the GSA system is to create an environment to aid the researchers in developing high performance and reliable software and hardware in a most effective manner. The GSA includes a complete kinematic simulation of the R2H system, it''s sensors and it''s workspace. GSA environment is not meant to be a substitute for performing real experiments but is to complement it. Thus, the GSA environment will be an integral part of the total research effort. With the aid of the GSA environment a Depth from Defocus (DFD), Depth from Vergence, and Depth from Stereo modules have been implemented and tested. The power and usefulness of the GSA system as a research tool is demonstrated by acquiring and analyzing stereo images in the virtual world.

  5. All-optical OFDM network coding scheme for all-optical virtual private communication in PON

    NASA Astrophysics Data System (ADS)

    Li, Lijun; Gu, Rentao; Ji, Yuefeng; Bai, Lin; Huang, Zhitong

    2014-03-01

    A novel optical orthogonal frequency division multiplexing (OFDM) network coding scheme is proposed over passive optical network (PON) system. The proposed scheme for all-optical virtual private network (VPN) does not only improve transmission efficiency, but also realize full-duplex communication mode in a single fiber. Compared with the traditional all-optical VPN architectures, the all-optical OFDM network coding scheme can support higher speed, more flexible bandwidth allocation, and higher spectrum efficiency. In order to reduce the difficulty of alignment for encoding operation between inter-communication traffic, the width of OFDM subcarrier pulse is stretched in our proposed scheme. The feasibility of all-optical OFDM network coding scheme for VPN is verified, and the relevant simulation results show that the full-duplex inter-communication traffic stream can be transmitted successfully. Furthermore, the tolerance of misalignment existing in inter-ONUs traffic is investigated and analyzed for all-optical encoding operation, and the difficulty of pulse alignment is proved to be lower.

  6. The photoelectric effect and study of the diffraction of light: Two new experiments in UNILabs virtual and remote laboratories network

    NASA Astrophysics Data System (ADS)

    Pedro Sánchez, Juan; Sáenz, Jacobo; de la Torre, Luis; Carreras, Carmen; Yuste, Manuel; Heradio, Rubén; Dormido, Sebastián

    2016-05-01

    This work describes two experiments: "study of the diffraction of light: Fraunhofer approximation" and "the photoelectric effect". Both of them count with a virtual, simulated, version of the experiment as well as with a real one which can be operated remotely. The two previous virtual and remote labs (built using Easy Java(script) Simulations) are integrated in UNILabs, a network of online interactive laboratories based on the free Learning Management System Moodle. In this web environment, students can find not only the virtual and remote labs but also manuals with related theory, the user interface description for each application, and so on.

  7. Head-mounted active noise control system with virtual sensing technique

    NASA Astrophysics Data System (ADS)

    Miyazaki, Nobuhiro; Kajikawa, Yoshinobu

    2015-03-01

    In this paper, we apply a virtual sensing technique to a head-mounted active noise control (ANC) system we have already proposed. The proposed ANC system can reduce narrowband noise while improving the noise reduction ability at the desired locations. A head-mounted ANC system based on an adaptive feedback structure can reduce noise with periodicity or narrowband components. However, since quiet zones are formed only at the locations of error microphones, an adequate noise reduction cannot be achieved at the locations where error microphones cannot be placed such as near the eardrums. A solution to this problem is to apply a virtual sensing technique. A virtual sensing ANC system can achieve higher noise reduction at the desired locations by measuring the system models from physical sensors to virtual sensors, which will be used in the online operation of the virtual sensing ANC algorithm. Hence, we attempt to achieve the maximum noise reduction near the eardrums by applying the virtual sensing technique to the head-mounted ANC system. However, it is impossible to place the microphone near the eardrums. Therefore, the system models from physical sensors to virtual sensors are estimated using the Head And Torso Simulator (HATS) instead of human ears. Some simulation, experimental, and subjective assessment results demonstrate that the head-mounted ANC system with virtual sensing is superior to that without virtual sensing in terms of the noise reduction ability at the desired locations.

  8. Behavioral Intention to Use a Virtual Instrumental Activities of Daily Living System Among People With Stroke

    PubMed Central

    Adams, Richard; White, Marga; Diamond, Paul

    2015-01-01

    OBJECTIVE. The purpose of this study was to investigate the behavioral intention to use (BIU) regarding a virtual system for practicing instrumental activities of daily living (IADLs) among people with stroke. METHOD. Fourteen people who had sustained a stroke used a virtual world–based system over four sessions to participate in virtual occupations of preparing meals and putting away groceries. To investigate intention to use the technology, participants responded to a questionnaire based on the Technology Acceptance Model and were interviewed about the experience. RESULTS. Analysis of questionnaire responses revealed favorable attitudes toward the technology and statistically significant correlations between these attitudes and positive BIU. Analysis of qualitative data revealed four themes to support system use: Use of the affected arm increased, the virtual practice was enjoyable, the technology was user-friendly, and the system reflected real-life activities. CONCLUSION. This study shows that participants reported a positive BIU for the virtual system for practicing IADLs. PMID:25871604

  9. A metro-access integrated network with all-optical virtual private network function using DPSK/ASK modulation format

    NASA Astrophysics Data System (ADS)

    Tian, Yue; Leng, Lufeng; Su, Yikai

    2008-11-01

    All-optical virtual private network (VPN), which offers dedicated optical channels to connect users within a VPN group, is considered a promising approach to efficient internetworking with low latency and enhanced security implemented in the physical layer. On the other hand, time-division multiplexed (TDM) / wavelength-division multiplexed (WDM) network architecture based on a feeder-ring with access-tree topology, is considered a pragmatic migration scenario from current TDM-PONs to future WDM-PONs and a potential convergence scheme for access and metropolitan networks, due to its efficiently shared hardware and bandwidth resources. All-optical VPN internetworking in such a metro-access integrated structure is expected to cover a wider service area and therefore is highly desirable. In this paper, we present a TDM/WDM metro-access integrated network supporting all-optical VPN internetworking among ONUs in different sub- PONs based on orthogonal differential-phase-shift keying (DPSK) / amplitude-shift keying (ASK) modulation format. In each ONU, no laser but a single Mach-Zehnder modulator (MZM) is needed for the upstream and VPN signal generation, which is cost-effective. Experiments and simulations are performed to verify its feasibility as a potential solution to the future access service.

  10. Runtime Performance and Virtual Network Control Alternatives in VM-Based High-Fidelity Network Simulations

    DTIC Science & Technology

    2012-12-01

    described in detail in (Yoginath, Perumalla and Henz 2012). The MPI benchmarks comprise two scenarios, namely, Constant Network Delay ( CND ) and...Varying Network Delay (VND). With CND , we evaluate the performance of NSX and CSX scheduler support for time-ordered event execution when the...identifier of the jth message in the ith run. CND Benchmark Performance Figure 2: CND benchmark error plots (left); CND benchmark runtime plots

  11. Virtual war, military revolutions, and networks: a guide through the concepts from an Australian perspective

    NASA Astrophysics Data System (ADS)

    Bowley, Dean K.; Gaertner, Paul S.

    2003-07-01

    In this paper the argument is made that the offensive fire support organisation and doctrine, born of the "indirect fire revolution" of the first world war, is the start point for distributed sensors, shooters and deciders that may be transferred to a joint force; that the culture of directive control and mission orders developed by the German Army in 1918 and then adopted by most western armies is the start point for the culture required to achieve "self synchronisation" and that the network developed for the air defence of carrier battle groups is the start point for developing a networked ground manoeuvre force. We discuss the strategic expectations of network centric warfare, a "virtual war" scenario and the inherent vulnerabilities. The current level of understanding and implementation in specific areas is analysed and lessons for general application are developed and the potential payoff identified. Three broad operational domains are investigated, networked platform versus platform warfare between states, guerrilla/counter-insurfence operations and the emerging domain of "netwars" (terror organisations and criminal gangs).

  12. A Drone Remote Sensing for Virtual Reality Simulation System for Forest Fires: Semantic Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh

    2016-09-01

    Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.

  13. On the Role of Hyper-arid Regions within the Virtual Water Trade Network

    NASA Astrophysics Data System (ADS)

    Aggrey, James; Alshamsi, Aamena; Molini, Annalisa

    2016-04-01

    Climate change, economic development, and population growth are bound to increasingly impact global water resources, posing a significant threat to the sustainable development of arid regions, where water consumption highly exceeds the natural carrying capacity, population growth rate is high, and climate variability is going to impact both water consumption and availability. Virtual Water Trade (VWT) - i.e. the international trade network of water-intensive products - has been proposed as a possible solution to optimize the allocation of water resources on the global scale. By increasing food availability and lowering food prices it may in fact help the rapid development of water-scarce regions. The structure of the VWT network has been analyzed by a number of authors both in connection with trade policies, socioeconomic constrains and agricultural efficiency. However a systematic analysis of the structure and the dynamics of the VWT network conditional to aridity, climatic forcing and energy availability, is still missing. Our goal is hence to analyze the role of arid and hyper-arid regions within the VWN under diverse climatic, demographic, and energy constraints with an aim to contribute to the ongoing Energy-Water-Food nexus discussion. In particular, we focus on the hyper-arid lands of the Arabian Peninsula, the role they play in the global network and the assessment of their specific criticalities, as reflected in the VWN resilience.

  14. Evolutionary Approach of Virtual Communities of Practice: A Reflection within a Network of Spanish Rural Schools

    NASA Astrophysics Data System (ADS)

    Frossard, Frédérique; Trifonova, Anna; Barajas Frutos, Mario

    The isolation of rural communities creates special necessities for teachers and students in rural schools. The present article describes "Rural Virtual School", a Virtual Community of Practice (VCoP) in which Spanish teachers of rural schools share learning resources and teaching methodologies through social software applications. The article arrives to an evolutionary model, in which the use of the social software tools evolves together with the needs and the activities of the VCoP through the different stages of its lifetime. Currently, the community has reached a high level of maturity and, in order to keep its momentum, the members intentionally use appropriate technologies specially designed to enhance rich innovative educational approaches, through which they collaboratively generate creative practices.

  15. Behavioral and network origins of wealth inequality: insights from a virtual world.

    PubMed

    Fuchs, Benedikt; Thurner, Stefan

    2014-01-01

    Almost universally, wealth is not distributed uniformly within societies or economies. Even though wealth data have been collected in various forms for centuries, the origins for the observed wealth-disparity and social inequality are not yet fully understood. Especially the impact and connections of human behavior on wealth could so far not be inferred from data. Here we study wealth data from the virtual economy of the massive multiplayer online game (MMOG) Pardus. This data not only contains every player's wealth at every point in time, but also all actions over a timespan of almost a decade. We find that wealth distributions in the virtual world are very similar to those in Western countries. In particular we find an approximate exponential distribution for low wealth levels and a power-law tail for high levels. The Gini index is found to be g = 0.65, which is close to the indices of many Western countries. We find that wealth-increase rates depend on the time when players entered the game. Players that entered the game early on tend to have remarkably higher wealth-increase rates than those who joined later. Studying the players' positions within their social networks, we find that the local position in the trade network is most relevant for wealth. Wealthy people have high in- and out-degrees in the trade network, relatively low nearest-neighbor degrees, and low clustering coefficients. Wealthy players have many mutual friendships and are socially well respected by others, but spend more time on business than on socializing. Wealthy players have few personal enemies, but show animosity towards players that behave as public enemies. We find that players that are not organized within social groups are significantly poorer on average. We observe that "political" status and wealth go hand in hand.

  16. Behavioral and Network Origins of Wealth Inequality: Insights from a Virtual World

    PubMed Central

    Fuchs, Benedikt; Thurner, Stefan

    2014-01-01

    Almost universally, wealth is not distributed uniformly within societies or economies. Even though wealth data have been collected in various forms for centuries, the origins for the observed wealth-disparity and social inequality are not yet fully understood. Especially the impact and connections of human behavior on wealth could so far not be inferred from data. Here we study wealth data from the virtual economy of the massive multiplayer online game (MMOG) Pardus. This data not only contains every player's wealth at every point in time, but also all actions over a timespan of almost a decade. We find that wealth distributions in the virtual world are very similar to those in Western countries. In particular we find an approximate exponential distribution for low wealth levels and a power-law tail for high levels. The Gini index is found to be , which is close to the indices of many Western countries. We find that wealth-increase rates depend on the time when players entered the game. Players that entered the game early on tend to have remarkably higher wealth-increase rates than those who joined later. Studying the players' positions within their social networks, we find that the local position in the trade network is most relevant for wealth. Wealthy people have high in- and out-degrees in the trade network, relatively low nearest-neighbor degrees, and low clustering coefficients. Wealthy players have many mutual friendships and are socially well respected by others, but spend more time on business than on socializing. Wealthy players have few personal enemies, but show animosity towards players that behave as public enemies. We find that players that are not organized within social groups are significantly poorer on average. We observe that “political” status and wealth go hand in hand. PMID:25153072

  17. Avatars Go to Class: A Virtual Environment Soil Science Activity

    ERIC Educational Resources Information Center

    Mamo, M.; Namuth-Covert, D.; Guru, A.; Nugent, G.; Phillips, L.; Sandall, L.; Kettler, T.; McCallister, D.

    2011-01-01

    Web 2.0 technology is expanding rapidly from social and gaming uses into the educational applications. Specifically, the multi-user virtual environment (MUVE), such as SecondLife, allows educators to fill the gap of first-hand experience by creating simulated realistic evolving problems/games. In a pilot study, a team of educators at the…

  18. Virtual Reality: Developing a VR space for Academic activities

    NASA Astrophysics Data System (ADS)

    Kaimaris, D.; Stylianidis, E.; Karanikolas, N.

    2014-05-01

    Virtual reality (VR) is extensively used in various applications; in industry, in academia, in business, and is becoming more and more affordable for end users from the financial point of view. At the same time, in academia and higher education more and more applications are developed, like in medicine, engineering, etc. and students are inquiring to be well-prepared for their professional life after their educational life cycle. Moreover, VR is providing the benefits having the possibility to improve skills but also to understand space as well. This paper presents the methodology used during a course, namely "Geoinformatics applications" at the School of Spatial Planning and Development (Eng.), Aristotle University of Thessaloniki, to create a virtual School space. The course design focuses on the methods and techniques to be used in order to develop the virtual environment. In addition the project aspires to become more and more effective for the students and provide a real virtual environment with useful information not only for the students but also for any citizen interested in the academic life at the School.

  19. Iranian Health Research Networks and Vision of Iran by 2025: A Case of Virtual Health Network in EMRI

    PubMed Central

    Keshtkar, AA; Djalalinia, Sh; Khashayar, P; Peykari, N; Mohammdi, Z; Larijani, B

    2013-01-01

    Background: The present paper aims to explore the role of Health Research Networks (HRN) in facilitating and expedite achieving the prospects for goals of health research based on the visions of Iran by 2025. Methods: Aiming to the main function of HSR to achieve the targeted conducting of health sciences research; more cooperation and coordination between health science researchers; avoid parallel investigations; and optimum utilization and appropriate distribution of resources, in 2000 the deputy of Research and Technology of Ministry of Health and Medical Education defined and developed a comprehensive HRN. Result: There are currently 27 research networks operating under the supervision of the Deputy of Research and Technology at MOHME. All of the HRN policies are following based on their strategic planning’s which are extracted from national visions of Iran by 2025. Conclusion: Promoting the current position needs a reliable and feasible new strategies. The present article introduces the lessons learned of our experience in virtual web-based health research networking in Endocrinology and Metabolism Research Institute (EMRI). PMID:23865021

  20. A Virtual Geophysical Network: Using Industry Standard Technology to Link Geographically Distributed Sensors and Data Centers

    NASA Astrophysics Data System (ADS)

    Ahern, T. K.; Benson, R. B.; Crotwell, H. P.

    2003-12-01

    The IRIS Data Management System has long supported distributed data centers as a method of providing scientific researchers access to data from seismological networks around the world. For nearly a decade, the NetDC system used email as the method through which users could access data centers located around the globe in a seamless fashion. More recently the IRIS DMC has partnered with the University of South Carolina to develop a new method through which a virtual data center can be created. The Common Object Request Broker Architecture (CORBA) technology is an industry standard distributed computing architecture. Traditionally used by major corporations, IRIS has developed a Data Handling Interface (DHI) system that is capable of connecting services at participating data centers (servers) to applications running on end-users computing platforms (clients). For seismology we have identified three services. 1) A network service that provides information about geophysical observatories around the world such as where the sensors exist, what types of information are recorded on the sensors, and calibration information that allows proper use of the data, 2) an event service that allows applications to access information about earthquakes and seismological events and 3) waveform services that allow users to gain access to seismograms or time series data from other geophysical sensors. Seismological Data Centers operate the servers thereby allowing a variety of client applications to directly access the information at these data centers. Currently IRIS, the U. of South Carolina, UC Berkeley, and a European Data Center (ORFEUS) have been involved in the DHI project. This talk will highlight some of the DHI enabled clients that allow geophysical information to be directly transferred to the clients. Since the data center servers appear with the same interface specification (Interface Definition Language) a client that can talk to one DHI server can talk to any DHI enabled

  1. Emulation of the Active Immune Response in a Computer Network

    DTIC Science & Technology

    2009-01-15

    Dynamics of the Estimation Process 53 15 Dual Network Interface for concurrent execution of testbed experiments and lab management 57 16 Hardware Testbed...Two Physical Nodes 62 20 Network Security Testbed Management Software Stack 63 21 Virtual Network Topology for Worm Propagation Experiment Generated...system could be reformulated in terms of the characteristics of computer networks and interpreted as a set of instructions to a network manager . This

  2. Practical application of game theory based production flow planning method in virtual manufacturing networks

    NASA Astrophysics Data System (ADS)

    Olender, M.; Krenczyk, D.

    2016-08-01

    Modern enterprises have to react quickly to dynamic changes in the market, due to changing customer requirements and expectations. One of the key area of production management, that must continuously evolve by searching for new methods and tools for increasing the efficiency of manufacturing systems is the area of production flow planning and control. These aspects are closely connected with the ability to implement the concept of Virtual Enterprises (VE) and Virtual Manufacturing Network (VMN) in which integrated infrastructure of flexible resources are created. In the proposed approach, the players role perform the objects associated with the objective functions, allowing to solve the multiobjective production flow planning problems based on the game theory, which is based on the theory of the strategic situation. For defined production system and production order models ways of solving the problem of production route planning in VMN on computational examples for different variants of production flow is presented. Possible decision strategy to use together with an analysis of calculation results is shown.

  3. The virtual network supporting the front lines: addressing emerging behavioral health problems following the tsunami of 2004.

    PubMed

    Reissman, Dori B; Schreiber, Merritt; Klomp, Richard W; Hoover, Michele; Kowalski-Trakofler, Kathleen; Perez, Jon

    2006-10-01

    The devastation wreaked by the 2004 tsunami in the Indian Ocean required extensive multinational and nongovernmental relief efforts to address the massive loss of infrastructure, people, and society. This article addresses approaches to behavioral incident management from a process perspective, through the lens of one official stateside channel of emergency operations. The process highlights the formation and connectivity of multidisciplinary teams that virtually supported the efforts of a seven-person, on-scene, behavioral health team aboard the USNS Mercy as part of Operation Unified Assistance in the Indian Ocean. Frontline health diplomacy and behavioral health relief efforts were greatly augmented by the virtual network of support from leading experts around the globe. Future disaster response and recovery efforts ought to build on the success of such virtual support networks, by planning for appropriate technology, expertise, and mutual aid partnerships.

  4. Network and user interface for PAT DOME virtual motion environment system

    NASA Technical Reports Server (NTRS)

    Worthington, J. W.; Duncan, K. M.; Crosier, W. G.

    1993-01-01

    The Device for Orientation and Motion Environments Preflight Adaptation Trainer (DOME PAT) provides astronauts a virtual microgravity sensory environment designed to help alleviate tye symptoms of space motion sickness (SMS). The system consists of four microcomputers networked to provide real time control, and an image generator (IG) driving a wide angle video display inside a dome structure. The spherical display demands distortion correction. The system is currently being modified with a new graphical user interface (GUI) and a new Silicon Graphics IG. This paper will concentrate on the new GUI and the networking scheme. The new GUI eliminates proprietary graphics hardware and software, and instead makes use of standard and low cost PC video (CGA) and off the shelf software (Microsoft's Quick C). Mouse selection for user input is supported. The new Silicon Graphics IG requires an Ethernet interface. The microcomputer known as the Real Time Controller (RTC), which has overall control of the system and is written in Ada, was modified to use the free public domain NCSA Telnet software for Ethernet communications with the Silicon Graphics IG. The RTC also maintains the original ARCNET communications through Novell Netware IPX with the rest of the system. The Telnet TCP/IP protocol was first used for real-time communication, but because of buffering problems the Telnet datagram (UDP) protocol needed to be implemented. Since the Telnet modules are written in C, the Adap pragma 'Interface' was used to interface with the network calls.

  5. A hybrid mortar virtual element method for discrete fracture network simulations

    NASA Astrophysics Data System (ADS)

    Benedetto, Matías Fernando; Berrone, Stefano; Borio, Andrea; Pieraccini, Sandra; Scialò, Stefano

    2016-02-01

    The most challenging issue in performing underground flow simulations in Discrete Fracture Networks (DFN) is to effectively tackle the geometrical difficulties of the problem. In this work we put forward a new application of the Virtual Element Method combined with the Mortar method for domain decomposition: we exploit the flexibility of the VEM in handling polygonal meshes in order to easily construct meshes conforming to the traces on each fracture, and we resort to the mortar approach in order to "weakly" impose continuity of the solution on intersecting fractures. The resulting method replaces the need for matching grids between fractures, so that the meshing process can be performed independently for each fracture. Numerical results show optimal convergence and robustness in handling very complex geometries.

  6. Stochastic cycle selection in active flow networks

    PubMed Central

    Woodhouse, Francis G.; Forrow, Aden; Fawcett, Joanna B.; Dunkel, Jörn

    2016-01-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such nonequilibrium networks. Here we connect concepts from lattice field theory, graph theory, and transition rate theory to understand how topology controls dynamics in a generic model for actively driven flow on a network. Our combined theoretical and numerical analysis identifies symmetry-based rules that make it possible to classify and predict the selection statistics of complex flow cycles from the network topology. The conceptual framework developed here is applicable to a broad class of biological and nonbiological far-from-equilibrium networks, including actively controlled information flows, and establishes a correspondence between active flow networks and generalized ice-type models. PMID:27382186

  7. Stochastic cycle selection in active flow networks

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis; Forrow, Aden; Fawcett, Joanna; Dunkel, Jorn

    2016-11-01

    Active biological flow networks pervade nature and span a wide range of scales, from arterial blood vessels and bronchial mucus transport in humans to bacterial flow through porous media or plasmodial shuttle streaming in slime molds. Despite their ubiquity, little is known about the self-organization principles that govern flow statistics in such non-equilibrium networks. By connecting concepts from lattice field theory, graph theory and transition rate theory, we show how topology controls dynamics in a generic model for actively driven flow on a network. Through theoretical and numerical analysis we identify symmetry-based rules to classify and predict the selection statistics of complex flow cycles from the network topology. Our conceptual framework is applicable to a broad class of biological and non-biological far-from-equilibrium networks, including actively controlled information flows, and establishes a new correspondence between active flow networks and generalized ice-type models.

  8. An Examination of a Virtual Private Network Implementation to Support a Teleworking Initiative: The Marcus Food Company Inc. Case Study

    ERIC Educational Resources Information Center

    Ferguson, Jason W.

    2010-01-01

    In this dissertation, the author examined the capabilities of virtual private networks (VPNs) in supporting teleworking environments for small businesses in the food marketing sector. The goal of this research was to develop an implementation model for small businesses in the food marketing sector that use a VPN solution to support teleworker…

  9. All-optical virtual private network system in OFDM based long-reach PON using RSOA re-modulation technique

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Hun; Jung, Sang-Min; Kang, Su-Min; Han, Sang-Kook

    2015-01-01

    We propose an all-optical virtual private network (VPN) system in an orthogonal frequency division multiplexing (OFDM) based long reach PON (LR-PON). In the optical access network field, technologies based on fundamental upstream (U/S) and downstream (D/S) have been actively researched to accommodate explosion of data capacity. However, data transmission among the end users which is arisen from cloud computing, file-sharing and interactive game takes a large weight inside of internet traffic. Moreover, this traffic is predicted to increase more if Internet of Things (IoT) services are activated. In a conventional PON, VPN data is transmitted through ONU-OLT-ONU via U/S and D/S carriers. It leads to waste of bandwidth and energy due to O-E-O conversion in the OLT and round-trip propagation between OLT and remote node (RN). Also, it causes inevitable load to the OLT for electrical buffer, scheduling and routing. The network inefficiency becomes more critical in a LR-PON which has been researched as an effort to reduce CAPEX and OPEX through metro-access consolidation. In the proposed system, the VPN data is separated from conventional U/S and re-modulated on the D/S carrier by using RSOA in the ONUs to avoid bandwidth consumption of U/S and D/S unlike in previously reported system. Moreover, the transmitted VPN data is re-directed to the ONUs by wavelength selective reflector device in the RN without passing through the OLT. Experimental demonstration for the VPN communication system in an OFDM based LR-PON has been verified.

  10. An Activity Theory Approach to Analyze Barriers to a Virtual Management Information Systems (MIS) Curriculum

    ERIC Educational Resources Information Center

    Jaradat, Suhair; Qablan, Ahmad; Barham, Areej

    2011-01-01

    This paper explains how the activity theory is used as a framework to analyze the barriers to a virtual Management Information Stream (MIS) Curriculum in Jordanian schools, from both the sociocultural and pedagogical perspectives. Taking the activity system as a unit of analysis, this study documents the processes by which activities shape and are…

  11. Identification of mangiferin as a potential Glucokinase activator by structure-based virtual ligand screening

    PubMed Central

    Min, Qiuxia; Cai, Xinpei; Sun, Weiguang; gao, Fei; Li, Zhimei; Zhang, Qian; Wan, Luo-Sheng; Li, Hua; Chen, Jiachun

    2017-01-01

    The natural product mangiferin (compound 7) has been identified as a potential glucokinase activator by structure-based virtual ligand screening. It was proved by enzyme activation experiment and cell-based assays in vitro, with potency in micromolar range. Meanwhile, this compound showed good antihyperglycemic activity in db/db mice without obvious side effects such as excessive hypoglycaemia. PMID:28317897

  12. Interevent time distributions of human multi-level activity in a virtual world

    NASA Astrophysics Data System (ADS)

    Mryglod, O.; Fuchs, B.; Szell, M.; Holovatch, Yu.; Thurner, S.

    2015-02-01

    Studying human behavior in virtual environments provides extraordinary opportunities for a quantitative analysis of social phenomena with levels of accuracy that approach those of the natural sciences. In this paper we use records of player activities in the massive multiplayer online game Pardus over 1238 consecutive days, and analyze dynamical features of sequences of actions of players. We build on previous work where temporal structures of human actions of the same type were quantified, and provide an empirical understanding of human actions of different types. This study of multi-level human activity can be seen as a dynamic counterpart of static multiplex network analysis. We show that the interevent time distributions of actions in the Pardus universe follow highly non-trivial distribution functions, from which we extract action-type specific characteristic 'decay constants'. We discuss characteristic features of interevent time distributions, including periodic patterns on different time scales, bursty dynamics, and various functional forms on different time scales. We comment on gender differences of players in emotional actions, and find that while males and females act similarly when performing some positive actions, females are slightly faster for negative actions. We also observe effects on the age of players: more experienced players are generally faster in making decisions about engaging in and terminating enmity and friendship, respectively.

  13. Virtual/Real transfer of spatial learning: impact of activity according to the retention delay.

    PubMed

    Wallet, Grégory; Sauzéon, Hélène; Rodrigues, Jérôme; Larrue, Florian; N'kaoua, Bernard

    2010-01-01

    Within the framework of cognitive rehabilitation using virtual reality (VR), one of the major challenges is to study beforehand the effectiveness of the virtual-real transfer of learning and to define cognitive aids. The aim of this experiment was to verify if, after learning spatial knowledge (i.e., a route) in VR, performances can be transferred to reality, then maintained in real time, and improved with the aid of an active navigation (i.e., using a joystick). Ninety student volunteers from the University of Bordeaux 2 (45 men and 45 women) participated in the experiment. The virtual environment (VE) used for learning was a replica of an area of Bordeaux. The factors tested were retention delay (Immediate vs. 48 hours) and type of navigation (Passive virtual vs. Active virtual vs. Real), using three recall tasks: wayfinding, freehand sketch and photograph classification. Our results showed that the virtual-real transfer was not degraded by a retention delay of 48 hours and that active navigation allowed performances to be optimized.

  14. Validity of the Virtual Reality Stroop Task (VRST) in active duty military.

    PubMed

    Armstrong, Christina M; Reger, Greg M; Edwards, Joseph; Rizzo, Albert A; Courtney, Christopher G; Parsons, Thomas D

    2013-01-01

    Virtual environments provide the ability to systematically deliver test stimuli in simulated contexts relevant to real world behavior. The current study evaluated the validity of the Virtual Reality Stroop Task (VRST), which presents test stimuli during a virtual reality military convoy with simulated combat threats. Active duty Army personnel (N = 49) took the VRST, a customized version of the Automated Neuropsychological Assessment Metrics (ANAM)-Fourth Edition TBI Battery (2007) that included the addition of the ANAM Stroop and Tower tests, and traditional neuropsychological measures, including the Delis-Kaplan Executive Function System version of the Color-Word Interference Test. Preliminary convergent and discriminant validity was established, and performance on the VRST was significantly associated with computerized and traditional tests of attention and executive functioning. Valid virtual reality cognitive assessments open new lines of inquiry into the impact of environmental stimuli on performance and offer promise for the future of neuropsychological assessments used with military personnel.

  15. Assessing Upper Extremity Motor Function in Practice of Virtual Activities of Daily Living

    PubMed Central

    Adams, Richard J.; Lichter, Matthew D.; Krepkovich, Eileen T.; Ellington, Allison; White, Marga; Diamond, Paul T.

    2015-01-01

    A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An Unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user’s avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman’s rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs. PMID:25265612

  16. Hybrid crosstalk aware Q-Factor analysis for selection of optical virtual private network connection

    NASA Astrophysics Data System (ADS)

    Das, S. K.; Samantray, A. K.; Patra, S. K.

    2016-01-01

    The presence of physical layer impairments (PLIs) in high-speed optical virtual private network (OVPN) over wavelength-division multiplexing/ dense-wavelength division multiplexing network degrades the connection quality (CQ). The quality can be numerically expressed as the quality factor (Q-Factor) of the connection. The CQ can be further affected by the increasing demand of connections and data speed. It is important to have an efficient OVPN control manager (OVPNCM) to maintain the CQ. OVPNCM can ensure better quality of transmission to the OVPN clients. Traditional routing and wavelength assignment (RWA) algorithms have less regards to the PLIs and cannot provide guaranteed OVPN connection (OVPNC) quality. In order to achieve a guaranteed CQ, we proposed a wavelength assignment (WA) scheme and a hybrid crosstalk model based on linear in-band and nonlinear four-wave mixing crosstalk. The performance of the proposed WA scheme with the hybrid crosstalk model is demonstrated. The results show that the proposed hybrid crosstalk model with WA scheme not only provides a guaranteed OVPNC, but also improves the OVPN performance in terms of blocking probability.

  17. Contradictions between the Virtual and Physical High School Classroom: A Third-Generation Activity Theory Perspective

    ERIC Educational Resources Information Center

    Murphy, Elizabeth; Manzanares, Maria A. Rodriguez

    2008-01-01

    This paper uses a third-generation Activity Theory perspective to gain insight into the contradictions between the activity systems of the physical and virtual high school classroom from the perspective of teachers who had transitioned from one system to the other. Data collection relied on semi-structured interviews conducted with e-teachers as…

  18. Understanding Player Activity in a Game-Based Virtual Learning Environment

    ERIC Educational Resources Information Center

    Boyer, David Matthew

    2011-01-01

    This study examines player activity in a game-based virtual learning environment as a means toward evaluating instructional and game design. By determining the goals embedded in project development and the availability and structure of in-game activities, the first part of this research highlights opportunities for players to engage with learning…

  19. Techniques for active embodiment of participants in virtual environments

    SciTech Connect

    Hightower, R.; Stansfield, S.

    1996-03-01

    This paper presents preliminary work in the development of an avatar driver. An avatar is the graphical embodiment of a user in a virtual world. In applications such as small team, close quarters training and mission planning and rehearsal, it is important that the user`s avatar reproduce his or her motions naturally and with high fidelity. This paper presents a set of special purpose algorithms for driving the motion of the avatar with minimal information about the posture and position of the user. These algorithms utilize information about natural human motion and posture to produce solutions quickly and accurately without the need for complex general-purpose kinematics algorithms. Several examples illustrating the successful applications of these techniques are included.

  20. Optimal virtual sensing for active noise control in a rigid-walled acoustic duct

    NASA Astrophysics Data System (ADS)

    Petersen, Dick; Zander, Anthony C.; Cazzolato, Ben S.; Hansen, Colin H.

    2005-11-01

    The performance of local active noise control systems is generally limited by the small sizes of the zones of quiet created at the error sensors. This is often exacerbated by the fact that the error sensors cannot always be located close to an observer's ears. Virtual sensing is a method that can move the zone of quiet away from the physical location of the transducers to a desired location, such as an observer's ear. In this article, analytical expressions are derived for optimal virtual sensing in a rigid-walled acoustic duct with arbitrary termination conditions. The expressions are derived for tonal excitations, and are obtained by employing a traveling wave model of a rigid-walled acoustic duct. It is shown that the optimal solution for the virtual sensing microphone weights is independent of the source location and microphone locations. It is also shown that, theoretically, it is possible to obtain infinite reductions at the virtual location. The analytical expressions are compared with forward difference prediction techniques. The results demonstrate that the maximum attenuation, that theoretically can be obtained at the virtual location using forward difference prediction techniques, is expected to decrease for higher excitation frequencies and larger virtual distances.

  1. Turning virtual reality into reality: a checklist to ensure virtual reality studies of eating behavior and physical activity parallel the real world.

    PubMed

    Tal, Aner; Wansink, Brian

    2011-03-01

    Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively.

  2. Controlling contagion processes in activity driven networks.

    PubMed

    Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro

    2014-03-21

    The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.

  3. Expanding the Reach of Continuing Educational Offerings Through a Web-Based Virtual Network: The Experience of InspireNet.

    PubMed

    Frisch, Noreen C; Atherton, Pat; Borycki, Elizabeth M; Mickelson, Grace; Black, Agnes; Novak Lauscher, Helen; Cordeiro, Jennifer

    2017-01-01

    Virtual platforms using webinars, e-posters, e-newsletters, wikis and blogs connect people who have common interests in new ways. When those individuals are healthcare providers, a professional network that operates on a virtual platform can support their needs for learning, professional development and information currency. The practice of e-learning for continuing professional development is emerging , particularly in nursing where shift work shift inhibits their ability to attend conferences and classes. This article reports the experience of the InspireNet network that provided e-learning models to: 1) provide opportunities for healthcare providers to organize themselves into learning communities through development of electronic communities of practice; 2) support learning on demand; and 3) dramatically increase the reach of educational offerings.

  4. The Convergence of Virtual Reality and Social Networks: Threats to Privacy and Autonomy.

    PubMed

    O'Brolcháin, Fiachra; Jacquemard, Tim; Monaghan, David; O'Connor, Noel; Novitzky, Peter; Gordijn, Bert

    2016-02-01

    The rapid evolution of information, communication and entertainment technologies will transform the lives of citizens and ultimately transform society. This paper focuses on ethical issues associated with the likely convergence of virtual realities (VR) and social networks (SNs), hereafter VRSNs. We examine a scenario in which a significant segment of the world's population has a presence in a VRSN. Given the pace of technological development and the popularity of these new forms of social interaction, this scenario is plausible. However, it brings with it ethical problems. Two central ethical issues are addressed: those of privacy and those of autonomy. VRSNs pose threats to both privacy and autonomy. The threats to privacy can be broadly categorized as threats to informational privacy, threats to physical privacy, and threats to associational privacy. Each of these threats is further subdivided. The threats to autonomy can be broadly categorized as threats to freedom, to knowledge and to authenticity. Again, these three threats are divided into subcategories. Having categorized the main threats posed by VRSNs, a number of recommendations are provided so that policy-makers, developers, and users can make the best possible use of VRSNs.

  5. The HMO Research Network Virtual Data Warehouse: A Public Data Model to Support Collaboration.

    PubMed

    Ross, Tyler R; Ng, Daniel; Brown, Jeffrey S; Pardee, Roy; Hornbrook, Mark C; Hart, Gene; Steiner, John F

    2014-01-01

    The HMO Research Network (HMORN) Virtual Data Warehouse (VDW) is a public, non-proprietary, research-focused data model implemented at 17 health care systems across the United States. The HMORN has created a governance structure and specified policies concerning the VDW's content, development, implementation, and quality assurance. Data extracted from the VDW have been used by thousands of studies published in peer-reviewed journal articles. Advances in software supporting care delivery and claims processing and the availability of new data sources have greatly expanded the data available for research, but substantially increased the complexity of data management. The VDW data model incorporates software and data advances to ensure that comprehensive, up-to-date data of known quality are available for research. VDW governance works to accommodate new data and system complexities. This article highlights the HMORN VDW data model, its governance principles, data content, and quality assurance procedures. Our goal is to share the VDW data model and its operations to those wishing to implement a distributed interoperable health care data system.

  6. The HMO Research Network Virtual Data Warehouse: A Public Data Model to Support Collaboration

    PubMed Central

    Ross, Tyler R.; Ng, Daniel; Brown, Jeffrey S.; Pardee, Roy; Hornbrook, Mark C.; Hart, Gene; Steiner, John F.

    2014-01-01

    The HMO Research Network (HMORN) Virtual Data Warehouse (VDW) is a public, non-proprietary, research-focused data model implemented at 17 health care systems across the United States. The HMORN has created a governance structure and specified policies concerning the VDW’s content, development, implementation, and quality assurance. Data extracted from the VDW have been used by thousands of studies published in peer-reviewed journal articles. Advances in software supporting care delivery and claims processing and the availability of new data sources have greatly expanded the data available for research, but substantially increased the complexity of data management. The VDW data model incorporates software and data advances to ensure that comprehensive, up-to-date data of known quality are available for research. VDW governance works to accommodate new data and system complexities. This article highlights the HMORN VDW data model, its governance principles, data content, and quality assurance procedures. Our goal is to share the VDW data model and its operations to those wishing to implement a distributed interoperable health care data system. PMID:25848584

  7. Noise enhanced activity in a complex network

    NASA Astrophysics Data System (ADS)

    Choudhary, Anshul; Kohar, Vivek; Sinha, Sudeshna

    2014-09-01

    We consider the influence of local noise on a generalized network of populations having positive and negative feedbacks. The population dynamics at the nodes is nonlinear, typically chaotic, and allows cessation of activity if the population falls below a threshold value. We investigate the global stability of this large interactive system, as indicated by the average number of nodal populations that manage to remain active. Our central result is that the probability of obtaining active nodes in this network is significantly enhanced under fluctuations. Further, we find a sharp transition in the number of active nodes as noise strength is varied, along with clearly evident scaling behaviour near the critical noise strength. Lastly, we also observe noise induced temporal coherence in the active sub-network, namely, there is an enhancement in synchrony among the nodes at an intermediate noise strength.

