Science.gov

Sample records for active virus replication

  1. Autophagic machinery activated by dengue virus enhances virus replication

    SciTech Connect

    Lee, Y.-R.; Lei, H.-Y.; Liu, M.-T.; Wang, J.-R.; Chen, S.-H.; Jiang-Shieh, Y.-F.; Lin, Y.-S.; Yeh, T.-M.; Liu, C.-C.; Liu, H.-S.

    2008-05-10

    Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that is favorable for viral replication.

  2. Activities of proteasome and m-calpain are essential for Chikungunya virus replication.

    PubMed

    Karpe, Yogesh A; Pingale, Kunal D; Kanade, Gayatri D

    2016-10-01

    Replication of many viruses is dependent on the ubiquitin proteasome system. The present study demonstrates that Chikungunya virus replication increases proteasome activity and induces unfolded protein response (UPR) in cultured cells. Further, it was seen that the virus replication was dependent on the activities of proteasomes and m-calpain. Proteasome inhibition induced accumulation of polyubiquitinated proteins and earlier visualization of UPR. PMID:27206501

  3. Hepatitis C Virus Translation Preferentially Depends on Active RNA Replication

    PubMed Central

    Liu, Helene Minyi; Aizaki, Hideki; Machida, Keigo; Ou, J.-H. James; Lai, Michael M. C.

    2012-01-01

    Hepatitis C virus (HCV) RNA initiates its replication on a detergent-resistant membrane structure derived from the endoplasmic reticulum (ER) in the HCV replicon cells. By performing a pulse-chase study of BrU-labeled HCV RNA, we found that the newly-synthesized HCV RNA traveled along the anterograde-membrane traffic and moved away from the ER. Presumably, the RNA moved to the site of translation or virion assembly in the later steps of viral life cycle. In this study, we further addressed how HCV RNA translation was regulated by HCV RNA trafficking. When the movement of HCV RNA from the site of RNA synthesis to the Golgi complex was blocked by nocodazole, an inhibitor of ER-Golgi transport, HCV protein translation was surprisingly enhanced, suggesting that the translation of viral proteins occurred near the site of RNA synthesis. We also found that the translation of HCV proteins was dependent on active RNA synthesis: inhibition of viral RNA synthesis by an NS5B inhibitor resulted in decreased HCV viral protein synthesis even when the total amount of intracellular HCV RNA remained unchanged. Furthermore, the translation activity of the replication-defective HCV replicons or viral RNA with an NS5B mutation was greatly reduced as compared to that of the corresponding wildtype RNA. By performing live cell labeling of newly synthesized HCV RNA and proteins, we further showed that the newly synthesized HCV proteins colocalized with the newly synthesized viral RNA, suggesting that HCV RNA replication and protein translation take place at or near the same site. Our findings together indicate that the translation of HCV RNA is coupled to RNA replication and that the both processes may occur at the same subcellular membrane compartments, which we term the replicasome. PMID:22937067

  4. Novel antiviral activity of bromocriptine against dengue virus replication.

    PubMed

    Kato, Fumihiro; Ishida, Yuki; Oishi, Shinya; Fujii, Nobutaka; Watanabe, Satoru; Vasudevan, Subhash G; Tajima, Shigeru; Takasaki, Tomohiko; Suzuki, Youichi; Ichiyama, Koji; Yamamoto, Naoki; Yoshii, Kentaro; Takashima, Ikuo; Kobayashi, Takeshi; Miura, Tomoyuki; Igarashi, Tatsuhiko; Hishiki, Takayuki

    2016-07-01

    Dengue virus (DENV) infectious disease is a major public health problem worldwide; however, licensed vaccines or specific antiviral drugs against this infection are not available. To identify novel anti-DENV compounds, we screened 1280 pharmacologically active compounds using focus reduction assay. Bromocriptine (BRC) was found to have potent anti-DENV activity and low cytotoxicity (half maximal effective concentration [EC50], 0.8-1.6 μM; and half maximal cytotoxicity concentration [CC50], 53.6 μM). Time-of-drug-addition and time-of-drug-elimination assays suggested that BRC inhibits translation and/or replication steps in the DENV life cycle. A subgenomic replicon system was used to verify that BRC restricts RNA replication step. Furthermore, a single amino acid substitution (N374H) was detected in the NS3 protein that conferred resistance to BRC. In summary, BRC was found to be a novel DENV inhibitor and a potential candidate for the treatment of DENV infectious disease. PMID:27181378

  5. Hepatitis D Virus Replication.

    PubMed

    Taylor, John M

    2015-11-01

    This work reviews specific related aspects of hepatitis delta virus (HDV) reproduction, including virion structure, the RNA genome, the mode of genome replication, the delta antigens, and the assembly of HDV using the envelope proteins of its helper virus, hepatitis B virus (HBV). These topics are considered with perspectives ranging from a history of discovery through to still-unsolved problems. HDV evolution, virus entry, and associated pathogenic potential and treatment of infections are considered in other articles in this collection. PMID:26525452

  6. Matriptase Proteolytically Activates Influenza Virus and Promotes Multicycle Replication in the Human Airway Epithelium

    PubMed Central

    Beaulieu, Alexandre; Gravel, Émilie; Cloutier, Alexandre; Marois, Isabelle; Colombo, Éloïc; Désilets, Antoine; Verreault, Catherine; Leduc, Richard; Marsault, Éric

    2013-01-01

    Influenza viruses do not encode any proteases and must rely on host proteases for the proteolytic activation of their surface hemagglutinin proteins in order to fuse with the infected host cells. Recent progress in the understanding of human proteases responsible for influenza virus hemagglutinin activation has led to the identification of members of the type II transmembrane serine proteases TMPRSS2 and TMPRSS4 and human airway trypsin-like protease; however, none has proved to be the sole enzyme responsible for hemagglutinin cleavage. In this study, we identify and characterize matriptase as an influenza virus-activating protease capable of supporting multicycle viral replication in the human respiratory epithelium. Using confocal microscopy, we found matriptase to colocalize with hemagglutinin at the apical surface of human epithelial cells and within endosomes, and we showed that the soluble form of the protease was able to specifically cleave hemagglutinins from H1 virus, but not from H2 and H3 viruses, in a broad pH range. We showed that small interfering RNA (siRNA) knockdown of matriptase in human bronchial epithelial cells significantly blocked influenza virus replication in these cells. Lastly, we provide a selective, slow, tight-binding inhibitor of matriptase that significantly reduces viral replication (by 1.5 log) of H1N1 influenza virus, including the 2009 pandemic virus. Our study establishes a three-pronged model for the action of matriptase: activation of incoming viruses in the extracellular space in its shed form, upon viral attachment or exit in its membrane-bound and/or shed forms at the apical surface of epithelial cells, and within endosomes by its membrane-bound form where viral fusion takes place. PMID:23365447

  7. Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro.

    PubMed

    Ocazionez, Raquel Elvira; Meneses, Rocio; Torres, Flor Angela; Stashenko, Elena

    2010-05-01

    The inhibitory effect of Lippia alba and Lippia citriodora essential oils on dengue virus serotypes replication in vitro was investigated. The cytotoxicity (CC50) was evaluated by the MTT assay and the mode of viral inhibitory effect was investigated with a plaque reduction assay. The virus was treated with the essential oil for 2 h at 37 masculineC before cell adsorption and experiments were conducted to evaluate inhibition of untreated-virus replication in the presence of oil. Antiviral activity was defined as the concentration of essential oil that caused 50% reduction of the virus plaque number (IC50). L. alba oil resulted in less cytotoxicity than L. citriodora oil (CC50: 139.5 vs. 57.6 microg/mL). Virus plaque reduction for all four dengue serotypes was observed by treatment of the virus before adsorption on cell. The IC50 values for L. alba oil were between 0.4-32.6 microg/mL and between 1.9-33.7 microg/mL for L. citriodora oil. No viral inhibitory effect was observed by addition of the essential oil after virus adsorption. The inhibitory effect of the essential oil seems to cause direct virus inactivation before adsorption on host cell. PMID:20512244

  8. The Isomerase Active Site of Cyclophilin A Is Critical for Hepatitis C Virus Replication*

    PubMed Central

    Chatterji, Udayan; Bobardt, Michael; Selvarajah, Suganya; Yang, Feng; Tang, Hengli; Sakamoto, Noayo; Vuagniaux, Gregoire; Parkinson, Tanya; Gallay, Philippe

    2009-01-01

    Cyclosporine A and nonimmunosuppressive cyclophilin (Cyp) inhibitors such as Debio 025, NIM811, and SCY-635 block hepatitis C virus (HCV) replication in vitro. This effect was recently confirmed in HCV-infected patients where Debio 025 treatment dramatically decreased HCV viral load, suggesting that Cyps inhibitors represent a novel class of anti-HCV agents. However, it remains unclear how these compounds control HCV replication. Recent studies suggest that Cyps are important for HCV replication. However, a profound disagreement currently exists as to the respective roles of Cyp members in HCV replication. In this study, we analyzed the respective contribution of Cyp members to HCV replication by specifically knocking down their expression by both transient and stable small RNA interference. Only the CypA knockdown drastically decreased HCV replication. The re-expression of an exogenous CypA escape protein, which contains escape mutations at the small RNA interference recognition site, restored HCV replication, demonstrating the specificity for the CypA requirement. We then mutated residues that reside in the hydrophobic pocket of CypA where proline-containing peptide substrates and cyclosporine A bind and that are vital for the enzymatic or the hydrophobic pocket binding activity of CypA. Remarkably, these CypA mutants fail to restore HCV replication, suggesting for the first time that HCV exploits either the isomerase or the chaperone activity of CypA to replicate in hepatocytes and that CypA is the principal mediator of the Cyp inhibitor anti-HCV activity. Moreover, we demonstrated that the HCV NS5B polymerase associates with CypA via its enzymatic pocket. The study of the roles of Cyps in HCV replication should lead to the identification of new targets for the development of alternate anti-HCV therapies. PMID:19380579

  9. Coat protein activation of alfalfa mosaic virus replication is concentration dependent.

    PubMed

    Guogas, Laura M; Laforest, Siana M; Gehrke, Lee

    2005-05-01

    Alfalfa mosaic virus (AMV) and ilarvirus RNAs are infectious only in the presence of the viral coat protein; therefore, an understanding of coat protein's function is important for defining viral replication mechanisms. Based on in vitro replication experiments, the conformational switch model states that AMV coat protein blocks minus-strand RNA synthesis (R. C. Olsthoorn, S. Mertens, F. T. Brederode, and J. F. Bol, EMBO J. 18:4856-4864, 1999), while another report states that coat protein present in an inoculum is required to permit minus-strand synthesis (L. Neeleman and J. F. Bol, Virology 254:324-333, 1999). Here, we report on experiments that address these contrasting results with a goal of defining coat protein's function in the earliest stages of AMV replication. To detect coat-protein-activated AMV RNA replication, we designed and characterized a subgenomic luciferase reporter construct. We demonstrate that activation of viral RNA replication by coat protein is concentration dependent; that is, replication was strongly stimulated at low coat protein concentrations but decreased progressively at higher concentrations. Genomic RNA3 mutations preventing coat protein mRNA translation or disrupting coat protein's RNA binding domain diminished replication. The data indicate that RNA binding and an ongoing supply of coat protein are required to initiate replication on progeny genomic RNA transcripts. The data do not support the conformational switch model's claim that coat protein inhibits the initial stages of viral RNA replication. Replication activation may correlate with low local coat protein concentrations and low coat protein occupancy on the multiple binding sites present in the 3' untranslated regions of the viral RNAs. PMID:15827190

  10. Replication of an acutely lethal simian immunodeficiency virus activates and induces proliferation of lymphocytes.

    PubMed Central

    Fultz, P N

    1991-01-01

    A variant of simian immunodeficiency virus from sooty mangabey monkeys (SIVsmm), termed SIVsmmPBj14, was previously identified and shown to induce acute disease and death within 1 to 2 weeks of inoculation of pig-tailed macaques and mangabey monkeys (P. N. Fultz, H. M. McClure, D. C. Anderson, and W. M. Switzer, AIDS Res. Hum. Retroviruses 5:397-409, 1989). SIVsmmPBj14 differed from its parent virus, SIVsmm9, not only in pathogenicity but also in multiple in vitro properties. As a first approach to understanding the biological and molecular mechanisms responsible for the acute disease and death induced by this variant, virus-host cell interactions of SIVsmmPBj14 and SIVsmm9 were studied. Initial rates of replication of the two viruses were identical in primary peripheral blood mononuclear cells (PBMC) from normal pig-tailed macaques and mangabey monkeys, but SIVsmmPBj14 infection always resulted in higher yields of virus than did SIVsmm9 infection, as assessed by levels of reverse transcriptase activity in culture supernatants. Surprisingly, despite its cytopathicity for macaque and mangabey CD4+ cells, replication of SIVsmmPBj14 was accompanied by up to 10-fold increases in number of viable cells compared with cell numbers in uninfected or SIVsmm9-infected cultures. Furthermore, SIVsmmPBj14 was shown to infect and replicate in resting PBMC just as efficiently as in mitogen-stimulated PBMC, irrespective of whether exogenous interleukin-2 (IL-2) or antibodies that neutralized IL-2 were added to culture media. Accumulation of virus in culture supernatants of resting PBMC preceded by several days the appearance of activated cells which expressed the IL-2 receptor alpha subunit (CD25), suggesting that activation of cells was not essential for replication. The ability to activate and to induce simian PBMC to proliferate appeared specific for the acutely lethal variant because incorporation of [3H]thymidine by PBMC from naive animals was observed only upon incubation

  11. Inhibition of Cellular Proteasome Activities Mediates HBX-Independent Hepatitis B Virus Replication In Vivo▿

    PubMed Central

    Zhang, Zhensheng; Sun, Eun; Ou, Jing-hsiung James; Liang, T. Jake

    2010-01-01

    The X protein (HBX) of the hepatitis B virus (HBV) is essential for HBV productive infection in vivo. Our previous study (Z. Hu, Z. Zhang, E. Doo, O. Coux, A. L. Goldberg, and T. J. Liang, J. Virol. 73:7231-7240, 1999) shows that interaction of HBX with the proteasome complex may underlie the pleiotropic functions of HBX. Previously, we demonstrated that HBX affects hepadnaviral replication through a proteasome-dependent pathway in cell culture models. In the present study, we studied the effect of the proteasome inhibitor MLN-273 in two HBV mouse models. We demonstrated that administration of MLN-273 to transgenic mice containing the replication-competent HBV genome with the defective HBX gene substantially enhanced HBV replication, while the compound had a minor effect on wild-type HBV transgenic mice. Similar results were obtained by using C57BL/6 mice infected with recombinant adenoviruses expressing the replicating HBV genome. Our data suggest that HBV replication is subjected to regulation by cellular proteasome and HBX functions through the inhibition of proteasome activities to enhance HBV replication in vivo. PMID:20592087

  12. Hydroxylated Tropolones Inhibit Hepatitis B Virus Replication by Blocking Viral Ribonuclease H Activity

    PubMed Central

    Lu, Gaofeng; Lomonosova, Elena; Cheng, Xiaohong; Moran, Eileen A.; Meyers, Marvin J.; Le Grice, Stuart F. J.; Thomas, Craig J.; Jiang, Jian-kang; Meck, Christine; Hirsch, Danielle R.; D'Erasmo, Michael P.; Suyabatmaz, Duygu M.; Murelli, Ryan P.

    2014-01-01

    Hepatitis B virus (HBV) remains a major human pathogen despite the development of both antiviral drugs and a vaccine, in part because the current therapies do not suppress HBV replication far enough to eradicate the virus. Here, we screened 51 troponoid compounds for their ability to suppress HBV RNaseH activity and HBV replication based on the activities of α-hydroxytropolones against HIV RNaseH, with the goal of determining whether the tropolone pharmacophore may be a promising scaffold for anti-HBV drug development. Thirteen compounds inhibited HBV RNaseH, with the best 50% inhibitory concentration (IC50) being 2.3 μM. Similar inhibition patterns were observed against HBV genotype D and C RNaseHs, implying limited genotype specificity. Six of 10 compounds tested against HBV replication in culture suppressed replication via blocking of viral RNaseH activity, with the best 50% effective concentration (EC50) being 0.34 μM. Eighteen compounds inhibited recombinant human RNaseH1, and moderate cytotoxicity was observed for all compounds (50% cytotoxic concentration [CC50] = 25 to 79 μM). Therapeutic indexes ranged from 3.8 to 94. Efficient inhibition required an intact α-hydroxytropolone moiety plus one or more short appendages on the tropolone ring, but a wide variety of constituents were permissible. These data indicate that troponoids and specifically α-hydroxytropolones are promising lead candidates for development as anti-HBV drugs, providing that toxicity can be minimized. Potential anti-RNaseH drugs are envisioned to be employed in combination with the existing nucleos(t)ide analogs to suppress HBV replication far enough to block genomic maintenance, with the goal of eradicating infection. PMID:25451058

  13. Hydroxylated tropolones inhibit hepatitis B virus replication by blocking viral ribonuclease H activity.

    PubMed

    Lu, Gaofeng; Lomonosova, Elena; Cheng, Xiaohong; Moran, Eileen A; Meyers, Marvin J; Le Grice, Stuart F J; Thomas, Craig J; Jiang, Jian-kang; Meck, Christine; Hirsch, Danielle R; D'Erasmo, Michael P; Suyabatmaz, Duygu M; Murelli, Ryan P; Tavis, John E

    2015-02-01

    Hepatitis B virus (HBV) remains a major human pathogen despite the development of both antiviral drugs and a vaccine, in part because the current therapies do not suppress HBV replication far enough to eradicate the virus. Here, we screened 51 troponoid compounds for their ability to suppress HBV RNaseH activity and HBV replication based on the activities of α-hydroxytropolones against HIV RNaseH, with the goal of determining whether the tropolone pharmacophore may be a promising scaffold for anti-HBV drug development. Thirteen compounds inhibited HBV RNaseH, with the best 50% inhibitory concentration (IC50) being 2.3 μM. Similar inhibition patterns were observed against HBV genotype D and C RNaseHs, implying limited genotype specificity. Six of 10 compounds tested against HBV replication in culture suppressed replication via blocking of viral RNaseH activity, with the best 50% effective concentration (EC50) being 0.34 μM. Eighteen compounds inhibited recombinant human RNaseH1, and moderate cytotoxicity was observed for all compounds (50% cytotoxic concentration [CC50]=25 to 79 μM). Therapeutic indexes ranged from 3.8 to 94. Efficient inhibition required an intact α-hydroxytropolone moiety plus one or more short appendages on the tropolone ring, but a wide variety of constituents were permissible. These data indicate that troponoids and specifically α-hydroxytropolones are promising lead candidates for development as anti-HBV drugs, providing that toxicity can be minimized. Potential anti-RNaseH drugs are envisioned to be employed in combination with the existing nucleos(t)ide analogs to suppress HBV replication far enough to block genomic maintenance, with the goal of eradicating infection. PMID:25451058

  14. PKR Activation Favors Infectious Pancreatic Necrosis Virus Replication in Infected Cells

    PubMed Central

    Gamil, Amr A.A.; Xu, Cheng; Mutoloki, Stephen; Evensen, Øystein

    2016-01-01

    The double-stranded RNA-activated protein kinase R (PKR) is a Type I interferon (IFN) stimulated gene that has important biological and immunological functions. In viral infections, in general, PKR inhibits or promotes viral replication, but PKR-IPNV interaction has not been previously studied. We investigated the involvement of PKR during infectious pancreatic necrosis virus (IPNV) infection using a custom-made rabbit antiserum and the PKR inhibitor C16. Reactivity of the antiserum to PKR in CHSE-214 cells was confirmed after IFNα treatment giving an increased protein level. IPNV infection alone did not give increased PKR levels by Western blot, while pre-treatment with PKR inhibitor before IPNV infection gave decreased eukaryotic initiation factor 2-alpha (eIF2α) phosphorylation. This suggests that PKR, despite not being upregulated, is involved in eIF2α phosphorylation during IPNV infection. PKR inhibitor pre-treatment resulted in decreased virus titers, extra- and intracellularly, concomitant with reduction of cells with compromised membranes in IPNV-permissive cell lines. These findings suggest that IPNV uses PKR activation to promote virus replication in infected cells. PMID:27338445

  15. Autophagy Activated by Bluetongue Virus Infection Plays a Positive Role in Its Replication.

    PubMed

    Lv, Shuang; Xu, Qingyuan; Sun, Encheng; Yang, Tao; Li, Junping; Feng, Yufei; Zhang, Qin; Wang, Haixiu; Zhang, Jikai; Wu, Donglai

    2015-08-01

    Bluetongue virus (BTV) is an important pathogen of wild and domestic ruminants. Despite extensive study in recent decades, the interplay between BTV and host cells is not clearly understood. Autophagy as a cellular adaptive response plays a part in many viral infections. In our study, we found that BTV1 infection triggers the complete autophagic process in host cells, as demonstrated by the appearance of obvious double-membrane autophagosome-like vesicles, GFP-LC3 dots accumulation, the conversion of LC3-I to LC3-II and increased levels of autophagic flux in BSR cells (baby hamster kidney cell clones) and primary lamb lingual epithelial cells upon BTV1 infection. Moreover, the results of a UV-inactivated BTV1 infection assay suggested that the induction of autophagy was dependent on BTV1 replication. Therefore, we investigated the role of autophagy in BTV1 replication. The inhibition of autophagy by pharmacological inhibitors (3-MA, CQ) and RNA interference (siBeclin1) significantly decreased viral protein synthesis and virus yields. In contrast, treating BSR cells with rapamycin, an inducer of autophagy, promoted viral protein expression and the production of infectious BTV1. These findings lead us to conclude that autophagy is activated by BTV1 and contributes to its replication, and provide novel insights into BTV-host interactions. PMID:26287233

  16. Autophagy Activated by Bluetongue Virus Infection Plays a Positive Role in Its Replication

    PubMed Central

    Lv, Shuang; Xu, Qingyuan; Sun, Encheng; Yang, Tao; Li, Junping; Feng, Yufei; Zhang, Qin; Wang, Haixiu; Zhang, Jikai; Wu, Donglai

    2015-01-01

    Bluetongue virus (BTV) is an important pathogen of wild and domestic ruminants. Despite extensive study in recent decades, the interplay between BTV and host cells is not clearly understood. Autophagy as a cellular adaptive response plays a part in many viral infections. In our study, we found that BTV1 infection triggers the complete autophagic process in host cells, as demonstrated by the appearance of obvious double-membrane autophagosome-like vesicles, GFP-LC3 dots accumulation, the conversion of LC3-I to LC3-II and increased levels of autophagic flux in BSR cells (baby hamster kidney cell clones) and primary lamb lingual epithelial cells upon BTV1 infection. Moreover, the results of a UV-inactivated BTV1 infection assay suggested that the induction of autophagy was dependent on BTV1 replication. Therefore, we investigated the role of autophagy in BTV1 replication. The inhibition of autophagy by pharmacological inhibitors (3-MA, CQ) and RNA interference (siBeclin1) significantly decreased viral protein synthesis and virus yields. In contrast, treating BSR cells with rapamycin, an inducer of autophagy, promoted viral protein expression and the production of infectious BTV1. These findings lead us to conclude that autophagy is activated by BTV1 and contributes to its replication, and provide novel insights into BTV-host interactions. PMID:26287233

  17. Structure-activity relationship study of arbidol derivatives as inhibitors of chikungunya virus replication.

    PubMed

    Di Mola, Antonia; Peduto, Antonella; La Gatta, Annalisa; Delang, Leen; Pastorino, Boris; Neyts, Johan; Leyssen, Pieter; de Rosa, Mario; Filosa, Rosanna

    2014-11-01

    Chikungunya virus (CHIKV), a mosquito-borne arthrogenic Alphavirus, causes an acute febrile illness in humans, that is, accompanied by severe joint pains. In many cases, the infection leads to persistent arthralgia, which may last for weeks to several years. The re-emergence of this infection in the early 2000s was exemplified by numerous outbreaks in the eastern hemisphere. Since then, the virus is rapidly spreading. Currently, no drugs have been approved or are in development for the treatment of CHIKV, which makes this viral infection particularly interesting for academic medicinal chemistry efforts. Several molecules have already been identified that inhibit CHIKV replication in phenotypic virus-cell-based assays. One of these is arbidol, a molecule that already has been licensed for the treatment of influenza A and B virus infections. For structural optimization, a dedicated libraries of 43 indole-based derivatives were evaluated leading to more potent analogues (IIIe and IIIf) with anti-chikungunya virus (CHIKV) activities higher than those of the other derivatives, including the lead compound, and with a selective index of inhibition 13.2 and 14.6, respectively, higher than that of ARB (4.6). PMID:25282648

  18. Antiviral Activity of Chloroquine Against Dengue Virus Type 2 Replication in Aotus Monkeys

    PubMed Central

    Machado, Paula Renata Lima; Muniz, José Augusto Pereira Carneiro; Imbeloni, Aline Amaral; da Fonseca, Benedito Antônio Lopes

    2015-01-01

    Abstract Dengue virus (DENV) of the Flaviviridae family is a single positive-stranded RNA virus that is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. The objective of this study was to investigate the use of chloroquine (CLQ) as an antiviral drug against dengue virus in monkeys. To analyze the action of the drug in vivo, nonhuman primates groups (Aotus azarai infulatus) were inoculated with a subcutaneous injection of a virulent strain of DENV-2, treated and untreated CLQ. Blood hematological, viremia, and serum biochemical values were obtained from 16 DENV-2-inoculated, treated and untreated; four received only CLQ and one mock-infected Aotus monkeys. Monkey serum samples (day 0–10 post-inoculation) were assayed by reverse transcription polymerase chain reaction and Cytometric Bead Array for determination of viremia and inflammatory cytokines, respectively. Additionally, body temperature and activity levels were determined. In the present work, CLQ was effective on replication of DENV-2 in Aotus monkeys; a time viremia reduction was observed compared with the controls. The concentration of tumor necrosis factor alpha and interferon gamma in the serum of the animals had a statistically significant reduction in the groups treated with CLQ after infection compared with the controls. A significant decrease in systemic levels of the liver enzyme aspartate aminotransferase (AST) was also observed in the animals treated with CLQ after infection compared with the controls. These results suggest that CLQ interferes in DENV-2 replication in Aotus monkeys. PMID:25664975

  19. Profiling Kinase Activity during Hepatitis C Virus Replication Using a Wortmannin Probe.

    PubMed

    Desrochers, Geneviève F; Sherratt, Allison R; Blais, David R; Nasheri, Neda; Ning, Zhibin; Figeys, Daniel; Goto, Natalie K; Pezacki, John Paul

    2015-09-11

    To complete its life cycle, the hepatitis C virus (HCV) induces changes to numerous aspects of its host cell. As kinases act as regulators of many pathways utilized by HCV, they are likely enzyme targets for virally induced inhibition or activation. Herein, we used activity-based protein profiling (ABPP), which allows for the identification of active enzymes in complex protein samples and the quantification of their activity, to identify kinases that displayed differential activity in HCV-expressing cells. We utilized an ABPP probe, wortmannin-yne, based on the kinase inhibitor wortmannin, which contains a pendant alkyne group for bioconjugation using bioorthogonal chemistry. We observed changes in the activity of kinases involved in the mitogen-activated protein kinase pathway, apoptosis pathways, and cell cycle control. These results establish changes to the active kinome, as reported by wortmannin-yne, in the proteome of human hepatoma cells actively replicating HCV. The observed changes include kinase activity that affect viral entry, replication, assembly, and secretion, implying that HCV is regulating the pathways that it uses for its life cycle through modulation of the active kinome. PMID:27617927

  20. cis-active elements from mouse chromosomal DNA suppress simian virus 40 DNA replication.

    PubMed Central

    Hartl, M; Willnow, T; Fanning, E

    1990-01-01

    Simian virus 40 (SV40)-containing DNA was rescued after the fusion of SV40-transformed VLM cells with permissive COS1 monkey cells and cloned, and prototype plasmid clones were characterized. A 2-kilobase mouse DNA fragment fused with the rescued SV40 DNA, and derived from mouse DNA flanking the single insert of SV40 DNA in VLM cells, was sequenced. Insertion of the intact rescued mouse sequence, or two nonoverlapping fragments of it, into wild-type SV40 plasmid DNA suppressed replication of the plasmid in TC7 monkey cells, although the plasmids expressed replication-competent T antigen. Rat cells were transformed with linearized wild-type SV40 plasmid DNA with or without fragments of the mouse DNA in cis. Although all of the rat cell lines expressed approximately equal amounts of T antigen and p53, transformants carrying SV40 DNA linked to either of the same two replication suppressor fragments produced significantly less free SV40 DNA after fusion with permissive cells than those transformed by SV40 DNA without a cellular insert or with a cellular insert lacking suppressor activity. The results suggest that two independent segments of cellular DNA act in cis to suppress SV40 replication in vivo, either as a plasmid or integrated in chromosomal DNA. Images PMID:2159549

  1. Marek's disease virus (MDV) ubiquitin-specific protease (USP) performs critical functions beyond its enzymatic activity during virus replication.

    PubMed

    Veiga, Inês B; Jarosinski, Keith W; Kaufer, Benedikt B; Osterrieder, Nikolaus

    2013-03-15

    Marek's disease virus (MDV) encodes an ubiquitin-specific protease (USP) within its UL36 gene. USP is highly conserved among herpesviruses and was shown to be important for MDV replication and pathogenesis in MDV's natural host, the chicken. To further investigate the role of MDV USP, several recombinant (r) MDVs were generated and their in vitro phenotypes were evaluated using plaque size and growth kinetics assays. We discovered that the N-terminus of pUL36 is essential for MDV replication and could not be complemented by ectopic expression of MDV USP. In addition, we demonstrated that the region located between the conserved glutamine (Q85) and leucine (L106) residues comprising the active site cysteine (C98) is also essential for MDV replication. Based on the analyses of the rMDVs generated here, we concluded that MDV USP likely contributes to the structure and/or stability of pUL36 and affects replication and oncogenesis of MDV beyond its enzymatic activity. PMID:23399034

  2. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

    PubMed

    Weber, Nicholas D; Stone, Daniel; Sedlak, Ruth Hall; De Silva Feelixge, Harshana S; Roychoudhury, Pavitra; Schiffer, Joshua T; Aubert, Martine; Jerome, Keith R

    2014-01-01

    Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy. PMID:24827459

  3. AAV-Mediated Delivery of Zinc Finger Nucleases Targeting Hepatitis B Virus Inhibits Active Replication

    PubMed Central

    Weber, Nicholas D.; Stone, Daniel; Sedlak, Ruth Hall; De Silva Feelixge, Harshana S.; Roychoudhury, Pavitra; Schiffer, Joshua T.; Aubert, Martine; Jerome, Keith R.

    2014-01-01

    Despite an existing effective vaccine, hepatitis B virus (HBV) remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA) that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs) that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB), imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV) vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy. PMID:24827459

  4. Antiviral Activities of Different Interferon Types and Subtypes against Hepatitis E Virus Replication.

    PubMed

    Todt, Daniel; François, Catherine; Anggakusuma; Behrendt, Patrick; Engelmann, Michael; Knegendorf, Leonard; Vieyres, Gabrielle; Wedemeyer, Heiner; Hartmann, Rune; Pietschmann, Thomas; Duverlie, Gilles; Steinmann, Eike

    2016-04-01

    Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and a member of the genusOrthohepevirusin the familyHepeviridae HEV infections are the common cause of acute hepatitis but can also take chronic courses. Ribavirin is the treatment of choice for most patients, and type I interferon (IFN) has been evaluated in a few infected transplant patientsin vivo In this study, the antiviral effects of different exogenously administered interferons were investigated by using state-of-the-art subgenomic replicon and full-length HEV genome cell culture models. Hepatitis C virus (HCV) subgenomic replicons based on the genotype 2a JFH1 isolate served as the reference. The experiments revealed that HEV RNA replication was inhibited by the application of all types of IFN, including IFN-α (type I), IFN-γ (type II), and IFN-λ3 (type III), but to a far lesser extent than HCV replication. Simultaneous determination of interferon-stimulated gene (ISG) expression levels for all IFN types demonstrated efficient downregulation by HEV. Furthermore, different IFN-α subtypes were also able to block viral replication in combination with ribavirin. The IFN-α subtypes 2a and 2b exerted the strongest antiviral activity against HEV. In conclusion, these data demonstrate for the first time moderate anti-HEV activities of types II and III IFNs and different IFN-α subtypes. As HEV employed a potent anti-interferon mechanism by restricting ISG expression, exogenous application of IFNs as immunotherapy should be carefully assessed. PMID:26787701

  5. PKR activation enhances replication of classical swine fever virus in PK-15 cells.

    PubMed

    Liu, Wen-Jun; Yang, You-Tian; Zhao, Ming-Qiu; Dong, Xiao-Ying; Gou, Hong-Chao; Pei, Jing-Jing; Chen, Jin-Ding

    2015-06-01

    Classical swine fever (CSF) is a highly contagious swine disease that is responsible for economic losses worldwide. Protein kinase R (PK)R is an important protein in the host viral response; however, the role of PKR in CSFV infection remains unknown. This issue was addressed in the present study using the PK-15 swine kidney cell line. We found that CSFV infection increased the phosphorylation of eukaryotic translation initiation factor (eIF)2α and its kinase PKR. However, the expression of viral proteins continued to increase. Furthermore, PKR overexpression enhanced CSFV replication, while PKR inhibition resulted in reduced CSFV replication and an increase in interferon (IFN) induction. In addition, PKR was responsible for eIF2α phosphorylation in CSFV-infected cells. These results suggest that the activation of PKR during CSFV infection is beneficial to the virus. The virus is able to commandeer the host cell's translation machinery for viral protein synthesis while evading innate immune defenses. PMID:25899421

  6. Extracellular signal-regulated kinase (ERK) activation is required for porcine epidemic diarrhea virus replication.

    PubMed

    Kim, Youngnam; Lee, Changhee

    2015-10-01

    Porcine epidemic diarrhea virus (PEDV) is a highly enteropathogenic coronavirus of swine that causes acute enteritis with high mortality in nursery piglets. To date, the cellular factors involved in PEDV replication have not been well defined. The extracellular signal-regulated kinase (ERK) that serves as a critical component of cellular signal transduction pathways to modulate a variety of cellular functions has been shown to regulate several viral infections. In the present study, we found that PEDV activates ERK1/2 early in infection independently of viral replication. The PEDV-induced ERK1/2 activation resulted in the phosphorylation of its downstream substrate Elk-1 in infected cells. Treatment with ERK inhibitors or ERK1/2 knockdown significantly suppressed viral progeny production. Inhibition of ERK activation also diminished viral protein expression and genomic and subgenomic RNA transcription. These findings indicate that the ERK signaling pathway plays an important role in the PEDV life cycle and beneficially contributes to viral infection. PMID:26115165

  7. Cyclooxygenase activity is important for efficient replication of mouse hepatitis virus at an early stage of infection

    PubMed Central

    Raaben, Matthijs; Einerhand, Alexandra WC; Taminiau, Lucas JA; van Houdt, Michel; Bouma, Janneke; Raatgeep, Rolien H; Büller, Hans A; de Haan, Cornelis AM; Rossen, John WA

    2007-01-01

    Cyclooxygenases (COXs) play a significant role in many different viral infections with respect to replication and pathogenesis. Here we investigated the role of COXs in the mouse hepatitis coronavirus (MHV) infection cycle. Blocking COX activity by different inhibitors or by RNA interference affected MHV infection in different cells. The COX inhibitors reduced MHV infection at a post-binding step, but early in the replication cycle. Both viral RNA and viral protein synthesis were affected with subsequent loss of progeny virus production. Thus, COX activity appears to be required for efficient MHV replication, providing a potential target for anti-coronaviral therapy. PMID:17555580

  8. Antiviral Activity of Hatay Propolis Against Replication of Herpes Simplex Virus Type 1 and Type 2

    PubMed Central

    Yildirim, Ayse; Duran, Gulay Gulbol; Duran, Nizami; Jenedi, Kemal; Bolgul, Behiye Sezgin; Miraloglu, Meral; Muz, Mustafa

    2016-01-01

    Background Propolis is a bee product widely used in folk medicine and possessing many pharmacological properties. In this study we aimed to investigate: i) the antiviral activities of Hatay propolis samples against HSV-1 and HSV-2 in HEp-2 cell line, and ii) the presence of the synergistic effects of propolis with acyclovir against these viruses. Material/Methods All experiments were carried out in HEp-2 cell cultures. Proliferation assays were performed in 24-well flat bottom microplates. We inoculated 1×105 cells per ml and RPMI 1640 medium with 10% fetal calf serum into each well. Studies to determine cytotoxic effect were performed. To investigate the presence of antiviral activity of propolis samples, different concentrations of propolis (3200, 1600, 800, 400, 200, 100, 75, 50, and 25 μg/mL) were added into the culture medium. The amplifications of HSV-1 and HSV-2 DNA were performed by real-time PCR method. Acyclovir (Sigma, USA) was chosen as a positive control. Cell morphology was evaluated by scanning electron microscopy (SEM). Results The replication of HSV-1 and HSV-2 was significantly suppressed in the presence of 25, 50, and 100 μg/mL of Hatay propolis. We found that propolis began to inhibit HSV-1 replication after 24 h of incubation and propolis activity against HSV-2 was found to start at 48 h following incubation. The activity of propolis against both HSV-1 and HSV-2 was confirmed by a significant decrease in the number of viral copies. Conclusions We determined that Hatay propolis samples have important antiviral effects compared with acyclovir. In particular, the synergy produced by antiviral activity of propolis and acyclovir combined had a stronger effect against HSV-1 and HSV-2 than acyclovir alone. PMID:26856414

  9. Inhibition of Simian Virus 40 replication by targeting the molecular chaperone function and ATPase activity of T antigen

    PubMed Central

    Wright, Christine M.; Seguin, Sandlin P.; Fewell, Sheara W.; Zhang, Haijiang; Ishwad, Chandra; Vats, Abhay; Lingwood, Cifford A.; Wipf, Peter; Fanning, Ellen; Pipas, James M.; Brodsky, Jeffrey L.

    2009-01-01

    Polyomaviruses such as BK virus and JC virus have been linked to several diseases, but treatments that thwart their propagation are limited in part because of slow growth and cumbersome culturing conditions. In contrast, the replication of one member of this family, Simian Virus 40 (SV40), is robust and has been well-characterized. SV40 replication requires two domains within the viral-encoded large tumor antigen (TAg): The ATPase domain and the N-terminal J domain, which stimulates the ATPase activity of the Hsp70 chaperone. To assess whether inhibitors of polyomavirus replication could be identified, we examined a recently described library of small molecules, some of which inhibit chaperone function. One compound, MAL2-11B, inhibited both TAg’s endogenous ATPase activity and the TAg-mediated activation of Hsp70. MAL2-11B also reduced SV40 propagation in plaque assays and compromised DNA replication in cell culture and in vitro. Furthermore, the compound significantly reduced the growth of BK virus in a human kidney cell line. These data indicate that pharmacological inhibition of TAg’s chaperone and ATPase activities may provide a route to combat polyomavirus-mediated disease. PMID:19200446

  10. Activity-based protein profiling identifies a host enzyme, carboxylesterase 1, which is differentially active during hepatitis C virus replication.

    PubMed

    Blais, David R; Lyn, Rodney K; Joyce, Michael A; Rouleau, Yanouchka; Steenbergen, Rineke; Barsby, Nicola; Zhu, Lin-Fu; Pegoraro, Adrian F; Stolow, Albert; Tyrrell, David L; Pezacki, John Paul

    2010-08-13

    Hepatitis C virus (HCV) relies on many interactions with host cell proteins for propagation. Successful HCV infection also requires enzymatic activity of host cell enzymes for key post-translational modifications. To identify such enzymes, we have applied activity-based protein profiling to examine the activity of serine hydrolases during HCV replication. Profiling of hydrolases in Huh7 cells replicating HCV identified CES1 (carboxylesterase 1) as a differentially active enzyme. CES1 is an endogenous liver protein involved in processing of triglycerides and cholesterol. We observe that CES1 expression and activity were altered in the presence of HCV. The knockdown of CES1 with siRNA resulted in lower levels of HCV replication, and up-regulation of CES1 was observed to favor HCV propagation, implying an important role for this host cell protein. Experiments in HCV JFH1-infected cells suggest that CES1 facilitates HCV release because less intracellular HCV core protein was observed, whereas HCV titers remained high. CES1 activity was observed to increase the size and density of lipid droplets, which are necessary for the maturation of very low density lipoproteins, one of the likely vehicles for HCV release. In transgenic mice containing human-mouse chimeric livers, HCV infection also correlates with higher levels of endogenous CES1, providing further evidence that CES1 has an important role in HCV propagation. PMID:20530478

  11. The paradox of simian immunodeficiency virus infection in sooty mangabeys: active viral replication without disease progression.

    PubMed

    Chakrabarti, Lisa A

    2004-01-01

    Simian immunodeficiency virus SIVsm causes an asymptomatic infection in its natural host, the sooty mangabey, but induces an immunodeficiency syndrome very similar to human AIDS when transferred to a new host species such as the rhesus macaque. Unexpectedly, SIVsm replication dynamics is comparable in the two species, with rapid accumulation of viral mutations and a high viral load detected in both mangabeys and macaques. In contrast, clear differences are observed in immune parameters. Pathogenic SIV infection in macaques is associated with decreased CD4+ T cell numbers and signs of generalized immune activation, such as increased numbers of cycling and apoptotic T cells, hyperplasic lymphoid tissues, and exacerbated immune responses. Mangabeys with asymptomatic SIV infection show normal T cell regeneration parameters and signs of a moderate immune response, appropriate in the setting of chronic viral infection. The comparative analysis of simian models thus suggests that viral load alone cannot account for progression to disease, and that the capacity of primate lentiviruses to induce abnormal immune activation underlies AIDS pathogenesis. PMID:14766388

  12. Replication-Competent Controlled Herpes Simplex Virus

    PubMed Central

    Bloom, David C.; Feller, Joyce; McAnany, Peterjon; Vilaboa, Nuria

    2015-01-01

    ABSTRACT We present the development and characterization of a replication-competent controlled herpes simplex virus 1 (HSV-1). Replication-essential ICP4 and ICP8 genes of HSV-1 wild-type strain 17syn+ were brought under the control of a dually responsive gene switch. The gene switch comprises (i) a transactivator that is activated by a narrow class of antiprogestins, including mifepristone and ulipristal, and whose expression is mediated by a promoter cassette that comprises an HSP70B promoter and a transactivator-responsive promoter and (ii) transactivator-responsive promoters that drive the ICP4 and ICP8 genes. Single-step growth experiments in different cell lines demonstrated that replication of the recombinant virus, HSV-GS3, is strictly dependent on an activating treatment consisting of administration of a supraphysiological heat dose in the presence of an antiprogestin. The replication-competent controlled virus replicates with an efficiency approaching that of the wild-type virus from which it was derived. Essentially no replication occurs in the absence of activating treatment or if HSV-GS3-infected cells are exposed only to heat or antiprogestin. These findings were corroborated by measurements of amounts of viral DNA and transcripts of the regulated ICP4 gene and the glycoprotein C (gC) late gene, which was not regulated. Similar findings were made in experiments with a mouse footpad infection model. IMPORTANCE The alphaherpesviruses have long been considered vectors for recombinant vaccines and oncolytic therapies. The traditional approach uses vector backbones containing attenuating mutations that restrict replication to ensure safety. The shortcoming of this approach is that the attenuating mutations tend to limit both the immune presentation and oncolytic properties of these vectors. HSV-GS3 represents a novel type of vector that, when activated, replicates with the efficiency of a nonattenuated virus and whose safety is derived from deliberate

  13. Human cytomegalovirus induces JC virus DNA replication in human fibroblasts.

    PubMed Central

    Heilbronn, R; Albrecht, I; Stephan, S; Bürkle, A; zur Hausen, H

    1993-01-01

    JC virus, a human papovavirus, is the causative agent of the demyelinating brain disease progressive multifocal leucoencephalopathy (PML). PML is a rare but fatal disease which develops as a complication of severe immunosuppression. Latent JC virus is harbored by many asymptomatic carriers and is transiently reactivated from the latent state upon immunosuppression. JC virus has a very restricted host range, with human glial cells being the only tissue in which it can replicate at reasonable efficiency. Evidence that latent human cytomegalovirus is harbored in the kidney similar to latent JC virus led to the speculation that during episodes of impaired immunocompetence, cytomegalovirus might serve as helper virus for JC virus replication in otherwise nonpermissive cells. We show here that cytomegalovirus infection indeed leads to considerable JC virus DNA replication in cultured human fibroblasts that are nonpermissive for the replication of JC virus alone. Cytomegalovirus-mediated JC virus replication is dependent on the JC virus origin of replication and T antigen. Ganciclovir-induced inhibition of cytomegalovirus replication is associated with a concomitant inhibition of JC virus replication. These results suggest that reactivation of cytomegalovirus during episodes of immunosuppression might lead to activation of latent JC virus, which would enhance the probability of subsequent PML development. Ganciclovir-induced repression of both cytomegalovirus and JC virus replication may form the rational basis for the development of an approach toward treatment or prevention of PML. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8248262

  14. VIRUS INFECTION RAPIDLY ACTIVATES THE P58IPK PATHWAY, DELAYING PEAK KINASE ACTIVATION TO ENHANCE VIRAL REPLICATION

    PubMed Central

    GOODMAN, ALAN G.; TANNER, BERTRAND C. W.; CHANG, STEWART T.; ESTEBAN, MARIANO; KATZE, MICHAEL G.

    2011-01-01

    Previously we showed that the cellular protein P58IPK contributes to viral protein synthesis by decreasing the activity of the anti-viral protein, PKR. Here, we constructed a mathematical model to examine the P58IPK pathway and investigated temporal behavior of this biological system. We find that influenza virus infection results in the rapid activation of P58IPK which delays and reduces maximal PKR and eIF2α phosphorylation, leading to increased viral protein levels. We confirmed that the model could accurately predict viral and host protein levels at extended time points by testing it against experimental data. Sensitivity analysis of relative reaction rates describing P58IPK activity and the downstream proteins through which it functions helped identify processes that may be the most beneficial targets to thwart virus replication. Together, our study demonstrates how computational modeling can guide experimental design to further understand a specific metabolic signaling pathway during viral infection in a mammalian system. PMID:21612809

  15. Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS.

    PubMed

    Amatore, Donatella; Sgarbanti, Rossella; Aquilano, Katia; Baldelli, Sara; Limongi, Dolores; Civitelli, Livia; Nencioni, Lucia; Garaci, Enrico; Ciriolo, Maria Rosa; Palamara, Anna Teresa

    2015-01-01

    An overproduction of reactive oxygen species (ROS) mediated by NADPH oxidase 2 (NOX2) has been related to airway inflammation typical of influenza infection. Virus-induced oxidative stress may also control viral replication, but the mechanisms underlying ROS production, as well as their role in activating intracellular pathways and specific steps of viral life cycle under redox control have to be fully elucidated. In this study, we demonstrate that influenza A virus infection of lung epithelial cells causes a significant ROS increase that depends mainly on NOX4, which is upregulated at both mRNA and protein levels, while the expression of NOX2, the primary source of ROS in inflammatory cells, is downregulated. Inhibition of NOX4 activity through chemical inhibitors or RNA silencing blocks the ROS increase, prevents MAPK phosphorylation, and inhibits viral ribonucleoprotein (vRNP) nuclear export and viral release. Overall these data, obtained in cell lines and primary culture, describe a so far unrecognized role for NOX4-derived ROS in activating redox-regulated intracellular pathways during influenza virus infection and highlight their relevance in controlling specific steps of viral replication in epithelial cells. Pharmacological modulation of NOX4-mediated ROS production may open the way for new therapeutic approaches to fighting influenza by targeting cell and not the virus. PMID:25154738

  16. Autophagy Negatively Regulates Transmissible Gastroenteritis Virus Replication

    PubMed Central

    Guo, Longjun; Yu, Haidong; Gu, Weihong; Luo, Xiaolei; Li, Ren; Zhang, Jian; Xu, Yunfei; Yang, Lijun; Shen, Nan; Feng, Li; Wang, Yue

    2016-01-01

    Autophagy is an evolutionarily ancient pathway that has been shown to be important in the innate immune defense against several viruses. However, little is known about the regulatory role of autophagy in transmissible gastroenteritis virus (TGEV) replication. In this study, we found that TGEV infection increased the number of autophagosome-like double- and single-membrane vesicles in the cytoplasm of host cells, a phenomenon that is known to be related to autophagy. In addition, virus replication was required for the increased amount of the autophagosome marker protein LC3-II. Autophagic flux occurred in TGEV-infected cells, suggesting that TGEV infection triggered a complete autophagic response. When autophagy was pharmacologically inhibited by wortmannin or LY294002, TGEV replication increased. The increase in virus yield via autophagy inhibition was further confirmed by the use of siRNA duplexes, through which three proteins required for autophagy were depleted. Furthermore, TGEV replication was inhibited when autophagy was activated by rapamycin. The antiviral response of autophagy was confirmed by using siRNA to reduce the expression of gene p300, which otherwise inhibits autophagy. Together, the results indicate that TGEV infection activates autophagy and that autophagy then inhibits further TGEV replication. PMID:27029407

  17. Activation of Nucleotide Oligomerization Domain 2 (NOD2) by Human Cytomegalovirus Initiates Innate Immune Responses and Restricts Virus Replication

    PubMed Central

    Kapoor, Arun; Forman, Michael; Arav-Boger, Ravit

    2014-01-01

    Nucleotide-binding oligomerization domain 2 (NOD2) is an important innate immune sensor of bacterial pathogens. Its induction results in activation of the classic NF-κB pathway and alternative pathways including type I IFN and autophagy. Although the importance of NOD2 in recognizing RNA viruses has recently been identified, its role in sensing DNA viruses has not been studied. We report that infection with human cytomegalovirus (HCMV) results in significant induction of NOD2 expression, beginning as early as 2 hours post infection and increasing steadily 24 hours post infection and afterwards. Infection with human herpesvirus 1 and 2 does not induce NOD2 expression. While the HCMV-encoded glycoprotein B is not required for NOD2 induction, a replication competent virion is necessary. Lentivirus-based NOD2 knockdown in human foreskin fibroblasts (HFFs) and U373 glioma cells leads to enhanced HCMV replication along with decreased levels of interferon beta (IFN-β) and the pro-inflammatory cytokine, IL8. NOD2 induction in HCMV-infected cells activates downstream NF-κB and interferon pathways supported by reduced nuclear localization of NF-κB and pIRF3 in NOD2 knockdown HFFs. Stable overexpression of NOD2 in HFFs restricts HCMV replication in association with increased levels of IFN-β and IL8. Similarly, transient overexpression of NOD2 in U373 cells or its downstream kinase, RIPK2, results in decreased HCMV replication and enhanced cytokine responses. However, overexpression of a mutant NOD2, 3020insC, associated with severe Crohn's disease, results in enhanced HCMV replication and decreased levels of IFN-β in U373 cells. These results show for the first time that NOD2 plays a significant role in HCMV replication and may provide a model for studies of HCMV recognition by the host cell and HCMV colitis in Crohn's disease. PMID:24671169

  18. Host Acyl Coenzyme A Binding Protein Regulates Replication Complex Assembly and Activity of a Positive-Strand RNA Virus

    PubMed Central

    Zhang, Jiantao; Diaz, Arturo; Mao, Lan; Ahlquist, Paul

    2012-01-01

    All positive-strand RNA viruses reorganize host intracellular membranes to assemble their replication complexes. Similarly, brome mosaic virus (BMV) induces two alternate forms of membrane-bound RNA replication complexes: vesicular spherules and stacks of appressed double-membrane layers. The mechanisms by which these membrane rearrangements are induced, however, remain unclear. We report here that host ACB1-encoded acyl coenzyme A (acyl-CoA) binding protein (ACBP) is required for the assembly and activity of both BMV RNA replication complexes. ACBP is highly conserved among eukaryotes, specifically binds to long-chain fatty acyl-CoA, and promotes general lipid synthesis. Deleting ACB1 inhibited BMV RNA replication up to 30-fold and resulted in formation of spherules that were ∼50% smaller but ∼4-fold more abundant than those in wild-type (wt) cells, consistent with the idea that BMV 1a invaginates and maintains viral spherules by coating the inner spherule membrane. Furthermore, smaller and more frequent spherules were preferentially formed under conditions that induce layer formation in wt cells. Conversely, cellular karmella structures, which are arrays of endoplasmic reticulum (ER) membranes formed upon overexpression of certain cellular ER membrane proteins, were formed normally, indicating a selective inhibition of 1a-induced membrane rearrangements. Restoring altered lipid composition largely complemented the BMV RNA replication defect, suggesting that ACBP was required for maintaining lipid homeostasis. Smaller and more frequent spherules are also induced by 1a mutants with specific substitutions in a membrane-anchoring amphipathic α-helix, implying that the 1a-lipid interactions play critical roles in viral replication complex assembly. PMID:22345450

  19. Rupestonic acid derivative YZH-106 suppresses influenza virus replication by activation of heme oxygenase-1-mediated interferon response.