  8. Developing Adolescents' Resistance to Sexual Coercion through Role-Playing Activities in a Virtual World

    ERIC Educational Resources Information Center

    McGinn, Marion; Arnedillo-Sánchez, Inmaculada

    2015-01-01

    This paper explores the use of a three dimensional virtual world (3-DVW) to delivery assertiveness training to young adolescents. The case study aims to understand how a sense of presence in VWs facilitates and affect the performance of students role-playing activities to enhance their ability to resist sexual coercion. The results indicate that a…

  9. 3-Dimensional and Interactive Istanbul University Virtual Laboratory Based on Active Learning Methods

    ERIC Educational Resources Information Center

    Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu

    2014-01-01

    The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although there…

  10. A Survey of Students' Experiences on Collaborative Virtual Learning Activities Based on Five-Stage Model

    ERIC Educational Resources Information Center

    Karaman, M. Kemal; Özen, Sevil Orhan

    2016-01-01

    In this study, we aimed to design collaborative virtual learning (CVL) activities by using a five-stage model (FSM) and survey of students' experiences. The study group consisted of 14 voluntary students in the Turkish Teaching Department. In this case study, data were collected through observations, recordings in Second Life (SL) and interviews.…

  11. OpenSim-Supported Virtual Learning Environment: Transformative Content Representation, Facilitation, and Learning Activities

    ERIC Educational Resources Information Center

    Kim, Heesung; Ke, Fengfeng

    2016-01-01

    The pedagogical and design considerations for the use of a virtual reality (VR) learning environment are important for prospective and current teachers. However, empirical research investigating how preservice teachers interact with transformative content representation, facilitation, and learning activities in a VR educational simulation is still…

  12. Human Activity Behavior and Gesture Generation in Virtual Worlds for Long- Duration Space Missions. Chapter 8

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; Damer, Bruce; Brodsky, Boris; vanHoff, Ron

    2007-01-01

    A virtual worlds presentation technique with embodied, intelligent agents is being developed as an instructional medium suitable to present in situ training on long term space flight. The system combines a behavioral element based on finite state automata, a behavior based reactive architecture also described as subsumption architecture, and a belief-desire-intention agent structure. These three features are being integrated to describe a Brahms virtual environment model of extravehicular crew activity which could become a basis for procedure training during extended space flight.

  13. An Optimal CDS Construction Algorithm with Activity Scheduling in Ad Hoc Networks.

    PubMed

    Penumalli, Chakradhar; Palanichamy, Yogesh

    2015-01-01

    A new energy efficient optimal Connected Dominating Set (CDS) algorithm with activity scheduling for mobile ad hoc networks (MANETs) is proposed. This algorithm achieves energy efficiency by minimizing the Broadcast Storm Problem [BSP] and at the same time considering the node's remaining energy. The Connected Dominating Set is widely used as a virtual backbone or spine in mobile ad hoc networks [MANETs] or Wireless Sensor Networks [WSN]. The CDS of a graph representing a network has a significant impact on an efficient design of routing protocol in wireless networks. Here the CDS is a distributed algorithm with activity scheduling based on unit disk graph [UDG]. The node's mobility and residual energy (RE) are considered as parameters in the construction of stable optimal energy efficient CDS. The performance is evaluated at various node densities, various transmission ranges, and mobility rates. The theoretical analysis and simulation results of this algorithm are also presented which yield better results.

  14. Optimal virtual mechanical impedances for the vibroacoustic active control of a thin plate.

    PubMed

    Michau, M; Berry, A; Micheau, Ph; Herzog, Ph

    2015-01-01

    In order to reduce the acoustic power radiated by a flexible panel, dual colocated actuator / sensor pairs are used to modify its vibration. The control strategy implemented for harmonic disturbances leads to locally impose a virtual mechanical impedance to the structure, using the linear relation between the actuator input and the control output of each pair. This virtual mechanical impedance is computed in order to minimize the radiated acoustic power. The proposed approach consists in two steps: (1) the matrix of optimal virtual mechanical impedance is calculated by measuring the primary disturbance and the transfer functions between actuators and structural/acoustic sensors and (2) the virtual mechanical impedance objective is achieved using a real-time integral controller. It is shown that such an optimal control approach leads to better sound power reduction than a classical active damping strategy where the virtual mechanical impedance is defined as real positive. Theoretical and experimental results are compared, also showing that the method proposed here is robust regarding variations of the primary disturbance.

  15. Psychosocial stress evoked by a virtual audience: relation to neuroendocrine activity.

    PubMed

    Kelly, Owen; Matheson, Kimberly; Martinez, Alejandra; Merali, Zul; Anisman, Hymie

    2007-10-01

    A modified version of the Trier Social Stress Test (TSST) was employed to determine whether exposure to a virtual audience using virtual reality (VR) technology would prompt an increase of neuroendocrine activity comparable to that prompted by a real audience. Following an anticipatory period, participants completed a speech or a speech-plus-math challenge in front of either a virtual audience, a panel of judges they were led to believe was behind a one-way mirror, or an audience comprised of confederates. An additional group that had prepared a speech was simply directed to observe the virtual audience but did not deliver the speech. Finally, a control group completed questionnaires for the duration of the experiment. Cortisol samples were obtained upon arrival to the laboratory, just before the challenge, and 15 and 30 minutes after the task. Participants also completed a measure assessing stressor appraisals of the task before and after the challenge. Anticipation of the task was associated with a modest increase of cortisol levels, and a further rise of cortisol was evident in response to the challenge. The neuroendocrine changes evoked by the virtual audience were comparable to those elicited by the imagined audience (behind the one-way mirror) but less than changes evoked by the panel of confederates. Stressor appraisals were higher post-challenge compared to those reported prior to the task; however, appraisals were similar across each group. These data suggest that VR technology may be amenable to evaluating the impact of psychosocial stressors such as the TSST.

  16. Spontaneous network activity and synaptic development

    PubMed Central

    Kerschensteiner, Daniel

    2014-01-01

    Throughout development, the nervous system produces patterned spontaneous activity. Research over the last two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e. linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo. Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development. PMID:24280071

  17. Student Activity and Learning Outcomes in a Virtual Learning Environment

    ERIC Educational Resources Information Center

    Romanov, Kalle; Nevgi, Anne

    2008-01-01

    The aim of the study was to explore the relationship between degree of participation and learning outcomes in an e-learning course on medical informatics. Overall activity in using course materials and degree of participation in the discussion forums of an online course were studied among 39 medical students. Students were able to utilise the…

  18. A mountain environmental virtual observatory (Mountain-EVO) to support participatory monitoring in a network of Andean catchments

    NASA Astrophysics Data System (ADS)

    Buytaert, Wouter; Ochoa Tocachi, Boris; De Bievre, Bert; Zulkafli, Zed

    2015-04-01

    The tropical Andes are a hotspot of environmental change. The combination of dramatic land-use change with global climate change, demographic growth, and increasing water demand is causing extreme pressures on water resources. This is of particular concern to rural upland communities. They are facing a double challenge of maintaining their own livelihoods with dwindling natural resources, and at the same time supporting downstream ecosystem services such as a well buffered stream flow and good water quality. This challenge is complicated further by the acute lack of data on the hydrological functioning of Andean catchments. The factors controlling their hydrological response are extremely variable in space and time, including meteorological forcing, land cover types, soil properties and geology. This makes it very difficult to predict accurately the impact of human activities such as land use, ecosystem management, and watershed investments. Such predictions are essential for policy-making and sustainable ecosystem management. To tackle the issue of hydrological data scarcity in the tropical Andes, an initiative was set up to implement a network of hydrological monitoring of upland catchments in a pairwise fashion. Using a trading-space-for-time approach, the initiative intends to use these data to improve predictions about the impact of land-use changes and other ecosystem management practices on the hydrological response. Currently, over 25 catchments are being monitored for precipitation and streamflow in 9 sites located in Bolivia, Peru, Ecuador, and Venezuela. The sites are supported by local stakeholders and communities in a participatory monitoring scheme that otherwise would be impractical or prohibitively expensive. To overcome the technical challenges of monitoring hydrological variables in remote mountain areas, the initiative has set up a web-based infrastructure to support local technicians and stakeholders. Additionally, using open data standards such

  19. [Legal aspects of networking of medical activities].

    PubMed

    Preissler, Reinhold

    2005-04-01

    Medical networks lack a legal definition. From the viewpoint of social law, this term means a form of organization of joint-service providers in a non-specified composition for the undertaking of medical care activities; from the point of view of occupational law, this consists of a loose form of joint practice. Such medical network can conclude treatment contracts with the patients and exchange patients' medical records. A practice network can take over services as contract partner of hospitals or other institutions, in the interest of improved competition chances within the integrated care system. The joining of a third partner is basically left open by the MBO, however according to SGB V this is possible only after approval by all contract partners. In advance of a planned medical care center, is it recommended to found a physician network as starting model. Before single practices fuse into a single enterprise, management-, tax-, legal-, as well as psychological aspects must be considered.

  20. Virtual Investigations of an Active Deep Sea Volcano

    NASA Astrophysics Data System (ADS)

    Sautter, L.; Taylor, M. M.; Fundis, A.; Kelley, D. S.; Elend, M.

    2013-12-01

    Axial Seamount, located on the Juan de Fuca spreading ridge 300 miles off the Oregon coast, is an active volcano whose summit caldera lies 1500 m beneath the sea surface. Ongoing construction of the Regional Scale Nodes (RSN) cabled observatory by the University of Washington (funded by the NSF Ocean Observatories Initiative) has allowed for exploration of recent lava flows and active hydrothermal vents using HD video mounted on the ROVs, ROPOS and JASON II. College level oceanography/marine geology online laboratory exercises referred to as Online Concept Modules (OCMs) have been created using video and video frame-captured mosaics to promote skill development for characterizing and quantifying deep sea environments. Students proceed at their own pace through a sequence of short movies with which they (a) gain background knowledge, (b) learn skills to identify and classify features or biota within a targeted environment, (c) practice these skills, and (d) use their knowledge and skills to make interpretations regarding the environment. Part (d) serves as the necessary assessment component of the laboratory exercise. Two Axial Seamount-focused OCMs will be presented: 1) Lava Flow Characterization: Identifying a Suitable Cable Route, and 2) Assessing Hydrothermal Vent Communities: Comparisons Among Multiple Sulfide Chimneys.

  1. Neural networks underlying affective states in a multimodal virtual environment: contributions to boredom

    PubMed Central

    Mathiak, Krystyna A.; Klasen, Martin; Zvyagintsev, Mikhail; Weber, René; Mathiak, Klaus

    2013-01-01

    The interaction of low perceptual stimulation or goal-directed behavior with a negative subjective evaluation may lead to boredom. This contribution to boredom may shed light on its neural correlates, which are poorly characterized so far. A video game served as simulation of free interactive behavior without interruption of the game’s narrative. Thirteen male German volunteers played a first-person shooter game (Tactical Ops: Assault on Terror) during functional magnetic resonance imaging (fMRI). Two independent coders performed the time-based analysis of the audio-visual game content. Boredom was operationalized as interaction of prolonged absence of goal-directed behavior with lowered affect in the Positive and Negative Affect Schedule (PANAS). A decrease of positive affect (PA) correlated with response amplitudes in bilateral insular clusters extending into the amygdala to prolonged inactive phases in a game play and an increase in negative affect (NA) was associated with higher responses in bilateral ventromedial prefrontal cortex (vmPFC). Precuneus and hippocampus responses were negatively correlated with changes in NA. We describe for the first time neural contributions to boredom, using a video game as complex virtual environment. Further our study confirmed that PA and NA are separable constructs, reflected by distinct neural patterns. PA may be associated with afferent limbic activity whereas NA with affective control. PMID:24348366

  2. Differences in typing forces, muscle activity, comfort, and typing performance among virtual, notebook, and desktop keyboards.

    PubMed

    Kim, Jeong Ho; Aulck, Lovenoor; Bartha, Michael C; Harper, Christy A; Johnson, Peter W

    2014-11-01

    The present study investigated whether there were physical exposure and typing productivity differences between a virtual keyboard with no tactile feedback and two conventional keyboards where key travel and tactile feedback are provided by mechanical switches under the keys. The key size and layout were same across all the keyboards. Typing forces; finger and shoulder muscle activity; self-reported comfort; and typing productivity were measured from 19 subjects while typing on a virtual (0 mm key travel), notebook (1.8 mm key travel), and desktop keyboard (4 mm key travel). When typing on the virtual keyboard, subjects typed with less force (p's < 0.0001) and had lower finger flexor/extensor muscle activity (p's < 0.05). However, the lower typing forces and finger muscle activity came at the expense of a 60% reduction in typing productivity (p < 0.0001), decreased self-reported comfort (p's < 0.0001), and a trend indicating an increase in shoulder muscle activity (p's < 0.10). Therefore, for long typing sessions or when typing productivity is at a premium, conventional keyboards with tactile feedback may be more suitable interface.

  3. Material Matters for Learning in Virtual Networks: A Case Study of a Professional Learning Programme Hosted in a Google+ Online Community

    ERIC Educational Resources Information Center

    Ackland, Aileen; Swinney, Ann

    2015-01-01

    In this paper, we draw on Actor-Network Theories (ANT) to explore how material components functioned to create gateways and barriers to a virtual learning network in the context of a professional development module in higher education. Students were practitioners engaged in family learning in different professional roles and contexts. The data…

  4. From Idea to Virtual Reality: ALADIN - The Adult Learning Documentation and Information Network. Report of a CONFINTEA V Workshop and Its Follow-Up.

    ERIC Educational Resources Information Center

    Giere, Ursula, Ed.; Imel, Susan, Ed.

    This publication contains the story of how the idea for a network conceived through CONFINTEA V became a [virtual] reality in ALADIN, the Adult Learning Documentation and Information Network. Part I contains 15 papers delivered as a part of the CONFINTEA workshop, "Global Community of Adult Learning through Information and Documentation:…

  5. Virtual reality and neuropsychological assessment: The reliability of a virtual kitchen to assess daily-life activities in victims of traumatic brain injury.

    PubMed

    Besnard, Jeremy; Richard, Paul; Banville, Frederic; Nolin, Pierre; Aubin, Ghislaine; Le Gall, Didier; Richard, Isabelle; Allain, Phillippe

    2016-01-01

    Traumatic brain injury (TBI) causes impairments affecting instrumental activities of daily living (IADL). However, few studies have considered virtual reality as an ecologically valid tool for the assessment of IADL in patients who have sustained a TBI. The main objective of the present study was to examine the use of the Nonimmersive Virtual Coffee Task (NI-VCT) for IADL assessment in patients with TBI. We analyzed the performance of 19 adults suffering from TBI and 19 healthy controls (HCs) in the real and virtual tasks of making coffee with a coffee machine, as well as in global IQ and executive functions. Patients performed worse than HCs on both real and virtual tasks and on all tests of executive functions. Correlation analyses revealed that NI-VCT scores were related to scores on the real task. Moreover, regression analyses demonstrated that performance on NI-VCT matched real-task performance. Our results support the idea that the virtual kitchen is a valid tool for IADL assessment in patients who have sustained a TBI.

  6. Bandwidth-allocated algorithm modeled with matrix theory for traffic-orientated multisubsystem-based virtual passive optical network in metro-access optical network

    NASA Astrophysics Data System (ADS)

    Xia, Weidong; Gan, Chaoqin; Chen, Bingqin; Xie, Weilun; Zhang, YuChao; Gou, Kaiyu

    2016-09-01

    In a metro-access optical network, a bandwidth-allocated algorithm is proposed for traffic-orientated multisubsystem-based virtual passive optical network (MS-VPON) that can implement the syncretism of multiple systems such as time division multiplexing-PON (TDM-PON), wavelength division multiplexing-PON (WDM-PON), and orthogonal frequency division multiplexing-PON (OFDM-PON). VPONs are constructed based on traffic and different VPONs are separated by different types of traffic. The bandwidth-allocated algorithm is modeled with a matrix theory to determine which VPON can be admitted and then a bandwidth is assigned to these VPONs. With the algorithm, the network value can be maximized. Two cases are investigated to demonstrate the effectiveness of the proposed algorithm in the bandwidth-utilized ratio and VPONs' admission probability.

  7. Sloppiness in spontaneously active neuronal networks.

    PubMed

    Panas, Dagmara; Amin, Hayder; Maccione, Alessandro; Muthmann, Oliver; van Rossum, Mark; Berdondini, Luca; Hennig, Matthias H

    2015-06-03

    Various plasticity mechanisms, including experience-dependent, spontaneous, as well as homeostatic ones, continuously remodel neural circuits. Yet, despite fluctuations in the properties of single neurons and synapses, the behavior and function of neuronal assemblies are generally found to be very stable over time. This raises the important question of how plasticity is coordinated across the network. To address this, we investigated the stability of network activity in cultured rat hippocampal neurons recorded with high-density multielectrode arrays over several days. We used parametric models to characterize multineuron activity patterns and analyzed their sensitivity to changes. We found that the models exhibited sloppiness, a property where the model behavior is insensitive to changes in many parameter combinations, but very sensitive to a few. The activity of neurons with sloppy parameters showed faster and larger fluctuations than the activity of a small subset of neurons associated with sensitive parameters. Furthermore, parameter sensitivity was highly correlated with firing rates. Finally, we tested our observations from cell cultures on an in vivo recording from monkey visual cortex and we confirm that spontaneous cortical activity also shows hallmarks of sloppy behavior and firing rate dependence. Our findings suggest that a small subnetwork of highly active and stable neurons supports group stability, and that this endows neuronal networks with the flexibility to continuously remodel without compromising stability and function.

  8. Shoulder Kinematics and Spatial Pattern of Trapezius Electromyographic Activity in Real and Virtual Environments

    PubMed Central

    Samani, Afshin; Pontonnier, Charles; Dumont, Georges; Madeleine, Pascal

    2015-01-01

    The design of an industrial workstation tends to include ergonomic assessment steps based on a digital mock-up and a virtual reality setup. Lack of interaction and system fidelity is often reported as a main issue in such virtual reality applications. This limitation is a crucial issue as thorough ergonomic analysis is required for an investigation of the biomechanics. In the current study, we investigated the biomechanical responses of the shoulder joint in a simulated assembly task for comparison with the biomechanical responses in virtual environments. Sixteen male healthy novice subjects performed the task on three different platforms: real (RE), virtual (VE), and virtual environment with force feedback (VEF) with low and high precision demands. The subjects repeated the task 12 times (i.e., 12 cycles). High density electromyography from the upper trapezius and rotation angles of the shoulder joint were recorded and split into the cycles. The angular trajectories and velocity profiles of the shoulder joint angles over a cycle were computed in 3D. The inter-subject similarity in terms of normalized mutual information on kinematics and electromyography was investigated. Compared with RE the task in VE and VEF was characterized by lower kinematic maxima. The inter-subject similarity in RE compared with intra-subject similarity across the platforms was lower in terms of movement trajectories and greater in terms of trapezius muscle activation. The precision demand resulted in lower inter- and intra-subject similarity across platforms. The proposed approach identifies biomechanical differences in the shoulder joint in both VE and VEF compared with the RE platform, but these differences are less marked in VE mostly due to technical limitations of co-localizing the force feedback system in the VEF platform. PMID:25768123

  9. Shoulder kinematics and spatial pattern of trapezius electromyographic activity in real and virtual environments.

    PubMed

    Samani, Afshin; Pontonnier, Charles; Dumont, Georges; Madeleine, Pascal

    2015-01-01

    The design of an industrial workstation tends to include ergonomic assessment steps based on a digital mock-up and a virtual reality setup. Lack of interaction and system fidelity is often reported as a main issue in such virtual reality applications. This limitation is a crucial issue as thorough ergonomic analysis is required for an investigation of the biomechanics. In the current study, we investigated the biomechanical responses of the shoulder joint in a simulated assembly task for comparison with the biomechanical responses in virtual environments. Sixteen male healthy novice subjects performed the task on three different platforms: real (RE), virtual (VE), and virtual environment with force feedback (VEF) with low and high precision demands. The subjects repeated the task 12 times (i.e., 12 cycles). High density electromyography from the upper trapezius and rotation angles of the shoulder joint were recorded and split into the cycles. The angular trajectories and velocity profiles of the shoulder joint angles over a cycle were computed in 3D. The inter-subject similarity in terms of normalized mutual information on kinematics and electromyography was investigated. Compared with RE the task in VE and VEF was characterized by lower kinematic maxima. The inter-subject similarity in RE compared with intra-subject similarity across the platforms was lower in terms of movement trajectories and greater in terms of trapezius muscle activation. The precision demand resulted in lower inter- and intra-subject similarity across platforms. The proposed approach identifies biomechanical differences in the shoulder joint in both VE and VEF compared with the RE platform, but these differences are less marked in VE mostly due to technical limitations of co-localizing the force feedback system in the VEF platform.

  10. Effects of virtual reality-based bilateral upper-extremity training on brain activity in post-stroke patients.

    PubMed

    Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee

    2015-07-01

    [Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.

  11. Virtual Labs and Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Boehler, Ted

    2006-12-01

    Virtual Labs and Virtual Worlds Coastline Community College has under development several virtual lab simulations and activities that range from biology, to language labs, to virtual discussion environments. Imagine a virtual world that students enter online, by logging onto their computer from home or anywhere they have web access. Upon entering this world they select a personalized identity represented by a digitized character (avatar) that can freely move about, interact with the environment, and communicate with other characters. In these virtual worlds, buildings, gathering places, conference rooms, labs, science rooms, and a variety of other “real world” elements are evident. When characters move about and encounter other people (players) they may freely communicate. They can examine things, manipulate objects, read signs, watch video clips, hear sounds, and jump to other locations. Goals of critical thinking, social interaction, peer collaboration, group support, and enhanced learning can be achieved in surprising new ways with this innovative approach to peer-to-peer communication in a virtual discussion world. In this presentation, short demos will be given of several online learning environments including a virtual biology lab, a marine science module, a Spanish lab, and a virtual discussion world. Coastline College has been a leader in the development of distance learning and media-based education for nearly 30 years and currently offers courses through PDA, Internet, DVD, CD-ROM, TV, and Videoconferencing technologies. Its distance learning program serves over 20,000 students every year. sponsor Jerry Meisner

  12. Social Networking Sites as Virtual Communities of Practice: A Mixed Method Study

    ERIC Educational Resources Information Center

    Davis, Lorretta J.

    2010-01-01

    Membership in social networking sites is increasing rapidly. Social networking sites serve many purposes including networking, communication, recruitment, and sharing knowledge. Social networking sites, public or private, may be hosted on applications such as Facebook and LinkedIn. As individuals begin to follow and participate in social…

  13. Motor Behavior Activates Bergmann Glial Networks

    PubMed Central

    Nimmerjahn, Axel; Mukamel, Eran A.; Schnitzer, Mark J.

    2010-01-01

    SUMMARY Although it is firmly established neuronal activity is a prime determinant of animal behavior, relationships between astrocytic excitation and animal behavior have remained opaque. Cerebellar Bergmann glia are radial astrocytes that are implicated in motor behavior and exhibit Ca2+-excitation. However, Ca2+-excitation in these cells has not previously been studied in behaving animals. Using two-photon microscopy we found that Bergmann glia exhibit three forms of Ca2+-excitation in awake behaving mice. Two of these are ongoing within the cerebellar vermis. During locomotor performance concerted Ca2+-excitation arises in networks of at least hundreds of Bergmann glia extending across several hundred microns or more. Concerted Ca2+-excitation was abolished by anesthesia or blockade of either neural activity or glutamatergic transmission. Thus, large networks of Bergmann glia can be activated by specific animal behaviors and undergo excitation of sufficient magnitude to potentially initiate macroscopic changes in brain dynamics or blood flow. PMID:19447095

  14. Position paper on active countermeasures for computer networks.

    SciTech Connect

    Van Randwyk, Jamie A.

    2003-07-01

    Computer security professionals have used passive network countermeasures for several years in order to secure computer networks. Passive countermeasures such as firewalls and intrusion detection systems are effective but their use alone is not enough to protect a network. Active countermeasures offer new ways of protecting a computer network. Corporations and government entities should adopt active network countermeasures as a means of protecting their computer networks.

  15. Virtual Worlds for Virtual Organizing

    NASA Astrophysics Data System (ADS)

    Rhoten, Diana; Lutters, Wayne

    The members and resources of a virtual organization are dispersed across time and space, yet they function as a coherent entity through the use of technologies, networks, and alliances. As virtual organizations proliferate and become increasingly important in society, many may exploit the technical architecture s of virtual worlds, which are the confluence of computer-mediated communication, telepresence, and virtual reality originally created for gaming. A brief socio-technical history describes their early origins and the waves of progress followed by stasis that brought us to the current period of renewed enthusiasm. Examination of contemporary examples demonstrates how three genres of virtual worlds have enabled new arenas for virtual organizing: developer-defined closed worlds, user-modifiable quasi-open worlds, and user-generated open worlds. Among expected future trends are an increase in collaboration born virtually rather than imported from existing organizations, a tension between high-fidelity recreations of the physical world and hyper-stylized imaginations of fantasy worlds, and the growth of specialized worlds optimized for particular sectors, companies, or cultures.

  16. Multi-objective evolutionary optimization for constructing neural networks for virtual reality visual data mining: application to geophysical prospecting.

    PubMed

    Valdés, Julio J; Barton, Alan J

    2007-05-01

    A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.

  17. Virtual reality as a leisure activity for young adults with physical and intellectual disabilities.

    PubMed

    Yalon-Chamovitz, Shira; Weiss, Patrice L Tamar

    2008-01-01

    Participation in leisure activities is a fundamental human right and an important factor of quality of life. Adults with intellectual disabilities (ID) and physical disabilities often experience limited opportunities to participate in leisure activities, virtual reality (VR) technologies may serve to broaden their repertoire of accessible leisure activities. Although the use of VR in rehabilitation has grown over the past decade, few applications have been reported for people with ID. Thirty-three men and women with moderate ID and severe cerebral palsy participated in the study. Each participant in the experimental group (n=17) took part in VR activity two to three times weekly for 12 weeks. Virtual games were provided via GestureTek's Gesture Xtreme video capture VR system. The VR-based activities were perceived by the participants to be enjoyable and successful. Moreover, participants demonstrated clear preferences, initiation and learning. They performed consistently and maintained a high level of interest throughout the intervention period. VR appears to provide varied and motivating opportunities for leisure activities among young adults with intellectual and physical disabilities. Its ease of use and adaptability make it a feasible option for this population.

  18. Can simple interactions capture complex features of neural activity underlying behavior in a virtual reality environment?

    NASA Astrophysics Data System (ADS)

    Meshulam, Leenoy; Gauthier, Jeffrey; Brody, Carlos; Tank, David; Bialek, William

    The complex neural interactions which are abundant in most recordings of neural activity are relatively poorly understood. A prime example of such interactions can be found in the in vivo neural activity which underlies complex behaviors of mice, imaged in brain regions such as hippocampus and parietal cortex. Experimental techniques now allow us to accurately follow these neural interactions in the simultaneous activity of large neuronal populations of awake behaving animals. Here, we demonstrate that pairwise maximum entropy models can predict a surprising number of properties of the neural activity. The models, that are constrained with activity rates and interactions between pairs of neurons, are well fit to the activity `states' in the hippocampus and cortex of mice performing cognitive tasks while navigating in a virtual reality environment.

  19. Extended Virtual Spring Mesh (EVSM): The Distributed Self-Organizing Mobile Ad Hoc Network for Area Exploration

    SciTech Connect

    Kurt Derr

    2011-12-01

    Mobile Ad hoc NETworks (MANETs) are distributed self-organizing networks that can change locations and configure themselves on the fly. This paper focuses on an algorithmic approach for the deployment of a MANET within an enclosed area, such as a building in a disaster scenario, which can provide a robust communication infrastructure for search and rescue operations. While a virtual spring mesh (VSM) algorithm provides scalable, self-organizing, and fault-tolerant capabilities required by aMANET, the VSM lacks the MANET's capabilities of deployment mechanisms for blanket coverage of an area and does not provide an obstacle avoidance mechanism. This paper presents a new technique, an extended VSM (EVSM) algorithm that provides the following novelties: (1) new control laws for exploration and expansion to provide blanket coverage, (2) virtual adaptive springs enabling the mesh to expand as necessary, (3) adapts to communications disturbances by varying the density and movement of mobile nodes, and (4) new metrics to assess the performance of the EVSM algorithm. Simulation results show that EVSM provides up to 16% more coverage and is 3.5 times faster than VSM in environments with eight obstacles.

  20. Impact of a Virtual Clinic in a Paediatric Cardiology Network on Northeast Brazil.

    PubMed

    de Araújo, Juliana Sousa Soares; Dias Filho, Adalberto Vieira; Silva Gomes, Renata Grigório; Regis, Cláudio Teixeira; Rodrigues, Klecida Nunes; Siqueira, Nicoly Negreiros; Albuquerque, Fernanda Cruz de Lira; Mourato, Felipe Alves; Mattos, Sandra da Silva

    2015-01-01

    Introduction. Congenital heart diseases (CHD) affect approximately 1% of live births and is an important cause of neonatal morbidity and mortality. Despite that, there is a shortage of paediatric cardiologists in Brazil, mainly in the northern and northeastern regions. In this context, the implementation of virtual outpatient clinics with the aid of different telemedicine resources may help in the care of children with heart defects. Methods. Patients under 18 years of age treated in virtual outpatient clinics between January 2013 and May 2014 were selected. They were divided into 2 groups: those who had and those who had not undergone a screening process for CHD in the neonatal period. Clinical and demographic characteristics were collected for further statistical analysis. Results. A total of 653 children and teenagers were treated in the virtual outpatient clinics. From these, 229 had undergone a neonatal screening process. Fewer abnormalities were observed on the physical examination of the screened patients. Conclusion. The implementation of pediatric cardiology virtual outpatient clinics can have a positive impact in the care provided to people in areas with lack of skilled professionals.

  1. Impact of a Virtual Clinic in a Paediatric Cardiology Network on Northeast Brazil

    PubMed Central

    de Araújo, Juliana Sousa Soares; Dias Filho, Adalberto Vieira; Silva Gomes, Renata Grigório; Regis, Cláudio Teixeira; Rodrigues, Klecida Nunes; Siqueira, Nicoly Negreiros; Albuquerque, Fernanda Cruz de Lira; Mourato, Felipe Alves; Mattos, Sandra da Silva

    2015-01-01

    Introduction. Congenital heart diseases (CHD) affect approximately 1% of live births and is an important cause of neonatal morbidity and mortality. Despite that, there is a shortage of paediatric cardiologists in Brazil, mainly in the northern and northeastern regions. In this context, the implementation of virtual outpatient clinics with the aid of different telemedicine resources may help in the care of children with heart defects. Methods. Patients under 18 years of age treated in virtual outpatient clinics between January 2013 and May 2014 were selected. They were divided into 2 groups: those who had and those who had not undergone a screening process for CHD in the neonatal period. Clinical and demographic characteristics were collected for further statistical analysis. Results. A total of 653 children and teenagers were treated in the virtual outpatient clinics. From these, 229 had undergone a neonatal screening process. Fewer abnormalities were observed on the physical examination of the screened patients. Conclusion. The implementation of pediatric cardiology virtual outpatient clinics can have a positive impact in the care provided to people in areas with lack of skilled professionals. PMID:26265913

  2. Medicine in long duration space exploration: the role of virtual reality and broad bandwidth telecommunications networks.

    PubMed

    Ross, M D

    2001-01-01

    Safety of astronauts during long-term space exploration is a priority for NASA. This paper describes efforts to produce Earth-based models for providing expert medical advice when unforeseen medical emergencies occur on spacecraft. These models are Virtual Collaborative Clinics that reach into remote sites using telecommunications and emerging stereo-imaging and sensor technologies.

  3. Performance evaluation of multi-stratum resources optimization with network functions virtualization for cloud-based radio over optical fiber networks.

    PubMed

    Yang, Hui; He, Yongqi; Zhang, Jie; Ji, Yuefeng; Bai, Wei; Lee, Young

    2016-04-18

    Cloud radio access network (C-RAN) has become a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing using cloud BBUs. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate the services in optical networks. In view of this, this study extends to consider the multiple dimensional resources optimization of radio, optical and BBU processing in 5G age. We propose a novel multi-stratum resources optimization (MSRO) architecture with network functions virtualization for cloud-based radio over optical fiber networks (C-RoFN) using software defined control. A global evaluation scheme (GES) for MSRO in C-RoFN is introduced based on the proposed architecture. The MSRO can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical and BBU resources effectively to maximize radio coverage. The efficiency and feasibility of the proposed architecture are experimentally demonstrated on OpenFlow-based enhanced SDN testbed. The performance of GES under heavy traffic load scenario is also quantitatively evaluated based on MSRO architecture in terms of resource occupation rate and path provisioning latency, compared with other provisioning scheme.

  4. To Enhance Collaborative Learning and Practice Network Knowledge with a Virtualization Laboratory and Online Synchronous Discussion

    ERIC Educational Resources Information Center

    Hwang, Wu-Yuin; Kongcharoen, Chaknarin; Ghinea, Gheorghita

    2014-01-01

    Recently, various computer networking courses have included additional laboratory classes in order to enhance students' learning achievement. However, these classes need to establish a suitable laboratory where each student can connect network devices to configure and test functions within different network topologies. In this case, the Linux…

  5. Active structural acoustic control of a smart cylindrical shell using a virtual microphone

    NASA Astrophysics Data System (ADS)

    Loghmani, Ali; Danesh, Mohammad; Kwak, Moon K.; Keshmiri, Mehdi

    2016-04-01

    This paper investigates the active structural acoustic control of sound radiated from a smart cylindrical shell. The cylinder is equipped with piezoelectric sensors and actuators to estimate and control the sound pressure that radiates from the smart shell. This estimated pressure is referred to as a virtual microphone, and it can be used in control systems instead of actual microphones to attenuate noise due to structural vibrations. To this end, the dynamic model for the smart cylinder is derived using the extended Hamilton’s principle, the Sanders shell theory and the assumed mode method. The simplified Kirchhoff-Helmholtz integral estimates the far-field sound pressure radiating from the baffled cylindrical shell. A modified higher harmonic controller that can cope with a harmonic disturbance is designed and experimentally evaluated. The experimental tests were carried out on a baffled cylindrical aluminum shell in an anechoic chamber. The frequency response for the theoretical virtual microphone and the experimental actual microphone are in good agreement with each other, and the results show the effectiveness of the designed virtual microphone and controller in attenuating the radiated sound.

  6. Illusion-related brain activations: a new virtual reality mirror box system for use during functional magnetic resonance imaging.

    PubMed

    Diers, Martin; Kamping, Sandra; Kirsch, Pinar; Rance, Mariela; Bekrater-Bodmann, Robin; Foell, Jens; Trojan, Joerg; Fuchs, Xaver; Bach, Felix; Maaß, Heiko; Cakmak, Hüseyin; Flor, Herta

    2015-01-12

    Extended viewing of movements of one's intact limb in a mirror as well as motor imagery have been shown to decrease pain in persons with phantom limb pain or complex regional pain syndrome and to increase the movement ability in hemiparesis following stroke. In addition, mirrored movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. However, using a so-called mirror box has technical limitations, some of which can be overcome by virtual reality applications. We developed a virtual reality mirror box application and evaluated its comparability to a classical mirror box setup. We applied both paradigms to 20 healthy controls and analyzed vividness and authenticity of the illusion as well as brain activation patterns. In both conditions, subjects reported similar intensities for the sensation that movements of the virtual left hand felt as if they were executed by their own left hand. We found activation in the primary sensorimotor cortex contralateral to the actual movement, with stronger activation for the virtual reality 'mirror box' compared to the classical mirror box condition, as well as activation in the primary sensorimotor cortex contralateral to the mirrored/virtual movement. We conclude that a virtual reality application of the mirror box is viable and that it might be useful for future research.

  7. The Virtual Research and Extension Communication Network (VRECN): An Interactive Learning and Communication Network for Research and Extension Personnel. Concept Paper for the Food & Agriculture Organisation of the United Nations (FAO).

    ERIC Educational Resources Information Center

    Richardson, Don

    A Virtual Research and Extension Communication Network (VRECN) is a set of networked electronic tools facilitating improvement in communication processes and information sharing among stakeholders involved in agricultural development. In developing countries, research and extension personnel within a ministry of agriculture, in consultation and…

  8. A generalized activating function for predicting virtual electrodes in cardiac tissue.

    PubMed Central

    Sobie, E A; Susil, R C; Tung, L

    1997-01-01

    To fully understand the mechanisms of defibrillation, it is critical to know how a given electrical stimulus causes membrane polarizations in cardiac tissue. We have extended the concept of the activating function, originally used to describe neuronal stimulation, to derive a new expression that identifies the sources that drive changes in transmembrane potential. Source terms, or virtual electrodes, consist of either second derivatives of extracellular potential weighted by intracellular conductivity or extracellular potential gradients weighted by derivatives of intracellular conductivity. The full response of passive tissue can be considered, in simple cases, to be a convolution of this "generalized activating function" with the impulse response of the tissue. Computer simulations of a two-dimensional sheet of passive myocardium under steady-state conditions demonstrate that this source term is useful for estimating the effects of applied electrical stimuli. The generalized activating function predicts oppositely polarized regions of tissue when unequally anisotropic tissue is point stimulated and a monopolar response when a point stimulus is applied to isotropic tissue. In the bulk of the myocardium, this new expression is helpful for understanding mechanisms by which virtual electrodes can be produced, such as the hypothetical "sawtooth" pattern of polarization, as well as polarization owing to regions of depressed conductivity, missing cells or clefts, changes in fiber diameter, or fiber curvature. In comparing solutions obtained with an assumed extracellular potential distribution to those with fully coupled intra- and extracellular domains, we find that the former provides a reliable estimate of the total solution. Thus the generalized activating function that we have derived provides a useful way of understanding virtual electrode effects in cardiac tissue. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 PMID:9284308

  9. Transmission of information in active networks

    NASA Astrophysics Data System (ADS)

    Baptista, M. S.; Kurths, J.

    2008-02-01

    Shannon’s capacity theorem is the main concept behind the theory of communication. It says that if the amount of information contained in a signal is smaller than the channel capacity of a physical media of communication, it can be transmitted with arbitrarily small probability of error. This theorem is usually applicable to ideal channels of communication in which the information to be transmitted does not alter the passive characteristics of the channel that basically tries to reproduce the source of information. For an active channel, a network formed by elements that are dynamical systems (such as neurons, chaotic or periodic oscillators), it is unclear if such theorem is applicable, once an active channel can adapt to the input of a signal, altering its capacity. To shed light into this matter, we show, among other results, how to calculate the information capacity of an active channel of communication. Then, we show that the channel capacity depends on whether the active channel is self-excitable or not and that, contrary to a current belief, desynchronization can provide an environment in which large amounts of information can be transmitted in a channel that is self-excitable. An interesting case of a self-excitable active channel is a network of electrically connected Hindmarsh-Rose chaotic neurons.

  10. Performance evaluation of data center service localization based on virtual resource migration in software defined elastic optical network.

    PubMed

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tan, Yuanlong; Lin, Yi; Han, Jianrui; Lee, Young

    2015-09-07

    Data center interconnection with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate data center services. In view of this, this study extends the data center resources to user side to enhance the end-to-end quality of service. We propose a novel data center service localization (DCSL) architecture based on virtual resource migration in software defined elastic data center optical network. A migration evaluation scheme (MES) is introduced for DCSL based on the proposed architecture. The DCSL can enhance the responsiveness to the dynamic end-to-end data center demands, and effectively reduce the blocking probability to globally optimize optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of our OpenFlow-based enhanced SDN testbed. The performance of MES scheme under heavy traffic load scenario is also quantitatively evaluated based on DCSL architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning scheme.

  11. Endogenous Electric Fields May Guide Neocortical Network Activity

    PubMed Central

    Fröhlich, Flavio; McCormick, David A.

    2011-01-01

    Local field potentials and the underlying endogenous electric fields (EFs) are traditionally considered to be epiphenomena of structured neuronal network activity. Recently, however, externally applied EFs have been shown to modulate pharmacologically evoked network activity in rodent hippocampus. In contrast, very little is known about the role of endogenous EFs during physiological activity states in neocortex. Here we used the neocortical slow oscillation in vitro as a model system to show that weak sinusoidal and naturalistic EFs enhance and entrain physiological neocortical network activity with an amplitude threshold within the range of in vivo endogenous field strengths. Modulation of network activity by positive and negative feedback fields based on the network activity in real-time provide direct evidence for a feedback loop between neuronal activity and endogenous EF. This significant susceptibility of active networks to EFs that only cause small changes in membrane potential in individual neurons suggests that endogenous EFs could guide neocortical network activity. PMID:20624597

  12. Medicine in long duration space exploration: the role of virtual reality and broad bandwidth telecommunications networks

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    2001-01-01

    Safety of astronauts during long-term space exploration is a priority for NASA. This paper describes efforts to produce Earth-based models for providing expert medical advice when unforeseen medical emergencies occur on spacecraft. These models are Virtual Collaborative Clinics that reach into remote sites using telecommunications and emerging stereo-imaging and sensor technologies. c 2001. Elsevier Science Ltd. All rights reserved.

  13. Use of virtual, interactive, musculoskeletal system (VIMS) in modeling and analysis of shoulder throwing activity.

    PubMed

    Lin, Hwai-Ting; Nakamura, Yasuo; Su, Fong-Chin; Hashimoto, Jun; Nobuhara, Katsuya; Chao, Edmund Y S

    2005-06-01

    Our purpose in this study was to apply the virtual, interactive, musculoskeletal system (VIMS) software for modeling and biomechanical analysis of the glenohumeral joint during a baseball pitching activity. The skeletal model was from VIMS library and muscle fiber attachment sites were derived from the visible human dataset. The muscular moment arms and function changes are mainly due to the large humeral motion involved during baseball pitching. The graphic animation of the anatomic system using VIMS software is an effective tool to model and visualize the complex anatomical structure of the shoulder for biomechanical analysis.

  14. Omics approaches to individual variation: modeling networks and the virtual patient.

    PubMed

    Lehrach, Hans

    2016-09-01

    Every human is unique. We differ in our genomes, environment, behavior, disease history, and past and current medical treatment-a complex catalog of differences that often leads to variations in the way each of us responds to a particular therapy. We argue here that true personalization of drug therapies will rely on "virtual patient" models based on a detailed characterization of the individual patient by molecular, imaging, and sensor techniques. The models will be based, wherever possible, on the molecular mechanisms of disease processes and drug action but can also expand to hybrid models including statistics/machine learning/artificial intelligence-based elements trained on available data to address therapeutic areas or therapies for which insufficient information on mechanisms is available. Depending on the disease, its mechanisms, and the therapy, virtual patient models can be implemented at a fairly high level of abstraction, with molecular models representing cells, cell types, or organs relevant to the clinical question, interacting not only with each other but also the environment. In the future, "virtual patient/in-silico self" models may not only become a central element of our health care system, reducing otherwise unavoidable mistakes and unnecessary costs, but also act as "guardian angels" accompanying us through life to protect us against dangers and to help us to deal intelligently with our own health and wellness.

  15. Omics approaches to individual variation: modeling networks and the virtual patient

    PubMed Central

    Lehrach, Hans

    2016-01-01

    Every human is unique. We differ in our genomes, environment, behavior, disease history, and past and current medical treatment—a complex catalog of differences that often leads to variations in the way each of us responds to a particular therapy. We argue here that true personalization of drug therapies will rely on “virtual patient” models based on a detailed characterization of the individual patient by molecular, imaging, and sensor techniques. The models will be based, wherever possible, on the molecular mechanisms of disease processes and drug action but can also expand to hybrid models including statistics/machine learning/artificial intelligence-based elements trained on available data to address therapeutic areas or therapies for which insufficient information on mechanisms is available. Depending on the disease, its mechanisms, and the therapy, virtual patient models can be implemented at a fairly high level of abstraction, with molecular models representing cells, cell types, or organs relevant to the clinical question, interacting not only with each other but also the environment. In the future, “virtual patient/in-silico self” models may not only become a central element of our health care system, reducing otherwise unavoidable mistakes and unnecessary costs, but also act as “guardian angels” accompanying us through life to protect us against dangers and to help us to deal intelligently with our own health and wellness. PMID:27757060

  16. Design and Test of the Cross-Format Schema Protocol (XFSP) for Networked Virtual Environments

    DTIC Science & Technology

    2003-03-01

    Internet traffic . Nevertheless, problems are common. The growing interest in multimedia applications had huge impact both on telecommunication networks ...entities. In order to solve that problem, Canterbury refined the existing DIS protocol and optimized the form and content of DIS network traffic ...California by using commercial Internet Service Providers ( ISPs ) on V.98 modem as well as on Ethernet. The Naval Postgraduate School (NPS) network

  17. Carnegie Mellon's STUDIO for Creative Inquiry [and] The Interdisciplinary Teaching Network (ITeN) [and] Interactive Fiction [and] The Networked Virtual Art Museum.

    ERIC Educational Resources Information Center

    Holden, Lynn; And Others

    1992-01-01

    Explains the STUDIO for Creative Inquiry, an interdisciplinary center at Carnegie Mellon University that supports experimental activities in the arts, and its Interdisciplinary Teaching Network. Three STUDIO projects are described: the Ancient Egypt Prototype application of the network; an interactive fiction system based on artificial…

  18. Seismic active control by neutral networks

    SciTech Connect

    Tang, Yu

    1995-12-31

    A study on the application of artificial neural networks (ANNs) to active structural control under seismic loads is carried out. The structure considered is a single-degree-of-freedom (SDF) system with an active bracing device. The control force is computed by a trained neural network. The feedforward neural network architecture and an adaptive backpropagation training algorithm is used in the study. The neural net is trained to reproduce the function that represents the response-excitation relationship of the SDF system under seismic loads. The input-output training patterns are generated randomly. In the backpropagation training algorithm, the learning rate is determined by ensuring the decrease of the error function at each epoch. The computer program implemented is validated by solving the classification of the XOR problem. Then, the trained ANN is used to compute the control force according to the control strategy. If the control force exceeds the actuator`s capacity limit, it is set equal to that limit. The concept of the control strategy employed herein is to apply the control force at every time step to cancel the system velocity induced at the preceding time step so that the gradual rhythmic buildup of the response is destroyed. The ground motions considered in the numerical example are the 1940 El Centro earthquake and the 1979 Imperial Valley earthquake in California. The system responses with and without the control are calculated and compared. The feasibility and potential of applying ANNs to seismic active control is asserted by the promising results obtained from the numerical examples studied.

  19. Stiff substrates enhance cultured neuronal network activity.

    PubMed

    Zhang, Quan-You; Zhang, Yan-Yan; Xie, Jing; Li, Chen-Xu; Chen, Wei-Yi; Liu, Bai-Lin; Wu, Xiao-an; Li, Shu-Na; Huo, Bo; Jiang, Lin-Hua; Zhao, Hu-Cheng

    2014-08-28

    The mechanical property of extracellular matrix and cell-supporting substrates is known to modulate neuronal growth, differentiation, extension and branching. Here we show that substrate stiffness is an important microenvironmental cue, to which mouse hippocampal neurons respond and integrate into synapse formation and transmission in cultured neuronal network. Hippocampal neurons were cultured on polydimethylsiloxane substrates fabricated to have similar surface properties but a 10-fold difference in Young's modulus. Voltage-gated Ca(2+) channel currents determined by patch-clamp recording were greater in neurons on stiff substrates than on soft substrates. Ca(2+) oscillations in cultured neuronal network monitored using time-lapse single cell imaging increased in both amplitude and frequency among neurons on stiff substrates. Consistently, synaptic connectivity recorded by paired recording was enhanced between neurons on stiff substrates. Furthermore, spontaneous excitatory postsynaptic activity became greater and more frequent in neurons on stiff substrates. Evoked excitatory transmitter release and excitatory postsynaptic currents also were heightened at synapses between neurons on stiff substrates. Taken together, our results provide compelling evidence to show that substrate stiffness is an important biophysical factor modulating synapse connectivity and transmission in cultured hippocampal neuronal network. Such information is useful in designing instructive scaffolds or supporting substrates for neural tissue engineering.

  20. The PVM (Parallel Virtual Machine) system: Supercomputer level concurrent computation on a network of IBM RS/6000 power stations

    SciTech Connect

    Sunderam, V.S. . Dept. of Mathematics and Computer Science); Geist, G.A. )

    1991-01-01

    The PVM (Parallel Virtual Machine) system enables supercomputer level concurrent computations to be performed on interconnected networks of heterogeneous computer systems. Specifically, a network of 13 IBM RS/6000 powerstations has been successfully used to execute production quality runs of superconductor modeling codes at more than 250 Mflops. This work demonstrates the effectiveness of cooperative concurrent processing for high performance applications, and shows that supercomputer level computations may be attained at a fraction of the cost on distributed computing platforms. This paper describes the PVM programming environment and user facilities, as they apply to hardware platforms comprising a network of IBM RS/6000 powerstations. The salient design features of PVM will be discussed; including heterogeneity, scalability, multilanguage support, provisions for fault tolerance, the use of multiprocessors and scalar machines, an interactive graphical front end, and support for profiling, tracing, and visual analysis. The PVM system has been used extensively, and a range of production quality concurrent applications have been successfully executed using PVM on a variety of networked platforms. The paper will mention representative examples, and discuss two in detail. The first is a material sciences problem that was originally developed on a Cray 2. This application code calculates the electronic structure of metallic alloys from first principles and is based on the KKR-CPA algorithm. The second is a molecular dynamics simulation for calculating materials properties. Performance results for both applicants on networks of RS/6000 powerstations will be presented, and accompanied by discussions of the other advantages of PVM and its potential as a complement or alternative to conventional supercomputers.

  1. Brain activity in goal-directed movements in a real compared to a virtual environment using the Nintendo Wii.

    PubMed

    Baumeister, Jochen; Reinecke, Kirsten; Cordes, Marjolijn; Lerch, Christiane; Weiss, Michael

    2010-08-30

    Low budget virtual environments like the Nintendo Wii increased in popularity and may play a role in motor learning related to sports and exercise. But nothing was known about the comparability of cortical activity of motor tasks in real and virtual environments. The aim of the study was to examine cortical differences between real and Wii based virtual sports performances using the golf putt as a model. Ten male golfers (26.0 +/- 0.7 years; 81.8 +/- 5.6 kg; 184.5 +/- 6.0 cm; handicap 30.0+/-10.0; 2.9+/-1.0 years of golf experience) were asked to putt for 3 min in random order in the real and the virtual Wii condition. A rest in sitting position (3 min) followed each performance. The score and cortical activity (EEG) were recorded continuously. The participants performed with a significant better score in the real condition (p < or = 0.01). Compared to virtual putting Theta spectral power showed a significant increase during real performance at F3 and F4 (p < or = 0.05). Significantly increased Alpha-2 power was demonstrated during real putting compared to the virtual putting performance at P3 (p < or = 0.05). The findings suggested that putting performance and brain activity was influenced by the choice of a real or virtual environment. The results were discussed based on the concept of the working memory where increased frontal Theta power indicated higher focused attention and higher Alpha-2 power was inversely related to the quantity of sensory information processing in the real putting compared to the virtual condition.

  2. VObs.it, the Italian contribution to the international Virtual Observatory-History, activities, strategy

    NASA Astrophysics Data System (ADS)

    Pasian, F.

    2015-06-01

    The origins of the Italian contribution to the international Virtual Observatory (VO) were mainly tied to the definition and implementation of a Data Grid using Grid standards. From there on, by means of a step-wise evolution, activities started including the implementation of VO-aware tools and facilities, or the production of services accessing data archives in ways compliant to the international VO standards. An important activity the Italian VO community has carried out is the dissemination of the VO capabilities to professionals, students and amateurs: in particular, an important and maybe unique success has been bringing to the classrooms the VO, and using it as a powerful tool to teach astronomy at all levels, from junior high school to undergraduate courses. Lately, there has been also direct involvement of the Italian community in the definition of standards and services within the framework of the International Virtual Observatory Alliance (IVOA), and participation and leadership in the IVOA Working Groups. Along this path, the national funding for these activities has been rather low, although essential to carry the activities on. There were no bursts of funding to allow a quick rise in activities leading to the fast realisation of tools and systems. Rather, the manpower involved in VObs.it has been always fairly low but steady. In the view of managing a national VO initiative with a low budget, strategic choices were made to exploit the available resources and to guarantee a constant background activity, mainly geared at providing services to the community, development in lower-priority VO areas, dissemination and support.

  3. Aircraft panel with sensorless active sound power reduction capabilities through virtual mechanical impedances

    NASA Astrophysics Data System (ADS)

    Boulandet, R.; Michau, M.; Micheau, P.; Berry, A.

    2016-01-01

    This paper deals with an active structural acoustic control approach to reduce the transmission of tonal noise in aircraft cabins. The focus is on the practical implementation of the virtual mechanical impedances method by using sensoriactuators instead of conventional control units composed of separate sensors and actuators. The experimental setup includes two sensoriactuators developed from the electrodynamic inertial exciter and distributed over an aircraft trim panel which is subject to a time-harmonic diffuse sound field. The target mechanical impedances are first defined by solving a linear optimization problem from sound power measurements before being applied to the test panel using a complex envelope controller. Measured data are compared to results obtained with sensor-actuator pairs consisting of an accelerometer and an inertial exciter, particularly as regards sound power reduction. It is shown that the two types of control unit provide similar performance, and that here virtual impedance control stands apart from conventional active damping. In particular, it is clear from this study that extra vibrational energy must be provided by the actuators for optimal sound power reduction, mainly due to the high structural damping in the aircraft trim panel. Concluding remarks on the benefits of using these electrodynamic sensoriactuators to control tonal disturbances are also provided.

  4. How Older Adults Use Virtual Personal Learning Networks to Support Informal, Self-Directed Lifelong Learning Goals: A Research Program Description

    ERIC Educational Resources Information Center

    Morrison, Dirk

    2015-01-01

    This short paper will describe the details of a SSHRC/IDG-funded research program currently underway (2015-2016) that will investigate how older adults (65+) use Web 2.0 tools and Internet-based resources to establish and expand their virtual personal learning networks (PLNs) for the purposes of enriching their expertise and knowledge within the…

  5. Controlling ill-behaved flows with active queue management in DiffServ networks

    NASA Astrophysics Data System (ADS)

    Shu, Yantai; Gao, Deyun; Yang, Oliver W. W.; Qi, Lantao

    2003-08-01

    In this paper, we propose a new active queue management mechanism called the RIO-SD (RED IN and OUT with Selective Dropping) to control ill-behaved flows in DiffServ networks. Under this scheme, core routers are not required to maintain per-flow state, and the ill-behaved flows can be identified based on the drop history of the "OUT-profile" virtual queue. Control is effected by placing two pre-filters in front of the "IN-profile" and "OUT-profile" virtual queues respectively. Simulation results indicate that our approach can also improve the performance of other normal flows. Our work demonstrates that our algorithm is robust and simple to use.

  6. The effect of virtual reality-based eccentric training on lower extremity muscle activation and balance in stroke patients

    PubMed Central

    Park, Seung Kyu; Yang, Dae Jung; Uhm, Yo Han; Heo, Jae Won; Kim, Je Ho

    2016-01-01

    [Purpose] The purpose of this study was to examine the effect of virtual reality-based eccentric training on lower extremity muscle activity and balance in stroke patients. [Subjects and Methods] Thirty stroke patients participated, with 15 patients allotted to each of two eccentric training groups: one using a slow velocity (group I) and one using a fast velocity (group II). The virtual reality-based eccentric training was performed by the patients for 30 minutes once a day, 5 days a week, for 8 weeks using an Eccentron system. Surface electromyography was used to measure the lower extremity muscle activity, while a BioRescue was used to measure balancing ability. [Results] A significant difference in lower extremity muscle activation and balance ability was observed in group I compared with group II. [Conclusion] This study showed that virtual reality-based eccentric training using a slow velocity is effective for improving lower extremity muscle activity and balance in stroke patients. PMID:27512263

  7. Semi-automatic simulation model generation of virtual dynamic networks for production flow planning

    NASA Astrophysics Data System (ADS)

    Krenczyk, D.; Skolud, B.; Olender, M.

    2016-08-01

    Computer modelling, simulation and visualization of production flow allowing to increase the efficiency of production planning process in dynamic manufacturing networks. The use of the semi-automatic model generation concept based on parametric approach supporting processes of production planning is presented. The presented approach allows the use of simulation and visualization for verification of production plans and alternative topologies of manufacturing network configurations as well as with automatic generation of a series of production flow scenarios. Computational examples with the application of Enterprise Dynamics simulation software comprising the steps of production planning and control for manufacturing network have been also presented.

  8. Deep Neural Networks with Multistate Activation Functions

    PubMed Central

    Cai, Chenghao; Xu, Yanyan; Ke, Dengfeng; Su, Kaile

    2015-01-01

    We propose multistate activation functions (MSAFs) for deep neural networks (DNNs). These MSAFs are new kinds of activation functions which are capable of representing more than two states, including the N-order MSAFs and the symmetrical MSAF. DNNs with these MSAFs can be trained via conventional Stochastic Gradient Descent (SGD) as well as mean-normalised SGD. We also discuss how these MSAFs perform when used to resolve classification problems. Experimental results on the TIMIT corpus reveal that, on speech recognition tasks, DNNs with MSAFs perform better than the conventional DNNs, getting a relative improvement of 5.60% on phoneme error rates. Further experiments also reveal that mean-normalised SGD facilitates the training processes of DNNs with MSAFs, especially when being with large training sets. The models can also be directly trained without pretraining when the training set is sufficiently large, which results in a considerable relative improvement of 5.82% on word error rates. PMID:26448739

  9. Fractal patterns of neural activity exist within the suprachiasmatic nucleus and require extrinsic network interactions.

    PubMed

    Hu, Kun; Meijer, Johanna H; Shea, Steven A; vanderLeest, Henk Tjebbe; Pittman-Polletta, Benjamin; Houben, Thijs; van Oosterhout, Floor; Deboer, Tom; Scheer, Frank A J L

    2012-01-01

    The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ~24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales--from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation.

  10. Crosstalk suppression in networked resistive sensor arrays using virtual ground technique

    NASA Astrophysics Data System (ADS)

    Sahai Saxena, Raghvendra; Semwal, Sushil Kumar; Singh Rana, Pratap; Bhan, R. K.

    2013-11-01

    In 2D resistive sensor arrays, the interconnections are reduced considerably by sharing rows and columns among various sensor elements in such a way that one end of each sensor is connected to a row node and other end connected to a column node. This scheme results in total N + M interconnections for N × M array of sensors. Thus, it simplifies the interconnect complexity but suffers from the crosstalk problem among its elements. We experimentally demonstrate that this problem can be overcome by putting all the row nodes at virtually equal potential using virtual ground of high gain operational amplifiers in negative feedback. Although it requires large number of opamps, it solves the crosstalk problem to a large extent. Additionally, we get the response of all the sensors lying in a column simultaneously, resulting in a faster scanning capability. By performing lock-in-amplifier based measurements on a light dependent resistor at a randomly selected location in a 4 × 4 array of otherwise fixed valued resistors, we have shown that the technique can provide 86 dB crosstalk suppression even with a simple opamp. Finally, we demonstrate the circuit implementation of this technique for a 16 × 16 imaging array of light dependent resistors.

  11. Active route learning in virtual environments: disentangling movement control from intention, instruction specificity, and navigation control.

    PubMed

    von Stülpnagel, Rul; Steffens, Melanie C

    2013-09-01

    Active navigation research examines how physiological and psychological involvement in navigation benefits spatial learning. However, existing conceptualizations of active navigation comprise separable, distinct factors. This research disentangles the contributions of movement control (i.e., self-contained vs. observed movement) as a central factor from learning intention (Experiment 1), instruction specificity and instruction control (Experiment 2), as well as navigation control (Experiment 3) to spatial learning in virtual environments. We tested the effects of these factors on landmark recognition (landmark knowledge), tour-integration and route navigation (route knowledge). Our findings suggest that movement control leads to robust advantages in landmark knowledge as compared to observed movement. Advantages in route knowledge do not depend on learning intention, but on the need to elaborate spatial information. Whenever the necessary level of elaboration is assured for observed movement, too, the development of route knowledge is not inferior to that for self-contained movement.

  12. A Virtual Screening Approach For Identifying Plants with Anti H5N1 Neuraminidase Activity

    PubMed Central

    2016-01-01

    Recent outbreaks of highly pathogenic and occasional drug-resistant influenza strains have highlighted the need to develop novel anti-influenza therapeutics. Here, we report computational and experimental efforts to identify influenza neuraminidase inhibitors from among the 3000 natural compounds in the Malaysian-Plants Natural-Product (NADI) database. These 3000 compounds were first docked into the neuraminidase active site. The five plants with the largest number of top predicted ligands were selected for experimental evaluation. Twelve specific compounds isolated from these five plants were shown to inhibit neuraminidase, including two compounds with IC50 values less than 92 μM. Furthermore, four of the 12 isolated compounds had also been identified in the top 100 compounds from the virtual screen. Together, these results suggest an effective new approach for identifying bioactive plant species that will further the identification of new pharmacologically active compounds from diverse natural-product resources. PMID:25555059

  13. Virtual screening for environmental pollutants: structure-activity relationships applied to a database of industrial chemicals.

    PubMed

    Oberg, Tomas

    2006-04-01

    The current risk paradigm calls for individual consideration and evaluation of each separate environmental pollutant, but this does not reflect accurately the cumulative impact of anthropogenic chemicals. In the present study, previously validated structure-activity relationships were used to estimate simultaneously the baseline toxicity and atmospheric persistence of approximately 50,000 compounds. The results from this virtual screening indicate fairly stable statistical distributions among small anthropogenic compounds. The baseline toxicity was not changed much by halogen substitution, but a distinct increase seemed to occur in the environmental persistence with increased halogenation. The ratio of the atmospheric half-lives to the median lethal concentrations provides a continuous scale with which to rank and summarize the incremental environmental impacts in a mixture-exposure situation. Halogenated compounds as a group obtained a high ranking in this data set, with well-known pollutants at the very top: DDT metabolites and derivatives, polychlorinated biphenyls, diphenyl ethers and dibenzofurans, chlorinated paraffins, chlorinated benzenes and derivatives, hydrochlorofluorocarbons, and dichlorononylphenol. Environmentally friendly chemicals that obtained the lowest rank are nearly all hydroxylated and water-soluble. Virtual screening can assist with "green chemistry" in designing safe and degradable products and enable assessment of the efficiency in chemicals risk management.

  14. A robotic system to train activities of daily living in a virtual environment.

    PubMed

    Guidali, Marco; Duschau-Wicke, Alexander; Broggi, Simon; Klamroth-Marganska, Verena; Nef, Tobias; Riener, Robert

    2011-10-01

    In the past decade, several arm rehabilitation robots have been developed to assist neurological patients during therapy. Early devices were limited in their number of degrees of freedom and range of motion, whereas newer robots such as the ARMin robot can support the entire arm. Often, these devices are combined with virtual environments to integrate motivating game-like scenarios. Several studies have shown a positive effect of game-playing on therapy outcome by increasing motivation. In addition, we assume that practicing highly functional movements can further enhance therapy outcome by facilitating the transfer of motor abilities acquired in therapy to daily life. Therefore, we present a rehabilitation system that enables the training of activities of daily living (ADL) with the support of an assistive robot. Important ADL tasks have been identified and implemented in a virtual environment. A patient-cooperative control strategy with adaptable freedom in timing and space was developed to assist the patient during the task. The technical feasibility and usability of the system was evaluated with seven healthy subjects and three chronic stroke patients.

  15. Web-Based Virtual Patients in Nursing Education: Development and Validation of Theory-Anchored Design and Activity Models

    PubMed Central

    2014-01-01

    Background Research has shown that nursing students find it difficult to translate and apply their theoretical knowledge in a clinical context. Virtual patients (VPs) have been proposed as a learning activity that can support nursing students in their learning of scientific knowledge and help them integrate theory and practice. Although VPs are increasingly used in health care education, they still lack a systematic consistency that would allow their reuse outside of their original context. There is therefore a need to develop a model for the development and implementation of VPs in nursing education. Objective The aim of this study was to develop and evaluate a virtual patient model optimized to the learning and assessment needs in nursing education. Methods The process of modeling started by reviewing theoretical frameworks reported in the literature and used by practitioners when designing learning and assessment activities. The Outcome-Present State Test (OPT) model was chosen as the theoretical framework. The model was then, in an iterative manner, developed and optimized to the affordances of virtual patients. Content validation was performed with faculty both in terms of the relevance of the chosen theories but also its applicability in nursing education. The virtual patient nursing model was then instantiated in two VPs. The students’ perceived usefulness of the VPs was investigated using a questionnaire. The result was analyzed using descriptive statistics. Results A virtual patient Nursing Design Model (vpNDM) composed of three layers was developed. Layer 1 contains the patient story and ways of interacting with the data, Layer 2 includes aspects of the iterative process of clinical reasoning, and finally Layer 3 includes measurable outcomes. A virtual patient Nursing Activity Model (vpNAM) was also developed as a guide when creating VP-centric learning activities. The students perceived the global linear VPs as a relevant learning activity for the

  16. A sensor network based virtual beam-like structure method for fault diagnosis and monitoring of complex structures with Improved Bacterial Optimization

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jing, X. J.

    2017-02-01

    This paper proposes a novel method for the fault diagnosis of complex structures based on an optimized virtual beam-like structure approach. A complex structure can be regarded as a combination of numerous virtual beam-like structures considering the vibration transmission path from vibration sources to each sensor. The structural 'virtual beam' consists of a sensor chain automatically obtained by an Improved Bacterial Optimization Algorithm (IBOA). The biologically inspired optimization method (i.e. IBOA) is proposed for solving the discrete optimization problem associated with the selection of the optimal virtual beam for fault diagnosis. This novel virtual beam-like-structure approach needs less or little prior knowledge. Neither does it require stationary response data, nor is it confined to a specific structure design. It is easy to implement within a sensor network attached to the monitored structure. The proposed fault diagnosis method has been tested on the detection of loosening screws located at varying positions in a real satellite-like model. Compared with empirical methods, the proposed virtual beam-like structure method has proved to be very effective and more reliable for fault localization.

  17. Demonstration of Supervisory Control and Data Acquisition (SCADA) Virtualization Capability in the US Army Research Laboratory (ARL)/Sustaining Base Network Assurance Branch (SBNAB) US Army Cyber Analytics Laboratory (ACAL) SCADA Hardware Testbed

    DTIC Science & Technology

    2015-05-01

    interoperability of physical network elements with the virtualized network. In this test, a simulated threat actor used a laptop computer to connect to the... laptop connected to the experiment network, use the Perl “mbtget” script to change the Meal Preparation PLC Robot Arm and Sealing System coil values to...system. Table A-1 Hardware list Platform Function Operating System Mac laptop and desktop Remote access to Virtual Machines (VMs), configure

  18. Sex Differences in Virtual Network Characteristics and Sexual Risk Behavior among Emerging Adults

    PubMed Central

    Cook, Stephanie H.; Bauermeister, José A.; Zimmerman, Marc A.

    2016-01-01

    Emerging adults (EAs)ages 18 to 24 account for a large proportion of all sexually transmitted infections (STIs), HIV infections, and unintended pregnancies in the United States. Given the increased influence of online media on decision-making, we examined how EA online networks were associated with sexual risk behaviors. We used egocentric network data collected from EAs aged 18 to 24 years old across the United States (N=1,687) to examine how online norms (e.g., acceptance of HIV infections, other STIs, and pregnancy) and network characteristics (i.e., network size and density; ties' closeness, race, age, and sex similarities) were associated with participants' unprotected vaginal intercourse (UVI) in the last 30 days. Findings suggested that in male EAs, there was a strong association between sexual norms, structural characteristics, and sexual risk behavior compared to females. Researchers and practitioners may wish to address online peer norms and EAs' online network composition when developing online sexual risk prevention tools. PMID:28083447

  19. Prefrontal Cortex Activation Upon a Demanding Virtual Hand-Controlled Task: A New Frontier for Neuroergonomics

    PubMed Central

    Carrieri, Marika; Petracca, Andrea; Lancia, Stefania; Basso Moro, Sara; Brigadoi, Sabrina; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR) real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) in subjects while performing a demanding VR hand-controlled task (HCT). Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3-dimensional (3D) hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB) over a virtual route (VROU) reproducing a 42 m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2 ± 37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found

  20. Prefrontal Cortex Activation Upon a Demanding Virtual Hand-Controlled Task: A New Frontier for Neuroergonomics.

    PubMed

    Carrieri, Marika; Petracca, Andrea; Lancia, Stefania; Basso Moro, Sara; Brigadoi, Sabrina; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR) real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) in subjects while performing a demanding VR hand-controlled task (HCT). Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3-dimensional (3D) hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB) over a virtual route (VROU) reproducing a 42 m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2 ± 37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found

  1. Inter-BSs virtual private network for privacy and security enhanced 60 GHz radio-over-fiber system

    NASA Astrophysics Data System (ADS)

    Zhang, Chongfu; Chen, Chen; Zhang, Wei; Jin, Wei; Qiu, Kun; Li, Changchun; Jiang, Ning

    2013-06-01

    A novel inter-basestations (inter-BSs) based virtual private network (VPN) for the privacy and security enhanced 60 GHz radio-over-fiber (RoF) system using optical code-division multiplexing (OCDM) is proposed and demonstrated experimentally. By establishing inter-BSs VPN overlaying the network structure of a 60 GHz RoF system, the express and private paths for the communication of end-users under different BSs can be offered. In order to effectively establish the inter-BSs VPN, the OCDM encoding/decoding technology is employed in the RoF system. In each BS, a 58 GHz millimeter-wave (MMW) is used as the inter-BSs VPN channel, while a 60 GHz MMW is used as the common central station (CS)-BSs communication channel. The optical carriers used for the downlink, uplink and VPN link transmissions are all simultaneously generated in a lightwave-centralized CS, by utilizing four-wave mixing (FWM) effect in a semiconductor optical amplifier (SOA). The obtained results properly verify the feasibility of our proposed configuration of the inter-BSs VPN in the 60 GHz RoF system.

  2. Combination of a Flipped Classroom Format and a Virtual Patient Case to Enhance Active Learning in a Required Therapeutics Course

    PubMed Central

    Lichvar, Alicia Beth; Hedges, Ashley; Benedict, Neal J.

    2016-01-01

    Objective. To design and evaluate the integration of a virtual patient activity in a required therapeutics course already using a flipped-classroom teaching format. Design. A narrative-branched, dynamic virtual-patient case was designed to replace the static written cases that students worked through during the class, which was dedicated to teaching the complications of liver disease. Students completed pre- and posttests before and after completing the virtual patient case. Examination scores were compared to those in the previous year. Assessment. Students’ posttest scores were higher compared to pretest scores (33% vs 50%). Overall median examination scores were higher compared to the historical control group (70% vs 80%), as well as scores on questions assessing higher-level learning (67% vs 83%). A majority of students (68%) felt the virtual patient helped them apply knowledge gained in the pre-class video lecture. Students preferred this strategy to usual in-class activities (33%) or indicated it was of equal value (37%). Conclusion. The combination of a pre-class video lecture with an in-class virtual patient case is an effective active-learning strategy. PMID:28179724

  3. Virtual screening of chemical compounds active against breast cancer cell lines based on cell cycle modelling, prediction of cytotoxicity and interaction with targets.

    PubMed

    Konova, V; Lagunin, A; Pogodin, P; Kolotova, E; Shtil, A; Poroikov, V

    2015-01-01

    Bio- and chemoinformatics methods are widely used for the detection of mechanisms of cancer, to search for potential drug targets and their ligands. Regulatory network analysis based on signalling pathways, and cell cycle regulation provides better understanding of diseases with multiple mechanisms of pathogenesis. We developed an approach for in silico prediction of the cytotoxic effect of chemical compounds in non-transformed and breast cancer cell lines. This approach combines the prediction of the interaction between chemical compounds and human proteins, cytotoxicity and regulatory network modelling taking into account gene expression. Application of our approach to virtual screening of libraries of commercially available compounds allowed selection of dozens of promising hits. These molecules are predicted to interact with the identified targets and exhibit cytotoxicity against breast cancer cell lines but not non-tumour human cell lines. Experimental testing of 49 selected compounds against MDA-MB-231 and MCF7 breast cancer cell lines confirmed the activity of eight compounds with IC50 values ranged from 0.8 to 50 μM. Thus, the developed approach may be applied for virtual screening for cytotoxic compounds against tumour cell lines.

  4. In-vehicle group activity modeling and simulation in sensor-based virtual environment

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Telagamsetti, Durga; Poshtyar, Azin; Chan, Alex; Hu, Shuowen

    2016-05-01

    Human group activity recognition is a very complex and challenging task, especially for Partially Observable Group Activities (POGA) that occur in confined spaces with limited visual observability and often under severe occultation. In this paper, we present IRIS Virtual Environment Simulation Model (VESM) for the modeling and simulation of dynamic POGA. More specifically, we address sensor-based modeling and simulation of a specific category of POGA, called In-Vehicle Group Activities (IVGA). In VESM, human-alike animated characters, called humanoids, are employed to simulate complex in-vehicle group activities within the confined space of a modeled vehicle. Each articulated humanoid is kinematically modeled with comparable physical attributes and appearances that are linkable to its human counterpart. Each humanoid exhibits harmonious full-body motion - simulating human-like gestures and postures, facial impressions, and hands motions for coordinated dexterity. VESM facilitates the creation of interactive scenarios consisting of multiple humanoids with different personalities and intentions, which are capable of performing complicated human activities within the confined space inside a typical vehicle. In this paper, we demonstrate the efficiency and effectiveness of VESM in terms of its capabilities to seamlessly generate time-synchronized, multi-source, and correlated imagery datasets of IVGA, which are useful for the training and testing of multi-source full-motion video processing and annotation. Furthermore, we demonstrate full-motion video processing of such simulated scenarios under different operational contextual constraints.

  5. Effective virtual screening strategy toward covalent ligands: identification of novel NEDD8-activating enzyme inhibitors.

    PubMed

    Zhang, Shengping; Tan, Jiani; Lai, Zhonghui; Li, Ying; Pang, Junxia; Xiao, Jianhu; Huang, Zhangjian; Zhang, Yihua; Ji, Hui; Lai, Yisheng

    2014-06-23

    The NEDD8-activating enzyme (NAE) is an emerging target for cancer therapy, which regulates the degradation and turnover of a variety of cancer-related proteins by activating the cullin-RING E3 ubiquitin ligases. Among a limited number of known NAE inhibitors, the covalent inhibitors have demonstrated the most potent efficacy through their covalently linked adducts with NEDD8. Inspired by this unique mechanism, in this study, a novel combined strategy of virtual screening (VS) was adopted with the aim to identify diverse covalent inhibitors of NAE. To be specific, a docking-enabled pharmacophore model was first built from the possible active conformations of chosen covalent inhibitors. Meanwhile, a dynamic structure-based phamacophore was also established based on the snapshots derived from molecular dynamic simulation. Subsequent screening of a focused ZINC database using these pharmacophore models combined with covalent docking discovered three novel active compounds. Among them, compound LZ3 exhibited the most potent NAE inhibitory activity with an IC50 value of 1.06 ± 0.18 μM. Furthermore, a cell-based washout experiment proved the proposed covalent binding mechanism for compound LZ3, which confirmed the successful application of our combined VS strategy, indicating it may provide a viable solution to systematically discover novel covalent ligands.

  6. Using Virtualization and Automatic Evaluation: Adapting Network Services Management Courses to the EHEA

    ERIC Educational Resources Information Center

    Ros, S.; Robles-Gomez, A.; Hernandez, R.; Caminero, A. C.; Pastor, R.

    2012-01-01

    This paper outlines the adaptation of a course on the management of network services in operating systems, called NetServicesOS, to the context of the new European Higher Education Area (EHEA). NetServicesOS is a mandatory course in one of the official graduate programs in the Faculty of Computer Science at the Universidad Nacional de Educacion a…

  7. Construction and precision evaluation of the GPS virtual reference station network in North Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, T.; Lee, Z.; Chang, M.; Chen, C.

    2006-12-01

    The conventional single-reference station positioning is affected by systematic errors such as ionospheric and tropospheric delay, so that the rover must be located within 10 km from the reference station in order to acquire centimeter-level accuracy. The medium-range real-time kinematic has been proven feasible and can be used for high precision applications. However, the longer of the baseline, the more of the time for resolving the integer ambiguity. This is due to the fact that systematic errors can't be eliminated effectively by double- differencing. Recently, network approaches have been proposed to overcome the limitation of the single- reference station positioning. The real-time systematic error modeling can be achieved with the use of GPS network. For expanding the effective range and decreasing the density of the reference stations, Land Survey Bureau, Ministry of the Interior in Taiwan have set up a national GPS network. In order to obtain the high precision positioning and provide the multi-goals services, a GPS network including 27 stations already been constructed in North Taiwan. The users can download the corrections from the data center via the wireless internet and obtain the centimeter-level accuracy positioning. The service is very useful for surveyors and the high precision coordinates can be obtained real time.

  8. Social and Virtual Networks: Evaluating Synchronous Online Interviewing Using Instant Messenger

    ERIC Educational Resources Information Center

    Hinchcliffe, Vanessa; Gavin, Helen

    2009-01-01

    This paper describes an evaluation of the quality and utility of synchronous online interviewing for data collection in social network research. Synchronous online interviews facilitated by Instant Messenger as the communication medium, were undertaken with ten final year university students. Quantitative and qualitative content analysis of…

  9. Virtual Red Light Districts: Detecting Covert Networks and Sex Trafficking Circuits in the U.S.

    ERIC Educational Resources Information Center

    Ibanez, Michelle

    2015-01-01

    The United States is the second leading destination country for sex trafficking in the world. Increased effort to understand patterns of sex trafficking within the U.S. is imperative to combatting this issue. Covert networks are increasingly using information and communication technologies (ICTs) to extend their operations. Due to the increase in…

  10. Genetic Networks Activated by Blast Injury to the Eye

    DTIC Science & Technology

    2013-08-01

    AD_________________ Award Number: W81XWH-12-1-0255 TITLE: Genetic Networks Activated by Blast...DATES COVERED 15 July 2012 – 14 July 2013 4. TITLE AND SUBTITLE Genetic Networks Activated by Blast Injury to the Eye 5a. CONTRACT NUMBER 5b...following a blast injury to the eye. In this process the genetic networks activated by injury will be defined along with biological markers of

  11. Virtual Manufacturing Techniques Designed and Applied to Manufacturing Activities in the Manufacturing Integration and Technology Branch

    NASA Technical Reports Server (NTRS)

    Shearrow, Charles A.

    1999-01-01

    One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.

  12. Drug target prioritization in Plasmodium falciparum through metabolic network analysis, and inhibitor designing using virtual screening and docking approach.

    PubMed

    Yadav, Manoj Kumar; Pandey, Saurabh Kumar; Swati, D

    2013-08-01

    The genome sequence of Plasmodium falciparum reveals that many metabolic pathways are unique as compared to its human host. Metabolic Network Analysis was carried out to find the essential enzymes critical for the survival of the pathogen. In the present study, choke point and load point analysis was used to locate putative targets. The identified targets were further checked to confirm that no alternate pathway or human homolog exists. Among the top 15 enzymes obtained from this analysis, we have selected P. falciparum orotidine-5'-monophosphate decarboxylase (PfODCase) enzyme as it is sequentially and structurally different from that of humans, for searching novel inhibitors. A five-point 3D pharmacophore was generated for the crystal structure of PfODCase complexes with uridine-5'-monophosphate (U5P). The binding site environment shows three H-bond acceptors, one H-bond donor and one negative ionizable feature. This pharmacophore model was used as a 3D query to perform virtual screening experiments against 2,664,779 standard lead compounds obtained from the freely available ZINC database. Top 10 hits obtained from virtual screening were selected for molecular docking experiments against PfODCase in order to verify their results and to have a better insight into their binding modes. Here, docking of U5P with PfODCase is used as a control. We have identified six compounds, among them, few are U5P analogs and others are novel ones with diverse scaffolds. The key residues: Lys42, Asp20, Lys72, Ser127, Ala184, Gln185 and Arg203 at the main binding pocket of PfODCase are responsible for better stability of diverse ligands. These compounds according to their free energy of binding could serve as potent leads for designing novel inhibitors against malarial ODCase enzyme.

  13. Virtual screening of CB(2) receptor agonists from bayesian network and high-throughput docking: structural insights into agonist-modulated GPCR features.

    PubMed

    Renault, Nicolas; Laurent, Xavier; Farce, Amaury; El Bakali, Jamal; Mansouri, Roxane; Gervois, Philippe; Millet, Régis; Desreumaux, Pierre; Furman, Christophe; Chavatte, Philippe

    2013-04-01

    The relevance of CB(2)-mediated therapeutics is well established in the treatment of pain, neurodegenerative and gastrointestinal tract disorders. Recent works such as the crystallization of class-A G-protein-coupled receptors in a range of active states and the identification of specific anchoring sites for CB(2) agonists challenged us to design a reliable agonist-bound homology model of CB(2) receptor. Docking-scoring enrichment tests of a high-throughput virtual screening of 140 compounds led to 13 hits within the micromolar affinity range. Most of these hits behaved as CB(2) agonists, among which two novel full agonists emerged. Although the main challenge was a high-throughput docking run targeting an agonist-bound state of a CB(2) model, a prior 2D ligand-based Bayesian network was computed to enrich the input commercial library for 3D screening. The exclusive discovery of agonists illustrates the reliability of this agonist-bound state model for the identification of polar and aromatic amino acids as new agonist-modulated CB(2) features to be integrated in the wide activation pathway of G-protein-coupled receptors.