    PubMed

    Ma, Lin-Lin; Wang, Hui-Qiang; Wu, Ping; Hu, Jin; Yin, Jin-Qiu; Wu, Shuo; Ge, Miao; Sun, Wen-Fang; Zhao, Jiang-Yu; Aisa, Haji Akber; Li, Yu-Huan; Jiang, Jian-Dong

    2016-07-01

    Given the limitation of available antiviral drugs and vaccines, there remains to be a pressing need for novel anti-influenza drugs. Rupestonic acid derivatives were reported to have an anti-influenza virus activity, but their mechanism remains to be elucidated. Herein, we aim to evaluate the antiviral activity of YZH-106, a rupestonic acid derivative, against a broad-spectrum of influenza viruses and to dissect its antiviral mechanisms. Our results demonstrated that YZH-106 exhibited a broad-spectrum antiviral activity against influenza viruses, including drug-resistant strains in vitro. Furthermore, YZH-106 provided partial protection of the mice to Influenza A virus (IAV) infection, as judged by decreased viral load in lungs, improved lung pathology, reduced body weight loss and partial survival benefits. Mechanistically, YZH-106 induced p38 MAPK and ERK1/2 phosphorylation, which led to the activation of erythroid 2-related factor 2 (Nrf2) that up-regulated heme oxygenase-1 (HO-1) expression in addition to other genes. HO-1 inhibited IAV replication by activation of type I IFN expression and subsequent induction of IFN-stimulated genes (ISGs), possibly in a HO-1 enzymatic activity-independent manner. These results suggest that YZH-106 inhibits IAV by up-regulating HO-1-mediated IFN response. HO-1 is thus a promising host target for antiviral therapeutics against influenza and other viral infectious diseases. PMID:27107768

  20. Dengue-induced autophagy, virus replication and protection from cell death require ER stress (PERK) pathway activation

    PubMed Central

    Datan, E; Roy, S G; Germain, G; Zali, N; McLean, J E; Golshan, G; Harbajan, S; Lockshin, R A; Zakeri, Z

    2016-01-01

    A virus that reproduces in a host without killing cells can easily establish a successful infection. Previously, we showed that dengue-2, a virus that threatens 40% of the world, induces autophagy, enabling dengue to reproduce in cells without triggering cell death. Autophagy further protects the virus-laden cells from further insults. In this study, we evaluate how it does so; we show that dengue upregulates host pathways that increase autophagy, namely endoplasmic reticulum (ER) stress and ataxia telangiectasia mutated (ATM) signaling followed by production of reactive oxygen species (ROS). Inhibition of ER stress or ATM signaling abrogates the dengue-conferred protection against other cell stressors. Direct inhibition of ER stress response in infected cells decreases autophagosome turnover, reduces ROS production and limits reproduction of dengue virus. Blocking ATM activation, which is an early response to infection, decreases transcription of ER stress response proteins, but ATM has limited impact on production of ROS and virus titers. Production of ROS determines only late-onset autophagy in infected cells and is not necessary for dengue-induced protection from stressors. Collectively, these results demonstrate that among the multiple autophagy-inducing pathways during infection, ER stress signaling is more important to viral replication and protection of cells than either ATM or ROS-mediated signaling. To limit virus production and survival of dengue-infected cells, one must address the earliest phase of autophagy, induced by ER stress. PMID:26938301

  1. Long Terminal Repeat Circular DNA as Markers of Active Viral Replication of Human T Lymphotropic Virus-1 in Vivo

    PubMed Central

    Fox, James M; Hilburn, Silva; Demontis, Maria-Antonietta; Brighty, David W; Rios Grassi, Maria Fernanda; Galvão-Castro, Bernardo; Taylor, Graham P; Martin, Fabiola

    2016-01-01

    Clonal expansion of human T-lymphotropic virus type-1 (HTLV-1) infected cells in vivo is well documented. Unlike human immunodeficiency virus type 1 (HIV-1), HTLV-1 plasma RNA is sparse. The contribution of the “mitotic” spread of HTLV-1 compared with infectious spread of the virus to HTLV-1 viral burden in established infection is uncertain. Since extrachromosomal long terminal repeat (LTR) DNA circles are indicators of viral replication in HIV-1 carriers with undetectable plasma HIV RNA, we hypothesised that HTLV-1 LTR circles could indicate reverse transcriptase (RT) usage and infectious activity. 1LTR and 2LTR DNA circles were measured in HTLV-1 cell lines and peripheral blood mononuclear cells (PBMC) of asymptomatic carriers (ACs) and patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) or adult T cell leukaemia/lymphoma (ATLL). 1LTR DNA circles were detected in 14/20 patients at a mean of 1.38/100 PBMC but did not differentiate disease status nor correlate with HTLV-1 DNA copies. 2LTR DNA circles were detected in 30/31 patients and at higher concentrations in patients with HTLV-1-associated diseases, independent of HTLV-1 DNA load. In an incident case the 2LTR DNA circle concentration increased 2.1 fold at the onset of HAM/TSP compared to baseline. Detectable and fluctuating levels of HTLV-1 DNA circles in patients indicate viral RT usage and virus replication. Our results indicate HTLV-1 viral replication capacity is maintained in chronic infection and may be associated with disease onset. PMID:26985903

  2. Long Terminal Repeat Circular DNA as Markers of Active Viral Replication of Human T Lymphotropic Virus-1 in Vivo.

    PubMed

    Fox, James M; Hilburn, Silva; Demontis, Maria-Antonietta; Brighty, David W; Rios Grassi, Maria Fernanda; Galvão-Castro, Bernardo; Taylor, Graham P; Martin, Fabiola

    2016-03-01

    Clonal expansion of human T-lymphotropic virus type-1 (HTLV-1) infected cells in vivo is well documented. Unlike human immunodeficiency virus type 1 (HIV-1), HTLV-1 plasma RNA is sparse. The contribution of the "mitotic" spread of HTLV-1 compared with infectious spread of the virus to HTLV-1 viral burden in established infection is uncertain. Since extrachromosomal long terminal repeat (LTR) DNA circles are indicators of viral replication in HIV-1 carriers with undetectable plasma HIV RNA, we hypothesised that HTLV-1 LTR circles could indicate reverse transcriptase (RT) usage and infectious activity. 1LTR and 2LTR DNA circles were measured in HTLV-1 cell lines and peripheral blood mononuclear cells (PBMC) of asymptomatic carriers (ACs) and patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) or adult T cell leukaemia/lymphoma (ATLL). 1LTR DNA circles were detected in 14/20 patients at a mean of 1.38/100 PBMC but did not differentiate disease status nor correlate with HTLV-1 DNA copies. 2LTR DNA circles were detected in 30/31 patients and at higher concentrations in patients with HTLV-1-associated diseases, independent of HTLV-1 DNA load. In an incident case the 2LTR DNA circle concentration increased 2.1 fold at the onset of HAM/TSP compared to baseline. Detectable and fluctuating levels of HTLV-1 DNA circles in patients indicate viral RT usage and virus replication. Our results indicate HTLV-1 viral replication capacity is maintained in chronic infection and may be associated with disease onset. PMID:26985903

  3. Activity of a novel quinoxaline derivative against human immunodeficiency virus type 1 reverse transcriptase and viral replication.

    PubMed Central

    Kleim, J P; Bender, R; Billhardt, U M; Meichsner, C; Riess, G; Rösner, M; Winkler, I; Paessens, A

    1993-01-01

    S-2720 [6-chloro-3,3-dimethyl-4-(isopropenyloxycarbonyl)-3,4- dihydroquinoxalin-2(1H)-thione], a quinoxaline derivative, was found to be a very potent inhibitor of both human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) activity and HIV-1 replication in tissue culture. Like other nonnucleoside RT inhibitors, S-2720 does not affect the HIV-2 RT. A S-2720-resistant virus was selected and shown to possess a mutation within the RT-coding region that has not previously been described. Notably, this mutation gives rise to a dramatic decrease in enzyme activity. S-2720, therefore, belongs to a new class of RT inhibitors that bind differently to the RT than other known nonnucleoside RT inhibitors. As no toxic effects were observed with S-2720 in mice, these quinoxaline derivatives deserve further evaluation to prove their potency as possible therapeutic agents for HIV-1 infection. PMID:7692812

  4. Hepatitis C Virus RNA Replication Depends on Specific Cis- and Trans-Acting Activities of Viral Nonstructural Proteins

    PubMed Central

    Kazakov, Teymur; Yang, Feng; Ramanathan, Harish N.; Kohlway, Andrew; Diamond, Michael S.; Lindenbach, Brett D.

    2015-01-01

    Many positive-strand RNA viruses encode genes that can function in trans, whereas other genes are required in cis for genome replication. The mechanisms underlying trans- and cis-preferences are not fully understood. Here, we evaluate this concept for hepatitis C virus (HCV), an important cause of chronic liver disease and member of the Flaviviridae family. HCV encodes five nonstructural (NS) genes that are required for RNA replication. To date, only two of these genes, NS4B and NS5A, have been trans-complemented, leading to suggestions that other replicase genes work only in cis. We describe a new quantitative system to measure the cis- and trans-requirements for HCV NS gene function in RNA replication and identify several lethal mutations in the NS3, NS4A, NS4B, NS5A, and NS5B genes that can be complemented in trans, alone or in combination, by expressing the NS3–5B polyprotein from a synthetic mRNA. Although NS5B RNA binding and polymerase activities can be supplied in trans, NS5B protein expression was required in cis, indicating that NS5B has a cis-acting role in replicase assembly distinct from its known enzymatic activity. Furthermore, the RNA binding and NTPase activities of the NS3 helicase domain were required in cis, suggesting that these activities play an essential role in RNA template selection. A comprehensive complementation group analysis revealed functional linkages between NS3-4A and NS4B and between NS5B and the upstream NS3–5A genes. Finally, NS5B polymerase activity segregated with a daclatasvir-sensitive NS5A activity, which could explain the synergy of this antiviral compound with nucleoside analogs in patients. Together, these studies define several new aspects of HCV replicase structure-function, help to explain the potency of HCV-specific combination therapies, and provide an experimental framework for the study of cis- and trans-acting activities in positive-strand RNA virus replication more generally. PMID:25875808

  5. HSV-1-induced activation of NF-κB protects U937 monocytic cells against both virus replication and apoptosis.

    PubMed

    Marino-Merlo, Francesca; Papaianni, Emanuela; Medici, Maria Antonietta; Macchi, Beatrice; Grelli, Sandro; Mosca, Claudia; Borner, Christoph; Mastino, Antonio

    2016-01-01

    The transcription factor nuclear factor-kappa B (NF-κB) is a crucial player of the antiviral innate response. Intriguingly, however, NF-κB activation is assumed to favour herpes simplex virus (HSV) infection rather than restrict it. Apoptosis, a form of innate response to viruses, is completely inhibited by HSV in fully permissive cells, but not in cells incapable to fully sustain HSV replication, such as immunocompetent cells. To resolve the intricate interplay among NF-κB signalling, apoptosis and permissiveness to HSV-1 in monocytic cells, we utilized U937 monocytic cells in which NF-κB activation was inhibited by expressing a dominant-negative IκBα. Surprisingly, viral production was increased in monocytic cells in which NF-κB was inhibited. Moreover, inhibition of NF-κB led to increased apoptosis following HSV-1 infection, associated with lysosomal membrane permeabilization. High expression of late viral proteins and induction of apoptosis occurred in distinct cells. Transcriptional analysis of known innate response genes by real-time quantitative reverse transcription-PCR excluded a contribution of the assayed genes to the observed phenomena. Thus, in monocytic cells NF-κB activation simultaneously serves as an innate process to restrict viral replication as well as a mechanism to limit the damage of an excessive apoptotic response to HSV-1 infection. This finding may clarify mechanisms controlling HSV-1 infection in monocytic cells. PMID:27584793

  6. Exogenous avian leukosis virus-induced activation of the ERK/AP1 pathway is required for virus replication and correlates with virus-induced tumorigenesis

    PubMed Central

    Dai, Manman; Feng, Min; Ye, Yu; Wu, Xiaochan; Liu, Di; Liao, Ming; Cao, Weisheng

    2016-01-01

    A proteomics approach was used to reveal the up-regulated proteins involved in the targeted mitogen-activated protein kinase (MAPK) signal transduction pathway in DF-1 cells after ALV subgroup J (ALV-J) infection. Next, we found that ALV-J CHN06 strain infection of DF-1 cells correlated with extracellular signal-regulated kinase 2 (ERK2) activation, which was mainly induced within 15 min, a very early stage of infection, and at a late infection stage, from 108 h to 132 h post-infection. Infection with other ALV subgroup (A/B) strains also triggered ERK/MAPK activation. Moreover, when activating ERK2, ALV subgroups A, B and J simultaneously induced the phosphorylation of c-Jun, an AP1 family member and p38 activation but had no obvious effect on JNK activation at either 15 min or 120 h. Interestingly, only PD98059 inhibited the ALV-induced c-Jun phosphorylation while SP600125 or SB203580 had no influence on c-Jun activation. Furthermore, the viral gp85 and gag proteins were found to contribute to ERK2/AP1 activation. Additionally, the specific ERK inhibitor, PD980509, significantly suppressed ALV replication, as evidenced by extremely low levels of ALV promoter activity and ALV-J protein expression. In vivo analysis of ERK2 activation in tumor cells derived from ALV-J-infected chicken demonstrated a strong correlation between ERK/MAPK activation and virus-associated tumorigenesis. PMID:26754177

  7. A novel p38 mitogen activated protein kinase (MAPK) specific inhibitor suppresses respiratory syncytial virus and influenza A virus replication by inhibiting virus-induced p38 MAPK activation.

    PubMed

    Choi, Myung-Soo; Heo, Jinyuk; Yi, Chae-Min; Ban, Junsu; Lee, Noh-Jin; Lee, Na-Rae; Kim, Sang Won; Kim, Nam-Jung; Inn, Kyung-Soo

    2016-08-26

    Respiratory syncytial virus (RSV) and influenza A virus are leading causes of acute lower respiratory infectious disease. Respiratory diseases caused by RSV and influenza A virus result in serious economic burden and life-threatening disease for immunocompromised people. With the revelation that p38 mitogen-activated protein kinase (MAPK) activity in host cells is crucial for infection and replication of RSV and influenza A virus, inhibition of p38 MAPK activity has been suggested as a potential antiviral therapeutic strategy. However, the low selectivity and high toxicity of the p38 MAPK inhibitors necessitate the development of better inhibitors. Herein, we report the synthesis of a novel p38 MAPK inhibitor, NJK14047, with high kinase selectivity. In this work, it was demonstrated that NJK14047 inhibits RSV- and influenza A-mediated p38 MAPK activation in epithelial cells. Subsequently, NJK14047 treatment resulted in decreased viral replication and viral mRNA synthesis. In addition, secretion of interleukin-6 from infected cells was greatly diminished by NJK14047, suggesting that it can ameliorate immunopathological responses to RSV and influenza A. Collectively, the results suggest that NJK14047 has therapeutic potential to treat respiratory viral infection through the suppression of p38 MAPK activation, which is suggested to be an essential step for respiratory virus infection. PMID:27346133

  8. Replication of herpes simplex virus DNA: localization of replication recognition signals within defective virus genomes.

    PubMed Central

    Vlazny, D A; Frenkel, N

    1981-01-01

    Serially passaged herpes simplex virus type 1 (HSV-1) strain Justin was previously shown to contain defective virus genomes consisting of head-to-tail reiterations of sequences derived from the end of the S component of the standard virus DNA. Cotransfection of purified monomeric defective genome repeat units with foster helper virus DNAs onto rabbit skin cells resulted in regeneration and replication of concatemeric defective DNA molecules which were successfully encapsidated. Thus, defective HSV-1 (Justin) genomes contain, within their limited DNA sequences, a sufficient set of recognition sites required for HSV DNA replication and packaging. The arrangement of repeat units within the regenerated defective virus genomes was consistent with their replication by a rolling circle mechanism in which a single repeat unit served as the circularized template. This replication occurred most actively late after infection and could be shown to be inhibited by low concentrations of phosphonoacetate known to inhibit the HSV-specified viral DNA polymerase selectively. The resultant concatemers were shown to be cleaved to Mr 100 X 10(6) DNA molecules which were terminated at one end with the proper ac end sequence of the parental standard virus DNA. Images PMID:6262768

  9. Role of Lipids in Virus Replication

    PubMed Central

    Lorizate, Maier; Kräusslich, Hans-Georg

    2011-01-01

    Viruses intricately interact with and modulate cellular membranes at several stages of their replication, but much less is known about the role of viral lipids compared to proteins and nucleic acids. All animal viruses have to cross membranes for cell entry and exit, which occurs by membrane fusion (in enveloped viruses), by transient local disruption of membrane integrity, or by cell lysis. Furthermore, many viruses interact with cellular membrane compartments during their replication and often induce cytoplasmic membrane structures, in which genome replication and assembly occurs. Recent studies revealed details of membrane interaction, membrane bending, fission, and fusion for a number of viruses and unraveled the lipid composition of raft-dependent and -independent viruses. Alterations of membrane lipid composition can block viral release and entry, and certain lipids act as fusion inhibitors, suggesting a potential as antiviral drugs. Here, we review viral interactions with cellular membranes important for virus entry, cytoplasmic genome replication, and virus egress. PMID:21628428

  10. Highly activated RNA silencing via strong induction of dicer by one virus can interfere with the replication of an unrelated virus

    PubMed Central

    Chiba, Sotaro; Suzuki, Nobuhiro

    2015-01-01

    Viruses often coinfect single host organisms in nature. Depending on the combination of viruses in such coinfections, the interplay between them may be synergistic, apparently neutral with no effect on each other, or antagonistic. RNA silencing is responsible for many cases of interference or cross-protection between viruses, but such antagonistic interactions are usually restricted to closely related strains of the same viral species. In this study, we present an unprecedented example of RNA silencing-mediated one-way interference between unrelated viruses in a filamentous model fungus, Cryphonectria parasitica. The replication of Rosellinia necatrix victorivirus 1 (RnVV1; Totiviridae) was strongly impaired by coinfection with the prototypic member of the genus Mycoreovirus (MyRV1) or a mutant of the prototype hypovirus (Cryphonectria hypovirus 1, CHV1) lacking the RNA silencing suppressor (CHV1-Δp69). This interference was associated with marked transcriptional induction of key genes in antiviral RNA silencing, dicer-like 2 (dcl2) and argonaute-like 2 (agl2), following MyRV1 or CHV1-Δp69 infection. Interestingly, the inhibition of RnVV1 replication was reproduced when the levels of dcl2 and agl2 transcripts were elevated by transgenic expression of a hairpin construct of an endogenous C. parasitica gene. Disruption of dcl2 completely abolished the interference, whereas that of agl2 did not always lead to its abolishment, suggesting more crucial roles of dcl2 in antiviral defense. Taken altogether, these results demonstrated the susceptible nature of RnVV1 to the antiviral silencing in C. parasitica activated by distinct viruses or transgene-derived double-stranded RNAs and provide insight into the potential for broad-spectrum virus control mediated by RNA silencing. PMID:26283371

  11. Highly activated RNA silencing via strong induction of dicer by one virus can interfere with the replication of an unrelated virus.

    PubMed

    Chiba, Sotaro; Suzuki, Nobuhiro

    2015-09-01

    Viruses often coinfect single host organisms in nature. Depending on the combination of viruses in such coinfections, the interplay between them may be synergistic, apparently neutral with no effect on each other, or antagonistic. RNA silencing is responsible for many cases of interference or cross-protection between viruses, but such antagonistic interactions are usually restricted to closely related strains of the same viral species. In this study, we present an unprecedented example of RNA silencing-mediated one-way interference between unrelated viruses in a filamentous model fungus, Cryphonectria parasitica. The replication of Rosellinia necatrix victorivirus 1 (RnVV1; Totiviridae) was strongly impaired by coinfection with the prototypic member of the genus Mycoreovirus (MyRV1) or a mutant of the prototype hypovirus (Cryphonectria hypovirus 1, CHV1) lacking the RNA silencing suppressor (CHV1-Δp69). This interference was associated with marked transcriptional induction of key genes in antiviral RNA silencing, dicer-like 2 (dcl2) and argonaute-like 2 (agl2), following MyRV1 or CHV1-Δp69 infection. Interestingly, the inhibition of RnVV1 replication was reproduced when the levels of dcl2 and agl2 transcripts were elevated by transgenic expression of a hairpin construct of an endogenous C. parasitica gene. Disruption of dcl2 completely abolished the interference, whereas that of agl2 did not always lead to its abolishment, suggesting more crucial roles of dcl2 in antiviral defense. Taken altogether, these results demonstrated the susceptible nature of RnVV1 to the antiviral silencing in C. parasitica activated by distinct viruses or transgene-derived double-stranded RNAs and provide insight into the potential for broad-spectrum virus control mediated by RNA silencing. PMID:26283371

  12. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge.

    PubMed

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver; Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D; Bannert, Norbert; Kurth, Reinhard; Norley, Stephen

    2016-02-01

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. PMID:26685794

  13. Doxorubicin Activates Hepatitis B Virus Replication by Elevation of p21 (Waf1/Cip1) and C/EBPα Expression

    PubMed Central

    Chen, Yu-Fang; Chong, Chin-Liew; Wu, Yi-Chieh; Wang, Yi-Ling; Tsai, Kuen-Nan; Kuo, Tzer-Min; Hong, Ming-Hsiang; Hu, Cheng-po; Chen, Mong-Liang; Chou, Yu-Chi; Chang, Chungming

    2015-01-01

    Hepatitis B virus reactivation is an important medical issue in cancer patients who undergo systemic chemotherapy. Up to half of CHB carriers receiving chemotherapy develop hepatitis and among these cases a notable proportion are associated with HBV reactivation. However, the molecular mechanism(s) through which various chemotherapeutic agents induce HBV reactivation is not yet fully understood. In this study, we investigated the role of the cell cycle regulator p21 (Waf1/Cip1) in the modulation of HBV replication when a common chemotherapeutic agent, doxorubicin, is present. We showed that p21 expression was increased by doxorubicin treatment. This elevation in p21 expression enhanced the expression of CCAAT/enhancer-binding protein α (C/EBPα); such an increase is likely to promote the binding of C/EBPα to the HBV promoter, which will contribute to the activation of HBV replication. Our current study thus reveals the mechanism underlying doxorubicin modulation of HBV replication and provides an increased understanding of HBV reactivation in CHB patients who are receiving systemic chemotherapy. PMID:26121644

  14. Gaining Replicability in a Nonhost Compromises the Silencing Suppression Activity of Tobacco Mild Green Mosaic Virus in a Host▿

    PubMed Central

    Ishibashi, Kazuhiro; Meshi, Tetsuo; Ishikawa, Masayuki

    2011-01-01

    Natural isolates of Tobacco mild green mosaic virus (TMGMV) fail to infect tomato because the tomato tm-1 protein binds to the replication proteins of TMGMV and prevents RNA replication. Previously, we isolated a TMGMV mutant that overcomes tm-1-mediated resistance and multiplies in tomato plants. Here, we show that the causal mutations in the replication protein gene that abolish the interaction with tm-1 reduce its ability to suppress RNA silencing in host plant Nicotiana benthamiana. The results suggest that the multifunctionality of the replication proteins is an evolutionary constraint of tobamoviruses that restricts their host ranges. PMID:21106731

  15. Gaining replicability in a nonhost compromises the silencing suppression activity of Tobacco mild green mosaic virus in a host.

    PubMed

    Ishibashi, Kazuhiro; Meshi, Tetsuo; Ishikawa, Masayuki

    2011-02-01

    Natural isolates of Tobacco mild green mosaic virus (TMGMV) fail to infect tomato because the tomato tm-1 protein binds to the replication proteins of TMGMV and prevents RNA replication. Previously, we isolated a TMGMV mutant that overcomes tm-1-mediated resistance and multiplies in tomato plants. Here, we show that the causal mutations in the replication protein gene that abolish the interaction with tm-1 reduce its ability to suppress RNA silencing in host plant Nicotiana benthamiana. The results suggest that the multifunctionality of the replication proteins is an evolutionary constraint of tobamoviruses that restricts their host ranges. PMID:21106731

  16. Inhibitory activity of Melissa officinalis L. extract on Herpes simplex virus type 2 replication.

    PubMed

    Mazzanti, G; Battinelli, L; Pompeo, C; Serrilli, A M; Rossi, R; Sauzullo, I; Mengoni, F; Vullo, V

    2008-01-01

    Melissa officinalis L. (Lamiaceae) (lemon balm) is used in folk medicine for nervous complaints, lower abdominal disorders and, more recently, for treating Herpes simplex lesions. In this work the antiviral activity of a hydroalcoholic extract of lemon balm leaves against the Herpes simplex virus type 2 (HSV-2) was assessed by the cytopathic effect inhibition assay on Vero cells (ATCC CCL-81), in comparison with acyclovir. The cytotoxicity of the extract on Vero cells was previously tested by evaluating the cellular death and was confirmed by the Trypan blue test. Lemon balm showed to reduce the cytopathic effect of HSV-2 on Vero cells, in the range of non-toxic concentrations of 0.025-1 mg mL(-1) (with reference to the starting crude herbal material). The maximum inhibiting effect (60%) was obtained with 0.5 mg mL(-1). The viral binding assay showed that the extract does not prevent the entry of HSV-2 in the cells, thus suggesting a mechanism of action subsequent to the penetration of the virus in the cell. The extract was also chemically characterised by NMR and HPLC analysis; it showed to contain cinnamic acid-like compounds, mainly rosmarinic acid (4.1% w/w). Our experiments support the use of lemon balm for treating Herpes simplex lesions and encourage clinical trials on this medicinal plant. PMID:19023806

  17. Adenovirus vectors lacking virus-associated RNA expression enhance shRNA activity to suppress hepatitis C virus replication

    NASA Astrophysics Data System (ADS)

    Pei, Zheng; Shi, Guoli; Kondo, Saki; Ito, Masahiko; Maekawa, Aya; Suzuki, Mariko; Saito, Izumu; Suzuki, Tetsuro; Kanegae, Yumi

    2013-12-01

    First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.

  18. Replication-Competent Viruses as Cancer Immunotherapeutics: Emerging Clinical Data

    PubMed Central

    Zamarin, Dmitriy; Pesonen, Sari

    2015-01-01

    Replication-competent (oncolytic) viruses (OV) as cancer immunotherapeutics have gained an increasing level of attention over the last few years while the clinical evidence of virus-mediated antitumor immune responses is still anecdotal. Multiple clinical studies are currently ongoing and more immunomonitoring results are expected within the next five years. All viruses can be recognized by the immune system and are therefore potential candidates for immune therapeutics. However, each virus activates innate immune system by using different combination of recognition receptors/pathways which leads to qualitatively different adaptive immune responses. This review summarizes immunological findings in cancer patients following treatment with replication-competent viruses. PMID:26176173

  19. Activation of Checkpoint Kinase 2 Is Critical for Herpes Simplex Virus Type 1 Replication in Corneal Epithelium

    PubMed Central

    Alekseev, Oleg; Limonnik, Vladimir; Donovan, Kelly; Azizkhan-Clifford, Jane

    2015-01-01

    Background/Aims Herpes simplex virus (HSV) type I keratitis remains a leading cause of corneal morbidity, despite the availability of effective antiviral drugs. Improved understanding of virus-host interactions at the level of the host DNA damage response (DDR), a known factor in the development of HSV-1 keratitis, may shed light on potential new therapeutic targets. This report examines the role of checkpoint kinase 2 (Chk2), a DDR mediator protein, in corneal epithelial HSV-1 infection. Methods A small-molecule inhibitor of Chk2 (Chk2 inhibitor II) was applied to HSV-1-infected cultured human corneal epithelial cells (hTCEpi and HCE) as well as to explanted and organotypically cultured human and rabbit corneas. Infection levels were assessed by plaque assay and real-time PCR. RNAi-mediated depletion of Chk2 was performed to confirm the effect of the inhibitor. Results Inhibition of the Chk2 kinase activity greatly suppresses the cytopathic effect, genome replication and infectious progeny production in vitro and ex vivo. Conclusion This report demonstrates the critical role of Chk2 kinase in the establishment of HSV-1 corneal epithelial infection. These data contribute to our understanding of herpesvirus-host interactions and underscore the significance of DDR activation in HSV-1 keratitis. PMID:25531207

  20. Adiponectin, a downstream target gene of peroxisome proliferator-activated receptor {gamma}, controls hepatitis B virus replication

    SciTech Connect

    Yoon, Sarah; Jung, Jaesung; Kim, Taeyeung; Park, Sun; Chwae, Yong-Joon; Shin, Ho-Joon; Kim, Kyongmin

    2011-01-20

    In this study, HepG2-hepatitis B virus (HBV)-stable cells that did not overexpress HBx and HBx-deficient mutant-transfected cells were analyzed for their expression of HBV-induced, upregulated adipogenic and lipogenic genes. The mRNAs of CCAAT enhancer binding protein {alpha} (C/EBP{alpha}), peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), adiponectin, liver X receptor {alpha} (LXR{alpha}), sterol regulatory element binding protein 1c (SREBP1c), and fatty acid synthase (FAS) were expressed at higher levels in HepG2-HBV and lamivudine-treated stable cells and HBx-deficient mutant-transfected cells than in the HepG2 cells. Lamivudine treatment reduced the mRNA levels of PPAR{gamma} and C/EBP{alpha}. Conversely, HBV replication was upregulated by adiponectin and PPAR{gamma} agonist rosiglitazone treatments and was downregulated by adiponectin siRNAs. Collectively, our results demonstrate that HBV replication and/or protein expression, even in the absence of HBx, upregulated adipogenic or lipogenic genes, and that the control of adiponectin might prove useful as a therapeutic modality for the treatment of chronic hepatitis B.

  1. Involvement of fish signal transducer and activator of transcription 3 (STAT3) in SGIV replication and virus induced paraptosis.

    PubMed

    Huang, Xiaohong; Huang, Youhua; Yang, Ying; Wei, Shina; Qin, Qiwei

    2014-12-01

    Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor which plays crucial roles in immune regulation, inflammation, cell proliferation, transformation, and other physiological processes of the organism. In this study, a novel STAT3 gene from orange spotted grouper (Ec-STAT3) was cloned and characterized. Bioinformatic analysis revealed that full-length of Ec-STAT3 was 3105-bp long and contained a 280-bp 5'UTR, a 470-bp 3'UTR, and a 2355-bp open reading frame (ORF) that encoded a 784-amino acid peptide. The deduced protein of Ec-STAT3 showed 98% identity to that of turbot (Scophthalmus maximus). Amino acid alignment showed that Ec-STAT3 contained four conserved domains, including a protein interaction domain, a coiled coil domain, a DNA binding domain, and an SH2 domain. Quantitative real-time PCR analysis showed that the highest expression level was detected in the liver, followed by skin and spleen. After injection with Singapore grouper iridovirus (SGIV), the transcript of Ec-STAT3 in spleen was increased significantly. To further explore the function of Ec-STAT3, we investigated the roles of Ec-STAT3 in SGIV infection in vitro. Immune fluorescence analysis indicated that SGIV infection altered the distribution of phosphorylated Ec-STAT3 in nucleus, and a small part of phosphorylated Ec-STAT3 was associated with virus assembly sites, suggesting that Ec-STAT3 might be important for SGIV infection. Using STAT3 specific inhibitor, S3I-201, we found that inhibition of Ec-STAT3 activation decreased the SGIV replication significantly. Moreover, inhibition of Ec-STAT3 activation obviously altered SGIV infection induced cell cycle arrest and the expression of pro-survival genes, including Bcl-2, Bcl-xL and Bax inhibitor. Together, our results firstly demonstrated the critical roles of fish STAT3 in DNA virus replication and virus induced paraptosis, but also provided new insights into the mechanism of iridovirus pathogenesis

  2. The IFITMs Inhibit Zika Virus Replication.

    PubMed

    Savidis, George; Perreira, Jill M; Portmann, Jocelyn M; Meraner, Paul; Guo, Zhiru; Green, Sharone; Brass, Abraham L

    2016-06-14

    Zika virus has emerged as a severe health threat with a rapidly expanding range. The IFITM family of restriction factors inhibits the replication of a broad range of viruses, including the closely related flaviruses West Nile virus and dengue virus. Here, we show that IFITM1 and IFITM3 inhibit Zika virus infection early in the viral life cycle. Moreover, IFITM3 can prevent Zika-virus-induced cell death. These results suggest that strategies to boost the actions and/or levels of the IFITMs might be useful for inhibiting a broad range of emerging viruses. PMID:27268505

  3. Initiation of HAART during acute simian immunodeficiency virus infection rapidly controls virus replication in the CNS by enhancing immune activity and preserving protective immune responses

    PubMed Central

    Graham, David R.; Gama, Lucio; Queen, Suzanne E.; Li, Ming; Brice, Angela K.; Kelly, Kathleen M.; Mankowski, Joseph L.; Clements, Janice E.

    2012-01-01

    The CNS remains vulnerable to HIV-induced damage despite highly active antiretroviral therapy (HAART). Using a rigorous simian immunodeficiency virus (SIV) macaque model of HAART that combines three classes of antiretroviral drugs (a protease inhibitor, a reverse transcriptase inhibitor, and an integrase inhibitor), we examined immune responses and virus replication in the plasma and cerebrospinal fluid (CSF) following HAART initiation during acute infection (4 days postinoculation (p. i.)). HAART-treated macaques did not experience the level of acute CD4+ and CD8+ T cell and NK cell count suppression in the peripheral blood normally observed during acute infection. Initiation of HAART produced a rapid four-log decline in viral load in plasma and a slower two-log decline of viral RNA in the CSF over the subsequent 17 days of infection. Despite a dramatic reduction of viral RNA levels in the brain at 21 days p.i., viral DNA levels were not different between the two groups. Expression of most cytokine mRNA in brain of HAART-treated macaques did not significantly differ from untreated controls. Expression of the IFN responsive gene MxA was significantly reduced in the brain of HAART-treated macaques, suggesting control of hyperactive immune responses. Control of virus replication likely was enhanced by significant increases in CD4+ and CD8+ T cell trafficking in the brain of infected animals on HAART therapy and the concomitant increase in levels of IFNγ. Collectively, these data indicate preserved innate and adaptive immune activity in the brain following HAART initiation during acute SIV infection in this macaque model, suggesting profound benefits following acute treatment of SIV. PMID:21165785

  4. Polygonum cuspidatum and Its Active Components Inhibit Replication of the Influenza Virus through Toll-Like Receptor 9-Induced Interferon Beta Expression

    PubMed Central

    Lin, Chao-jen; Lin, Hui-Ju; Chen, Ter-Hsin; Hsu, Yu-An; Liu, Chin-San; Hwang, Guang-Yuh; Wan, Lei

    2015-01-01

    Influenza virus infection is a global public health issue. The effectiveness of antiviral therapies for influenza has been limited by the emergence of drug-resistant viral strains. Therefore, there is an urgent need to identify novel antiviral therapies. Here we tested the effects of 300 traditional Chinese medicines on the replication of various influenza virus strains in a lung cell line, A549, using an influenza-specific luciferase reporter assay. Of the traditional medicines tested, Polygonum cuspidatum (PC) and its active components, resveratrol and emodin, were found to attenuate influenza viral replication in A549 cells. Furthermore, they preferentially inhibited the replication of influenza A virus, including clinical strains isolated in 2009 and 2011 in Taiwan and the laboratory strain A/WSN/33 (H1N1). In addition to inhibiting the expression of hemagglutinin and neuraminidase, PC, emodin, and resveratrol also increased the expression of interferon beta (IFN-β) through Toll-like receptor 9 (TLR9). Moreover, the anti-viral activity of IFN-β or resveratrol was reduced when the A549 cells were treated with neutralizing anti-IFN-β antibodies or a TLR9 inhibitor, suggesting that IFN-β likely acts synergistically with resveratrol to inhibit H1N1 replication. This potential antiviral mechanism, involving direct inhibition of virus replication and simultaneous activation of the host immune response, has not been previously described for a single antiviral molecule. In conclusion, our data support the use of PC, resveratrol or emodin for inhibiting influenza virus replication directly and via TLR-9–induced IFN-β production. PMID:25658356

  5. Polygonum cuspidatum and its active components inhibit replication of the influenza virus through toll-like receptor 9-induced interferon beta expression.

    PubMed

    Lin, Chao-Jen; Lin, Hui-Ju; Chen, Ter-Hsin; Hsu, Yu-An; Liu, Chin-San; Hwang, Guang-Yuh; Wan, Lei

    2015-01-01

    Influenza virus infection is a global public health issue. The effectiveness of antiviral therapies for influenza has been limited by the emergence of drug-resistant viral strains. Therefore, there is an urgent need to identify novel antiviral therapies. Here we tested the effects of 300 traditional Chinese medicines on the replication of various influenza virus strains in a lung cell line, A549, using an influenza-specific luciferase reporter assay. Of the traditional medicines tested, Polygonum cuspidatum (PC) and its active components, resveratrol and emodin, were found to attenuate influenza viral replication in A549 cells. Furthermore, they preferentially inhibited the replication of influenza A virus, including clinical strains isolated in 2009 and 2011 in Taiwan and the laboratory strain A/WSN/33 (H1N1). In addition to inhibiting the expression of hemagglutinin and neuraminidase, PC, emodin, and resveratrol also increased the expression of interferon beta (IFN-β) through Toll-like receptor 9 (TLR9). Moreover, the anti-viral activity of IFN-β or resveratrol was reduced when the A549 cells were treated with neutralizing anti-IFN-β antibodies or a TLR9 inhibitor, suggesting that IFN-β likely acts synergistically with resveratrol to inhibit H1N1 replication. This potential antiviral mechanism, involving direct inhibition of virus replication and simultaneous activation of the host immune response, has not been previously described for a single antiviral molecule. In conclusion, our data support the use of PC, resveratrol or emodin for inhibiting influenza virus replication directly and via TLR-9-induced IFN-β production. PMID:25658356

  6. Optimal Replication Activity of Vesicular Stomatitis Virus RNA Polymerase Requires Phosphorylation of a Residue(s) at Carboxy-Terminal Domain II of Its Accessory Subunit, Phosphoprotein P

    PubMed Central

    Hwang, Leroy N.; Englund, Nathan; Das, Tapas; Banerjee, Amiya K.; Pattnaik, Asit K.

    1999-01-01

    The phosphoprotein, P, of vesicular stomatitis virus (VSV) is a key subunit of the viral RNA-dependent RNA polymerase complex. The protein is phosphorylated at multiple sites in two different domains. We recently showed that specific serine and threonine residues within the amino-terminal acidic domain I of P protein must be phosphorylated for in vivo transcription activity, but not for replication activity, of the polymerase complex. To examine the role of phosphorylation of the carboxy-terminal domain II residues of the P protein in transcription and replication, we have used a panel of mutant P proteins in which the phosphate acceptor sites (Ser-226, Ser-227, and Ser-233) were altered to alanines either individually or in various combinations. Analyses of the mutant proteins for their ability to support replication of a VSV minigenomic RNA suggest that phosphorylation of either Ser-226 or Ser-227 is necessary for optimal replication activity of the protein. The mutant protein (P226/227) in which both of these residues were altered to alanines was only about 8% active in replication compared to the wild-type (wt) protein. Substitution of alanine for Ser-233 did not have any adverse effect on replication activity of the protein. In contrast, all the mutant proteins showed activities similar to that of the wt protein in transcription. These results indicate that phosphorylation of the carboxy-terminal domain II residues of P protein are required for optimal replication activity but not for transcription activity. Furthermore, substitution of glutamic acid residues for Ser-226 and Ser-227 resulted in a protein that was only 14% active in replication but almost fully active in transcription. Taken together, these results, along with our earlier studies, suggest that phosphorylation of residues at two different domains in the P protein regulates its activity in transcription and replication of the VSV genome. PMID:10364310

  7. In Vitro Activity and Resistance Profile of Samatasvir, a Novel NS5A Replication Inhibitor of Hepatitis C Virus

    PubMed Central

    Lallos, L. B.; McCarville, J. F.; La Colla, M.; Serra, I.; Chapron, C.; Gillum, J. M.; Pierra, C.; Standring, D. N.; Seifer, M.

    2014-01-01

    The hepatitis C virus (HCV) nonstructural 5A (NS5A) protein is a clinically validated target for drugs designed to treat chronic HCV infection. This study evaluated the in vitro activity, selectivity, and resistance profile of a novel anti-HCV compound, samatasvir (IDX719), alone and in combination with other antiviral agents. Samatasvir was effective and selective against infectious HCV and replicons, with 50% effective concentrations (EC50s) falling within a tight range of 2 to 24 pM in genotype 1 through 5 replicons and with a 10-fold EC50 shift in the presence of 40% human serum in the genotype 1b replicon. The EC90/EC50 ratio was low (2.6). A 50% cytotoxic concentration (CC50) of >100 μM provided a selectivity index of >5 × 107. Resistance selection experiments (with genotype 1a replicons) and testing against replicons bearing site-directed mutations (with genotype 1a and 1b replicons) identified NS5A amino acids 28, 30, 31, 32, and 93 as potential resistance loci, suggesting that samatasvir affects NS5A function. Samatasvir demonstrated an overall additive effect when combined with interferon alfa (IFN-α), ribavirin, representative HCV protease, and nonnucleoside polymerase inhibitors or the nucleotide prodrug IDX184. Samatasvir retained full activity in the presence of HIV and hepatitis B virus (HBV) antivirals and was not cross-resistant with HCV protease, nucleotide, and nonnucleoside polymerase inhibitor classes. Thus, samatasvir is a selective low-picomolar inhibitor of HCV replication in vitro and is a promising candidate for future combination therapies with other direct-acting antiviral drugs in HCV-infected patients. PMID:24867983

  8. Replicating viruses for gynecologic cancer therapy.

    PubMed

    Park, J W; Kim, M

    2016-01-01

    Despite advanced therapeutic treatments, gynecologic malignancies such as cervical and ovarian cancers are still the top ten leading cause of cancer death among women in South Korea. Thus a novel and innovative approach is urgently needed. Naturally occurring viruses are live, replication-proficient viruses that specifically infect human cancer cells while sparing normal cell counterparts. Since the serendipitous discovery of the naturally oncotropic virus targeting gynecologic cancer in 1920s, various replicating viruses have shown various degrees of safety and efficacy in preclinical or clinical applications for gynecologic cancer therapy. Cellular oncogenes and tumor suppressor genes, which are frequently dysregulated in gynecologic malignancies, play an important role in determining viral oncotropism. Published articles describing replicating, oncolytic viruses for gynecologic cancers are thoroughly reviewed. This review outlines the discovery of replication-proficient virus strains for targeting gynecologic malignancies, recent progresses elucidating molecular connections between oncogene/tumor suppressor gene abnormalities and viral oncotropism, and the associated preclinical/clinical implications. The authors would also like to propose future directions in the utility of the replicating viruses for gynecologic cancer therapy. PMID:27352554

  9. Effects of vaccinia virus uracil DNA glycosylase catalytic site and deoxyuridine triphosphatase deletion mutations individually and together on replication in active and quiescent cells and pathogenesis in mice

    PubMed Central

    De Silva, Frank S; Moss, Bernard

    2008-01-01

    Background Low levels of uracil in DNA result from misincorporation of dUMP or cytosine deamination. Vaccinia virus (VACV), the prototype poxvirus, encodes two enzymes that can potentially reduce the amount of uracil in DNA. Deoxyuridine triphosphatase (dUTPase) hydrolyzes dUTP, generating dUMP for biosynthesis of thymidine nucleotides while decreasing the availability of dUTP for misincorporation; uracil DNA glycosylase (UNG) cleaves uracil N-glycosylic bonds in DNA initiating base excision repair. Studies with actively dividing cells showed that the VACV UNG protein is required for DNA replication but the UNG catalytic site is not, whereas the dUTPase gene can be deleted without impairing virus replication. Recombinant VACV with an UNG catalytic site mutation was attenuated in vivo, while a dUTPase deletion mutant was not. However, the importance of the two enzymes for replication in quiescent cells, their possible synergy and roles in virulence have not been fully assessed. Results VACV mutants lacking the gene encoding dUTPase or with catalytic site mutations in UNG and double UNG/dUTPase mutants were constructed. Replication of UNG and UNG/dUTPase mutants were slightly reduced compared to wild type or the dUTPase mutant in actively dividing cells. Viral DNA replication was reduced about one-third under these conditions. After high multiplicity infection of quiescent fibroblasts, yields of wild type and mutant viruses were decreased by 2-logs with relative differences similar to those observed in active fibroblasts. However, under low multiplicity multi-step growth conditions in quiescent fibroblasts, replication of the dUTPase/UNG mutant was delayed and 5-fold lower than that of either single mutant or parental virus. This difference was exacerbated by 1-day serial passages on quiescent fibroblasts, resulting in 2- to 3-logs lower titer of the double mutant compared to the parental and single mutant viruses. Each mutant was more attenuated than a revertant

  10. Lymphoid cells in the spleens of woodchuck hepatitis virus-infected woodchucks are a site of active viral replication.

    PubMed Central

    Korba, B E; Wells, F; Tennant, B C; Cote, P J; Gerin, J L

    1987-01-01

    Lymphoid cells were purified from the spleens of 15 woodchucks and examined for the presence of woodchuck hepatitis virus (WHV). Lymphoid cells from the spleens of eight of eight chronically infected animals contained high levels of WHV RNA and DNA. A 100-fold lower level of WHV DNA was found in the spleen from one of five animals that had recovered from acute WHV infections 2 years before this analysis. No WHV nucleic acids were observed in either of two uninfected animals. WHV DNA patterns in the lymphoid cells from the spleens of the chronically infected animals, which included the presence of single-stranded DNA and RNA-DNA hybrid molecules, were identical to those observed in WHV-infected liver. WHV DNA in these cells was present in intact, 27-nm core particles which also contained the endogenous DNA polymerase activity. These results indicate that the spleen is a site of active WHV DNA replication and is most likely a major source of WHV-infected cells in the circulating lymphoid cell population. Images PMID:3573141

  11. Identification of a New Ribonucleoside Inhibitor of Ebola Virus Replication

    PubMed Central

    Reynard, Olivier; Nguyen, Xuan-Nhi; Alazard-Dany, Nathalie; Barateau, Véronique; Cimarelli, Andrea; Volchkov, Viktor E.

    2015-01-01

    The current outbreak of Ebola virus (EBOV) in West Africa has claimed the lives of more than 15,000 people and highlights an urgent need for therapeutics capable of preventing virus replication. In this study we screened known nucleoside analogues for their ability to interfere with EBOV replication. Among them, the cytidine analogue β-d-N4-hydroxycytidine (NHC) demonstrated potent inhibitory activities against EBOV replication and spread at non-cytotoxic concentrations. Thus, NHC constitutes an interesting candidate for the development of a suitable drug treatment against EBOV. PMID:26633464

  12. Multiscale modeling of virus replication and spread.

    PubMed

    Kumberger, Peter; Frey, Felix; Schwarz, Ulrich S; Graw, Frederik

    2016-07-01

    Replication and spread of human viruses is based on the simultaneous exploitation of many different host functions, bridging multiple scales in space and time. Mathematical modeling is essential to obtain a systems-level understanding of how human viruses manage to proceed through their life cycles. Here, we review corresponding advances for viral systems of large medical relevance, such as human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV). We will outline how the combination of mathematical models and experimental data has advanced our quantitative knowledge about various processes of these pathogens, and how novel quantitative approaches promise to fill remaining gaps. PMID:26878104

  13. AUF1 p45 Promotes West Nile Virus Replication by an RNA Chaperone Activity That Supports Cyclization of the Viral Genome

    PubMed Central

    Friedrich, Susann; Schmidt, Tobias; Geissler, René; Lilie, Hauke; Chabierski, Stefan; Ulbert, Sebastian; Liebert, Uwe G.; Golbik, Ralph P.

    2014-01-01

    ABSTRACT A central aspect of current virology is to define the function of cellular proteins (host factors) that support the viral multiplication process. This study aimed at characterizing cellular proteins that assist the RNA replication process of the prevalent human pathogen West Nile virus (WNV). Using in vitro and cell-based approaches, we defined the p45 isoform of AU-rich element RNA-binding protein 1 (AUF1) as a host factor that enables efficient WNV replication. It was demonstrated that AUF1 p45 has an RNA chaperone activity, which aids the structural rearrangement and cyclization of the WNV RNA that is required by the viral replicase to initiate RNA replication. The obtained data suggest the RNA chaperone activity of AUF1 p45 is an important determinant of the WNV life cycle. IMPORTANCE In this study, we identified a cellular protein, AUF1 (also known as heterogeneous ribonucleoprotein D [hnRNPD]), acting as a helper (host factor) of the multiplication process of the important human pathogen West Nile virus. Several different variants of AUF1 exist in the cell, and one variant, AUF1 p45, was shown to support viral replication most significantly. Interestingly, we obtained a set of experimental data indicating that a main function of AUF1 p45 is to modify and thus prepare the West Nile virus genome in such a way that the viral enzyme that generates progeny genomes is empowered to do this considerably more efficiently than in the absence of the host factor. The capability of AUF1 p45 to rearrange the West Nile virus genome was thus identified to be an important aspect of a West Nile virus infection. PMID:25078689

  14. Herpes simplex virus induces the replication of foreign DNA

    SciTech Connect

    Danovich, R.M.; Frenkel, N.

    1988-08-01

    Plasmids containing the simian virus 40 (SV40) DNA replication origin and the large T gene are replicated in Vero monkey cells but not in rabbit skin cells. Efficient replication of the plasmids was observed in rabbit cells infected with herpes simplex virus type 1 (HSV-1) and HSV-2. The HSV-induced replication required the large T antigen and the SV40 replication origin. However, it produced concatemeric molecules resembling replicative intermediates of HSV DNA and was sensitive to phosphonoacetate at concentrations known to inhibit the HSV DNA polymerase. Therefore, it involved the HSV DNA polymerase itself or a viral gene product(s) which was expressed following the replication of HSV DNA. Analyses of test plasmids lacking SV40 or HSV DNA sequences showed that, under some conditions. HSV also induced low-level replication of test plasmids containing no known eucaryotic replication origins. Together, these results show that HSV induces a DNA replicative activity which amplifies foreign DNA. The relevance of these findings to the putative transforming potential of HSV is discussed.