  14. Age and active navigation effects on episodic memory: A virtual reality study.

    PubMed

    Sauzéon, Hélène; N'Kaoua, Bernard; Arvind Pala, Prashant; Taillade, Mathieu; Guitton, Pascal

    2016-02-01

    We investigated the navigation-related age effects on learning, proactive interference semantic clustering, recognition hits, and false recognitions in a naturalistic situation using a virtual apartment-based task. We also examined the neuropsychological correlates (executive functioning [EF] and episodic memory) of navigation-related age effects on memory. Younger and older adults either actively navigated or passively followed the computer-guided tour of an apartment. The results indicated that active navigation increased recognition hits compared with passive navigation, but it did not influence other memory measures (learning, proactive interference, and semantic clustering) to a similar extent in either age group. Furthermore, active navigation helped to reduce false recognitions in younger adults but increased those made by older adults. This differential effect of active navigation for younger and older adults was accounted for by EF score. Like for the subject-performed task effects, the effects from the navigation manipulation were well accounted for by item-specific/relational processing distinction, and they were also consistent with a source monitoring deficit in older adults.

  15. Allocating Virtual and Physical Flows for Multiagent Teams in Mutable, Networked Environments

    DTIC Science & Technology

    2012-08-01

    Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302...Architectures, Algorithms and Networks (ISPAN ’99), page 310, Washington , DC, USA, 1999. IEEE Computer Society. 6.2 [7] N. Basilico, N. Gatti, and F...problem. Operations Research, 20:94– 108, 1972. 6.2 [15] George B. Dantzig. Linear programming under uncertainty. Management Science, 1(3-4):197–206

  16. Modeling Large-Scale Networks Using Virtual Machines and Physical Appliances

    DTIC Science & Technology

    2014-01-27

    and placing inline appliances ( intrusion detection systems and intrusion prevention systems, or IDS/IPS, for example) in the exercise data streams...process as Figure 4 ‘normal’ devices would. In fact, the devices being placed in the network in this instance were Intrusion Detection System...searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments

  17. Models of neural networks with fuzzy activation functions

    NASA Astrophysics Data System (ADS)

    Nguyen, A. T.; Korikov, A. M.

    2017-02-01

    This paper investigates the application of a new form of neuron activation functions that are based on the fuzzy membership functions derived from the theory of fuzzy systems. On the basis of the results regarding neuron models with fuzzy activation functions, we created the models of fuzzy-neural networks. These fuzzy-neural network models differ from conventional networks that employ the fuzzy inference systems using the methods of neural networks. While conventional fuzzy-neural networks belong to the first type, fuzzy-neural networks proposed here are defined as the second-type models. The simulation results show that the proposed second-type model can successfully solve the problem of the property prediction for time – dependent signals. Neural networks with fuzzy impulse activation functions can be widely applied in many fields of science, technology and mechanical engineering to solve the problems of classification, prediction, approximation, etc.

  18. Network Patch Cables Demystified: A Super Activity for Computer Networking Technology

    ERIC Educational Resources Information Center

    Brown, Douglas L.

    2004-01-01

    This article de-mystifies network patch cable secrets so that people can connect their computers and transfer those pesky files--without screaming at the cables. It describes a network cabling activity that can offer students a great hands-on opportunity for working with the tools, techniques, and media used in computer networking. Since the…

  19. Virtual reality training improves balance function

    PubMed Central

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-01-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651

  20. Virtual reality training improves balance function.

    PubMed

    Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng

    2014-09-01

    Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.

  1. Virtual Communities for Elementary and Secondary Schools.

    ERIC Educational Resources Information Center

    Riel, Margaret

    1994-01-01

    Describes activities for elementary and secondary students who participate in AT&T's Learning Network. Topics include learning circles as virtual communities; forming learning circles; planning projects with teachers and students; exchanging work on the projects; creating a final publication as a group; and evaluating the process. (LRW)

  2. Use of active video games to increase physical activity in children: a (virtual) reality?

    PubMed

    Foley, Louise; Maddison, Ralph

    2010-02-01

    There has been increased research interest in the use of active video games (in which players physically interact with images onscreen) as a means to promote physical activity in children. The aim of this review was to assess active video games as a means of increasing energy expenditure and physical activity behavior in children. Studies were obtained from computerized searches of multiple electronic bibliographic databases. The last search was conducted in December 2008. Eleven studies focused on the quantification of the energy cost associated with playing active video games, and eight studies focused on the utility of active video games as an intervention to increase physical activity in children. Compared with traditional nonactive video games, active video games elicited greater energy expenditure, which was similar in intensity to mild to moderate intensity physical activity. The intervention studies indicate that active video games may have the potential to increase free-living physical activity and improve body composition in children; however, methodological limitations prevent definitive conclusions. Future research should focus on larger, methodologically sound intervention trials to provide definitive answers as to whether this technology is effective in promoting long-term physical activity in children.

  3. Online Social Networks That Connect Users to Physical Activity Partners: A Review and Descriptive Analysis

    PubMed Central

    Passarella, Ralph Joseph; Appel, Lawrence J

    2014-01-01

    Background The US Centers for Disease Control and Prevention have identified a lack of encouragement, support, or companionship from family and friends as a major barrier to physical activity. To overcome this barrier, online social networks are now actively leveraging principles of companion social support in novel ways. Objective The aim was to evaluate the functionality, features, and usability of existing online social networks which seek to increase physical activity and fitness among users by connecting them to physical activity partners, not just online, but also face-to-face. Methods In September 2012, we used 3 major databases to identify the website addresses for relevant online social networks. We conducted a Google search using 8 unique keyword combinations: the common keyword “find” coupled with 1 of 4 prefix terms “health,” “fitness,” “workout,” or “physical” coupled with 1 of 2 stem terms “activity partners” or “activity buddies.” We also searched 2 prominent technology start-up news sites, TechCrunch and Y Combinator, using 2 unique keyword combinations: the common keyword “find” coupled with 1 of 2 stem terms “activity partners” and “activity buddies.” Sites were defined as online social health activity networks if they had the ability to (1) actively find physical activity partners or activities for the user, (2) offer dynamic, real-time tracking or sharing of social activities, and (3) provide virtual profiles to users. We excluded from our analysis sites that were not Web-based, publicly available, in English, or free. Results Of the 360 initial search results, we identified 13 websites that met our complete criteria of an online social health activity network. Features such as physical activity creation (13/13, 100%) and private messaging (12/13, 92%) appeared almost universally among these websites. However, integration with Web 2.0 technologies such as Facebook and Twitter (9/13, 69%) and the option of

  4. The Effects of Activity and Gain Based Virtual Material on Student's Success, Permanency and Attitudes towards Science Lesson

    ERIC Educational Resources Information Center

    Tas, Erol

    2015-01-01

    The main objective of this study is to research the effects of a student gains and activity based virtual material on students' success, permanence and attitudes towards science lesson, developed for science and technology lesson 6th grade "Systems in our body" unit. The study, which had a quasi-experimental design, was conducted with…

  5. A Multisite, Randomized Clinical Trial of Virtual Reality and Prolonged Exposure Therapy for Active Duty Soldiers with PTSD

    DTIC Science & Technology

    2015-02-01

    Therapy (PE) Post - Traumatic Stress Disorder (PTSD) Clinician-Administered PTSD Scale (CAPS) BODY: Overview This study was a randomized, waitlist...therapy (PE) with a waitlist (WL) group in the treatment of posttraumatic stress disorder (PTSD) in active duty (AD) Soldiers with combat-related...subjects randomized. 15. SUBJECT TERMS exposure therapy, posttraumatic stress disorder , virtual reality, military, prolonged exposure 16

  6. Effect of Modeling-Based Activities Developed Using Virtual Environments and Concrete Objects on Spatial Thinking and Mental Rotation Skills

    ERIC Educational Resources Information Center

    Yurt, Eyup; Sunbul, Ali Murat

    2012-01-01

    In this study, the effect of modeling based activities using virtual environments and concrete objects on spatial thinking and mental rotation skills was investigated. The study was designed as a pretest-posttest model with a control group, which is one of the experimental research models. The study was carried out on sixth grade students…

  7. State Virtual Libraries

    ERIC Educational Resources Information Center

    Pappas, Marjorie L.

    2003-01-01

    Virtual library? Electronic library? Digital library? Online information network? These all apply to the growing number of Web-based resource collections managed by consortiums of state library entities. Some, like "INFOhio" and "KYVL" ("Kentucky Virtual Library"), have been available for a few years, but others are just starting. Searching for…

  8. The Impact of Student Activity in a Virtual Learning Environment on Their Final Mark

    ERIC Educational Resources Information Center

    Mogus, Ana M.; Djurdjevic, Ivana; Suvak, Nenad

    2012-01-01

    By studying the use of a virtual learning environment, many have focused on automatically logged web data in order to detect factors that enhance students' use of the virtual learning environment and that may impact their productive and efficient learning via this means. Following their footsteps, the aim of this research is to examine data…

  9. Identities in flux: cognitive network activation in times of change.

    PubMed

    Menon, Tanya; Smith, Edward Bishop

    2014-05-01

    Using a dynamic cognitive model, we experimentally test two competing hypotheses that link identity and cognitive network activation during times of change. On one hand, affirming people's sense of power might give them confidence to think beyond the densest subsections of their social networks. Alternatively, if such power affirmations conflict with people's more stable status characteristics, this could create tension, deterring people from considering their networks' diversity. We test these competing hypotheses experimentally by priming people at varying levels of status with power (high/low) and asking them to report their social networks. We show that confirming identity-not affirming power-cognitively prepares people to broaden their social networks when the world is changing around them. The emotional signature of having a confirmed identity is feeling comfortable and in control, which mediates network activation. We suggest that stable, confirmed identities are the foundation from which people can exhibit greater network responsiveness.

  10. Workflow Modeling Using Stochastic Activity Networks

    NASA Astrophysics Data System (ADS)

    Javadi Mottaghi, Fatemeh; Abdollahi Azgomi, Mohammad

    The essence of workflow systems is workflow patterns. The aim is to use an existing powerful formal modeling language with workflow systems. Stochastic activity networks (SANs) are a powerful extension of Petri nets. Having the SAN model of a system, one can verify the functional aspects and evaluate the operational measures, both on a same model. SANs have already been used in a wide range of applications. As a new application area, we have used SANs for modeling workflow systems. The results show that the most important workflow patterns can be modeled in SANs. In addition, the resulting SAN models of workflow systems can be used for model checking and/or performance evaluation purposes using the existing tools. In this paper, we will present the results of this work. For this purpose, we will present the SAN submodels corresponding to the most important workflow patterns. Then, the proposed SAN submodels are used in a case study for workflow modeling, which will also be presented in this paper. Finally, we will present the results of the evaluation of the model using the Möbius modeling tool.

  11. Acoustic Emission Source Location in Unidirectional Carbon-Fibre-Reinforced Plastic Plates Using Virtually Trained Artificial Neural Networks

    SciTech Connect

    Caprino, G.; Lopresto, V.; Leone, C.; Papa, I.

    2010-06-02

    Acoustic emission source location in a unidirectional carbon-fibre-reinforced plastic plate was attempted employing Artificial Neural Network (ANN) technology. The acoustic emission events were produced by a lead break, and the response wave received by piezoelectric sensors, type VS150-M resonant at 150 kHz. The waves were detected by a Vallen AMSY4 eight-channel instrumentation. The time of arrival, determined through the conventional threshold crossing technique, was used to measure the dependence of wave velocity on fibre orientation. A simple empirical formula, relying on classical lamination and suggested by wave propagation theory, was able to accurately model the experimental trend. Based on the formula, virtual training and testing data sets were generated for the case of a plate monitored by three transducers, and adopted to select two potentially effective ANN architectures. For final validation, experimental tests were carried out, positioning the source at predetermined points evenly distributed within the plate area. A very satisfactory correlation was found between the actual source locations and the ANN predictions.

  12. Mesoscale architecture shapes initiation and richness of spontaneous network activity.

    PubMed

    Okujeni, Samora; Kandler, Steffen; Egert, Ulrich

    2017-03-14

    Spontaneous activity in the absence of external input, including propagating waves of activity, is a robust feature of neuronal networks in vivo and in vitro. The neurophysiological and anatomical requirements for initiation and persistence of such activity, however, are poorly understood, as is their role in the function of neuronal networks. Computational network studies indicate that clustered connectivity may foster the generation, maintenance and richness of spontaneous activity. Since this mesoscale architecture cannot be systematically modified in intact tissue, testing these predictions is impracticable in vivo. Here, we investigate how the mesoscale structure shapes spontaneous activity in generic networks of rat cortical neurons in vitro. In these networks, neurons spontaneously arrange into local clusters with high neurite density and form fasciculating long-range axons. We modified this structure by modulation of protein kinase C, an enzyme regulating neurite growth and cell migration. Inhibition of protein kinase C reduced neuronal aggregation and fasciculation of axons, i.e. promoted uniform architecture. Conversely, activation of protein kinase C promoted aggregation of neurons into clusters, local connectivity and bundling of long-range axons. Supporting predictions from theory, clustered networks were more spontaneously active and generated diverse activity patterns. Neurons within clusters received stronger synaptic inputs and displayed increased membrane potential fluctuations. Intensified clustering promoted the initiation of synchronous bursting events but entailed incomplete network recruitment. Moderately clustered networks appear optimal for initiation and propagation of diverse patterns of activity. Our findings support a crucial role of the mesoscale architectures in the regulation of spontaneous activity dynamics.SIGNIFICANCE STATEMENTComputational studies predict richer and persisting spatio-temporal patterns of spontaneous activity in

  13. Perturbing the action observation network during perception and categorization of actions' goals and grips: state-dependency and virtual lesion TMS effects.

    PubMed

    Jacquet, Pierre O; Avenanti, Alessio

    2015-03-01

    Watching others grasping and using objects activates an action observation network (AON), including inferior frontal (IFC), anterior intraparietal (AIP), and somatosensory cortices (S1). Yet, causal evidence of the differential involvement of such AON sensorimotor nodes in representing high- and low-level action components (i.e., end-goals and grip type) is meager. To address this issue, we used transcranial magnetic stimulation-adaptation (TMS-A) during 2 novel action perception tasks. Participants were shown adapting movies displaying a demonstrator performing goal-directed actions with a tool, using either power or precision grips. They were then asked to match the end-goal (Goal-recognition task) or the grip (Grip-recognition task) of actions shown in test pictures to the adapting movies. TMS was administered over IFC, AIP, or S1 during presentation of test pictures. Virtual lesion-like effects were found in the Grip-recognition task where IFC stimulation induced a general performance decrease, suggesting a critical role of IFC in perceiving grips. In the Goal-recognition task, IFC and S1 stimulation differently affected the processing of "adapted" and "nonadapted" goals. These "state-dependent" effects suggest that the overall goal of seen actions is encoded into functionally distinct and spatially overlapping neural populations in IFC-S1 and such encoding is critical for recognizing and understanding end-goals.

  14. Competing dynamic phases of active polymer networks

    NASA Astrophysics Data System (ADS)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  15. A virtual patient educational activity to improve interprofessional competencies: A randomized trial.

    PubMed

    Shoemaker, Michael J; de Voest, Margaret; Booth, Andrew; Meny, Lisa; Victor, Justin

    2015-01-01

    The purpose of the present study was to determine whether an interprofessional virtual patient educational activity improved interprofessional competencies in pharmacy, physician assistant, and physical therapy graduate students. Seventy-two fifth semester pharmacy (n = 33), fourth semester physician assistant (n = 27) and fourth semester physical therapy (n = 12) graduate students participated in the study. Participants were stratified by discipline and randomized into control (n = 38) and experimental groups (n = 34). At baseline and at study completion, all participants completed an original, investigator-developed survey that measured improvement in selected Interprofessional Education Collaborative (IPEC) competencies and the Readiness for Interprofessional Learning Scale (RIPLS). The experimental group had statistically significantly greater odds of improving on a variety of IPEC competencies and RIPLS items. The use of a single, interprofessional educational activity resulted in having a greater awareness of other professions' scopes of practice, what other professions have to offer a given patient and how different professions can collaborate in patient care.

  16. A four-dimensional virtual hand brain-machine interface using active dimension selection

    NASA Astrophysics Data System (ADS)

    Rouse, Adam G.

    2016-06-01

    Objective. Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main results. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s-1 for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.

  17. Brain network activity in monolingual and bilingual older adults.

    PubMed

    Grady, Cheryl L; Luk, Gigi; Craik, Fergus I M; Bialystok, Ellen

    2015-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life.

  18. Brain Network Activity in Monolingual and Bilingual Older Adults

    PubMed Central

    Grady, Cheryl L.; Luk, Gigi; Craik, Fergus I.M.; Bialystok, Ellen

    2016-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. PMID:25445783

  19. Network-dependent modulation of brain activity during sleep.

    PubMed

    Watanabe, Takamitsu; Kan, Shigeyuki; Koike, Takahiko; Misaki, Masaya; Konishi, Seiki; Miyauchi, Satoru; Miyahsita, Yasushi; Masuda, Naoki

    2014-09-01

    Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of individual brain regions and functional interactions between pairs of regions significantly increased in the default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks, the amount of the activity changes throughout REM sleep was negatively correlated with that throughout SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and that the pattern of modulation depends on the type of the large-scale brain networks.

  20. Finding Quasi-Optimal Network Topologies for Information Transmission in Active Networks

    PubMed Central

    Baptista, Murilo S.; de Carvalho, Josué X.; Hussein, Mahir S.

    2008-01-01

    This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons. PMID:18941516

  1. The salience network causally influences default mode network activity during moral reasoning

    PubMed Central

    Wilson, Stephen M.; D’Esposito, Mark; Kayser, Andrew S.; Grossman, Scott N.; Poorzand, Pardis; Seeley, William W.; Miller, Bruce L.; Rankin, Katherine P.

    2013-01-01

    Large-scale brain networks are integral to the coordination of human behaviour, and their anatomy provides insights into the clinical presentation and progression of neurodegenerative illnesses such as Alzheimer’s disease, which targets the default mode network, and behavioural variant frontotemporal dementia, which targets a more anterior salience network. Although the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, patients with Alzheimer’s disease give normal responses to these dilemmas whereas patients with behavioural variant frontotemporal dementia give abnormal responses to these dilemmas. We hypothesized that this apparent discrepancy between activation- and patient-based studies of moral reasoning might reflect a modulatory role for the salience network in regulating default mode network activation. Using functional magnetic resonance imaging to characterize network activity of patients with behavioural variant frontotemporal dementia and healthy control subjects, we present four converging lines of evidence supporting a causal influence from the salience network to the default mode network during moral reasoning. First, as previously reported, the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, but patients with behavioural variant frontotemporal dementia producing atrophy in the salience network give abnormally utilitarian responses to these dilemmas. Second, patients with behavioural variant frontotemporal dementia have reduced recruitment of the default mode network compared with healthy control subjects when deliberating about these dilemmas. Third, a Granger causality analysis of functional neuroimaging data from healthy control subjects demonstrates directed functional connectivity from nodes of the salience network to nodes of the default mode network during moral reasoning. Fourth, this Granger causal influence is diminished in

  2. Ecological Validity of Virtual Reality Daily Living Activities Screening for Early Dementia: Longitudinal Study

    PubMed Central

    Schlee, Winfried; Tsolaki, Magda; Müri, René; Mosimann, Urs; Nef, Tobias

    2013-01-01

    Background Dementia is a multifaceted disorder that impairs cognitive functions, such as memory, language, and executive functions necessary to plan, organize, and prioritize tasks required for goal-directed behaviors. In most cases, individuals with dementia experience difficulties interacting with physical and social environments. The purpose of this study was to establish ecological validity and initial construct validity of a fire evacuation Virtual Reality Day-Out Task (VR-DOT) environment based on performance profiles as a screening tool for early dementia. Objective The objectives were (1) to examine the relationships among the performances of 3 groups of participants in the VR-DOT and traditional neuropsychological tests employed to assess executive functions, and (2) to compare the performance of participants with mild Alzheimer’s-type dementia (AD) to those with amnestic single-domain mild cognitive impairment (MCI) and healthy controls in the VR-DOT and traditional neuropsychological tests used to assess executive functions. We hypothesized that the 2 cognitively impaired groups would have distinct performance profiles and show significantly impaired independent functioning in ADL compared to the healthy controls. Methods The study population included 3 groups: 72 healthy control elderly participants, 65 amnestic MCI participants, and 68 mild AD participants. A natural user interface framework based on a fire evacuation VR-DOT environment was used for assessing physical and cognitive abilities of seniors over 3 years. VR-DOT focuses on the subtle errors and patterns in performing everyday activities and has the advantage of not depending on a subjective rating of an individual person. We further assessed functional capacity by both neuropsychological tests (including measures of attention, memory, working memory, executive functions, language, and depression). We also evaluated performance in finger tapping, grip strength, stride length, gait speed

  3. Neural network with formed dynamics of activity

    SciTech Connect

    Dunin-Barkovskii, V.L.; Osovets, N.B.

    1995-03-01

    The problem of developing a neural network with a given pattern of the state sequence is considered. A neural network structure and an algorithm, of forming its bond matrix which lead to an approximate but robust solution of the problem are proposed and discussed. Limiting characteristics of the serviceability of the proposed structure are studied. Various methods of visualizing dynamic processes in a neural network are compared. Possible applications of the results obtained for interpretation of neurophysiological data and in neuroinformatics systems are discussed.

  4. Google matrix of the world network of economic activities

    NASA Astrophysics Data System (ADS)

    Kandiah, Vivek; Escaith, Hubert; Shepelyansky, Dima L.

    2015-07-01

    Using the new data from the OECD-WTO world network of economic activities we construct the Google matrix G of this directed network and perform its detailed analysis. The network contains 58 countries and 37 activity sectors for years 1995 and 2008. The construction of G, based on Markov chain transitions, treats all countries on equal democratic grounds while the contribution of activity sectors is proportional to their exchange monetary volume. The Google matrix analysis allows to obtain reliable ranking of countries and activity sectors and to determine the sensitivity of CheiRank-PageRank commercial balance of countries in respect to price variations and labor cost in various countries. We demonstrate that the developed approach takes into account multiplicity of network links with economy interactions between countries and activity sectors thus being more efficient compared to the usual export-import analysis. The spectrum and eigenstates of G are also analyzed being related to specific activity communities of countries.

  5. Virtual Goods Recommendations in Virtual Worlds

    PubMed Central

    Chen, Kuan-Yu; Liao, Hsiu-Yu; Chen, Jyun-Hung; Liu, Duen-Ren

    2015-01-01

    Virtual worlds (VWs) are computer-simulated environments which allow users to create their own virtual character as an avatar. With the rapidly growing user volume in VWs, platform providers launch virtual goods in haste and stampede users to increase sales revenue. However, the rapidity of development incurs virtual unrelated items which will be difficult to remarket. It not only wastes virtual global companies' intelligence resources, but also makes it difficult for users to find suitable virtual goods fit for their virtual home in daily virtual life. In the VWs, users decorate their houses, visit others' homes, create families, host parties, and so forth. Users establish their social life circles through these activities. This research proposes a novel virtual goods recommendation method based on these social interactions. The contact strength and contact influence result from interactions with social neighbors and influence users' buying intention. Our research highlights the importance of social interactions in virtual goods recommendation. The experiment's data were retrieved from an online VW platform, and the results show that the proposed method, considering social interactions and social life circle, has better performance than existing recommendation methods. PMID:25834837

  6. Virtual Screening of compounds from Tabernaemontana divaricata for potential anti-bacterial activity

    PubMed Central

    Gogoi, Rashmi Rekha; Gogoi, Dhrubajyoti; Bezbaruah, Rajib Lochan

    2014-01-01

    Virtual Screening and Molecular Docking analysis for Tabernaemontana divaricata derived 66 Law Molecular Weight Compounds (LMW) was conducted and to identified and predicted novel molecules as a inhibitor of Streptococcus pneumonia. The investigation has revealed several compounds with optimum binding towards Penicillin-binding proteins, Sialidases, Aspartate betasemialdehide dehydrogenase cell membrane protein of Streptococcus pneumonia. Docking results were computed in term of binding energy, ligand efficiency and number of hydrogen bonding. Apparicine (-5.14), 5-Hydroxyvoaphylline (-4.78), Voacangine (-4.7), 19-Hydroxycoronaridine (-4.44) and Coronaridine (-4.72) are identified as most suitable to bind with N-acetylglucosamine-1- phosphate uridyltransferase receptor. Ervaticine (-6.33), Ibogamine (-6.15), Methylvoaphylline (-5.74) and Coronaridine hydroxyindolenine (-5.32) has showed novel binding against the penicillin-binding proteins. Ervaticine (-6.42), 5-oxo-11-hydroxy voaphylline (-6.18), Conolobine B (-6.02) has found optimum binding against the active site of NanB sialidase of Streptococcus pneumonia. The compounds 3S-Cyanocoronaridine (-6.71), 19-Epivoacristine (-5.48) and Ervaticine(-5.45) interacting with aspartate beta-semialdehide and found suitable with least docking score. PMID:24748755

  7. A comparison of older adults' subjective experience with virtual and real environments during dynamic balance activities

    PubMed Central

    Proffitt, Rachel; Lange, Belinda; Chen, Christina; Winstein, Carolee

    2014-01-01

    The purpose of this study was to explore the subjective experience of older adults interacting with both virtual and real environments. Thirty healthy older adults engaged with real and virtual tasks of similar motor demands: reaching to a target in standing and stepping stance. Immersive tendencies and absorption scales were administered before the session. Game engagement and experience questionnaires were completed after each task, followed by a semi-structured interview at the end of the testing session. Data were analyzed respectively using paired t-tests and grounded theory methodology. Participants preferred the virtual task over the real task. They also reported an increase in presence and absorption with the virtual task, describing an external focus of attention. Findings will be used to inform future development of appropriate game-based balance training applications that could be embedded in the home or community settings as part of evidence-based fall prevention programs. PMID:24334299

  8. Impact of Network Activity Levels on the Performance of Passive Network Service Dependency Discovery

    SciTech Connect

    Carroll, Thomas E.; Chikkagoudar, Satish; Arthur-Durett, Kristine M.

    2015-11-02

    Network services often do not operate alone, but instead, depend on other services distributed throughout a network to correctly function. If a service fails, is disrupted, or degraded, it is likely to impair other services. The web of dependencies can be surprisingly complex---especially within a large enterprise network---and evolve with time. Acquiring, maintaining, and understanding dependency knowledge is critical for many network management and cyber defense activities. While automation can improve situation awareness for network operators and cyber practitioners, poor detection accuracy reduces their confidence and can complicate their roles. In this paper we rigorously study the effects of network activity levels on the detection accuracy of passive network-based service dependency discovery methods. The accuracy of all except for one method was inversely proportional to network activity levels. Our proposed cross correlation method was particularly robust to the influence of network activity. The proposed experimental treatment will further advance a more scientific evaluation of methods and provide the ability to determine their operational boundaries.

  9. Network pharmacology-based virtual screening of natural products from Clerodendrum species for identification of novel anti-cancer therapeutics.

    PubMed

    Gogoi, Barbi; Gogoi, Dhrubajyoti; Silla, Yumnam; Kakoti, Bibhuti Bhushan; Bhau, Brijmohan Singh

    2017-01-31

    Plant-derived natural products (NPs) play a vital role in the discovery of new drug molecules and these are used for development of novel therapeutic drugs for a specific disease target. Literature review suggests that natural products possess strong inhibitory efficacy against various types of cancer cells. Clerodendrum indicum and Clerodendrum serratum are reported to have anticancer activity; therefore a study was carried out to identify selective anticancer agents from these plants species. In this report, we employed a docking weighted network pharmacological approach to understand the multi-therapeutics potentiality of C. indicum and C. serratum against various types of cancer. A library of 53 natural products derived from these plants was compiled from the literature and three dimensional space analyses were performed in order to establish the drug-likeness of the NPs library. Further, an NPs-cancer network was built based on docking. We predicted five compounds, namely apigenin 7-glucoside, hispidulin, scutellarein-7-O-beta-d-glucuronate, acteoside and verbascoside, to be potential binding therapeutics for cancer target proteins. Apigenin 7-glucoside and hispidulin were found to have maximum binding interactions (relationship) with 17 cancer drug targets in terms of docking weighted network pharmacological analysis. Hence, we used an integrative approach obtained from network pharmacology for identifying combinatorial drug actions against the cancer targets. We believe that our present study may provide important clues for finding novel drug inhibitors for cancer.

  10. Tuning of temporo-occipital activity by frontal oscillations during virtual mirror exposure causes erroneous self-recognition.

    PubMed

    Serino, Andrea; Sforza, Anna Laura; Kanayama, Noriaki; van Elk, Michiel; Kaliuzhna, Mariia; Herbelin, Bruno; Blanke, Olaf

    2015-10-01

    Self-face recognition, a hallmark of self-awareness, depends on 'off-line' stored information about one's face and 'on-line' multisensory-motor face-related cues. The brain mechanisms of how on-line sensory-motor processes affect off-line neural self-face representations are unknown. This study used 3D virtual reality to create a 'virtual mirror' in which participants saw an avatar's face moving synchronously with their own face movements. Electroencephalographic (EEG) analysis during virtual mirror exposure revealed mu oscillations in sensory-motor cortex signalling on-line congruency between the avatar's and participants' movements. After such exposure and compatible with a change in their off-line self-face representation, participants were more prone to recognize the avatar's face as their own, and this was also reflected in the activation of face-specific regions in the inferotemporal cortex. Further EEG analysis showed that the on-line sensory-motor effects during virtual mirror exposure caused these off-line visual effects, revealing the brain mechanisms that maintain a coherent self-representation, despite our continuously changing appearance.

  11. Detecting eavesdropping activity in fiber optic networks

    NASA Astrophysics Data System (ADS)

    MacDonald, Gregory G.

    The secure transmission of data is critical to governments, military organizations, financial institutions, health care providers and other enterprises. The primary method of securing in-transit data is though data encryption. A number of encryption methods exist but the fundamental approach is to assume an eavesdropper has access to the encrypted message but does not have the computing capability to decrypt the message in a timely fashion. Essentially, the strength of security depends on the complexity of the encryption method and the resources available to the eavesdropper. The development of future technologies, most notably quantum computers and quantum computing, is often cited as a direct threat to traditional encryption schemes. It seems reasonable that additional effort should be placed on prohibiting the eavesdropper from coming into possession of the encrypted message in the first place. One strategy for denying possession of the encrypted message is to secure the physical layer of the communications path. Because the majority of transmitted information is over fiber-optic networks, it seems appropriate to consider ways of enhancing the integrity and security of the fiber-based physical layer. The purpose of this research is to investigate the properties of light, as they are manifested in single mode fiber, as a means of insuring the integrity and security of the physical layer of a fiber-optic based communication link. Specifically, the approach focuses on the behavior of polarization in single mode fiber, as it is shown to be especially sensitive to fiber geometry. Fiber geometry is necessarily modified during the placement of optical taps. The problem of detecting activity associated with the placement of an optical tap is herein approached as a supervised machine learning anomaly identification task. The inputs include raw polarization measurements along with additional features derived from various visualizations of the raw data (the inputs are

  12. Ligand Biological Activity Predictions Using Fingerprint-Based Artificial Neural Networks (FANN-QSAR)

    PubMed Central

    Myint, Kyaw Z.; Xie, Xiang-Qun

    2015-01-01

    This chapter focuses on the fingerprint-based artificial neural networks QSAR (FANN-QSAR) approach to predict biological activities of structurally diverse compounds. Three types of fingerprints, namely ECFP6, FP2, and MACCS, were used as inputs to train the FANN-QSAR models. The results were benchmarked against known 2D and 3D QSAR methods, and the derived models were used to predict cannabinoid (CB) ligand binding activities as a case study. In addition, the FANN-QSAR model was used as a virtual screening tool to search a large NCI compound database for lead cannabinoid compounds. We discovered several compounds with good CB2 binding affinities ranging from 6.70 nM to 3.75 μM. The studies proved that the FANN-QSAR method is a useful approach to predict bioactivities or properties of ligands and to find novel lead compounds for drug discovery research. PMID:25502380

  13. Bayesian Inference Networks and Spreading Activation in Hypertext Systems.

    ERIC Educational Resources Information Center

    Savoy, Jacques

    1992-01-01

    Describes a method based on Bayesian networks for searching hypertext systems. Discussion covers the use of Bayesian networks for structuring index terms and representing user information needs; use of link semantics based on constrained spreading activation to find starting points for browsing; and evaluation of a prototype system. (64…

  14. The Global Space Geodesy Network: Activities Underway

    NASA Astrophysics Data System (ADS)

    Pearlman, Michael R.; Ipatov, Alexander; Long, James; Ma, Chopo; Merkowitz, Stephen; Neilan, Ruth; Noll, Carey; Pavlis, Erricos; Shargorodsky, Victor; Stowers, David; Wetzel, Scott

    2014-05-01

    Several initiatives are underway that should make substantial improvement over the next decade to the international space geodesy network as the international community works toward the GGOS 2020 goal of 32 globally distributed Core Sites with co-located VLBI, SLR, GNSS and DORIS. The Russian Space Agency and the Russian Academy of Sciences are moving forward with an implementation of six additional SLR systems and a number of GNSS receivers to sites outside Russia to expand GNSS tracking and support GGOS. The NASA Space Geodesy program has completed its prototype development phase and is now embarking on an implementation phase that is planning for deployment of 6 - 10 core sites in key geographic locations to support the global network. Additional sites are in the process of implementation in Europe and Asia. Site evaluation studies are in progress, looking at some new potential sites and there are ongoing discussions for partnership arrangements with interested agencies for new sites in South America and Africa. Work continues on the site layout design to avoid RF interference issues among co-located instruments and with external communications and media system. The placement of new and upgraded sites is guided by appropriate Observing System Simulation Experiments (OSSEs) conducted under the support of the interested international agencies. The results will help optimize the global distribution of core geodetic observatories and they will lead to the improvement of the data products from the future network. During this effort it is also recognized that co-located sites with less than the full core complement will continue to play an important and critical role in filling out the global network and strengthening the connection among the techniques. This talk will give an update on the current state of expansion of the global network and the projection for the network configuration that we forecast over the next 10 years.

  15. Analysis of the characteristics of the global virtual water trade network using degree and eigenvector centrality, with a focus on food and feed crops

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hyun; Mohtar, Rabi H.; Choi, Jin-Yong; Yoo, Seung-Hwan

    2016-10-01

    This study aims to analyze the characteristics of global virtual water trade (GVWT), such as the connectivity of each trader, vulnerable importers, and influential countries, using degree and eigenvector centrality during the period 2006-2010. The degree centrality was used to measure the connectivity, and eigenvector centrality was used to measure the influence on the entire GVWT network. Mexico, Egypt, China, the Republic of Korea, and Japan were classified as vulnerable importers, because they imported large quantities of virtual water with low connectivity. In particular, Egypt had a 15.3 Gm3 year-1 blue water saving effect through GVWT: the vulnerable structure could cause a water shortage problem for the importer. The entire GVWT network could be changed by a few countries, termed "influential traders". We used eigenvector centrality to identify those influential traders. In GVWT for food crops, the USA, Russian Federation, Thailand, and Canada had high eigenvector centrality with large volumes of green water trade. In the case of blue water trade, western Asia, Pakistan, and India had high eigenvector centrality. For feed crops, the green water trade in the USA, Brazil, and Argentina was the most influential. However, Argentina and Pakistan used high proportions of internal water resources for virtual water export (32.9 and 25.1 %); thus other traders should carefully consider water resource management in these exporters.

  16. Criticalities in crosslinked actin networks due to myosin activity

    NASA Astrophysics Data System (ADS)

    Sheinman, Michael

    2013-03-01

    Many essential processes in cells and tissues, like motility and morphogenesis, are orchestrated by molecular motors applying internal, active stresses on crosslinked networks of actin filaments. Using scaling analysis, mean-field calculation, numerical modelling and in vitro experiments of such active networks we predict and observe different mechanical regimes exhibiting interesting critical behaviours with non-trivial power-law dependencies. Firstly, we find that the presence of active stresses can dramatically increase the stiffness of a floppy network, as was observed in reconstituted intracellular F-actin networks with myosin motors and extracellular gels with contractile cells. Uniform internal stress results in an anomalous, critical mechanical regime only in the vicinity of the rigidity percolation points of the network. However, taking into account heterogeneity of motors, we demonstrate that the motors, stiffening any floppy network, induce large non-affine fluctuations, giving rise to a critical mechanical regime. Secondly, upon increasing motor concentration, the resulting large internal stress is able to significantly enhance unbinding of the network's crosslinks and, therefore, disconnect the initially well-connected network to isolated clusters. However, during this process, when the network approaches marginal connectivity the internal stresses are expected to drop drastically such that the connectivity stabilizes. This general argument and detailed numerical simulations show that motors should drive a well connected network to a close vicinity of a critical point of marginal connectivity. Experiments clearly confirm this conclusion and demonstrate robust critical connectivity of initially well-connected networks, ruptured by the motor activity for a wide range of parameters. M. Sheinman, C.P. Broedersz and F.C. MacKintosh, Phys. Rev. Lett, in press. J. Alvarado, M. Sheinman, A. Sharma, F.C. MacKintosh and G. Koenderink, in preparation.

  17. Distal gap junctions and active dendrites can tune network dynamics.

    PubMed

    Saraga, Fernanda; Ng, Leo; Skinner, Frances K

    2006-03-01

    Gap junctions allow direct electrical communication between CNS neurons. From theoretical and modeling studies, it is well known that although gap junctions can act to synchronize network output, they can also give rise to many other dynamic patterns including antiphase and other phase-locked states. The particular network pattern that arises depends on cellular, intrinsic properties that affect firing frequencies as well as the strength and location of the gap junctions. Interneurons or GABAergic neurons in hippocampus are diverse in their cellular characteristics and have been shown to have active dendrites. Furthermore, parvalbumin-positive GABAergic neurons, also known as basket cells, can contact one another via gap junctions on their distal dendrites. Using two-cell network models, we explore how distal electrical connections affect network output. We build multi-compartment models of hippocampal basket cells using NEURON and endow them with varying amounts of active dendrites. Two-cell networks of these model cells as well as reduced versions are explored. The relationship between intrinsic frequency and the level of active dendrites allows us to define three regions based on what sort of network dynamics occur with distal gap junction coupling. Weak coupling theory is used to predict the delineation of these regions as well as examination of phase response curves and distal dendritic polarization levels. We find that a nonmonotonic dependence of network dynamic characteristics (phase lags) on gap junction conductance occurs. This suggests that distal electrical coupling and active dendrite levels can control how sensitive network dynamics are to gap junction modulation. With the extended geometry, gap junctions located at more distal locations must have larger conductances for pure synchrony to occur. Furthermore, based on simulations with heterogeneous networks, it may be that one requires active dendrites if phase-locking is to occur in networks formed

  18. Virtual Colonoscopy

    MedlinePlus

    ... for Symptoms That Are Being Studied Virtual Colonoscopy Virtual Colonoscopy Print Screening CT scan takes images of ... less than a regular colonoscopy Get the facts Virtual colonoscopy, also called CT colonography, is a relatively ...

  19. Virtual colonoscopy

    MedlinePlus

    Colonoscopy - virtual; CT colonography; Computed tomographic colonography; Colography - virtual ... Differences between virtual and conventional colonoscopy include: VC can view the colon from many different angles. This is not as easy ...

  20. How to Identify Success Among Networks That Promote Active Living

    PubMed Central

    Litt, Jill; Varda, Danielle; Reed, Hannah; Retrum, Jessica; Tabak, Rachel; Gustat, Jeanette; Tompkins, Nancy O’Hara

    2017-01-01

    Objectives We evaluated organization- and network-level factors that influence organizations’ perceived success. This is important for managing interorganizational networks, which can mobilize communities to address complex health issues such as physical activity, and for achieving change. Methods In 2011, we used structured interview and network survey data from 22 states in the United States to estimate multilevel random-intercept models to understand organization- and network-level factors that explain perceived network success. Results A total of 53 of 59 “whole networks” met the criteria for inclusion in the analysis (89.8%). Coordinators identified 559 organizations, with 3 to 12 organizations from each network taking the online survey (response rate: 69.7%; range: 33%–100%). Occupying a leadership position (P < .01), the amount of time with the network (P < .05), and support from community leaders (P < .05) emerged as correlates of perceived success. Conclusions Organizations’ perceptions of success can influence decisions about continuing involvement and investment in networks designed to promote environment and policy change for active living. Understanding these factors can help leaders manage complex networks that involve diverse memberships, varied interests, and competing community-level priorities. PMID:26378863

  1. Network Interventions on Physical Activity in an Afterschool Program: An Agent-Based Social Network Study

    PubMed Central

    Zhang, Jun; Shoham, David A.; Tesdahl, Eric

    2015-01-01

    Objectives. We studied simulated interventions that leveraged social networks to increase physical activity in children. Methods. We studied a real-world social network of 81 children (average age = 7.96 years) who lived in low socioeconomic status neighborhoods, and attended public schools and 1 of 2 structured afterschool programs. The sample was ethnically diverse, and 44% were overweight or obese. We used social network analysis and agent-based modeling simulations to test whether implementing a network intervention would increase children’s physical activity. We tested 3 intervention strategies. Results. The intervention that targeted opinion leaders was effective in increasing the average level of physical activity across the entire network. However, the intervention that targeted the most sedentary children was the best at increasing their physical activity levels. Conclusions. Which network intervention to implement depends on whether the goal is to shift the entire distribution of physical activity or to influence those most adversely affected by low physical activity. Agent-based modeling could be an important complement to traditional project planning tools, analogous to sample size and power analyses, to help researchers design more effective interventions for increasing children’s physical activity. PMID:25689202

  2. Virtual Reality

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This video presentation discusses how virtual reality enables scientists to 'explore' other worlds without leaving the laboratory. The applicability of virtual reality for scientific visualization is also discussed.

  3. On the Dynamics of the Spontaneous Activity in Neuronal Networks

    PubMed Central

    Bonifazi, Paolo; Ruaro, Maria Elisabetta; Torre, Vincent

    2007-01-01

    Most neuronal networks, even in the absence of external stimuli, produce spontaneous bursts of spikes separated by periods of reduced activity. The origin and functional role of these neuronal events are still unclear. The present work shows that the spontaneous activity of two very different networks, intact leech ganglia and dissociated cultures of rat hippocampal neurons, share several features. Indeed, in both networks: i) the inter-spike intervals distribution of the spontaneous firing of single neurons is either regular or periodic or bursting, with the fraction of bursting neurons depending on the network activity; ii) bursts of spontaneous spikes have the same broad distributions of size and duration; iii) the degree of correlated activity increases with the bin width, and the power spectrum of the network firing rate has a 1/f behavior at low frequencies, indicating the existence of long-range temporal correlations; iv) the activity of excitatory synaptic pathways mediated by NMDA receptors is necessary for the onset of the long-range correlations and for the presence of large bursts; v) blockage of inhibitory synaptic pathways mediated by GABAA receptors causes instead an increase in the correlation among neurons and leads to a burst distribution composed only of very small and very large bursts. These results suggest that the spontaneous electrical activity in neuronal networks with different architectures and functions can have very similar properties and common dynamics. PMID:17502919

  4. Hub-activated signal transmission in complex networks

    NASA Astrophysics Data System (ADS)

    Jahnke, Sven; Memmesheimer, Raoul-Martin; Timme, Marc

    2014-03-01

    A wide range of networked systems exhibit highly connected nodes (hubs) as prominent structural elements. The functional roles of hubs in the collective nonlinear dynamics of many such networks, however, are not well understood. Here, we propose that hubs in neural circuits may activate local signal transmission along sequences of specific subnetworks. Intriguingly, in contrast to previous suggestions of the functional roles of hubs, here, not the hubs themselves, but nonhub subnetworks transfer the signals. The core mechanism relies on hubs and nonhubs providing activating feedback to each other. It may, thus, induce the propagation of specific pulse and rate signals in neuronal and other communication networks.

  5. Active system area networks for data intensive computations. Final report

    SciTech Connect

    2002-04-01

    The goal of the Active System Area Networks (ASAN) project is to develop hardware and software technologies for the implementation of active system area networks (ASANs). The use of the term ''active'' refers to the ability of the network interfaces to perform application-specific as well as system level computations in addition to their traditional role of data transfer. This project adopts the view that the network infrastructure should be an active computational entity capable of supporting certain classes of computations that would otherwise be performed on the host CPUs. The result is a unique network-wide programming model where computations are dynamically placed within the host CPUs or the NIs depending upon the quality of service demands and network/CPU resource availability. The projects seeks to demonstrate that such an approach is a better match for data intensive network-based applications and that the advent of low-cost powerful embedded processors and configurable hardware makes such an approach economically viable and desirable.

  6. Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy

    NASA Astrophysics Data System (ADS)

    Shi, J.; Liu, J.; Pinter, L.

    2014-04-01

    China has dramatically increased its virtual water import over recent years. Many studies have focused on the quantity of traded virtual water, but very few go into analysing geographic distribution and the properties of China's virtual water trade network. This paper provides a calculation and analysis of the crop-related virtual water trade network of China based on 27 major primary crops between 1986 and 2009. The results show that China is a net importer of virtual water from water-abundant areas of North America and South America, and a net virtual water exporter to water-stressed areas of Asia, Africa, and Europe. Virtual water import is far larger than virtual water export, and in both import and export a small number of trade partners control the supply chain. Grain crops are the major contributors to virtual water trade, and among grain crops, soybeans, mostly imported from the US, Brazil and Argentina, are the most significant. In order to mitigate water scarcity and secure the food supply, virtual water should actively be incorporated into national water management strategies. And the sources of virtual water import need to be further diversified to reduce supply chain risks and increase resilience.

  7. Cultured Neuronal Networks Express Complex Patterns of Activity and Morphological Memory

    NASA Astrophysics Data System (ADS)

    Raichman, Nadav; Rubinsky, Liel; Shein, Mark; Baruchi, Itay; Volman, Vladislav; Ben-Jacob, Eshel

    The following sections are included: * Cultured Neuronal Networks * Recording the Network Activity * Network Engineering * The Formation of Synchronized Bursting Events * The Characterization of the SBEs * Highly-Active Neurons * Function-Form Relations in Cultured Networks * Analyzing the SBEs Motifs * Network Repertoire * Network under Hypothermia * Summary * Acknowledgments * References

  8. Viking mission support. [Deep Space Network activities

    NASA Technical Reports Server (NTRS)

    Johnston, D. W. H.

    1977-01-01

    Statistics listing the Deep Space Network tracking and command support and the discrepancy report status for 1 January through 28 February 1977 are presented in tables. The initial Viking extended mission period of normal DSN support, following the nonstandard operations during the solar conjunction period is included. Operational testing subsequent to the MK III data system installations at DSS 12, 44, and 62 during this period are also discussed.

  9. Building a Gateway for the CD-ROM Network: A Step toward the Virtual Library with the Virtual Microsystems V-Server.

    ERIC Educational Resources Information Center

    Sylvia, Margaret

    1993-01-01

    Describes one college library's experience with a gateway for dial-in access to its CD-ROM network to increase access to automated index searching for students off-campus. Hardware and software choices are discussed in terms of access, reliability, affordability, and ease of use. Installation problems are discussed, and an appendix lists product…

  10. Systematic fluctuation expansion for neural network activity equations.

    PubMed

    Buice, Michael A; Cowan, Jack D; Chow, Carson C

    2010-02-01

    Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate, while leaving out higher-order statistics like correlations between firing. A stochastic theory of neural networks that includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations; they depend only on the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone.

  11. Adaptation and Growth of Tomato Cells on the Herbicide 2,6-Dichlorobenzonitrile Leads to Production of Unique Cell Walls Virtually Lacking a Cellulose-Xyloglucan Network 1

    PubMed Central

    Shedletzky, Esther; Shmuel, Miri; Delmer, Deborah P.; Lamport, Derek T. A.

    1990-01-01

    Suspension-cultured cells of tomato (Lycopersicon esculentum VF 36) have been adapted to growth on high concentrations of 2,6-dichlorobenzonitrile, an herbicide which inhibits cellulose biosynthesis. The mechanism of adaptation appears to rest largely on the ability of these cells to divide and expand in the virtual absence of a cellulose-xyloglucan network. Walls of adapted cells growing on 2,6-dichlorobenzonitrile also differ from nonadapted cells by having reduced levels of hydroxyproline in protein, both in bound and salt-elutable form, and in having a much higher proportion of homogalacturonan and rhamnogalacturonan-like polymers. Most of these latter polymers are apparently cross-linked in the wall via phenolic-ester and/or phenolic ether linkages, and these polymers appear to represent the major load-bearing network in these unusual cell walls. The surprising finding that plant cells can survive in the virtual absence of a major load-bearing network in their primary cell walls indicates that plants possess remarkable flexibility for tolerating changes in wall composition. Images Figure 2 PMID:16667879

  12. Adaptation and growth of tomato cells on the herbicide 2,6-dichlorobenzonitrile leads to production of unique cell walls virtually lacking a cellulose-xyloglucan network

    SciTech Connect

    Shedletzky, E.; Shmuel, M. ); Delmer, D.P. Michigan State Univ., East Lansing, MI ); Lamport, D.T.A. )

    1990-11-01

    Suspension-cultured cells of tomato (Lycopersicon esculentum VF 36) have been adapted to growth on high concentrations of 2,6-dichlorobenzonitrile, an herbicide which inhibits cellulose biosynthesis. The mechanism of adaptation appears to rest largely on the ability of these cells to divide and expand in the virtual absence of a cellulose-xyloglucan network. Walls of adapted cells growing on 2,6-dichlorobenzonitrile also differ from nonadapted cells by having reduced levels of hydroxyproline in protein, both in bound and salt-elutable form, and in having a much higher proportion of homogalacturonan and rhamnogalacturonan-like polymers. Most of these latter polymers are apparently cross-linked in the wall via phenolic-ester and/or phenolic ether linkages, and these polymers appear to represent the major load-bearing network in these unusual cell walls. The surprising finding that plant cells can survive in the virtual absence of a major load-bearing network in their primary cell walls indicates that plants possess remarkable flexibility for tolerating changes in wall composition.

  13. Performance evaluation of multi-stratum resources integration based on network function virtualization in software defined elastic data center optical interconnect.

    PubMed

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; Tian, Rui; Han, Jianrui; Lee, Young

    2015-11-30

    Data center interconnect with elastic optical network is a promising scenario to meet the high burstiness and high-bandwidth requirements of data center services. In our previous work, we implemented multi-stratum resilience between IP and elastic optical networks that allows to accommodate data center services. In view of this, this study extends to consider the resource integration by breaking the limit of network device, which can enhance the resource utilization. We propose a novel multi-stratum resources integration (MSRI) architecture based on network function virtualization in software defined elastic data center optical interconnect. A resource integrated mapping (RIM) scheme for MSRI is introduced in the proposed architecture. The MSRI can accommodate the data center services with resources integration when the single function or resource is relatively scarce to provision the services, and enhance globally integrated optimization of optical network and application resources. The overall feasibility and efficiency of the proposed architecture are experimentally verified on the control plane of OpenFlow-based enhanced software defined networking (eSDN) testbed. The performance of RIM scheme under heavy traffic load scenario is also quantitatively evaluated based on MSRI architecture in terms of path blocking probability, provisioning latency and resource utilization, compared with other provisioning schemes.

  14. Sparse Neural Network Models of Antimicrobial Peptide-Activity Relationships.

    PubMed

    Müller, Alex T; Kaymaz, Aral C; Gabernet, Gisela; Posselt, Gernot; Wessler, Silja; Hiss, Jan A; Schneider, Gisbert

    2016-12-01

    We present an adaptive neural network model for chemical data classification. The method uses an evolutionary algorithm for optimizing the network structure by seeking sparsely connected architectures. The number of hidden layers, the number of neurons in each layer and their connectivity are free variables of the system. We used the method for predicting antimicrobial peptide activity from the amino acid sequence. Visualization of the evolved sparse network structures suggested a high charge density and a low aggregation potential in solution as beneficial for antimicrobial activity. However, different training data sets and peptide representations resulted in greatly varying network structures. Overall, the sparse network models turned out to be less accurate than fully-connected networks. In a prospective application, we synthesized and tested 10 de novo generated peptides that were predicted to either possess antimicrobial activity, or to be inactive. Two of the predicted antibacterial peptides showed cosiderable bacteriostatic effects against both Staphylococcus aureus and Escherichia coli. None of the predicted inactive peptides possessed antibacterial properties. Molecular dynamics simulations of selected peptide structures in water and TFE suggest a pronounced peptide helicity in a hydrophobic environment. The results of this study underscore the applicability of neural networks for guiding the computer-assisted design of new peptides with desired properties.

  15. Connectivity, excitability and activity patterns in neuronal networks

    NASA Astrophysics Data System (ADS)

    le Feber, Joost; Stoyanova, Irina I.; Chiappalone, Michela

    2014-06-01

    Extremely synchronized firing patterns such as those observed in brain diseases like epilepsy may result from excessive network excitability. Although network excitability is closely related to (excitatory) connectivity, a direct measure for network excitability remains unavailable. Several methods currently exist for estimating network connectivity, most of which are related to cross-correlation. An example is the conditional firing probability (CFP) analysis which calculates the pairwise probability (CFPi,j) that electrode j records an action potential at time t = τ, given that electrode i recorded a spike at t = 0. However, electrode i often records multiple spikes within the analysis interval, and CFP values are biased by the on-going dynamic state of the network. Here we show that in a linear approximation this bias may be removed by deconvoluting CFPi,j with the autocorrelation of i (i.e. CFPi,i), to obtain the single pulse response (SPRi,j)—the average response at electrode j to a single spike at electrode i. Thus, in a linear system SPRs would be independent of the dynamic network state. Nonlinear components of synaptic transmission, such as facilitation and short term depression, will however still affect SPRs. Therefore SPRs provide a clean measure of network excitability. We used carbachol and ghrelin to moderately activate cultured cortical networks to affect their dynamic state. Both neuromodulators transformed the bursting firing patterns of the isolated networks into more dispersed firing. We show that the influence of the dynamic state on SPRs is much smaller than the effect on CFPs, but not zero. The remaining difference reflects the alteration in network excitability. We conclude that SPRs are less contaminated by the dynamic network state and that mild excitation may decrease network excitability, possibly through short term synaptic depression.

  16. Analysing the Suitability of Virtual Worlds for Direct Instruction and Individual Learning Activities

    ERIC Educational Resources Information Center

    Zarraonandia, Telmo; Francese, Rita; Passero, Ignazio; Diaz, Paloma; Tortora, Genoveffa

    2014-01-01

    Despite several researchers reporting evidence that 3D Virtual Worlds can be used to effectively support educational processes in recent years, the integration of this technology in real learning processes is not as commonplace as in other educational technologies. Instructional designers have to balance the cost associated with the development of…

  17. Question-Answer Activities in Synchronous Virtual Classrooms in Terms of Interest and Usefulness

    ERIC Educational Resources Information Center

    Aydemir, Melike; Kursun, Engin; Karaman, Selçuk

    2016-01-01

    Instructors generally convey their face to face habits to synchronous virtual classrooms, but these face to face strategies do not work in these environments. In this sense, the purpose of this study was to investigate the effects of question type and answer format used in synchronous class implementations on perceived interest and usefulness. To…

  18. Stimulus information stored in lasting active and hidden network states is destroyed by network bursts.

    PubMed

    Dranias, Mark R; Westover, M Brandon; Cash, Sidney; VanDongen, Antonius M J

    2015-01-01

    In both humans and animals brief synchronizing bursts of epileptiform activity known as interictal epileptiform discharges (IEDs) can, even in the absence of overt seizures, cause transient cognitive impairments (TCI) that include problems with perception or short-term memory. While no evidence from single units is available, it has been assumed that IEDs destroy information represented in neuronal networks. Cultured neuronal networks are a model for generic cortical microcircuits, and their spontaneous activity is characterized by the presence of synchronized network bursts (SNBs), which share a number of properties with IEDs, including the high degree of synchronization and their spontaneous occurrence in the absence of an external stimulus. As a model approach to understanding the processes underlying IEDs, optogenetic stimulation and multielectrode array (MEA) recordings of cultured neuronal networks were used to study whether stimulus information represented in these networks survives SNBs. When such networks are optically stimulated they encode and maintain stimulus information for as long as one second. Experiments involved recording the network response to a single stimulus and trials where two different stimuli were presented sequentially, akin to a paired pulse trial. We broke the sequential stimulus trials into encoding, delay and readout phases and found that regardless of which phase the SNB occurs, stimulus-specific information was impaired. SNBs were observed to increase the mean network firing rate, but this did not translate monotonically into increases in network entropy. It was found that the more excitable a network, the more stereotyped its response was during a network burst. These measurements speak to whether SNBs are capable of transmitting information in addition to blocking it. These results are consistent with previous reports and provide baseline predictions concerning the neural mechanisms by which IEDs might cause TCI.

  19. Goal-congruent default network activity facilitates cognitive control.

    PubMed

    Spreng, R Nathan; DuPre, Elizabeth; Selarka, Dhawal; Garcia, Juliana; Gojkovic, Stefan; Mildner, Judith; Luh, Wen-Ming; Turner, Gary R

    2014-10-15

    Substantial neuroimaging evidence suggests that spontaneous engagement of the default network impairs performance on tasks requiring executive control. We investigated whether this impairment depends on the congruence between executive control demands and internal mentation. We hypothesized that activation of the default network might enhance performance on an executive control task if control processes engage long-term memory representations that are supported by the default network. Using fMRI, we scanned 36 healthy young adult humans on a novel two-back task requiring working memory for famous and anonymous faces. In this task, participants (1) matched anonymous faces interleaved with anonymous face, (2) matched anonymous faces interleaved with a famous face, or (3) matched a famous faces interleaved with an anonymous face. As predicted, we observed a facilitation effect when matching famous faces, compared with anonymous faces. We also observed greater activation of the default network during these famous face-matching trials. The results suggest that activation of the default network can contribute to task performance during an externally directed executive control task. Our findings provide evidence that successful activation of the default network in a contextually relevant manner facilitates goal-directed cognition.

  20. Mechanisms of spontaneous activity in developing spinal networks.

    PubMed

    O'Donovan, M J; Chub, N; Wenner, P

    1998-10-01

    Developing networks of the chick spinal cord become spontaneously active early in development and remain so until hatching. Experiments using an isolated preparation of the spinal cord have begun to reveal the mechanisms responsible for this activity. Whole-cell and optical recordings have shown that spinal neurons receive a rhythmic, depolarizing synaptic drive and experience rhythmic elevations of intracellular calcium during spontaneous episodes. Activity is expressed throughout the neuraxis and can be produced by different parts of the cord and by the isolated brain stem, suggesting that it does not depend upon the details of network architecture. Two factors appear to be particularly important for the production of endogenous activity. The first is the predominantly excitatory nature of developing synaptic connections, and the second is the presence of prolonged activity-dependent depression of network excitability. The interaction between high excitability and depression results in an equilibrium in which episodes are expressed periodically by the network. The mechanism of the rhythmic bursting within an episode is not understood, but it may be due to a "fast" form of network depression. Spontaneous embryonic activity has been shown to play a role in neuron and muscle development, but is probably not involved in the initial formation of connections between spinal neurons. It may be important in refining the initial connections, but this possibility remains to be explored.

  1. A network model for activity-dependent sleep regulation.

    PubMed

    Roy, Sandip; Krueger, James M; Rector, David M; Wan, Yan

    2008-08-07

    We develop and characterize a dynamical network model for activity-dependent sleep regulation. Specifically, in accordance with the activity-dependent theory for sleep, we view organism sleep as emerging from the local sleep states of functional units known as cortical columns; these local sleep states evolve through integration of local activity inputs, loose couplings with neighboring cortical columns, and global regulation (e.g. by the circadian clock). We model these cortical columns as coupled or networked activity-integrators that transition between sleep and waking states based on thresholds on the total activity. The model dynamics for three canonical experiments (which we have studied both through simulation and system-theoretic analysis) match with experimentally observed characteristics of the cortical-column network. Most notably, assuming connectedness of the network graph, our model predicts the recovery of the columns to a synchronized state upon temporary overstimulation of a single column and/or randomization of the initial sleep and activity-integration states. In analogy with other models for networked oscillators, our model also predicts the possibility for such phenomena as mode-locking.

  2. A Novel Topology Link-Controlling Approach for Active Defense of a Node in a Network.

    PubMed

    Li, Jun; Hu, HanPing; Ke, Qiao; Xiong, Naixue

    2017-03-09

    With the rapid development of virtual machine technology and cloud computing, distributed denial of service (DDoS) attacks, or some peak traffic, poses a great threat to the security of the network. In this paper, a novel topology link control technique and mitigation attacks in real-time environments is proposed. Firstly, a non-invasive method of deploying virtual sensors in the nodes is built, which uses the resource manager of each monitored node as a sensor. Secondly, a general topology-controlling approach of resisting the tolerant invasion is proposed. In the proposed approach, a prediction model is constructed by using copula functions for predicting the peak of a resource through another resource. The result of prediction determines whether or not to initiate the active defense. Finally, a minority game with incomplete strategy is employed to suppress attack flows and improve the permeability of the normal flows. The simulation results show that the proposed approach is very effective in protecting nodes.

  3. A Novel Topology Link-Controlling Approach for Active Defense of Nodes in Networks

    PubMed Central

    Li, Jun; Hu, HanPing; Ke, Qiao; Xiong, Naixue

    2017-01-01

    With the rapid development of virtual machine technology and cloud computing, distributed denial of service (DDoS) attacks, or some peak traffic, poses a great threat to the security of the network. In this paper, a novel topology link control technique and mitigation attacks in real-time environments is proposed. Firstly, a non-invasive method of deploying virtual sensors in the nodes is built, which uses the resource manager of each monitored node as a sensor. Secondly, a general topology-controlling approach of resisting the tolerant invasion is proposed. In the proposed approach, a prediction model is constructed by using copula functions for predicting the peak of a resource through another resource. The result of prediction determines whether or not to initiate the active defense. Finally, a minority game with incomplete strategy is employed to suppress attack flows and improve the permeability of the normal flows. The simulation results show that the proposed approach is very effective in protecting nodes. PMID:28282962

  4. Slowing of Hippocampal Activity Correlates with Cognitive Decline in Early Onset Alzheimer's Disease. An MEG Study with Virtual Electrodes.

    PubMed

    Engels, Marjolein M A; Hillebrand, Arjan; van der Flier, Wiesje M; Stam, Cornelis J; Scheltens, Philip; van Straaten, Elisabeth C W

    2016-01-01

    Pathology in Alzheimer's disease (AD) starts in the entorhinal cortex and hippocampus. Because of their deep location, activity from these areas is difficult to record with conventional electro- or magnetoencephalography (EEG/MEG). The purpose of this study was to explore hippocampal activity in AD patients and healthy controls using "virtual MEG electrodes". We used resting-state MEG recordings from 27 early onset AD patients [age 60.6 ± 5.4, 12 females, mini-mental state examination (MMSE) range: 19-28] and 26 cognitively healthy age- and gender-matched controls (age 61.8 ± 5.5, 14 females). Activity was reconstructed using beamformer-based virtual electrodes for 78 cortical regions and 6 hippocampal regions. Group differences in peak frequency and relative power in six frequency bands were identified using permutation testing. For the patients, spearman correlations between the MMSE scores and peak frequency or relative power were calculated. Moreover, receiver operator characteristic curves were plotted to estimate the diagnostic accuracy. We found a lower hippocampal peak frequency in AD compared to controls, which, in the patients, correlated positively with MMSE [r(25) = 0.61; p < 0.01] whereas hippocampal relative theta power correlated negatively with MMSE [r(25) = -0.54; p < 0.01]. Cortical peak frequency was also lower in AD in association areas. Furthermore, cortical peak frequency correlated positively with MMSE [r(25) = 0.43; p < 0.05]. In line with this finding, relative theta power was higher in AD across the cortex, and relative alpha and beta power was lower in more circumscribed areas. The average cortical relative theta power was the best discriminator between AD and controls (sensitivity 82%; specificity 81%). Using beamformer-based virtual electrodes, we were able to detect hippocampal activity in AD. In AD, this hippocampal activity is slowed, and correlates better with cognition than the (slowed) activity in cortical areas. On the other

  5. Plasticity of recurring spatiotemporal activity patterns in cortical networks

    NASA Astrophysics Data System (ADS)

    Madhavan, Radhika; Chao, Zenas C.; Potter, Steve M.

    2007-09-01

    How do neurons encode and store information for long periods of time? Recurring patterns of activity have been reported in various cortical structures and were suggested to play a role in information processing and memory. To study the potential role of bursts of action potentials in memory mechanisms, we investigated patterns of spontaneous multi-single-unit activity in dissociated rat cortical cultures in vitro. Spontaneous spikes were recorded from networks of approximately 50 000 neurons and glia cultured on a grid of 60 extracellular substrate- embedded electrodes (multi-electrode arrays). These networks expressed spontaneous culture- wide bursting from approximately one week in vitro. During bursts, a large portion of the active electrodes showed elevated levels of firing. Spatiotemporal activity patterns within spontaneous bursts were clustered using a correlation-based clustering algorithm, and the occurrences of these burst clusters were tracked over several hours. This analysis revealed spatiotemporally diverse bursts occurring in well-defined patterns, which remained stable for several hours. Activity evoked by strong local tetanic stimulation resulted in significant changes in the occurrences of spontaneous bursts belonging to different clusters, indicating that the dynamical flow of information in the neuronal network had been altered. The diversity of spatiotemporal structure and long-term stability of spontaneous bursts together with their plastic nature strongly suggests that such network patterns could be used as codes for information transfer and the expression of memories stored in cortical networks.

  6. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    PubMed Central

    McCullen, Nick; Wagenknecht, Thomas

    2016-01-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339

  7. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    NASA Astrophysics Data System (ADS)

    McCullen, Nick; Wagenknecht, Thomas

    2016-06-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system.

  8. Poly(Capro-Lactone) Networks as Actively Moving Polymers

    NASA Astrophysics Data System (ADS)

    Meng, Yuan

    Shape-memory polymers (SMPs), as a subset of actively moving polymers, form an exciting class of materials that can store and recover elastic deformation energy upon application of an external stimulus. Although engineering of SMPs nowadays has lead to robust materials that can memorize multiple temporary shapes, and can be triggered by various stimuli such as heat, light, moisture, or applied magnetic fields, further commercialization of SMPs is still constrained by the material's incapability to store large elastic energy, as well as its inherent one-way shape-change nature. This thesis develops a series of model semi-crystalline shape-memory networks that exhibit ultra-high energy storage capacity, with accurately tunable triggering temperature; by introducing a second competing network, or reconfiguring the existing network under strained state, configurational chain bias can be effectively locked-in, and give rise to two-way shape-actuators that, in the absence of an external load, elongates upon cooling and reversibly contracts upon heating. We found that well-defined network architecture plays essential role on strain-induced crystallization and on the performance of cold-drawn shape-memory polymers. Model networks with uniform molecular weight between crosslinks, and specified functionality of each net-point, results in tougher, more elastic materials with a high degree of crystallinity and outstanding shape-memory properties. The thermal behavior of the model networks can be finely modified by introducing non-crystalline small molecule linkers that effectively frustrates the crystallization of the network strands. This resulted in shape-memory networks that are ultra-sensitive to heat, as deformed materials can be efficiently triggered to revert to its permanent state upon only exposure to body temperature. We also coupled the same reaction adopted to create the model network with conventional free-radical polymerization to prepare a dual-cure "double

  9. Assessing capacity and disease burden in a virtual network of New York City primary care providers following Hurricane Sandy.

    PubMed

    Sebek, Kimberly; Jacobson, Laura; Wang, Jason; Newton-Dame, Remle; Singer, Jesse

    2014-08-01

    Urban contexts introduce unique challenges that must be addressed to ensure that areas of high population density can function when disasters occur. The ability to generate useful data to guide decision-making is critical in this context. Widespread adoption of electronic health record (EHR) systems in recent years has created electronic data sources and networks that may play an important role in public health surveillance efforts, including in post-disaster situations. The Primary Care Information Project (PCIP) at the New York City Department of Health and Mental Hygiene has partnered with local clinicians to establish an electronic data system, and this network provides infrastructure to support primary care surveillance activities in New York City. After Hurricane Sandy, PCIP generated several sets of data to contribute to the city's efforts to assess the impact of the storm, including daily connectivity data to establish practice operations, data to examine patterns of primary care utilization in severely affected and less affected areas, and data on the frequency of respiratory infection diagnosis in the primary care setting. Daily patient visit data from three heavily affected neighborhoods showed the health department where primary care capacity was most affected in the weeks following Sandy. Overall transmission data showed that practices in less affected areas were quicker to return to normal reporting patterns, while those in more affected areas did not resume normal data transmissions for a few months. Rates of bronchitis increased after Sandy compared to the two prior years; while this was most likely attributable to a more severe flu season, it demonstrates the capacity of primary care networks to pick up on these types of post-emergency trends. Hurricane Sandy was the first disaster situation where PCIP was asked to assess public health impact, generating information that could contribute to aid and recovery efforts. This experience allowed us to

  10. Interrelations between virtual-world and real-world activities: comparison of genders, age groups, and pathological and nonpathological Internet users.

    PubMed

    Bayraktar, Fatih; Amca, Hasan

    2012-05-01

    After the Internet Revolution, people have started to spend most of their everyday time online carrying out virtual activities. A limited number of studies tried to answer whether virtual activities match our real-world (RW) activities. Moreover, to our knowledge, there was no study that dealt with these interrelations between virtual and RW activities among the pathological and nonpathological users of the Internet (i.e. PIUs and NPIUs). The primary aim of this study was to fill this gap and to investigate the correlations between virtual-world (VW) and RW activities among PIUs and NPIUs. The secondary aim was to examine the perceptions of the Internet and motivations to go online for PIUs and NPIUs. The third aim was to compare virtual and RW activities across gender and age groups. The results indicated that correlations between most of the activities in RW and VW were high among men and women, among age groups, and also among PIUs and NPUs. However, beyond these similarities, perceptions of the Internet and motivations to browse into VW were differed among PIUs and NPIUs. In other words, PIUs, but not NPIUs, perceived VW activities more gratified and had motivations to go online for gratified functions.

  11. Virtual Worlds for Educators

    ERIC Educational Resources Information Center

    Dembo, Steve

    2008-01-01

    This article describes an online experience that has not only created a fantasy world for the general public but has enabled some tech-savvy educators to create virtual educational opportunities. Second Life, or SL, is a 3-D Internet-based virtual world created by Linden Lab and populated by nearly 1,000,000 active users worldwide since 2003.…

  12. Mechanisms Underlying Desynchronization of Cholinergic-Evoked Thalamic Network Activity

    PubMed Central

    Pita-Almenar, Juan Diego; Yu, Dinghui; Lu, Hui-Chen

    2014-01-01

    Synchronous neuronal activity in the thalamocortical system is critical for a number of behaviorally relevant computations, but hypersynchrony can limit information coding and lead to epileptiform responses. In the somatosensory thalamus, afferent inputs are transformed by networks of reciprocally connected thalamocortical neurons in the ventrobasal nucleus (VB) and GABAergic neurons in the thalamic reticular nucleus (TRN). These networks can generate oscillatory activity, and studies in vivo and in vitro have suggested that thalamic oscillations are often accompanied by synchronous neuronal activity, in part mediated by widespread divergence and convergence of both reticulothalamic and thalamoreticular pathways, as well as by electrical synapses interconnecting TRN neurons. However, the functional organization of thalamic circuits and its role in shaping input-evoked activity patterns remain poorly understood. Here we show that optogenetic activation of cholinergic synaptic afferents evokes near-synchronous firing in mouse TRN neurons that is rapidly desynchronized in thalamic networks. We identify several mechanisms responsible for desynchronization: (1) shared inhibitory inputs in local VB neurons leading to asynchronous and imprecise rebound bursting; (2) TRN-mediated lateral inhibition that further desynchronizes firing in the VB; and (3) powerful yet sparse thalamoreticular connectivity that mediates re-excitation of the TRN but preserves asynchronous firing. Our findings reveal how distinct local circuit features interact to desynchronize thalamic network activity. PMID:25339757

  13. Building a Collaborative Network To Support Michigan Community Colleges in a Global Market. Michigan Community College Virtual Learning Collaborative.

    ERIC Educational Resources Information Center

    Michigan Community Coll. Association, Lansing.

    This report describes the Michigan Community College Virtual Learning Collaborative (MCCVLC), an innovative educational environment that provides learners access to high-quality courses through a variety of technologies. The following describe the collaborative's guiding principles: (1) faculty and staff at all Michigan community colleges will…

  14. The Use of Virtual Learning Environment (VLE) and Social Network Site (SNS) Hosted Forums in Higher Education: A Preliminary Examination

    ERIC Educational Resources Information Center

    Hollyhead, Andrew; Edwards, David J.; Holt, Gary D.

    2012-01-01

    Grounded theory is used to examine the role and application of both educator-led and student-led forums within a virtual learning environment (VLE) of a higher education institution (HEI). The study reports experiences and perceptions of academics in two faculties (business and technology) in the HEI who use both asynchronous VLE forums and social…

  15. Fast transient networks in spontaneous human brain activity

    PubMed Central

    Baker, Adam P; Brookes, Matthew J; Rezek, Iead A; Smith, Stephen M; Behrens, Timothy; Probert Smith, Penny J; Woolrich, Mark

    2014-01-01

    To provide an effective substrate for cognitive processes, functional brain networks should be able to reorganize and coordinate on a sub-second temporal scale. We used magnetoencephalography recordings of spontaneous activity to characterize whole-brain functional connectivity dynamics at high temporal resolution. Using a novel approach that identifies the points in time at which unique patterns of activity recur, we reveal transient (100–200 ms) brain states with spatial topographies similar to those of well-known resting state networks. By assessing temporal changes in the occurrence of these states, we demonstrate that within-network functional connectivity is underpinned by coordinated neuronal dynamics that fluctuate much more rapidly than has previously been shown. We further evaluate cross-network interactions, and show that anticorrelation between the default mode network and parietal regions of the dorsal attention network is consistent with an inability of the system to transition directly between two transient brain states. DOI: http://dx.doi.org/10.7554/eLife.01867.001 PMID:24668169

  16. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function.

  17. Design and implementation of dynamic hybrid Honeypot network

    NASA Astrophysics Data System (ADS)

    Qiao, Peili; Hu, Shan-Shan; Zhai, Ji-Qiang

    2013-05-01

    The method of constructing a dynamic and self-adaptive virtual network is suggested to puzzle adversaries, delay and divert attacks, exhaust attacker resources and collect attacking information. The concepts of Honeypot and Honeyd, which is the frame of virtual Honeypot are introduced. The techniques of network scanning including active fingerprint recognition are analyzed. Dynamic virtual network system is designed and implemented. A virtual network similar to real network topology is built according to the collected messages from real environments in this system. By doing this, the system can perplex the attackers when Hackers attack and can further analyze and research the attacks. The tests to this system prove that this design can successfully simulate real network environment and can be used in network security analysis.

  18. Virtual screening of mandelate racemase mutants with enhanced activity based on binding energy in the transition state.

    PubMed

    Gu, Jiali; Liu, Min; Guo, Fei; Xie, Wenping; Lu, Wenqiang; Ye, Lidan; Chen, Zhirong; Yuan, Shenfeng; Yu, Hongwei

    2014-02-05

    Mandelate racemase (MR) is a promising candidate for the dynamic kinetic resolution of racemates. However, the poor activity of MR towards most of its non-natural substrates limits its widespread application. In this work, a virtual screening method based on the binding energy in the transition state was established to assist in the screening of MR mutants with enhanced catalytic efficiency. Using R-3-chloromandelic acid as a model substrate, a total of 53 mutants were constructed based on rational design in the two rounds of screening. The number of mutants for experimental validation was brought down to 17 by the virtual screening method, among which 14 variants turned out to possess improved catalytic efficiency. The variant V26I/Y54V showed 5.2-fold higher catalytic efficiency (k(cat)/K(m)) towards R-3-chloromandelic acid than that observed for the wild-type enzyme. Using this strategy, mutants were successfully obtained for two other substrates, R-mandelamide and R-2-naphthylglycolate (V26I and V29L, respectively), both with a 2-fold improvement in catalytic efficiency. These results demonstrated that this method could effectively predict the trend of mutational effects on catalysis. Analysis from the energetic and structural assays indicated that the enhanced interactions between the active sites and the substrate in the transition state led to improved catalytic efficiency. It was concluded that this virtual screening method based on the binding energy in the transition state was beneficial in enzyme rational redesign and helped to better understand the catalytic properties of the enzyme.

  19. Sensorimotor Training in Virtual Reality: A Review

    PubMed Central

    Adamovich, Sergei V.; Fluet, Gerard G.; Tunik, Eugene; Merians, Alma S.

    2010-01-01

    Recent experimental evidence suggests that rapid advancement of virtual reality (VR) technologies has great potential for the development of novel strategies for sensorimotor training in neurorehabilitation. We discuss what the adaptive and engaging virtual environments can provide for massive and intensive sensorimotor stimulation needed to induce brain reorganization. Second, discrepancies between the veridical and virtual feedback can be introduced in VR to facilitate activation of targeted brain networks, which in turn can potentially speed up the recovery process. Here we review the existing experimental evidence regarding the beneficial effects of training in virtual environments on the recovery of function in the areas of gait, upper extremity function and balance, in various patient populations. We also discuss possible mechanisms underlying these effects. We feel that future research in the area of virtual rehabilitation should follow several important paths. Imaging studies to evaluate the effects of sensory manipulation on brain activation patterns and the effect of various training parameters on long term changes in brain function are needed to guide future clinical inquiry. Larger clinical studies are also needed to establish the efficacy of sensorimotor rehabilitation using VR approaches in various clinical populations and most importantly, to identify VR training parameters that are associated with optimal transfer into real-world functional improvements. PMID:19713617

  20. The potential of virtual reality-based training to enhance the functional autonomy of Alzheimer's disease patients in cooking activities: A single case study.

    PubMed

    Foloppe, Déborah A; Richard, Paul; Yamaguchi, Takehiko; Etcharry-Bouyx, Frédérique; Allain, Philippe

    2015-10-20

    Impairments in performing activities of daily living occur early in the course of Alzheimer's disease (AD). There is a great need to develop non-pharmacological therapeutic interventions likely to reduce dependency in everyday activities in AD patients. This study investigated whether it was possible to increase autonomy in these patients in cooking activities using interventions based on errorless learning, vanishing-cue, and virtual reality techniques. We recruited a 79-year-old woman who met NINCDS-ADRDA criteria for probable AD. She was trained in four cooking tasks for four days per task, one hour per day, in virtual and in real conditions. Outcome measures included subjective data concerning the therapeutic intervention and the experience of virtual reality, repeated assessments of training activities, neuropsychological scores, and self-esteem and quality of life measures. The results indicated that our patient could relearn some cooking activities using virtual reality techniques. Transfer to real life was also observed. Improvement of the task performance remained stable over time. This case report supports the value of a non-immersive virtual kitchen to help people with AD to relearn cooking activities.

  1. Activity-Dependent Neuronal Model on Complex Networks

    PubMed Central

    de Arcangelis, Lucilla; Herrmann, Hans J.

    2012-01-01

    Neuronal avalanches are a novel mode of activity in neuronal networks, experimentally found in vitro and in vivo, and exhibit a robust critical behavior: these avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems. We present a recent model inspired in self-organized criticality, which consists of an electrical network with threshold firing, refractory period, and activity-dependent synaptic plasticity. The model reproduces the critical behavior of the distribution of avalanche sizes and durations measured experimentally. Moreover, the power spectra of the electrical signal reproduce very robustly the power law behavior found in human electroencephalogram (EEG) spectra. We implement this model on a variety of complex networks, i.e., regular, small-world, and scale-free and verify the robustness of the critical behavior. PMID:22470347

  2. Activity flow over resting-state networks shapes cognitive task activations

    PubMed Central

    Cole, Michael W.; Ito, Takuya; Bassett, Danielle S.; Schultz, Douglas H.

    2016-01-01

    Resting-state functional connectivity (FC) has helped reveal the intrinsic network organization of the human brain, yet its relevance to cognitive task activations has been unclear. Uncertainty remains despite evidence that resting-state FC patterns are highly similar to cognitive task activation patterns. Identifying the distributed processes that shape localized cognitive task activations may help reveal why resting-state FC is so strongly related to cognitive task activations. We found that estimating task-evoked activity flow (the spread of activation amplitudes) over resting-state FC networks allows prediction of cognitive task activations in a large-scale neural network model. Applying this insight to empirical functional MRI data, we found that cognitive task activations can be predicted in held-out brain regions (and held-out individuals) via estimated activity flow over resting-state FC networks. This suggests that task-evoked activity flow over intrinsic networks is a large-scale mechanism explaining the relevance of resting-state FC to cognitive task activations. PMID:27723746

  3. History and geography of virtual water trade

    NASA Astrophysics Data System (ADS)

    Carr, J. A.; D'Odorico, P.; Laio, F.; Ridolfi, L.