  15. Herpes simplex virus induces the replication of foreign DNA.

    PubMed Central

    Danovich, R M; Frenkel, N

    1988-01-01

    Plasmids containing the simian virus 40 (SV40) DNA replication origin and the large T gene are replicated efficiently in Vero monkey cells but not in rabbit skin cells. Efficient replication of the plasmids was observed in rabbit skin cells infected with herpes simplex virus type 1 (HSV-1) and HSV-2. The HSV-induced replication required the large T antigen and the SV40 replication origin. However, it produced concatemeric molecules resembling replicative intermediates of HSV DNA and was sensitive to phosphonoacetate at concentrations known to inhibit the HSV DNA polymerase. Therefore, it involved the HSV DNA polymerase itself or a viral gene product(s) which was expressed following the replication of HSV DNA. Analyses of test plasmids lacking SV40 or HSV DNA sequences showed that, under some conditions, HSV also induced low-level replication of test plasmids containing no known eucaryotic replication origins. Together, these results show that HSV induces a DNA replicative activity which amplifies foreign DNA. The relevance of these findings to the putative transforming potential of HSV is discussed. Images PMID:2850486

  16. Saikosaponin A inhibits influenza A virus replication and lung immunopathology.

    PubMed

    Chen, Jianxin; Duan, Mubing; Zhao, Yaqin; Ling, Fangfang; Xiao, Kun; Li, Qian; Li, Bin; Lu, Chunni; Qi, Wenbao; Zeng, Zhenling; Liao, Ming; Liu, Yahong; Chen, Weisan

    2015-12-15

    Fatal influenza outcomes result from a combination of rapid virus replication and collateral lung tissue damage caused by exaggerated pro-inflammatory host immune cell responses. There are few therapeutic agents that target both biological processes for the attenuation of influenza-induced lung pathology. We show that Saikosaponin A, a bioactive triterpene saponin with previouslyestablished anti-inflammatory effects, demonstrates both in vitro and in vivo anti-viral activity against influenza A virus infections. Saikosaponin A attenuated the replication of three different influenza A virus strains, including a highly pathogenic H5N1 strain, in human alveolar epithelial A549 cells. This anti-viral activity occurred through both downregulation of NF-κB signaling and caspase 3-dependent virus ribonucleoprotein nuclear export as demonstrated by NF-κB subunit p65 and influenza virus nucleoprotein nuclear translocation studies in influenza virus infected A549 cells. Critically, Saikosaponin A also attenuated viral replication, aberrant pro-inflammatory cytokine production and lung histopathology in the widely established H1N1 PR8 model of influenza A virus lethality in C57BL/6 mice. Flow cytometry studies of mouse bronchoalveolar lavage cells revealed that SSa exerted immunomodulatory effects through a selective attenuation of lung neutrophil and monocyte recruitment during the early peak of the innate immune response to PR8 infection. Altogether, our results indicate that Saikosaponin A possesses novel therapeutic potential for the treatment of pathological influenza virus infections. PMID:26637810

  17. Saikosaponin A inhibits influenza A virus replication and lung immunopathology

    PubMed Central

    Zhao, Yaqin; Ling, Fangfang; Xiao, Kun; Li, Qian; Li, Bin; Lu, Chunni; Qi, Wenbao; Zeng, Zhenling; Liao, Ming; Liu, Yahong; Chen, Weisan

    2015-01-01

    Fatal influenza outcomes result from a combination of rapid virus replication and collateral lung tissue damage caused by exaggerated pro-inflammatory host immune cell responses. There are few therapeutic agents that target both biological processes for the attenuation of influenza-induced lung pathology. We show that Saikosaponin A, a bioactive triterpene saponin with previouslyestablished anti-inflammatory effects, demonstrates both in vitro and in vivo anti-viral activity against influenza A virus infections. Saikosaponin A attenuated the replication of three different influenza A virus strains, including a highly pathogenic H5N1 strain, in human alveolar epithelial A549 cells. This anti-viral activity occurred through both downregulation of NF-κB signaling and caspase 3-dependent virus ribonucleoprotein nuclear export as demonstrated by NF-κB subunit p65 and influenza virus nucleoprotein nuclear translocation studies in influenza virus infected A549 cells. Critically, Saikosaponin A also attenuated viral replication, aberrant pro-inflammatory cytokine production and lung histopathology in the widely established H1N1 PR8 model of influenza A virus lethality in C57BL/6 mice. Flow cytometry studies of mouse bronchoalveolar lavage cells revealed that SSa exerted immunomodulatory effects through a selective attenuation of lung neutrophil and monocyte recruitment during the early peak of the innate immune response to PR8 infection. Altogether, our results indicate that Saikosaponin A possesses novel therapeutic potential for the treatment of pathological influenza virus infections. PMID:26637810

  18. Differential Phosphatidylinositol-3-Kinase-Akt-mTOR Activation by Semliki Forest and Chikungunya Viruses Is Dependent on nsP3 and Connected to Replication Complex Internalization

    PubMed Central

    Biasiotto, Roberta; Eng, Kai; Neuvonen, Maarit; Götte, Benjamin; Rheinemann, Lara; Mutso, Margit; Utt, Age; Varghese, Finny; Balistreri, Giuseppe; Merits, Andres; Ahola, Tero; McInerney, Gerald M.

    2015-01-01

    ABSTRACT Many viruses affect or exploit the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, a crucial prosurvival signaling cascade. We report that this pathway was strongly activated in cells upon infection with the Old World alphavirus Semliki Forest virus (SFV), even under conditions of complete nutrient starvation. We mapped this activation to the hyperphosphorylated/acidic domain in the C-terminal tail of SFV nonstructural protein nsP3. Viruses with a deletion of this domain (SFV-Δ50) but not of other regions in nsP3 displayed a clearly delayed and reduced capacity of Akt stimulation. Ectopic expression of the nsP3 of SFV wild type (nsP3-wt), but not nsP3-Δ50, equipped with a membrane anchor was sufficient to activate Akt. We linked PI3K-Akt-mTOR stimulation to the intracellular dynamics of viral replication complexes, which are formed at the plasma membrane and subsequently internalized in a process blocked by the PI3K inhibitor wortmannin. Replication complex internalization was observed upon infection of cells with SFV-wt and SFV mutants with deletions in nsP3 but not with SFV-Δ50, where replication complexes were typically accumulated at the cell periphery. In cells infected with the closely related chikungunya virus (CHIKV), the PI3K-Akt-mTOR pathway was only moderately activated. Replication complexes of CHIKV were predominantly located at the cell periphery. Exchanging the hypervariable C-terminal tail of nsP3 between SFV and CHIKV induced the phenotype of strong PI3K-Akt-mTOR activation and replication complex internalization in CHIKV. In conclusion, infection with SFV but not CHIKV boosts PI3K-Akt-mTOR through the hyperphosphorylated/acidic domain of nsP3 to drive replication complex internalization. IMPORTANCE SFV and CHIKV are very similar in terms of molecular and cell biology, e.g., regarding replication and molecular interactions, but are strikingly different regarding pathology: CHIKV is a relevant human

  19. Pathogenicity of Pepper mild mottle virus Is Controlled by the RNA Silencing Suppression Activity of Its Replication Protein but Not the Viral Accumulation.

    PubMed

    Tsuda, Shinya; Kubota, Kenji; Kanda, Ayami; Ohki, Takehiro; Meshi, Tetsuo

    2007-04-01

    ABSTRACT Pepper mild mottle virus (PMMoV) infects pepper plants, causing mosaic symptoms on the upper developing leaves. We investigated the relationship between a virus pathogenicity determinant domain and the appearance of mosaic symptoms. Genetically modified PMMoV mutants were constructed, which had a base substitution in the 130K replication protein gene causing an amino acid change or a truncation of the 3' terminal pseudoknot structure. Only one substitution mutant (at amino acid residue 349) failed to cause symptoms, although its accumulation was relatively high. Conversely, the pseudoknot mutants showed the lower accumulation, but they still caused mosaic symptoms as severe as the wild-type virus. Therefore, the level of virus accumulation in a plant does not necessarily correlate with the development of mosaic symptoms. The activity to suppress posttranscriptional gene silencing (PTGS) was impaired in the asymptomatic mutant. Consequently, pathogenicity causing mosaic symptoms should be controlled by combat between host PTGS and its suppression by the 130K replication protein rather than virus accumulation. PMID:18943281

  20. Direct interaction of cellular hnRNP-F and NS1 of influenza A virus accelerates viral replication by modulation of viral transcriptional activity and host gene expression

    SciTech Connect

    Lee, Jun Han; Kim, Sung-Hak; Pascua, Philippe Noriel Q.; Song, Min-Suk; Baek, Yun Hee; Jin, Xun; Choi, Joong-Kook; Kim, Chul-Joong; Kim, Hyunggee; Choi, Young Ki

    2010-02-05

    To investigate novel NS1-interacting proteins, we conducted a yeast two-hybrid analysis, followed by co-immunoprecipitation assays. We identified heterogeneous nuclear ribonucleoprotein F (hnRNP-F) as a cellular protein interacting with NS1 during influenza A virus infection. Co-precipitation assays suggest that interaction between hnRNP-F and NS1 is a common and direct event among human or avian influenza viruses. NS1 and hnRNP-F co-localize in the nucleus of host cells, and the RNA-binding domain of NS1 directly interacts with the GY-rich region of hnRNP-F determined by GST pull-down assays with truncated proteins. Importantly, hnRNP-F expression levels in host cells indicate regulatory role on virus replication. hnRNP-F depletion by small interfering RNA (siRNA) shows 10- to 100-fold increases in virus titers corresponding to enhanced viral RNA polymerase activity. Our results delineate novel mechanism of action by which NS1 accelerates influenza virus replication by modulating normal cellular mRNA processes through direct interaction with cellular hnRNP-F protein.

  1. The sirtuin inhibitor sirtinol inhibits hepatitis A virus (HAV) replication by inhibiting HAV internal ribosomal entry site activity.

    PubMed

    Kanda, Tatsuo; Sasaki, Reina; Nakamoto, Shingo; Haga, Yuki; Nakamura, Masato; Shirasawa, Hiroshi; Okamoto, Hiroaki; Yokosuka, Osamu

    2015-10-23

    Epigenetics plays a role in the regulation of gene expression. Epigenetic changes control gene expression at the transcriptional level. Our previous study suggested that the La protein, which is mainly localized in the nucleus, was associated with hepatitis A virus (HAV) internal ribosomal entry site (IRES)-mediated translation and HAV replication. The aim of this study was to investigate whether epigenetic compounds have effects on HAV IRES-mediated translation and HAV replication. Sirtinol, a sirtuin inhibitor, inhibited HAV IRES-mediated translation in COS7-HAV-IRES cells. Treatment with 10 μM sirtinol resulted in a significant reduction in the intracellular RNA levels of HAV HA11-1299 genotype IIIA in Huh7 cells. Epigenetic treatment with a sirtuin inhibitor may represent a new treatment option for HAV infection. In conclusion, epigenetic control was involved in HAV IRES-dependent translation and HAV replication. Special attention should also be paid to underlying viral diseases in the clinical use of epigenetic treatments for malignancies. PMID:26388050

  2. A Novel Functional Site in the PB2 Subunit of Influenza A Virus Essential for Acetyl-CoA Interaction, RNA Polymerase Activity, and Viral Replication*

    PubMed Central

    Hatakeyama, Dai; Shoji, Masaki; Yamayoshi, Seiya; Hirota, Takenori; Nagae, Monami; Yanagisawa, Shin; Nakano, Masahiro; Ohmi, Naho; Noda, Takeshi; Kawaoka, Yoshihiro; Kuzuhara, Takashi

    2014-01-01

    The PA, PB1, and PB2 subunits, components of the RNA-dependent RNA polymerase of influenza A virus, are essential for viral transcription and replication. The PB2 subunit binds to the host RNA cap (7-methylguanosine triphosphate (m7GTP)) and supports the endonuclease activity of PA to “snatch” the cap from host pre-mRNAs. However, the structure of PB2 is not fully understood, and the functional sites remain unknown. In this study, we describe a novel Val/Arg/Gly (VRG) site in the PB2 cap-binding domain, which is involved in interaction with acetyl-CoA found in eukaryotic histone acetyltransferases (HATs). In vitro experiments revealed that the recombinant PB2 cap-binding domain that includes the VRG site interacts with acetyl-CoA; moreover, it was found that this interaction could be blocked by CoA and various HAT inhibitors. Interestingly, m7GTP also inhibited this interaction, suggesting that the same active pocket is capable of interacting with acetyl-CoA and m7GTP. To elucidate the importance of the VRG site on PB2 function and viral replication, we constructed a PB2 recombinant protein and recombinant viruses including several patterns of amino acid mutations in the VRG site. Substitutions of the valine and arginine residues or of all 3 residues of the VRG site to alanine significantly reduced the binding ability of PB2 to acetyl-CoA and its RNA polymerase activity. Recombinant viruses containing the same mutations could not be replicated in cultured cells. These results indicate that the PB2 VRG sequence is a functional site that is essential for acetyl-CoA interaction, RNA polymerase activity, and viral replication. PMID:25063805

  3. Promotion of Hendra virus replication by microRNA 146a.

    PubMed

    Stewart, Cameron R; Marsh, Glenn A; Jenkins, Kristie A; Gantier, Michael P; Tizard, Mark L; Middleton, Deborah; Lowenthal, John W; Haining, Jessica; Izzard, Leonard; Gough, Tamara J; Deffrasnes, Celine; Stambas, John; Robinson, Rachel; Heine, Hans G; Pallister, Jackie A; Foord, Adam J; Bean, Andrew G; Wang, Lin-Fa

    2013-04-01

    Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-κB-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-κB activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-κB activity aids Hendra virus replication. Furthermore, overexpression of the IκB superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease. PMID:23345523

  4. Replication and transcription activities of ribonucleoprotein complexes reconstituted from avian H5N1, H1N1pdm09 and H3N2 influenza A viruses.

    PubMed

    Ngai, Karry L K; Chan, Martin C W; Chan, Paul K S

    2013-01-01

    Avian influenza viruses pose a serious pandemic threat to humans. Better knowledge on cross-species adaptation is important. This study examined the replication and transcription efficiency of ribonucleoprotein complexes reconstituted by plasmid co-transfection between H5N1, H1N1pdm09 and H3N2 influenza A viruses, and to identify mutations in the RNA polymerase subunit that affect human adaptation. Viral RNA polymerase subunits PB1, PB2, PA and NP derived from influenza viruses were co-expressed with pPolI-vNP-Luc in human cells, and with its function evaluated by luciferase reporter assay. A quantitative RT-PCR was used to measure vRNA, cRNA, and mRNA levels for assessing the replication and transcription efficiency. Mutations in polymerase subunit were created to identify signature of increased human adaptability. H5N1 ribonucleoprotein complexes incorporated with PB2 derived from H1N1pdm09 and H3N2 viruses increased the polymerase activity in human cells. Furthermore, single amino acid substitutions at PB2 of H5N1 could affect polymerase activity in a temperature-dependent manner. By using a highly sensitive quantitative reverse transcription-polymerase chain reaction, an obvious enhancement in replication and transcription activities of ribonucleoproteins was observed by the introduction of lysine at residue 627 in the H5N1 PB2 subunit. Although less strongly in polymerase activity, E158G mutation appeared to alter the accumulation of H5N1 RNA levels in a temperature-dependent manner, suggesting a temperature-dependent mechanism in regulating transcription and replication exists. H5N1 viruses can adapt to humans either by acquisition of PB2 from circulating human-adapted viruses through reassortment, or by mutations at critical sites in PB2. This information may help to predict the pandemic potential of newly emerged influenza strains, and provide a scientific basis for stepping up surveillance measures and vaccine production. PMID:23750226

  5. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication

    PubMed Central

    Herod, Morgan R.; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C.; Verdaguer, Nuria; Rowlands, David J.

    2016-01-01

    ABSTRACT The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. IMPORTANCE Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome

  6. The hepatitis delta virus: Replication and pathogenesis.

    PubMed

    Sureau, Camille; Negro, Francesco

    2016-04-01

    Hepatitis delta virus (HDV) is a defective virus and a satellite of the hepatitis B virus (HBV). Its RNA genome is unique among animal viruses, but it shares common features with some plant viroids, including a replication mechanism that uses a host RNA polymerase. In infected cells, HDV genome replication and formation of a nucleocapsid-like ribonucleoprotein (RNP) are independent of HBV. But the RNP cannot exit, and therefore propagate, in the absence of HBV, as the latter supplies the propagation mechanism, from coating the HDV RNP with the HBV envelope proteins for cell egress to delivery of the HDV virions to the human hepatocyte target. HDV is therefore an obligate satellite of HBV; it infects humans either concomitantly with HBV or after HBV infection. HDV affects an estimated 15 to 20 million individuals worldwide, and the clinical significance of HDV infection is more severe forms of viral hepatitis--acute or chronic--, and a higher risk of developing cirrhosis and hepatocellular carcinoma in comparison to HBV monoinfection. This review covers molecular aspects of HDV replication cycle, including its interaction with the helper HBV and the pathogenesis of infection in humans. PMID:27084031

  7. Junín Virus Pathogenesis and Virus Replication

    PubMed Central

    Grant, Ashley; Seregin, Alexey; Huang, Cheng; Kolokoltsova, Olga; Brasier, Allan; Peters, Clarence; Paessler, Slobodan

    2012-01-01

    Junín virus, the etiological agent of Argentine hemorrhagic fever, causes significant morbidity and mortality. The virus is spread through the aerosolization of host rodent excreta and endemic to the humid pampas of Argentina. Recently, significant progress has been achieved with the development of new technologies (e.g. reverse genetics) that have expanded knowledge about the pathogenesis and viral replication of Junín virus. We will review the pathogenesis of Junín virus in various animal models and the role of innate and adaptive immunity during infection. We will highlight current research regarding the role of molecular biology of Junín virus in elucidating virus attenuation. We will also summarize current knowledge on Junín virus pathogenesis focusing on the recent development of vaccines and potential therapeutics. PMID:23202466

  8. In vitro antiviral activity of circular triple helix forming oligonucleotide RNA towards Feline Infectious Peritonitis virus replication.

    PubMed

    Choong, Oi Kuan; Mehrbod, Parvaneh; Tejo, Bimo Ario; Omar, Abdul Rahman

    2014-01-01

    Feline Infectious Peritonitis (FIP) is a severe fatal immune-augmented disease in cat population. It is caused by FIP virus (FIPV), a virulent mutant strain of Feline Enteric Coronavirus (FECV). Current treatments and prophylactics are not effective. The in vitro antiviral properties of five circular Triple-Helix Forming Oligonucleotide (TFO) RNAs (TFO1 to TFO5), which target the different regions of virulent feline coronavirus (FCoV) strain FIPV WSU 79-1146 genome, were tested in FIPV-infected Crandell-Rees Feline Kidney (CRFK) cells. RT-qPCR results showed that the circular TFO RNAs, except TFO2, inhibit FIPV replication, where the viral genome copy numbers decreased significantly by 5-fold log10 from 10(14) in the virus-inoculated cells to 10(9) in the circular TFO RNAs-transfected cells. Furthermore, the binding of the circular TFO RNA with the targeted viral genome segment was also confirmed using electrophoretic mobility shift assay. The strength of binding kinetics between the TFO RNAs and their target regions was demonstrated by NanoITC assay. In conclusion, the circular TFOs have the potential to be further developed as antiviral agents against FIPV infection. PMID:24707494

  9. In Vitro Antiviral Activity of Circular Triple Helix Forming Oligonucleotide RNA towards Feline Infectious Peritonitis Virus Replication

    PubMed Central

    Choong, Oi Kuan; Tejo, Bimo Ario; Omar, Abdul Rahman

    2014-01-01

    Feline Infectious Peritonitis (FIP) is a severe fatal immune-augmented disease in cat population. It is caused by FIP virus (FIPV), a virulent mutant strain of Feline Enteric Coronavirus (FECV). Current treatments and prophylactics are not effective. The in vitro antiviral properties of five circular Triple-Helix Forming Oligonucleotide (TFO) RNAs (TFO1 to TFO5), which target the different regions of virulent feline coronavirus (FCoV) strain FIPV WSU 79-1146 genome, were tested in FIPV-infected Crandell-Rees Feline Kidney (CRFK) cells. RT-qPCR results showed that the circular TFO RNAs, except TFO2, inhibit FIPV replication, where the viral genome copy numbers decreased significantly by 5-fold log10 from 1014 in the virus-inoculated cells to 109 in the circular TFO RNAs-transfected cells. Furthermore, the binding of the circular TFO RNA with the targeted viral genome segment was also confirmed using electrophoretic mobility shift assay. The strength of binding kinetics between the TFO RNAs and their target regions was demonstrated by NanoITC assay. In conclusion, the circular TFOs have the potential to be further developed as antiviral agents against FIPV infection. PMID:24707494

  10. Immune activation driven by CTLA-4 blockade augments viral replication at mucosal sites in simian immunodeficiency virus infection.

    PubMed

    Cecchinato, Valentina; Tryniszewska, Elzbieta; Ma, Zhong Min; Vaccari, Monica; Boasso, Adriano; Tsai, Wen-Po; Petrovas, Constantinos; Fuchs, Dietmar; Heraud, Jean-Michel; Venzon, David; Shearer, Gene M; Koup, Richard A; Lowy, Israel; Miller, Christopher J; Franchini, Genoveffa

    2008-04-15

    The importance of chronic immune activation in progression to AIDS has been inferred by correlative studies in HIV-infected individuals and in nonhuman primate models of SIV infection. Using the SIV(mac251) macaque model, we directly address the impact of immune activation by inhibiting CTLA-4, an immunoregulatory molecule expressed on activated T cells and a subset of regulatory T cells. We found that CTLA-4 blockade significantly increased T cell activation and viral replication in primary SIV(mac251) infection, particularly at mucosal sites, and increased IDO expression and activity. Accordingly, protracted treatment with anti-CTLA-4 Ab of macaques chronically infected with SIV(mac251) decreased responsiveness to antiretroviral therapy and abrogated the ability of therapeutic T cell vaccines to decrease viral set point. These data provide the first direct evidence that immune activation drives viral replication, and suggest caution in the use of therapeutic approaches for HIV infection in vivo that increase CD4(+) T cell proliferation. PMID:18390726

  11. Inhibition of virus DNA replication by artificial zinc finger proteins.

    PubMed

    Sera, Takashi

    2005-02-01

    Prevention of virus infections is a major objective in agriculture and human health. One attractive approach to the prevention is inhibition of virus replication. To demonstrate this concept in vivo, an artificial zinc finger protein (AZP) targeting the replication origin of the Beet severe curly top virus (BSCTV), a model DNA virus, was created. In vitro DNA binding assays indicated that the AZP efficiently blocked binding of the viral replication protein (Rep), which initiates virus replication, to the replication origin. All of the transgenic Arabidopsis plants expressing the AZP showed phenotypes strongly resistant to virus infection, and 84% of the transgenic plants showed no symptom. Southern blot analysis demonstrated that BSCTV replication was completely suppressed in the transgenic plants. Since the mechanism of viral DNA replication is well conserved among plants and mammals, this approach could be applied not only to agricultural crop protection but also to the prevention of virus infections in humans. PMID:15681461

  12. Replication strategy of human hepatitis B virus

    SciTech Connect

    Will, H.; Reiser, W.; Weimer, T.; Pfaff, E.; Buescher, M.; Sprengel, R.; Cattaneo, R.; Schaller, H.

    1987-03-01

    To study the replication strategy of the human hepatitis B virus, the 5' end of the RNA pregenome and the initiation sites of DNA plus and minus strands have been mapped. The RNA pregenome was found to be terminally redundant by 120 nucleotides; it is initiated within the pre-C region and may also function as mRNA for synthesis of the major core protein and the hepatitis B virus reverse transcriptase. The hepatitis B virus DNA minus strand is initiated within the direct repeat sequence DR1, it contains a terminal redundancy of up to eight nucleotides, and its synthesis does not require any template switch. The DNA plus strand is primed by a short oligoribonucleotide probably derived from the 5' end of the RNA pregenome, and its synthesis is initiated close to the direct repeat sequence DR2. For its elongation to pass the discontinuity in the DNA minus strand an intramolecular template switch occurs using the terminal redundancy of this template. Thus, the route of reverse transcription and DNA replication of hepatitis B viruses is fundamentally different from that of retroviruses.

  13. Replication and transmission of influenza viruses in Japanese quail

    PubMed Central

    Makarova, Natalia V.; Ozaki, Hiroishi; Kida, Hiroshi; Webster, Robert G.; Perez, Daniel R.

    2015-01-01

    Quail have emerged as a potential intermediate host in the spread of avian influenza A viruses in poultry in Hong Kong. To better understand this possible role, we tested the replication and transmission in quail of influenza A viruses of all 15 HA subtypes. Quail supported the replication of at least 14 subtypes. Influenza A viruses replicated predominantly in the respiratory tract. Transmission experiments suggested that perpetuation of avian influenza viruses in quail requires adaptation. Swine influenza viruses were isolated from the respiratory tract of quail at low levels. There was no evidence of human influenza A or B virus replication. Interestingly, a human–avian recombinant containing the surface glycoprotein genes of a quail virus and the internal genes of a human virus replicated and transmitted readily in quail; therefore, quail could function as amplifiers of influenza virus reassortants that have the potential to infect humans and/or other mammalian species. PMID:12788625

  14. Inhibitory effect of doxycycline against dengue virus replication in vitro.

    PubMed

    Rothan, Hussin A; Mohamed, Zulqarnain; Paydar, Mohammadjavad; Rahman, Noorsaadah Abd; Yusof, Rohana

    2014-04-01

    Doxycycline is an antibiotic derived from tetracycline that possesses antimicrobial and anti-inflammatory activities. Antiviral activity of doxycycline against dengue virus has been reported previously; however, its anti-dengue properties need further investigation. This study was conducted to determine the potential activity of doxycycline against dengue virus replication in vitro. Doxycycline inhibited the dengue virus serine protease (DENV2 NS2B-NS3pro) with an IC50 value of 52.3 ± 6.2 μM at 37 °C (normal human temperature) and 26.7 ± 5.3 μM at 40 °C (high fever temperature). The antiviral activity of doxycycline was first tested at different concentrations against DENV2 using a plaque-formation assay. The virus titter decreased significantly after applying doxycycline at levels lower than its 50 % cytotoxic concentration (CC50, 100 μM), showing concentration-dependent inhibition with a 50 % effective concentration (EC50) of approximately 50 μM. Doxycycline significantly inhibited viral entry and post-infection replication of the four dengue serotypes, with serotype-specific inhibition (high activity against DENV2 and DENV4 compared to DENV1 and DENV3). Collectively, these findings underline the need for further experimental and clinical studies on doxycycline, utilizing its anti-dengue and anti-inflammatory activities to attenuate the clinical symptoms of dengue virus infection. PMID:24142271

  15. Downregulation of Cellular c-Jun N-Terminal Protein Kinase and NF-κB Activation by Berberine May Result in Inhibition of Herpes Simplex Virus Replication

    PubMed Central

    Song, Siwei; Qiu, Min; Chu, Ying; Chen, Deyan; Wang, Xiaohui; Su, Airong

    2014-01-01

    Berberine is a quaternary ammonium salt from the protoberberine group of isoquinoline alkaloids. Some reports show that berberine exhibits anti-inflammatory, antitumor, and antiviral properties by modulating multiple cellular signaling pathways, including p53, nuclear factor κB (NF-κB), and mitogen-activated protein kinase. In the present study, we investigated the antiviral effect of berberine against herpes simplex virus (HSV) infection. Current antiherpes medicines such as acyclovir can lessen the recurring activation when used early at infection but are unable to prevent or cure infections where treatment has selected for resistant mutants. In searching for new antiviral agents against herpesvirus infection, we found that berberine reduced viral RNA transcription, protein synthesis, and virus titers in a dose-dependent manner. To elucidate the mechanism of its antiviral activity, the effect of berberine on the individual steps of viral replication cycle of HSV was investigated via time-of-drug addition assay. We found that berberine acted at the early stage of HSV replication cycle, between viral attachment/entry and genomic DNA replication, probably at the immediate-early gene expression stage. We further demonstrated that berberine significantly reduced HSV-induced NF-κB activation, as well as IκB-α degradation and p65 nuclear translocation. Moreover, we found that berberine also depressed HSV-induced c-Jun N-terminal kinase (JNK) phosphorylation but had little effect on p38 phosphorylation. Our results suggest that the berberine inhibition of HSV infection may be mediated through modulating cellular JNK and NF-κB pathways. PMID:24913175

  16. Zinc ionophores pyrithione inhibits herpes simplex virus replication through interfering with proteasome function and NF-κB activation.

    PubMed

    Qiu, Min; Chen, Yu; Chu, Ying; Song, Siwei; Yang, Na; Gao, Jie; Wu, Zhiwei

    2013-10-01

    Pyrithione (PT), known as a zinc ionophore, is effective against several pathogens from the Streptococcus and Staphylococcus genera. The antiviral activity of PT was also reported against a number of RNA viruses. In this paper, we showed that PT could effectively inhibit herpes simplex virus types 1 and 2 (HSV-1 and HSV-2). PT inhibited HSV late gene (Glycoprotein D, gD) expression and the production of viral progeny, and this action was dependent on Zn(2+). Further studies showed that PT suppressed the expression of HSV immediate early (IE) gene, the infected cell polypeptide 4 (ICP4), but had less effect on another regulatory IE protein, ICP0. It was found that PT treatment could interfere with cellular ubiquitin-proteasome system (UPS), leading to the inhibition of HSV-2-induced IκB-α degradation to inhibit NF-κB activation and enhanced promyelocytic leukemia protein (PML) stability in nucleus. However, PT did not show direct inhibition of 26S proteasome activity. Instead, it induced Zn(2+) influx, which facilitated the dysregulation of UPS and the accumulation of intracellular ubiquitin-conjugates. UPS inhibition by PT caused disruption of IκB-α degradation and NF-κB activation thus leading to marked reduction of viral titer. PMID:23867132

  17. Synthesis and Quantitative Structure-activity Relationships Study for Arylpropenamide Derivatives as Inhibitors of Hepatitis B Virus Replication.

    PubMed

    Min, Ma; Xingjun, Jiang; Xueding, Wang; Hao, Zou; Weiqing, Yang; Yuanyuan, Zhang; Changrong, Peng; Zicheng, Li; Jing, Yang; Quan, Du; Menglin, Ma

    2016-09-01

    A series of new arylpropenamide derivatives containing different aryl groups were synthesized, characterized, and evaluated for their anti-hepatitis B virus (HBV) activities. A new high accuracy QSAR model of arylpropenamide was constructed based on a more completely activities data and calculation parameter. The 2D-QSAR equations, by using DFT and multiple linear regression analysis methods, revealed that higher value of thermal energy (TE) and lower entropy (S(ө) ) increase the anti-HBV activities of the arylpropenamide molecules. Predictive 3D-QSAR models were established by SYBYL multifit molecular alignment rule. The optimum models were all statistically significant with cross-validated and conventional coefficients, indicating that they were reliable enough for activity prediction. PMID:27085815

  18. Signal transducer and activator of transcription 3 (STAT3) and survivin induction by varicella-zoster virus promote replication and skin pathogenesis.

    PubMed

    Sen, Nandini; Che, Xibing; Rajamani, Jaya; Zerboni, Leigh; Sung, Phillip; Ptacek, Jason; Arvin, Ann M

    2012-01-10

    Varicella-zoster virus (VZV) is a human α-herpesvirus that causes varicella (chickenpox) during primary infection and zoster (shingles) upon reactivation. Like other viruses, VZV must subvert the intrinsic antiviral defenses of differentiated human cells to produce progeny virions. Accordingly, VZV inhibits the activation of the cellular transcription factors IFN regulatory factor 3 (IRF3) and signal transducers and activators of transcription 1 (STAT1), thereby downregulating antiviral factors, including IFNs. Conversely, in this study, we found that VZV triggers STAT3 phosphorylation in cells infected in vitro and in human skin xenografts in SCID mice in vivo and that STAT3 activation induces the anti-apoptotic protein survivin. Small-molecule inhibitors of STAT3 phosphorylation and survivin restrict VZV replication in vitro, and VZV infection of skin xenografts in vivo is markedly impaired by the administration of the phospho-STAT3 inhibitor S3I-201. STAT3 and survivin are required for malignant transformation caused by γ-herpesviruses, such as Kaposi's sarcoma virus. We show that STAT3 activation is also critical for VZV, a nononcogenic herpesvirus, via a survivin-dependent mechanism. Furthermore, STAT3 activation is critical for the life cycle of the virus because VZV skin infection is necessary for viral transmission and persistence in the human population. Therefore, we conclude that takeover of this major cell-signaling pathway is necessary, independent of cell transformation, for herpesvirus pathogenesis and that STAT3 activation and up-regulation of survivin is a common mechanism important for the pathogenesis of lytic as well as tumorigenic herpesviruses. PMID:22190485

  19. Pyruvate dehydrogenase kinase regulates hepatitis C virus replication.

    PubMed

    Jung, Gwon-Soo; Jeon, Jae-Han; Choi, Yeon-Kyung; Jang, Se Young; Park, Soo Young; Kim, Sung-Woo; Byun, Jun-Kyu; Kim, Mi-Kyung; Lee, Sungwoo; Shin, Eui-Cheol; Lee, In-Kyu; Kang, Yu Na; Park, Keun-Gyu

    2016-01-01

    During replication, hepatitis C virus (HCV) utilizes macromolecules produced by its host cell. This process requires host cellular metabolic reprogramming to favor elevated levels of aerobic glycolysis. Therefore, we evaluated whether pyruvate dehydrogenase kinase (PDK), a mitochondrial enzyme that promotes aerobic glycolysis, can regulate HCV replication. Levels of c-Myc, hypoxia-inducible factor-1α (HIF-1α), PDK1, PDK3, glucokinase, and serine biosynthetic enzymes were compared between HCV-infected and uninfected human liver and Huh-7.5 cells infected with or without HCV. Protein and mRNA expression of c-Myc, HIF-1α, and glycolytic enzymes were significantly higher in HCV-infected human liver and hepatocytes than in uninfected controls. This increase was accompanied by upregulation of serine biosynthetic enzymes, suggesting cellular metabolism was altered toward facilitated nucleotide synthesis essential for HCV replication. JQ1, a c-Myc inhibitor, and dichloroacetate (DCA), a PDK inhibitor, decreased the expression of glycolytic and serine synthetic enzymes in HCV-infected hepatocytes, resulting in suppressed viral replication. Furthermore, when co-administered with IFN-α or ribavirin, DCA further inhibited viral replication. In summary, HCV reprograms host cell metabolism to favor glycolysis and serine biosynthesis; this is mediated, at least in part, by increased PDK activity, which provides a surplus of nucleotide precursors. Therefore, blocking PDK activity might have therapeutic benefits against HCV replication. PMID:27471054

  20. Pyruvate dehydrogenase kinase regulates hepatitis C virus replication

    PubMed Central

    Jung, Gwon-Soo; Jeon, Jae-Han; Choi, Yeon-Kyung; Jang, Se Young; Park, Soo Young; Kim, Sung-Woo; Byun, Jun-Kyu; Kim, Mi-Kyung; Lee, Sungwoo; Shin, Eui-Cheol; Lee, In-Kyu; Kang, Yu Na; Park, Keun-Gyu

    2016-01-01

    During replication, hepatitis C virus (HCV) utilizes macromolecules produced by its host cell. This process requires host cellular metabolic reprogramming to favor elevated levels of aerobic glycolysis. Therefore, we evaluated whether pyruvate dehydrogenase kinase (PDK), a mitochondrial enzyme that promotes aerobic glycolysis, can regulate HCV replication. Levels of c-Myc, hypoxia-inducible factor-1α (HIF-1α), PDK1, PDK3, glucokinase, and serine biosynthetic enzymes were compared between HCV-infected and uninfected human liver and Huh-7.5 cells infected with or without HCV. Protein and mRNA expression of c-Myc, HIF-1α, and glycolytic enzymes were significantly higher in HCV-infected human liver and hepatocytes than in uninfected controls. This increase was accompanied by upregulation of serine biosynthetic enzymes, suggesting cellular metabolism was altered toward facilitated nucleotide synthesis essential for HCV replication. JQ1, a c-Myc inhibitor, and dichloroacetate (DCA), a PDK inhibitor, decreased the expression of glycolytic and serine synthetic enzymes in HCV-infected hepatocytes, resulting in suppressed viral replication. Furthermore, when co-administered with IFN-α or ribavirin, DCA further inhibited viral replication. In summary, HCV reprograms host cell metabolism to favor glycolysis and serine biosynthesis; this is mediated, at least in part, by increased PDK activity, which provides a surplus of nucleotide precursors. Therefore, blocking PDK activity might have therapeutic benefits against HCV replication. PMID:27471054

  1. Prostaglandin A1 inhibits avian influenza virus replication at a postentry level: Effect on virus protein synthesis and NF-κB activity.

    PubMed

    Carta, Stefania; La Frazia, Simone; Donatelli, Isabella; Puzelli, Simona; Rossi, Antonio; Santoro, M Gabriella

    2014-12-01

    Influenza A viruses (IAV) have the potential to cause devastating pandemics. In recent years, the emergence of new avian strains able to infect humans represents a serious threat to global human health. The increase in drug-resistant IAV strains underscores the need for novel approaches to anti-influenza chemotherapy. Herein we show that prostaglandin-A1 (PGA1) possesses antiviral activity against avian IAV, including H5N9, H7N1 and H1N1 strains, acting at a level different from the currently available anti-influenza drugs. PGA1 acts at postentry level, causing dysregulation of viral protein synthesis and preventing virus-induced disassembly of host microtubular network and activation of pro-inflammatory factor NF-κB. The antiviral activity is dependent on the presence of a cyclopentenone ring structure and is associated with activation of a cytoprotective heat shock response in infected cells. The results suggest that cyclopentenone prostanoids or prostanoids-derived molecules may represent a new tool to combat avian influenza virus infection. PMID:25151089

  2. Extract of Scutellaria baicalensis inhibits dengue virus replication

    PubMed Central

    2013-01-01

    Background Scutellaria baicalensis (S. baicalensis) is one of the traditional Chinese medicinal herbs that have been shown to possess many health benefits. In the present study, we evaluated the in vitro antiviral activity of aqueous extract of the roots of S. baicalensis against all the four dengue virus (DENV) serotypes. Methods Aqueous extract of S. baicalensis was prepared by microwave energy steam evaporation method (MEGHE™), and the anti-dengue virus replication activity was evaluated using the foci forming unit reduction assay (FFURA) in Vero cells. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was used to determine the actual dengue virus RNA copy number. The presence of baicalein, a flavonoid known to inhibit dengue virus replication was determined by mass spectrometry. Results The IC50 values for the S. baicalensis extract on Vero cells following DENV adsorption ranged from 86.59 to 95.19 μg/mL for the different DENV serotypes. The IC50 values decreased to 56.02 to 77.41 μg/mL when cells were treated with the extract at the time of virus adsorption for the different DENV serotypes. The extract showed potent direct virucidal activity against extracellular infectious virus particles with IC50 that ranged from 74.33 to 95.83 μg/mL for all DENV serotypes. Weak prophylactic effects with IC50 values that ranged from 269.9 to 369.8 μg/mL were noticed when the cells were pre-treated 2 hours prior to virus inoculation. The concentration of baicalein in the S. baicalensis extract was ~1% (1.03 μg/gm dried extract). Conclusions Our study demonstrates the in vitro anti-dengue virus replication property of S. baicalensis against all the four DENV serotypes investigated. The extract reduced DENV infectivity and replication in Vero cells. The extract was rich in baicalein, and could be considered for potential development of anti-DENV therapeutics. PMID:23627436

  3. Interaction between Flavivirus and Cytoskeleton during Virus Replication

    PubMed Central

    Foo, Kar Yue; Chee, Hui-Yee

    2015-01-01

    Flaviviruses are potentially human pathogens that cause major epidemics worldwide. Flavivirus interacts with host cell factors to form a favourable virus replication site. Cell cytoskeletons have been observed to have close contact with flaviviruses, which expands the understanding of cytoskeleton functions during virus replication, although many detailed mechanisms are still unclear. The interactions between the virus and host cytoskeletons such as actin filaments, microtubules, and intermediate filaments have provided insight into molecular alterations during the virus infection, such as viral entry, in-cell transport, scaffold assembly, and egress. This review article focuses on the utilization of cytoskeleton by Flavivirus and the respective functions during virus replication. PMID:26347881

  4. Toll-like receptor 9 ligand D-type oligodeoxynucleotide D35 as a broad inhibitor for influenza A virus replication that is associated with suppression of neuraminidase activity.

    PubMed

    Yamada, Hiroshi; Nagase, Satoshi; Takahashi, Kazuo; Sakoda, Yoshihiro; Kida, Hiroshi; Okamoto, Shigefumi

    2016-05-01

    The most effective drugs available to treat influenza are neuraminidase (NA) inhibitors, which provide important additional measures for the control of influenza virus infections. However, since the emergence of NA inhibitor-resistant viruses may compromise the clinical utility of this class of anti-influenza agents, it is very important to develop new anti-influenza agents which target a different region in NA responsible for its sensitivity from that for NA inhibitors and could be used to treat NA inhibitors-resistant isolates. The oligodeoxynucleotide D35, multimerized and aggregated, suppressed replication of influenza A viruses except A/WSN/33 (WSN). The suppressive viral replication by D35 depended on G-terad and multimer formation. The range of the suppressive viral replication at the late stage, including virus assembly and release from infected cells, was much larger than that at the initial stage, viral attachment and entry. D35 suppressed NA activity of influenza A viruses. Furthermore, replacing the NA gene of A/Puerto Rico/8/34 (PR8), in which viral replication was inhibited by D35 at the late stage, with the NA gene from WSN, in which viral replication was not inhibited, eliminated the D35-dependent suppression. D35 showed an additive anti-influenza effect with oseltamivir. It was also effective in vivo. These results suggest that the influenza virus NA mainly contributes to the D35-suppressible virus release from infected cells at the late stage. In addition, because administration of D35 into the virus-infected mice suppressed viral replication and weight loss, clinical application of D35 could be considered. PMID:26923882

  5. Cellular cofactors affecting hepatitis C virus infection and replication

    PubMed Central

    Randall, Glenn; Panis, Maryline; Cooper, Jacob D.; Tellinghuisen, Timothy L.; Sukhodolets, Karen E.; Pfeffer, Sebastien; Landthaler, Markus; Landgraf, Pablo; Kan, Sherry; Lindenbach, Brett D.; Chien, Minchen; Weir, David B.; Russo, James J.; Ju, Jingyue; Brownstein, Michael J.; Sheridan, Robert; Sander, Chris; Zavolan, Mihaela; Tuschl, Thomas; Rice, Charles M.

    2007-01-01

    Recently identified hepatitis C virus (HCV) isolates that are infectious in cell culture provide a genetic system to evaluate the significance of virus–host interactions for HCV replication. We have completed a systematic RNAi screen wherein siRNAs were designed that target 62 host genes encoding proteins that physically interact with HCV RNA or proteins or belong to cellular pathways thought to modulate HCV infection. This includes 10 host proteins that we identify in this study to bind HCV NS5A. siRNAs that target 26 of these host genes alter infectious HCV production >3-fold. Included in this set of 26 were siRNAs that target Dicer, a principal component of the RNAi silencing pathway. Contrary to the hypothesis that RNAi is an antiviral pathway in mammals, as has been reported for subgenomic HCV replicons, siRNAs that target Dicer inhibited HCV replication. Furthermore, siRNAs that target several other components of the RNAi pathway also inhibit HCV replication. MicroRNA profiling of human liver, human hepatoma Huh-7.5 cells, and Huh-7.5 cells that harbor replicating HCV demonstrated that miR-122 is the predominant microRNA in each environment. miR-122 has been previously implicated in positively regulating the replication of HCV genotype 1 replicons. We find that 2′-O-methyl antisense oligonucleotide depletion of miR-122 also inhibits HCV genotype 2a replication and infectious virus production. Our data define 26 host genes that modulate HCV infection and indicate that the requirement for functional RNAi for HCV replication is dominant over any antiviral activity this pathway may exert against HCV. PMID:17616579

  6. Low-Resolution Structure of Vaccinia Virus DNA Replication Machinery

    PubMed Central

    Sèle, Céleste; Gabel, Frank; Gutsche, Irina; Ivanov, Ivan; Burmeister, Wim P.

    2013-01-01

    Smallpox caused by the poxvirus variola virus is a highly lethal disease that marked human history and was eradicated in 1979 thanks to a worldwide mass vaccination campaign. This virus remains a significant threat for public health due to its potential use as a bioterrorism agent and requires further development of antiviral drugs. The viral genome replication machinery appears to be an ideal target, although very little is known about its structure. Vaccinia virus is the prototypic virus of the Orthopoxvirus genus and shares more than 97% amino acid sequence identity with variola virus. Here we studied four essential viral proteins of the replication machinery: the DNA polymerase E9, the processivity factor A20, the uracil-DNA glycosylase D4, and the helicase-primase D5. We present the recombinant expression and biochemical and biophysical characterizations of these proteins and the complexes they form. We show that the A20D4 polymerase cofactor binds to E9 with high affinity, leading to the formation of the A20D4E9 holoenzyme. Small-angle X-ray scattering yielded envelopes for E9, A20D4, and A20D4E9. They showed the elongated shape of the A20D4 cofactor, leading to a 150-Å separation between the polymerase active site of E9 and the DNA-binding site of D4. Electron microscopy showed a 6-fold rotational symmetry of the helicase-primase D5, as observed for other SF3 helicases. These results favor a rolling-circle mechanism of vaccinia virus genome replication similar to the one suggested for tailed bacteriophages. PMID:23175373

  7. Protein Phosphatase-1 regulates Rift Valley fever virus replication.

    PubMed

    Baer, Alan; Shafagati, Nazly; Benedict, Ashwini; Ammosova, Tatiana; Ivanov, Andrey; Hakami, Ramin M; Terasaki, Kaori; Makino, Shinji; Nekhai, Sergei; Kehn-Hall, Kylene

    2016-03-01

    Rift Valley fever virus (RVFV), genus Phlebovirus family Bunyaviridae, is an arthropod-borne virus endemic throughout sub-Saharan Africa. Recent outbreaks have resulted in cyclic epidemics with an increasing geographic footprint, devastating both livestock and human populations. Despite being recognized as an emerging threat, relatively little is known about the virulence mechanisms and host interactions of RVFV. To date there are no FDA approved therapeutics or vaccines for RVF and there is an urgent need for their development. The Ser/Thr protein phosphatase 1 (PP1) has previously been shown to play a significant role in the replication of several viruses. Here we demonstrate for the first time that PP1 plays a prominent role in RVFV replication early on during the viral life cycle. Both siRNA knockdown of PP1α and a novel PP1-targeting small molecule compound 1E7-03, resulted in decreased viral titers across several cell lines. Deregulation of PP1 was found to inhibit viral RNA production, potentially through the disruption of viral RNA transcript/protein interactions, and indicates a potential link between PP1α and the viral L polymerase and nucleoprotein. These results indicate that PP1 activity is important for RVFV replication early on during the viral life cycle and may prove an attractive therapeutic target. PMID:26801627

  8. Increased Early RNA Replication by Chimeric West Nile Virus W956IC Leads to IPS-1-Mediated Activation of NF-κB and Insufficient Virus-Mediated Counteraction of the Resulting Canonical Type I Interferon Signaling

    PubMed Central

    Scherbik, S. V.; Pulit-Penaloza, J. A.; Basu, M.; Courtney, S. C.

    2013-01-01

    Although infections with “natural” West Nile virus (WNV) and the chimeric W956IC WNV infectious clone virus produce comparable peak virus yields in type I interferon (IFN) response-deficient BHK cells, W956IC infection produces higher levels of “unprotected” viral RNA at early times after infection. Analysis of infections with these two viruses in IFN-competent cells showed that W956IC activated NF-κB, induced higher levels of IFN-β, and produced lower virus yields than WNV strain Eg101. IPS-1 was required for both increased induction of IFN-β and decreased yields of W956IC. In Eg101-infected cells, phospho-STAT1/STAT2 nuclear translocation was blocked at all times analyzed, while some phospho-STAT1/STAT2 nuclear translocation was still detected at 8 h after infection in W956IC-infected mouse embryonic fibroblasts (MEFs), and early viral protein levels were lower in these cells. A set of additional chimeras was made by replacing various W956IC gene regions with the Eg101 equivalents. As reported previously, for three of these chimeras, the low early RNA phenotype of Eg101 was restored in BHK cells. Analysis of infections with two of these chimeric viruses in MEFs detected lower early viral RNA levels, higher early viral protein levels, lower early IFN-β levels, and higher virus yields similar to those seen after Eg101 infection. The data suggest that replicase protein interactions directly or indirectly regulate genome switching between replication and translation at early times in favor of translation to minimize NF-κB activation and IFN induction by decreasing the amount of unprotected viral RNA, to produce sufficient viral protein to block canonical type I IFN signaling, and to efficiently remodel cell membranes for exponential genome amplification. PMID:23678179

  9. Concurrent chemotherapy inhibits Herpes simplex virus 1 replication and oncolysis

    PubMed Central

    Kulu, Yakup; Kawasaki, Hiroshi; Donahue, James M.; Kasuya, Hideki; Cusack, James C.; Choi, Enid W.; Kuruppu, Darshini K.; Fuchs, Bryan C.; Tanabe, Kenneth K.

    2013-01-01

    Herpes simplex virus 1 (HSV-1) replication in cancer cells leads to their destruction (viral oncolysis) and has been under investigation as an experimental cancer therapy in clinical trials as single agents, and as combinations with chemotherapy. Cellular responses to chemotherapy modulate viral replication, but these interactions are poorly understood. To investigate the effect of chemotherapy on HSV-1 oncolysis, viral replication in cells exposed to 5-fluorouracil (5-FU), irinotecan (CPT-11), methotrexate (MTX) or a cytokine (TNF-α) was examined. Exposure of colon and pancreatic cancer cells to 5-FU, CPT-11, or MTX in vitro significantly antagonizes both HSV-1 replication and lytic oncolysis. Nuclear factor-kappa B (NF-κB) activation is required for efficient viral replication, and experimental inhibition of this response with an IκBα dominant-negative repressor significantly antagonizes HSV-1 replication. Nonetheless cells exposed to 5-FU, CPT-11, TNF-α or HSV-1 activate NF-κB. Cells exposed to MTX do not activate NF-κB, suggesting a possible role for NF-κB inhibition in the decreased viral replication observed following exposure to MTX. The role of eukaryotic initiation factor 2 alpha (eIF-2α) dephosphorylation was examined; HSV-1 mediated eIF-2α dephosphorylation proceeds normally in HT29 cells exposed to 5-FU-, CPT-11-, or MTX. This report demonstrates that cellular responses to chemotherapeutic agents provide an unfavorable environment for HSV-1-mediated oncolysis, and these observations are relevant to the design of both preclinical and clinical studies of HSV-1 oncolysis. PMID:23348635

  10. Fusion of protegrin-1 and plectasin to MAP30 shows significant inhibition activity against dengue virus replication.

    PubMed

    Rothan, Hussin A; Bahrani, Hirbod; Mohamed, Zulqarnain; Abd Rahman, Noorsaadah; Yusof, Rohana

    2014-01-01

    Dengue virus (DENV) broadly disseminates in tropical and sub-tropical countries and there are no vaccine or anti-dengue drugs available. DENV outbreaks cause serious economic burden due to infection complications that requires special medical care and hospitalization. This study presents a new strategy for inexpensive production of anti-DENV peptide-fusion protein to prevent and/or treat DENV infection. Antiviral cationic peptides protegrin-1 (PG1) and plectasin (PLSN) were fused with MAP30 protein to produce recombinant antiviral peptide-fusion protein (PG1-MAP30-PLSN) as inclusion bodies in E. coli. High yield production of PG1-MAP30-PLSN protein was achieved by solubilization of inclusion bodies in alkaline buffer followed by the application of appropriate refolding techniques. Antiviral PG1-MAP30-PLSN protein considerably inhibited DENV protease (NS2B-NS3pro) with half-maximal inhibitory concentration (IC50) 0.5±0.1 μM. The real-time proliferation assay (RTCA) and the end-point proliferation assay (MTT assay) showed that the maximal-nontoxic dose of the peptide-fusion protein against Vero cells is approximately 0.67±0.2 μM. The cell-based assays showed considerable inhibition of the peptide-fusion protein against binding and proliferating stages of DENV2 into the target cells. The peptide-fusion protein protected DENV2-challeged mice with 100% of survival at the dose of 50 mg/kg. In conclusion, producing recombinant antiviral peptide-fusion protein by combining short antiviral peptide with a central protein owning similar activity could be useful to minimize the overall cost of short peptide production and take advantage of its synergistic antiviral activities. PMID:24722532

  11. Simian virus 40 T antigen can transcriptionally activate and mediate viral DNA replication in cells which lack the retinoblastoma susceptibility gene product.

    PubMed Central

    Trifillis, P; Picardi, J; Alwine, J C

    1990-01-01

    Simian virus 40 T antigen is a multifunctional protein which has recently been shown to form a complex with the retinoblastoma susceptibility gene product (Rb protein) (J.A. DeCaprio, J.W. Ludlow, J. Figge, J.-Y. Shaw, C.-M. Huang, W.-H. Lee, E. Marsilio, E. Paucha, and D.M. Livingston, Cell 54:275-283, 1988; P. Whyte, K.J. Buchkovich, J.M. Horowitz, S.H. Friend, M. Raybuck, R.A. Weinberg, and E. Harlow, Nature (London) 334:124-129, 1988). This interaction may facilitate some of the functions of T antigen. The ability of simian virus 40 T antigen to mediate transcriptional activation and viral DNA replication was tested in human osteosarcoma cell lines U-2OS and Saos-2, which are Rb positive and Rb negative, respectively. Both functions of T antigen were efficient in both cell lines. Hence, these functions can occur in the absence of Rb protein. Images PMID:2154611

  12. 14-Deoxy-11,12-dehydroandrographolide exerts anti-influenza A virus activity and inhibits replication of H5N1 virus by restraining nuclear export of viral ribonucleoprotein complexes.

    PubMed

    Cai, Wentao; Li, Yongtao; Chen, Sunrui; Wang, Mengli; Zhang, Anding; Zhou, Hongbo; Chen, Huanchun; Jin, Meilin

    2015-06-01

    The highly pathogenic avian influenza H5N1 virus has become a worldwide public health threat, and current antiviral therapies have limited activity against the emerging, resistant influenza viruses. Therefore, effective drugs with novel targets against influenza A viruses, H5N1 strains in particular, should be developed. In the present study, 14-deoxy-11,12-dehydroandrographolide (DAP), a major component of the traditional Chinese medicine Andrographis paniculata, exerted potent anti-influenza A virus activity against A/chicken/Hubei/327/2004 (H5N1), A/duck/Hubei/XN/2007 (H5N1), A/PR/8/34 (H1N1), A/NanChang/08/2010 (H1N1) and A/HuNan/01/2014 (H3N2) in vitro. To elucidate the underlying mechanisms, a series of experiments was conducted using A/chicken/Hubei/327/2004 (H5N1) as an example. Our results demonstrated that DAP strongly inhibited H5N1 replication by reducing the production of viral nucleoprotein (NP) mRNA, NP and NS1proteins, whereas DAP had no effect on the absorption and release of H5N1 towards/from A549 cells. DAP also effectively restrained the nuclear export of viral ribonucleoprotein (vRNP) complexes. This inhibitory effect ought to be an important anti-H5N1 mechanism of DAP. Meanwhile, DAP significantly reduced the upregulated expression of all the tested proinflammatory cytokines (TNF-α, IL-6, IL-8, IFN-α, IL-1β and IFN-β) and chemokines (CXCL-10 and CCL-2) stimulated by H5N1. Overall results suggest that DAP impairs H5N1 replication at least in part by restraining nuclear export of vRNP complexes, and the inhibition of viral replication leads to a subsequent decrease of the intense proinflammatory cytokine/chemokine expression. In turn, the effect of modification of the host excessive immune response may contribute to overcoming H5N1. To our knowledge, this study is the first to reveal the antiviral and anti-inflammatory activities of DAP in vitro against H5N1 influenza A virus infection. PMID:25800824

  13. RNA virus replication depends on enrichment of phosphatidylethanolamine at replication sites in subcellular membranes

    PubMed Central

    Xu, Kai; Nagy, Peter D.

    2015-01-01

    Intracellular membranes are critical for replication of positive-strand RNA viruses. To dissect the roles of various lipids, we have developed an artificial phosphatidylethanolamine (PE) vesicle-based Tomato bushy stunt virus (TBSV) replication assay. We demonstrate that the in vitro assembled viral replicase complexes (VRCs) in artificial PE vesicles can support a complete cycle of replication and asymmetrical RNA synthesis, which is a hallmark of (+)-strand RNA viruses. Vesicles containing ∼85% PE and ∼15% additional phospholipids are the most efficient, suggesting that TBSV replicates within membrane microdomains enriched for PE. Accordingly, lipidomics analyses show increased PE levels in yeast surrogate host and plant leaves replicating TBSV. In addition, efficient redistribution of PE leads to enrichment of PE at viral replication sites. Expression of the tombusvirus p33 replication protein in the absence of other viral compounds is sufficient to promote intracellular redistribution of PE. Increased PE level due to deletion of PE methyltransferase in yeast enhances replication of TBSV and other viruses, suggesting that abundant PE in subcellular membranes has a proviral function. In summary, various (+)RNA viruses might subvert PE to build membrane-bound VRCs for robust replication in PE-enriched membrane microdomains. PMID:25810252

  14. 2009 pandemic H1N1 influenza virus replicates in human lung tissues

    PubMed Central

    Zhang, Jinxia; Zhang, Zengfeng; Fan, Xiaohui; Liu, Yuansheng; Wang, Jia; Zheng, Zuoyi; Chen, Rirong; Wang, Pui; Song, Wenjun; Chen, Honglin; Guan, Yi

    2009-01-01

    Replication activity of 2009 pandemic H1N1 influenza virus in human lung cells was evaluated in this study. Twenty-two surgically removed human lung tissue samples were infected ex vivo with pandemic H1N1, A/California/04/2009, seasonal human H1N1 virus, A/ST/92/2009, or a highly pathogenic H5N1 virus, A/Vietnam/1194/04. Examination of nucleoprotein (NP) protein expression and vRNA replication in infected human lung tissues showed that while CA/04 replication varied between tissue samples, overall, it replicated more efficiently than seasonal H1N1 but less efficiently than H5N1 virus. Double immunostaining for viral antigens and cellular markers indicated that CA/04 replicates in type II alveolar epithelial cells. PMID:20370480

  15. Inhibitors of influenza viruses replication: a patent evaluation (WO2013019828).

    PubMed

    Xie, Yuanchao; Song, Weiguo; Xiao, Weidong; Gu, Changjuan; Xu, Wenfang

    2013-11-01

    A series of compounds incorporating two aromatic heterocycles were prepared as inhibitors of influenza virus replication in the patent. Some of them presented potent activity against influenza virus in Madin-Darby canine kidney (MDCK) cells and in influenza therapeutic mouse model. These compounds in the patent were also defined to be pharmaceutically acceptable salts and pharmaceutical compositions that were claimed to be useful for treating influenza. In view of the threat of influenza pandemic, it is necessary to discover new anti-influenza drugs. Although there is a lack of essential biological data and the molecular mechanisms are not clear, these compounds with potent antiviral activity stand for a new type of anti-influenza agents and deserve further studies. PMID:23967861

  16. Curcumin Inhibits Rift Valley Fever Virus Replication in Human Cells*

    PubMed Central

    Narayanan, Aarthi; Kehn-Hall, Kylene; Senina, Svetlana; Lundberg, Lindsay; Van Duyne, Rachel; Guendel, Irene; Das, Ravi; Baer, Alan; Bethel, Laura; Turell, Michael; Hartman, Amy Lynn; Das, Bhaskar; Bailey, Charles; Kashanchi, Fatah

    2012-01-01

    Rift Valley fever virus (RVFV) is an arbovirus that is classified as a select agent, an emerging infectious virus, and an agricultural pathogen. Understanding RVFV-host interactions is imperative to the design of novel therapeutics. Here, we report that an infection by the MP-12 strain of RVFV induces phosphorylation of the p65 component of the NFκB cascade. We demonstrate that phosphorylation of p65 (serine 536) involves phosphorylation of IκBα and occurs through the classical NFκB cascade. A unique, low molecular weight complex of the IKK-β subunit can be observed in MP-12-infected cells, which we have labeled IKK-β2. The IKK-β2 complex retains kinase activity and phosphorylates an IκBα substrate. Inhibition of the IKK complex using inhibitors impairs viral replication, thus alluding to the requirement of an active IKK complex to the viral life cycle. Curcumin strongly down-regulates levels of extracellular infectious virus. Our data demonstrated that curcumin binds to and inhibits kinase activity of the IKK-β2 complex in infected cells. Curcumin partially exerts its inhibitory influence on RVFV replication by interfering with IKK-β2-mediated phosphorylation of the viral protein NSs and by altering the cell cycle of treated cells. Curcumin also demonstrated efficacy against ZH501, the fully virulent version of RVFV. Curcumin treatment down-regulated viral replication in the liver of infected animals. Our data point to the possibility that RVFV infection may result in the generation of novel versions of host components (such as IKK-β2) that, by virtue of altered protein interaction and function, qualify as unique therapeutic targets. PMID:22847000

  17. Mangosteen xanthones suppress hepatitis C virus genome replication.

    PubMed

    Choi, Moonju; Kim, Young-Mi; Lee, Sungjin; Chin, Young-Won; Lee, Choongho

    2014-10-01

    Hepatitis C virus (HCV) is a hepatotropic single-stranded RNA virus. HCV infection is causally linked with development of liver cirrhosis and hepatocellular carcinoma. Enhanced production of reactive oxygen species by HCV has been implicated to play an important role in HCV-induced pathogenesis. Mangosteen has been widely used as a traditional medicine as well as a dietary supplement ,thanks to its powerful anti-oxidant effect. In the present study, we demonstrated that the ethanol extract from mangosteen fruit peels (MG-EtOH) is able to block HCV genome replication using HCV genotype 1b Bart79I subgenomic (EC50 5.1 μg/mL) and genotype 2a J6/JFH-1 infectious replicon systems (EC50 3.8 μg/mL). We found that inhibition of HCV replication by MG-EtOH led to subsequent down-regulation of expression of HCV proteins. Interestingly, MG-EtOH exhibited a modest inhibitory effect on in vitro RNA polymerase activity of NS5B. Among a number of xanthones compounds identified within this MG-EtOH, we discovered α-MG (EC50 6.3 μM) and γ-MG (EC50 2.7 μM) as two major single molecules responsible for suppression of HCV replication. This finding will provide a valuable molecular basis to further develop mangosteen as an important dietary supplement to combat HCV-induced liver diseases. PMID:24986787

  18. Less Grease, Please. Phosphatidylethanolamine Is the Only Lipid Required for Replication of a (+)RNA Virus.

    PubMed

    Belov, George A

    2015-07-01

    All positive strand RNA viruses of eukaryotes replicate their genomes in association with membranes. These viruses actively change cellular lipid metabolism to build replication membranes enriched in specific lipids. The ubiquitous use of membranes by positive strand RNA viruses apparently holds major evolutionary advantages; however our understanding of the mechanistic role of membranes, let alone of specific lipid components of the membrane bilayer, in the viral replication cycle is minimal. The replication complexes that can be isolated from infected cells, or reconstituted in vitro from crude cell lysates, do not allow controlled manipulation of the membrane constituents thus limiting their usefulness for understanding how exactly membranes support the replication reaction. Recent work from Peter Nagy group demonstrates that replication of a model positive strand RNA virus can be reconstituted in the in vitro reaction with liposomes of chemically defined composition and reveals an exclusive role of phosphatidylethanolamine in sustaining efficient viral RNA replication. This study opens new possibilities for investigation of membrane contribution in the replication process that may ultimately lead to development of novel broad spectrum antiviral compounds targeting the membrane-dependent elements of the replication cycle conserved among diverse groups of viruses. PMID:26131959

  19. Less Grease, Please. Phosphatidylethanolamine Is the Only Lipid Required for Replication of a (+)RNA Virus

    PubMed Central

    Belov, George A.

    2015-01-01

    All positive strand RNA viruses of eukaryotes replicate their genomes in association with membranes. These viruses actively change cellular lipid metabolism to build replication membranes enriched in specific lipids. The ubiquitous use of membranes by positive strand RNA viruses apparently holds major evolutionary advantages; however our understanding of the mechanistic role of membranes, let alone of specific lipid components of the membrane bilayer, in the viral replication cycle is minimal. The replication complexes that can be isolated from infected cells, or reconstituted in vitro from crude cell lysates, do not allow controlled manipulation of the membrane constituents thus limiting their usefulness for understanding how exactly membranes support the replication reaction. Recent work from Peter Nagy group demonstrates that replication of a model positive strand RNA virus can be reconstituted in the in vitro reaction with liposomes of chemically defined composition and reveals an exclusive role of phosphatidylethanolamine in sustaining efficient viral RNA replication. This study opens new possibilities for investigation of membrane contribution in the replication process that may ultimately lead to development of novel broad spectrum antiviral compounds targeting the membrane-dependent elements of the replication cycle conserved among diverse groups of viruses. PMID:26131959

  20. Correlation of Recombinant Integrase Activity and Functional Preintegration Complex Formation during Acute Infection by Replication-Defective Integrase Mutant Human Immunodeficiency Virus

    PubMed Central

    Li, Xiang; Koh, Yasuhiro

    2012-01-01

    Previous studies characterized two types of replication-defective human immunodeficiency virus type 1 (HIV-1) integrase mutants: class I, which are specifically blocked at the integration step, and class II, which harbor additional virion production and/or reverse transcription defects. Class I mutant enzymes supported little if any metal ion-dependent 3′-processing and DNA strand transfer activities in vitro, whereas class II enzymes displayed partial or full catalytic function in studies with simplified assay designs, suggesting that defective interaction(s) with heterologous integrase binding proteins might underlie the class II mutant viral phenotype. To address this hypothesis, class I and II mutant enzymes were interrogated under expanded sets of in vitro conditions. The majority failed to catalyze the concerted integration of two viral DNA ends into target DNA, highlighting defective integrase function as the root cause of most class II in addition to all class I mutant virus infection defects. One mutant protein, K264E, in contrast, could support the wild-type level of concerted integration activity. After accounting for its inherent reverse transcription defect, HIV-1K264E moreover formed preintegration complexes that supported the efficient integration of endogenous viral DNA in vitro and normal levels and sequences of 2-long terminal repeat-containing circle junctions during acute infection. K264E integrase furthermore efficiently interacted in vitro with two heterologous binding partners, LEDGF/p75 and reverse transcriptase. Our results underscore the physiological relevance of concerted integration assays for tests of integrase mutant function and suggest that the K264E mutation disrupts an interaction with an intranuclear integrase binding partner that is important for HIV-1 integration. PMID:22278243

  1. The Virus-Host Interplay: Biogenesis of +RNA Replication Complexes

    PubMed Central

    Reid, Colleen R.; Airo, Adriana M.; Hobman, Tom C.

    2015-01-01

    Positive-strand RNA (+RNA) viruses are an important group of human and animal pathogens that have significant global health and economic impacts. Notable members include West Nile virus, Dengue virus, Chikungunya, Severe acute respiratory syndrome (SARS) Coronavirus and enteroviruses of the Picornaviridae family.Unfortunately, prophylactic and therapeutic treatments against these pathogens are limited. +RNA viruses have limited coding capacity and thus rely extensively on host factors for successful infection and propagation. A common feature among these viruses is their ability to dramatically modify cellular membranes to serve as platforms for genome replication and assembly of new virions. These viral replication complexes (VRCs) serve two main functions: To increase replication efficiency by concentrating critical factors and to protect the viral genome from host anti-viral systems. This review summarizes current knowledge of critical host factors recruited to or demonstrated to be involved in the biogenesis and stabilization of +RNA virus VRCs. PMID:26287230

  2. Trigocherrierin A, a potent inhibitor of chikungunya virus replication.

    PubMed

    Bourjot, Mélanie; Leyssen, Pieter; Neyts, Johan; Dumontet, Vincent; Litaudon, Marc

    2014-01-01

    Trigocherrierin A (1) and trigocherriolide E (2), two new daphnane diterpenoid orthoesters (DDOs), and six chlorinated analogues, trigocherrins A, B, F and trigocherriolides A-C, were isolated from the leaves of Trigonostemon cherrieri. Their structures were identified by mass spectrometry, extensive one- and two-dimensional NMR spectroscopy and through comparison with data reported in the literature. These compounds are potent and selective inhibitors of chikungunya virus (CHIKV) replication. Among the DDOs isolated, compound 1 exhibited the strongest anti-CHIKV activity (EC₅₀ = 0.6 ± 0.1 µM, SI = 71.7). PMID:24662077

  3. Suramin inhibits chikungunya virus replication through multiple mechanisms.

    PubMed

    Albulescu, Irina C; van Hoolwerff, Marcella; Wolters, Laura A; Bottaro, Elisabetta; Nastruzzi, Claudio; Yang, Shih Chi; Tsay, Shwu-Chen; Hwu, Jih Ru; Snijder, Eric J; van Hemert, Martijn J

    2015-09-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes severe and often persistent arthritis. In recent years, millions of people have been infected with this virus for which registered antivirals are still lacking. Using our recently established in vitro assay, we discovered that the approved anti-parasitic drug suramin inhibits CHIKV RNA synthesis (IC50 of ∼5μM). The compound inhibited replication of various CHIKV isolates in cell culture with an EC50 of ∼80μM (CC50>5mM) and was also active against Sindbis virus and Semliki Forest virus. In vitro studies hinted that suramin interferes with (re)initiation of RNA synthesis, whereas time-of-addition studies suggested it to also interfere with a post-attachment early step in infection, possibly entry. CHIKV (nsP4) mutants resistant against favipiravir or ribavirin, which target the viral RNA polymerase, did not exhibit cross-resistance to suramin, suggesting a different mode of action. The assessment of the activity of a variety of suramin-related compounds in cell culture and the in vitro assay for RNA synthesis provided more insight into the moieties required for antiviral activity. The antiviral effect of suramin-containing liposomes was also analyzed. Its approved status makes it worthwhile to explore the use of suramin to prevent and/or treat CHIKV infections. PMID:26112648

  4. Cryptoporus volvatus Extract Inhibits Influenza Virus Replication In Vitro and In Vivo

    PubMed Central

    Si, Jianyong; Liu, Jinhua; Sun, Guibo; Sun, Xiaobo; Cao, Li

    2014-01-01

    Influenza virus is the cause of significant morbidity and mortality, posing a serious health threat worldwide. Here, we evaluated the antiviral activities of Cryptoporus volvatus extract on influenza virus infection. Our results demonstrated that the Cryptoporus volvatus extract inhibited different influenza virus strain replication in MDCK cells. Time course analysis indicated that the extract exerted its inhibition at earlier and late stages in the replication cycle of influenza virus. Subsequently, we confirmed that the extract suppressed virus internalization into and released from cells. Moreover, the extract significantly reduced H1N1/09 influenza virus load in lungs and dramatically decreased lung lesions in mice. And most importantly, the extract protected mice from lethal challenge with H1N1/09 influenza virus. Our results suggest that the Cryptoporus volvatus extract could be a potential candidate for the development of a new anti-influenza virus therapy. PMID:25437846

  5. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    NASA Astrophysics Data System (ADS)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  6. Frog Virus 3 DNA Replication Occurs in Two Stages

    PubMed Central

    Goorha, R.

    1982-01-01

    Viral DNA synthesis in frog virus 3 (FV3)-infected cells occurs both in the nucleus and in the cytoplasm (Goorha et al., Virology 84:32-51, 1978). Relationships between viral DNA molecules synthesized in these two compartments and their role in the virus replication were examined. The data presented here suggest that (i) FV3 DNA replicated in two stages and (ii) nucleus and cytoplasm were the sites of stages 1 and 2 of DNA replication, respectively. Stages 1 and 2 were further distinguished by their temporal appearance during infection and by the sizes of the replicating DNA as determined by sedimentation in neutral sucrose gradients. In stage 1, replicating molecules, between the size of unit and twice the unit length, were produced early in infection (2 h postinfection). In contrast, stage 2 of DNA replication occurred only after 3 h postinfection, and replicating molecules were large concatemers. Results of pulse-chase experiments showed that the concatemeric DNA served as the precursor for the production of mature FV3 DNA. Denaturation of concatemeric DNA with alkali or digestion with S1 nuclease reduced it to less than genome size molecules, indicating the presence of extensive single-stranded regions. Analysis of replicating DNA by equilibrium centrifugation in CsCl gradients after a pulse-chase suggested that these single-stranded regions were subsequently repaired. Based on these and previous data, a scheme of FV3 replication is presented. According to this scheme, FV3 utilizes the nucleus for early transcription and stage 1 of DNA replication. The viral DNA is then transported to the cytoplasm, where it participates in stage 2 DNA replication to form a concatemeric replication complex. The processing of concatemers to produce mature viral DNA and virus assembly also occurs in the cytoplasm. This mode of replication is strikingly different from any other known DNA virus. PMID:7109033

  7. The Herpes Simplex Virus Type 1 vhs-UL41 Gene Secures Viral Replication by Temporarily Evading Apoptotic Cellular Response to Infection: Vhs-UL41 Activity Might Require Interactions with Elements of Cellular mRNA Degradation Machinery

    PubMed Central

    Barzilai, Ari; Zivony-Elbom, Ifaat; Sarid, Ronit; Noah, Eran; Frenkel, Niza

    2006-01-01

    We have previously shown that herpes simplex virus type 1 (HSV-1) infection is associated with early destabilization/degradation of infected cell mRNAs and consequent shutoff of host protein synthesis by the activity of the virion-associated host shutoff (vhs) UL41 protein. Wild-type (wt) virus destabilized/degraded the housekeeping β-actin and α-tubulin mRNAs as well host stress functions, like the heat shock 70 protein induced postinfection. vhs mutants did not degrade the mRNAs. Elaborate studies by others have been concerned with the mode of mRNA degradation and the mRNAs affected. We now describe vhs activity in primary cultures of mouse cerebellar granule neurons (CGNs). Specifically, (i) upon infection in the presence of actinomycin D to test activity of input viral particles, there was a generalized inhibition of protein synthesis, which depended on the input multiplicity of infection (MOI). (ii) Low-MOI infection with vhs-1 mutant virus was associated with increased synthesis of all apparent proteins. Higher MOIs caused some shutoff, albeit significantly lower than that of wt virus. This pattern could reflect an interaction(s) of vhs-1 protein with host machinery involved in cellular mRNA destabilization/degradation, sequestering this activity. (iii) wt virus infection was associated with cell survival, at least for a while, whereas mutant virus induced apoptotic cell death at earlier times. (iv) wt virus replicated well in the CGNs, whereas there was no apparent replication of the vhs-1 mutant virus. (v) The vhs-1 mutant could serve as helper virus for composite amplicon vectors carrying marker genes and the human p53 gene. Ongoing studies test the use of vhs-1-based composite oncolytic vectors towards cancer gene therapy. PMID:16352574

  8. Specific Initiation Site for Simian Virus 40 Deoxyribonucleic Acid Replication

    PubMed Central

    Thoren, Marilyn M.; Sebring, Edwin D.; Salzman, Norman P.

    1972-01-01

    Replicating simian virus 40 (SV40) deoxyribonucleic acid (DNA) molecules have been isolated under conditions in which the newly synthesized DNA is uniformly labeled with 3H-thymidine. These newly synthesized strands are released from the replicative intermediate molecules by alkaline treatment, and it has been possible to isolate single-stranded SV40 DNA which varies in size from 157,000 daltons (from molecules that are 10% replicated) to 1,360,000 daltons (85% replicated). The rates of duplex formation of newly synthesized DNA have been used to relate their genetic complexity to the extent of DNA replication. As DNA replication proceeds, the time required to effect 50% renaturation of the newly synthesized DNA increases at a proportional rate. The data establish that DNA replication is not initiated at random, but rather that there is a single specific initiation site for DNA replication. PMID:4342054

  9. Cellular microRNA miR-26a suppresses replication of porcine reproductive and respiratory syndrome virus by activating innate antiviral immunity

    PubMed Central

    Jia, Xiaojuan; Bi, Yuhai; Li, Jing; Xie, Qing; Yang, Hanchun; Liu, Wenjun

    2015-01-01

    Porcine reproductive and respiratory syndrome (PRRS) has caused large economic losses in the swine industry in recent years. Current PRRS vaccines fail to effectively prevent and control this disease. Consequently, there is a need to develop new antiviral strategies. MicroRNAs play critical roles in intricate host-pathogen interaction networks, but the involvement of miRNAs during PRRS virus (PRRSV) infection is not well understood. In this study, pretreatment with miR-26a induced a significant inhibition of PRRSV replication and remission of the cytopathic effect in MARC-145 cells, and this antiviral effect was sustained for at least 120 h. Luciferase reporter analysis showed that the PRRSV genome was not the target of miRNA-26a. Instead, RNA-seq analysis demonstrated that miR-26a significantly up-regulated innate anti-viral responses, including activating the type I interferon (IFN) signaling pathway and promoting the production of IFN-stimulated genes. These findings suggest that delivery of miR-26a may provide a potential strategy for anti-PRRSV therapies. PMID:26013676

  10. Adeno-associated virus type 2 enhances goose parvovirus replication in embryonated goose eggs

    SciTech Connect

    Malkinson, Mertyn . E-mail: malkins@agri.huji.ac.il; Winocour, Ernest . E-mail: ernest.winocour@weizmann.ac.il

    2005-06-05

    The autonomous goose parvovirus (GPV) and the human helper-dependent adeno-associated virus type 2 (AAV2) share a high degree of homology. To determine if this evolutionary relationship has a biological impact, we studied viral replication in human 293 cells and in embryonated goose eggs coinfected with both viruses. Similar experiments were performed with the minute virus of mice (MVM), an autonomous murine parvovirus with less homology to AAV2. In human 293 cells, both GPV and MVM augmented AAV2 replication. In contrast, AAV2 markedly enhanced GPV replication in embryonated goose eggs under conditions where a similar effect was not observed with MVM. AAV2 did not replicate in embryonated goose eggs and AAV2 inactivated by UV-irradiation also enhanced GPV replication. To our knowledge, this is the first report that a human helper-dependent member of the Parvoviridae can provide helper activity for an autonomous parvovirus in a natural host.

  11. Activation of BPV-1 replication in vitro by the transcription factor E2

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Li, Rong; Mohr, Ian J.; Clark, Robin; Botchan, Michael R.

    1991-10-01

    Soluble extracts from uninfected murine cells supplemented with purified viral E1 and E2 proteins support the replication of exogenously added papilloma virus DNA. The E2 transactivator stimulates the binding of the E1 replication protein to the minimal origin of replication and activates DNA replication. These results support the concept that transcription factors have a direct role in the initiation of DNA replication in eukaryotes by participating in the assembly of a complex at the origin of replication.

  12. Gold Nanoparticles Impair Foot-and-Mouth Disease Virus Replication.

    PubMed

    Rafiei, Solmaz; Rezatofighi, Seyedeh Elham; Roayaei Ardakani, Mohammad; Rastegarzadeh, Saadat

    2016-01-01

    In this study, we evaluated the antiviral activity of gold nanoparticles (AuNPs) against the foot-and-mouth disease virus (FMDV), that causes a contagious disease in cloven-hoofed animals. The anti-FMDV activity of AuNPs was assessed using plaque reduction assay. MTT assay was used for quantitatively measuring the cytopathic effect caused by the viral infection. The 50% cytotoxicity concentration of nanoparticles was measured and found to be 10.4 μg/ml. The virus yield reduction assay showed that AuNP have an approximately 4-fold virus titer reduction compared with controls. Plaque reduction assay showed that at non-cytotoxic concentrations, AuNPs do not show extracellular virucidal activity and inhibition of FMDV growth at the early stages of infection including attachment and penetration. Time-of-addition experiments revealed that AuNPs inhibited post-entry stages of viral replication concomitant with the onset of intracellular viral RNA synthesis; however, the mechanism of AuNPs against FMDV was unclear. PMID:26685261

  13. Plasma Membrane-Targeted Raf Kinase Activates NF-κB and Human Immunodeficiency Virus Type 1 Replication in T Lymphocytes

    PubMed Central

    Flory, Egbert; Weber, Christoph K.; Chen, Peifeng; Hoffmeyer, Angelika; Jassoy, Christian; Rapp, Ulf R.

    1998-01-01

    Increasing evidence points to a role of the mitogenic Ras/Raf/MEK/ERK signaling cascade in regulation of human immunodeficiency virus type 1 (HIV-1) gene expression. Stimulation of elements of this pathway leads to transactivation of the HIV-1 promoter. In particular, the NF-κB motif in the HIV long terminal repeat (LTR) represents a Raf-responsive element in fibroblasts. Regulation of the Raf kinase in T cells differs from findings with a variety of cell lines that the catalytic domain of Raf (RafΔ26–303) shows no activity. In this study, we restored the activity of the kinase in T cells by fusing its catalytic domain to the CAAX motif (-Cx) of Ras, thus targeting the enzyme to the plasma membrane. Constitutive activity of Raf was demonstrated by phosphorylation of mitogen-activated protein kinase kinase (MEK) and endogenous mitogen-activated protein kinase 1/2 (ERK1/2) in A3.01 T cells transfected with RafΔ26–303-Cx. Membrane-targeted Raf also stimulates NF-κB, as judged by κB-dependent reporter assays and enhanced NF-κB p65 binding on band shift analysis. Moreover, we found that active Raf transactivates the HIVNL4-3 LTR in A3.01 T lymphocytes and that dominant negative Raf (C4) blocked 12-O-tetradecanoylphorbol-13-acetate induced transactivation. When cotransfected with infectious HIVNL4-3 DNA, membrane-targeted Raf induces viral replication up to 10-fold over basal levels, as determined by the release of newly synthesized p24gag protein. Our study clearly demonstrates that the activity of the catalytic domain of Raf in A3.01 T cells is dependent on its cellular localization. The functional consequences of active Raf in T lymphocytes include not only NF-κB activation and transactivation of the HIVNL4-3 LTR but also synthesis and release of HIV particles. PMID:9525598

  14. Replication-Competent Influenza A Viruses Expressing Reporter Genes

    PubMed Central

    Breen, Michael; Nogales, Aitor; Baker, Steven F.; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo. PMID:27347991

  15. Replication-Competent Influenza A Viruses Expressing Reporter Genes.

    PubMed

    Breen, Michael; Nogales, Aitor; Baker, Steven F; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo. PMID:27347991

  16. Balancing viral replication in spleen and liver determines the outcome of systemic virus infection.

    PubMed

    Lang, K S; Lang, P A

    2015-12-01

    The innate immune system limits virus replication during systemic infection by producing type I interferons (IFN-I) but still has to allow viral replication to achieve maximal innate and adaptive immune activation. Some spleen and lymph node resident antigen presenting cells (APCs) show limited response to IFN-I due to expression of the endogenous inhibitor of IFN-I signaling, Usp18. Therefore, virus in this spleen niche replicates despite high levels of IFN-I. This enforced viral replication leads to an exorbitant propagation of viral antigens and viral RNA. Viral antigen leads to massive activation of the adaptive immune system, while viral RNA to activated innate immunity. In contrast to these APCs, liver resident Kupffer cells, take up most of the systemic virus and suppress its replication in response to IFN-I. In addition, virus specific CD8 + T cells which are primed in the spleen migrate to the liver and kill virus infected cells. In this review we discuss the different mechanisms, which influence immune activation in spleen and antiviral mechanisms in the liver and how they determine the outcome of virus infection. PMID:26666281

  17. Determination of host RNA helicases activity in viral replication

    PubMed Central

    Sharma, Amit; Boris-Lawrie, Kathleen

    2016-01-01

    RNA helicases are encoded by all eukaryotic and prokaryotic cells and a minority of viruses. Activity of RNA helicases is necessary for all steps in the expression of cells and viruses and the host innate response to virus infection. Their vast functional repertoire is attributable to the core ATPase-dependent helicase domain in conjunction with flanking domains that are interchangeable and engage viral and cellular cofactors. Here, we address the important issue of host RNA helicases that are necessary for replication of a virus. The chapter covers approaches to identification and characterization of candidate helicases and methods to define the biochemical and biophysical parameters of specificity and functional activity of the enzymes. We discuss the context of cellular RNA helicase activity and virion-associated RNA helicases. The methodology and choice of controls fosters the assessment of the virologic scope of RNA helicases across divergent cell lineages and viral replication cycles. PMID:22713331

  18. Cutthroat trout virus as a surrogate in vitro infection model for testing inhibitors of hepatitis E virus replication

    USGS Publications Warehouse

    Debing, Yannick; Winton, James; Neyts, Johan; Dallmeier, Kai

    2013-01-01

    Hepatitis E virus (HEV) is one of the most important causes of acute hepatitis worldwide. Although most infections are self-limiting, mortality is particularly high in pregnant women. Chronic infections can occur in transplant and other immune-compromised patients. Successful treatment of chronic hepatitis E has been reported with ribavirin and pegylated interferon-alpha, however severe side effects were observed. We employed the cutthroat trout virus (CTV), a non-pathogenic fish virus with remarkable similarities to HEV, as a potential surrogate for HEV and established an antiviral assay against this virus using the Chinook salmon embryo (CHSE-214) cell line. Ribavirin and the respective trout interferon were found to efficiently inhibit CTV replication. Other known broad-spectrum inhibitors of RNA virus replication such as the nucleoside analog 2′-C-methylcytidine resulted only in a moderate antiviral activity. In its natural fish host, CTV levels largely fluctuate during the reproductive cycle with the virus detected mainly during spawning. We wondered whether this aspect of CTV infection may serve as a surrogate model for the peculiar pathogenesis of HEV in pregnant women. To that end the effect of three sex steroids on in vitro CTV replication was evaluated. Whereas progesterone resulted in marked inhibition of virus replication, testosterone and 17β-estradiol stimulated viral growth. Our data thus indicate that CTV may serve as a surrogate model for HEV, both for antiviral experiments and studies on the replication biology of the Hepeviridae.

  19. Ectopic Expression of Vaccinia Virus E3 and K3 Cannot Rescue Ectromelia Virus Replication in Rabbit RK13 Cells

    PubMed Central

    Peng, Chen; Rothenburg, Stefan; Hersperger, Adam R.

    2015-01-01

    As a group, poxviruses have been shown to infect a wide variety of animal species. However, there is individual variability in the range of species able to be productively infected. In this study, we observed that ectromelia virus (ECTV) does not replicate efficiently in cultured rabbit RK13 cells. Conversely, vaccinia virus (VACV) replicates well in these cells. Upon infection of RK13 cells, the replication cycle of ECTV is abortive in nature, resulting in a greatly reduced ability to spread among cells in culture. We observed ample levels of early gene expression but reduced detection of virus factories and severely blunted production of enveloped virus at the cell surface. This work focused on two important host range genes, named E3L and K3L, in VACV. Both VACV and ECTV express a functional protein product from the E3L gene, but only VACV contains an intact K3L gene. To better understand the discrepancy in replication capacity of these viruses, we examined the ability of ECTV to replicate in wild-type RK13 cells compared to cells that constitutively express E3 and K3 from VACV. The role these proteins play in the ability of VACV to replicate in RK13 cells was also analyzed to determine their individual contribution to viral replication and PKR activation. Since E3L and K3L are two relevant host range genes, we hypothesized that expression of one or both of them may have a positive impact on the ability of ECTV to replicate in RK13 cells. Using various methods to assess virus growth, we did not detect any significant differences with respect to the replication of ECTV between wild-type RK13 compared to versions of this cell line that stably expressed VACV E3 alone or in combination with K3. Therefore, there remain unanswered questions related to the factors that limit the host range of ECTV. PMID:25734776

  20. Ectopic expression of vaccinia virus E3 and K3 cannot rescue ectromelia virus replication in rabbit RK13 cells.

    PubMed

    Hand, Erin S; Haller, Sherry L; Peng, Chen; Rothenburg, Stefan; Hersperger, Adam R

    2015-01-01

    As a group, poxviruses have been shown to infect a wide variety of animal species. However, there is individual variability in the range of species able to be productively infected. In this study, we observed that ectromelia virus (ECTV) does not replicate efficiently in cultured rabbit RK13 cells. Conversely, vaccinia virus (VACV) replicates well in these cells. Upon infection of RK13 cells, the replication cycle of ECTV is abortive in nature, resulting in a greatly reduced ability to spread among cells in culture. We observed ample levels of early gene expression but reduced detection of virus factories and severely blunted production of enveloped virus at the cell surface. This work focused on two important host range genes, named E3L and K3L, in VACV. Both VACV and ECTV express a functional protein product from the E3L gene, but only VACV contains an intact K3L gene. To better understand the discrepancy in replication capacity of these viruses, we examined the ability of ECTV to replicate in wild-type RK13 cells compared to cells that constitutively express E3 and K3 from VACV. The role these proteins play in the ability of VACV to replicate in RK13 cells was also analyzed to determine their individual contribution to viral replication and PKR activation. Since E3L and K3L are two relevant host range genes, we hypothesized that expression of one or both of them may have a positive impact on the ability of ECTV to replicate in RK13 cells. Using various methods to assess virus growth, we did not detect any significant differences with respect to the replication of ECTV between wild-type RK13 compared to versions of this cell line that stably expressed VACV E3 alone or in combination with K3. Therefore, there remain unanswered questions related to the factors that limit the host range of ECTV. PMID:25734776

  1. A zebrafish model for subgenomic hepatitis C virus replication.

    PubMed

    Ding, Cun-Bao; Zhao, Ye; Zhang, Jing-Pu; Peng, Zong-Gen; Song, Dan-Qing; Jiang, Jian-Dong

    2015-03-01

    Persistent infection with hepatitis C virus (HCV) is a major risk factor in the development of hepatocellular carcinoma. The elucidation of the pathogenesis of HCV-associated liver disease is hampered by the absence of an appropriate small animal model. Zebrafish exhibits high genetic homology to mammals, and is easily manipulated experimentally. In this study, we describe the use of a zebrafish model for the analysis of HCV replication mechanisms. As the 5' untranslated region (UTR), the core protein, the non-structural protein 5B (NS5B) and the 3'UTR are essential for HCV replication, we constructed a HCV sub-replicon gene construct including the 4 gene sequences and the enhanced green fluorescent protein (EGFP) reporter gene; these genes were transcribed through the mouse hepatocyte nuclear factor 4 (mHNF4) promoter. By microinjection of the subgenomic replicon vector into zebrafish larvae, the virus was easily detected by observing EGFP fluorescence in the liver. The positive core and NS5B signals showed positive expression of the HCV gene construct in zebrafish by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. Importantly, the negative strand sequence of the HCV subgenomic RNA was detected by RT-PCR and hybridization in situ, demonstrating that the HCV sub-replicon has positive replication activity. Furthermore, the hybridization signal mainly appeared in the liver region of larvae, as detected by the sense probe of the core protein or NS5B, which confirmed that the sub-replicon amplification occurred in the zebrafish liver. The amplification of the sub-replicon caused alterations in the expression of certain genes, which is similar to HCV infection in human liver cells. To verify the use of this zebrafish model in drug evaluation, two drugs against HCV used in clinical practice, ribavirin and oxymatrine, were tested and these drugs showed significant inhibition of replication of the HCV sub-replicon in the larvae. In

  2. Inhibitors of the Interferon Response Enhance Virus Replication In Vitro

    PubMed Central

    Stewart, Claire E.; Randall, Richard E.; Adamson, Catherine S.

    2014-01-01

    Virus replication efficiency is influenced by two conflicting factors, kinetics of the cellular interferon (IFN) response and induction of an antiviral state versus speed of virus replication and virus-induced inhibition of the IFN response. Disablement of a virus's capacity to circumvent the IFN response enables both basic research and various practical applications. However, such IFN-sensitive viruses can be difficult to grow to high-titer in cells that produce and respond to IFN. The current default option for growing IFN-sensitive viruses is restricted to a limited selection of cell-lines (e.g. Vero cells) that have lost their ability to produce IFN. This study demonstrates that supplementing tissue-culture medium with an IFN inhibitor provides a simple, effective and flexible approach to increase the growth of IFN-sensitive viruses in a cell-line of choice. We report that IFN inhibitors targeting components of the IFN response (TBK1, IKK2, JAK1) significantly increased virus replication. More specifically, the JAK1/2 inhibitor Ruxolitinib enhances the growth of viruses that are sensitive to IFN due to (i) loss of function of the viral IFN antagonist (due to mutation or species-specific constraints) or (ii) mutations/host cell constraints that slow virus spread such that it can be controlled by the IFN response. This was demonstrated for a variety of viruses, including, viruses with disabled IFN antagonists that represent live-attenuated vaccine candidates (Respiratory Syncytial Virus (RSV), Influenza Virus), traditionally attenuated vaccine strains (Measles, Mumps) and a slow-growing wild-type virus (RSV). In conclusion, supplementing tissue culture-medium with an IFN inhibitor to increase the growth of IFN-sensitive viruses in a cell-line of choice represents an approach, which is broadly applicable to research investigating the importance of the IFN response in controlling virus infections and has utility in a number of practical applications including

  3. VIRUS: A hugely replicated integral field spectrograph for HETDEX

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.; MacQueen, Phillip J.; Palunas, Povilas; Kelz, Andreas; Roth, Martin M.; Gebhardt, Karl; Grupp, Frank

    2006-06-01

    We present the visible integral-field replicable unit spectrograph (VIRUS), the basis of the Hobby-Eberly telescope dark energy experiment (HETDEX); a survey of a 5 Gpc 3 volume at 1.8 < z < 3.7 that will constrain the evolution of dark energy. VIRUS consists of 145 copies of a simple unit spectrograph, deployed on the HET. Industrial replication will allow VIRUS to be built quickly, at considerable cost-savings, with substantial risk-mitigation, compared to conventional instruments. VIRUS will cover 30 sq. arcmin per observation and detect 14 million resolution elements per exposure, an order of magnitude larger than existing instruments. VIRUS can complete HETDEX in about 100 nights observing.

  4. T-cell activation is required for efficient replication of human herpesvirus 6.

    PubMed Central

    Frenkel, N; Schirmer, E C; Katsafanas, G; June, C H

    1990-01-01

    We have investigated whether T-cell activation is required for the replication of the T-lymphotropic human herpesvirus 6. The virus did not replicate in quiescent peripheral blood lymphocytes but replicated efficiently following exposure of the cells to the polyclonal mitogen phytohemagglutinin (PHA). When purified T cells were treated with PHA in the absence of accessory cells, no virus replication was observed unless exogenous interleukin-2 (IL-2) was added to the medium, promoting cell division. Incubation of peripheral blood lymphocytes in the absence of PHA but in the presence of IL-2 resulted in delayed cell blastogenesis and virus replication. Cell blastogenesis and virus replication did not occur in the purified T-cell cultures incubated with IL-2 alone. Taken together, the results show that human herpesvirus 6 replication requires full progression of the cell cycle. This finding might have implications for the pathogenicity of the virus in the human host. Images PMID:2166835

  5. Origin and Direction of Simian Virus 40 Deoxyribonucleic Acid Replication

    PubMed Central

    Fareed, George C.; Garon, Claude F.; Salzman, Norman P.

    1972-01-01

    Double-branched, circular, replicating deoxyribonucleic acid (DNA) molecules of simian virus 40 (SV40) have been cleaved by the R1 restriction endonuclease from Escherichia coli. This enzyme introduces one double-strand break in SV40 DNA, at a specific site. The site of cleavage in the replicating molecules was used in this study to position the origin and the two branch points. Radioactively labeled molecules fractionated according to their extent of replication were evaluated after cleavage by sedimentation analysis and electron microscopy. The results demonstrate that the R1 cleavage site is 33% of the genome length from the origin of replication and that both branch points are growing points. These data indicate that SV40 DNA replication is bidirectional and confirm other reports which have shown a unique origin of replication. Images PMID:4342055

  6. Effects of dimethyl prostaglandin A1 on herpes simplex virus and human immunodeficiency virus replication

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; McGrath, M. S.; Hanks, D.; Erickson, S.; Pulliam, L.

    1992-01-01

    We have investigated the direct effect of dimethyl prostaglandin A1 (dmPGA1) on the replication of herpes simplex virus (HSV) and human immunodeficiency virus type 1 (HIV-1). dmPGA1 significantly inhibited viral replication in both HSV and HIV infection systems at concentrations of dmPGA1 that did not adversely alter cellular DNA synthesis. The 50% inhibitory concentration (ID50) for several HSV type 1 (HSV-1) strains ranged from 3.8 to 5.6 micrograms/ml for Vero cells and from 4.6 to 7.3 micrograms/ml for human foreskin fibroblasts. The ID50s for two HSV-2 strains varied from 3.8 to 4.5 micrograms/ml for Vero cells; the ID50 was 5.7 micrograms/ml for human foreskin fibroblasts. We found that closely related prostaglandins did not have the same effect on the replication of HSV; dmPGE2 and dmPGA2 caused up to a 60% increase in HSV replication compared with that in untreated virus-infected cells. HIV-1 replication in acutely infected T cells (VB line) and chronically infected macrophages was assessed by quantitative decreases in p24 concentration. The effective ID50s were 2.5 micrograms/ml for VB cells acutely infected with HIV-1 and 5.2 micrograms/m for chronically infected macrophages. dmPGA1 has an unusual broad-spectrum antiviral activity against both HSV and HIV-1 in vitro and offers a new class of potential therapeutic agents for in vivo use.

  7. HIV Vpr protein upregulates microRNA-122 expression and stimulates hepatitis C virus replication

    PubMed Central

    Peng, Milin; Xiao, Xinqiang; He, Yan; Jiang, Yongfang; Zhang, Min; Peng, Feng; Tian, Yi; Xu, Yun

    2015-01-01

    Human immunodeficiency virus (HIV)/hepatitis C virus (HCV) co-infection is characterized by higher serum HCV RNA loads compared with HCV mono-infection. However, the relationship between HIV and HCV replication remains to be clarified. HIV Vpr has been shown to play an essential role in HIV replication. In this study, we aimed to explore the role of Vpr in HCV replication and pathogenesis. We therefore used the genotype 2a full-length HCV strain JFH1 infection system and the genotype 1b full-length HCV replicon OR6 cell line to analyse the effects of Vpr on HCV replication. We found that Vpr promoted HCV 5′ UTR activity, HCV RNA replication and HCV protein expression in two HCV infection cell models. Additionally, lymphocyte-produced Vpr significantly induced HCV 5′ UTR activity and HCV replication in hepatocytes. We also found that Vpr upregulated the expression of miR-122 by stimulating its promoter activity. Furthermore, an miR-122 inhibitor suppressed the Vpr-mediated enhancement of both HCV 5′ UTR activity and HCV replication. In summary, our results revealed that the Vpr-upregulated expression of miR-122 is closely related to the stimulation of HCV 5′ UTR activity and HCV replication by Vpr, providing new evidence for how HIV interacts with HCV during HIV/HCV co-infection. PMID:25920531

  8. Structures of herpes simplex virus type 1 genes required for replication of virus DNA.

    PubMed Central

    McGeoch, D J; Dalrymple, M A; Dolan, A; McNab, D; Perry, L J; Taylor, P; Challberg, M D

    1988-01-01

    Recently, a method has been developed to identify regions in the genome of herpes simplex virus type 1 (HSV-1) which contain genes required for DNA synthesis from an HSV-1 origin of DNA replication, and seven genomic loci have been identified as representing the necessary and sufficient gene set for such replication (C. A. Wu, N. J. Nelson, D. J. McGeoch, and M. D. Challberg, J. Virol. 62:435-443, 1988). Two of the loci represent the well-known genes for DNA polymerase and major DNA-binding protein, but the remainder had little or no previous characterization. In this report we present the DNA sequences of the five newly identified genes and their deduced transcript organizations and encoded amino acid sequences. These genes were designated UL5, UL8, UL9, UL42, and UL52 and were predicted to encode proteins with molecular weights of, respectively, 99,000, 80,000, 94,000, 51,000, and 114,000. All of these genes had clear counterparts in the genome of the related alphaherpesvirus varicella-zoster virus, but only UL5 and UL52 were detectably conserved in the distantly related gammaherpesvirus Epstein-Barr virus, as judged by amino acid sequence similarity. The sequence of the UL5 protein, and of its counterparts in the other viruses, contained a region closely resembling known ATP-binding sites; this could be indicative, for instance, of a helicase or primase activity. PMID:2826807

  9. Restricted Replication of Vesicular Stomatitis Virus in Human Lymphoblastoid Cells

    PubMed Central

    Nowakowski, Maja; Bloom, Barry R.; Ehrenfeld, Ellie; Summers, Donald F.

    1973-01-01

    Replication of vesicular stomatitis virus (VSV) is restricted in one human lymphoblastoid cell line (Raji), but not in another similar cell line (Wil-2), compared with growth in HeLa cells. This restriction is characterized by a low proportion of cells yielding infectious virus and is associated with limited production of 42S virion RNA. Primary transcription of 13S and 26S VSV-specific RNA is not restricted in Raji cells, and the 13S RNA produced contains adenylate-rich sequences. This suggests that the block in Raji cells involves some step required for the replication of virion RNA. PMID:4357508

  10. Enhanced replication of herpes simplex virus type 1 in human cells

    SciTech Connect

    Miller, C.S.; Smith, K.O. )

    1991-02-01

    The effects of DNA-damaging agents on the replication of herpes simplex virus type 1 (HSV-1) were assessed in vitro. Monolayers of human lung fibroblast cell lines were exposed to DNA-damaging agents (methyl methanesulfonate (MMS), methyl methanethiosulfonate (MMTS), ultraviolet light (UV), or gamma radiation (GR)) at specific intervals, before or after inoculation with low levels of HSV-1. The ability of cell monolayers to support HSV-1 replication was measured by direct plaque assay and was compared with that of untreated control samples. In this system, monolayers of different cell lines infected with identical HSV-1 strains demonstrated dissimilar levels of recovery of the infectious virus. Exposure of DNA-repair-competent cell cultures to DNA-damaging agents produced time-dependent enhanced virus replication. Treatment with agent before virus inoculation significantly (p less than 0.025) increased the number of plaques by 10 to 68%, compared with untreated control cultures, while treatment with agent after virus adsorption significantly increased (p less than 0.025) the number of plaques by 7 to 15%. In a parallel series of experiments, cells deficient in DNA repair (xeroderma pigmentosum) failed to support enhanced virus replication. These results suggest that after exposure to DNA-damaging agents, fibroblasts competent in DNA repair amplify the replication of HSV-1, and that DNA-repair mechanisms that act on a variety of chromosomal lesions may be involved in the repair and biological activation of HSV-1 genomes.