    2012-12-01

    The global trade of goods is associated with a virtual transfer of the water required for their production. The way changes in trade affect the virtual redistribution of freshwater resources has been recently documented through the analysis of the virtual water network. It is, however, unclear how these changes are contributed by different types of products and regions of the world. Here we show how the global patterns of virtual water transport are contributed by the trade of different commodity types, including plant, animal, luxury (e.g., coffee, tea, and alcohol), and other products (non-edible plant and animal products typically used for manufacturing). Major contributors to the virtual water network exhibit different trade patterns with regard to these commodity types with the net importers of virtual water relying on the supply of virtual water from a small percentage of the global population. Discrepancies exist among the different commodity networks. Surprisingly, while the total virtual water flux through the network has increased between 1986 and 2008, the global proportions associated with the four commodity groups have remained relatively stable. Here we discuss some major changes in the global patterns of virtual water trade with a focus on the increase in regional dependencies on foreign virtual water. The increase in virtual water trade and the percentage of the total virtual water flux in the network corresponding to plant, animals, luxury, and other commodities.

  4. California Health Services/Educational Activities. Consortium Network.

    ERIC Educational Resources Information Center

    White, Charles H.

    Profiles are presented of each of the 10 consortia that make up the California Health Services/Education Activities (HS/EA) network (new relationships between educational facilities where health care manpower is trained in the community settings where they practice). The first part of the booklet is a comparative analysis of (1) Area Health…

  5. Photonic network R and D activities in Japan

    NASA Astrophysics Data System (ADS)

    Kitayama, Ken-ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-ichi; Onaka, Hiroshi; Namiki, Shu; Aovama, Tomonori

    2005-11-01

    R and D activities on photonic networks in Japan are presented. First, milestones in current, ongoing R and D programs supported by Japanese government agencies are introduced, including long-distance and WDM fiber transmission, wavelength routing, optical burst switching, and control plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP over WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R and D programs for photonic networks over the next five years until 2010, by focusing on the report which has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R and D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis through the customer's initiative, to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.

  6. RelEx: Visualization for Actively Changing Overlay Network Specifications.

    PubMed

    Sedlmair, M; Frank, A; Munzner, T; Butz, A

    2012-12-01

    We present a network visualization design study focused on supporting automotive engineers who need to specify and optimize traffic patterns for in-car communication networks. The task and data abstractions that we derived support actively making changes to an overlay network, where logical communication specifications must be mapped to an underlying physical network. These abstractions are very different from the dominant use case in visual network analysis, namely identifying clusters and central nodes, that stems from the domain of social network analysis. Our visualization tool RelEx was created and iteratively refined through a full user-centered design process that included a full problem characterization phase before tool design began, paper prototyping, iterative refinement in close collaboration with expert users for formative evaluation, deployment in the field with real analysts using their own data, usability testing with non-expert users, and summative evaluation at the end of the deployment. In the summative post-deployment study, which entailed domain experts using the tool over several weeks in their daily practice, we documented many examples where the use of RelEx simplified or sped up their work compared to previous practices.

  7. Mind in the Gap Between Neural and Social Networks - Cyberspace and Virtual Reality in Psychiatry and Healthcare.

    PubMed

    Šendula-Jengić, Vesna; Šendula-Pavelić, Martina; Hodak, Jelena

    2016-06-01

    In terms of health and healthcare cyberspace and virtual reality can be used differently and for different purposes and consequently create different outcomes. The three main areas which we shall discuss here are: 1) cyberspace as provider of health information and self-help resources, since the anonymity cyberspace provides is particularly important in the highly stigmatized field of psychiatry where a large number of people never seek professional help, which in turn negatively affects not only the person in question, but the family and ultimately the society (work efficiency, disability-adjusted life year - DALY, etc.), 2) cyberspace and virtual reality (VR) as cause of psychopathology, starting from violent behaviour, to addictive behaviour and other, 3) and finally cyberspace and VR as providers of efficient professional therapy in the field of psychiatry.

  8. Self-regulated homoclinic chaos in neural networks activity

    NASA Astrophysics Data System (ADS)

    Volman, Vladislav; Baruchi, Itay; Ben-Jacob, Eshel

    2004-12-01

    We compare the recorded activity of cultured neuronal networks with hybridized model simulations, in which the model neurons are driven by the recorded activity of special neurons. The latter, named `spiker' neurons, that exhibit fast firing with homoclinic chaos like characteristics, are expected to play an important role in the networks' self regulation. The cultured networks are grown from dissociated mixtures of cortical neurons and glia cells. Despite the artificial manner of their construction, the spontaneous activity of these networks exhibits rich dynamical behavior, marked by the formation of temporal sequences of synchronized bursting events (SBEs), and additional features which seemingly reflect the action of underlying regulating mechanism, rather than arbitrary causes and effects. Our model neurons are composed of soma described by the two Morris-Lecar dynamical variables (voltage and fraction of open potassium channels), with dynamical synapses described by the Tsodyks-Markram three variables dynamics. To study the recorded and simulated activities we evaluated the inter-neuron correlation matrices, and analyzed them utilizing the functional holography approach: the correlations are re-normalized by the correlation distances — Euclidean distances between the matrix columns. Then, we project the N-dimensional (for N channels) space spanned by the matrix of re-normalized correlations, or correlation affinities, onto a corresponding 3-D causal manifold (3-D Cartesian space constructed by the 3 leading principal vectors of the N-dimensional space. The neurons are located by their principal eigenvalues and linked by their original (not-normalized) correlations. This reveals hidden causal motifs: the neuron locations and their links form simple structures. Similar causal motifs are exhibited by the model simulations when feeded by the recorded activity of the spiker neurons. We illustrate that the homoclinic chaotic behavior of the spiker neurons can be

  9. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements.

    PubMed

    Villiger, Michael; Estévez, Natalia; Hepp-Reymond, Marie-Claude; Kiper, Daniel; Kollias, Spyros S; Eng, Kynan; Hotz-Boendermaker, Sabina

    2013-01-01

    The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI) in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective) of a foot kicking a ball. They were instructed to observe-only the action (O), observe and simultaneously imagine performing the action (O-MI), or imitate the action (O-IMIT). We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i) combining observation with motor imagery (O-MI) enhances activation compared to observation-only (O) in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii) it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks.

  10. Multichannel activity propagation across an engineered axon network

    NASA Astrophysics Data System (ADS)

    Chen, H. Isaac; Wolf, John A.; Smith, Douglas H.

    2017-04-01

    Objective. Although substantial progress has been made in mapping the connections of the brain, less is known about how this organization translates into brain function. In particular, the massive interconnectivity of the brain has made it difficult to specifically examine data transmission between two nodes of the connectome, a central component of the ‘neural code.’ Here, we investigated the propagation of multiple streams of asynchronous neuronal activity across an isolated in vitro ‘connectome unit.’ Approach. We used the novel technique of axon stretch growth to create a model of a long-range cortico-cortical network, a modular system consisting of paired nodes of cortical neurons connected by axon tracts. Using optical stimulation and multi-electrode array recording techniques, we explored how input patterns are represented by cortical networks, how these representations shift as they are transmitted between cortical nodes and perturbed by external conditions, and how well the downstream node distinguishes different patterns. Main results. Stimulus representations included direct, synaptic, and multiplexed responses that grew in complexity as the distance between the stimulation source and recorded neuron increased. These representations collapsed into patterns with lower information content at higher stimulation frequencies. With internodal activity propagation, a hierarchy of network pathways, including latent circuits, was revealed using glutamatergic blockade. As stimulus channels were added, divergent, non-linear effects were observed in local versus distant network layers. Pairwise difference analysis of neuronal responses suggested that neuronal ensembles generally outperformed individual cells in discriminating input patterns. Significance. Our data illuminate the complexity of spiking activity propagation in cortical networks in vitro, which is characterized by the transformation of an input into myriad outputs over several network layers

  11. Meditation leads to reduced default mode network activity beyond an active task.

    PubMed

    Garrison, Kathleen A; Zeffiro, Thomas A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2015-09-01

    Meditation has been associated with relatively reduced activity in the default mode network, a brain network implicated in self-related thinking and mind wandering. However, previous imaging studies have typically compared meditation to rest, despite other studies having reported differences in brain activation patterns between meditators and controls at rest. Moreover, rest is associated with a range of brain activation patterns across individuals that has only recently begun to be better characterized. Therefore, in this study we compared meditation to another active cognitive task, both to replicate the findings that meditation is associated with relatively reduced default mode network activity and to extend these findings by testing whether default mode activity was reduced during meditation, beyond the typical reductions observed during effortful tasks. In addition, prior studies had used small groups, whereas in the present study we tested these hypotheses in a larger group. The results indicated that meditation is associated with reduced activations in the default mode network, relative to an active task, for meditators as compared to controls. Regions of the default mode network showing a Group × Task interaction included the posterior cingulate/precuneus and anterior cingulate cortex. These findings replicate and extend prior work indicating that the suppression of default mode processing may represent a central neural process in long-term meditation, and they suggest that meditation leads to relatively reduced default mode processing beyond that observed during another active cognitive task.

  12. Pharmacophore-based virtual screening, biological evaluation and binding mode analysis of a novel protease-activated receptor 2 antagonist

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Chul; Seo, Seoung-Hwan; Kim, Dohee; Shin, Ji-Sun; Ju, Jeongmin; Seong, Jihye; Seo, Seon Hee; Lee, Iiyoun; Lee, Kyung-Tae; Kim, Yun Kyung; No, Kyoung Tai; Pae, Ae Nim

    2016-08-01

    Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor, mediating inflammation and pain signaling in neurons, thus it is considered to be a potential therapeutic target for inflammatory diseases. In this study, we performed a ligand-based virtual screening of 1.6 million compounds by employing a common-feature pharmacophore model and two-dimensional similarity search to identify a new PAR2 antagonist. The common-feature pharmacophore model was established based on the biological screening results of our in-house library. The initial virtual screening yielded a total number of 47 hits, and additional biological activity tests including PAR2 antagonism and anti-inflammatory effects resulted in a promising candidate, compound 43, which demonstrated an IC50 value of 8.22 µM against PAR2. In next step, a PAR2 homology model was constructed using the crystal structure of the PAR1 as a template to explore the binding mode of the identified ligands. A molecular docking method was optimized by comparing the binding modes of a known PAR2 agonist GB110 and antagonist GB83, and applied to predict the binding mode of our hit compound 43. In-depth docking analyses revealed that the hydrophobic interaction with Phe2435.39 is crucial for PAR2 ligands to exert antagonistic activity. MD simulation results supported the predicted docking poses that PAR2 antagonist blocked a conformational rearrangement of Na+ allosteric site in contrast to PAR2 agonist that showed Na+ relocation upon GPCR activation. In conclusion, we identified new a PAR2 antagonist together with its binding mode, which provides useful insights for the design and development of PAR2 ligands.

  13. An Internet-Based Virtual Coach to Promote Physical Activity Adherence in Overweight Adults: Randomized Controlled Trial

    PubMed Central

    Bickmore, Timothy; Cange, Abby; Kulshreshtha, Ambar; Kvedar, Joseph

    2012-01-01

    Background Addressing the obesity epidemic requires the development of effective, scalable interventions. Pedometers and Web-based programs are beneficial in increasing activity levels but might be enhanced by the addition of nonhuman coaching. Objectives We hypothesized that a virtual coach would increase activity levels, via step count, in overweight or obese individuals beyond the effect observed using a pedometer and website alone. Methods We recruited 70 participants with a body mass index (BMI) between 25 and 35 kg/m2 from the Boston metropolitan area. Participants were assigned to one of two study arms and asked to wear a pedometer and access a website to view step counts. Intervention participants also met with a virtual coach, an automated, animated computer agent that ran on their home computers, set goals, and provided personalized feedback. Data were collected and analyzed in 2008. The primary outcome measure was change in activity level (percentage change in step count) over the 12-week study, split into four 3-week time periods. Major secondary outcomes were change in BMI and participants’ satisfaction. Results The mean age of participants was 42 years; the majority of participants were female (59/70, 84%), white (53/70, 76%), and college educated (68/70, 97%). Of the initial 70 participants, 62 completed the study. Step counts were maintained in intervention participants but declined in controls. The percentage change in step count between those in the intervention and control arms, from the start to the end, did not reach the threshold for significance (2.9% vs –12.8% respectively, P = .07). However, repeated measures analysis showed a significant difference when comparing percentage changes in step counts between control and intervention participants over all time points (analysis of variance, P = .02). There were no significant changes in secondary outcome measures. Conclusions The virtual coach was beneficial in maintaining activity level

  14. Soil water and carbon management for agricultural resilience in a key node in the global virtual water trade network: Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Speratti, A. B.; Lathuilliere, M. J.; Dalmagro, H. J.; Couto, E. G.

    2015-12-01

    The Amazon region is globally connected through agricultural exports, with the Brazilian state of Mato Grosso in particular emerging as a key node in the global virtual water trade network in recent years, based largely on rainfed agriculture. The anticipated growth in the world's population suggests that virtual water trade will only become more important to global food security. In this presentation we will evaluate strategies for improving the resilience of rainfed agriculture in the region, particularly for the nearly 12 million hectares of sandy soil with low water holding capacity within Mato Grosso that has largely been converted to agricultural use. We will review land use change trajectories and present results from soil water balance modeling and carbon fluxes for a range of future scenarios, including continued agricultural extensification, potential strategies for agricultural intensification, and novel water and carbon management strategies including biochar use in sandy soils to improve soil water holding capacities and soil carbon sequestration. We will also consider the role that irrigation might play in the future in the Amazon for improving agricultural resilience to climate change and feedbacks between irrigation and land use change pressures, noting that groundwater resources in the region are presently among the least exploited on the planet.

  15. Performance Analysis of Inter-Domain Handoff Scheme Based on Virtual Layer in PMIPv6 Networks for IP-Based Internet of Things

    PubMed Central

    Choi, Jae-Young; Jeong, Jongpil; Chung, Tai-Myoung

    2017-01-01

    Lately, we see that Internet of things (IoT) is introduced in medical services for global connection among patients, sensors, and all nearby things. The principal purpose of this global connection is to provide context awareness for the purpose of bringing convenience to a patient’s life and more effectively implementing clinical processes. In health care, monitoring of biosignals of a patient has to be continuously performed while the patient moves inside and outside the hospital. Also, to monitor the accurate location and biosignals of the patient, appropriate mobility management is necessary to maintain connection between the patient and the hospital network. In this paper, a binding update scheme on PMIPv6, which reduces signal traffic during location updates by Virtual LMA (VLMA) on the top original Local Mobility Anchor (LMA) Domain, is proposed to reduce the total cost. If a Mobile Node (MN) moves to a Mobile Access Gateway (MAG)-located boundary of an adjacent LMA domain, the MN changes itself into a virtual mode, and this movement will be assumed to be a part of the VLMA domain. In the proposed scheme, MAGs eliminate global binding updates for MNs between LMA domains and significantly reduce the packet loss and latency by eliminating the handoff between LMAs. In conclusion, the performance analysis results show that the proposed scheme improves performance significantly versus PMIPv6 and HMIPv6 in terms of the binding update rate per user and average handoff latency. PMID:28129355

  16. Performance Analysis of Inter-Domain Handoff Scheme Based on Virtual Layer in PMIPv6 Networks for IP-Based Internet of Things.

    PubMed

    Cho, Chulhee; Choi, Jae-Young; Jeong, Jongpil; Chung, Tai-Myoung

    2017-01-01

    Lately, we see that Internet of things (IoT) is introduced in medical services for global connection among patients, sensors, and all nearby things. The principal purpose of this global connection is to provide context awareness for the purpose of bringing convenience to a patient's life and more effectively implementing clinical processes. In health care, monitoring of biosignals of a patient has to be continuously performed while the patient moves inside and outside the hospital. Also, to monitor the accurate location and biosignals of the patient, appropriate mobility management is necessary to maintain connection between the patient and the hospital network. In this paper, a binding update scheme on PMIPv6, which reduces signal traffic during location updates by Virtual LMA (VLMA) on the top original Local Mobility Anchor (LMA) Domain, is proposed to reduce the total cost. If a Mobile Node (MN) moves to a Mobile Access Gateway (MAG)-located boundary of an adjacent LMA domain, the MN changes itself into a virtual mode, and this movement will be assumed to be a part of the VLMA domain. In the proposed scheme, MAGs eliminate global binding updates for MNs between LMA domains and significantly reduce the packet loss and latency by eliminating the handoff between LMAs. In conclusion, the performance analysis results show that the proposed scheme improves performance significantly versus PMIPv6 and HMIPv6 in terms of the binding update rate per user and average handoff latency.

  17. Virtual Libraries: Service Realities.

    ERIC Educational Resources Information Center

    Novak, Jan

    This paper discusses client service issues to be considered when transitioning to a virtual library situation. Themes related to the transitional nature of society in the knowledge era are presented, including: paradox and a contradictory nature; blurring of boundaries; networks, systems, and holistic thinking; process/not product, becoming/not…

  18. Multiview fusion for activity recognition using deep neural networks

    NASA Astrophysics Data System (ADS)

    Kavi, Rahul; Kulathumani, Vinod; Rohit, Fnu; Kecojevic, Vlad

    2016-07-01

    Convolutional neural networks (ConvNets) coupled with long short term memory (LSTM) networks have been recently shown to be effective for video classification as they combine the automatic feature extraction capabilities of a neural network with additional memory in the temporal domain. This paper shows how multiview fusion can be applied to such a ConvNet LSTM architecture. Two different fusion techniques are presented. The system is first evaluated in the context of a driver activity recognition system using data collected in a multicamera driving simulator. These results show significant improvement in accuracy with multiview fusion and also show that deep learning performs better than a traditional approach using spatiotemporal features even without requiring any background subtraction. The system is also validated on another publicly available multiview action recognition dataset that has 12 action classes and 8 camera views.

  19. Actin network architecture can determine myosin motor activity.

    PubMed

    Reymann, Anne-Cécile; Boujemaa-Paterski, Rajaa; Martiel, Jean-Louis; Guérin, Christophe; Cao, Wenxiang; Chin, Harvey F; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2012-06-08

    The organization of actin filaments into higher-ordered structures governs eukaryotic cell shape and movement. Global actin network size and architecture are maintained in a dynamic steady state through regulated assembly and disassembly. Here, we used experimentally defined actin structures in vitro to investigate how the activity of myosin motors depends on network architecture. Direct visualization of filaments revealed myosin-induced actin network deformation. During this reorganization, myosins selectively contracted and disassembled antiparallel actin structures, while parallel actin bundles remained unaffected. The local distribution of nucleation sites and the resulting orientation of actin filaments appeared to regulate the scalability of the contraction process. This "orientation selection" mechanism for selective contraction and disassembly suggests how the dynamics of the cellular actin cytoskeleton can be spatially controlled by actomyosin contractility.

  20. Virtual robotics laboratory for research

    NASA Astrophysics Data System (ADS)

    McKee, Gerard T.

    1995-09-01

    We report on work currently underway to put a robotics laboratory onto the Internet in support of teaching and research in robotics and artificial intelligence in higher education institutions in the UK. The project is called Netrolab. The robotics laboratory comprises a set of robotics resources including a manipulator, a mobile robot with an on-board monocular active vision head and a set of sonar sensing modules, and a set of laboratory cameras to allow the user to see into the laboratory. The paper will report on key aspect of the project aimed at using multimedia tools and object-oriented techniques to network the robotics resources and to allow them to be configured into complex teaching and experimental modules. The paper will outline both the current developments of Netrolab and provide a perspective on the future development of networked virtual laboratories for research.

  1. Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity.

    PubMed

    Sahasranamam, Ajith; Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2016-05-23

    Spike patterns are among the most common electrophysiological descriptors of neuron types. Surprisingly, it is not clear how the diversity in firing patterns of the neurons in a network affects its activity dynamics. Here, we introduce the state-dependent stochastic bursting neuron model allowing for a change in its firing patterns independent of changes in its input-output firing rate relationship. Using this model, we show that the effect of single neuron spiking on the network dynamics is contingent on the network activity state. While spike bursting can both generate and disrupt oscillations, these patterns are ineffective in large regions of the network state space in changing the network activity qualitatively. Finally, we show that when single-neuron properties are made dependent on the population activity, a hysteresis like dynamics emerges. This novel phenomenon has important implications for determining the network response to time-varying inputs and for the network sensitivity at different operating points.

  2. 3D actin network centerline extraction with multiple active contours.

    PubMed

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-02-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels.

  3. Optimal stimulus scheduling for active estimation of evoked brain networks

    NASA Astrophysics Data System (ADS)

    Kafashan, MohammadMehdi; Ching, ShiNung

    2015-12-01

    Objective. We consider the problem of optimal probing to learn connections in an evoked dynamic network. Such a network, in which each edge measures an input-output relationship between sites in sensor/actuator-space, is relevant to emerging applications in neural mapping and neural connectivity estimation. Approach. We show that the problem of scheduling nodes to a probe (i.e., stimulate) amounts to a problem of optimal sensor scheduling. Main results. By formulating the evoked network in state-space, we show that the solution to the greedy probing strategy has a convenient form and, under certain conditions, is optimal over a finite horizon. We adopt an expectation maximization technique to update the state-space parameters in an online fashion and demonstrate the efficacy of the overall approach in a series of detailed numerical examples. Significance. The proposed method provides a principled means to actively probe time-varying connections in neuronal networks. The overall method can be implemented in real time and is particularly well-suited to applications in stimulation-based cortical mapping in which the underlying network dynamics are changing over time.

  4. Scalable wavelet-based active network detection of stepping stones

    NASA Astrophysics Data System (ADS)

    Gilbert, Joseph I.; Robinson, David J.; Butts, Jonathan W.; Lacey, Timothy H.

    2012-06-01

    Network intrusions leverage vulnerable hosts as stepping stones to penetrate deeper into a network and mask malicious actions from detection. Identifying stepping stones presents a significant challenge because network sessions appear as legitimate traffic. This research focuses on a novel active watermark technique using discrete wavelet transformations to mark and detect interactive network sessions. This technique is scalable, resilient to network noise, and difficult for attackers to discern that it is in use. Previously captured timestamps from the CAIDA 2009 dataset are sent using live stepping stones in the Amazon Elastic Compute Cloud service. The client system sends watermarked and unmarked packets from California to Virginia using stepping stones in Tokyo, Ireland and Oregon. Five trials are conducted in which the system sends simultaneous watermarked samples and unmarked samples to each target. The live experiment results demonstrate approximately 5% False Positive and 5% False Negative detection rates. Additionally, watermark extraction rates of approximately 92% are identified for a single stepping stone. The live experiment results demonstrate the effectiveness of discerning watermark traffic as applied to identifying stepping stones.

  5. CRAFFT: An Activity Prediction Model based on Bayesian Networks.

    PubMed

    Nazerfard, Ehsan; Cook, Diane J

    2015-04-01

    Recent advances in the areas of pervasive computing, data mining, and machine learning offer unique opportunities to provide health monitoring and assistance for individuals facing difficulties to live independently in their homes. Several components have to work together to provide health monitoring for smart home residents including, but not limited to, activity recognition, activity discovery, activity prediction, and prompting system. Compared to the significant research done to discover and recognize activities, less attention has been given to predict the future activities that the resident is likely to perform. Activity prediction components can play a major role in design of a smart home. For instance, by taking advantage of an activity prediction module, a smart home can learn context-aware rules to prompt individuals to initiate important activities. In this paper, we propose an activity prediction model using Bayesian networks together with a novel two-step inference process to predict both the next activity features and the next activity label. We also propose an approach to predict the start time of the next activity which is based on modeling the relative start time of the predicted activity using the continuous normal distribution and outlier detection. To validate our proposed models, we used real data collected from physical smart environments.

  6. Generalized activity equations for spiking neural network dynamics

    PubMed Central

    Buice, Michael A.; Chow, Carson C.

    2013-01-01

    Much progress has been made in uncovering the computational capabilities of spiking neural networks. However, spiking neurons will always be more expensive to simulate compared to rate neurons because of the inherent disparity in time scales—the spike duration time is much shorter than the inter-spike time, which is much shorter than any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking neurons are also much more difficult to study analytically. One possible approach to making spiking networks more tractable is to augment mean field activity models with some information about spiking correlations. For example, such a generalized activity model could carry information about spiking rates and correlations between spikes self-consistently. Here, we will show how this can be accomplished by constructing a complete formal probabilistic description of the network and then expanding around a small parameter such as the inverse of the number of neurons in the network. The mean field theory of the system gives a rate-like description. The first order terms in the perturbation expansion keep track of covariances. PMID:24298252

  7. Dopamine depresses cholinergic oscillatory network activity in rat hippocampus.

    PubMed

    Weiss, Torsten; Veh, Rüdiger W; Heinemann, Uwe

    2003-11-01

    The dopaminergic neuronal system is implicated in cognitive processes in a variety of brain regions including the mesolimbic system. We have investigated whether dopamine also affects synchronized network activity in the hippocampus, which has been ascribed to play a pivotal role in memory formation. Gamma frequency (20-80 Hz) oscillations were induced by the cholinergic agonist carbachol. Oscillatory activity was examined in area CA3 of Wistar rat hippocampal slices, employing field potential and intracellular recordings. Application of carbachol initiated synchronized population activity in the gamma band at 40 Hz. Induced gamma activity persisted over hours and required GABAA receptors. Dopamine reversibly decreased the integrated gamma band power of the carbachol rhythm by 62%, while its frequency was not changed. By contrast, individual pyramidal cells recorded during carbachol-induced field gamma activity exhibited theta frequency (5-15 Hz) membrane potential oscillations that were not altered by dopamine. The dopamine effect on the field gamma activity was mimicked by the D1 receptor agonist SKF-383393 and partially antagonized by the D1 antagonist SCH-23390. Conversely, the D2 receptor agonist quinpirole failed to depress the oscillations, and the D2 antagonist sulpiride did not prevent the suppressive dopamine effect. The data indicate that dopamine strongly depresses cholinergic gamma oscillations in area CA3 of rat hippocampus by activation of D1-like dopamine receptors and that this effect is most likely mediated via impairment of interneurons involved in generation and maintenance of the carbachol-induced network rhythm.

  8. The effect of the neural activity on topological properties of growing neural networks.

    PubMed

    Gafarov, F M; Gafarova, V R

    2016-09-01

    The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.

  9. Robust synchronisation tracking control of networked Euler-Lagrange systems using reference trajectory estimation based on virtual double-integrators

    NASA Astrophysics Data System (ADS)

    Yang, Zi-Jiang; Qin, Pan

    2016-07-01

    This paper considers the problem of distributed synchronisation tracking control of multiple Euler-Lagrange systems on a directed graph which contains a spanning tree with the leader node being the root. To design the high performance distributed controllers, a virtual double-integrator is introduced in each agent and is controlled by a virtual distributed linear high-gain synchronisation tracking controller, so that the position and velocity of each agent track those of the reference trajectory with arbitrarily short transient time and small ultimate tracking error. Then taking the double-integrator's position and velocity as the estimates of those of the reference trajectory, in each generalised coordinate of each Euler-Lagrange agent, a local controller with a disturbance observer and a sliding mode control term is designed, to suppress the mutual interactions among the agents and the modelling uncertainties. The boundedness of the overall signals and the synchronisation tracking control performance are analysed, and the conditions for guaranteed control performance are clarified. Simulation examples are provided to demonstrate the performance of the distributed controllers.

  10. Structural damage detection using active members and neural networks

    NASA Astrophysics Data System (ADS)

    Manning, R. A.

    1994-06-01

    The detection of damage in structures is a topic which has considerable interest in many fields. In the past many methods for detecting damage in structures has relied on finite element model refinement methods. This note presents a structural damage methodology in which only active member transfer function data are used in conjunction with an artificial neural network to detect damage in structures. Specifically, the method relies on training a neural network using active member transfer function pole/zero information to classify damaged structure measurements and to predict the degree of damage in the structure. The method differs from many of the past damage detection algorithms in that no attempt is made to update a finite element model or to match measured data with new finite element analyses of the structure in a damaged state.

  11. Broken Detailed Balance of Filament Dynamics in Active Networks

    NASA Astrophysics Data System (ADS)

    Gladrow, J.; Fakhri, N.; MacKintosh, F. C.; Schmidt, C. F.; Broedersz, C. P.

    2016-06-01

    Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in such biopolymer networks. Here, we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under nonequilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.

  12. An Assessment of Overt Malicious Activity Manifest in Residential Networks

    DTIC Science & Technology

    2011-07-07

    also monitor for network-level signatures aimed at detecting three malware families, Zlob, Conficker, and Zeus . To take advantage of the long...compromise by flagging activity related to known malware families. To do so, we focused on Zlob, Conficker, and Zeus . The Zlob malware family [24] changes... Zeus Domainblocklist [25] to identify local systems infected with Zeus . Since the list does not only contain seemingly random domain names but also

  13. Local Jurisdictions and Active Shooters: Building Networks, Building Capacities

    DTIC Science & Technology

    2010-12-01

    AND ACTIVE SHOOTERS: BUILDING NETWORKS, BUILDING CAPACITIES by Tracy L. Frazzano December 2010 Thesis Advisors: Sam Clovis , Jr...SCHOOL December 2010 Author: Tracy L. Frazzano Approved by: Sam H. Clovis ., Jr. Thesis Advisor Lauren Fernandez Co-Advisor...thesis in and of itself, so I will try and limit it as best I can. To my advisors, Lauren Fernandez and Samuel Clovis , I would like to thank you for

  14. Ultrananocrystalline diamond thin films functionalized with therapeutically active collagen networks.

    SciTech Connect

    Huang, H.; Chen, M.; Bruno, P.; Lam, R.; Robinson, E.; Gruen, D.; Ho, D.; Materials Science Division; Northwestern Univ.

    2009-01-01

    The fabrication of biologically amenable interfaces in medicine bridges translational technologies with their surrounding biological environment. Functionalized nanomaterials catalyze this coalescence through the creation of biomimetic and active substrates upon which a spectrum of therapeutic elements can be delivered to adherent cells to address biomolecular processes in cancer, inflammation, etc. Here, we demonstrate the robust functionalization of ultrananocrystalline diamond (UNCD) with type I collagen and dexamethasone (Dex), an anti-inflammatory drug, to fabricate a hybrid therapeutically active substrate for localized drug delivery. UNCD oxidation coupled with a pH-mediated collagen adsorption process generated a comprehensive interface between the two materials, and subsequent Dex integration, activity, and elution were confirmed through inflammatory gene expression assays. These studies confer a translational relevance to the biofunctionalized UNCD in its role as an active therapeutic network for potent regulation of cellular activity toward applications in nanomedicine.

  15. Energy-aware activity classification using wearable sensor networks

    NASA Astrophysics Data System (ADS)

    Dong, Bo; Montoye, Alexander; Moore, Rebecca; Pfeiffer, Karin; Biswas, Subir

    2013-05-01

    This paper presents implementation details, system characterization, and the performance of a wearable sensor network that was designed for human activity analysis. Specific machine learning mechanisms are implemented for recognizing a target set of activities with both out-of-body and on-body processing arrangements. Impacts of energy consumption by the on-body sensors are analyzed in terms of activity detection accuracy for out-of-body processing. Impacts of limited processing abilities for the on-body scenario are also characterized in terms of detection accuracy, by varying the background processing load in the sensor units. Impacts of varying number of sensors in terms of activity classification accuracy are also evaluated. Through a rigorous systems study, it is shown that an efficient human activity analytics system can be designed and operated even under energy and processing constraints of tiny on-body wearable sensors.

  16. Energy-aware Activity Classification using Wearable Sensor Networks

    PubMed Central

    Dong, Bo; Montoye, Alexander; Moore, Rebecca; Pfeiffer, Karin; Biswas, Subir

    2014-01-01

    This paper presents implementation details, system characterization, and the performance of a wearable sensor network that was designed for human activity analysis. Specific machine learning mechanisms are implemented for recognizing a target set of activities with both out-of-body and on-body processing arrangements. Impacts of energy consumption by the on-body sensors are analyzed in terms of activity detection accuracy for out-of-body processing. Impacts of limited processing abilities for the on-body scenario are also characterized in terms of detection accuracy, by varying the background processing load in the sensor units. Impacts of varying number of sensors in terms of activity classification accuracy are also evaluated. Through a rigorous systems study, it is shown that an efficient human activity analytics system can be designed and operated even under energy and processing constraints of tiny on-body wearable sensors. PMID:25075266

  17. Virtual volatility

    NASA Astrophysics Data System (ADS)

    Silva, A. Christian; Prange, Richard E.

    2007-03-01

    We introduce the concept of virtual volatility. This simple but new measure shows how to quantify the uncertainty in the forecast of the drift component of a random walk. The virtual volatility also is a useful tool in understanding the stochastic process for a given portfolio. In particular, and as an example, we were able to identify mean reversion effect in our portfolio. Finally, we briefly discuss the potential practical effect of the virtual volatility on an investor asset allocation strategy.

  18. Network feedback regulates motor output across a range of modulatory neuron activity.

    PubMed

    Spencer, Robert M; Blitz, Dawn M

    2016-06-01

    Modulatory projection neurons alter network neuron synaptic and intrinsic properties to elicit multiple different outputs. Sensory and other inputs elicit a range of modulatory neuron activity that is further shaped by network feedback, yet little is known regarding how the impact of network feedback on modulatory neurons regulates network output across a physiological range of modulatory neuron activity. Identified network neurons, a fully described connectome, and a well-characterized, identified modulatory projection neuron enabled us to address this issue in the crab (Cancer borealis) stomatogastric nervous system. The modulatory neuron modulatory commissural neuron 1 (MCN1) activates and modulates two networks that generate rhythms via different cellular mechanisms and at distinct frequencies. MCN1 is activated at rates of 5-35 Hz in vivo and in vitro. Additionally, network feedback elicits MCN1 activity time-locked to motor activity. We asked how network activation, rhythm speed, and neuron activity levels are regulated by the presence or absence of network feedback across a physiological range of MCN1 activity rates. There were both similarities and differences in responses of the two networks to MCN1 activity. Many parameters in both networks were sensitive to network feedback effects on MCN1 activity. However, for most parameters, MCN1 activity rate did not determine the extent to which network output was altered by the addition of network feedback. These data demonstrate that the influence of network feedback on modulatory neuron activity is an important determinant of network output and feedback can be effective in shaping network output regardless of the extent of network modulation.

  19. A study of epidemic spreading on activity-driven networks

    NASA Astrophysics Data System (ADS)

    Zou, Yijiang; Deng, Weibing; Li, Wei; Cai, Xu

    2016-03-01

    The epidemic spreading was explored on activity-driven networks (ADNs), accounting for the study of dynamics both on and of the ADN. By employing the susceptible-infected-susceptible (SIS) model, two aspects were considered: (1) the infection rate of susceptible agent (depending on the number of its infected neighbors) evolves due to the temporal structure of ADN, rather than being a constant number; (2) the susceptible and infected agents generate unequal links while being activated, namely, the susceptible agent gets few contacts with others in order to protect itself. Results show that, in both cases, the larger epidemic threshold and smaller outbreak size were obtained.

  20. Multivariate neural network operators with sigmoidal activation functions.

    PubMed

    Costarelli, Danilo; Spigler, Renato

    2013-12-01

    In this paper, we study pointwise and uniform convergence, as well as order of approximation, of a family of linear positive multivariate neural network (NN) operators with sigmoidal activation functions. The order of approximation is studied for functions belonging to suitable Lipschitz classes and using a moment-type approach. The special cases of NN operators, activated by logistic, hyperbolic tangent, and ramp sigmoidal functions are considered. Multivariate NNs approximation finds applications, typically, in neurocomputing processes. Our approach to NN operators allows us to extend previous convergence results and, in some cases, to improve the order of approximation. The case of multivariate quasi-interpolation operators constructed with sigmoidal functions is also considered.

  1. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.

    PubMed

    Basso Moro, Sara; Bisconti, Silvia; Muthalib, Makii; Spezialetti, Matteo; Cutini, Simone; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2014-01-15

    Previous functional near-infrared spectroscopy (fNIRS) studies indicated that the prefrontal cortex (PFC) is involved in the maintenance of the postural balance after external perturbations. So far, no studies have been conducted to investigate the PFC hemodynamic response to virtual reality (VR) tasks that could be adopted in the field of functional neurorehabilitation. The aim of this fNIRS study was to assess PFC oxygenation response during an incremental and a control swing balance task (ISBT and CSBT, respectively) in a semi-immersive VR environment driven by a depth-sensing camera. It was hypothesized that: i) the PFC would be bilaterally activated in response to the increase of the ISBT difficulty, as this cortical region is involved in the allocation of attentional resources to maintain postural control; and ii) the PFC activation would be greater in the right than in the left hemisphere considering its dominance for visual control of body balance. To verify these hypotheses, 16 healthy male subjects were requested to stand barefoot while watching a 3 dimensional virtual representation of themselves projected onto a screen. They were asked to maintain their equilibrium on a virtual blue swing board susceptible to external destabilizing perturbations (i.e., randomizing the forward-backward direction of the impressed pulse force) during a 3-min ISBT (performed at four levels of difficulty) or during a 3-min CSBT (performed constantly at the lowest level of difficulty of the ISBT). The center of mass (COM), at each frame, was calculated and projected on the floor. When the subjects were unable to maintain the COM over the board, this became red (error). After each error, the time required to bring back the COM on the board was calculated (returning time). An eight-channel continuous wave fNIRS system was employed for measuring oxygenation changes (oxygenated-hemoglobin, O2Hb; deoxygenated-hemoglobin, HHb) related to the PFC activation (Brodmann Areas 10, 11

  2. Using Active Networking to Detect and Troubleshoot Issues in Tactical Data Networks

    DTIC Science & Technology

    2014-06-01

    MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY (COMMAND, CONTROL, AND COMMUNICATIONS) from the NAVAL POSTGRADUATE SCHOOL June 2014 Author: Kevin McMullen...Style Sheets D3 Data-Driven Documents DOM Document Object Model EKMS Electronic Key Management System FDDI Fiber Distributed Data Interface FIPS Federal...Enduring Freedom OSI open systems interconnection PLAN Programming Language for Active Networks PPP Point-to-Point Protocol RCT regimental combat

  3. Tera-node Network Technology (TASK 4) Network Infrastructure Activities (NIA) final report

    SciTech Connect

    Postel, John; Bannister, Joe

    2000-03-15

    The TNT project developed software technologies in scalable personal telecommunications (SPT), Reservation Protocol 2 (RSVP2), Scalable Computing Infrastructure (SCOPE), and Network Infrastructure Activities (NIA). SPT = developed many innovative protocols to support the use of videoconferencing applications on the Internet. RSVP2 = developed a new reference model and further standardization of RSVP. SCOPE = developed dynamic resource discovery techniques and distributed directory services in support of resource allocation for large distributed systems and computations. NIA = provided policy, operational, and support to the transitioning Internet.

  4. GeoMapApp Learning Activities: A Virtual Lab Environment for Student-Centred Engagement with Geoscience Data

    NASA Astrophysics Data System (ADS)

    Kluge, S.; Goodwillie, A. M.

    2012-12-01

    As STEM learning requirements enter the mainstream, there is benefit to providing the tools necessary for students to engage with research-quality geoscience data in a cutting-edge, easy-to-use map-based interface. Funded with an NSF GeoEd award, GeoMapApp Learning Activities ( http://serc.carleton.edu/geomapapp/collection.html ) are being created to help in that endeavour. GeoMapApp Learning Activities offer step-by-step instructions within a guided inquiry approach that enables students to dictate the pace of learning. Based upon GeoMapApp (http://www.geomapapp.org), a free, easy-to-use map-based data exploration and visualisation tool, each activity furnishes the educator with an efficient package of downloadable documents. This includes step-by-step student instructions and answer sheet; an educator's annotated worksheet containing teaching tips, additional content and suggestions for further work; and, quizzes for use before and after the activity to assess learning. Examples of activities so far created involve calculation and analysis of the rate of seafloor spreading; compilation of present-day evidence for huge ancient landslides on the seafloor around the Hawaiian islands; a study of radiometrically-dated volcanic rocks to help understand the concept of hotspots; and, the optimisation of contours as a means to aid visualisation of 3-D data sets on a computer screen. The activities are designed for students at the introductory undergraduate, community college and high school levels, and present a virtual lab-like environment to expose students to content and concepts typically found in those educational settings. The activities can be used in the classroom or out of class, and their guided nature means that the requirement for teacher intervention is reduced thus allowing students to spend more time analysing and understanding geoscience data, content and concepts. Each activity is freely available through the SERC-Carleton web site.

  5. A small change in neuronal network topology can induce explosive synchronization transition and activity propagation in the entire network.

    PubMed

    Wang, Zhenhua; Tian, Changhai; Dhamala, Mukesh; Liu, Zonghua

    2017-04-03

    We here study explosive synchronization transitions and network activity propagation in networks of coupled neurons to provide a new understanding of the relationship between network topology and explosive dynamical transitions as in epileptic seizures and their propagations in the brain. We model local network motifs and configurations of coupled neurons and analyze the activity propagations between a group of active neurons to their inactive neuron neighbors in a variety of network configurations. We find that neuronal activity propagation is limited to local regions when network is highly clustered with modular structures as in the normal brain networks. When the network cluster structure is slightly changed, the activity propagates to the entire network, which is reminiscent of epileptic seizure propagation in the brain. Finally, we analyze intracranial electroencephalography (IEEG) recordings of a seizure episode from a epilepsy patient and uncover that explosive synchronization-like transition occurs around the clinically defined onset of seizure. These findings may provide a possible mechanism for the recurrence of epileptic seizures, which are known to be the results of aberrant neuronal network structure and/or function in the brain.

  6. PersonA: Persuasive social network for physical Activity.

    PubMed

    Ayubi, Soleh U; Parmanto, Bambang

    2012-01-01

    Advances in physical activity (PA) monitoring devices provide ample opportunities for innovations in the way the information produced by these devices is used to encourage people to have more active lifestyles. One such innovation is expanding the current use of the information from self-management to social support. We developed a Persuasive social network for physical Activity (PersonA) that combines automatic input of physical activity data, a smartphone, and a social networking system (SNS). This paper describes the motivation for and overarching design of the PersonA and its functional and non-functional features. PersonA is designed to intelligently and automatically receive raw PA data from the sensors in the smartphone, calculate the data into meaningful PA information, store the information on a secure server, and show the information to the users as persuasive and real-time feedbacks or publish the information to the SNS to generate social support. The implementation of self-monitoring, social support, and persuasive concepts using currently available technologies has the potential for promoting healthy lifestyle, greater community participation, and higher quality of life. We also expect that PersonA will enable health professionals to collect in situ data related to physical activity. The platform is currently being used and tested to improve PA level of three groups of users in Pittsburgh, PA, USA.

  7. Taurine activates GABAergic networks in the neocortex of immature mice

    PubMed Central

    Sava, Bogdan A.; Chen, Rongqing; Sun, Haiyan; Luhmann, Heiko J.; Kilb, Werner

    2014-01-01

    Although it has been suggested that taurine is the main endogenous neurotransmitter acting on glycine receptors, the implications of glycine receptor-mediated taurine actions on immature neocortical networks have not been addressed yet. To investigate the influence of taurine on the excitability of neuronal networks in the immature neocortex, we performed whole-cell patch-clamp recordings from visually identified pyramidal neurons and interneurons in coronal slices from C57Bl/6 and GAD67-green fluorescent protein (GFP) transgenic mice (postnatal days 2–4). In 46% of the pyramidal neurons bath-application of taurine at concentrations ≥ 300 μM significantly enhanced the frequency of postsynaptic currents (PSCs) by 744.3 ± 93.8% (n = 120 cells). This taurine-induced increase of PSC frequency was abolished by 0.2 μM tetrodotoxin (TTX), 1 μM strychnine or 3 μM gabazine, but was unaffected by the glutamatergic antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and (±) R(-)-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP), suggesting that taurine specifically activates GABAergic network activity projecting to pyramidal neurons. Cell-attached recordings revealed that taurine enhanced the frequency of action potentials (APs) in pyramidal neurons, indicating an excitatory action of the GABAergic PSCs. In order to identify the presynaptic targets of taurine we demonstrate that bath application of taurine induced in GAD67-GFP labeled interneurons an inward current that is mainly mediated by glycine receptors and can generate APs in these cells. We conclude from these results that taurine can enhance network excitability in the immature neocortex by selectively activating GABAergic interneurons via interactions with glycine receptors. PMID:24550782

  8. Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy

    NASA Astrophysics Data System (ADS)

    Shi, J.; Liu, J.; Pinter, L.

    2013-09-01

    China has dramatically increased its virtual water import unconsciously for recent years. Many studies have focused on the quantity of traded virtual water but very few go into analysing geographic distribution and the properties of China's virtual water trade network. This paper provides a calculation and analysis of the crop-related virtual water trade network of China based on 27 major primary crops between 1986 and 2009. The results show that China is a net importer of virtual water from water-abundant areas of North and South America, and a net virtual water exporter to water-stressed areas of Asia, Africa, and Europe. Virtual water import is far larger than virtual water export and in both import and export a small number of trade partners control the supply chain. Grain crops are the major contributors to virtual water trade, and among grain crops soybeans, mostly imported from the US, Brazil and Argentina are the most significant. As crop yield and crop water productivity in North and South America are generally higher than those in Asia and Africa, the effect of China's crop-related virtual water trade positively contributes to optimizing crop water use efficiency at the global scale. In order to mitigate water scarcity and secure the food supply, virtual water should be actively incorporated into national water management strategies. From the national perspective, China should reduce the export and increase the import of water-intensive crops. But the sources of virtual water import need to be further diversified to reduce supply chain risks and increase resilience.

  9. The Contribution of Raised Intraneuronal Chloride to Epileptic Network Activity

    PubMed Central

    Alfonsa, Hannah; Merricks, Edward M.; Codadu, Neela K.; Cunningham, Mark O.; Deisseroth, Karl; Racca, Claudia

    2015-01-01

    Altered inhibitory function is an important facet of epileptic pathology. A key concept is that GABAergic activity can become excitatory if intraneuronal chloride rises. However, it has proved difficult to separate the role of raised chloride from other contributory factors in complex network phenomena, such as epileptic pathology. Therefore, we asked what patterns of activity are associated with chloride dysregulation by making novel use of Halorhodopsin to load clusters of mouse pyramidal cells artificially with Cl−. Brief (1–10 s) activation of Halorhodopsin caused substantial positive shifts in the GABAergic reversal potential that were proportional to the charge transfer during the illumination and in adult neocortical pyramidal neurons decayed with a time constant of τ = 8.0 ± 2.8s. At the network level, these positive shifts in EGABA produced a transient rise in network excitability, with many distinctive features of epileptic foci, including high-frequency oscillations with evidence of out-of-phase firing (Ibarz et al., 2010). We show how such firing patterns can arise from quite small shifts in the mean intracellular Cl− level, within heterogeneous neuronal populations. Notably, however, chloride loading by itself did not trigger full ictal events, even with additional electrical stimulation to the underlying white matter. In contrast, when performed in combination with low, subepileptic levels of 4-aminopyridine, Halorhodopsin activation rapidly induced full ictal activity. These results suggest that chloride loading has at most an adjunctive role in ictogenesis. Our simulations also show how chloride loading can affect the jitter of action potential timing associated with imminent recruitment to an ictal event (Netoff and Schiff, 2002). PMID:25995461

  10. Application of neural networks to seismic active control

    SciTech Connect

    Tang, Yu

    1995-07-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads.

  11. Beyond Statistical Significance: Implications of Network Structure on Neuronal Activity

    PubMed Central

    Vlachos, Ioannis; Aertsen, Ad; Kumar, Arvind

    2012-01-01

    It is a common and good practice in experimental sciences to assess the statistical significance of measured outcomes. For this, the probability of obtaining the actual results is estimated under the assumption of an appropriately chosen null-hypothesis. If this probability is smaller than some threshold, the results are deemed statistically significant and the researchers are content in having revealed, within their own experimental domain, a “surprising” anomaly, possibly indicative of a hitherto hidden fragment of the underlying “ground-truth”. What is often neglected, though, is the actual importance of these experimental outcomes for understanding the system under investigation. We illustrate this point by giving practical and intuitive examples from the field of systems neuroscience. Specifically, we use the notion of embeddedness to quantify the impact of a neuron's activity on its downstream neurons in the network. We show that the network response strongly depends on the embeddedness of stimulated neurons and that embeddedness is a key determinant of the importance of neuronal activity on local and downstream processing. We extrapolate these results to other fields in which networks are used as a theoretical framework. PMID:22291581

  12. Innovation diffusion on time-varying activity driven networks

    NASA Astrophysics Data System (ADS)

    Rizzo, Alessandro; Porfiri, Maurizio

    2016-01-01

    Since its introduction in the 1960s, the theory of innovation diffusion has contributed to the advancement of several research fields, such as marketing management and consumer behavior. The 1969 seminal paper by Bass [F.M. Bass, Manag. Sci. 15, 215 (1969)] introduced a model of product growth for consumer durables, which has been extensively used to predict innovation diffusion across a range of applications. Here, we propose a novel approach to study innovation diffusion, where interactions among individuals are mediated by the dynamics of a time-varying network. Our approach is based on the Bass' model, and overcomes key limitations of previous studies, which assumed timescale separation between the individual dynamics and the evolution of the connectivity patterns. Thus, we do not hypothesize homogeneous mixing among individuals or the existence of a fixed interaction network. We formulate our approach in the framework of activity driven networks to enable the analysis of the concurrent evolution of the interaction and individual dynamics. Numerical simulations offer a systematic analysis of the model behavior and highlight the role of individual activity on market penetration when targeted advertisement campaigns are designed, or a competition between two different products takes place.

  13. The Pragmatics of Virtual Worlds for K-12 Educators: Investigating the Affordances and Constraints of "Active Worlds" and "Second Life" with K-12 In-Service Teachers

    ERIC Educational Resources Information Center

    Dickey, Michele D.

    2011-01-01

    The purpose of this study is to address the pragmatics of integrating virtual worlds for teaching and learning for K-12 education. Specifically this qualitative investigation focuses on a reflective dialogue gathered from a group of K-12 (primary and secondary school) educators about their experiences using both "Active Worlds Educational…

  14. Are All Hands-On Activities Equally Effective? Effect of Using Plastic Models, Organ Dissections, and Virtual Dissections on Student Learning and Perceptions

    ERIC Educational Resources Information Center

    Lombardi, Sara A.; Hicks, Reimi E.; Thompson, Katerina V.; Marbach-Ad, Gili

    2014-01-01

    This study investigated the impact of three commonly used cardiovascular model-assisted activities on student learning and student attitudes and perspectives about science. College students enrolled in a Human Anatomy and Physiology course were randomly assigned to one of three experimental groups (organ dissections, virtual dissections, or…

  15. Are all hands-on activities equally effective? Effect of using plastic models, organ dissections, and virtual dissections on student learning and perceptions.

    PubMed

    Lombardi, Sara A; Hicks, Reimi E; Thompson, Katerina V; Marbach-Ad, Gili

    2014-03-01

    This study investigated the impact of three commonly used cardiovascular model-assisted activities on student learning and student attitudes and perspectives about science. College students enrolled in a Human Anatomy and Physiology course were randomly assigned to one of three experimental groups (organ dissections, virtual dissections, or plastic models). Each group received a 15-min lecture followed by a 45-min activity with one of the treatments. Immediately after the lesson and then 2 mo later, students were tested on anatomy and physiology knowledge and completed an attitude survey. Students who used plastic models achieved significantly higher overall scores on both the initial and followup exams than students who performed organ or virtual dissections. On the initial exam, students in the plastic model and organ dissection treatments scored higher on anatomy questions than students who performed virtual dissections. Students in the plastic model group scored higher than students who performed organ dissections on physiology questions. On the followup exam, when asked anatomy questions, students in the plastic model group scored higher than dissection students and virtual dissection students. On attitude surveys, organ dissections had higher perceived value and were requested for inclusion in curricula twice as often as any other activity. Students who performed organ dissections were more likely than the other treatment groups to agree with the statement that "science is fun," suggesting that organ dissections may promote positive attitudes toward science. The findings of this study provide evidence for the importance of multiple types of hands-on activities in anatomy laboratory courses.

  16. From Physical Benchmarks to Mental Benchmarks: A Four Dimensions Dynamic Model to Assure the Quality of Instructional Activities in Electronic and Virtual Learning Environments

    ERIC Educational Resources Information Center

    Ahmed Abdelaziz, Hamdy

    2013-01-01

    The objective of this paper was to develop a four dimensions dynamic model for designing instructional activities appropriate to electronic and virtual learning environments. The suggested model is guided by learning principles of cognitivism, constructivism, and connectivism learning theories in order to help online learners to build and acquire…

  17. Fast and Forceful: Modulation of Response Activation Induced by Shifts of Perceived Depth in Virtual 3D Space

    PubMed Central

    Plewan, Thorsten; Rinkenauer, Gerhard

    2016-01-01

    Reaction time (RT) can strongly be influenced by a number of stimulus properties. For instance, there was converging evidence that perceived size rather than physical (i.e., retinal) size constitutes a major determinant of RT. However, this view has recently been challenged since within a virtual three-dimensional (3D) environment retinal size modulation failed to influence RT. In order to further investigate this issue in the present experiments response force (RF) was recorded as a supplemental measure of response activation in simple reaction tasks. In two separate experiments participants’ task was to react as fast as possible to the occurrence of a target located close to the observer or farther away while the offset between target locations was increased from Experiment 1 to Experiment 2. At the same time perceived target size (by varying the retinal size across depth planes) and target type (sphere vs. soccer ball) were modulated. Both experiments revealed faster and more forceful reactions when targets were presented closer to the observers. Perceived size and target type barely affected RT and RF in Experiment 1 but differentially affected both variables in Experiment 2. Thus, the present findings emphasize the usefulness of RF as a supplement to conventional RT measurement. On a behavioral level the results confirm that (at least) within virtual 3D space perceived object size neither strongly influences RT nor RF. Rather the relative position within egocentric (body-centered) space presumably indicates an object’s behavioral relevance and consequently constitutes an important modulator of visual processing. PMID:28018273

  18. Virtually Possible

    ERIC Educational Resources Information Center

    Mellon, Ericka

    2011-01-01

    Diane Lewis began building her popular virtual education program in a storage closet. The drab room, just big enough to squeeze in a tiny table, was her office at the headquarters of Seminole County (Florida) Public Schools. She had a computer and a small staff of temporary workers. Lewis, who managed to open two successful virtual schools for…

  19. Voluntary control of intracortical oscillations for reconfiguration of network activity

    PubMed Central

    Corlier, Juliana; Valderrama, Mario; Navarrete, Miguel; Lehongre, Katia; Hasboun, Dominique; Adam, Claude; Belaid, Hayat; Clémenceau, Stéphane; Baulac, Michel; Charpier, Stéphane; Navarro, Vincent; Le Van Quyen, Michel

    2016-01-01

    Voluntary control of oscillatory activity represents a key target in the self-regulation of brain function. Using a real-time closed-loop paradigm and simultaneous macro- and micro-electrode recordings, we studied the effects of self-induced intracortical oscillatory activity (4–8 Hz) in seven neurosurgical patients. Subjects learned to robustly and specifically induce oscillations in the target frequency, confirmed by increased oscillatory event density. We have found that the session-to-session variability in performance was explained by the functional long-range decoupling of the target area suggesting a training-induced network reorganization. Downstream effects on more local activities included progressive cross-frequency-coupling with gamma oscillations (30–120 Hz), and the dynamic modulation of neuronal firing rates and spike timing, indicating an improved temporal coordination of local circuits. These findings suggest that effects of voluntary control of intracortical oscillations can be exploited to specifically target plasticity processes to reconfigure network activity, with a particular relevance for memory function or skill acquisition. PMID:27808225

  20. Platelet Serotonin Transporter Function Predicts Default-Mode Network Activity

    PubMed Central

    Kasess, Christian H.; Meyer, Bernhard M.; Hofmaier, Tina; Diers, Kersten; Bartova, Lucie; Pail, Gerald; Huf, Wolfgang; Uzelac, Zeljko; Hartinger, Beate; Kalcher, Klaudius; Perkmann, Thomas; Haslacher, Helmuth; Meyer-Lindenberg, Andreas; Kasper, Siegfried; Freissmuth, Michael; Windischberger, Christian; Willeit, Matthäus; Lanzenberger, Rupert; Esterbauer, Harald; Brocke, Burkhard; Moser, Ewald; Sitte, Harald H.; Pezawas, Lukas

    2014-01-01

    Background The serotonin transporter (5-HTT) is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT) from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence. Methods A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax) was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA) to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD) activity and platelet Vmax. Results The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN) suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity. Conclusion This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation. PMID:24667541

  1. 5-Benzylidene-hydantoin is a new scaffold for SIRT inhibition: From virtual screening to activity assays.

    PubMed

    Sacconnay, Lionel; Ryckewaert, Lucie; Randazzo, Giuseppe Marco; Petit, Charlotte; Passos, Carolina Dos Santos; Jachno, Jelena; Michailovienė, Vilma; Zubrienė, Asta; Matulis, Daumantas; Carrupt, Pierre-Alain; Simões-Pires, Claudia Avello; Nurisso, Alessandra

    2016-03-31

    Sirtuins (SIRTs) are a family of enzymes able to catalyze the deacetylation of the N-acetyl lysines of both histone and non-histone substrates. Inhibition of SIRTs catalytic activity was recently reported in the literature as being beneficial in human diseases, with very promising applications in cancer therapy and enzymatic neurodegeneration. By combining a structure-based virtual screening of the Specs database with cell-based assays, we identified the 5-benzylidene-hydantoin as new scaffold for the inhibition of SIRT2 catalytic activity. Compound 97 (Specs ID AH-487/41657829), active in the low μM range against SIRT2, showed the optimal physicochemical properties for passive absorption as well as relatively low cytotoxicity in vitro. Further studies revealed non-competitive and mixed-type kinetics toward acetyl-lysine substrates and NAD(+), respectively, and a non-selective profile for SIRT inhibition. A binding mode consistent with the experimental evidence was proposed by molecular modeling. Additionally, the levels of acetyl-p53 were shown to be increased in HeLa cells treated with 97. Taken together, these results encourage further investigation of 5-benzylidene-hydantoin derivatives for their SIRT-related therapeutic effects.

  2. A Preliminary Study of Functional Brain Activation among Marijuana Users during Performance of a Virtual Water Maze Task

    PubMed Central

    Sneider, Jennifer Tropp; Gruber, Staci A.; Rogowska, Jadwiga; Silveri, Marisa M.; Yurgelun-Todd, Deborah A.

    2013-01-01

    Numerous studies have reported neurocognitive impairments associated with chronic marijuana use. Given that the hippocampus contains a high density of cannabinoid receptors, hippocampal-mediated cognitive functions, including visuospatial memory, may have increased vulnerability to chronic marijuana use. Thus, the current study examined brain activation during the performance of a virtual analogue of the classic Morris water maze task in 10 chronic marijuana (MJ) users compared to 18 nonusing (NU) comparison subjects. Imaging data were acquired using blood oxygen level-dependent (BOLD) functional MRI at 3.0 Tesla during retrieval (hidden platform) and motor control (visible platform) conditions. While task performance on learning trials was similar between groups, MJ users demonstrated a deficit in memory retrieval. For BOLD fMRI data, NU subjects exhibited greater activation in the right parahippocampal gyrus and cingulate gyrus compared to the MJ group for the Retrieval-Motor Control contrast (NU > MJ). These findings suggest that hypoactivation in MJ users may be due to differences in the efficient utilization of neuronal resources during the retrieval of memory. Given the paucity of data on visuospatial memory function in MJ users, these findings may help elucidate the neurobiological effects of marijuana on brain activation during memory retrieval. PMID:23951549

  3. Default-mode-like network activation in awake rodents.

    PubMed

    Upadhyay, Jaymin; Baker, Scott J; Chandran, Prasant; Miller, Loan; Lee, Younglim; Marek, Gerard J; Sakoglu, Unal; Chin, Chih-Liang; Luo, Feng; Fox, Gerard B; Day, Mark

    2011-01-01

    During wakefulness and in absence of performing tasks or sensory processing, the default-mode network (DMN), an intrinsic central nervous system (CNS) network, is in an active state. Non-human primate and human CNS imaging studies have identified the DMN in these two species. Clinical imaging studies have shown that the pattern of activity within the DMN is often modulated in various disease states (e.g., Alzheimer's, schizophrenia or chronic pain). However, whether the DMN exists in awake rodents has not been characterized. The current data provides evidence that awake rodents also possess 'DMN-like' functional connectivity, but only subsequent to habituation to what is initially a novel magnetic resonance imaging (MRI) environment as well as physical restraint. Specifically, the habituation process spanned across four separate scanning sessions (Day 2, 4, 6 and 8). At Day 8, significant (p<0.05) functional connectivity was observed amongst structures such as the anterior cingulate (seed region), retrosplenial, parietal, and hippocampal cortices. Prior to habituation (Day 2), functional connectivity was only detected (p<0.05) amongst CNS structures known to mediate anxiety (i.e., anterior cingulate (seed region), posterior hypothalamic area, amygdala and parabracial nucleus). In relating functional connectivity between cingulate-default-mode and cingulate-anxiety structures across Days 2-8, a significant inverse relationship (r = -0.65, p = 0.0004) was observed between these two functional interactions such that increased cingulate-DMN connectivity corresponded to decreased cingulate anxiety network connectivity. This investigation demonstrates that the cingulate is an important component of both the rodent DMN-like and anxiety networks.

  4. Virtual Worlds, Virtual Literacy: An Educational Exploration

    ERIC Educational Resources Information Center

    Stoerger, Sharon

    2008-01-01

    Virtual worlds enable students to learn through seeing, knowing, and doing within visually rich and mentally engaging spaces. Rather than reading about events, students become part of the events through the adoption of a pre-set persona. Along with visual feedback that guides the players' activities and the development of visual skills, visual…

  5. Pre-stimulus BOLD-network activation modulates EEG spectral activity during working memory retention.

    PubMed

    Kottlow, Mara; Schlaepfer, Anthony; Baenninger, Anja; Michels, Lars; Brandeis, Daniel; Koenig, Thomas

    2015-01-01

    Working memory (WM) processes depend on our momentary mental state and therefore exhibit considerable fluctuations. Here, we investigate the interplay of task-preparatory and task-related brain activity as represented by pre-stimulus BOLD-fluctuations and spectral EEG from the retention periods of a visual WM task. Visual WM is used to maintain sensory information in the brain enabling the performance of cognitive operations and is associated with mental health. We tested 22 subjects simultaneously with EEG and fMRI while performing a visuo-verbal Sternberg task with two different loads, allowing for the temporal separation of preparation, encoding, retention and retrieval periods. Four temporally coherent networks (TCNs)-the default mode network (DMN), the dorsal attention, the right and the left WM network-were extracted from the continuous BOLD data by means of a group ICA. Subsequently, the modulatory effect of these networks' pre-stimulus activation upon retention-related EEG activity in the theta, alpha, and beta frequencies was analyzed. The obtained results are informative in the context of state-dependent information processing. We were able to replicate two well-known load-dependent effects: the frontal-midline theta increase during the task and the decrease of pre-stimulus DMN activity. As our main finding, these two measures seem to depend on each other as the significant negative correlations at frontal-midline channels suggested. Thus, suppressed pre-stimulus DMN levels facilitated later task related frontal midline theta increases. In general, based on previous findings that neuronal coupling in different frequency bands may underlie distinct functions in WM retention, our results suggest that processes reflected by spectral oscillations during retention seem not only to be "online" synchronized with activity in different attention-related networks but are also modulated by activity in these networks during preparation intervals.

  6. Active Learning: A Small Group Histology Laboratory Exercise in a Whole Class Setting Utilizing Virtual Slides and Peer Education

    ERIC Educational Resources Information Center

    Bloodgood, Robert A.

    2012-01-01

    Histology laboratory instruction is moving away from the sole use of the traditional combination of light microscopes and glass slides in favor of virtual microscopy and virtual slides. At the same time, medical curricula are changing so as to reduce scheduled time for basic science instruction as well as focusing on student-centered learning…

  7. Antituberculosis activity of the molecular libraries screening center network library.

    PubMed

    Maddry, Joseph A; Ananthan, Subramaniam; Goldman, Robert C; Hobrath, Judith V; Kwong, Cecil D; Maddox, Clinton; Rasmussen, Lynn; Reynolds, Robert C; Secrist, John A; Sosa, Melinda I; White, E Lucile; Zhang, Wei

    2009-09-01

    There is an urgent need for the discovery and development of new antitubercular agents that target novel biochemical pathways and treat drug-resistant forms of the disease. One approach to addressing this need is through high-throughput screening of drug-like small molecule libraries against the whole bacterium in order to identify a variety of new, active scaffolds that will stimulate additional biological research and drug discovery. Through the Molecular Libraries Screening Center Network, the NIAID Tuberculosis Antimicrobial Acquisition and Coordinating Facility tested a 215,110-compound library against Mycobacterium tuberculosis strain H37Rv. A medicinal chemistry survey of the results from the screening campaign is reported herein.

  8. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  9. Active traffic management on road networks: a macroscopic approach.

    PubMed

    Kurzhanskiy, Alex A; Varaiya, Pravin

    2010-10-13

    Active traffic management (ATM) is the ability to dynamically manage recurrent and non-recurrent congestion based on prevailing traffic conditions in order to maximize the effectiveness and efficiency of road networks. It is a continuous process of (i) obtaining and analysing traffic measurement data, (ii) operations planning, i.e. simulating various scenarios and control strategies, (iii) implementing the most promising control strategies in the field, and (iv) maintaining a real-time decision support system that filters current traffic measurements to predict the traffic state in the near future, and to suggest the best available control strategy for the predicted situation. ATM relies on a fast and trusted traffic simulator for the rapid quantitative assessment of a large number of control strategies for the road network under various scenarios, in a matter of minutes. The open-source macrosimulation tool Aurora ROAD NETWORK MODELER is a good candidate for this purpose. The paper describes the underlying dynamical traffic model and what it takes to prepare the model for simulation; covers the traffic performance measures and evaluation of scenarios as part of operations planning; introduces the framework within which the control strategies are modelled and evaluated; and presents the algorithm for real-time traffic state estimation and short-term prediction.

  10. Virtual Machine Logbook - Enabling virtualization for ATLAS

    NASA Astrophysics Data System (ADS)

    Yao, Yushu; Calafiura, Paolo; Poffet, Julien; Cavalli, Andrea; Leggett, Charles; Frédéric, Bapst

    2010-04-01

    ATLAS software has been developed mostly on CERN linux cluster lxplus or on similar facilities at the experiment Tier 1 centers. The fast rise of virtualization technology has the potential to change this model, turning every laptop or desktop into an ATLAS analysis platform. In the context of the CernVM project we are developing a suite of tools and CernVM plug-in extensions to promote the use of virtualization for ATLAS analysis and software development. The Virtual Machine Logbook (VML), in particular, is an application to organize work of physicists on multiple projects, logging their progress, and speeding up "context switches" from one project to another. An important feature of VML is the ability to share with a single "click" the status of a given project with other colleagues. VML builds upon the save and restore capabilities of mainstream virtualization software like VMware, and provides a technology-independent client interface to them. A lot of emphasis in the design and implementation has gone into optimizing the save and restore process to makepractical to store many VML entries on a typical laptop disk or to share a VML entry over the network. At the same time, taking advantage of CernVM's plugin capabilities, we are extending the CernVM platform to help increase the usability of ATLAS software. For example, we added the ability to start the ATLAS event display on any computer running CernVM simply by clicking a button in a web browser. We want to integrate seamlessly VML with CernVM unique file system design to distribute efficiently ATLAS software on every physicist computer. The CernVM File System (CVMFS) download files on-demand via HTTP, and cache it locally for future use. This reduces by one order of magnitude the download sizes, making practical for a developer to work with multiple software releases on a virtual machine.

  11. Virtual Satellite

    NASA Technical Reports Server (NTRS)

    Hammrs, Stephan R.

    2008-01-01

    Virtual Satellite (VirtualSat) is a computer program that creates an environment that facilitates the development, verification, and validation of flight software for a single spacecraft or for multiple spacecraft flying in formation. In this environment, enhanced functionality and autonomy of navigation, guidance, and control systems of a spacecraft are provided by a virtual satellite that is, a computational model that simulates the dynamic behavior of the spacecraft. Within this environment, it is possible to execute any associated software, the development of which could benefit from knowledge of, and possible interaction (typically, exchange of data) with, the virtual satellite. Examples of associated software include programs for simulating spacecraft power and thermal- management systems. This environment is independent of the flight hardware that will eventually host the flight software, making it possible to develop the software simultaneously with, or even before, the hardware is delivered. Optionally, by use of interfaces included in VirtualSat, hardware can be used instead of simulated. The flight software, coded in the C or C++ programming language, is compilable and loadable into VirtualSat without any special modifications. Thus, VirtualSat can serve as a relatively inexpensive software test-bed for development test, integration, and post-launch maintenance of spacecraft flight software.

  12. Dysregulated but not decreased salience network activity in schizophrenia

    PubMed Central

    White, Thomas P.; Gilleen, James; Shergill, Sukhwinder S.

    2013-01-01

    Effective estimation of the salience of environmental stimuli underlies adaptive behavior, while related aberrance is believed to undermine rational thought processes in schizophrenia. A network including bilateral frontoinsular cortex (FIC) and dorsal anterior cingulate cortex (dACC) has been observed to respond to salient stimuli using functional magnetic resonance imaging (fMRI). To test the hypothesis that activity in this salience network (SN) is less discriminately modulated by contextually-relevant stimuli in schizophrenia than in healthy individuals, fMRI data were collected in 20 individuals with schizophrenia and 13 matched controls during performance of a modified monetary incentive delay (MID) task. After quantitatively identifying spatial components representative of the FIC and dACC features of the SN, two principal analyses were conducted. In the first, modulation of SN activity by salience was assessed by measuring response to trial outcome. First-level general linear models were applied to individual-specific time-courses of SN activity identified using spatial independent component analysis (ICA). This analysis revealed a significant salience-by-performance-by-group interaction on the best-fit FIC component's activity at trial outcome, whereby healthy individuals but not individuals with schizophrenia exhibited greater distinction between the response to hits and misses in high salience trials than in low salience trials. The second analysis aimed to ascertain whether SN component amplitude differed between the study groups over the duration of the experiment. Independent-samples T-tests on back-projected, percent-signal-change scaled SN component images importantly showed that the groups did not differ in the overall amplitude of SN expression over the entire dataset. These findings of dysregulated but not decreased SN activity in schizophrenia provide physiological support for mechanistic conceptual frameworks of delusional thought formation

  13. Active Learning through Role Playing: Virtual Babies in a Child Development Course

    ERIC Educational Resources Information Center

    Poling, Devereaux A.; Hupp, Julie M.

    2009-01-01

    The authors designed an active learning project for a child development course in which students apply core concepts to a hypothetical baby they "raise" during the term. Students applied developmental topics to their unique, developing child. The project fostered student learning and enthusiasm for the material. The project's versatility makes it…

  14. Enabling New and More Transparent Science via DataONE—a Virtual Data Observation Network for Earth (Invited)

    NASA Astrophysics Data System (ADS)

    Michener, W.

    2010-12-01

    Addressing grand environmental science challenges requires unprecedented access to easily understood data that cross the breadth of temporal, spatial, and thematic scales. From a scientist’s perspective, the big challenges lie in discovering the relevant data, dealing with extreme data heterogeneity, and converting data to information and knowledge. Addressing these challenges requires new approaches for managing, preserving, analyzing, and sharing data. DataONE is designed to be the foundation of new innovative environmental research that addresses questions of relevance to science and society. DataONE will ensure preservation and access to multi-scale, multi-discipline, and multi-national data. Operationally, DataONE encompasses a distributed global network of Member Nodes (i.e., data repositories) that provide open and persistent access to well-described and easily discovered Earth observational data. In addition, a smaller number of Coordinating Nodes (i.e., metadata repositories and service centers) support network-wide services such as data replication and access to an array of enabling tools. DataONE’s objectives are to: make biological data available from the genome to the ecosystem; make environmental data available from atmospheric, ecological, hydrological, and oceanographic sources; provide secure and long-term preservation and access; and engage scientists, land-managers, policy makers, students, educators, and the public through logical access and intuitive visualizations. The foundation for excellence of DataONE is the established collaboration among participating organizations that have multi-decade expertise in a wide range of fields that includes: existing archive initiatives, libraries, environmental observing systems and research networks, data and information management, science synthesis centers, and professional societies. DataONE is a means to serve a broad range of science domains directly and indirectly through interoperability with

  15. Photonic Network R&D Activities in Japan-Current Activities and Future Perspectives

    NASA Astrophysics Data System (ADS)

    Kitayama, Ken-Ichi; Miki, Tetsuya; Morioka, Toshio; Tsushima, Hideaki; Koga, Masafumi; Mori, Kazuyuki; Araki, Soichiro; Sato, Ken-Ichi; Onaka, Hiroshi; Namiki, Shu; Aoyama, Tomonori

    2005-10-01

    R&D activities on photonic networks in Japan are presented. First, milestones in current ongoing R&D programs supported by Japanese government agencies are introduced, including long-distance and wavelength division multiplexing (WDM) fiber transmission, wavelength routing, optical burst switching (OBS), and control-plane technology for IP backbone networks. Their goal was set to evolve a legacy telecommunications network to IP-over-WDM networks by introducing technologies for WDM and wavelength routing. We then discuss the perspectives of so-called PHASE II R&D programs for photonic networks over the next 5 years until 2010, by focusing on the report that has been recently issued by the Photonic Internet Forum (PIF), a consortium that has major carriers, telecom vendors, and Japanese academics as members. The PHASE II R&D programs should serve to establish a photonic platform to provide abundant bandwidth on demand, at any time on a real-time basis, through the customer's initiative to promote bandwidth-rich applications, such as grid computing, real-time digital-cinema streaming, medical and educational applications, and network storage in e-commerce.

  16. Stock Price Change Rate Prediction by Utilizing Social Network Activities

    PubMed Central

    Mitsubuchi, Takashi; Sakurai, Akito

    2014-01-01

    Predicting stock price change rates for providing valuable information to investors is a challenging task. Individual participants may express their opinions in social network service (SNS) before or after their transactions in the market; we hypothesize that stock price change rate is better predicted by a function of social network service activities and technical indicators than by a function of just stock market activities. The hypothesis is tested by accuracy of predictions as well as performance of simulated trading because success or failure of prediction is better measured by profits or losses the investors gain or suffer. In this paper, we propose a hybrid model that combines multiple kernel learning (MKL) and genetic algorithm (GA). MKL is adopted to optimize the stock price change rate prediction models that are expressed in a multiple kernel linear function of different types of features extracted from different sources. GA is used to optimize the trading rules used in the simulated trading by fusing the return predictions and values of three well-known overbought and oversold technical indicators. Accumulated return and Sharpe ratio were used to test the goodness of performance of the simulated trading. Experimental results show that our proposed model performed better than other models including ones using state of the art techniques. PMID:24790586

  17. Dynamic Control of Synchronous Activity in Networks of Spiking Neurons

    PubMed Central

    Hutt, Axel; Mierau, Andreas; Lefebvre, Jérémie

    2016-01-01

    Oscillatory brain activity is believed to play a central role in neural coding. Accumulating evidence shows that features of these oscillations are highly dynamic: power, frequency and phase fluctuate alongside changes in behavior and task demands. The role and mechanism supporting this variability is however poorly understood. We here analyze a network of recurrently connected spiking neurons with time delay displaying stable synchronous dynamics. Using mean-field and stability analyses, we investigate the influence of dynamic inputs on the frequency of firing rate oscillations. We show that afferent noise, mimicking inputs to the neurons, causes smoothing of the system’s response function, displacing equilibria and altering the stability of oscillatory states. Our analysis further shows that these noise-induced changes cause a shift of the peak frequency of synchronous oscillations that scales with input intensity, leading the network towards critical states. We lastly discuss the extension of these principles to periodic stimulation, in which externally applied driving signals can trigger analogous phenomena. Our results reveal one possible mechanism involved in shaping oscillatory activity in the brain and associated control principles. PMID:27669018

  18. Virtual Teams.

    ERIC Educational Resources Information Center

    Geber, Beverly

    1995-01-01

    Virtual work teams scattered around the globe are becoming a feature of corporate workplaces. Although most people prefer face-to-face meetings and interactions, reality often requires telecommuting. (JOW)

  19. Modulation of Rhythmic Activity in Mammalian Spinal Networks Is Dependent on Excitability State

    PubMed Central

    2017-01-01

    Neuromodulators play an important role in activating rhythmically active motor networks; however, what remains unclear are the network interactions whereby neuromodulators recruit spinal motor networks to produce rhythmic activity. Evidence from invertebrate systems has demonstrated that the effect of neuromodulators depends on the pre-existing state of the network. We explored how network excitation state affects the ability of dopamine to evoke rhythmic locomotor activity in the neonatal mouse isolated spinal cord. We found that dopamine can evoke unique patterns of motor activity that are dependent on the excitability state of motor networks. Different patterns of motor activity ranging from tonic, nonrhythmic activity to multirhythmic, nonlocomotor activity to locomotor activity were produced by altering global motor network excitability through manipulations of the extracellular potassium and bath NMDA concentration. A similar effect was observed when network excitation was manipulated during an unstable multirhythm evoked by a low concentration (15 µm) of 5-HT, suggesting that our results are not neuromodulator specific. Our data show in vertebrate systems that modulation is a two-way street and that modulatory actions are largely influenced by the network state. The level of network excitation can account for variability between preparations and is an additional factor to be considered when circuit elements are removed from the network. PMID:28144626

  20. Detection of silent cells, synchronization and modulatory activity in developing cellular networks.

    PubMed

    Hjorth, Johannes J J; Dawitz, Julia; Kroon, Tim; Pires, Johny; Dassen, Valerie J; Berkhout, Janna A; Emperador Melero, Javier; Nadadhur, Aish G; Alevra, Mihai; Toonen, Ruud F; Heine, Vivi M; Mansvelder, Huibert D; Meredith, Rhiannon M

    2016-04-01

    Developing networks in the immature nervous system and in cellular cultures are characterized by waves of synchronous activity in restricted clusters of cells. Synchronized activity in immature networks is proposed to regulate many different developmental processes, from neuron growth and cell migration, to the refinement of synapses, topographic maps, and the mature composition of ion channels. These emergent activity patterns are not present in all cells simultaneously within the network and more immature "silent" cells, potentially correlated with the presence of silent synapses, are prominent in different networks during early developmental periods. Many current network analyses for detection of synchronous cellular activity utilize activity-based pixel correlations to identify cellular-based regions of interest (ROIs) and coincident cell activity. However, using activity-based correlations, these methods first underestimate or ignore the inactive silent cells within the developing network and second, are difficult to apply within cell-dense regions commonly found in developing brain networks. In addition, previous methods may ignore ROIs within a network that shows transient activity patterns comprising both inactive and active periods. We developed analysis software to semi-automatically detect cells within developing neuronal networks that were imaged using calcium-sensitive reporter dyes. Using an iterative threshold, modulation of activity was tracked within individual cells across the network. The distribution pattern of both inactive and active, including synchronous cells, could be determined based on distance measures to neighboring cells and according to different anatomical layers.

  1. Virtual memory

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Virtual memory was conceived as a way to automate overlaying of program segments. Modern computers have very large main memories, but need automatic solutions to the relocation and protection problems. Virtual memory serves this need as well and is thus useful in computers of all sizes. The history of the idea is traced, showing how it has become a widespread, little noticed feature of computers today.

  2. A local active noise control system based on a virtual-microphone technique for railway sleeping vehicle applications

    NASA Astrophysics Data System (ADS)

    Diaz, J.; Egaña, J. M.; Viñolas, J.

    2006-11-01

    Low-frequency broadband noise generated on a railway vehicle by the wheel-rail interaction could be a big annoyance for passengers in sleeping cars. Low-frequency acoustic radiation is extremely difficult to attenuate by using passive devices. In this article, an active noise control (ANC) technique has been proposed for this purpose. A three-dimensional cabin was built in the laboratory to carry out the experiments. The proposed scheme is based on a Filtered-X Least Mean Square (FXLMS) control algorithm, particularised for a virtual-microphone technique. Control algorithms were designed with the Matlab-Simulink tool, and the Real Time Windows Target toolbox of Matlab was used to run in real time the ANC system. Referring to the results, different simulations and experimental performances were analysed to enlarge the silence zone around the passenger's ear zone and along the bed headboard. Attenuations of up to 20 and 15 dB(A) (re:20 μPa) were achieved at the passenger's ear in simulations and in experimental results, respectively.