  11. The inhibitory effect of essential oils on herpes simplex virus type-1 replication in vitro.

    PubMed

    Minami, Masato; Kita, Masakazu; Nakaya, Takaaki; Yamamoto, Toshiro; Kuriyama, Hiroko; Imanishi, Jiro

    2003-01-01

    The antiviral effect of 12 essential oils on herpes simplex virus type-1 (HSV-1) replication was examined in vitro. The replication ability of HSV-1 was suppressed by incubation of HSV-1 with 1% essential oils at 4 C for 24 hr. Especially, lemongrass completely inhibited the viral replication even at a concentration of 0.1%, and its antiviral activity was dependent on the concentrations of the essential oil. When Vero cells were treated with the essential oil before or after viral adsorption, no antiviral activity was found, which suggests that the antiviral activity of essential oils including lemongrass may be due to the direct interaction with virions. PMID:14584615

  12. Involvement of FKBP6 in hepatitis C virus replication

    PubMed Central

    Kasai, Hirotake; Kawakami, Kunihiro; Yokoe, Hiromasa; Yoshimura, Kentaro; Matsuda, Masanori; Yasumoto, Jun; Maekawa, Shinya; Yamashita, Atsuya; Tanaka, Tomohisa; Ikeda, Masanori; Kato, Nobuyuki; Okamoto, Toru; Matsuura, Yoshiharu; Sakamoto, Naoya; Enomoto, Nobuyuki; Takeda, Sen; Fujii, Hideki; Tsubuki, Masayoshi; Kusunoki, Masami; Moriishi, Kohji

    2015-01-01

    The chaperone system is known to be exploited by viruses for their replication. In the present study, we identified the cochaperone FKBP6 as a host factor required for hepatitis C virus (HCV) replication. FKBP6 is a peptidyl prolyl cis-trans isomerase with three domains of the tetratricopeptide repeat (TPR), but lacks FK-506 binding ability. FKBP6 interacted with HCV nonstructural protein 5A (NS5A) and also formed a complex with FKBP6 itself or FKBP8, which is known to be critical for HCV replication. The Val121 of NS5A and TPR domains of FKBP6 were responsible for the interaction between NS5A and FKBP6. FKBP6 was colocalized with NS5A, FKBP8, and double-stranded RNA in HCV-infected cells. HCV replication was completely suppressed in FKBP6-knockout hepatoma cell lines, while the expression of FKBP6 restored HCV replication in FKBP6-knockout cells. A treatment with the FKBP8 inhibitor N-(N′, N′-dimethylcarboxamidomethyl)cycloheximide impaired the formation of a homo- or hetero-complex consisting of FKBP6 and/or FKBP8, and suppressed HCV replication. HCV infection promoted the expression of FKBP6, but not that of FKBP8, in cultured cells and human liver tissue. These results indicate that FKBP6 is an HCV-induced host factor that supports viral replication in cooperation with NS5A. PMID:26567527

  13. Modulation of Hepatitis C Virus Genome Replication by Glycosphingolipids and Four-Phosphate Adaptor Protein 2

    PubMed Central

    Khan, Irfan; Katikaneni, Divya S.; Han, Qingxia; Sanchez-Felipe, Lorena; Hanada, Kentaro; Ambrose, Rebecca L.; Mackenzie, Jason M.

    2014-01-01

    ABSTRACT Hepatitis C virus (HCV) assembles its replication complex on cytosolic membrane vesicles often clustered in a membranous web (MW). During infection, HCV NS5A protein activates PI4KIIIα enzyme, causing massive production and redistribution of phosphatidylinositol 4-phosphate (PI4P) lipid to the replication complex. However, the role of PI4P in the HCV life cycle is not well understood. We postulated that PI4P recruits host effectors to modulate HCV genome replication or virus particle production. To test this hypothesis, we generated cell lines for doxycycline-inducible expression of short hairpin RNAs (shRNAs) targeting the PI4P effector, four-phosphate adaptor protein 2 (FAPP2). FAPP2 depletion attenuated HCV infectivity and impeded HCV RNA synthesis. Indeed, FAPP2 has two functional lipid-binding domains specific for PI4P and glycosphingolipids. While expression of the PI4P-binding mutant protein was expected to inhibit HCV replication, a marked drop in replication efficiency was observed unexpectedly with the glycosphingolipid-binding mutant protein. These data suggest that both domains are crucial for the role of FAPP2 in HCV genome replication. We also found that HCV significantly increases the level of some glycosphingolipids, whereas adding these lipids to FAPP2-depleted cells partially rescued replication, further arguing for the importance of glycosphingolipids in HCV RNA synthesis. Interestingly, FAPP2 is redistributed to the replication complex (RC) characterized by HCV NS5A, NS4B, or double-stranded RNA (dsRNA) foci. Additionally, FAPP2 depletion disrupts the RC and alters the colocalization of HCV replicase proteins. Altogether, our study implies that HCV coopts FAPP2 for virus genome replication via PI4P binding and glycosphingolipid transport to the HCV RC. IMPORTANCE Like most viruses with a positive-sense RNA genome, HCV replicates its RNA on remodeled host membranes composed of lipids hijacked from various internal membrane compartments

  14. SUMO Modification Stabilizes Dengue Virus Nonstructural Protein 5 To Support Virus Replication

    PubMed Central

    Su, Chan-I; Tseng, Chung-Hsin

    2016-01-01

    ABSTRACT Small ubiquitin-like modifier (SUMO) participates in a reversible posttranslational modification process (SUMOylation) that regulates a wide variety of cellular processes and plays important roles for numerous viruses during infection. However, the roles of viral protein SUMOylation in dengue virus (DENV) infection have not been elucidated. In this study, we found that the SUMOylation pathway was involved in the DENV life cycle, since DENV replication was reduced by silencing the cellular gene Ubc9, which encodes the sole E2-conjugating enzyme required for SUMOylation. By in vivo and in vitro SUMOylation assays, the DENV NS5 protein was identified as an authentic SUMO-targeted protein. By expressing various NS5 mutants, we found that the SUMO acceptor sites are located in the N-terminal domain of NS5 and that a putative SUMO-interacting motif (SIM) of this domain is crucial for its SUMOylation. A DENV replicon harboring the SUMOylation-defective SIM mutant showed a severe defect in viral RNA replication, supporting the notion that NS5 SUMOylation is required for DENV replication. SUMOylation-defective mutants also failed to suppress the induction of STAT2-mediated host antiviral interferon signaling. Furthermore, the SUMOylation of NS5 significantly increased the stability of NS5 protein, which could account for most of the biological functions of SUMOylated NS5. Collectively, these findings suggest that the SUMOylation of DENV NS5 is one of the mechanisms regulating DENV replication. IMPORTANCE SUMOylation is a common posttranslational modification that regulates cellular protein functions but has not been reported in the proteins of dengue virus. Here, we found that the replicase of DENV, nonstructural protein 5 (NS5), can be SUMOylated. It is well known that providing RNA-dependent RNA polymerase activity and antagonizing host antiviral IFN signaling are a “double indemnity” of NS5 to support DENV replication. Without SUMOylation, NS5 fails to

  15. Lytic Replication of Epstein-Barr Virus During Space Flight

    NASA Technical Reports Server (NTRS)

    Stowe, R. P.; Pierson, D. L.; Barrett, A. D. T.

    1999-01-01

    Reactivation of latent Epstein-Barr virus (EBV) may be an important threat to crew health during extended space missions. Cellular immunity, which is decreased during and after space flight, is responsible for controlling EBV replication in vivo. In this study, we investigated the effects of short-term space flight on latent EBV reactivation.

  16. Inhibition of Human Immunodeficiency Virus Replication by Antisense Oligodeoxynucleotides

    NASA Astrophysics Data System (ADS)

    Goodchild, John; Agrawal, Sudhir; Civeira, Maria P.; Sarin, Prem S.; Sun, Daisy; Zamecnik, Paul C.

    1988-08-01

    Twenty different target sites within human immunodeficiency virus (HIV) RNA were selected for studies of inhibition of HIV replication by antisense oligonucleotides. Target sites were selected based on their potential capacity to block recognition functions during viral replication. Antisense oligomers complementary to sites within or near the sequence repeated at the ends of retrovirus RNA (R region) and to certain splice sites were most effective. The effect of antisense oligomer length on inhibiting virus replication was also investigated, and preliminary toxicity studies in mice show that these compounds are toxic only at high levels. The results indicate potential usefulness for these oligomers in the treatment of patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex either alone or in combination with other drugs.

  17. A Protocol for Analyzing Hepatitis C Virus Replication

    PubMed Central

    Arumugaswami, Vaithilingaraja

    2014-01-01

    Hepatitis C Virus (HCV) affects 3% of the world’s population and causes serious liver ailments including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HCV is an enveloped RNA virus belonging to the family Flaviviridae. Current treatment is not fully effective and causes adverse side effects. There is no HCV vaccine available. Thus, continued effort is required for developing a vaccine and better therapy. An HCV cell culture system is critical for studying various stages of HCV growth including viral entry, genome replication, packaging, and egress. In the current procedure presented, we used a wild-type intragenotype 2a chimeric virus, FNX-HCV, and a recombinant FNX-Rluc virus carrying a Renilla luciferase reporter gene to study the virus replication. A human hepatoma cell line (Huh-7 based) was used for transfection of in vitro transcribed HCV genomic RNAs. Cell-free culture supernatants, protein lysates and total RNA were harvested at various time points post-transfection to assess HCV growth. HCV genome replication status was evaluated by quantitative RT-PCR and visualizing the presence of HCV double-stranded RNA. The HCV protein expression was verified by Western blot and immunofluorescence assays using antibodies specific for HCV NS3 and NS5A proteins. HCV RNA transfected cells released infectious particles into culture supernatant and the viral titer was measured. Luciferase assays were utilized to assess the replication level and infectivity of reporter HCV. In conclusion, we present various virological assays for characterizing different stages of the HCV replication cycle. PMID:24998302

  18. Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing.

    PubMed

    Kubota, Kenji; Tsuda, Shinya; Tamai, Atsushi; Meshi, Tetsuo

    2003-10-01

    Posttranscriptional gene silencing (PTGS), a homology-dependent RNA degradation system, has a role in defending against virus infection in plants, but plant viruses encode a suppressor to combat PTGS. Using transgenic tobacco in which the expression of green fluorescent protein (GFP) is posttranscriptionally silenced, we investigated a tomato mosaic virus (ToMV)-encoded PTGS suppressor. Infection with wild-type ToMV (L strain) interrupted GFP silencing in tobacco, coincident with visible symptoms, whereas some attenuated strains of ToMV (L(11) and L(11)A strains) failed to suppress GFP silencing. Analyses of recombinant viruses containing the L and L(11)A strains revealed that a single base change in the replicase gene, which causes an amino acid substitution, is responsible for the symptomless and suppressor-defective phenotypes of the attenuated strains. An agroinfiltration assay indicated that the 130K replication protein acts as a PTGS suppressor. Small interfering RNAs (siRNAs) of 21 to 25 nucleotides accumulated during ToMV infection, suggesting that the major target of the ToMV-encoded suppressor is downstream from the production of siRNAs in the PTGS pathway. Analysis with GFP-tagged recombinant viruses revealed that the suppressor inhibits the establishment of the ToMV-targeted PTGS system in the inoculated leaves but does not detectably suppress the activity of the preexisting, sequence-specific PTGS machinery there. Taken together, these results indicate that it is likely that the ToMV-encoded suppressor, the 130K replication protein, blocks the utilization of silencing-associated small RNAs, so that a homology-dependent RNA degradation machinery is not newly formed. PMID:14512550

  19. Replication-competent fluorescent-expressing influenza B virus.

    PubMed

    Nogales, Aitor; Rodríguez-Sánchez, Irene; Monte, Kristen; Lenschow, Deborah J; Perez, Daniel R; Martínez-Sobrido, Luis

    2016-02-01

    Influenza B viruses (IBVs) cause annual outbreaks of respiratory illness in humans and are increasingly recognized as a major cause of influenza-associated morbidity and mortality. Studying influenza viruses requires the use of secondary methodologies to identify virus-infected cells. To this end, replication-competent influenza A viruses (IAVs) expressing easily traceable fluorescent proteins have been recently developed. In contrast, similar approaches for IBV are mostly lacking. In this report, we describe the generation and characterization of replication-competent influenza B/Brisbane/60/2008 viruses expressing fluorescent mCherry or GFP fused to the C-terminal of the viral non-structural 1 (NS1) protein. Fluorescent-expressing IBVs display similar growth kinetics and plaque phenotype to wild-type IBV, while fluorescent protein expression allows for the easy identification of virus-infected cells. Without the need of secondary approaches to monitor viral infection, fluorescent-expressing IBVs represent an ideal approach to study the biology of IBV and an excellent platform for the rapid identification and characterization of antiviral therapeutics or neutralizing antibodies using high-throughput screening approaches. Lastly, fluorescent-expressing IBVs can be combined with the recently described reporter-expressing IAVs for the identification of novel therapeutics to combat these two important human respiratory pathogens. PMID:26590325

  20. Replication-competent fluorescent-expressing influenza B virus

    PubMed Central

    Nogales, Aitor; Rodríguez-Sánchez, Irene; Monte, Kristen; Lenschow, Deborah J.; Perez, Daniel R.; Martínez-Sobrido, Luis

    2016-01-01

    Influenza B viruses (IBVs) cause annual outbreaks of respiratory illness in humans and are increasingly recognized as a major cause of influenza-associated morbidity and mortality. Studying influenza viruses requires the use of secondary methodologies to identify virus-infected cells. To this end, replication-competent influenza A viruses (IAVs) expressing easily traceable fluorescent proteins have been recently developed. In contrast, similar approaches for IBV are mostly lacking. In this report, we describe the generation and characterization of replication-competent influenza B/Brisbane/60/2008 viruses expressing fluorescent mCherry or GFP fused to the C-terminal of the viral non-structural 1 (NS1) protein. Fluorescent-expressing IBVs display similar growth kinetics and plaque phenotype to wild-type IBV, while fluorescent protein expression allows for the easy identification of virus-infected cells. Without the need of secondary approaches to monitor viral infection, fluorescent-expressing IBVs represent an ideal approach to study the biology of IBV and an excellent platform for the rapid identification and characterization of antiviral therapeutics or neutralizing antibodies using high-throughput screening approaches. Lastly, fluorescent-expressing IBVs can be combined with the recently described reporter-expressing IAVs for the identification of novel therapeutics to combat these two important human respiratory pathogens. PMID:26590325

  1. The oligomeric Rep protein of Mungbean yellow mosaic India virus (MYMIV) is a likely replicative helicase

    PubMed Central

    Choudhury, Nirupam Roy; Malik, Punjab Singh; Singh, Dharmendra Kumar; Islam, Mohammad Nurul; Kaliappan, Kosalai; Mukherjee, Sunil Kumar

    2006-01-01

    Geminiviruses replicate by rolling circle mode of replication (RCR) and the viral Rep protein initiates RCR by the site-specific nicking at a conserved nonamer (TAATATT↓ AC) sequence. The mechanism of subsequent steps of the replication process, e.g. helicase activity to drive fork-elongation, etc. has largely remained obscure. Here we show that Rep of a geminivirus, namely, Mungbean yellow mosaic India virus (MYMIV), acts as a replicative helicase. The Rep-helicase, requiring ≥6 nt space for its efficient activity, translocates in the 3′→5′ direction, and the presence of forked junction in the substrate does not influence the activity to any great extent. Rep forms a large oligomeric complex and the helicase activity is dependent on the oligomeric conformation (∼24mer). The role of Rep as a replicative helicase has been demonstrated through ex vivo studies in Saccharomyces cerevisiae and in planta analyses in Nicotiana tabacum. We also establish that such helicase activity is not confined to the MYMIV system alone, but is also true with at least two other begomoviruses, viz., Mungbean yellow mosaic virus (MYMV) and Indian cassava mosaic virus (ICMV). PMID:17142233

  2. HIV-protease inhibitors block the replication of both vesicular stomatitis and influenza viruses at an early post-entry replication step

    SciTech Connect

    Federico, Maurizio

    2011-08-15

    The inhibitors of HIV-1 protease (PIs) have been designed to block the activity of the viral aspartyl-protease. However, it is now accepted that this family of inhibitors can also affect the activity of cell proteases. Since the replication of many virus species requires the activity of host cell proteases, investigating the effects of PIs on the life cycle of viruses other than HIV would be of interest. Here, the potent inhibition induced by saquinavir and nelfinavir on the replication of both vesicular stomatitis and influenza viruses is described. These are unrelated enveloped RNA viruses infecting target cells upon endocytosis and intracellular fusion. The PI-induced inhibition was apparently a consequence of a block at the level of the fusion between viral envelope and endosomal membranes. These findings would open the way towards the therapeutic use of PIs against enveloped RNA viruses other than HIV.

  3. Cellular Casein Kinase 2 and Protein Phosphatase 2A Modulate Replication Site Assembly of Bluetongue Virus*

    PubMed Central

    Mohl, Bjorn-Patrick; Roy, Polly

    2016-01-01

    A number of cytoplasmic replicating viruses produce cytoplasmic inclusion bodies or protein aggregates; however, a hallmark of viruses of the Reoviridae family is that they utilize these sites for purposes of replication and capsid assembly, functioning as viral assembly factories. Here we have used bluetongue virus (BTV) as a model system for this broad family of important viruses to understand the mechanisms regulating inclusion body assembly. Newly synthesized viral proteins interact with sequestered viral RNA molecules prior to capsid assembly and double-stranded RNA synthesis within viral inclusion bodies (VIBs). VIBs are predominantly comprised of a BTV-encoded non-structural protein 2 (NS2). Previous in vitro studies indicated that casein kinase 2 (CK2) mediated the phosphorylation of NS2, which regulated the propensity of NS2 to form larger aggregates. Using targeted pharmacological reagents, specific mutation in the viral genome by reverse genetics and confocal microscopy, here we demonstrate that CK2 activity is important for BTV replication. Furthermore, we show that a novel host cell factor, protein phosphatase 2A, is involved in NS2 dephosphorylation and that, together with CK2, it regulates VIB morphology and virus replication. Thus, these two host enzymes influence the dynamic nature of VIB assembly/disassembly, and these concerted activities may be relevant to the assembly and the release of these cores from VIBs. PMID:27226558

  4. NB protein does not affect influenza B virus replication in vitro and is not required for replication in or transmission between ferrets.

    PubMed

    Elderfield, Ruth A; Koutsakos, Marios; Frise, Rebecca; Bradley, Konrad; Ashcroft, Jonathan; Miah, Shanhjahan; Lackenby, Angie; Barclay, Wendy S

    2016-03-01

    The influenza B virus encodes a unique protein, NB, a membrane protein whose function in the replication cycle is not, as yet, understood. We engineered a recombinant influenza B virus lacking NB expression, with no concomitant difference in expression or activity of viral neuraminidase (NA) protein, an important caveat since NA is encoded on the same segment and initiated from a start codon just 4 nt downstream of NB. Replication of the virus lacking NB was not different to wild-type virus with full-length NB in clonal immortalized or complex primary cell cultures. In the mouse model, virus lacking NB induced slightly lower IFN-α levels in infected lungs, but this did not affect virus titres or weight loss. In ferrets infected with a mixture of viruses that did or did not express NB, there was no fitness advantage for the virus that retained NB. Moreover, virus lacking NB protein was transmitted following respiratory droplet exposure of sentinel animals. These data suggest no role for NB in supporting replication or transmission in vivo in this animal model. The role of NB and the nature of selection to retain it in all natural influenza B viruses remain unclear. PMID:26703440

  5. Dissecting host-virus interaction in lytic replication of a model herpesvirus.

    PubMed

    Dong, Xiaonan; Feng, Pinghui

    2011-01-01

    In response to viral infection, a host develops various defensive responses, such as activating innate immune signaling pathways that lead to antiviral cytokine production. In order to colonize the host, viruses are obligate to evade host antiviral responses and manipulate signaling pathways. Unraveling the host-virus interaction will shed light on the development of novel therapeutic strategies against viral infection. Murine γHV68 is closely related to human oncogenic Kaposi's sarcoma-associated herpesvirus and Epsten-Barr virus. γHV68 infection in laboratory mice provides a tractable small animal model to examine the entire course of host responses and viral infection in vivo, which are not available for human herpesviruses. In this protocol, we present a panel of methods for phenotypic characterization and molecular dissection of host signaling components in γHV68 lytic replication both in vivo and ex vivo. The availability of genetically modified mouse strains permits the interrogation of the roles of host signaling pathways during γHV68 acute infection in vivo. Additionally, mouse embryonic fibroblasts (MEFs) isolated from these deficient mouse strains can be used to further dissect roles of these molecules during γHV68 lytic replication ex vivo. Using virological and molecular biology assays, we can pinpoint the molecular mechanism of host-virus interactions and identify host and viral genes essential for viral lytic replication. Finally, a bacterial artificial chromosome (BAC) system facilitates the introduction of mutations into the viral factor(s) that specifically interrupt the host-virus interaction. Recombinant γHV68 carrying these mutations can be used to recapitulate the phenotypes of γHV68 lytic replication in MEFs deficient in key host signaling components. This protocol offers an excellent strategy to interrogate host-pathogen interaction at multiple levels of intervention in vivo and ex vivo. Recently, we have discovered that γHV68 usurps

  6. Interactome Analysis of the Influenza A Virus Transcription/Replication Machinery Identifies Protein Phosphatase 6 as a Cellular Factor Required for Efficient Virus Replication

    PubMed Central

    York, Ashley; Hutchinson, Edward C.

    2014-01-01

    ABSTRACT The negative-sense RNA genome of influenza A virus is transcribed and replicated by the viral RNA-dependent RNA polymerase (RdRP). The viral RdRP is an important host range determinant, indicating that its function is affected by interactions with cellular factors. However, the identities and the roles of most of these factors remain unknown. Here, we employed affinity purification followed by mass spectrometry to identify cellular proteins that interact with the influenza A virus RdRP in infected human cells. We purified RdRPs using a recombinant influenza virus in which the PB2 subunit of the RdRP is fused to a Strep-tag. When this tagged subunit was purified from infected cells, copurifying proteins included the other RdRP subunits (PB1 and PA) and the viral nucleoprotein and neuraminidase, as well as 171 cellular proteins. Label-free quantitative mass spectrometry revealed that the most abundant of these host proteins were chaperones, cytoskeletal proteins, importins, proteins involved in ubiquitination, kinases and phosphatases, and mitochondrial and ribosomal proteins. Among the phosphatases, we identified three subunits of the cellular serine/threonine protein phosphatase 6 (PP6), including the catalytic subunit PPP6C and regulatory subunits PPP6R1 and PPP6R3. PP6 was found to interact directly with the PB1 and PB2 subunits of the viral RdRP, and small interfering RNA (siRNA)-mediated knockdown of the catalytic subunit of PP6 in infected cells resulted in the reduction of viral RNA accumulation and the attenuation of virus growth. These results suggest that PP6 interacts with and positively regulates the activity of the influenza virus RdRP. IMPORTANCE Influenza A viruses are serious clinical and veterinary pathogens, causing substantial health and economic impacts. In addition to annual seasonal epidemics, occasional global pandemics occur when viral strains adapt to humans from other species. To replicate efficiently and cause disease, influenza

  7. Membranous replication factories induced by plus-strand RNA viruses.

    PubMed

    Romero-Brey, Inés; Bartenschlager, Ralf

    2014-07-01

    In this review, we summarize the current knowledge about the membranous replication factories of members of plus-strand (+) RNA viruses. We discuss primarily the architecture of these complex membrane rearrangements, because this topic emerged in the last few years as electron tomography has become more widely available. A general denominator is that two "morphotypes" of membrane alterations can be found that are exemplified by flaviviruses and hepaciviruses: membrane invaginations towards the lumen of the endoplasmatic reticulum (ER) and double membrane vesicles, representing extrusions also originating from the ER, respectively. We hypothesize that either morphotype might reflect common pathways and principles that are used by these viruses to form their membranous replication compartments. PMID:25054883

  8. Cellular microRNAs Repress Vesicular Stomatitis Virus but Not Theiler’s Virus Replication

    PubMed Central

    De Cock, Aurélie; Michiels, Thomas

    2016-01-01

    Picornavirus’ genomic RNA is a positive-stranded RNA sequence that also serves as a template for translation and replication. Cellular microRNAs were reported to interfere to different extents with the replication of specific picornaviruses, mostly acting as inhibitors. However, owing to the high error rate of their RNA-dependent RNA-polymerases, picornavirus quasi-species are expected to evolve rapidly in order to lose any detrimental microRNA target sequence. We examined the genome of Theiler’s murine encephalomyelitis virus (TMEV) for the presence of under-represented microRNA target sequences that could have been selected against during virus evolution. However, little evidence for such sequences was found in the genome of TMEV and introduction of the most under-represented microRNA target (miR-770-3p) in TMEV did not significantly affect viral replication in cells expressing this microRNA. To test the global impact of cellular microRNAs on viral replication, we designed a strategy based on short-term Dicer inactivation in mouse embryonic fibroblasts. Short-term Dicer inactivation led to a >10-fold decrease in microRNA abundance and strongly increased replication of Vesicular stomatitis virus (VSV), which was used as a microRNA-sensitive control virus. In contrast, Dicer inactivation did not increase TMEV replication. In conclusion, cellular microRNAs appear to exert little influence on Theiler’s virus fitness. PMID:26978386

  9. Structure of Replicating Simian Virus 40 Deoxyribonucleic Acid Molecules 1

    PubMed Central

    Sebring, E. D.; Kelly, T. J.; Thoren, M. M.; Salzman, N. P.

    1971-01-01

    Properties of replicating simian virus 40 (SV40) deoxyribonucleic acid (DNA) have been examined by sedimentation analysis and by direct observation during a lytic cycle of infection of African green monkey kidney cells. Two types of replicating DNA molecules were observed in the electron microscope. One was an open structure containing two branch points, three branches, and no free ends whose length measurements were consistent with those expected for replicating SV40 DNA molecules. A second species had the same features as the open structure, but in addition it contained a superhelix in the unreplicated portion of the molecule. Eighty to ninety per cent of the replicative intermediates (RI) were in this latter configuration, and length measurements of these molecules also were consistent with replicating SV40 DNA. Replicating DNA molecules with this configuration have not been described previously. RI, when examined in ethidium bromide-cesium chloride (EB-CsCl) isopycnic gradients, banded in a heterogeneous manner. A fraction of the RI banded at the same density as circular SV40 DNA containing one or more single-strand nicks (component II). The remaining radioactive RI banded at densities higher than that of component II, and material was present at all densities between that of supercoiled double-stranded DNA (component I) and component II. When RI that banded at different densities in EB-CsCl were examined in alkaline gradients, cosedimentation of parental DNA and newly replicated DNA did not occur. All newly replicated DNA sedimented more slowly than did intact single-stranded SV40 DNA, a finding that is inconsistent with the rolling circle model of DNA replication. An inverse correlation exists between the extent of replication of the SV40 DNA and the banding density in EB-CsCl. Under alkaline conditions, the parental DNA strands that were contained in the RI sedimented as covalently closed structures. The sedimentation rates in alkali of the covalently closed

  10. Human cytomegalovirus renders cells non-permissive for replication of herpes simplex viruses

    SciTech Connect

    Cockley, K.D.

    1988-01-01

    The herpes simplex virus (HSV) genome during production infection in vitro may be subject to negative regulation which results in modification of the cascade of expression of herpes virus macromolecular synthesis leading to establishment of HSV latency. In the present study, human embryonic lung (HEL) cells infected with human cytomegalovirus (HCMV) restricted the replication of HSV type-1 (HSV-1). A delay in HSV replication of 15 hr as well as a consistent, almost 1000-fold inhibition of HSV replication in HCMV-infected cell cultures harvested 24 to 72 hr after superinfection were observed compared with controls infected with HSV alone. HSV type-2 (HSV-2) replication was similarly inhibited in HCMV-infected HEL cells. Prior ultraviolet-irradiation (UV) of HCMV removed the block to HSV replication, demonstrating the requirement for an active HCMV genome. HCMV deoxyribonucleic acid (DNA) negative temperature-sensitive (ts) mutants inhibited HSV replications as efficiently as wild-type (wt) HCMV at the non-permissive temperature. Evidence for penetration and replication of superinfecting HSV into HCMV-infected cells was provided by blot hybridization of HSV DNA synthesized in HSV-superinfected cell cultures and by cesium chloride density gradient analysis of ({sup 3}H)-labeled HSV-1-superinfected cells.

  11. Glycosphingolipid GM3 is Indispensable for Dengue Virus Genome Replication

    PubMed Central

    Wang, Kezhen; Wang, Juanjuan; Sun, Ta; Bian, Gang; Pan, Wen; Feng, Tingting; Wang, Penghua; Li, Yunsen; Dai, Jianfeng

    2016-01-01

    Dengue virus (DENV) causes the most prevalent arthropod-borne viral disease of humans worldwide. Glycosphingolipids (GSLs) are involved in virus infection by regulating various steps of viral-host interaction. However, the distinct role of GSLs during DENV infection remains unclear. In this study, we used mouse melanoma B16 cells and their GSL-deficient mutant counterpart GM95 cells to study the influence of GSLs on DENV infection. Surprisingly, GM95 cells were highly resistant to DENV infection compared with B16 cells. Pretreatment of B16 cells with synthetase inhibitor of GM3, the most abundant GSLs in B16 cells, or silencing GM3 synthetase T3GAL5, significantly inhibited DENV infection. DENV attachment and endocytosis were not impaired in GM95 cells, but DENV genome replication was obviously inhibited in GM95 cells compared to B16 cells. Furthermore, GM3 was colocalized with DENV viral replication complex on endoplasmic reticulum (ER) inside the B16 cells. Finally, GM3 synthetase inhibitor significantly reduced the mortality rate of suckling mice that challenged with DENV by impairing the viral replication in mouse brain. Taken together, these data indicated that GM3 was not required for DENV attachment and endocytosis, however, essential for viral genome replication. Targeting GM3 could be a novel strategy to inhibit DENV infection. PMID:27313500

  12. Monkey Viperin Restricts Porcine Reproductive and Respiratory Syndrome Virus Replication

    PubMed Central

    Fang, Jianyu; Wang, Haiyan; Bai, Juan; Zhang, Qiaoya; Li, Yufeng; Liu, Fei; Jiang, Ping

    2016-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen which causes huge economic damage globally in the swine industry. Current vaccination strategies provide only limited protection against PRRSV infection. Viperin is an interferon (IFN) stimulated protein that inhibits some virus infections via IFN-dependent or IFN-independent pathways. However, the role of viperin in PRRSV infection is not well understood. In this study, we cloned the full-length monkey viperin (mViperin) complementary DNA (cDNA) from IFN-α-treated African green monkey Marc-145 cells. It was found that the mViperin is up-regulated following PRRSV infection in Marc-145 cells along with elevated IRF-1 gene levels. IFN-α induced mViperin expression in a dose- and time-dependent manner and strongly inhibits PRRSV replication in Marc-145 cells. Overexpression of mViperin suppresses PRRSV replication by blocking the early steps of PRRSV entry and genome replication and translation but not inhibiting assembly and release. And mViperin co-localized with PRRSV GP5 and N protein, but only interacted with N protein in distinct cytoplasmic loci. Furthermore, it was found that the 13–16 amino acids of mViperin were essential for inhibiting PRRSV replication, by disrupting the distribution of mViperin protein from the granular distribution to a homogeneous distribution in the cytoplasm. These results could be helpful in the future development of novel antiviral therapies against PRRSV infection. PMID:27232627

  13. Adaptor Protein 1A Facilitates Dengue Virus Replication

    PubMed Central

    Yasamut, Umpa; Tongmuang, Nopprarat; Yenchitsomanus, Pa-thai; Junking, Mutita; Noisakran, Sansanee; Puttikhunt, Chunya; Chu, Justin Jang Hann; Limjindaporn, Thawornchai

    2015-01-01

    Rearrangement of membrane structure induced by dengue virus (DENV) is essential for replication, and requires host cellular machinery. Adaptor protein complex (AP)-1 is a host component, which can be recruited to components required for membrane rearrangement. Therefore, dysfunction of AP-1 may affect membrane organization, thereby decreasing replication of virus in infected cells. In the present study, AP-1-dependent traffic inhibitor inhibited DENV protein expression and virion production. We further clarified the role of AP-1A in the life cycle of DENV by RNA interference. AP-1A was not involved in DENV entry into cells. However, it facilitated DENV RNA replication. Viral RNA level was reduced significantly in Huh7 cells transfected with AP-1A small interfering RNA (siRNA) compared with control siRNA. Transfection of naked DENV viral RNA into Huh7 cells transfected with AP-1A siRNA resulted in less viral RNA and virion production than transfection into Huh7 cells transfected with control siRNA. Huh7 cells transfected with AP-1A siRNA showed greater modification of membrane structures and fewer vesicular packets compared with cells transfected with control siRNA. Therefore, AP-1A may partly control DENV-induced rearrangement of membrane structures required for viral replication. PMID:26090672

  14. Diverse roles of host RNA binding proteins in RNA virus replication.

    PubMed

    Li, Zhenghe; Nagy, Peter D

    2011-01-01

    Plus-strand +RNA viruses co-opt host RNA-binding proteins (RBPs) to perform many functions during viral replication. A few host RBPs have been identified that affect the recruitment of viral +RNAs for replication. Other subverted host RBPs help the assembly of the membrane-bound replicase complexes, regulate the activity of the replicase and control minus- or plus-strand RNA synthesis. The host RBPs also affect the stability of viral RNAs, which have to escape cellular RNA degradation pathways. While many host RBPs seem to have specialized functions, others participate in multiple events during infection. Several conserved RBPs, such as eEF1A, hnRNP proteins and Lsm 1-7 complex, are co-opted by evolutionarily diverse +RNA viruses, underscoring some common themes in virus-host interactions. On the other hand, viruses also hijack unique RBPs, suggesting that +RNA viruses could utilize different RBPs to perform similar functions. Moreover, different +RNA viruses have adapted unique strategies for co-opting unique RBPs. Altogether, a deeper understanding of the functions of the host RBPs subverted for viral replication will help development of novel antiviral strategies and give new insights into host RNA biology. PMID:21505273

  15. Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene.

    PubMed Central

    Kimpton, J; Emerman, M

    1992-01-01

    We have constructed a HeLa cell line that both expresses high levels of CD4 and contains a single integrated copy of a beta-galactosidase gene that is under the control of a truncated human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR). This cell line, called CD4-LTR/beta-gal, can be used to determine quantitatively the titer of laboratory-adapted HIV strains, and the method used to do so is as sensitive as the determination of viral titers in a T-cell line by end point dilution. Using this cell line as a titer system, we calculated that HIV-1 stocks contain only one infectious particle per 3,500 to 12,000 virions. Virus derived from a molecular clone of a macrophagetropic provirus will not infect this cell line. We have also cocultivated peripheral blood lymphocyte cultures from HIV-infected individuals with the CD4-LTR/beta-gal indicator cells. In a majority of primary isolates (five of eight), including isolates from asymptomatic patients, rare virus-infected cells that can activate the beta-galactosidase gene are present. Images PMID:1548759

  16. Uracil DNA Glycosylase BKRF3 Contributes to Epstein-Barr Virus DNA Replication through Physical Interactions with Proteins in Viral DNA Replication Complex

    PubMed Central

    Su, Mei-Tzu; Liu, I-Hua; Wu, Chia-Wei; Chang, Shu-Ming; Tsai, Ching-Hwa; Yang, Pei-Wen; Chuang, Yu-Chia; Lee, Chung-Pei

    2014-01-01

    ABSTRACT Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmunoprecipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. IMPORTANCE Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme

  17. Inhibition of hepatitis B virus and human immunodeficiency virus (HIV-1) replication by Warscewiczia coccinea (Vahl) Kl. (Rubiaceae) ethanol extract.

    PubMed

    Quintero, A; Fabbro, R; Maillo, M; Barrios, M; Milano, M B; Fernández, A; Williams, B; Michelangeli, F; Rangel, H R; Pujol, F H

    2011-09-01

    The primary objective of this study was to search for natural products capable of inhibiting hepatitis B virus (HBV) replication. The research design, methods and procedures included testing hydro-alcoholic extracts (n = 66) of 31 species from the Venezuelan Amazonian rain forest on the cell line HepG2 2.2.15, which constitutively produces HBV. The main outcomes and results were as follows: the species Euterpe precatoria, Jacaranda copaia, Jacaranda obtusifolia, Senna silvestris, Warscewiczia coccinea and Vochysia glaberrima exerted some degree of inhibition on HBV replication. The leaves of W. coccinea showed a significant antiviral activity: 80% inhibition with 100 µg mL⁻¹ of extract. This extract also exerted inhibition on covalently closed circular deoxyribonucleic acid (cccDNA) production and on HIV-1 replication in MT4 cells (more than 90% inhibition with 50 µg mL⁻¹ of extract). Initial fractionation using organic solvents of increasing polarity and water showed that the ethanol fraction was responsible for most of the antiviral inhibitory activities of both the viruses. It was concluded that Warscewiczia coccinea extract showed inhibition of HBV and HIV-1 replication. Bioassay-guided purification of this fraction may allow the isolation of an antiviral compound with inhibitory activity against both viruses. PMID:21827337

  18. HMGB1 Protein Binds to Influenza Virus Nucleoprotein and Promotes Viral Replication

    PubMed Central

    Moisy, Dorothée; Avilov, Sergiy V.; Jacob, Yves; Laoide, Brid M.; Ge, Xingyi; Baudin, Florence; Jestin, Jean-Luc

    2012-01-01

    Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses. PMID:22696656

  19. High-level hepatitis B virus replication in transgenic mice.

    PubMed Central

    Guidotti, L G; Matzke, B; Schaller, H; Chisari, F V

    1995-01-01

    Hepatitis B virus (HBV) transgenic mice whose hepatocytes replicate the virus at levels comparable to that in the infected livers of patients with chronic hepatitis have been produced, without any evidence of cytopathology. High-level viral gene expression was obtained in the liver and kidney tissues in three independent lineages. These animals were produced with a terminally redundant viral DNA construct (HBV 1.3) that starts just upstream of HBV enhancer I, extends completely around the circular viral genome, and ends just downstream of the unique polyadenylation site in HBV. In these animals, the viral mRNA is more abundant in centrilobular hepatocytes than elsewhere in the hepatic lobule. High-level viral DNA replication occurs inside viral nucleocapsid particles that preferentially form in the cytoplasm of these centrilobular hepatocytes, suggesting that an expression threshold must be reached for nucleocapsid assembly and viral replication to occur. Despite the restricted distribution of the viral replication machinery in centrilobular cytoplasmic nucleocapsids, nucleocapsid particles are detectable in the vast majority of hepatocyte nuclei throughout the hepatic lobule. The intranuclear nucleocapsid particles are empty, however, suggesting that viral nucleocapsid particle assembly occurs independently in the nucleus and the cytoplasm of the hepatocyte and implying that cytoplasmic nucleocapsid particles do not transport the viral genome across the nuclear membrane into the nucleus during the viral life cycle. This model creates the opportunity to examine the influence of viral and host factors on HBV pathogenesis and replication and to assess the antiviral potential of pharmacological agents and physiological processes, including the immune response. PMID:7666518

  20. A Unique Role for the Host ESCRT Proteins in Replication of Tomato bushy stunt virus

    PubMed Central

    Barajas, Daniel; Jiang, Yi; Nagy, Peter D.

    2009-01-01

    Plus-stranded RNA viruses replicate in infected cells by assembling viral replicase complexes consisting of viral- and host-coded proteins. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of seven ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. In this paper, we show that the expression of dominant negative Vps23p, Vps24p, Snf7p, and Vps4p ESCRT factors inhibited virus replication in the plant host, suggesting that tombusviruses co-opt selected ESCRT proteins for the assembly of the viral replicase complex. We also show that TBSV p33 replication protein interacts with Vps23p ESCRT-I and Bro1p accessory ESCRT factors. The interaction with p33 leads to the recruitment of Vps23p to the peroxisomes, the sites of TBSV replication. The viral replicase showed reduced activity and the minus-stranded viral RNA in the replicase became more accessible to ribonuclease when derived from vps23Δ or vps24Δ yeast, suggesting that the protection of the viral RNA is compromised within the replicase complex assembled in the absence of ESCRT proteins. The recruitment of ESCRT proteins is needed for the precise assembly of the replicase complex, which might help the virus evade recognition by the host defense surveillance system and/or prevent viral RNA destruction by the gene silencing machinery. PMID:20041173

  1. Correlation between Virus Replication and Antibody Responses in Macaques following Infection with Pandemic Influenza A Virus

    PubMed Central

    Koopman, Gerrit; Dekking, Liesbeth; Mortier, Daniëlla; Nieuwenhuis, Ivonne G.; van Heteren, Melanie; Kuipers, Harmjan; Remarque, Edmond J.; Radošević, Katarina; Bogers, Willy M. J. M.

    2015-01-01

    ABSTRACT Influenza virus infection of nonhuman primates is a well-established animal model for studying pathogenesis and for evaluating prophylactic and therapeutic intervention strategies. However, usually a standard dose is used for the infection, and there is no information on the relation between challenge dose and virus replication or the induction of immune responses. Such information is also very scarce for humans and largely confined to evaluation of attenuated virus strains. Here, we have compared the effect of a commonly used dose (4 × 106 50% tissue culture infective doses) versus a 100-fold-higher dose, administered by intrabronchial installation, to two groups of 6 cynomolgus macaques. Animals infected with the high virus dose showed more fever and had higher peak levels of gamma interferon in the blood. However, virus replication in the trachea was not significantly different between the groups, although in 2 out of 6 animals from the high-dose group it was present at higher levels and for a longer duration. The virus-specific antibody response was not significantly different between the groups. However, antibody enzyme-linked immunosorbent assay, virus neutralization, and hemagglutination inhibition antibody titers correlated with cumulative virus production in the trachea. In conclusion, using influenza virus infection in cynomolgus macaques as a model, we demonstrated a relationship between the level of virus production upon infection and induction of functional antibody responses against the virus. IMPORTANCE There is only very limited information on the effect of virus inoculation dose on the level of virus production and the induction of adaptive immune responses in humans or nonhuman primates. We found only a marginal and variable effect of virus dose on virus production in the trachea but a significant effect on body temperature. The induction of functional antibody responses, including virus neutralization titer, hemagglutination inhibition

  2. Cocaine-mediated enhancement of virus replication in macrophages: implications for human immunodeficiency virus-associated dementia.

    PubMed

    Dhillon, Navneet K; Williams, Rachel; Peng, Fuwang; Tsai, Yi-Jou; Dhillon, Sukhbir; Nicolay, Brandon; Gadgil, Milind; Kumar, Anil; Buch, Shilpa J

    2007-12-01

    Injection drug use has been recognized as a major risk factor for acquired immunodeficiency syndrome (AIDS) from the outset of the epidemic. Cocaine, one of the most widely abused drugs in the United States, can both impair the functions of macrophages and CD4(+) lymphocytes and also activate human immunodeficiency virus (HIV)-1 expression in these cells. Because the brain is the target organ for both cocaine and HIV, the objective of the present study was to explore the effects of cocaine on virus replication in macrophages, the target cells for the virus in the central nervous system (CNS). Cocaine markedly enhanced virus production in simian human immunodeficiency virus (SHIV)-infected monocyte-derived macrophages (MDMs) and in U1 cells, a chronically infected promonocytic cell line as monitored by enzyme-linked immunosorbent assay (ELISA) and immunocytochemistry. Cocaine treatment also resulted in the activation of nuclear factor (NF)-kappa B and transcriptional activation of the HIV-LTR (long terminal repeat) gag-GFP (green fluorescent protein). Analyses of chemokines in cocaine-treated macrophages by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Luminex assays suggested increased expression of interleukin (IL)-10, a cytokine that is known to promote HIV replication in MDMs. In addition to enhancing IL-10 expression, cocaine also caused an up-regulation of the macrophage activation marker, human leukocyte antigen (HLA)-DR, in MDMs. The synergistic effect of cocaine on virus replication and its enhancement of host activation markers suggest that cocaine functions at multiple pathways to accelerate HIV-associated dementia (HAD). PMID:18097880

  3. Inhibition of Tulane Virus Replication in vitro with RNA Interference

    PubMed Central

    Fan, Qiang; Wei, Chao; Xia, Ming; Jiang, Xi

    2012-01-01

    RNA interference (RNAi), a conserved mechanism triggered by small interfering RNA (siRNA), has been used for suppressing gene expression through RNA degradation. The replication of caliciviruses (CVs) with RNAi was studied using the Tulane virus (TV) as a model. Five siRNAs targeting the non-structural, the major (VP1) and minor (VP2) structural genes of the TV were developed and the viruses were quantified using qPCR and TCID50 assay. Treatment of the cells with siRNA 4 hours before viral inoculation significantly reduced viral titer by up to 2.6 logs and dramatically decreased viral RNA copy numbers and viral titers 48 hours post infection in four of the five siRNAs studied. The results were confirmed by Western blot, in which the major structural protein VP1 was markedly reduced in both the cells and the culture medium. Two small protein bands of the S and P domains of the viral capsid protein were also detected in the cell lysates, although their role in viral replication remains unknown. Since the TV shares many biological properties with human noroviruses (NoVs), the successful demonstration of RNAi in TV replication would provide valuable information in control of acute gastroenteritis caused by human NoVs. PMID:23154881

  4. Slowly Replicating Lytic Viruses: Pseudolysogenic Persistence and Within-Host Competition

    NASA Astrophysics Data System (ADS)

    Zhang, Jingshan; Shakhnovich, Eugene I.

    2009-05-01

    We study the population dynamics of lytic viruses which replicate slowly in dividing host cells within an organism or cell culture, and find a range of viral replication rates that allows viruses to persist, avoiding extinction of host cells or dilution of viruses at too rapid or too slow viral replication. For the within-host competition between viral strains with different replication rates, a strain with a “stable” replication rate in the persistence range could outcompete another strain. However, when strains with higher and lower than the stable value replication rates are both present, competition between strains does not result in the dominance of one strain, but in their coexistence.

  5. Replication and supercoiling of simian virus 40 DNA in cell extracts from human cells.

    PubMed Central

    Stillman, B W; Gluzman, Y

    1985-01-01

    Soluble extracts prepared from the nucleus and cytoplasm of human 293 cells are capable of efficient replication and supercoiling of added DNA templates that contain the origin of simian virus 40 replication. Extracts prepared from human HeLa cells are less active than similarly prepared extracts from 293 cells for initiation and elongation of nascent DNA strands. DNA synthesis is dependent on addition of purified simian virus 40 tumor (T) antigen, which is isolated by immunoaffinity chromatography of extracts from cells infected with an adenovirus modified to produce large quantities of this protein. In the presence of T antigen and the cytoplasmic extract, replication initiates at the origin and continues bidirectionally. Initiation is completely dependent on functional origin sequences; a plasmid DNA containing an origin mutation known to affect DNA replication in vivo fails to replicate in vitro. Multiple rounds of DNA synthesis occur, as shown by the appearance of heavy-heavy, bromodeoxyuridine-labeled DNA products. The products of this reaction are resolved, but are relaxed, covalently closed DNA circles. Addition of a nuclear extract during DNA synthesis promotes the negative supercoiling of the replicated DNA molecules. Images PMID:3018548

  6. VIRUS: a massively replicated integral-field spectrograph for HET

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.; MacQueen, Phillip J.; Tufts, Joseph R.; Kelz, Andreas; Roth, Martin M.; Altmann, Werner; Segura, Pedro; Gebhardt, Karl; Palunas, Povilas

    2006-06-01

    We present the design of, and the science drivers for, the Visible Integral-field Replicable Unit Spectrograph (VIRUS). This instrument is made up of 145 individually small and simple spectrographs, each fed by a fiber integral field unit. The total VIRUS-145 instrument covers ~30 sq. arcminutes per observation, providing integral field spectroscopy from 340 to 570 nm, simultaneously, of 35,670 spatial elements, each 1 sq. arcsecond on the sky. This corresponds to 15 million resolution elements per exposure. VIRUS-145 will be mounted on the Hobby-Eberly Telescope and fed by a new wide-field corrector with 22 arcminutes diameter field of view. VIRUS represents a new approach to spectrograph design, offering the science multiplex advantage of huge sky coverage for an integral field spectrograph, coupled with the engineering multiplex advantage of >100 spectrographs making up a whole. VIRUS is designed for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) which will use baryonic acoustic oscillations imprinted on the large-scale distribution of Lyman-α emitting galaxies to provide unique constraints on the expansion history of the universe that can constrain the properties of dark energy.

  7. Phosphorylation at the Homotypic Interface Regulates Nucleoprotein Oligomerization and Assembly of the Influenza Virus Replication Machinery

    PubMed Central

    Mondal, Arindam; Potts, Gregory K.; Dawson, Anthony R.; Coon, Joshua J.; Mehle, Andrew

    2015-01-01

    Negative-sense RNA viruses assemble large ribonucleoprotein (RNP) complexes that direct replication and transcription of the viral genome. Influenza virus RNPs contain the polymerase, genomic RNA and multiple copies of nucleoprotein (NP). During RNP assembly, monomeric NP oligomerizes along the length of the genomic RNA. Regulated assembly of the RNP is essential for virus replication, but how NP is maintained as a monomer that subsequently oligomerizes to form RNPs is poorly understood. Here we elucidate a mechanism whereby NP phosphorylation regulates oligomerization. We identified new evolutionarily conserved phosphorylation sites on NP and demonstrated that phosphorylation of NP decreased formation of higher-order complexes. Two phosphorylation sites were located on opposite sides of the NP:NP interface. In both influenza A and B virus, mutating or mimicking phosphorylation at these residues blocked homotypic interactions and drove NP towards a monomeric form. Highlighting the central role of this process during infection, these mutations impaired RNP formation, polymerase activity and virus replication. Thus, dynamic phosphorylation of NP regulates RNP assembly and modulates progression through the viral life cycle. PMID:25867750

  8. MYC-induced reprogramming of glutamine catabolism supports optimal virus replication

    PubMed Central

    Thai, Minh; Thaker, Shivani K.; Feng, Jun; Du, Yushen; Hu, Hailiang; Ting Wu, Ting; Graeber, Thomas G.; Braas, Daniel; Christofk, Heather R.

    2015-01-01

    Viruses rewire host cell glucose and glutamine metabolism to meet the bioenergetic and biosynthetic demands of viral propagation. However, the mechanism by which viruses reprogram glutamine metabolism and the metabolic fate of glutamine during adenovirus infection have remained elusive. Here, we show MYC activation is necessary for adenovirus-induced upregulation of host cell glutamine utilization and increased expression of glutamine transporters and glutamine catabolism enzymes. Adenovirus-induced MYC activation promotes increased glutamine uptake, increased use of glutamine in reductive carboxylation and increased use of glutamine in generating hexosamine pathway intermediates and specific amino acids. We identify glutaminase (GLS) as a critical enzyme for optimal adenovirus replication and demonstrate that GLS inhibition decreases replication of adenovirus, herpes simplex virus 1 and influenza A in cultured primary cells. Our findings show that adenovirus-induced reprogramming of glutamine metabolism through MYC activation promotes optimal progeny virion generation, and suggest that GLS inhibitors may be useful therapeutically to reduce replication of diverse viruses. PMID:26561297

  9. Three-dimensional architecture of tick-borne encephalitis virus replication sites and trafficking of the replicated RNA.

    PubMed

    Miorin, Lisa; Romero-Brey, Inés; Maiuri, Paolo; Hoppe, Simone; Krijnse-Locker, Jacomine; Bartenschlager, Ralf; Marcello, Alessandro

    2013-06-01

    Flavivirus replication is accompanied by the rearrangement of cellular membranes that may facilitate viral genome replication and protect viral components from host cell responses. The topological organization of viral replication sites and the fate of replicated viral RNA are not fully understood. We exploited electron microscopy to map the organization of tick-borne encephalitis virus (TBEV) replication compartments in infected cells and in cells transfected with a replicon. Under both conditions, 80-nm vesicles were seen within the lumen of the endoplasmic reticulum (ER) that in infected cells also contained virions. By electron tomography, the vesicles appeared as invaginations of the ER membrane, displaying a pore that could enable release of newly synthesized viral RNA into the cytoplasm. To track the fate of TBEV RNA, we took advantage of our recently developed method of viral RNA fluorescent tagging for live-cell imaging combined with bleaching techniques. TBEV RNA was found outside virus-induced vesicles either associated to ER membranes or free to move within a defined area of juxtaposed ER cisternae. From our results, we propose a biologically relevant model of the possible topological organization of flavivirus replication compartments composed of replication vesicles and a confined extravesicular space where replicated viral RNA is retained. Hence, TBEV modifies the ER membrane architecture to provide a protected environment for viral replication and for the maintenance of newly replicated RNA available for subsequent steps of the virus life cycle. PMID:23552408

  10. Caffeine inhibits hepatitis C virus replication in vitro.

    PubMed

    Batista, Mariana N; Carneiro, Bruno M; Braga, Ana Cláudia S; Rahal, Paula

    2015-02-01

    Hepatitis C is considered the major cause of cirrhosis and hepatocellular carcinoma. Conventional treatment is not effective against some hepatitis C virus (HCV) genotypes; therefore, new treatments are needed. Coffee and, more recently, caffeine, have been found to have a beneficial effect in several disorders of the liver, including those manifesting abnormal liver biochemistry, cirrhosis and hepatocellular carcinoma. Caffeine acts directly by delaying fibrosis, thereby improving the function of liver cellular pathways and interfering with pathways used by the HCV replication cycle. In the current study, the direct relationship between caffeine and viral replication was evaluated. The Huh-7.5 cell line was used for transient infections with FL-J6/JFH-5'C19Rluc2AUbi and to establish a cell line stably expressing SGR-Feo JFH-1. Caffeine efficiently inhibited HCV replication in a dose-dependent manner at non-cytotoxic concentrations and demonstrated an IC50 value of 0.7263 mM after 48 h of incubation. These data demonstrate that caffeine may be an important new agent for anti-HCV therapies due to its efficient inhibition of HCV replication at non-toxic concentrations. PMID:25491197

  11. The herpes simplex virus type 1 regulatory protein ICP0 enhances virus replication during acute infection and reactivation from latency.

    PubMed Central

    Cai, W; Astor, T L; Liptak, L M; Cho, C; Coen, D M; Schaffer, P A

    1993-01-01

    ICP0 is a potent activator of herpes simplex virus type 1 gene expression in transient assays and in productive infection. A role for ICP0 in reactivation from latency in vivo has also been suggested on the basis of the observation that viruses with mutations in both copies of the diploid gene for ICP0 reactivate less efficiently than wild-type virus. Because the ICP0 gene is contained entirely within the coding sequences for the latency-associated transcripts (LATs), ICP0 mutants also contain mutations in LAT coding sequences. This overlap raises the question of whether mutations in ICP0 or the LATs, which have also been implicated in reactivation, are responsible for the reduced reactivation frequencies characteristic of ICP0 mutants. Two approaches were taken to examine more definitively the role of ICP0 in the establishment and reactivation of latency. First, a series of ICP0 nonsense, insertion, and deletion mutant viruses that exhibit graded levels of ICP0-specific transactivating activity were tested for parameters of the establishment and reactivation of latency in a mouse ocular model. Although these mutants are ICP0 LAT double mutants, all nonsense mutants induced the synthesis of near-wild-type levels of the 2-kb LAT, demonstrating that the nonsense linker did not disrupt the synthesis of this LAT species. All mutants replicated less efficiently than the wild-type virus in mouse eyes and ganglia during the acute phase of infection. The replication efficiencies of the mutants at these sites corresponded well with the ICP0 transactivating activities of individual mutant peptides in transient expression assays. All mutants exhibited reduced reactivation frequencies relative to those of wild-type virus, and reactivation frequencies, like replication efficiencies in eyes and ganglia, correlated well with the level of ICP0 transactivating activity exhibited by individual mutant peptides. The amount of DNA of the different mutants varied in latently infected

  12. Replication protein of tobacco mosaic virus cotranslationally binds the 5′ untranslated region of genomic RNA to enable viral replication

    PubMed Central

    Kawamura-Nagaya, Kazue; Ishibashi, Kazuhiro; Huang, Ying-Ping; Miyashita, Shuhei; Ishikawa, Masayuki

    2014-01-01

    Genomic RNA of positive-strand RNA viruses replicate via complementary (i.e., negative-strand) RNA in membrane-bound replication complexes. Before replication complex formation, virus-encoded replication proteins specifically recognize genomic RNA molecules and recruit them to sites of replication. Moreover, in many of these viruses, selection of replication templates by the replication proteins occurs preferentially in cis. This property is advantageous to the viruses in several aspects of viral replication and evolution, but the underlying molecular mechanisms have not been characterized. Here, we used an in vitro translation system to show that a 126-kDa replication protein of tobacco mosaic virus (TMV), a positive-strand RNA virus, binds a 5′-terminal ∼70-nucleotide region of TMV RNA cotranslationally, but not posttranslationally. TMV mutants that carried nucleotide changes in the 5′-terminal region and showed a defect in the binding were unable to synthesize negative-strand RNA, indicating that this binding is essential for template selection. A C-terminally truncated 126-kDa protein, but not the full-length 126-kDa protein, was able to posttranslationally bind TMV RNA in vitro, suggesting that binding of the 126-kDa protein to the 70-nucleotide region occurs during translation and before synthesis of the C-terminal inhibitory domain. We also show that binding of the 126-kDa protein prevents further translation of the bound TMV RNA. These data provide a mechanistic explanation of how the 126-kDa protein selects replication templates in cis and how fatal collision between translating ribosomes and negative-strand RNA-synthesizing polymerases on the genomic RNA is avoided. PMID:24711385

  13. Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast

    SciTech Connect

    Barajas, Daniel; Xu, Kai; Sharma, Monika; Wu, Cheng-Yu; Nagy, Peter D.

    2014-12-15

    Positive-stranded RNA viruses induce new membranous structures and promote membrane proliferation in infected cells to facilitate viral replication. In this paper, the authors show that a plant-infecting tombusvirus upregulates transcription of phospholipid biosynthesis genes, such as INO1, OPI3 and CHO1, and increases phospholipid levels in yeast model host. This is accomplished by the viral p33 replication protein, which interacts with Opi1p FFAT domain protein and Scs2p VAP protein. Opi1p and Scs2p are phospholipid sensor proteins and they repress the expression of phospholipid genes. Accordingly, deletion of OPI1 transcription repressor in yeast has a stimulatory effect on TBSV RNA accumulation and enhanced tombusvirus replicase activity in an in vitro assay. Altogether, the presented data convincingly demonstrate that de novo lipid biosynthesis is required for optimal TBSV replication. Overall, this work reveals that a (+)RNA virus reprograms the phospholipid biosynthesis pathway in a unique way to facilitate its replication in yeast cells. - Highlights: • Tombusvirus p33 replication protein interacts with FFAT-domain host protein. • Tombusvirus replication leads to upregulation of phospholipids. • Tombusvirus replication depends on de novo lipid synthesis. • Deletion of FFAT-domain host protein enhances TBSV replication. • TBSV rewires host phospholipid synthesis.

  14. Interleukin-12 inhibits hepatitis B virus replication in transgenic mice.

    PubMed Central

    Cavanaugh, V J; Guidotti, L G; Chisari, F V

    1997-01-01

    Interleukin-12 (IL-12) is a heterodimeric cytokine produced by antigen-presenting cells that has the ability to induce gamma interferon (IFN-gamma) secretion by T and natural killer cells and to generate normal Th1 responses. These properties suggest that IL-12 may play an important role in the immune response to many viruses, including hepatitis B virus (HBV). Recently, we have shown that HBV-specific cytotoxic T lymphocytes inhibit HBV replication in the livers of transgenic mice by a noncytolytic process that is mediated in part by IFN-gamma. In the current study, we demonstrated that the same antiviral response can be initiated by recombinant murine IL-12 and we showed that the antiviral effect of IL-12 extends to extrahepatic sites such as the kidney. Southern blot analyses revealed the complete disappearance of HBV replicative intermediates from liver and kidney tissues at IL-12 doses that induce little or no inflammation in these tissues. In addition, immunohistochemical analysis demonstrated the disappearance of cytoplasmic hepatitis B core antigen from both tissues after IL-12 treatment, suggesting that IL-12 either prevents the assembly or triggers the degradation of the nucleocapsid particles within which HBV replication occurs. Importantly, we demonstrated that although IFN-gamma, tumor necrosis factor alpha, and IFN-alpha/beta mRNA are induced in the liver and kidney after IL-12 administration, the antiviral effect of IL-12 is mediated principally by its ability to induce IFN-gamma production in this model. These results suggest that IL-12, through its ability to induce IFN-gamma, probably plays an important role in the antiviral immune response to HBV during natural infection. Further, since relatively nontoxic doses of recombinant IL-12 profoundly inhibit HBV replication in the liver and extrahepatic sites in this model, IL-12 may have therapeutic value as an antiviral agent for the treatment of chronic HBV infection. PMID:9060687

  15. Rabies virus phosphoprotein interacts with ribosomal protein L9 and affects rabies virus replication.

    PubMed

    Li, Youwen; Dong, Wanyu; Shi, Yuejun; Deng, Feng; Chen, Xi; Wan, Chunyun; Zhou, Ming; Zhao, Ling; Fu, Zhen F; Peng, Guiqing

    2016-01-15

    Rabies virus is a highly neurotropic virus that can cause fatal infection of the central nervous system in warm-blooded animals. The RABV phosphoprotein (P), an essential cofactor of the virus RNA-dependent RNA polymerase, is required for virus replication. In this study, the ribosomal protein L9, which has functions in protein translation, is identified as P-interacting cellular factor using phage display analysis. Direct binding between the L9 and P was confirmed by protein pull-down and co-immunoprecipitation analyses. It was further demonstrated that L9 translocates from the nucleus to the cytoplasm, where it colocalizes with P in cells infected with RABV or transfected with P gene. RABV replication was reduced with L9 overexpression and enhanced with L9 knockdown. Thus, we propose that during RABV infection, P binds to L9 that translocates from the nucleus to the cytoplasm, inhibiting the initial stage of RABV transcription. PMID:26655239

  16. Viral Determinants of miR-122-Independent Hepatitis C Virus Replication

    PubMed Central

    Hopcraft, Sharon E.; Azarm, Kristopher D.; Israelow, Benjamin; Lévêque, Nicolas; Schwarz, Megan C.; Hsu, Tien-Huei; Chambers, Matthew T.; Sourisseau, Marion; Semler, Bert L.

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) replication requires binding of the liver-specific microRNA (miRNA) miR-122 to two sites in the HCV 5′ untranslated region (UTR). Although we and others have shown that viral genetics impact the amount of active miR-122 required for replication, it is unclear if HCV can replicate in the complete absence of this miRNA. To probe the absolute requirements for miR-122 and the genetic basis for those requirements, we used clustered regularly interspaced short palindromic repeat (CRISPR) technology to knock out miR-122 in Huh-7.5 cells and reconstituted these knockout (KO) cells with either wild-type miR-122 or a mutated version of this miRNA. We then characterized the replication of the wild-type virus, as well as a mutated HCV bearing 5′ UTR substitutions to restore binding to the mutated miR-122, in miR-122 KO Huh-7.5 cells expressing no, wild-type, or mutated miR-122. We found that while replication was most efficient when wild-type or mutated HCV was provided with the matched miR-122, inefficient replication could be observed in cells expressing the mismatched miR-122 or no miR-122. We then selected viruses capable of replicating in cells expressing noncognate miR-122 RNAs. Unexpectedly, these viruses contained multiple mutations throughout their first 42 nucleotides that would not be predicted to enhance binding of the provided miR-122. These mutations increased HCV RNA replication in cells expressing either the mismatched miR-122 or no miR-122. These data provide new evidence that HCV replication can occur independently of miR-122 and provide unexpected insights into how HCV genetics influence miR-122 requirements. IMPORTANCE Hepatitis C virus (HCV) is the leading cause of liver cancer in the Western Hemisphere. HCV infection requires miR-122, which is expressed only in liver cells, and thus is one reason that replication of this virus occurs efficiently only in cells of hepatic origin. To understand how HCV genetics impact mi

  17. Essential Role of Cyclophilin A for Hepatitis C Virus Replication and Virus Production and Possible Link to Polyprotein Cleavage Kinetics

    PubMed Central

    Kaul, Artur; Pertel, Thomas; Schmitt, Jennifer; Kallis, Stephanie; Zayas Lopez, Margarita; Lohmann, Volker; Luban, Jeremy; Bartenschlager, Ralf

    2009-01-01

    Viruses are obligate intracellular parasites and therefore their replication completely depends on host cell factors. In case of the hepatitis C virus (HCV), a positive-strand RNA virus that in the majority of infections establishes persistence, cyclophilins are considered to play an important role in RNA replication. Subsequent to the observation that cyclosporines, known to sequester cyclophilins by direct binding, profoundly block HCV replication in cultured human hepatoma cells, conflicting results were obtained as to the particular cyclophilin (Cyp) required for viral RNA replication and the underlying possible mode of action. By using a set of cell lines with stable knock-down of CypA or CypB, we demonstrate in the present work that replication of subgenomic HCV replicons of different genotypes is reduced by CypA depletion up to 1,000-fold whereas knock-down of CypB had no effect. Inhibition of replication was rescued by over-expression of wild type CypA, but not by a mutant lacking isomerase activity. Replication of JFH1-derived full length genomes was even more sensitive to CypA depletion as compared to subgenomic replicons and virus production was completely blocked. These results argue that CypA may target an additional viral factor outside of the minimal replicase contributing to RNA amplification and assembly, presumably nonstructural protein 2. By selecting for resistance against the cyclosporine analogue DEBIO-025 that targets CypA in a dose-dependent manner, we identified two mutations (V2440A and V2440L) close to the cleavage site between nonstructural protein 5A and the RNA-dependent RNA polymerase in nonstructural protein 5B that slow down cleavage kinetics at this site and reduce CypA dependence of viral replication. Further amino acid substitutions at the same cleavage site accelerating processing increase CypA dependence. Our results thus identify an unexpected correlation between HCV polyprotein processing and CypA dependence of HCV

  18. Green tea polyphenol, epigallocatechin-3-gallate, possesses the antiviral activity necessary to fight against the hepatitis B virus replication in vitro *

    PubMed Central

    Pang, Jing-yao; Zhao, Kui-jun; Wang, Jia-bo; Ma, Zhi-jie; Xiao, Xiao-he

    2014-01-01

    Although several antiviral drugs and vaccines are available for use against hepatitis B virus (HBV), hepatitis caused by HBV remains a major public health problem worldwide, which has not yet been resolved, and new anti-HBV drugs are in great demand. The present study was performed to investigate the anti-HBV activity of epigallocatechin-3-gallate (EGCG), a natural-origin compound, in HepG2 2.2.15 cells. The antiviral activity of EGCG was examined by detecting the levels of HBsAg and HBeAg in the supernatant and extracellular HBV DNA. EGCG effectively suppressed the secretion of HBsAg and HBeAg from HepG2 2.2.15 cells in a dose- and time-dependent manner, and it showed stronger effects at the level of 0.11–0.44 μmol/ml (50–200 μg/ml) than lamivudine (3TC) at 0.87 μmol/ml (200 μg/ml). EGCG also suppressed the amount of extracellular HBV DNA. The data indicated that EGCG possessed anti-HBV activity and suggested the potential of EGCG as an effective anti-HBV agent with low toxicity. PMID:24903990

  19. Relationship between RNA polymerase II and efficiency of vaccinia virus replication.

    PubMed Central

    Wilton, S; Dales, S

    1989-01-01

    It is clear from previous studies that host transcriptase or RNA polymerase II (pol II) has a role in poxvirus replication. To elucidate the participation of this enzyme further, in this study we examined several parameters related to pol II during the cycle of vaccinia virus infection in L-strain fibroblasts, HeLa cells, and L6H9 rat myoblasts. Nucleocytoplasmic transposition of pol II into virus factories and virions was assessed by immunofluorescence and immunoblotting by using anti-pol II immunoglobulin G. RNA polymerase activities were compared in nuclear extracts containing crude enzyme preparations. Rates of translation into cellular or viral polypeptides were ascertained by labeling with [35S]methionine. In L and HeLa cells, which produced vaccinia virus more abundantly, the rates of RNA polymerase and translation in controls and following infection were higher than in myoblasts. The data on synthesis and virus formation could be correlated with observations on transmigration of pol II, which was more efficient and complete in L and HeLa cells. The stimulus for pol II to leave the nucleus required the expression of both early and late viral functions. On the basis of current and past information, we suggest that mobilization of pol II depends on the efficiency of vaccina virus replication and furthermore that control over vaccinia virus production by the host is related to the content or availability (or both) of pol II in different cell types. Images PMID:2648021

  20. Replication and transformation functions of in vitro-generated simian virus 40 large T antigen mutants.

    PubMed Central

    Rutila, J E; Imperiale, M J; Brockman, W W

    1986-01-01

    We used sodium bisulfite mutagenesis to introduce point mutations within the early region of the simian virus 40 genome. Seventeen mutants which contained amino acid changes in the amino-terminal half of the large T antigen coding sequence were assayed for their ability to replicate viral DNA and to induce transformation in the established rodent cell line Rat-3. The mutants fell into four basic classes with respect to these two biological functions. Five mutants had wild-type replication and transformation activities, six were totally defective, three were replication deficient and transformation competent, and two were replication competent and transformation deficient. Within these classes were mutants which displayed intermediate phenotypes, such as four mutants which were not totally deficient in viral replication or cellular transformation but instead showed reduced large T antigen function relative to wild type. Three large T mutants displayed transforming activity that was greater than that of wild type and are called supertransforming mutants. Of the most interest are mutants differentially defective in replication and transformation activities. These results both support and extend previous findings that two important biological functions of large T antigen can be genetically separated. Images PMID:3009866

  1. Virus and Cell RNAs Expressed during Epstein-Barr Virus Replication

    PubMed Central

    Yuan, Jing; Cahir-McFarland, Ellen; Zhao, Bo; Kieff, Elliott

    2006-01-01

    Changes in Epstein-Barr virus (EBV) and cell RNA levels were assayed following immunoglobulin G (IgG) cross-linking-induced replication in latency 1-infected Akata Burkitt B lymphoblasts. EBV replication as assayed by membrane gp350 expression was ∼5% before IgG cross-linking and increased to more than 50% 48 h after induction. Seventy-two hours after IgG cross-linking, gp350-positive cells excluded propidium iodide as well as gp350-negative cells. EBV RNA levels changed temporally in parallel with previously defined sensitivity to inhibitors of protein or viral DNA synthesis. BZLF1 immediate-early RNA levels doubled by 2 h and reached a peak at 4 h, whereas BMLF1 doubled by 4 h with a peak at 8 h, and BRLF1 doubled by 8 h with peak at 12 h. Early RNAs peaked at 8 to 12 h, and late RNAs peaked at 24 h. Hybridization to intergenic sequences resulted in evidence for new EBV RNAs. Surprisingly, latency III (LTIII) RNAs for LMP1, LMP2, EBNALP, EBNA2, EBNA3A, EBNA3C, and BARTs were detected at 8 to 12 h and reached maxima at 24 to 48 h. EBNA2 and LMP1 were at full LTIII levels by 48 h and localized to gp350-positive cells. Thus, LTIII expression is a characteristic of late EBV replication in both B lymphoblasts and epithelial cells in immune-comprised people (J. Webster-Cyriaque, J. Middeldorp, and N. Raab-Traub, J. Virol. 74:7610-7618, 2000). EBV replication significantly altered levels of 401 Akata cell RNAs, of which 122 RNAs changed twofold or more relative to uninfected Akata cells. Mitogen-activated protein kinase levels were significantly affected. Late expression of LTIII was associated with induction of NF-κB responsive genes including IκBα and A20. The exclusion of propidium, expression of EBV LTIII RNAs and proteins, and up-regulation of specific cell RNAs are indicative of vital cell function late in EBV replication. PMID:16474161

  2. Replication of human immunodeficiency virus type 1 in primary dendritic cell cultures.

    PubMed Central

    Langhoff, E; Terwilliger, E F; Bos, H J; Kalland, K H; Poznansky, M C; Bacon, O M; Haseltine, W A

    1991-01-01

    The ability of the human immunodeficiency virus type 1 (HIV-1) to replicate in primary blood dendritic cells was investigated. Dendritic cells compose less than 1% of the circulating leukocytes and are nondividing cells. Highly purified preparations of dendritic cells were obtained using recent advances in cell fractionation. The results of these experiments show that dendritic cells, in contrast to monocytes and T cells, support the active replication of all strains of HIV-1 tested, including T-cell tropic and monocyte/macrophage tropic isolates. The dendritic cell cultures supported much more virus production than did cultures of primary unseparated T cells, CD4+ T cells, and adherent as well as nonadherent monocytes. Replication of HIV-1 in dendritic cells produces no noticeable cytopathic effect nor does it decrease total cell number. The ability of the nonreplicating dendritic cells to support high levels of replication of HIV-1 suggests that this antigen-presenting cell population, which is also capable of supporting clonal T-cell growth, may play a central role in HIV pathogenesis, serving as a source of continued infection of CD4+ T cells and as a reservoir of virus infection. Images PMID:1910172

  3. Activation pathways and human immunodeficiency virus type 1 replication are not altered in CD4+ T cells expressing the nef protein.

    PubMed

    Schwartz, O; Arenzana-Seisdedos, F; Heard, J M; Danos, O

    1992-05-01

    While recent studies in Rhesus monkeys have pointed out the importance of an intact nef gene for the development of acquired immunodeficiency syndrome (AIDS), no biological function has been so far unambiguously attributed to its product. Since Nef has been described to possess GTP-binding properties and to down-regulate CD4 cell surface expression, we looked for evidences of Nef interfering with the transduction of activating signals in human CD4+ T cells. We used a murine leukemia retroviral vector to express the HIV-1BRU nef gene in two permanent tumoral T-cell lines (CEM and Jurkat) and in two nonimmortalized, interleukin-2 (IL2)-dependent, T-cell clones. The single copy recombinant provirus integrated in the genome of these cells directed the synthesis of a 27-kD protein with a half-life greater than 5 h. The levels of expression of cell surface molecules involved in T-cell functions (CD4, CD3, CD28, CD29, IL-2 receptor) were not modified in cell populations expressing Nef. In immunocompetent T-cell clones, cell proliferation and lymphokine production in response to activating stimuli (IL-2, alloantigens, phorbol esters, or antibodies directed against CD2, CD3, CD4, CD28) remained unmodified. Moreover, the presence of Nef did not change the kinetics of human immunodeficiency virus (HIV) infection. PMID:1355346

  4. Human immunodeficiency virus type 1 integrase: effect on viral replication of mutations at highly conserved residues.

    PubMed

    Cannon, P M; Wilson, W; Byles, E; Kingsman, S M; Kingsman, A J

    1994-08-01

    Sequence comparisons of the integrase (IN) proteins from different retroviruses have identified several highly conserved residues. We have introduced mutations at 16 of these sites into the integrase gene of human immunodeficiency virus type 1 and analyzed the phenotypes of the resulting viruses. The viruses were all normal for p24 content and reverse transcriptase activity. In addition, all of the mutants could infect T-cell lines and undergo reverse transcription, as assessed by PCR analysis. Most of the mutant viruses also had normal Western blot (immunoblot) profiles, although three of the mutations resulted in reduced signals for IN relative to the wild type on the immunoblots and mutation of residue W235 completely abolished recognition of the protein by pooled sera from human immunodeficiency virus type 1-positive patients. Mutations that have previously been shown to abolish activity in in vitro studies produced noninfectious viruses. The substitution of W235 was notable in producing a noninfectious virus, despite previous reports of this residue being nonessential for IN activity in vitro (A.D. Leavitt, L. Shiue, and H.E. Varmus, J. Biol. Chem. 268:2113-2119, 1993). In addition, we have identified four highly conserved residues that can be mutated without any affect on viral replication in T-cell lines. PMID:8035478

  5. Cellular chaperonin CCTγ contributes to rabies virus replication during infection.

    PubMed

    Zhang, Jinyang; Wu, Xiaopeng; Zan, Jie; Wu, Yongping; Ye, Chengjin; Ruan, Xizhen; Zhou, Jiyong

    2013-07-01

    Rabies, as the oldest known infectious disease, remains a serious threat to public health worldwide. The eukaryotic cytosolic chaperonin TRiC/CCT complex facilitates the folding of proteins through ATP hydrolysis. Here, we investigated the expression, cellular localization, and function of neuronal CCTγ during neurotropic rabies virus (RABV) infection using mouse N2a cells as a model. Following RABV infection, 24 altered proteins were identified by using two-dimensional electrophoresis and mass spectrometry, including 20 upregulated proteins and 4 downregulated proteins. In mouse N2a cells infected with RABV or cotransfected with RABV genes encoding nucleoprotein (N) and phosphoprotein (P), confocal microscopy demonstrated that upregulated cellular CCTγ was colocalized with viral proteins N and P, which formed a hollow cricoid inclusion within the region around the nucleus. These inclusions, which correspond to Negri bodies (NBs), did not form in mouse N2a cells only expressing the viral protein N or P. Knockdown of CCTγ by lentivirus-mediated RNA interference led to significant inhibition of RABV replication. These results demonstrate that the complex consisting of viral proteins N and P recruits CCTγ to NBs and identify the chaperonin CCTγ as a host factor that facilitates intracellular RABV replication. This work illustrates how viruses can utilize cellular chaperonins and compartmentalization for their own benefit. PMID:23637400

  6. Cellular Chaperonin CCTγ Contributes to Rabies Virus Replication during Infection

    PubMed Central

    Zhang, Jinyang; Wu, Xiaopeng; Zan, Jie; Wu, Yongping; Ye, Chengjin; Ruan, Xizhen

    2013-01-01

    Rabies, as the oldest known infectious disease, remains a serious threat to public health worldwide. The eukaryotic cytosolic chaperonin TRiC/CCT complex facilitates the folding of proteins through ATP hydrolysis. Here, we investigated the expression, cellular localization, and function of neuronal CCTγ during neurotropic rabies virus (RABV) infection using mouse N2a cells as a model. Following RABV infection, 24 altered proteins were identified by using two-dimensional electrophoresis and mass spectrometry, including 20 upregulated proteins and 4 downregulated proteins. In mouse N2a cells infected with RABV or cotransfected with RABV genes encoding nucleoprotein (N) and phosphoprotein (P), confocal microscopy demonstrated that upregulated cellular CCTγ was colocalized with viral proteins N and P, which formed a hollow cricoid inclusion within the region around the nucleus. These inclusions, which correspond to Negri bodies (NBs), did not form in mouse N2a cells only expressing the viral protein N or P. Knockdown of CCTγ by lentivirus-mediated RNA interference led to significant inhibition of RABV replication. These results demonstrate that the complex consisting of viral proteins N and P recruits CCTγ to NBs and identify the chaperonin CCTγ as a host factor that facilitates intracellular RABV replication. This work illustrates how viruses can utilize cellular chaperonins and compartmentalization for their own benefit. PMID:23637400

  7. Safety evaluation of nuclear polyhedrosis virus replication in pigs.

    PubMed Central

    Döller, G; Gröner, A; Straub, O C

    1983-01-01

    To evaluate the hygienic risk involved in using baculoviruses for insect pest control, safety studies are required. Pigs were chosen as representative test animals of commercial and agricultural importance. The tests were aimed at detecting virus propagation, immune reactions, and signs of acute infection (changes in body temperature and hematology profile, swelling of lymph nodes). Four of five animals inoculated with nuclear polyhedrosis virus showed a slight temperature rise at day 2 postinfection. After day 4 postinfection, no differences between infected animals and controls were observed. In the bioassay, virus activity could be recovered from fecal samples; however, no activity was found in organ extracts. The data did not indicate hygienic risks involved in the application of nuclear polyhedrosis virus, especially that from Mamestra brassicae, in biological pest control. PMID:6344789

  8. Safety evaluation of nuclear polyhedrosis virus replication in pigs.

    PubMed

    Döller, G; Gröner, A; Straub, O C

    1983-04-01

    To evaluate the hygienic risk involved in using baculoviruses for insect pest control, safety studies are required. Pigs were chosen as representative test animals of commercial and agricultural importance. The tests were aimed at detecting virus propagation, immune reactions, and signs of acute infection (changes in body temperature and hematology profile, swelling of lymph nodes). Four of five animals inoculated with nuclear polyhedrosis virus showed a slight temperature rise at day 2 postinfection. After day 4 postinfection, no differences between infected animals and controls were observed. In the bioassay, virus activity could be recovered from fecal samples; however, no activity was found in organ extracts. The data did not indicate hygienic risks involved in the application of nuclear polyhedrosis virus, especially that from Mamestra brassicae, in biological pest control. PMID:6344789

  9. Phosphoproteomics Identified an NS5A Phosphorylation Site Involved in Hepatitis C Virus Replication.

    PubMed

    Chong, Weng Man; Hsu, Shih-Chin; Kao, Wei-Ting; Lo, Chieh-Wen; Lee, Kuan-Ying; Shao, Jheng-Syuan; Chen, Yi-Hung; Chang, Justin; Chen, Steve S-L; Yu, Ming-Jiun

    2016-02-19

    The non-structural protein 5A (NS5A) is a hepatitis C virus (HCV) protein indispensable for the viral life cycle. Many prior papers have pinpointed several serine residues in the low complexity sequence I region of NS5A responsible for NS5A phosphorylation; however, the functions of specific phosphorylation sites remained obscure. Using phosphoproteomics, we identified three phosphorylation sites (serines 222, 235, and 238) in the NS5A low complexity sequence I region. Reporter virus and replicon assays using phosphorylation-ablated alanine mutants of these sites showed that Ser-235 dominated over Ser-222 and Ser-238 in HCV replication. Immunoblotting using an Ser-235 phosphorylation-specific antibody showed a time-dependent increase in Ser-235 phosphorylation that correlated with the viral replication activity. Ser-235 phosphorylated NS5A co-localized with double-stranded RNA, consistent with its role in HCV replication. Mechanistically, Ser-235 phosphorylation probably promotes the replication complex formation via increasing NS5A interaction with the human homologue of the 33-kDa vesicle-associated membrane protein-associated protein. Casein kinase Iα (CKIα) directly phosphorylated Ser-235 in vitro. Inhibition of CKIα reduced Ser-235 phosphorylation and the HCV RNA levels in the infected cells. We concluded that NS5A Ser-235 phosphorylated by CKIα probably promotes HCV replication via increasing NS5A interaction with the 33-kDa vesicle-associated membrane protein-associated protein. PMID:26702051

  10. Phytohemagglutinin enhancement of dengue-2 virus replication in nonimmune rhesus monkey peripheral blood leukocytes.

    PubMed Central

    Marchette, N J; Halstead, S B

    1978-01-01

    Phytohemagglutinin treatment of peripheral blood leukocytes from dengue nonimmune monkeys enhanced dengue-2 virus replication. Enhancement was due primarily to an increase in the number of infected cells. Destruction of mononuclear phagocytes with silica did not significantly inhibit virus replication in phytohemagglutinin-treated cultures. Pokeweed mitogen, concanavalin A, and streptolysin O stimulated increased deoxyribonucleic acid synthesis in monkey leukocytes but did not enhance virus replication. None of the mitogens significantly affected virus replication in cultures of dengue-immune monkey peripheral blood leukocytes. PMID:203535

  11. A Dynamic View of Hepatitis C Virus Replication Complexes▿ ‡

    PubMed Central

    Wölk, Benno; Büchele, Benjamin; Moradpour, Darius; Rice, Charles M.

    2008-01-01

    Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex (RC). Specific membrane alterations, designated membranous webs, represent predominant sites of HCV RNA replication. The principles governing HCV RC and membranous web formation are poorly understood. Here, we used replicons harboring a green fluorescent protein (GFP) insertion in nonstructural protein 5A (NS5A) to study HCV RCs in live cells. Two distinct patterns of NS5A-GFP were observed. (i) Large structures, representing membranous webs, showed restricted motility, were stable over many hours, were partitioned among daughter cells during cell division, and displayed a static internal architecture without detectable exchange of NS5A-GFP. (ii) In contrast, small structures, presumably representing small RCs, showed fast, saltatory movements over long distances. Both populations were associated with endoplasmic reticulum (ER) tubules, but only small RCs showed ER-independent, microtubule (MT)-dependent transport. We suggest that this MT-dependent transport sustains two distinct RC populations, which are both required during the HCV life cycle. PMID:18715913

  12. Inhibition of human immunodeficiency virus type 1 replication by SDZ NIM 811, a nonimmunosuppressive cyclosporine analog.

    PubMed Central

    Rosenwirth, B; Billich, A; Datema, R; Donatsch, P; Hammerschmid, F; Harrison, R; Hiestand, P; Jaksche, H; Mayer, P; Peichl, P

    1994-01-01

    (Me-Ile-4)cyclosporin (SDZ NIM 811) is a 4-substituted cyclosporin which is devoid of immunosuppressive activity but retains full capacity for binding to cyclophilin and exhibits potent anti-human immunodeficiency virus type 1 (HIV-1) activity. SDZ NIM 811 selectively inhibits HIV-1 replication in T4 lymphocyte cell lines, in a monocytic cell line, and in HeLa T4 cells. Furthermore, its antiviral activity against laboratory strains and against clinical isolates from geographically distinct regions in primary T4 lymphocytes and in primary monocytes (50% inhibitory concentration = 0.011 to 0.057 micrograms/ml) was demonstrated. SDZ NIM 811 does not inhibit proviral gene expression or virus-specific enzyme functions, either free or bound to cyclophilin. The compound does not influence CD4 expression or inhibit fusion between virus-infected and uninfected cells. SDZ NIM 811 was, however, found to block formation of infectious particles from chronically infected cells. Oral administration to mice, rats, dogs, and monkeys resulted in levels in blood considerably exceeding the drug concentration, which completely blocked virus replication in primary cells. SDZ NIM 811 caused changes of toxicity parameters in rats to a smaller degree than cyclosporine (formerly cyclosporin A). Thus, the potent and selective anti-HIV-1 activity of SDZ NIM 811 and its favorable pharmacokinetic behavior together with its lower nephrotoxicity than that of cyclosporine make this compound a promising candidate for development as an anti-HIV drug. PMID:7527198

  13. Peroxisome proliferator-activated receptor-{gamma} agonists inhibit the replication of respiratory syncytial virus (RSV) in human lung epithelial cells

    SciTech Connect

    Arnold, Ralf . E-mail: ralf.arnold@medizin.uni-magdeburg.de; Koenig, Wolfgang

    2006-07-05

    We have previously shown that peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) agonists inhibited the inflammatory response of RSV-infected human lung epithelial cells. In this study, we supply evidence that specific PPAR{gamma} agonists (15d-PGJ{sub 2}, ciglitazone, troglitazone, Fmoc-Leu) efficiently blocked the RSV-induced cytotoxicity and development of syncytia in tissue culture (A549, HEp-2). All PPAR{gamma} agonists under study markedly inhibited the cell surface expression of the viral G and F protein on RSV-infected A549 cells. This was paralleled by a reduced cellular amount of N protein-encoding mRNA determined by real-time RT-PCR. Concomitantly, a reduced release of infectious progeny virus into the cell supernatants of human lung epithelial cells (A549, normal human bronchial epithelial cells (NHBE)) was observed. Similar results were obtained regardless whether PPAR{gamma} agonists were added prior to RSV infection or thereafter, suggesting that the agonists inhibited viral gene expression and not the primary adhesion or fusion process.

  14. Vesicular stomatitis virus infects resident cells of the central nervous system and induces replication-dependent inflammatory responses

    SciTech Connect

    Chauhan, Vinita S.; Furr, Samantha R.; Sterka, David G.; Nelson, Daniel A.; Moerdyk-Schauwecker, Megan; Marriott, Ian; Grdzelishvili, Valery Z.

    2010-05-10

    Vesicular stomatitis virus (VSV) infection of mice via intranasal administration results in a severe encephalitis with rapid activation and proliferation of microglia and astrocytes. We have recently shown that these glial cells express RIG-I and MDA5, cytosolic pattern recognition receptors for viral RNA. However, it is unclear whether VSV can replicate in glial cells or if such replication is required for their inflammatory responses. Here we demonstrate that primary microglia and astrocytes are permissive for VSV infection and limited productive replication. Importantly, we show that viral replication is required for robust inflammatory mediator production by these cells. Finally, we have confirmed that in vivo VSV administration can result in viral infection of glial cells in situ. These results suggest that viral replication within resident glial cells might play an important role in CNS inflammation following infection with VSV and possibly other neurotropic nonsegmented negative-strand RNA viruses.

  15. The Acyclic Retinoid Peretinoin Inhibits Hepatitis C Virus Replication and Infectious Virus Release in Vitro

    NASA Astrophysics Data System (ADS)

    Shimakami, Tetsuro; Honda, Masao; Shirasaki, Takayoshi; Takabatake, Riuta; Liu, Fanwei; Murai, Kazuhisa; Shiomoto, Takayuki; Funaki, Masaya; Yamane, Daisuke; Murakami, Seishi; Lemon, Stanley M.; Kaneko, Shuichi

    2014-04-01

    Clinical studies suggest that the oral acyclic retinoid Peretinoin may reduce the recurrence of hepatocellular carcinoma (HCC) following surgical ablation of primary tumours. Since hepatitis C virus (HCV) infection is a major cause of HCC, we assessed whether Peretinoin and other retinoids have any effect on HCV infection. For this purpose, we measured the effects of several retinoids on the replication of genotype 1a, 1b, and 2a HCV in vitro. Peretinoin inhibited RNA replication for all genotypes and showed the strongest antiviral effect among the retinoids tested. Furthermore, it reduced infectious virus release by 80-90% without affecting virus assembly. These effects could be due to reduced signalling from lipid droplets, triglyceride abundance, and the expression of mature sterol regulatory element-binding protein 1c and fatty acid synthase. These negative effects of Peretinoin on HCV infection may be beneficial in addition to its potential for HCC chemoprevention in HCV-infected patients.

  16. Gene therapeutic approaches to inhibit hepatitis B virus replication

    PubMed Central

    Gebbing, Maren; Bergmann, Thorsten; Schulz, Eric; Ehrhardt, Anja

    2015-01-01

    Acute and chronic hepatitis B virus (HBV) infections remain to present a major global health problem. The infection can be associated with acute symptomatic or asymptomatic hepatitis which can cause chronic inflammation of the liver and over years this can lead to cirrhosis and the development of hepatocellular carcinomas. Currently available therapeutics for chronically infected individuals aim at reducing viral replication and to slow down or stop the progression of the disease. Therefore, novel treatment options are needed to efficiently combat and eradicate this disease. Here we provide a state of the art overview of gene therapeutic approaches to inhibit HBV replication. We discuss non-viral and viral approaches which were explored to deliver therapeutic nucleic acids aiming at reducing HBV replication. Types of delivered therapeutic nucleic acids which were studied since many years include antisense oligodeoxynucleotides and antisense RNA, ribozymes and DNAzymes, RNA interference, and external guide sequences. More recently designer nucleases gained increased attention and were exploited to destroy the HBV genome. In addition we mention other strategies to reduce HBV replication based on delivery of DNA encoding dominant negative mutants and DNA vaccination. In combination with available cell culture and animal models for HBV infection, in vitro and in vivo studies can be performed to test efficacy of gene therapeutic approaches. Recent progress but also challenges will be specified and future perspectives will be discussed. This is an exciting time to explore such approaches because recent successes of gene therapeutic strategies in the clinic to treat genetic diseases raise hope to find alternative treatment options for patients chronically infected with HBV. PMID:25729471

  17. Coordinate effects of human immunodeficiency virus type 1 protein Tat and cellular protein Puralpha on DNA replication initiated at the JC virus origin.

    PubMed

    Daniel, D C; Wortman, M J; Schiller, R J; Liu, H; Gan, L; Mellen, J S; Chang, C F; Gallia, G L; Rappaport, J; Khalili, K; Johnson, E M

    2001-07-01

    JC virus (JCV) causes progressive multifocal leukoencephalopathy, a demyelinating disease in brains of individuals with AIDS. Previous work has shown that the Tat protein, encoded by human immunodeficiency virus type 1 (HIV-1), can interact with cellular protein Puralpha to enhance both TAR-dependent HIV-1 transcription and JCV late gene transcription. Tat has been shown to activate JCV transcription through interaction with Puralpha, which binds to promoter sequence elements near the JCV origin of replication. DNA footprinting has shown that Puralpha and large T-antigen cooperatively interact at several binding sites in the origin and transcriptional control region. Overexpression of Puralpha inhibits replication initiated at the JCV origin by T-antigen. In transfected glial cells Tat reversed this inhibition and enhanced DNA replication. In an in vitro replication system maximal activation by Tat, more than sixfold the levels achieved with T-antigen alone, was achieved in the presence of Puralpha. Effects of mutant Tat proteins on both activation of replication and binding to Puralpha have revealed that Cys22 exerts a conformational effect that affects both activities. The origin of an archetypal strain of JCV was less susceptible to activation of replication by Tat relative to the rearranged Mad-1 strain. These results have revealed a previously undocumented role for Tat in DNA replication and have indicated a regulatory role for JCV origin auxiliary sequences in replication and activation by Tat. PMID:11413364

  18. Replication of the Moloney murine sarcoma-leukemia virus in XC cells.

    PubMed

    Trowbridge, S T; Benyesh-Melnick, M; Biswal, N

    1973-01-01

    The XC rat cell line was found to support the replication of a strain of the Moloney murine sarcoma-leukemia virus. In growth curve experiments cytopathology was paralleled by the production of murine sarcoma virus and leukemia virus progeny having the biologic, antigenic, and biophysical properties of the infecting virus. PMID:4346280

  19. Foot and mouth disease virus non structural protein 2C interacts with Beclin1 modulating virus replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV), the causative agent of foot-and-mouth disease (FMD), is an Apthovirus within the Picornaviridae family. Replication of the virus occurs in association with replication complexes that are formed by host cell membrane rearrangements. The largest viral protein in th...

  20. Conserved Features of the PB2 627 Domain Impact Influenza Virus Polymerase Function and Replication

    PubMed Central

    Kirui, James; Bucci, Michael D.; Poole, Daniel S.

    2014-01-01

    ABSTRACT Successful replication of influenza virus requires the coordinated expression of viral genes and replication of the genome by the viral polymerase, composed of the subunits PA, PB1, and PB2. Polymerase activity is regulated by both viral and host factors, yet the mechanisms of regulation and how they contribute to viral pathogenicity and tropism are poorly understood. To characterize these processes, we created a series of mutants in the 627 domain of the PB2 subunit. This domain contains a conserved “P[F/P]AAAPP” sequence motif and the well-described amino acid 627, whose identity regulates host range. A lysine present at position 627 in most mammalian viral isolates creates a basic face on the domain surface and confers high-level activity in humans compared to the glutamic acid found at this position in avian isolates. Mutation of the basic face or the P[F/P]AAAPP motif impaired polymerase activity, assembly of replication complexes, and viral replication. Most of these residues are required for general polymerase activity, whereas PB2 K586 and R589 were preferentially required for function in human versus avian cells. Thus, these data identify residues in the 627 domain and other viral proteins that regulate polymerase activity, highlighting the importance of the surface charge and structure of this domain for virus replication and host adaptation. IMPORTANCE Influenza virus faces barriers to transmission across species as it emerges from its natural reservoir in birds to infect mammals. The viral polymerase is an important regulator of this process and undergoes discrete changes to adapt to replication in mammals. Many of these changes occur in the polymerase subunit PB2. Here we describe the systematic analysis of a key region in PB2 that controls species-specific polymerase activity. We report the importance of conserved residues that contribute to the overall charge of the protein as well as those that likely affect protein structure. These

  1. Two separate mechanisms of enforced viral replication balance innate and adaptive immune activation.

    PubMed

    Shaabani, Namir; Khairnar, Vishal; Duhan, Vikas; Zhou, Fan; Tur, Rita Ferrer; Häussinger, Dieter; Recher, Mike; Tumanov, Alexei V; Hardt, Cornelia; Pinschewer, Daniel; Christen, Urs; Lang, Philipp A; Honke, Nadine; Lang, Karl S

    2016-02-01

    The induction of innate and adaptive immunity is essential for controlling viral infections. Limited or overwhelming innate immunity can negatively impair the adaptive immune response. Therefore, balancing innate immunity separately from activating the adaptive immune response would result in a better antiviral immune response. Recently, we demonstrated that Usp18-dependent replication of virus in secondary lymphatic organs contributes to activation of the innate and adaptive immune responses. Whether specific mechanisms can balance innate and adaptive immunity separately remains unknown. In this study, using lymphocytic choriomeningitis virus (LCMV) and replication-deficient single-cycle LCMV vectors, we found that viral replication of the initial inoculum is essential for activating virus-specific CD8(+) T cells. In contrast, extracellular distribution of virus along the splenic conduits is necessary for inducing systemic levels of type I interferon (IFN-I). Although enforced virus replication is driven primarily by Usp18, B cell-derived lymphotoxin beta contributes to the extracellular distribution of virus along the splenic conduits. Therefore, lymphotoxin beta regulates IFN-I induction independently of CD8(+) T-cell activity. We found that two separate mechanisms act together in the spleen to guarantee amplification of virus during infection, thereby balancing the activation of the innate and adaptive immune system. PMID:26553386

  2. Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication.

    PubMed Central

    Croen, K D

    1993-01-01

    Nitric oxide (NO) has antimicrobial activity against a wide spectrum of infectious pathogens, but an antiviral effect has not been reported. The impact of NO, from endogenous and exogenous sources, on herpes simplex virus type 1 (HSV 1) replication was studied in vitro. HSV 1 replication in RAW 264.7 macrophages was reduced 1,806-fold in monolayers induced to make NO by activation with gamma IFN and LPS. A competitive and a noncompetitive inhibitor of nitric oxide synthetase substantially reduced the antiviral effect of activated RAW macrophages. S-nitroso-L-acetyl penicillamine (SNAP) is a donor of NO and was added to the media of infected monolayers to assess the antiviral properties of NO in the absence of gamma IFN and LPS. A single dose of S-nitroso-L-acetyl penicillamine 3 h after infection inhibited HSV 1 replication in Vero, HEp2, and RAW 264.7 cells in a dose-dependent manner. Neither virucidal nor cytocidal effects of NO were observed under conditions that inhibited HSV 1 replication. Nitric oxide had inhibitory effects, comparable to that of gamma IFN/LPS, on protein and DNA synthesis as well as on cell replication. This report demonstrates that, among its diverse properties, NO has an antiviral effect. PMID:8390481

  3. Effects of long terminal repeat mutations on human immunodeficiency virus type 1 replication.

    PubMed Central

    Lu, Y; Stenzel, M; Sodroski, J G; Haseltine, W A

    1989-01-01

    The effects of deletions within three functional regions of the long terminal repeat of human immunodeficiency virus type 1 upon the ability of the long terminal repeat to direct production of the chloramphenicol acetyltransferase gene product and upon the ability of viruses that carry the mutations to replicate in human cell lines was investigated. The results show that the enhancer and TATAA sequences were required for efficient virus replication. Deletion of the negative regulatory element (NRE) yielded a virus that replicated more rapidly than did an otherwise isogeneic NRE-positive virus. The suppressive effect of the NRE did not depend upon the negative regulatory gene (nef), as both NRE-positive and NRE-negative viruses were defective for nef. We conclude that factors specified by the cell interact with the NRE sequences to retard human immunodeficiency virus type 1 replication. PMID:2760991

  4. The importance of alfalfa mosaic virus coat protein dimers in the initiation of replication.

    PubMed

    Choi, Jiwon; Kim, Bong-Suk; Zhao, Xiaoxia; Loesch-Fries, Sue

    2003-01-01

    Deletion and substitution mutations affecting the oligomerization of alfalfa mosaic virus (AMV) coat protein (CP) were studied in protoplasts to determine their effect on genome activation, an early step in AMV replication. The CP mutants that formed dimers, CPDeltaC9 and CPC-A(R)F, were highly active in initiating replication with 63-84% of wild-type (wt) CP activity. However, all mutants that did not form dimers, CPDeltaC18, CPDeltaC19, CPC-WFP, and CPC-W, were much less active with 19-33% of wt CP activity. The accumulation and solubility of mutant CPs expressed from a virus-based vector in Nicotiana benthamiana were similar to that of wt CP. Analysis of CP-RNA interactions indicated that CP dimers and CP monomers interacted very differently with AMV RNA 3' ends. These results suggest that CP dimers are more efficient for replication than CP monomers because of differences in RNA binding rather than differences in expression and accumulation of the mutant CPs in infected cells. PMID:12504539

  5. Evaluation of the conformational switch model for alfalfa mosaic virus RNA replication.

    PubMed

    Petrillo, Jessica E; Rocheleau, Gail; Kelley-Clarke, Brenna; Gehrke, Lee

    2005-05-01

    Key elements of the conformational switch model describing regulation of alfalfa mosaic virus (AMV) replication (R. C. Olsthoorn, S. Mertens, F. T. Brederode, and J. F. Bol, EMBO J. 18:4856-4864, 1999) have been tested using biochemical assays and functional studies in nontransgenic protoplasts. Although comparative sequence analysis suggests that the 3' untranslated regions of AMV and ilarvirus RNAs have the potential to fold into pseudoknots, we were unable to confirm that a proposed pseudoknot forms or has a functional role in regulating coat protein-RNA binding or viral RNA replication. Published work has suggested that the pseudoknot is part of a tRNA-like structure (TLS); however, we argue that the canonical sequence and functional features that define the TLS are absent. We suggest here that the absence of the TLS correlates directly with the distinctive requirement for coat protein to activate replication in these viruses. Experimental data are evidence that elevated magnesium concentrations proposed to stabilize the pseudoknot structure do not block coat protein binding. Additionally, covarying nucleotide changes proposed to reestablish pseudoknot pairings do not rescue replication. Furthermore, as described in the accompanying paper (L. M. Guogas, S. M. Laforest, and L. Gehrke, J. Virol. 79:5752-5761, 2005), coat protein is not, by definition, inhibitory to minus-strand RNA synthesis. Rather, the activation of viral RNA replication by coat protein is shown to be concentration dependent. We describe the 3' organization model as an alternate model of AMV replication that offers an improved fit to the available data. PMID:15827189

  6. Replication of Many Human Viruses Is Refractory to Inhibition by Endogenous Cellular MicroRNAs

    PubMed Central

    Bogerd, Hal P.; Skalsky, Rebecca L.; Kennedy, Edward M.; Furuse, Yuki; Whisnant, Adam W.; Flores, Omar; Schultz, Kimberly L. W.; Putnam, Nicole; Barrows, Nicholas J.; Sherry, Barbara; Scholle, Frank; Garcia-Blanco, Mariano A.; Griffin, Diane E.

    2014-01-01

    ABSTRACT The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. IMPORTANCE Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of

  7. Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8(+) T-cell priming and viral control.

    PubMed

    Duhan, Vikas; Khairnar, Vishal; Friedrich, Sarah-Kim; Zhou, Fan; Gassa, Asmae; Honke, Nadine; Shaabani, Namir; Gailus, Nicole; Botezatu, Lacramioara; Khandanpour, Cyrus; Dittmer, Ulf; Häussinger, Dieter; Recher, Mike; Hardt, Cornelia; Lang, Philipp A; Lang, Karl S

    2016-01-01

    Clinically used human vaccination aims to induce specific antibodies that can guarantee long-term protection against a pathogen. The reasons that other immune components often fail to induce protective immunity are still debated. Recently we found that enforced viral replication in secondary lymphoid organs is essential for immune activation. In this study we used the lymphocytic choriomeningitis virus (LCMV) to determine whether enforced virus replication occurs in the presence of virus-specific antibodies or virus-specific CD8(+) T cells. We found that after systemic recall infection with LCMV-WE the presence of virus-specific antibodies allowed intracellular replication of virus in the marginal zone of spleen. In contrast, specific antibodies limited viral replication in liver, lung, and kidney. Upon recall infection with the persistent virus strain LCMV-Docile, viral replication in spleen was essential for the priming of CD8(+) T cells and for viral control. In contrast to specific antibodies, memory CD8(+) T cells inhibited viral replication in marginal zone but failed to protect mice from persistent viral infection. We conclude that virus-specific antibodies limit viral infection in peripheral organs but still allow replication of LCMV in the marginal zone, a mechanism that allows immune boosting during recall infection and thereby guarantees control of persistent virus. PMID:26805453

  8. Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8+ T-cell priming and viral control

    PubMed Central

    Duhan, Vikas; Khairnar, Vishal; Friedrich, Sarah-Kim; Zhou, Fan; Gassa, Asmae; Honke, Nadine; Shaabani, Namir; Gailus, Nicole; Botezatu, Lacramioara; Khandanpour, Cyrus; Dittmer, Ulf; Häussinger, Dieter; Recher, Mike; Hardt, Cornelia; Lang, Philipp A.; Lang, Karl S.