  3. Resting-State fMRI Activity Predicts Unsupervised Learning and Memory in an Immersive Virtual Reality Environment

    PubMed Central

    Wong, Chi Wah; Olafsson, Valur; Plank, Markus; Snider, Joseph; Halgren, Eric; Poizner, Howard; Liu, Thomas T.

    2014-01-01

    In the real world, learning often proceeds in an unsupervised manner without explicit instructions or feedback. In this study, we employed an experimental paradigm in which subjects explored an immersive virtual reality environment on each of two days. On day 1, subjects implicitly learned the location of 39 objects in an unsupervised fashion. On day 2, the locations of some of the objects were changed, and object location recall performance was assessed and found to vary across subjects. As prior work had shown that functional magnetic resonance imaging (fMRI) measures of resting-state brain activity can predict various measures of brain performance across individuals, we examined whether resting-state fMRI measures could be used to predict object location recall performance. We found a significant correlation between performance and the variability of the resting-state fMRI signal in the basal ganglia, hippocampus, amygdala, thalamus, insula, and regions in the frontal and temporal lobes, regions important for spatial exploration, learning, memory, and decision making. In addition, performance was significantly correlated with resting-state fMRI connectivity between the left caudate and the right fusiform gyrus, lateral occipital complex, and superior temporal gyrus. Given the basal ganglia's role in exploration, these findings suggest that tighter integration of the brain systems responsible for exploration and visuospatial processing may be critical for learning in a complex environment. PMID:25286145

  4. The origin of spontaneous activity in developing networks of the vertebrate nervous system.

    PubMed

    O'Donovan, M J

    1999-02-01

    Spontaneous neuronal activity has been detected in many parts of the developing vertebrate nervous system. Recent studies suggest that this activity depends on properties that are probably shared by all developing networks. Of particular importance is the high excitability of recurrently connected, developing networks and the presence of activity-induced transient depression of network excitability. In the spinal cord, it has been proposed that the interaction of these properties gives rise to spontaneous, periodic activity.

  5. Computational reverse chemical ecology: Virtual screening and predicting behaviorally active semiochemicals for Bactrocera dorsalis

    PubMed Central

    2014-01-01

    Background Semiochemical is a generic term used for a chemical substance that influences the behaviour of an organism. It is a common term used in the field of chemical ecology to encompass pheromones, allomones, kairomones, attractants and repellents. Insects have mastered the art of using semiochemicals as communication signals and rely on them to find mates, host or habitat. This dependency of insects on semiochemicals has allowed chemical ecologists to develop environment friendly pest management strategies. However, discovering semiochemicals is a laborious process that involves a plethora of behavioural and analytical techniques, making it expansively time consuming. Recently, reverse chemical ecology approach using odorant binding proteins (OBPs) as target for elucidating behaviourally active compounds is gaining eminence. In this scenario, we describe a “computational reverse chemical ecology” approach for rapid screening of potential semiochemicals. Results We illustrate the high prediction accuracy of our computational method. We screened 25 semiochemicals for their binding potential to a GOBP of B. dorsalis using molecular docking (in silico) and molecular dynamics. Parallely, compounds were subjected to fluorescent quenching assays (Experimental). The correlation between in silico and experimental data were significant (r2 = 0.9408; P < 0.0001). Further, predicted compounds were subjected to behavioral bioassays and were found to be highly attractive to insects. Conclusions The present study provides a unique methodology for rapid screening and predicting behaviorally active semiochemicals. This methodology may be developed as a viable approach for prospecting active semiochemicals for pest control, which otherwise is a laborious process. PMID:24640964

  6. Self-organization of synchronous activity propagation in neuronal networks driven by local excitation.

    PubMed

    Bayati, Mehdi; Valizadeh, Alireza; Abbassian, Abdolhossein; Cheng, Sen

    2015-01-01

    Many experimental and theoretical studies have suggested that the reliable propagation of synchronous neural activity is crucial for neural information processing. The propagation of synchronous firing activity in so-called synfire chains has been studied extensively in feed-forward networks of spiking neurons. However, it remains unclear how such neural activity could emerge in recurrent neuronal networks through synaptic plasticity. In this study, we investigate whether local excitation, i.e., neurons that fire at a higher frequency than the other, spontaneously active neurons in the network, can shape a network to allow for synchronous activity propagation. We use two-dimensional, locally connected and heterogeneous neuronal networks with spike-timing dependent plasticity (STDP). We find that, in our model, local excitation drives profound network changes within seconds. In the emergent network, neural activity propagates synchronously through the network. This activity originates from the site of the local excitation and propagates through the network. The synchronous activity propagation persists, even when the local excitation is removed, since it derives from the synaptic weight matrix. Importantly, once this connectivity is established it remains stable even in the presence of spontaneous activity. Our results suggest that synfire-chain-like activity can emerge in a relatively simple way in realistic neural networks by locally exciting the desired origin of the neuronal sequence.

  7. A Wolf Pack Algorithm for Active and Reactive Power Coordinated Optimization in Active Distribution Network

    NASA Astrophysics Data System (ADS)

    Zhuang, H. M.; Jiang, X. J.

    2016-08-01

    This paper presents an active and reactive power dynamic optimization model for active distribution network (ADN), whose control variables include the output of distributed generations (DGs), charge or discharge power of energy storage system (ESS) and reactive power from capacitor banks. To solve the high-dimension nonlinear optimization model, a new heuristic swarm intelligent method, namely wolf pack algorithm (WPA) with better global convergence and computational robustness, is adapted so that the network loss minimization can be achieved. In this paper, the IEEE33-bus system is used to show the effectiveness of WPA technique compared with other techniques. Numerical tests on the modified IEEE 33-bus system show that WPA for active and reactive multi-period optimization of ADN is exact and effective.

  8. Virtual Specimens

    NASA Astrophysics Data System (ADS)

    de Paor, D. G.

    2009-12-01

    Virtual Field Trips have been around almost as long as the Worldwide Web itself yet virtual explorers do not generally return to their desktops with folders full of virtual hand specimens. Collection of real specimens on fields trips for later analysis in the lab (or at least in the pub) has been an important part of classical field geoscience education and research for generations but concern for the landscape and for preservation of key outcrops from wanton destruction has lead to many restrictions. One of the author’s favorite outcrops was recently vandalized presumably by a geologist who felt the need to bash some of the world’s most spectacular buckle folds with a rock sledge. It is not surprising, therefore, that geologists sometimes leave fragile localities out of field trip itineraries. Once analyzed, most specimens repose in drawers or bins, never to be seen again. Some end up in teaching collections but recent pedagogical research shows that undergraduate students have difficulty relating specimens both to their collection location and ultimate provenance in the lithosphere. Virtual specimens can be created using 3D modeling software and imported into virtual globes such as Google Earth (GE) where, they may be linked to virtual field trip stops or restored to their source localities on the paleo-globe. Sensitive localities may be protected by placemark approximation. The GE application program interface (API) has a distinct advantage over the stand-alone GE application when it comes to viewing and manipulating virtual specimens. When instances of the virtual globe are embedded in web pages using the GE plug-in, Collada models of specimens can be manipulated with javascript controls residing in the enclosing HTML, permitting specimens to be magnified, rotated in 3D, and sliced. Associated analytical data may be linked into javascript and localities for comparison at various points on the globe referenced by ‘fetching’ KML. Virtual specimens open up

  9. Organization of prefrontal network activity by respiration-related oscillations

    PubMed Central

    Biskamp, Jonatan; Bartos, Marlene; Sauer, Jonas-Frederic

    2017-01-01

    The medial prefrontal cortex (mPFC) integrates information from cortical and sub-cortical areas and contributes to the planning and initiation of behaviour. A potential mechanism for signal integration in the mPFC lies in the synchronization of neuronal discharges by theta (6–12 Hz) activity patterns. Here we show, using in vivo local field potential (LFP) and single-unit recordings from awake mice, that prominent oscillations in the sub-theta frequency band (1–5 Hz) emerge during awake immobility in the mPFC. These oscillation patterns are distinct from but phase-locked to hippocampal theta activity and occur synchronized with nasal respiration (hence termed prefrontal respiration rhythm [PRR]). PRR activity modulates the amplitude of prefrontal gamma rhythms with greater efficacy than theta oscillations. Furthermore, single-unit discharges of putative pyramidal cells and GABAergic interneurons are entrained by prefrontal PRR and nasal respiration. Our data thus suggest that PRR activity contributes to information processing in the prefrontal neuronal network. PMID:28349959

  10. The Virtual Environmental Microbiology Center - A Social Network for Enhanced Communication between Water Researchers and Policy Makers

    EPA Science Inventory

    Effective communication within and between organizations involved in research and policy making activities is essential. Sharing information across organizational and geographic boundaries can also facilitate coordination and collaboration, promote a better understanding of tech...

  11. Virtual Sensor Test Instrumentation

    NASA Technical Reports Server (NTRS)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  12. Inhibition in vivo of the activity of botulinum neurotoxin A by small molecules selected by virtual screening.

    PubMed

    Eichhorn, Tolga; Dolimbek, Behzod Z; Deeg, Katharina; Efferth, Thomas; Atassi, M Zouhair

    2012-11-01

    To search for small molecular size inhibitors of botulinum neurotoxin A (BoNT/A) endopeptidase activity, we have screened the NCI library containing about 1 million structures against the substrate binding pocket of BoNT/A. Virtual screening (VS) was performed with the software Glide (Grid-based ligand docking energetics) and the findings were confirmed by AutoDock. Ten compounds were found that had favorable energetic and glide criteria and 5 of these compounds were selected for their ability to protect mice in vivo against a lethal dose of BoNT/A. Each compound was incubated at different molar excesses with a lethal dose of the toxin and then the mixture injected intravenously into mice. At 4690 M excess, compounds NSC94520 and NSC99639 protected all (100%) the mice from lethal toxicity. Compounds NSC48461 and NSC627733 gave 75% protection. Compound NSC348884 showed the least inhibition of toxicity allowing only a fraction (25%) of the mice to survive challenge with a lethal dose; and in the case of the mice that did not survive there was a considerable delay of mortality. At 2400 M excess compounds NSC94520 remained fully protective while and NSC99639 afforded 75% protection and at 1200 M excess each of these two compounds gave 50% protection. The two compounds gave no protection at 600 or less molar excess. When each compound was administered intravenously at 4690 M excess at different times (from 1 h to 6 h) after the intravenous injection of the active toxin, none of the compounds was able to protect the animals from toxicity. The findings show the value of VS in identifying potential inhibitors of the toxin for further development and improvement.

  13. Multiple target drug cocktail design for attacking the core network markers of four cancers using ligand-based and structure-based virtual screening methods

    PubMed Central

    2015-01-01

    Background Computer-aided drug design has a long history of being applied to discover new molecules to treat various cancers, but it has always been focused on single targets. The development of systems biology has let scientists reveal more hidden mechanisms of cancers, but attempts to apply systems biology to cancer therapies remain at preliminary stages. Our lab has successfully developed various systems biology models for several cancers. Based on these achievements, we present the first attempt to combine multiple-target therapy with systems biology. Methods In our previous study, we identified 28 significant proteins--i.e., common core network markers--of four types of cancers as house-keeping proteins of these cancers. In this study, we ranked these proteins by summing their carcinogenesis relevance values (CRVs) across the four cancers, and then performed docking and pharmacophore modeling to do virtual screening on the NCI database for anti-cancer drugs. We also performed pathway analysis on these proteins using Panther and MetaCore to reveal more mechanisms of these cancer house-keeping proteins. Results We designed several approaches to discover targets for multiple-target cocktail therapies. In the first one, we identified the top 20 drugs for each of the 28 cancer house-keeping proteins, and analyzed the docking pose to further understand the interaction mechanisms of these drugs. After screening for duplicates, we found that 13 of these drugs could target 11 proteins simultaneously. In the second approach, we chose the top 5 proteins with the highest summed CRVs and used them as the drug targets. We built a pharmacophore and applied it to do virtual screening against the Life-Chemical library for anti-cancer drugs. Based on these results, wet-lab bio-scientists could freely investigate combinations of these drugs for multiple-target therapy for cancers, in contrast to the traditional single target therapy. Conclusions Combination of systems biology

  14. Enzymatic activity preservation through entrapment within degradable hydrogel networks

    NASA Astrophysics Data System (ADS)

    Mariani, Angela Marie

    This dissertation aimed to design and develop a "biogel;" a reproducible, abiotic, and biocompatible polymer hydrogel matrix, that prolongs enzymatic stability allowing for rapid production of biomolecules. The researched entrapment method preserves enzyme activity within an amicable environment while resisting activity reduction in the presence of increased pH environmental challenges. These biogels can be used in a number of applications including repeated production of small molecules and in biosensors. Five main objectives were accomplished: 1) Biogels capable of maintaining enzymatic functionality post-entrapment procedures were fabricated; 2) Biogel activity dependence on crosslinker type and crosslink density was determined; 3) Biogel composition effects on sustained activity after storage were compared; 4) Biogel activity dependence on charged monomer moieties was evaluated, and 5) Combined optimization knowledge gained from the first four objectives was utilized to determine the protection of enzymes within hydrogels when challenged with an increased pH above 8. Biogels were fabricated by entrapping β-galactosidase (lactase) enzyme within acrylamide (ACR) gels crosslinked with poly(ethylene glycol) diacrylate (PEGDA, degradable through hydrolysis) or N,N'-methylenebisacrylamide (BIS, non-degradable). Initial hydrogel entrapment reduced activity to 40% in ACR/PEGDA gels, compared to a 75% reduction in initial activity of ACR/BIS biogels. Once entrapped, these enzymes resist activity reduction in the presence of environmental challenges, such as altering the pH from 7 to above 8. When biogels were challenged at a pH of 8, activity retention positively correlated to PEGDA crosslinker density; increasing from 48% to 91% retention in 30 to 40 mole % PEGDA biogels as compared to solution based control which retained only 23%. Retention of activity when perturbed from pH 7 is advantageous for biogel applications including the repeated production of desired small

  15. Toward a Virtual Lifetime Electronic Record: The Department of Veterans Affairs Experience with the Nationwide Health Information Network

    PubMed Central

    Bouhaddou, Omar; Bennett, Jamie; Teal, Jennifer; Pugh, Margaret; Sands, Melissa; Fontaine, Frank; Swall, Marie; Dhar, Sanjay; Mallia, Tony; Morgan, Brian; Cromwell, Tim

    2012-01-01

    Health information exchange is expected of all electronic health records (EHRs) in order to ensure safe, quality care coordination. The U.S. Department of Veterans Affairs (VA) has a long history of information exchange across VA facilities and with the U.S. Department of Defense (DoD). However, since a majority of VA and DoD patients receive a portion of their health care from the private sector, it is essential that both agencies enable health information exchange with private sector providers. This has been made possible by the use of the specifications and trust agreement developed by the Nationwide Health Information Network (NwHIN) initiative. Currently, VA has 12 medical centers exchanging information with the private sector and is evaluating the value of the exchange. The authors report on the success of these pilots as well as on the challenges, which include stricter technical specifications and a more efficient approach to patient identification (ID) matching and consent management. PMID:23304272

  16. Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands

    PubMed Central

    Lewis, Stephanie N.; Garcia, Zulma; Hontecillas, Raquel; Bassaganya-Riera, Josep; Bevan, David R.

    2015-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear hormone receptor involved in regulating various metabolic and immune processes. The PPAR family of receptors possesses a large binding cavity that imparts promiscuity of ligand binding not common to other nuclear receptors. This feature increases the challenge of using computational methods to identify PPAR ligands that will dock favorably into a structural model. Utilizing both ligand- and structure-based pharmacophore methods, we sought to improve agonist prediction by grouping ligands according to pharmacophore features, and pairing models derived from these features with receptor structures for docking. For 22 of the 33 receptor structures evaluated we observed an increase in true positive rate (TPR) when screening was restricted to compounds sharing molecular features found in rosiglitazone. A combination of structure models used for docking resulted in a higher TPR (40%) when compared to docking with a single structure model (less than 20%). Prediction was also improved when specific protein-ligand interactions between the docked ligands and structure models were given greater weight than the calculated free energy of binding. A large-scale screen of compounds using a marketed drug database verified the predictive ability of the selected structure models. This study highlights the steps necessary to improve screening for PPARγ ligands using multiple structure models, ligand-based pharmacophore data, evaluation of protein-ligand interactions, and comparison of docking datasets. The unique combination of methods presented here holds potential for more efficient screening of compounds with unknown affinity for PPARγ that could serve as candidates for therapeutic development. PMID:25616366

  17. Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands

    NASA Astrophysics Data System (ADS)

    Lewis, Stephanie N.; Garcia, Zulma; Hontecillas, Raquel; Bassaganya-Riera, Josep; Bevan, David R.

    2015-05-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear hormone receptor involved in regulating various metabolic and immune processes. The PPAR family of receptors possesses a large binding cavity that imparts promiscuity of ligand binding not common to other nuclear receptors. This feature increases the challenge of using computational methods to identify PPAR ligands that will dock favorably into a structural model. Utilizing both ligand- and structure-based pharmacophore methods, we sought to improve agonist prediction by grouping ligands according to pharmacophore features, and pairing models derived from these features with receptor structures for docking. For 22 of the 33 receptor structures evaluated we observed an increase in true positive rate (TPR) when screening was restricted to compounds sharing molecular features found in rosiglitazone. A combination of structure models used for docking resulted in a higher TPR (40 %) when compared to docking with a single structure model (<20 %). Prediction was also improved when specific protein-ligand interactions between the docked ligands and structure models were given greater weight than the calculated free energy of binding. A large-scale screen of compounds using a marketed drug database verified the predictive ability of the selected structure models. This study highlights the steps necessary to improve screening for PPARγ ligands using multiple structure models, ligand-based pharmacophore data, evaluation of protein-ligand interactions, and comparison of docking datasets. The unique combination of methods presented here holds potential for more efficient screening of compounds with unknown affinity for PPARγ that could serve as candidates for therapeutic development.

  18. Epidemic process on activity-driven modular networks

    NASA Astrophysics Data System (ADS)

    Han, Dun; Sun, Mei; Li, Dandan

    2015-08-01

    In this paper, we propose two novel models of epidemic spreading by considering the activity-driven and the network modular. Firstly, we consider the susceptible-infected-susceptible (SIS) contagion model and derive analytically the epidemic threshold. The results indicate that the epidemic threshold only involves with the value of the spread rate and the recovery rate. In addition, the asymptotic refractory density of infected nodes in the different communities exhibits different trends with the change of the modularity-factor. Then, the infected-driven vaccination model is presented. Simulation results illustrate that the final density of vaccination will increase with the increase of the response strength of vaccination. Moreover, the final infected density in the original-infected-community shows different trends with the change of the response strength of vaccination and the spreading rate. The infected-driven vaccination is a good way to control the epidemic spreading.

  19. Natural lecithin promotes neural network complexity and activity

    PubMed Central

    Latifi, Shahrzad; Tamayol, Ali; Habibey, Rouhollah; Sabzevari, Reza; Kahn, Cyril; Geny, David; Eftekharpour, Eftekhar; Annabi, Nasim; Blau, Axel; Linder, Michel; Arab-Tehrany, Elmira

    2016-01-01

    Phospholipids in the brain cell membranes contain different polyunsaturated fatty acids (PUFAs), which are critical to nervous system function and structure. In particular, brain function critically depends on the uptake of the so-called “essential” fatty acids such as omega-3 (n-3) and omega-6 (n-6) PUFAs that cannot be readily synthesized by the human body. We extracted natural lecithin rich in various PUFAs from a marine source and transformed it into nanoliposomes. These nanoliposomes increased neurite outgrowth, network complexity and neural activity of cortical rat neurons in vitro. We also observed an upregulation of synapsin I (SYN1), which supports the positive role of lecithin in synaptogenesis, synaptic development and maturation. These findings suggest that lecithin nanoliposomes enhance neuronal development, which may have an impact on devising new lecithin delivery strategies for therapeutic applications. PMID:27228907

  20. Antituberculosis Activity of the Molecular Libraries Screening Center Network Library

    PubMed Central

    MADDRY, JOSEPH A.; ANANTHAN, SUBRAMANIAM; GOLDMAN, ROBERT C.; HOBRATH, JUDITH V.; KWONG, CECIL D.; MADDOX, CLINTON; RASMUSSEN, LYNN; REYNOLDS, ROBERT C.; SECRIST, JOHN A.; SOSA, MELINDA I.; WHITE, E. LUCILE; ZHANG, WEI

    2009-01-01

    SUMMARY There is an urgent need for the discovery and development of new antitubercular agents that target novel biochemical pathways and treat drug-resistant forms of the disease. One approach to addressing this need is through high-throughput screening of drug-like small molecule libraries against the whole bacterium in order to identify a variety of new, active scaffolds that will stimulate additional biological research and drug discovery. Through the Molecular Libraries Screening Center Network, the NIAID Tuberculosis Antimicrobial Acquisition and Coordinating Facility tested a 215,110-compound library against M. tuberculosis strain H37Rv. A medicinal chemistry survey of the results from the screening campaign is reported herein. PMID:19783214

  1. The Geography of Virtual Questioning

    ERIC Educational Resources Information Center

    Mon, Lorri; Bishop, Bradley Wade; McClure, Charles R.; McGilvray, Jessica; Most, Linda; Milas, Theodore Patrick; Snead, John T.

    2009-01-01

    This article explores the geography of virtual questioning by using geographic information systems to study activity within the Florida Electronic Library "Ask a Librarian" collaborative chat service. Researchers mapped participating libraries throughout the state of Florida that served as virtual "entry portals" for users as…

  2. Size-dependent regulation of synchronized activity in living neuronal networks

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hideaki; Kubota, Shigeru; Chida, Yudai; Morita, Mayu; Moriya, Satoshi; Akima, Hisanao; Sato, Shigeo; Hirano-Iwata, Ayumi; Tanii, Takashi; Niwano, Michio

    2016-07-01

    We study the effect of network size on synchronized activity in living neuronal networks. Dissociated cortical neurons form synaptic connections in culture and generate synchronized spontaneous activity within 10 days in vitro. Using micropatterned surfaces to extrinsically control the size of neuronal networks, we show that synchronized activity can emerge in a network as small as 12 cells. Furthermore, a detailed comparison of small (˜20 cells), medium (˜100 cells), and large (˜400 cells) networks reveal that synchronized activity becomes destabilized in the small networks. A computational modeling of neural activity is then employed to explore the underlying mechanism responsible for the size effect. We find that the generation and maintenance of the synchronized activity can be minimally described by: (1) the stochastic firing of each neuron in the network, (2) enhancement in the network activity in a positive feedback loop of excitatory synapses, and (3) Ca-dependent suppression of bursting activity. The model further shows that the decrease in total synaptic input to a neuron that drives the positive feedback amplification of correlated activity is a key factor underlying the destabilization of synchrony in smaller networks. Spontaneous neural activity plays a critical role in cortical information processing, and our work constructively clarifies an aspect of the structural basis behind this.

  3. Size-dependent regulation of synchronized activity in living neuronal networks.

    PubMed

    Yamamoto, Hideaki; Kubota, Shigeru; Chida, Yudai; Morita, Mayu; Moriya, Satoshi; Akima, Hisanao; Sato, Shigeo; Hirano-Iwata, Ayumi; Tanii, Takashi; Niwano, Michio

    2016-07-01

    We study the effect of network size on synchronized activity in living neuronal networks. Dissociated cortical neurons form synaptic connections in culture and generate synchronized spontaneous activity within 10 days in vitro. Using micropatterned surfaces to extrinsically control the size of neuronal networks, we show that synchronized activity can emerge in a network as small as 12 cells. Furthermore, a detailed comparison of small (∼20 cells), medium (∼100 cells), and large (∼400 cells) networks reveal that synchronized activity becomes destabilized in the small networks. A computational modeling of neural activity is then employed to explore the underlying mechanism responsible for the size effect. We find that the generation and maintenance of the synchronized activity can be minimally described by: (1) the stochastic firing of each neuron in the network, (2) enhancement in the network activity in a positive feedback loop of excitatory synapses, and (3) Ca-dependent suppression of bursting activity. The model further shows that the decrease in total synaptic input to a neuron that drives the positive feedback amplification of correlated activity is a key factor underlying the destabilization of synchrony in smaller networks. Spontaneous neural activity plays a critical role in cortical information processing, and our work constructively clarifies an aspect of the structural basis behind this.

  4. How networks communicate: propagation patterns in spontaneous brain activity.

    PubMed

    Mitra, Anish; Raichle, Marcus E

    2016-10-05

    Initially regarded as 'noise', spontaneous (intrinsic) activity accounts for a large portion of the brain's metabolic cost. Moreover, it is now widely known that infra-slow (less than 0.1 Hz) spontaneous activity, measured using resting state functional magnetic resonance imaging of the blood oxygen level-dependent (BOLD) signal, is correlated within functionally defined resting state networks (RSNs). However, despite these advances, the temporal organization of spontaneous BOLD fluctuations has remained elusive. By studying temporal lags in the resting state BOLD signal, we have recently shown that spontaneous BOLD fluctuations consist of remarkably reproducible patterns of whole brain propagation. Embedded in these propagation patterns are unidirectional 'motifs' which, in turn, give rise to RSNs. Additionally, propagation patterns are markedly altered as a function of state, whether physiological or pathological. Understanding such propagation patterns will likely yield deeper insights into the role of spontaneous activity in brain function in health and disease.This article is part of the themed issue 'Interpreting blood oxygen level-dependent: a dialogue between cognitive and cellular neuroscience'.

  5. Functional modules, structural topology, and optimal activity in metabolic networks.

    PubMed

    Resendis-Antonio, Osbaldo; Hernández, Magdalena; Mora, Yolanda; Encarnación, Sergio

    2012-01-01

    Modular organization in biological networks has been suggested as a natural mechanism by which a cell coordinates its metabolic strategies for evolving and responding to environmental perturbations. To understand how this occurs, there is a need for developing computational schemes that contribute to integration of genomic-scale information and assist investigators in formulating biological hypotheses in a quantitative and systematic fashion. In this work, we combined metabolome data and constraint-based modeling to elucidate the relationships among structural modules, functional organization, and the optimal metabolic phenotype of Rhizobium etli, a bacterium that fixes nitrogen in symbiosis with Phaseolus vulgaris. To experimentally characterize the metabolic phenotype of this microorganism, we obtained the metabolic profile of 220 metabolites at two physiological stages: under free-living conditions, and during nitrogen fixation with P. vulgaris. By integrating these data into a constraint-based model, we built a refined computational platform with the capability to survey the metabolic activity underlying nitrogen fixation in R. etli. Topological analysis of the metabolic reconstruction led us to identify modular structures with functional activities. Consistent with modular activity in metabolism, we found that most of the metabolites experimentally detected in each module simultaneously increased their relative abundances during nitrogen fixation. In this work, we explore the relationships among topology, biological function, and optimal activity in the metabolism of R. etli through an integrative analysis based on modeling and metabolome data. Our findings suggest that the metabolic activity during nitrogen fixation is supported by interacting structural modules that correlate with three functional classifications: nucleic acids, peptides, and lipids. More fundamentally, we supply evidence that such modular organization during functional nitrogen fixation is

  6. A data standard for sourcing fit-for-purpose biological samples in an integrated virtual network of biobanks.

    PubMed

    Quinlan, Philip R; Mistry, Gita; Bullbeck, Helen; Carter, Anne

    2014-06-01

    Human tissue biobanks are at the epicenter of clinical research, responsible for providing both clinical samples and annotated data. There is a need for large numbers of samples to provide statistical power to research studies, especially since treatment and diagnosis are becoming ever more personalized. A single biobank cannot provide sufficient numbers of samples to capture the full spectrum of any disease. Currently there is no infrastructure in the United Kingdom (UK) to integrate biobanks. Therefore the National Cancer Research Institute (NCRI) Confederation of Cancer Biobanks (CCB) Working Group 3 looked to establish a data standard to enable biobanks to communicate about the samples they hold and so facilitate the formation of an integrated national network of biobanks. The Working Group examined the existing data standards available to biobanks, such as the MIABIS standard, and compared these to the aims of the working group. The CCB-developed data standard has brought many improvements: (1) Where existing data standards have been developed, these have been incorporated, ensuring compatibility with other initiatives; (2) the standard was written with the expectation that it will be extended for specific disease areas, such as the Breast Cancer Campaign Tissue Bank (BCCTB) and the Strategic Tissue Repository Alliances Through Unified Methods (STRATUM) project; and (3) biobanks will be able to communicate about specific samples, as well as aggregated statistics. The development of this data standard will allow all biobanks to integrate and share information about the samples they hold, facilitating the possibility of a national portal for researchers to find suitable samples for research. In addition, the data standard will allow other clinical services, such as disease registries, to communicate with biobanks in a standardized format allowing for greater cross-discipline data sharing.

  7. Enhanced excitatory synaptic network activity following transient group I metabotropic glutamate activation.

    PubMed

    Pan, Y-Z; Rutecki, P A

    2014-09-05

    Prolonged activation of group I metabotropic glutamate receptors (mGluRs) using the agonist (S)-3,5-dihydroxyphenylglycine (DHPG) produces long-lasting changes in the CA3 region of the hippocampal slice. Changes in CA3 pyramidal neuron excitability that follow DHPG exposure result in abnormal network activity manifest by epileptiform activity that consists of interictal and longer lasting ictal epileptiform discharges. In this study we evaluated changes in synaptic activity of CA3 neurons in rat hippocampal slices that occurred after exposure to DHPG. Whole-cell voltage-clamp recordings were made from visually identified CA3 neurons in control artificial cerebrospinal fluid at times greater than 1h after DHPG exposure. Compared to control slices, neurons from slices exposed to DHPG showed enhanced amplitude and frequency of spontaneously occurring excitatory postsynaptic currents (EPSCs) without a concurrent change in inhibitory postsynaptic current (IPSC) amplitude or frequency. Miniature EPSCs were not affected by DHPG exposure but mIPSCs occurred less frequently and were of reduced amplitude. IPSCs recorded in the presence of ionotropic glutamate receptor blockade occurred less frequently in neurons that had been exposed to DHPG. Monosynaptic-evoked IPSPs were also reduced in amplitude in neurons that had been exposed to DHPG. Taken together, these findings demonstrated an enhanced network excitability of the CA3 region and failure of compensatory synaptic inhibition. We propose that prolonged activation of group I mGluR that may occur under conditions of pathological glutamate release results in long-lasting changes in CA3 synaptic network activity and epileptiform activity driven by excessive synaptic excitation.

  8. Virtual Tower

    SciTech Connect

    Wayne, R.A.

    1997-08-01

    The primary responsibility of an intrusion detection system (IDS) operator is to monitor the system, assess alarms, and summon and coordinate the response team when a threat is acknowledged. The tools currently provided to the operator are somewhat limited: monitors must be switched, keystrokes must be entered to call up intrusion sensor data, and communication with the response force must be maintained. The Virtual tower is an operator interface assembled from low-cost commercial-off-the-shelf hardware and software; it enables large amounts of data to be displayed in a virtual manner that provides instant recognition for the operator and increases assessment accuracy in alarm annunciator and control systems. This is accomplished by correlating and fusing the data into a 360-degree visual representation that employs color, auxiliary attributes, video, and directional audio to prompt the operator. The Virtual Tower would be a valuable low-cost enhancement to existing systems.

  9. Virtual Violence.

    PubMed

    2016-08-01

    In the United States, exposure to media violence is becoming an inescapable component of children's lives. With the rise in new technologies, such as tablets and new gaming platforms, children and adolescents increasingly are exposed to what is known as "virtual violence." This form of violence is not experienced physically; rather, it is experienced in realistic ways via new technology and ever more intense and realistic games. The American Academy of Pediatrics continues to be concerned about children's exposure to virtual violence and the effect it has on their overall health and well-being. This policy statement aims to summarize the current state of scientific knowledge regarding the effects of virtual violence on children's attitudes and behaviors and to make specific recommendations for pediatricians, parents, industry, and policy makers.

  10. Who Can You Turn to? Tie Activation within Core Business Discussion Networks

    ERIC Educational Resources Information Center

    Renzulli, Linda A.; Aldrich, Howard

    2005-01-01

    We examine the connection between personal network characteristics and the activation of ties for access to resources during routine times. We focus on factors affecting business owners' use of their core network ties to obtain legal, loan, financial and expert advice. Owners rely more on core business ties when their core networks contain a high…

  11. A novel semi-immersive virtual reality visuo-motor task activates ventrolateral prefrontal cortex: a functional near-infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Basso Moro, Sara; Carrieri, Marika; Avola, Danilo; Brigadoi, Sabrina; Lancia, Stefania; Petracca, Andrea; Spezialetti, Matteo; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2016-06-01

    Objective. In the last few years, the interest in applying virtual reality systems for neurorehabilitation is increasing. Their compatibility with neuroimaging techniques, such as functional near-infrared spectroscopy (fNIRS), allows for the investigation of brain reorganization with multimodal stimulation and real-time control of the changes occurring in brain activity. The present study was aimed at testing a novel semi-immersive visuo-motor task (VMT), which has the features of being adopted in the field of neurorehabilitation of the upper limb motor function. Approach. A virtual environment was simulated through a three-dimensional hand-sensing device (the LEAP Motion Controller), and the concomitant VMT-related prefrontal cortex (PFC) response was monitored non-invasively by fNIRS. Upon the VMT, performed at three different levels of difficulty, it was hypothesized that the PFC would be activated with an expected greater level of activation in the ventrolateral PFC (VLPFC), given its involvement in the motor action planning and in the allocation of the attentional resources to generate goals from current contexts. Twenty-one subjects were asked to move their right hand/forearm with the purpose of guiding a virtual sphere over a virtual path. A twenty-channel fNIRS system was employed for measuring changes in PFC oxygenated-deoxygenated hemoglobin (O2Hb/HHb, respectively). Main results. A VLPFC O2Hb increase and a concomitant HHb decrease were observed during the VMT performance, without any difference in relation to the task difficulty. Significance. The present study has revealed a particular involvement of the VLPFC in the execution of the novel proposed semi-immersive VMT adoptable in the neurorehabilitation field.

  12. Both novelty and expertise increase action observation network activity

    PubMed Central

    Liew, Sook-Lei; Sheng, Tong; Margetis, John L.; Aziz-Zadeh, Lisa

    2013-01-01

    Our experiences with others affect how we perceive their actions. In particular, activity in bilateral premotor and parietal cortices during action observation, collectively known as the action observation network (AON), is modulated by one's expertise with the observed actions or individuals. However, conflicting reports suggest that AON activity is greatest both for familiar and unfamiliar actions. The current study examines the effects of different types and amounts of experience (e.g., visual, interpersonal, personal) on AON activation. fMRI was used to scan 16 healthy participants without prior experience with individuals with amputations (novices), 11 experienced occupational therapists (OTs) who had varying amounts of experience with individuals with amputations, and one individual born with below-elbow residual limbs (participant CJ), as they viewed video clips of goal-matched actions performed by an individual with residual limbs and by an individual with hands. Participants were given increased visual exposure to actions performed by both effectors midway through the scanning procedure. Novices demonstrated a large AON response to the initial viewing of an individual with residual limbs compared to one with hands, but this signal was attenuated after they received visual exposure to both effectors. In contrast, OTs, who had moderate familiarity with residual limbs, demonstrated a lower AON response upon initial viewing—similar to novices after they received visual exposure. At the other extreme, CJ, who has extreme familiarity with residual limbs both visually and motorically, shows a largely increased left-lateralized AON response, exceeding that of novices and experienced OTs, when viewing the residual limb compared to hand actions. These results suggest that a nuanced model of AON engagement is needed to explain how cases of both extreme experience (CJ) and extreme novelty (novices) can result in the greatest AON activity. PMID:24062656

  13. Virtual Inquiry Experiences

    ERIC Educational Resources Information Center

    Harlow, Danielle; Nilsen, Katy

    2011-01-01

    Children in classrooms and scientists in laboratories engage in similar activities: they observe, ask questions, and try to explain phenomena. Video conferencing technology can remove the wall between the classroom and the laboratory, bringing children and scientists together. Virtual experiences and field trips can provide many of the benefits of…

  14. Virtual Bridge Design Challenge

    ERIC Educational Resources Information Center

    Mitts, Charles R.

    2013-01-01

    This design/problem-solving activity challenges students to design a replacement bridge for one that has been designated as either structurally deficient or functionally obsolete. The Aycock MS Technology/STEM Magnet Program Virtual Bridge Design Challenge is an authentic introduction to the engineering design process. It is a socially relevant…

  15. Virtual Museum Learning

    ERIC Educational Resources Information Center

    Prosser, Dominic; Eddisford, Susan

    2004-01-01

    This paper examines children's and adults' attitudes to virtual representations of museum objects. Drawing on empirical research data gained from two web-based digital learning environments. The paper explores the characteristics of on-line learning activities that move children from a sense of wonder into meaningful engagement with objects and…

  16. Recent Progress in Some Active Topics on Complex Networks

    NASA Astrophysics Data System (ADS)

    Gu, J.; Zhu, Y.; Guo, L.; Jiang, J.; Chi, L.; Li, W.; Wang, Q. A.; Cai, X.

    2015-04-01

    Complex networks have been extensively studied across many fields, especially in interdisciplinary areas. It has since long been recognized that topological structures and dynamics are important aspects for capturing the essence of complex networks. The recent years have also witnessed the emergence of several new elements which play important roles in network study. By combining the results of different research orientations in our group, we provide here a review of the recent advances in regards to spectral graph theory, opinion dynamics, interdependent networks, graph energy theory and temporal networks. We hope this will be helpful for the newcomers of those fields to discover new intriguing topics.

  17. A pilot study of tele-anaesthesia by virtual private network between an island hospital and a mainland hospital in Japan.

    PubMed

    Miyashita, Tetsuya; Mizuno, Yusuke; Sugawara, Yo; Nagamine, Yusuka; Koyama, Yukihide; Miyazaki, Tomoyuki; Uchimoto, Kazuhiro; Iketani, Yasuhiro; Tojo, Kentaro; Goto, Takahisa

    2015-03-01

    We studied the use of tele-anaesthesia between Sado General Hospital (SGH) located on Sado Island and Yokohama City University Hospital (YCUH) located in mainland Japan. The two sites were connected via a virtual private network (VPN). We investigated the relationship between the bandwidth of the VPN and both the frame rate and the delay time of the tele-anaesthesia monitoring system. The tool used for communication between the two hospitals was free videoconferencing software (FaceTime), which can be used over Wi-Fi connections. We also investigated the accuracy of the commands given during teleanaesthesia: any commands from the anaesthetist at the YCUH that were not carried out for any reason, were recorded in the anaesthetic records at the SGH. The original frame rate and data rate at the SGH were 5 fps and approximately 18 Mbit/s, respectively. The frame rate at the transmission speeds of 1, 5 and 20 Mbit/s was 0.6, 1.6 and 5.0 fps, respectively. The corresponding delay time was 12.2, 4.9 and 0.7 s. Twenty-five adult patients were enrolled in the study and tele-anaesthesia was performed. The total duration of anaesthesia was 37 hours. All 888 anaesthetic commands were completed. There were 7 FaceTime disconnections, which lasted for 10 min altogether. Because no commands needed to be given during the FaceTime disconnection, the telephone was not used. The anaesthesia assistance system might form part of the solution to medical resource shortages.

  18. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  19. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    PubMed

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-09-18

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  20. Predicting Single-Neuron Activity in Locally Connected Networks

    PubMed Central

    Azhar, Feraz; Anderson, William S.

    2014-01-01

    The characterization of coordinated activity in neuronal populations has received renewed interest in the light of advancing experimental techniques that allow recordings from multiple units simultaneously. Across both in vitro and in vivo preparations, nearby neurons show coordinated responses when spontaneously active and when subject to external stimuli. Recent work (Truccolo, Hochberg, & Donoghue, 2010) has connected these coordinated responses to behavior, showing that small ensembles of neurons in arm-related areas of sensorimotor cortex can reliably predict single-neuron spikes in behaving monkeys and humans. We investigate this phenomenon using an analogous point process model, showing that in the case of a computational model of cortex responding to random background inputs, one is similarly able to predict the future state of a single neuron by considering its own spiking history, together with the spiking histories of randomly sampled ensembles of nearby neurons. This model exhibits realistic cortical architecture and displays bursting episodes in the two distinct connectivity schemes studied. We conjecture that the baseline predictability we find in these instances is characteristic of locally connected networks more broadly considered. PMID:22845824