    2016-01-01

    Clinically used human vaccination aims to induce specific antibodies that can guarantee long-term protection against a pathogen. The reasons that other immune components often fail to induce protective immunity are still debated. Recently we found that enforced viral replication in secondary lymphoid organs is essential for immune activation. In this study we used the lymphocytic choriomeningitis virus (LCMV) to determine whether enforced virus replication occurs in the presence of virus-specific antibodies or virus-specific CD8+ T cells. We found that after systemic recall infection with LCMV-WE the presence of virus-specific antibodies allowed intracellular replication of virus in the marginal zone of spleen. In contrast, specific antibodies limited viral replication in liver, lung, and kidney. Upon recall infection with the persistent virus strain LCMV-Docile, viral replication in spleen was essential for the priming of CD8+ T cells and for viral control. In contrast to specific antibodies, memory CD8+ T cells inhibited viral replication in marginal zone but failed to protect mice from persistent viral infection. We conclude that virus-specific antibodies limit viral infection in peripheral organs but still allow replication of LCMV in the marginal zone, a mechanism that allows immune boosting during recall infection and thereby guarantees control of persistent virus. PMID:26805453

  9. Foot-and-Mouth Disease Virus Utilizes an Autophagic Pathway During Viral Replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection with positive-strand RNA viruses results in the rearrangement of intracellular membranes into viral replication complexes (VRC) which are the sites of viral RNA replication. Cellular autophagy has been proposed to be a mechanism of VRC formation for a number of positive-stranded RNA viruse...

  10. Antiviral mode of action of a synthetic brassinosteroid against Junin virus replication.

    PubMed

    Castilla, Viviana; Larzábal, Mariano; Sgalippa, Natalia Aguirre; Wachsman, Mónica B; Coto, Celia E

    2005-11-01

    The antiviral mode of action of the synthetic brassinosteroid (22S,23S)-3beta-bromo-5alpha,22,23-trihydroxystigmastan-6-one (6b) against Junin virus replication in Vero cells was investigated. Time-related experiments showed that 6b mainly affects an early event of virus growth cycle. Neither adsorption nor internalization of viral particles was the target of the inhibitory action. The analysis of the effect of 6b on viral RNA synthesis demonstrated that the presence of the compound adversely affects virus RNA replication by preventing the synthesis of full length antigenomic RNA. Although 6b was most effective the earlier it was added to the cells after infection with JV, a high level of inhibition of JV yield and fusion activity of newly synthesized viral glycoproteins was still detected when the compound was present during the last hours of infection. Therefore, we cannot rule out an inhibitory action of 6b on later events of JV replicative cycle. PMID:16171877

  11. Nonnucleoside reverse transcriptase inhibitors that potently and specifically block human immunodeficiency virus type 1 replication.

    PubMed Central

    Romero, D L; Busso, M; Tan, C K; Reusser, F; Palmer, J R; Poppe, S M; Aristoff, P A; Downey, K M; So, A G; Resnick, L

    1991-01-01

    Certain bis(heteroaryl)piperazines (BHAPs) are potent inhibitors of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) at concentrations lower by 2-4 orders of magnitude than that which inhibits normal cellular DNA polymerase activity. Combination of a BHAP with nucleoside analog HIV-1 RT inhibitors suggested that together these compounds inhibited RT synergistically. In three human lymphocytic cell systems using several laboratory and clinical HIV-1 isolates, the BHAPs blocked HIV-1 replication with potencies nearly identical to those of 3'-azido-2',3'-dideoxythymidine or 2',3'-dideoxyadenosine; in primary cultures of human peripheral blood mononuclear cells, concentrations of these antiviral agents were lower by at least 3-4 orders of magnitude than cytotoxic levels. The BHAPs do not inhibit replication of HIV-2, the simian or feline immunodeficiency virus, or Rauscher murine leukemia virus in culture. Evaluation of a BHAP in HIV-1-infected SCID-hu mice (severe combined immunodeficient mice implanted with human fetal lymph node) showed that the compound could block HIV-1 replication in vivo. The BHAPs are readily obtained synthetically and have been extensively characterized in preclinical evaluations. These compounds hold promise for the treatment of HIV-1 infection. Images PMID:1717988

  12. Replication-competent recombinant porcine reproductive and respiratory syndrome (PRRS) viruses expressing indicator proteins and antiviral cytokines.

    PubMed

    Sang, Yongming; Shi, Jishu; Sang, Wenjing; Rowland, Raymond R R; Blecha, Frank

    2012-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) can subvert early innate immunity, which leads to ineffective antimicrobial responses. Overcoming immune subversion is critical for developing vaccines and other measures to control this devastating swine virus. The overall goal of this work was to enhance innate and adaptive immunity following vaccination through the expression of interferon (IFN) genes by the PRRSV genome. We have constructed a series of recombinant PRRS viruses using an infectious PRRSV cDNA clone (pCMV-P129). Coding regions of exogenous genes, which included Renilla luciferase (Rluc), green and red fluorescent proteins (GFP and DsRed, respectively) and several interferons (IFNs), were constructed and expressed through a unique subgenomic mRNA placed between ORF1b and ORF2 of the PRRSV infectious clone. The constructs, which expressed Rluc, GFP, DsRed, efficiently produced progeny viruses and mimicked the parental virus in both MARC-145 cells and porcine macrophages. In contrast, replication of IFN-expressing viruses was attenuated, similar to the level of replication observed after the addition of exogenous IFN. Furthermore, the IFN expressing viruses inhibited the replication of a second PRRS virus co-transfected or co-infected. Inhibition by the different IFN subtypes corresponded to their anti-PRRSV activity, i.e., IFNω5 ° IFNα1 > IFN-β > IFNδ3. In summary, the indicator-expressing viruses provided an efficient means for real-time monitoring of viral replication thus allowing high‑throughput elucidation of the role of host factors in PRRSV infection. This was shown when they were used to clearly demonstrate the involvement of tumor susceptibility gene 101 (TSG101) in the early stage of PRRSV infection. In addition, replication‑competent IFN-expressing viruses may be good candidates for development of modified live virus (MLV) vaccines, which are capable of reversing subverted innate immune responses and may induce more

  13. Identification of Novel Antipoxviral Agents: Mitoxantrone Inhibits Vaccinia Virus Replication by Blocking Virion Assembly▿

    PubMed Central

    Deng, Liang; Dai, Peihong; Ciro, Anthony; Smee, Donald F.; Djaballah, Hakim; Shuman, Stewart

    2007-01-01

    The bioterror threat of a smallpox outbreak in an unvaccinated population has mobilized efforts to develop new antipoxviral agents. By screening a library of known drugs, we identified 13 compounds that inhibited vaccinia virus replication at noncytotoxic doses. The anticancer drug mitoxantrone is unique among the inhibitors identified in that it has no apparent impact on viral gene expression. Rather, it blocks processing of viral structural proteins and assembly of mature progeny virions. The isolation of mitoxantrone-resistant vaccinia strains underscores that a viral protein is the likely target of the drug. Whole-genome sequencing of mitoxantrone-resistant viruses pinpointed missense mutations in the N-terminal domain of vaccinia DNA ligase. Despite its favorable activity in cell culture, mitoxantrone administered intraperitoneally at the maximum tolerated dose failed to protect mice against a lethal intranasal infection with vaccinia virus. PMID:17928345

  14. Visualizing the replication of respiratory syncytial virus in cells and in living mice.

    PubMed

    Rameix-Welti, Marie-Anne; Le Goffic, Ronan; Hervé, Pierre-Louis; Sourimant, Julien; Rémot, Aude; Riffault, Sabine; Yu, Qin; Galloux, Marie; Gault, Elyanne; Eléouët, Jean-François

    2014-01-01

    Respiratory syncytial virus (RSV) is the most important cause of severe lower-respiratory tract disease in calves and young children, yet no human vaccine nor efficient curative treatments are available. Here we describe a recombinant human RSV reverse genetics system in which the red fluorescent protein (mCherry) or the firefly luciferase (Luc) genes are inserted into the RSV genome. Expression of mCherry and Luc are correlated with infection rate, allowing the monitoring of RSV multiplication in cell culture. Replication of the Luc-encoding virus in living mice can be visualized by bioluminescent imaging, bioluminescence being detected in the snout and lungs of infected mice after nasal inoculation. We propose that these recombinant viruses are convenient and valuable tools for screening of compounds active against RSV, and can be used as an extremely sensitive readout for studying effects of antiviral therapeutics in living mice. PMID:25277263

  15. Mode of action of SDZ NIM 811, a nonimmunosuppressive cyclosporin A analog with activity against human immunodeficiency virus type 1 (HIV-1): interference with early and late events in HIV-1 replication.

    PubMed

    Steinkasserer, A; Harrison, R; Billich, A; Hammerschmid, F; Werner, G; Wolff, B; Peichl, P; Palfi, G; Schnitzel, W; Mlynar, E

    1995-02-01

    SDZ NIM 811 is a cyclosporin A analog that is completely devoid of immunosuppressive capacity but exhibits potent and selective anti-human immunodeficiency virus type 1 (HIV-1) activity. The mechanism of action of SDZ NIM 811 is clearly different from those of all other anti-HIV agents described so far. In cell-free assays, it is not an inhibitor of reverse transcriptase, protease, integrase, and it does not interfere with Rev or Tat function. SDZ NIM 811 does not down-regulate CD4 or inhibit fusion between infected and uninfected, CD4-expressing cells. p24 production from chronically HIV-infected cells is not impaired either. To elucidate the mode of action of SDZ NIM 811, we performed DNA PCR analysis in HIV-1 IIIB-infected MT4 cells in one cycle of virus replication. The effects of SDZ NIM 811 on the kinetics of viral DNA synthesis, appearance of two-long terminal repeat circles (2-LTR circles), and integration of DNA were studied. SDZ NIM 811 inhibited 2-LTR circle formation in a concentration-dependent manner, which is indicative of nuclear localization of preintegration complexes. Half-maximal inhibition was achieved at 0.17 microgram/ml; this concentration is close to the 50% inhibitory concentrations (0.01 to 0.2 microgram/ml) for viral growth inhibition. As expected, integration of proviral DNA into cellular DNA was also inhibited by SDZ NIM 811. Analysis of the viral particles produced by SDZ NIM 811-treated, chronically infected cells revealed amounts of capsid proteins, reverse transcriptase activity, and viral RNA comparable to those of the untreated control. However, these particles showed a dose-dependent reduction in infectivity (50% inhibitory concentration of 0.028 microgram/ml) which indicates that the assembly process is also impaired by SDZ NIM 811. Gag proteins are postulated to play a role not only in assembly but also in early steps of viral replication, e.g., nuclear localization of the preintegration complex. Recently, it was reported that

  16. Bagaza virus inhibits Japanese encephalitis & West Nile virus replication in Culex tritaeniorhynchus & Cx. quinquefasciatus mosquitoes

    PubMed Central

    Sudeep, A.B.; Bondre, V.P.; George, R.; Ghodke, Y.S.; Aher, R.V.; Gokhale, M.D.

    2015-01-01

    Background & objectives: Studies have shown that certain flaviviruses influence susceptibility of mosquitoes by inhibiting/enhancing replication of important flaviviruses. Hence, a study was designed to determine whether Bagaza virus (BAGV), a flavivirus isolated from Culex tritaeniorhynchus mosquitoes in India, alters susceptibility of Cx. tritaeniorhynchus and Cx. quinquefasciatus mosquitoes to Japanese encephalitis (JEV) and West Nile viruses (WNV). Methods: JEV and WNV infection in Cx. tritaeniorhynchus and Cx. quinquefasciatus mosquitoes in the presence of BAGV was carried out by intrathoracic (IT) inoculation and oral feeding methods. Mosquitoes were infected with BAGV and WNV/JEV either simultaneously or in a phased manner, in which mosquitoes were infected with BAGV by IT inoculation followed by super-infection with JEV/WNV after eight days post-infection (PI). JEV and WNV yield on 7th and 14th day PI after super-infection was determined by 50 per cent tissue culture infective dose (TCID50) method. Results: In Cx. tritaeniorhynchus mosquitoes, prior infection with BAGV significantly reduced JEV and WNV replication while in Cx. quinquefasciatus, BAGV influence was only seen with WNV. Reduction in virus titre was observed in IT inoculated and oral fed mosquitoes irrespective of the infection mode. JEV replication was also found reduced in Cx. tritaeniorhynchus mosquitoes persistently infected with BAGV at passage four. Interpretation & conclusions: BAGV infection in Cx. tritaeniorhynchus and Cx. quinquefasciatus mosquitoes altered their susceptibility to JEV and WNV producing low virus yield. However, the role of BAGV in inhibiting JEV/WNV replication in field mosquitoes needs further investigations. PMID:26905241

  17. Borna Disease Virus Phosphoprotein Modulates Epigenetic Signaling in Neurons To Control Viral Replication

    PubMed Central

    Bonnaud, Emilie M.; Szelechowski, Marion; Bétourné, Alexandre; Foret, Charlotte; Thouard, Anne; Gonzalez-Dunia, Daniel

    2015-01-01

    ABSTRACT Understanding the modalities of interaction of neurotropic viruses with their target cells represents a major challenge that may improve our knowledge of many human neurological disorders for which viral origin is suspected. Borna disease virus (BDV) represents an ideal model to analyze the molecular mechanisms of viral persistence in neurons and its consequences for neuronal homeostasis. It is now established that BDV ensures its long-term maintenance in infected cells through a stable interaction of viral components with the host cell chromatin, in particular, with core histones. This has led to our hypothesis that such an interaction may trigger epigenetic changes in the host cell. Here, we focused on histone acetylation, which plays key roles in epigenetic regulation of gene expression, notably for neurons. We performed a comparative analysis of histone acetylation patterns of neurons infected or not infected by BDV, which revealed that infection decreases histone acetylation on selected lysine residues. We showed that the BDV phosphoprotein (P) is responsible for these perturbations, even when it is expressed alone independently of the viral context, and that this action depends on its phosphorylation by protein kinase C. We also demonstrated that BDV P inhibits cellular histone acetyltransferase activities. Finally, by pharmacologically manipulating cellular acetylation levels, we observed that inhibiting cellular acetyl transferases reduces viral replication in cell culture. Our findings reveal that manipulation of cellular epigenetics by BDV could be a means to modulate viral replication and thus illustrate a fascinating example of virus-host cell interaction. IMPORTANCE Persistent DNA viruses often subvert the mechanisms that regulate cellular chromatin dynamics, thereby benefitting from the resulting epigenetic changes to create a favorable milieu for their latent and persistent states. Here, we reasoned that Borna disease virus (BDV), the only

  18. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral.

    PubMed

    Smith, Claire M; Scott, Paul D; O'Callaghan, Christopher; Easton, Andrew J; Dimmock, Nigel J

    2016-01-01

    Defective interfering (DI) viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8) was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1); it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral. PMID:27556481

  19. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral

    PubMed Central

    Smith, Claire M.; Scott, Paul D.; O’Callaghan, Christopher; Easton, Andrew J.; Dimmock, Nigel J.

    2016-01-01

    Defective interfering (DI) viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8) was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1); it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral. PMID:27556481

  20. Replication-Competent Influenza B Reporter Viruses as Tools for Screening Antivirals and Antibodies

    PubMed Central

    Fulton, Benjamin O.; Palese, Peter

    2015-01-01

    Influenza B virus is a human pathogen responsible for significant health and economic burden. Research into this pathogen has been limited by the lack of reporter viruses. Here we describe the development of both a replication-competent fluorescent influenza B reporter virus and bioluminescent influenza B reporter virus. Furthermore, we demonstrate these reporter viruses can be used to quickly monitor viral growth and permit the rapid screening of antiviral compounds and neutralizing antibodies. PMID:26401044

  1. Examining Human T-Lymphotropic Virus Type 1 Infection and Replication by Cell-Free Infection with Recombinant Virus Vectors

    PubMed Central

    Derse, David; Hill, Shawn A.; Lloyd, Patricia A.; Chung, Hye-kyung; Morse, Barry A.

    2001-01-01

    A sensitive and quantitative cell-free infection assay, utilizing recombinant human T-cell leukemia virus type 1 (HTLV-1)-based vectors, was developed in order to analyze early events in the virus replication cycle. Previous difficulties with the low infectivity and restricted expression of the virus have prevented a clear understanding of these events. Virus stocks were generated by transfecting cells with three plasmids: (i) a packaging plasmid encoding HTLV-1 structural and regulatory proteins, (ii) an HTLV-1 transfer vector containing either firefly luciferase or enhanced yellow fluorescent protein genes, and (iii) an envelope expression plasmid. Single-round infections were initiated by exposing target cells to filtered supernatants and quantified by assaying for luciferase activity in cell extracts or by enumerating transduced cells by flow cytometry. Transduction was dependent on reverse transcription and integration of the recombinant virus genome, as shown by the effects of the reverse transcriptase inhibitor 3′-azido-3′-deoxythymidine (AZT) and by mutation of the integrase gene in the packaging vector, respectively. The 50% inhibitory concentration of AZT was determined to be 30 nM in this HTLV-1 replication system. The stability of HTLV-1 particles, pseudotyped with either vesicular stomatitis virus G protein or HTLV-1 envelope, was typical of retroviruses, exhibiting a half-life of approximately 3.5 h at 37°C. The specific infectivity of recombinant HTLV-1 virions was at least 3 orders of magnitude lower than that of analogous HIV-1 particles, though both were pseudotyped with the same envelope. Thus, the low infectivity of HTLV-1 is determined in large part by properties of the core particle and by the efficiency of postentry processes. PMID:11507191

  2. ACH-806, an NS4A antagonist, inhibits hepatitis C virus replication by altering the composition of viral replication complexes.

    PubMed

    Yang, Wengang; Sun, Yongnian; Hou, Xiaohong; Zhao, Yongsen; Fabrycki, Joanne; Chen, Dawei; Wang, Xiangzhu; Agarwal, Atul; Phadke, Avinash; Deshpande, Milind; Huang, Mingjun

    2013-07-01

    Treatment of hepatitis C patients with direct-acting antiviral drugs involves the combination of multiple small-molecule inhibitors of distinctive mechanisms of action. ACH-806 (or GS-9132) is a novel, small-molecule inhibitor specific for hepatitis C virus (HCV). It inhibits viral RNA replication in HCV replicon cells and was active in genotype 1 HCV-infected patients in a proof-of-concept clinical trial (1). Here, we describe a potential mechanism of action (MoA) wherein ACH-806 alters viral replication complex (RC) composition and function. We found that ACH-806 did not affect HCV polyprotein translation and processing, the early events of the formation of HCV RC. Instead, ACH-806 triggered the formation of a homodimeric form of NS4A with a size of 14 kDa (p14) both in replicon cells and in Huh-7 cells where NS4A was expressed alone. p14 production was negatively regulated by NS3, and its appearance in turn was associated with reductions in NS3 and, especially, NS4A content in RCs due to their accelerated degradation. A previously described resistance substitution near the N terminus of NS3, where NS3 interacts with NS4A, attenuated the reduction of NS3 and NS4A conferred by ACH-806 treatment. Taken together, we show that the compositional changes in viral RCs are associated with the antiviral activity of ACH-806. Small molecules, including ACH-806, with this novel MoA hold promise for further development and provide unique tools for clarifying the functions of NS4A in HCV replication. PMID:23629709

  3. Indole derivatives inhibit hepatitis C virus replication through induction of pro-inflammatory cytokines.

    PubMed

    Lee, S; Jin, G; Kim, D; Son, S; Lee, K; Lee, C

    2015-03-01

    Previously, we discovered a series of indole derivatives as a new class of hepatitis C virus (HCV) replication inhibitors by using a target-free chemical genetic strategy. Through a structure-activity relationship study, the compound 12e was identified as the most potent inhibitor of this class (EC50 = 1.1 μmol/l) with minimal cytotoxicity (CC50 = 61.8 μmol/l). In order to gain insight into its detailed antiviral mechanism of action, we performed PCR array analyses and found that 12e was able to activate transcription of a number of pro-inflammatory as well as antiviral cytokine genes including CXCL-8, IL-1α, TNF-α, IL-3, IRAK-1, and DDX58. Their induction by 12e was verified by individual RT-PCR analyses. In addition, 12e was found to stimulate secretion of soluble factors with anti-HCV replication activity. Among the 12e-induced pro-inflammatory cytokines, CXCL-8 showed a strong positive correlation between its transcriptional activation and antiviral potency. Interestingly, a recombinant CXCL-8 protein also reduced HCV replication, though only moderately. In conclusion, we found a novel mode of action of indole derivatives in inhibiting HCV replication, particularly the induction of pro-inflammatory cytokines. PMID:25790053

  4. Epstein-Barr virus stimulates torque teno virus replication: a possible relationship to multiple sclerosis.

    PubMed

    Borkosky, Silvia S; Whitley, Corinna; Kopp-Schneider, Annette; zur Hausen, Harald; de Villiers, Ethel-Michele

    2012-01-01

    Viral infections have been implicated in the pathogenesis of multiple sclerosis. Epstein-Barr virus (EBV) has frequently been investigated as a possible candidate and torque teno virus (TTV) has also been discussed in this context. Nevertheless, mechanistic aspects remain unresolved. We report viral replication, as measured by genome amplification, as well as quantitative PCR of two TTV-HD14 isolates isolated from multiple sclerosis brain in a series of EBV-positive and -negative lymphoblastoid and Burkitt's lymphoma cell lines. Our results demonstrate the replication of both transfected TTV genomes up to day 21 post transfection in all the evaluated cell lines. Quantitative amplification indicates statistically significant enhanced TTV replication in the EBV-positive cell lines, including the EBV-converted BJAB line, in comparison to the EBV-negative Burkitt's lymphoma cell line BJAB. This suggests a helper effect of EBV infections in the replication of TTV. The present study provides information on a possible interaction of EBV and TTV in the etiology and progression of multiple sclerosis. PMID:22384166

  5. Epstein-Barr Virus Stimulates Torque Teno Virus Replication: A Possible Relationship to Multiple Sclerosis

    PubMed Central

    Borkosky, Silvia S.; Whitley, Corinna; Kopp-Schneider, Annette; zur Hausen, Harald; deVilliers, Ethel-Michele

    2012-01-01

    Viral infections have been implicated in the pathogenesis of multiple sclerosis. Epstein-Barr virus (EBV) has frequently been investigated as a possible candidate and torque teno virus (TTV) has also been discussed in this context. Nevertheless, mechanistic aspects remain unresolved. We report viral replication, as measured by genome amplification, as well as quantitative PCR of two TTV-HD14 isolates isolated from multiple sclerosis brain in a series of EBV-positive and -negative lymphoblastoid and Burkitt's lymphoma cell lines. Our results demonstrate the replication of both transfected TTV genomes up to day 21 post transfection in all the evaluated cell lines. Quantitative amplification indicates statistically significant enhanced TTV replication in the EBV-positive cell lines, including the EBV-converted BJAB line, in comparison to the EBV-negative Burkitt's lymphoma cell line BJAB. This suggests a helper effect of EBV infections in the replication of TTV. The present study provides information on a possible interaction of EBV and TTV in the etiology and progression of multiple sclerosis. PMID:22384166

  6. Replication of Tomato Yellow Leaf Curl Virus in Its Whitefly Vector, Bemisia tabaci

    PubMed Central

    Pakkianathan, Britto Cathrin; Kontsedalov, Svetlana; Lebedev, Galina; Mahadav, Assaf; Zeidan, Muhammad; Czosnek, Henryk

    2015-01-01

    ABSTRACT Tomato yellow leaf curl virus (TYLCV) is a begomovirus transmitted exclusively by the whitefly Bemisia tabaci in a persistent, circulative manner. Replication of TYLCV in its vector remains controversial, and thus far, the virus has been considered to be nonpropagative. Following 8 h of acquisition on TYLCV-infected tomato plants or purified virions and then transfer to non-TYLCV-host cotton plants, the amounts of virus inside whitefly adults significantly increased (>2-fold) during the first few days and then continuously decreased, as measured by the amounts of genes on both virus DNA strands. Reported alterations in insect immune and defense responses upon virus retention led us to hypothesize a role for the immune response in suppressing virus replication. After virus acquisition, stress conditions were imposed on whiteflies, and the levels of three viral gene sequences were measured over time. When whiteflies were exposed to TYLCV and treatment with two different pesticides, the virus levels continuously increased. Upon exposure to heat stress, the virus levels gradually decreased, without any initial accumulation. Switching of whiteflies between pesticide, heat stress, and control treatments caused fluctuating increases and decreases in virus levels. Fluorescence in situ hybridization analysis confirmed these results and showed virus signals inside midgut epithelial cell nuclei. Combining the pesticide and heat treatments with virus acquisition had significant effects on fecundity. Altogether, our results demonstrate for the first time that a single-stranded DNA plant virus can replicate in its hemipteran vector. IMPORTANCE Plant viruses in agricultural crops are of great concern worldwide. Many of them are transmitted from infected to healthy plants by insects. Persistently transmitted viruses often have a complex association with their vectors; however, most are believed not to replicate within these vectors. Such replication is important, as it

  7. Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes.

    PubMed

    Mühlberger, E; Lötfering, B; Klenk, H D; Becker, S

    1998-11-01

    This paper describes the first reconstituted replication system established for a member of the Filoviridae, Marburg virus (MBGV). MBGV minigenomes containing the leader and trailer regions of the MBGV genome and the chloramphenicol acetyltransferase (CAT) gene were constructed. In MBGV-infected cells, these minigenomes were replicated and encapsidated and could be passaged. Unlike most other members of the order Mononegavirales, filoviruses possess four proteins presumed to be components of the nucleocapsid (NP, VP35, VP30, and L). To determine the protein requirements for replication and transcription, a reverse genetic system was established for MBGV based on the vaccinia virus T7 expression system. Northern blot analysis of viral RNA revealed that three nucleocapsid proteins (NP, VP35, and L) were essential and sufficient for transcription as well as replication and encapsidation. These data indicate that VP35, rather than VP30, is the functional homologue of rhabdo- and paramyxovirus P proteins. The reconstituted replication system was profoundly affected by the NP-to-VP35 expression ratio. To investigate whether CAT gene expression was achieved entirely by mRNA or in part by full-length plus-strand minigenomes, a copy-back minireplicon containing the CAT gene but lacking MBGV-specific transcriptional start sites was employed in the artificial replication system. This construct was replicated without accompanying CAT activity. It was concluded that the CAT activity reflected MBGV-specific transcription and not replication. PMID:9765419

  8. Replication of influenza A virus in swine umbilical cord epithelial stem-like cells

    PubMed Central

    Khatri, Mahesh; Chattha, Kuldeep S

    2015-01-01

    In this study, we describe the isolation and characterization of epithelial stem-like cells from the swine umbilical cord and their susceptibility to influenza virus infection. Swine umbilical cord epithelial stem cells (SUCECs) expressed stem cell and pluripotency associated markers such as SSEA-1, SSEA-4, TRA 1–60 and TRA 1–81 and Oct4. Morphologically, cells displayed polygonal morphology and were found to express epithelial markers; pancytokeratin, cytokeratin-18 and occludin; mesenchymal cell markers CD44, CD90 and haematopoietic cell marker CD45 were not detected on these cells. The cells had extensive proliferation and self- renewal properties. The cells also possessed immunomodulatory activity and inhibited the proliferation of T cells. Also, higher levels of anti-inflammatory cytokine IL-10 were detected in SUCEC-T cell co-cultures. The cells were multipotent and differentiated into lung epithelial cells when cultured in epithelial differentiation media. We also examined if SUCECs are susceptible to infection with influenza virus. SUCECs expressed sialic acid receptors, used by influenza virus for binding to cells. The 2009 pandemic influenza virus and swine influenza virus replicated in these cells. SUCECs due to their differentiation and immunoregulatory properties will be useful as cellular therapy in a pig model for human diseases. Additionally, our data indicate that influenza virus can infect SUCECs and may transmit influenza virus from mother to fetus through umbilical cord and transplantation of influenza virus-infected stem cells may transmit infection to recipients. Therefore, we propose that umbilical cord cells, in addition to other agents, should also be tested for influenza virus before cryopreservation for future use as a cell therapy for disease conditions. PMID:25517546

  9. 5-azacytidine and 5-azadeoxycytidine inhibit human immunodeficiency virus type 1 replication in vitro.

    PubMed Central

    Bouchard, J; Walker, M C; Leclerc, J M; Lapointe, N; Beaulieu, R; Thibodeau, L

    1990-01-01

    Chemotherapeutic agents which affect the integration, stability, or inducibility of the human immunodeficiency virus (HIV) provirus would have considerable value in treating acquired immunodeficiency syndrome. Two nucleoside analogs of cytosine, 5-azacytidine and 5-azadeoxycytidine, which seem to have such value because of their capabilities to affect both the stability and the methylation patterns of the nucleic acids into which they are incorporated, were tested for their ability to inhibit the replication of HIV type 1 (HIV-1) in human CEM T cells in vitro. 5-Azadeoxycytidine (1 microM) completely inhibited HIV replication in CEM cells, by the criteria of reduced viral antigen expression and decreased supernatant reverse transcriptase activity, with little toxicity for the treated cells. 5-azacytidine (1 microM) also inhibited HIV replication, but less effectively. When added 2 or more h after CEM cells were infected with HIV-1, both 5-azacytosine derivatives were less effective than they were when added at the time of infection. Even 2 h of exposure to 5-azadeoxycytidine was sufficient for inhibition of HIV replication. Although long exposure to either analog at concentrations of 1 microM would result in pronounced cellular cytotoxicity, the the fact that short exposures to the same dose of drug inhibit HIV replication but are not toxic for the cells implies that cellular toxicity itself is not an important mechanism of the antiviral action of the analogs. PMID:1691617

  10. Analysis of Influenza Virus Hemagglutinin Receptor Binding Mutants with Limited Receptor Recognition Properties and Conditional Replication Characteristics▿

    PubMed Central

    Bradley, Konrad C.; Galloway, Summer E.; Lasanajak, Yi; Song, Xuezheng; Heimburg-Molinaro, Jamie; Yu, Hai; Chen, Xi; Talekar, Ganesh R.; Smith, David F.; Cummings, Richard D.; Steinhauer, David A.

    2011-01-01

    To examine the range of selective processes that potentially operate when poorly binding influenza viruses adapt to replicate more efficiently in alternative environments, we passaged a virus containing an attenuating mutation in the hemagglutinin (HA) receptor binding site in mice and characterized the resulting mutants with respect to the structural locations of mutations selected, the replication phenotypes of the viruses, and their binding properties on glycan microarrays. The initial attenuated virus had a tyrosine-to-phenylalanine mutation at HA1 position 98 (Y98F), located in the receptor binding pocket, but viruses that were selected contained second-site pseudoreversion mutations in various structural locations that revealed a range of molecular mechanisms for modulating receptor binding that go beyond the scope that is generally mapped using receptor specificity mutants. A comparison of virus titers in the mouse respiratory tract versus MDCK cells in culture showed that the mutants displayed distinctive replication properties depending on the system, but all were less attenuated in mice than the Y98F virus. An analysis of receptor binding properties confirmed that the initial Y98F virus bound poorly to several different species of erythrocytes, while all mutants reacquired various degrees of hemagglutination activity. Interestingly, both the Y98F virus and pseudoreversion mutants were shown to bind very inefficiently to standard glycan microarrays containing an abundance of binding substrates for most influenza viruses that have been characterized to date, provided by the Consortium for Functional Glycomics. The viruses were also examined on a recently developed microarray containing glycans terminating in sialic acid derivatives, and limited binding to a potentially interesting subset of glycans was revealed. The results are discussed with respect to mechanisms for HA-mediated receptor binding, as well as regarding the species of molecules that may act

  11. Replication of a chimeric origin containing elements from Epstein-Barr virus ori P and bovine papillomavirus minimal origin.

    PubMed

    Kivimäe, S; Allikas, A; Kurg, R; Ustav, M

    2001-05-01

    The bovine papillomavirus E2 protein is a multifunctional protein that activates viral transcription, co-operates in initiation of viral DNA replication, and is required for long-term episomal maintenance of viral genomes. The EBNA1 protein of Epstein-Barr virus is required for synthesis and maintenance of Epstein-Barr virus genomes. Both viral proteins act through direct interactions with their respective DNA sequences in their origins of replication. The chimeric protein E2:EBNA1, which consists of an transactivation domain of E2 and DNA binding domain of EBNA1 supported the replication of the chimeric origin that contained EBNA1 binding sites in place of the E2 binding sites principally as full-length E2 did in the case of papillomavirus minimal origin. This indicates that the chimeric protein E2:EBNA1 is competent to assemble a replication complex similar to the E2 protein. These data confirm the earlier observations that the only part of E2 specifically required for its activity in replication is the N-terminal activation domain and the function of the DNA binding domain of E2 in the initiation of replication is to tether the transactivation domain of E2 to the origin of replication. PMID:11311423

  12. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    SciTech Connect

    Papaneri, Amy B.; Wirblich, Christoph; Cann, Jennifer A.; Cooper, Kurt; Jahrling, Peter B.; Schnell, Matthias J.; Blaney, Joseph E.

    2012-12-05

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RV{Delta}G-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RV{Delta}G-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RV{Delta}G-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RV{Delta}G-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  13. Inhibition of topoisomerase II by ICRF-193 prevents efficient replication of herpes simplex virus type 1.

    PubMed Central

    Hammarsten, O; Yao, X; Elias, P

    1996-01-01

    Cellular topoisomerase II is specifically inactivated by the drug ICRF-193. This compound turns topoisomerase II into a closed clamp that is unable to cleave DNA. We have investigated the effects of this inhibitor on the replication of herpes simplex virus type 1. We show that ICRF-193 at low multiplicities of infection dramatically inhibits viral DNA synthesis and the production of infectious virus. The inhibition is less efficient at high multiplicities of infection. In addition, inhibition of viral DNA synthesis was observed only when ICRF-193 was present during the first 4 h of the infectious cycle. The transient replication of plasmids containing a herpes simplex virus type 1 origin of DNA replication, oriS, was affected by ICRF-193 in the same way. In contrast, neither cellular DNA synthesis nor replication of plasmids containing a simian virus 40 origin of DNA replication was inhibited. The observed effect on herpes simplex virus DNA replication was not caused by a decreased transcription of replication genes inasmuch as the levels of UL8, UL9, UL29, and UL30 rmRNAs were unaffected by the drug. These results suggest that topoisomerase II plays a vital role during the replication of herpes simplex virus type 1 DNA. We speculate that topoisomerase II is involved in the decatenation of newly synthesized daughter molecules. PMID:8676478

  14. Marek's disease virus-encoded Meq gene is involved in transformation of lymphocytes but is dispensable for replication.

    PubMed

    Lupiani, Blanca; Lee, Lucy F; Cui, Xiaoping; Gimeno, Isabel; Anderson, Amy; Morgan, Robin W; Silva, Robert F; Witter, Richard L; Kung, Hsing-Jien; Reddy, Sanjay M

    2004-08-10

    Marek's disease virus (MDV) causes an acute lymphoproliferative disease in chickens, resulting in T cell lymphomas in visceral organs and peripheral nerves. Earlier studies have determined that the repeat regions of oncogenic serotype 1 MDV encode a basic leucine zipper protein, Meq, which structurally resembles the Jun/Fos family of transcriptional activators. Meq is consistently expressed in MDV-induced tumor cells and has been suggested as the MDV-associated oncogene. To study the function of Meq, we have generated an rMd5DeltaMeq virus by deleting both copies of the meq gene from the genome of a very virulent strain of MDV. Growth curves in cultured fibroblasts indicated that Meq is dispensable for in vitro virus replication. In vivo replication in lymphoid organs and feather follicular epithelium was also not impaired, suggesting that Meq is dispensable for lytic infection in chickens. Reactivation of the rMd5DeltaMeq virus from peripheral blood lymphocytes was reduced, suggesting that Meq is involved but not essential for latency. Pathogenesis experiments showed that the rMd5DeltaMeq virus was fully attenuated in chickens because none of the infected chickens developed Marek's disease-associated lymphomas, suggesting that Meq is involved in lymphocyte transformation. A revertant virus that restored the expression of the meq gene, showed properties similar to those of the parental virus, confirming that Meq is involved in transformation but not in lytic replication in chickens. PMID:15289599

  15. Highly sensitive real-time in vivo imaging of an influenza reporter virus reveals dynamics of replication and spread.

    PubMed

    Tran, Vy; Moser, Lindsey A; Poole, Daniel S; Mehle, Andrew

    2013-12-01

    The continual public health threat posed by the emergence of novel influenza viruses necessitates the ability to rapidly monitor infection and spread in experimental systems. To analyze real-time infection dynamics, we have created a replication-competent influenza reporter virus suitable for in vivo imaging. The reporter virus encodes the small and bright NanoLuc luciferase whose activity serves as an extremely sensitive readout of viral infection. This virus stably maintains the reporter construct and replicates in culture and in mice with near-native properties. Bioluminescent imaging of the reporter virus permits serial observations of viral load and dissemination in infected animals, even following clearance of a sublethal challenge. We further show that the reporter virus recapitulates known restrictions due to host range and antiviral treatment, suggesting that this technology can be applied to studying emerging influenza viruses and the impact of antiviral interventions on infections in vivo. These results describe a generalizable method to quickly determine the replication and pathogenicity potential of diverse influenza strains in animals. PMID:24089552

  16. Positive-strand RNA viruses stimulate host phosphatidylcholine synthesis at viral replication sites.

    PubMed

    Zhang, Jiantao; Zhang, Zhenlu; Chukkapalli, Vineela; Nchoutmboube, Jules A; Li, Jianhui; Randall, Glenn; Belov, George A; Wang, Xiaofeng

    2016-02-23

    All positive-strand RNA viruses reorganize host intracellular membranes to assemble their viral replication complexes (VRCs); however, how these viruses modulate host lipid metabolism to accommodate such membrane proliferation and rearrangements is not well defined. We show that a significantly increased phosphatidylcholine (PC) content is associated with brome mosaic virus (BMV) replication in both natural host barley and alternate host yeast based on a lipidomic analysis. Enhanced PC levels are primarily associated with the perinuclear ER membrane, where BMV replication takes place. More specifically, BMV replication protein 1a interacts with and recruits Cho2p (choline requiring 2), a host enzyme involved in PC synthesis, to the site of viral replication. These results suggest that PC synthesized at the site of VRC assembly, not the transport of existing PC, is responsible for the enhanced accumulation. Blocking PC synthesis by deleting the CHO2 gene resulted in VRCs with wider diameters than those in wild-type cells; however, BMV replication was significantly inhibited, highlighting the critical role of PC in VRC formation and viral replication. We further show that enhanced PC levels also accumulate at the replication sites of hepatitis C virus and poliovirus, revealing a conserved feature among a group of positive-strand RNA viruses. Our work also highlights a potential broad-spectrum antiviral strategy that would disrupt PC synthesis at the sites of viral replication but would not alter cellular processes. PMID:26858414

  17. Positive-strand RNA viruses stimulate host phosphatidylcholine synthesis at viral replication sites

    PubMed Central

    Zhang, Jiantao; Zhang, Zhenlu; Chukkapalli, Vineela; Nchoutmboube, Jules A.; Li, Jianhui; Randall, Glenn; Belov, George A.; Wang, Xiaofeng

    2016-01-01

    All positive-strand RNA viruses reorganize host intracellular membranes to assemble their viral replication complexes (VRCs); however, how these viruses modulate host lipid metabolism to accommodate such membrane proliferation and rearrangements is not well defined. We show that a significantly increased phosphatidylcholine (PC) content is associated with brome mosaic virus (BMV) replication in both natural host barley and alternate host yeast based on a lipidomic analysis. Enhanced PC levels are primarily associated with the perinuclear ER membrane, where BMV replication takes place. More specifically, BMV replication protein 1a interacts with and recruits Cho2p (choline requiring 2), a host enzyme involved in PC synthesis, to the site of viral replication. These results suggest that PC synthesized at the site of VRC assembly, not the transport of existing PC, is responsible for the enhanced accumulation. Blocking PC synthesis by deleting the CHO2 gene resulted in VRCs with wider diameters than those in wild-type cells; however, BMV replication was significantly inhibited, highlighting the critical role of PC in VRC formation and viral replication. We further show that enhanced PC levels also accumulate at the replication sites of hepatitis C virus and poliovirus, revealing a conserved feature among a group of positive-strand RNA viruses. Our work also highlights a potential broad-spectrum antiviral strategy that would disrupt PC synthesis at the sites of viral replication but would not alter cellular processes. PMID:26858414

  18. Fc receptors do not mediate African swine fever virus replication in macrophages

    SciTech Connect

    Alcami, A.; Vinuela, E. )

    1991-04-01

    Titration experiments in swine macrophages have shown that African swine fever virus infectivity was not enhanced in the presence of antiviral antibodies. The early viral protein synthesis and the viral DNA replication in swine macrophages infected with virus-antibody complexes were inhibited in the presence of high doses of uv-inactivated virus, which saturated specific virus receptors, but not when Fc receptors were saturated with antibodies. These results indicate that African swine fever virus does not infect swine macrophages through Fc receptors and that the normal entry pathway through virus receptors is not bypassed by the virus-antibody complexes.

  19. Nef-Mediated Downregulation of CD4 Enhances Human Immunodeficiency Virus Type 1 Replication in Primary T Lymphocytes

    PubMed Central

    Lundquist, Christopher A.; Tobiume, Minoru; Zhou, Jing; Unutmaz, Derya; Aiken, Christopher

    2002-01-01

    The accessory protein Nef plays a crucial role in primate lentivirus pathogenesis. Nef enhances human immunodeficiency virus type 1 (HIV-1) infectivity in culture and stimulates viral replication in primary T cells. In this study, we investigated the relationship between HIV-1 replication efficiency in CD4+ T cells purified from human blood and two various known activities of Nef, CD4 downregulation and single-cycle infectivity enhancement. Using a battery of reporter viruses containing point mutations in nef, we observed a strong genetic correlation between CD4 downregulation by Nef during acute HIV-1 infection of activated T cells and HIV-1 replication efficiency in T cells. In contrast, HIV-1 replication ability was not significantly correlated with the ability of Nef to enhance single-cycle virion infectivity, as determined by using viruses produced in cells lacking CD4. These results demonstrate that CD4 downregulation by Nef plays a crucial role in HIV-1 replication in activated T cells and underscore the potential for the development of therapies targeting this conserved activity of Nef. PMID:11932428

  20. A new class of synthetic anti-lipopolysaccharide peptides inhibits influenza A virus replication by blocking cellular attachment.

    PubMed

    Hoffmann, Julia; Schneider, Carola; Heinbockel, Lena; Brandenburg, Klaus; Reimer, Rudolph; Gabriel, Gülsah

    2014-04-01

    Influenza A viruses are a continuous threat to human health as illustrated by the 2009 H1N1 pandemic. Since circulating influenza virus strains become increasingly resistant against currently available drugs, the development of novel antivirals is urgently needed. Here, we have evaluated a recently described new class of broad-spectrum antiviral peptides (synthetic anti-lipopolysaccharide peptides; SALPs) for their potential to inhibit influenza virus replication in vitro and in vivo. We found that particularly SALP PEP 19-2.5 shows high binding affinities for the influenza virus receptor molecule, N-Acetylneuraminic acid, leading to impaired viral attachment and cellular entry. As a result, replication of several influenza virus subtypes (H7N7, H3N2 and 2009 pandemic H1N1) was strongly reduced. Furthermore, mice co-treated with PEP 19-2.5 were protected against an otherwise 100% lethal H7N7 influenza virus infection. These findings show that SALPs exhibit antiviral activity against influenza viruses by blocking virus attachment and entry into host cells. Thus, SALPs present a new class of broad-spectrum antiviral peptides for further development for influenza virus therapy. PMID:24486207

  1. IFITMs restrict the replication of multiple pathogenic viruses

    PubMed Central

    Perreira, Jill M.; Chin, Christopher R.; Feeley, Eric M.; Brass, Abraham L.

    2014-01-01

    The IFITM family of proteins inhibit a growing number of pathogenic viruses, among them influenza A virus, dengue virus, hepatitis C virus, and Ebola virus. This review covers recent developments in our understanding of the IFITM’s molecular determinants, potential mechanisms of action, and impact on pathogenesis. PMID:24076421

  2. Replication of the Rotavirus Genome Requires an Active Ubiquitin-Proteasome System▿

    PubMed Central

    López, Tomás; Silva-Ayala, Daniela; López, Susana; Arias, Carlos F.

    2011-01-01

    Here we show that the ubiquitin-proteasome system is required for the efficient replication of rotavirus RRV in MA104 cells. The proteasome inhibitor MG132 decreased the yield of infectious virus under conditions where it severely reduces the synthesis of not only viral but also cellular proteins. Addition of nonessential amino acids to the cell medium restored both viral protein synthesis and cellular protein synthesis, but the production of progeny viruses was still inhibited. In medium supplemented with nonessential amino acids, we showed that MG132 does not affect rotavirus entry but inhibits the replication of the viral genome. It was also shown that it prevents the efficient incorporation into viroplasms of viral polymerase VP1 and the capsid proteins VP2 and VP6, which could explain the inhibitory effect of MG132 on genome replication and infectious virus yield. We also showed that ubiquitination is relevant for rotavirus replication since the yield of rotavirus progeny in cells carrying a temperature-sensitive mutation in the E1 ubiquitin-activating enzyme was reduced at the restrictive temperature. In addition, overexpression of ubiquitin in MG132-treated MA104 cells partially reversed the effect of the inhibitor on virus yield. Altogether, these data suggest that the ubiquitin-proteasome (UP) system has a very complex interaction with the rotavirus life cycle, with both the ubiquitination and proteolytic activities of the system being relevant for virus replication. PMID:21900156

  3. Dendritic cells harbor infectious porcine circovirus type 2 in the absence of apparent cell modulation or replication of the virus.

    PubMed

    Vincent, I E; Carrasco, C P; Herrmann, B; Meehan, B M; Allan, G M; Summerfield, A; McCullough, K C

    2003-12-01

    Dendritic cells (DCs) play crucial roles in innate and adaptive immune responses, rendering them critical targets for virus infections. Porcine circovirus type 2 (PCV2) is associated with the development of postweaning multisystemic wasting syndrome (PMWS) in piglets. We demonstrate here that 80 to 90% of monocyte-derived and bone marrow-derived DCs interact with PCV2 similar to the early stages of an infection. There was no evidence for virus replication, but the virus did persist in DCs without loss of infectivity nor the induction of cell death. This could reflect an abortive infection, but there was no evidence of virus uncoating-the infectivity remained intact for at least 5 days. Alternatively, the results may reflect DC endocytosis of antigenic material. However, there was no modulation of DC surface major histocompatibility complex class I and class II, CD80/86, CD25, CD16, or CD14. Furthermore, infected DC did not transmit virus to syngeneic T lymphocytes, even when the latter were activated. Such coculture did not induce PCV2 replication or death of the lymphocytes or DCs. These results demonstrate that PCV2 can persist in DCs in the absence of virus replication or degradation. Such a silent virus infection presents a novel mechanism of not only immune evasion but also escaping the DC degradation pathway. Because of their migratory capacity, infection of DCs thus provides a potent vehicle for transport of the virus throughout the host without the need for replication. In addition, the lymphopenia seen in PMWS is not a direct effect of the virus on lymphocytes but would require additional events, as proposed by others. PMID:14645585

  4. Verdinexor, a Novel Selective Inhibitor of Nuclear Export, Reduces Influenza A Virus Replication In Vitro and In Vivo

    PubMed Central

    Perwitasari, Olivia; Johnson, Scott; Yan, Xiuzhen; Howerth, Elizabeth; Shacham, Sharon; Landesman, Yosef; Baloglu, Erkan; McCauley, Dilara; Tamir, Sharon; Tompkins, S. Mark

    2014-01-01

    ABSTRACT Influenza is a global health concern, causing death, morbidity, and economic losses. Chemotherapeutics that target influenza virus are available; however, rapid emergence of drug-resistant strains is common. Therapeutic targeting of host proteins hijacked by influenza virus to facilitate replication is an antiviral strategy to reduce the development of drug resistance. Nuclear export of influenza virus ribonucleoprotein (vRNP) from infected cells has been shown to be mediated by exportin 1 (XPO1) interaction with viral nuclear export protein tethered to vRNP. RNA interference screening has identified XPO1 as a host proinfluenza factor where XPO1 silencing results in reduced influenza virus replication. The Streptomyces metabolite XPO1 inhibitor leptomycin B (LMB) has been shown to limit influenza virus replication in vitro; however, LMB is toxic in vivo, which makes it unsuitable for therapeutic use. In this study, we tested the anti-influenza virus activity of a new class of orally available small-molecule selective inhibitors of nuclear export, specifically, the XPO1 antagonist KPT-335 (verdinexor). Verdinexor was shown to potently and selectively inhibit vRNP export and effectively inhibited the replication of various influenza virus A and B strains in vitro, including pandemic H1N1 virus, highly pathogenic H5N1 avian influenza virus, and the recently emerged H7N9 strain. In vivo, prophylactic and therapeutic administration of verdinexor protected mice against disease pathology following a challenge with influenza virus A/California/04/09 or A/Philippines/2/82-X79, as well as reduced lung viral loads and proinflammatory cytokine expression, while having minimal toxicity. These studies show that verdinexor acts as a novel anti-influenza virus therapeutic agent. IMPORTANCE Antiviral drugs represent important means of influenza virus control. However, substantial resistance to currently approved influenza therapeutic drugs has developed. New antiviral

  5. Natural compounds isolated from Brazilian plants are potent inhibitors of hepatitis C virus replication in vitro

    PubMed Central

    Jardim, A.C.G.; Igloi, Z.; Shimizu, J.F.; Santos, V.A.F.F.M.; Felippe, L.G.; Mazzeu, B.F.; Amako, Y.; Furlan, M.; Harris, M.; Rahal, P.

    2015-01-01

    Compounds extracted from plants can provide an alternative approach to new therapies. They present characteristics such as high chemical diversity, lower cost of production and milder or inexistent side effects compared with conventional treatment. The Brazilian flora represents a vast, largely untapped, resource of potential antiviral compounds. In this study, we investigate the antiviral effects of a panel of natural compounds isolated from Brazilian plants species on hepatitis C virus (HCV) genome replication. To do this we used firefly luciferase-based HCV sub-genomic replicons of genotypes 2a (JFH-1), 1b and 3a and the compounds were assessed for their effects on both HCV replication and cellular toxicity. Initial screening of compounds was performed using the maximum non-toxic concentration and 4 compounds that exhibited a useful therapeutic index (favourable ratio of cytotoxicity to antiviral potency) were selected for extra analysis. The compounds APS (EC50 = 2.3 μM), a natural alkaloid isolated from Maytrenus ilicifolia, and the lignans 3∗43 (EC50 = 4.0 μM), 3∗20 (EC50 = 8.2 μM) and 5∗362 (EC50 = 38.9 μM) from Peperomia blanda dramatically inhibited HCV replication as judged by reductions in luciferase activity and HCV protein expression in both the subgenomic and infectious systems. We further show that these compounds are active against a daclatasvir resistance mutant subgenomic replicon. Consistent with inhibition of genome replication, production of infectious JFH-1 virus was significantly reduced by all 4 compounds. These data are the first description of Brazilian natural compounds possessing anti-HCV activity and further analyses are being performed in order to investigate the mode of action of those compounds. PMID:25557602

  6. Replication at body temperature selects a neurovirulent herpes simplex virus type 2.

    PubMed Central

    Thompson, R L; Stevens, J G

    1983-01-01

    A prototype strain of herpes simplex virus type 2 (HG-52) replicated at 31 degrees C was avirulent when inoculated intracranially into mice. This property was not altered after serial passage of the agent at 31 degrees C, but the virus became virulent after passage at 37.5 degrees C. The selection was not merely for an agent which replicated more efficiently at the higher temperature, but for viruses with enhanced capacity to replicate in the brains of mice. Virulent descendants of plaque-purified avirulent stocks were obtained in each instance attempted. PMID:6307887

  7. High-Throughput Minigenome System for Identifying Small-Molecule Inhibitors of Ebola Virus Replication

    PubMed Central

    Edwards, Megan R.; Pietzsch, Colette; Vausselin, Thibaut; Shaw, Megan L.; Bukreyev, Alexander; Basler, Christopher F.

    2015-01-01

    Ebola virus (EBOV), a member of the family Filoviridae, is a nonsegmented negative-sense RNA virus that causes severe, often lethal, disease in humans. EBOV RNA synthesis is carried out by a complex that includes several viral proteins. The function of this machinery is essential for viral gene expression and viral replication and is therefore a potential target for antivirals. We developed and optimized a high-throughput screening (HTS) assay based on an EBOV minigenome assay, which assesses the function of the polymerase complex. The assay is robust in 384-well format and displays a large signal to background ratio and high Z-factor values. We performed a pilot screen of 2080 bioactive compounds, identifying 31 hits (1.5% of the library) with >70% inhibition of EBOV minigenome activity. We further identified eight compounds with 50% inhibitory concentrations below their 50% cytotoxic concentrations, five of which had selectivity index (SI) values >10, suggesting specificity against the EBOV polymerase complex. These included an inhibitor of inosine monophosphate dehydrogenase, a target known to modulate the EBOV replication complex. They also included novel classes of inhibitors, including inhibitors of protein synthesis and hypoxia inducible factor-1. Five compounds were tested for their ability to inhibit replication of a recombinant EBOV that expresses GFP (EBOV-GFP), and four inhibited EBOV-GFP growth at sub-cytotoxic concentrations. These data demonstrate the utility of the HTS minigenome assay for drug discovery and suggest potential directions for antifiloviral drug development. PMID:26284260

  8. Oseltamivir inhibits influenza virus replication and transmission following ocular-only aerosol inoculation of ferrets.

    PubMed

    Belser, Jessica A; Maines, Taronna R; Creager, Hannah M; Katz, Jacqueline M; Tumpey, Terrence M

    2015-10-01

    Ocular exposure to influenza virus represents an alternate route of virus entry capable of establishing a respiratory infection in mammals, but the effectiveness of currently available antiviral treatments to limit virus replication within ocular tissue or inhibit virus spread from ocular sites to the respiratory tract is poorly understood. Using an inoculation method that delivers an aerosol inoculum exclusively to the ocular surface, we demonstrate that oral oseltamivir administration following ocular-only aerosol inoculation with multiple avian and human influenza viruses protected ferrets from a fatal and systemic infection, reduced clinical signs and symptoms of illness, and decreased virus transmissibility to susceptible contacts when a respiratory infection was initiated. The presence of oseltamivir further inhibited influenza virus replication in primary human corneal epithelial cells. These findings provide critical experimental evidence supporting the use of neuraminidase inhibitors during outbreaks of influenza virus resulting in ocular disease or following ocular exposure. PMID:26142497

  9. Replication and Transmission of H9N2 Influenza Viruses in Ferrets: Evaluation of Pandemic Potential

    PubMed Central

    Song, Haichen; Hossain, Md Jaber; Ramirez-Nieto, Gloria; Monne, Isabella; Stevens, James; Cattoli, Giovanni; Capua, Ilaria; Chen, Li-Mei; Donis, Ruben O.; Busch, Julia; Paulson, James C.; Brockwell, Christy; Webby, Richard; Blanco, Jorge; Al-Natour, Mohammad Q.; Perez, Daniel R.

    2008-01-01

    H9N2 avian influenza A viruses are endemic in poultry of many Eurasian countries and have caused repeated human infections in Asia since 1998. To evaluate the potential threat of H9N2 viruses to humans, we investigated the replication and transmission efficiency of H9N2 viruses in the ferret model. Five wild-type (WT) H9N2 viruses, isolated from different avian species from 1988 through 2003, were tested in vivo and found to replicate in ferrets. However these viruses achieved mild peak viral titers in nasal washes when compared to those observed with a human H3N2 virus. Two of these H9N2 viruses transmitted to direct contact ferrets, however no aerosol transmission was detected in the virus displaying the most efficient direct contact transmission. A leucine (Leu) residue at amino acid position 226 in the hemagglutinin (HA) receptor-binding site (RBS), responsible for human virus-like receptor specificity, was found to be important for the transmission of the H9N2 viruses in ferrets. In addition, an H9N2 avian-human reassortant virus, which contains the surface glycoprotein genes from an H9N2 virus and the six internal genes of a human H3N2 virus, showed enhanced replication and efficient transmission to direct contacts. Although no aerosol transmission was observed, the virus replicated in multiple respiratory tissues and induced clinical signs similar to those observed with the parental human H3N2 virus. Our results suggest that the establishment and prevalence of H9N2 viruses in poultry pose a significant threat for humans. PMID:18698430

  10. Enhancement of autophagy during lytic replication by the Kaposi's sarcoma-associated herpesvirus replication and transcription activator.

    PubMed

    Wen, Hui-Ju; Yang, Zhilong; Zhou, You; Wood, Charles

    2010-08-01

    Autophagy is one of two major degradation systems in eukaryotic cells. The degradation mechanism of autophagy is required to maintain the balance between the biosynthetic and catabolic processes and also contributes to defense against invading pathogens. Recent studies suggest that a number of viruses can evade or subvert the host cell autophagic pathway to enhance their own replication. Here, we investigated the effect of autophagy on the KSHV (Kaposi's sarcoma-associated herpesvirus) life cycle. We found that the inhibition of autophagy reduces KSHV lytic reactivation from latency, and an enhancement of autophagy can be detected during KSHV lytic replication. In addition, RTA (replication and transcription activator), an essential viral protein for KSHV lytic reactivation, is able to enhance the autophagic process, leading to an increase in the number of autophagic vacuoles, an increase in the level of the lipidated LC3 protein, and the formation of autolysosomes. Moreover, the inhibition of autophagy affects RTA-mediated lytic gene expression and viral DNA replication. These results suggest that RTA increases autophagy activation to facilitate KSHV lytic replication. This is the first report demonstrating that autophagy is involved in the lytic reactivation of KSHV. PMID:20484505

  11. Cyclophilin A Restricts Influenza A Virus Replication through Degradation of the M1 Protein

    PubMed Central

    Xu, Chongfeng; Sun, Lei; Chen, Jilong; Zhang, Lianfeng; Liu, Wenjun

    2012-01-01

    Cyclophilin A (CypA) is a typical member of the cyclophilin family of peptidyl-prolyl isomerases and is involved in the replication of several viruses. Previous studies indicate that CypA interacts with influenza virus M1 protein and impairs the early stage of the viral replication. To further understand the molecular mechanism by which CypA impairs influenza virus replication, a 293T cell line depleted for endogenous CypA was established. The results indicated that CypA inhibited the initiation of virus replication. In addition, the infectivity of influenza virus increased in the absence of CypA. Further studies indicated that CypA had no effect on the stages of virus genome replication or transcription and also did not impair the nuclear export of the viral mRNA. However, CypA decreased the viral protein level. Additional studies indicated that CypA enhanced the degradation of M1 through the ubiquitin/proteasome-dependent pathway. Our results suggest that CypA restricts influenza virus replication through accelerating degradation of the M1 protein. PMID:22347431

  12. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    SciTech Connect

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie; Cotmore, Susan F.; Tattersall, Peter; Zhao, Haiyan; Tang, Liang

    2015-02-15

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.

  13. Ascorbic acid inhibits replication and infectivity of avian RNA tumor virus

    SciTech Connect

    BISSELL, MINA J; HATIE, CARROLL; FARSON, DEBORAH A.; SCHWARZ, RICHARD I.; SOO, WHAI-JEN

    1980-04-01

    Ascorbic acid, at nontoxic concentrations, causes a substantial reduction in the ability of avian tumor viruses to replicate in both primary avian tendon cells and chicken embryo fibroblasts. The virus-infected cultures appear to be less transformed in the presence of ascorbic acid by the criteria of morphology, reduced glucose uptake, and increased collagen synthesis. The vitamin does not act by altering the susceptibility of the cells to initial infection and transformation, but instead appears to interfere with the spread of infection through a reduction in virus replication and virus infectivity. The effect is reversible and requires the continuous presence of the vitamin in the culture medium.

  14. Ascorbic acid inhibits replication and infectivity of avian RNA tumor virus

    SciTech Connect

    Bissell, M.J.; Hatie, C.; Farson, D.A.; Schwarz, R.I.; Soo, W.J.

    1980-05-01

    Ascrobic acid, at nontoxic concentrations, causes a substantial reduction in the ability of avian tumor viruses to replicate in both primary avian tendon cells and chicken embryo fibroblasts. The virus-infected cultures appear to be less transformed in the presence of ascorbic acid by the criteria of morphology, reduced glucose uptake, and increased collagen synthesis. The vitamin does not act by altering the susceptibility of the cells to initial infection and transformation, but instead appears to interfere with the spread of infection through a reduction in virus replication and virus infectivity. The effect is reversible and requires the continuous presence of the vitamin in the culture medium.

  15. The herpes simplex virus amplicon: analyses of cis-acting replication functions.

    PubMed Central

    Spaete, R R; Frenkel, N

    1985-01-01

    Previous studies have shown that defective virus vectors (amplicons) derived from herpes simplex viruses could be efficiently propagated in virus stocks in the presence of trans-acting helper virus functions. The present study established that two separate cis-acting functions--a DNA replication origin and a cleavage/packaging signal--are required for amplicon propagation. Using deleted derivatives of cloned amplicons, we mapped one of the viral DNA replication origins (ori-2 or oriL) at coordinate 0.422 of the standard HSV-1 genome and at an equivalent position within the HSV-2 genome. Images PMID:2983310

  16. HBx protein of hepatitis B virus promotes reinitiation of DNA replication by regulating expression and intracellular stability of replication licensing factor CDC6.

    PubMed

    Pandey, Vijaya; Kumar, Vijay

    2012-06-01

    Prevention of re-replication via negative regulation of replication initiator proteins, such as CDC6, is key to maintenance of genomic integrity, whereas their up-regulation is generally associated with perturbation in cell cycle, genomic instability, and potentially, tumorigenesis. The HBx oncoprotein of hepatitis B virus is well known to deregulate cell cycle and has been intricately linked to development of hepatocellular carcinoma. Despite a clear understanding of the proliferative effects of HBx on cell cycle, a mechanistic link between HBx-mediated hepatocarcinogenesis and host cell DNA replication remains poorly perused. Here we show that HBx overexpression in both the cellular as well as the transgenic environment resulted in the accumulation of CDC6 through transcriptional and post-translational up-regulation. The HBx-mediated increase in CDK2 activity altered the E2F1-Rb (retinoblastoma) balance, which favored CDC6 gene expression by E2F1. Besides, HBx impaired the APC(Cdh1)-dependent protein degradation pathway and conferred intracellular stability to CDC6 protein. Increase in CDC6 levels correlated with increase in CDC6 occupancy on the β-globin origin of replication, suggesting increment in origin licensing and re-replication. In conclusion, our findings strongly suggest a novel role for CDC6 in abetting the oncogenic sabotage carried out by HBx and support the paradigm that pre-replicative complex proteins have a role in oncogenic transformation. PMID:22523071

  17. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation

    SciTech Connect

    Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon; Yang, Sujeong; Choi, Seunga; Kang, Misun; Rho, Jaerang

    2010-01-01

    Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain and examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.

  18. Myxoma virus M063R is a host range gene essential for virus replication in rabbit cells.

    PubMed

    Barrett, John W; Shun Chang, Chew; Wang, Gen; Werden, Steven J; Shao, Zhuhong; Barrett, Catherine; Gao, Xiujuan; Belsito, Tara A; Villenevue, Danielle; McFadden, Grant

    2007-04-25

    The myxoma virus M063R gene product exhibits some sequence similarity to the poxvirus host range gene, C7L, of vaccinia virus. To address the potential host range function of the M063R gene product in rabbits, a deletion mutant of myxoma virus (vMyx63KO) was generated and characterized. vMyx63KO replicated to normal titre levels and produced foci that were indistinguishable from those produced by MV in vitro in a monkey kidney cell line (BGMK) that are permissive for wild type MV. However, vMyx63KO failed to replicate in all rabbit cell lines tested, including both primary and established cells lines, as well as cells derived from a variety of tissues. M063R expression was not required for myxoma virus binding, entry or early gene expression, whereas DNA replication was aborted and late genes were not expressed in vMyx63KO infected rabbit cells. Thus, the replication block for vMyx63KO in rabbit cells preceded the stage of late gene expression and DNA replication. Finally, an in vivo pathogenesis study indicated that vMyx63KO failed to cause any signs of classic myxomatosis in infected rabbits, but functioned as a non-replicating vaccine and provided protection for subsequent challenge by wild type myxoma virus. Altogether, these observations demonstrate that M063R plays a critical role in determining the host specificity of myxoma virus in rabbit cells. PMID:17184804

  19. Host cell species-specific effect of cyclosporine A on simian immunodeficiency virus replication

    PubMed Central

    2012-01-01

    Background An understanding of host cell factors that affect viral replication contributes to elucidation of the mechanism for determination of viral tropism. Cyclophilin A (CypA), a peptidyl-prolyl cis-trans isomerase (PPIase), is a host factor essential for efficient replication of human immunodeficiency virus type 1 (HIV-1) in human cells. However, the role of cyclophilins in simian immunodeficiency virus (SIV) replication has not been determined. In the present study, we examined the effect of cyclosporine A (CsA), a PPIase inhibitor, on SIV replication. Results SIV replication in human CEM-SS T cells was not inhibited but rather enhanced by treatment with CsA, which inhibited HIV-1 replication. CsA treatment of target human cells enhanced an early step of SIV replication. CypA overexpression enhanced the early phase of HIV-1 but not SIV replication, while CypA knock-down resulted in suppression of HIV-1 but not SIV replication in CEM-SS cells, partially explaining different sensitivities of HIV-1 and SIV replication to CsA treatment. In contrast, CsA treatment inhibited SIV replication in macaque T cells; CsA treatment of either virus producer or target cells resulted in suppression of SIV replication. SIV infection was enhanced by CypA overexpression in macaque target cells. Conclusions CsA treatment enhanced SIV replication in human T cells but abrogated SIV replication in macaque T cells, implying a host cell species-specific effect of CsA on SIV replication. Further analyses indicated a positive effect of CypA on SIV infection into macaque but not into human T cells. These results suggest possible contribution of CypA to the determination of SIV tropism. PMID:22225545

  20. Salicylic Acid Inhibits the Replication of Tomato bushy stunt virus by Directly Targeting a Host Component in the Replication Complex.

    PubMed

    Tian, Miaoying; Sasvari, Zsuzsanna; Gonzalez, Paulina Alatriste; Friso, Giulia; Rowland, Elden; Liu, Xiao-Min; van Wijk, Klaas J; Nagy, Peter D; Klessig, Daniel F

    2015-04-01

    Although the plant hormone salicylic acid (SA) plays a central role in signaling resistance to viral infection, the underlying mechanisms are only partially understood. Identification and characterization of SA's direct targets have been shown to be an effective strategy for dissecting the complex SA-mediated defense signaling network. In search of additional SA targets, we previously developed two sensitive approaches that utilize SA analogs in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology to identify and evaluate candidate SA-binding proteins (SABPs) from Arabidopsis. Using these approaches, we have now identified several members of the Arabidopsis glyceraldehyde 3-phosphate dehydrogenase (GAPDH) protein family, including two chloroplast-localized and two cytosolic isoforms, as SABPs. Cytosolic GAPDH is a well-known glycolytic enzyme; it also is an important host factor involved in the replication of Tomato bushy stunt virus (TBSV), a single-stranded RNA virus. Using a yeast cell-free extract, an in vivo yeast replication system, and plant protoplasts, we demonstrate that SA inhibits TBSV replication. SA does so by inhibiting the binding of cytosolic GAPDH to the negative (-)RNA strand of TBSV. Thus, this study reveals a novel molecular mechanism through which SA regulates virus replication. PMID:25584724

  1. Cross Talk between Nucleotide Synthesis Pathways with Cellular Immunity in Constraining Hepatitis E Virus Replication.

    PubMed

    Wang, Yijin; Wang, Wenshi; Xu, Lei; Zhou, Xinying; Shokrollahi, Ehsan; Felczak, Krzysztof; van der Laan, Luc J W; Pankiewicz, Krzysztof W; Sprengers, Dave; Raat, Nicolaas J H; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2016-05-01

    Viruses are solely dependent on host cells to propagate; therefore, understanding virus-host interaction is important for antiviral drug development. Since de novo nucleotide biosynthesis is essentially required for both host cell metabolism and viral replication, specific catalytic enzymes of these pathways have been explored as potential antiviral targets. In this study, we investigated the role of different enzymatic cascades of nucleotide biosynthesis in hepatitis E virus (HEV) replication. By profiling various pharmacological inhibitors of nucleotide biosynthesis, we found that targeting the early steps of the purine biosynthesis pathway led to the enhancement of HEV replication, whereas targeting the later step resulted in potent antiviral activity via the depletion of purine nucleotide. Furthermore, the inhibition of the pyrimidine pathway resulted in potent anti-HEV activity. Interestingly, all of these inhibitors with anti-HEV activity concurrently triggered the induction of antiviral interferon-stimulated genes (ISGs). Although ISGs are commonly induced by interferons via the JAK-STAT pathway, their induction by nucleotide synthesis inhibitors is completely independent of this classical mechanism. In conclusion, this study revealed an unconventional novel mechanism of cross talk between nucleotide biosynthesis pathways and cellular antiviral immunity in constraining HEV infection. Targeting particular enzymes in nucleotide biosynthesis represents a viable option for antiviral drug development against HEV. HEV is the most common cause of acute viral hepatitis worldwide and is also associated with chronic hepatitis, especially in immunocompromised patients. Although often an acute and self-limiting infection in the general population, HEV can cause severe morbidity and mortality in certain patients, a problem compounded by the lack of FDA-approved anti-HEV medication available. In this study, we have investigated the role of the nucleotide synthesis pathway

  2. Studies on photoinactivation by various phthalocyanines of a free or replicating non-enveloped virus.

    PubMed

    Gaspard, S; Tempête, C; Werner, G H

    1995-12-01

    The non-enveloped picornaviruses, which are particularly resistant to physicochemical inactivation, include the aetiological agents of poliomyelitis, hepatitis A and E and infectious common cold (rhinovirus). In this work we used human rhinovirus type 5 (RV-5) cultivated in VERO cells to study the photoinactivating effects of several phthalocyanines and naphthobenzoporphyrazines. Free RV-5 was photoinactivated by aluminium trisulphonated naphthobenzoporphyrazine at 5 x 10(-8) M concentration. This photosensitizer was also active on replicating virus when the infected VERO cells were treated with 5 x 10(-6) M concentration followed by a very short illumination period. On the other hand, the ZnPc(3-MeO-Py)4 phthalocyanine, which possesses four positive charges, does not photoinactivate free rhinovirus, but this molecule protects VERO cells against RV-5 infection when added to the cultures before virus inoculation, in the presence or absence of subsequent illumination, and may therefore be considered as an antiviral agent in itself. PMID:8583283

  3. Hemagglutinin Stalk Immunity Reduces Influenza Virus Replication and Transmission in Ferrets

    PubMed Central

    Nachbagauer, Raffael; Miller, Matthew S.; Hai, Rong; Ryder, Alex B.; Rose, John K.; Palese, Peter; García-Sastre, Adolfo

    2015-01-01

    We assessed whether influenza virus hemagglutinin stalk-based immunity protects ferrets against aerosol-transmitted H1N1 influenza virus infection. Immunization of ferrets by a universal influenza virus vaccine strategy based on viral vectors expressing chimeric hemagglutinin constructs induced stalk-specific antibody responses. Stalk-immunized ferrets were cohoused with H1N1-infected ferrets under conditions that permitted virus transmission. Hemagglutinin stalk-immunized ferrets had lower viral titers and delayed or no virus replication at all following natural exposure to influenza virus. PMID:26719251

  4. Hemagglutinin Stalk Immunity Reduces Influenza Virus Replication and Transmission in Ferrets.

    PubMed

    Nachbagauer, Raffael; Miller, Matthew S; Hai, Rong; Ryder, Alex B; Rose, John K; Palese, Peter; García-Sastre, Adolfo; Krammer, Florian; Albrecht, Randy A

    2016-03-01

    We assessed whether influenza virus hemagglutinin stalk-based immunity protects ferrets against aerosol-transmitted H1N1 influenza virus infection. Immunization of ferrets by a universal influenza virus vaccine strategy based on viral vectors expressing chimeric hemagglutinin constructs induced stalk-specific antibody responses. Stalk-immunized ferrets were cohoused with H1N1-infected ferrets under conditions that permitted virus transmission. Hemagglutinin stalk-immunized ferrets had lower viral titers and delayed or no virus replication at all following natural exposure to influenza virus. PMID:26719251

  5. Programmed factor binding to simian virus 40 GC-box replication and transcription control sequences.

    PubMed Central

    Buchanan, R L; Gralla, J D

    1990-01-01

    Nuclear footprinting revealed a temporal program involving factor binding to the repetitive GC-box DNA elements present in the simian virus 40 regulatory region. This program specified ordered and directional binding to these tandem regulatory sequences in vivo during the late phase of infection. The program was interrupted by the DNA replication inhibitor aphidicolin or by inactivation of the viral replication factor simian virus 40 T antigen, suggesting a link between viral DNA replication and new factor binding. Measurements of DNA accumulation in viruses lacking either the distal or proximal halves of the GC-box region suggested that the region has a dual role in replication control. Overall, the data point to important relationships between DNA replication and factor binding to the GC-box DNA, a multifunctional regulatory region. Images PMID:2152821

  6. Novel Benzoxazole Inhibitor of Dengue Virus Replication That Targets the NS3 Helicase

    PubMed Central

    Grosenbach, Douglas W.; Berhanu, Aklile; Dai, Dongcheng; Jones, Kevin F.; Cardwell, Kara B.; Schneider, Christine; Yang, Guang; Tyavanagimatt, Shanthakumar; Harver, Chris; Wineinger, Kristin A.; Page, Jessica; Stavale, Eric; Stone, Melialani A.; Fuller, Kathleen P.; Lovejoy, Candace; Leeds, Janet M.; Hruby, Dennis E.; Jordan, Robert

    2013-01-01

    Dengue virus (DENV) is the predominant mosquito-borne viral pathogen that infects humans with an estimated 50 to 100 million infections per year worldwide. Over the past 50 years, the incidence of dengue disease has increased dramatically and the virus is now endemic in more than 100 countries. Moreover, multiple serotypes of DENV are now found in the same geographic region, increasing the likelihood of more severe forms of disease. Despite extensive research, there are still no approved vaccines or therapeutics commercially available to treat DENV infection. Here we report the results of a high-throughput screen of a chemical compound library using a whole-virus assay that identified a novel small-molecule inhibitor of DENV, ST-610, that potently and selectively inhibits all four serotypes of DENV replication in vitro. Sequence analysis of drug-resistant virus isolates has identified a single point mutation, A263T, in the NS3 helicase domain that confers resistance to this compound. ST-610 inhibits DENV NS3 helicase RNA unwinding activity in a molecular-beacon-based helicase assay but does not inhibit nucleoside triphosphatase activity based on a malachite green ATPase assay. ST-610 is nonmutagenic, is well tolerated (nontoxic) in mice, and has shown efficacy in a sublethal murine model of DENV infection with the ability to significantly reduce viremia and viral load compared to vehicle controls. PMID:23403421

  7. Annexin V Incorporated into Influenza Virus Particles Inhibits Gamma Interferon Signaling and Promotes Viral Replication

    PubMed Central

    Berri, Fatma; Haffar, Ghina; Lê, Vuong Ba; Sadewasser, Anne; Paki, Katharina; Lina, Bruno; Wolff, Thorsten

    2014-01-01

    ABSTRACT During the budding process, influenza A viruses (IAVs) incorporate multiple host cell membrane proteins. However, for most of them, their significance in viral morphogenesis and infectivity remains unknown. We demonstrate here that the expression of annexin V (A5) is upregulated at the cell surface upon IAV infection and that a substantial proportion of the protein is present in lipid rafts, the site of virus budding. Western blotting and immunogold analysis of highly purified IAV particles showed the presence of A5 in the virion. Significantly, gamma interferon (IFN-γ)-induced Stat phosphorylation and IFN-γ-induced 10-kDa protein (IP-10) production in macrophage-derived THP-1 cells was inhibited by purified IAV particles. Disruption of the IFN-γ signaling pathway was A5 dependent since downregulation of its expression or its blockage reversed the inhibition and resulted in decreased viral replication in vitro. The functional significance of these results was also observed in vivo. Thus, IAVs can subvert the IFN-γ antiviral immune response by incorporating A5 into their envelope during the budding process. IMPORTANCE Many enveloped viruses, including influenza A viruses, bud from the plasma membrane of their host cells and incorporate cellular surface proteins into viral particles. However, for the vast majority of these proteins, only the observation of their incorporation has been reported. We demonstrate here that the host protein annexin V is specifically incorporated into influenza virus particles during the budding process. Importantly, we showed that packaged annexin V counteracted the antiviral activity of gamma interferon in vitro and in vivo. Thus, these results showed that annexin V incorporated in the viral envelope of influenza viruses allow viral escape from immune surveillance. Understanding the role of host incorporated protein into virions may reveal how enveloped RNA viruses hijack the host cell machinery for their own purposes. PMID

  8. Antigenic stimulation specifically reactivates the replication of archived simian immunodeficiency virus genomes in chronically infected macaques.

    PubMed

    Renoux, Céline; Wain-Hobson, Simon; Hurtrel, Bruno; Cheynier, Rémi

    2005-09-01

    Human immunodeficiency virus/simian immunodeficiency virus (SIV) diversification is a direct consequence of viral replication and occurs principally in secondary lymphoid organs where CD4(+) T cells are activated and proliferate. However, the evolution of viral quasispecies may also be driven by various nonexclusive mechanisms, including adaptation to specific immune responses and modification of viral fitness. Analysis of viral quasispecies in SIV-infected macaques subjected to repeated antigenic stimulations allowed us to demonstrate transient expansions of SIV populations that were highly dependent upon activation of antigen-specific T cells. T-cell clones expanded in response to a particular antigen were infected by a specific viral population and persisted for prolonged periods. Upon a second stimulation by encounter with the same antigen, these specific genomes were at the origin of a new burst of replication, leading to rapid but transient replacement of the viral quasispecies in blood. Finally, longitudinal analysis of SIV sequence variation during and between antigenic stimulations revealed that viral evolution is mostly constrained to periods of strong immunological activity. PMID:16103175

  9. Thiazolides as Novel Antiviral Agents: I. Inhibition of Hepatitis B Virus Replication

    PubMed Central

    Stachulski, Andrew V.; Pidathala, Chandrakala; Row, Eleanor C.; Sharma, Raman; Berry, Neil G.; Iqbal, Mazhar; Bentley, Joanne; Allman, Sarah A.; Edwards, Geoffrey; Helm, Alison; Hellier, Jennifer; Korba, Brent E.; Semple, J. Edward; Rossignol, Jean-Francois

    2011-01-01

    We report the syntheses and activities of a wide range of thiazolides [viz. 2-hydroxyaroyl-N-(thiazol-2-yl)amides] against hepatitis B virus replication, with QSAR analysis of our results. The prototypical thiazolide, nitazoxanide [2-hydroxybenzoyl-N-(5-nitrothiazol-2-yl)amide; NTZ] 1 is a broad spectrum antiinfective agent, effective against anaerobic bacteria, viruses and parasites. By contrast, 2-hydroxybenzoyl-N-(5-chlorothiazol-2-yl)amide 3 is a novel, potent and selective inhibitor of hepatitis B replication (EC50 = 0.33 μm) but is inactive against anaerobes. Several 4′- and 5′-substituted thiazolides show good activity against HBV; by contrast, some related salicyloylanilides show a narrower spectrum of activity. The ADME properties of 3 are similar to 1, viz. the O-acetate is an effective prodrug and the O-aryl glucuronide is a major metabolite. The QSAR study shows a good correlation of observed EC90 s for intracellular virions with thiazolide structural parameters. Finally we discuss the mechanism of action of thiazolides in relation to the present results. PMID:21553812

  10. Bluetongue Virus Nonstructural Protein NS3/NS3a Is Not Essential for Virus Replication

    PubMed Central

    van Gennip, René G. P.; van de Water, Sandra G. P.; van Rijn, Piet A.

    2014-01-01

    Orbiviruses form the largest genus of the family Reoviridae consisting of at least 23 different virus species. One of these is the bluetongue virus (BTV) and causes severe hemorrhagic disease in ruminants, and is transmitted by bites of Culicoides midges. BTV is a non-enveloped virus which is released from infected cells by cell lysis and/or a unique budding process induced by nonstructural protein NS3/NS3a encoded by genome segment 10 (Seg-10). Presence of both NS3 and NS3a is highly conserved in Culicoides borne orbiviruses which is suggesting an essential role in virus replication. We used reverse genetics to generate BTV mutants to study the function of NS3/NS3a in virus replication. Initially, BTV with small insertions in Seg-10 showed no CPE but after several passages these BTV mutants reverted to CPE phenotype comparable to wtBTV, and NS3/NS3a expression returned by repair of the ORF. These results show that there is a strong selection for functional NS3/NS3a. To abolish NS3 and/or NS3a expression, Seg-10 with one or two mutated start codons (mutAUG1, mutAUG2 and mutAUG1+2) were used to generate BTV mutants. Surprisingly, all three BTV mutants were generated and the respective AUGMet→GCCAla mutations were maintained. The lack of expression of NS3, NS3a, or both proteins was confirmed by westernblot analysis and immunostaining of infected cells with NS3/NS3a Mabs. Growth of mutAUG1 and mutAUG1+2 virus in BSR cells was retarded in both insect and mammalian cells, and particularly virus release from insect cells was strongly reduced. Our findings now enable research on the role of RNA sequences of Seg-10 independent of known gene products, and on the function of NS3/NS3a proteins in both types of cells as well as in the host and insect vector. PMID:24465709

  11. Proteasome inhibitors act as bifunctional antagonists of human immunodeficiency virus type 1 latency and replication

    PubMed Central

    2013-01-01

    Background Existing highly active antiretroviral therapy (HAART) effectively controls viral replication in human immunodeficiency virus type 1 (HIV-1) infected individuals but cannot completely eradicate the infection, at least in part due to the persistence of latently infected cells. One strategy that is being actively pursued to eliminate the latent aspect of HIV-1 infection involves therapies combining latency antagonists with HAART. However, discordant pharmacokinetics between these types of drugs can potentially create sites of active viral replication within certain tissues that might be impervious to HAART. Results A preliminary reverse genetic screen indicated that the proteasome might be involved in the maintenance of the latent state. This prompted testing to determine the effects of proteasome inhibitors (PIs) on latently infected cells. Experiments demonstrated that PIs effectively activated latent HIV-1 in several model systems, including primary T cell models, thereby defining PIs as a new class of HIV-1 latency antagonists. Expanding upon experiments from previous reports, it was also confirmed that PIs inhibit viral replication. Moreover, it was possible to show that PIs act as bifunctional antagonists of HIV-1. The data indicate that PIs activate latent provirus and subsequently decrease viral titers and promote the production of defective virions from activated cells. Conclusions These results represent a proof-of-concept that bifunctional antagonists of HIV-1 can be developed and have the capacity to ensure precise tissue overlap of anti-latency and anti-replication functions, which is of significant importance in the consideration of future drug therapies aimed at viral clearance. PMID:24156270

  12. Susceptibility of Mink (Mustera vision)-Derived Cells to Replication by Human Immunodeficiency Virus Type 1

    PubMed Central

    Koito, Atsushi; Kameyama, Yuichi; Cheng-Mayer, Cecilia; Matsushita, Shuzo

    2003-01-01

    In vivo studies for understanding viral transmission and replication, host immune responses, and pathogenesis of human immunodeficiency virus type 1 (HIV-1) infection would greatly benefit from the establishment of a small-animal model. In this study, we explored the potential of American mink (Mustera vison) as a susceptible host. We found that primary cells and cell lines derived from this species efficiently supported trans-activation of the HIV-1 long terminal repeat by Tat. Accordingly, the cysteine residue at position 261, which has been shown to be important for interaction of the human cyclin T1 with the HIV-1 regulatory protein Tat, is conserved in the mink homologue. No species-specific defect in Rev function could be detected in mink cells. In addition, primary splenocytes, fibroblasts, and the Mv.1.Lu cell line from American mink supported early as well as late HIV-1 gene expression following infection with vesicular stomatitis G protein-pseudotyped HIV-1 viruses, at levels comparable to those seen with permissive human cells. Furthermore, the mink Mv.1.Lu cell line stably expressing human CD4 and CCR5 receptors supported a spreading HIV-1 infection with few, if any, deficiencies compared to findings in human cell lines. This indicates the potential of HIV-1 to replicate in these cells once the blockade at the stage of virus entry has been removed. These results clearly show that cells from American mink generally pose no functional intracellular block to HIV-1 replication, and collectively they raise the possibility that this animal species could be engineered to support HIV-1 infection, providing a useful small-animal model for evaluating de novo infection by HIV-1. PMID:12692213

  13. The "tobacco mosaic virus" 126-kDa protein associated with virus replication and movement suppresses RNA silencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Systemic symptoms induced on "Nicotiana tabacum" cv. Xanthi by "Tobacco mosaic virus" (TMV) are modulated by one or both amino-coterminal viral 126- and 183-kDa proteins, proteins involved in virus replication and cell-to-cell movement. Here we compare the systemic accumulation and gene silencing c...

  14. Ultrastructure of the replication sites of positive-strand RNA viruses

    SciTech Connect

    Harak, Christian; Lohmann, Volker

    2015-05-15

    Positive strand RNA viruses replicate in the cytoplasm of infected cells and induce intracellular membranous compartments harboring the sites of viral RNA synthesis. These replication factories are supposed to concentrate the components of the replicase and to shield replication intermediates from the host cell innate immune defense. Virus induced membrane alterations are often generated in coordination with host factors and can be grouped into different morphotypes. Recent advances in conventional and electron microscopy have contributed greatly to our understanding of their biogenesis, but still many questions remain how viral proteins capture membranes and subvert host factors for their need. In this review, we will discuss different representatives of positive strand RNA viruses and their ways of hijacking cellular membranes to establish replication complexes. We will further focus on host cell factors that are critically involved in formation of these membranes and how they contribute to viral replication. - Highlights: • Positive strand RNA viruses induce massive membrane alterations. • Despite the great diversity, replication complexes share many similarities. • Host factors play a pivotal role in replication complex biogenesis. • Use of the same host factors by several viruses hints to similar functions.

  15. Genistein inhibits the replication of avian leucosis virus subgroup J in DF-1 cells.

    PubMed

    Qian, Kun; Gao, Ai-jun; Zhu, Ming-yue; Shao, Hong-xia; Jin, Wen-jie; Ye, Jian-qiang; Qin, Ai-jian

    2014-11-01

    To investigate the antiviral effects of genistein on the replication of avian leukosis virus subgroup J (ALV-J) in DF-1 cells, the cells were treated with genistein at different time points and the antiviral effects were examined by using a variety of assays. We determined that genistein strongly inhibited viral gene expression and decreased the viral protein level in the cell supernatant and the cytoplasm without alerting virus receptor expression and viral attachment. We also observed that genistein was not found to interfere with virus entry, but significantly inhibited both viral gene transcriptions at 24h post infection and virus release, which indicate that genistein exerts its inhibitory effects on the late phase of ALV-J replicative cycle. These results demonstrate that genistein effectively block ALV-J replication by inhibiting virus transcription and release in DF-1 cells, which may be useful for therapeutic drug design. PMID:25197039

  16. Mitochondrial Bioenergetic Alterations in Mouse Neuroblastoma Cells Infected with Sindbis Virus: Implications to Viral Replication and Neuronal Death

    PubMed Central

    Silva da Costa, Leandro; Pereira da Silva, Ana Paula; Da Poian, Andrea T.; El-Bacha, Tatiana

    2012-01-01

    The metabolic resources crucial for viral replication are provided by the host. Details of the mechanisms by which viruses interact with host metabolism, altering and recruiting high free-energy molecules for their own replication, remain unknown. Sindbis virus, the prototype of and most widespread alphavirus, causes outbreaks of arthritis in humans and serves as a model for the study of the pathogenesis of neurological diseases induced by alphaviruses in mice. In this work, respirometric analysis was used to evaluate the effects of Sindbis virus infection on mitochondrial bioenergetics of a mouse neuroblastoma cell lineage, Neuro 2a. The modulation of mitochondrial functions affected cellular ATP content and this was synchronous with Sindbis virus replication cycle and cell death. At 15 h, irrespective of effects on cell viability, viral replication induced a decrease in oxygen consumption uncoupled to ATP synthesis and a 36% decrease in maximum uncoupled respiration, which led to an increase of 30% in the fraction of oxygen consumption used for ATP synthesis. Decreased proton leak associated to complex I respiration contributed to the apparent improvement of mitochondrial function. Cellular ATP content was not affected by infection. After 24 h, mitochondria dysfunction was clearly observed as maximum uncoupled respiration reduced 65%, along with a decrease in the fraction of oxygen consumption used for ATP synthesis. Suppressed respiration driven by complexes I- and II-related substrates seemed to play a role in mitochondrial dysfunction. Despite the increase in glucose uptake and glycolytic flux, these changes were followed by a 30% decrease in ATP content and neuronal death. Taken together, mitochondrial bioenergetics is modulated during Sindbis virus infection in such a way as to favor ATP synthesis required to support active viral replication. These early changes in metabolism of Neuro 2a cells may form the molecular basis of neuronal dysfunction and Sindbis

  17. Replication of HIV-1 deleted Nef mutants in chronically immune activated human T cells.

    PubMed

    Shapira-Nahor, Orit; Maayan, Shlomo; Peden, Keith W C; Rabinowitz, Ruth; Schlesinger, Michael; Alian, Akram; Panet, Amos

    2002-11-10

    Lymphocytes (PBMC) obtained from blood of HIV-sera negative Ethiopian immigrants (ETH) were highly susceptible to HIV-1 infection in vitro with no need for stimulation by mitogens. As the HIV nef gene product has been shown to enhance viral replication in stimulated primary lymphocytes, we investigated in this work the role of Nef in viral replication in the ETH cells. Lymphocytes obtained from ETH individuals supported high replication of wild-type HIV-1 and low but significant replication level of the two deleted Nef mutants (encode truncated Nef proteins consisting only of either the first 35 or the first 86 amino acids of Nef). In contrast, no replication was observed in nonactivated cells obtained from non-ETH individuals. After activation of the PBMC from ETH individuals with PHA, replication of both wild-type strains and the two deleted Nef mutant viruses further increased. The CD4(+) T cells of ETH individuals exhibited elevated levels of the surface activation markers CD45RO and HLA-DR, compared with T cells derived from non-ETH group. Likewise, expression of the chemokine receptors CCR5 and CXCR4 on these cells was higher in the ETH group than in the non-ETH group. Replication of HIV-1 wild-type and the isogenic-deleted Nef mutants was significantly correlated with the proportion of ETH cells expressing CD45RO and the chemokine receptors. This study suggests that HIV-1 may respond differently to several activation states characteristic of T cells. One activation state, defined by chronically activated lymphocytes from ETH individuals, is permissive to the wild-type HIV-1 and, to a lesser degree, to the Nef mutants. Further activation of these cells by exogenous stimuli enhances replication of the virus. Our results support the notion that Nef enhances the basal level of T cell activation and consequently, viral replication. PMID:12482665

  18. Transient fasting enhances replication of oncolytic herpes simplex virus in glioblastoma.

    PubMed

    Esaki, Shinichi; Rabkin, Samuel D; Martuza, Robert L; Wakimoto, Hiroaki

    2016-01-01

    Short-term nutritional restriction (fasting) has been shown to enhance the efficacy of chemotherapy by sensitizing cancer cells and protecting normal cells in a variety of cancer models, including glioblastoma (GBM). Cancer cells, unlike normal cells, respond to fasting by promoting oncogenic signaling and protein synthesis. We hypothesized that fasting would increase the replication of oncolytic herpes simplex virus (oHSV) in GBM. Patient-derived GBM cell lines were fasted by growth in glucose and fetal calf serum restricted culture medium. "Transient fasting", 24-hour fasting followed by 24-hour recovery in complete medium, increased late virus gene expression and G47Δ yields about 2-fold in GBM cells, but not in human astrocytes, and enhanced G47Δ killing of GBM cells. Mechanistically, "transient fasting" suppressed phosphorylation of the subunit of eukaryotic initiation factor 2α (eIF2α) and c-Jun N-terminal kinases (JNK) in GBM cells, but not in astrocytes. Pharmacological inhibition of JNK also increased G47Δ yield. In vivo, transient fasting (48-hour food restriction and 24-hour recovery) doubled luciferase activity after intratumoral G47Δ-US11fluc injection into orthotopic GBM xenografts. Thus, "transient fasting" increases G47Δ replication and oncolytic activity in human GBM cells. These results suggest that "transient fasting" may be effectively combined to enhance oncolytic HSV therapy of GBM. PMID:27186404

  19. Transient fasting enhances replication of oncolytic herpes simplex virus in glioblastoma

    PubMed Central

    Esaki, Shinichi; Rabkin, Samuel D; Martuza, Robert L; Wakimoto, Hiroaki

    2016-01-01

    Short-term nutritional restriction (fasting) has been shown to enhance the efficacy of chemotherapy by sensitizing cancer cells and protecting normal cells in a variety of cancer models, including glioblastoma (GBM). Cancer cells, unlike normal cells, respond to fasting by promoting oncogenic signaling and protein synthesis. We hypothesized that fasting would increase the replication of oncolytic herpes simplex virus (oHSV) in GBM. Patient-derived GBM cell lines were fasted by growth in glucose and fetal calf serum restricted culture medium. “Transient fasting”, 24-hour fasting followed by 24-hour recovery in complete medium, increased late virus gene expression and G47Δ yields about 2-fold in GBM cells, but not in human astrocytes, and enhanced G47Δ killing of GBM cells. Mechanistically, “transient fasting” suppressed phosphorylation of the subunit of eukaryotic initiation factor 2α (eIF2α) and c-Jun N-terminal kinases (JNK) in GBM cells, but not in astrocytes. Pharmacological inhibition of JNK also increased G47Δ yield. In vivo, transient fasting (48-hour food restriction and 24-hour recovery) doubled luciferase activity after intratumoral G47Δ-US11fluc injection into orthotopic GBM xenografts. Thus, “transient fasting” increases G47Δ replication and oncolytic activity in human GBM cells. These results suggest that “transient fasting” may be effectively combined to enhance oncolytic HSV therapy of GBM. PMID:27186404

  20. Direct Inhibition of Cellular Fatty Acid Synthase Impairs Replication of Respiratory Syncytial Virus and Other Respiratory Viruses

    PubMed Central

    Ohol, Yamini M.; Wang, Zhaoti; Kemble, George; Duke, Gregory

    2015-01-01

    Fatty acid synthase (FASN) catalyzes the de novo synthesis of palmitate, a fatty acid utilized for synthesis of more complex fatty acids, plasma membrane structure, and post-translational palmitoylation of host and viral proteins. We have developed a potent inhibitor of FASN (TVB-3166) that reduces the production of respiratory syncytial virus (RSV) progeny in vitro from infected human lung epithelial cells (A549) and in vivo from mice challenged intranasally with RSV. Addition of TVB-3166 to the culture medium of RSV-infected A549 cells reduces viral spread without inducing cytopathic effects. The antiviral effect of the FASN inhibitor is a direct consequence of reducing de novo palmitate synthesis; similar doses are required for both antiviral activity and inhibition of palmitate production, and the addition of exogenous palmitate to TVB-3166-treated cells restores RSV production. TVB-3166 has minimal effect on RSV entry but significantly reduces viral RNA replication, protein levels, viral particle formation and infectivity of released viral particles. TVB-3166 substantially impacts viral replication, reducing production of infectious progeny 250-fold. In vivo, oral administration of TVB-3166 to RSV-A (Long)-infected BALB/c mice on normal chow, starting either on the day of infection or one day post-infection, reduces RSV lung titers 21-fold and 9-fold respectively. Further, TVB-3166 also inhibits the production of RSV B, human parainfluenza 3 (PIV3), and human rhinovirus 16 (HRV16) progeny from A549, HEp2 and HeLa cells respectively. Thus, inhibition of FASN and palmitate synthesis by TVB-3166 significantly reduces RSV progeny both in vitro and in vivo and has broad-spectrum activity against other respiratory viruses. FASN inhibition may alter the composition of regions of the host cell membrane where RSV assembly or replication occurs, or change the membrane composition of RSV progeny particles, decreasing their infectivity. PMID:26659560

  1. Partial Inhibition of Human Immunodeficiency Virus Replication by Type I Interferons: Impact of Cell-to-Cell Viral Transfer▿

    PubMed Central

    Vendrame, Daniela; Sourisseau, Marion; Perrin, Virginie; Schwartz, Olivier; Mammano, Fabrizio

    2009-01-01

    Type I interferons (IFN) inhibit several steps of the human immunodeficiency virus type 1 (HIV) replication cycle. Some HIV proteins, like Vif and Vpu, directly counteract IFN-induced restriction factors. Other mechanisms are expected to modulate the extent of IFN inhibition. Here, we studied the impact of IFN on various aspects of HIV replication in primary T lymphocytes. We confirm the potent effect of IFN on Gag p24 production in supernatants. Interestingly, IFN had a more limited effect on HIV spread, measured as the appearance of Gag-expressing cells. Primary isolates displayed similar differences in the inhibition of p24 release and virus spread. Virus emergence was the consequence of suboptimal inhibition of HIV replication and was not due to the selection of resistant variants. Cell-to-cell HIV transfer, a potent means of virus replication, was less sensitive to IFN than infection by cell-free virions. These results suggest that IFN are less active in cell cultures than initially thought. They help explain the incomplete protection by naturally secreted IFN during HIV infection and the unsatisfactory outcome of IFN treatment in HIV-infected patients. PMID:19706714

  2. Hepatitis D virus infection, replication and cross-talk with the hepatitis B virus

    PubMed Central

    Huang, Chi-Ruei; Lo, Szecheng John

    2014-01-01

    Viral hepatitis remains a worldwide public health problem. The hepatitis D virus (HDV) must either coinfect or superinfect with the hepatitis B virus (HBV). HDV contains a small RNA genome (approximately 1.7 kb) with a single open reading frame (ORF) and requires HBV supplying surface antigens (HBsAgs) to assemble a new HDV virion. During HDV replication, two isoforms of a delta antigen, a small delta antigen (SDAg) and a large delta antigen (LDAg), are produced from the same ORF of the HDV genome. The SDAg is required for HDV replication, whereas the interaction of LDAg with HBsAgs is crucial for packaging of HDV RNA. Various clinical outcomes of HBV/HDV dual infection have been reported, but the molecular interaction between HBV and HDV is poorly understood, especially regarding how HBV and HDV compete with HBsAgs for assembling virions. In this paper, we review the role of endoplasmic reticulum stress induced by HBsAgs and the molecular pathway involved in their promotion of LDAg nuclear export. Because the nuclear sublocalization and export of LDAg is regulated by posttranslational modifications (PTMs), including acetylation, phosphorylation, and isoprenylation, we also summarize the relationship among HBsAg-induced endoplasmic reticulum stress signaling, LDAg PTMs, and nuclear export mechanisms in this review. PMID:25356023

  3. Guanylylation-competent replication proteins of Tomato mosaic virus are disulfide-linked.

    PubMed

    Nishikiori, Masaki; Meshi, Tetsuo; Ishikawa, Masayuki

    2012-12-01

    The 130-kDa and 180-kDa replication proteins of Tomato mosaic virus (ToMV) covalently bind guanylate and transfer it to the 5' end of RNA to form a cap. We found that guanylylation-competent ToMV replication proteins are in membrane-bound, disulfide-linked complexes. Guanylylation-competent replication proteins of Brome mosaic virus and Cucumber mosaic virus behaved similarly. To investigate the roles of disulfide bonding in the functioning of ToMV replication proteins, each of the 19 cysteine residues in the 130-kDa protein was replaced by a serine residue. Interestingly, three mutant proteins (C179S, C186S and C581S) failed not only to be guanylylated, but also to bind to the replication template and membranes. These mutants could trans-complement viral RNA replication. Considering that ToMV replication proteins recognize the replication templates, bind membranes, and are guanylylated in the cytoplasm that provides a reducing condition, we discuss the roles of cysteine residues and disulfide bonds in ToMV RNA replication. PMID:23062762

  4. Green Tea Phenolic Epicatechins Inhibit Hepatitis C Virus Replication via Cycloxygenase-2 and Attenuate Virus-Induced Inflammation

    PubMed Central

    Lin, Ying-Ting; Wu, Yu-Hsuan; Tseng, Chin-Kai; Lin, Chun-Kuang; Chen, Wei-Chun; Hsu, Yao-Chin; Lee, Jin-Ching

    2013-01-01

    Chronic hepatitis C virus (HCV) infection is the leading risk factor for hepatocellular carcinoma (HCC) and chronic liver disease worldwide. Green tea, in addition to being consumed as a healthy beverage, contains phenolic catechins that have been used as medicinal substances. In the present study, we illustrated that the epicatechin isomers (+)-epicatechin and (−)-epicatechin concentration-dependently inhibited HCV replication at nontoxic concentrations by using in vitro cell-based HCV replicon and JFH-1 infectious systems. In addition to significantly suppressing virus-induced cyclooxygenase-2 (COX-2) expression, our results revealed that the anti-HCV activity of the epicatechin isomers occurred through the down-regulation of COX-2. Furthermore, both the epicatechin isomers additively inhibited HCV replication in combination with either interferon-α or viral enzyme inhibitors [2′-C-methylcytidine (NM-107) or telaprevir]. They also had prominent anti-inflammatory effects by inhibiting the gene expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and inducible nitrite oxide synthase as well as the COX-2 in viral protein-expressing hepatoma Huh-7 cells. Collectively, (+)-epicatechin and (−)-epicatechin may serve as therapeutic supplements for treating HCV-related diseases. PMID:23365670

  5. DNA tumor viruses: Control of gene expression and replication

    SciTech Connect

    Botchan, M.; Grodzicker, T.; Sharp, P.A.

    1986-01-01

    This book contains eight sections, each consisting of several papers. The sections are: Introduction, Transcription; Regulation of Transcription; RNA Processing and Translation; Transformation; Transforming Proteins; Replication; and Papillomaviruses.

  6. The JAK2 inhibitor AZD1480 inhibits hepatitis A virus replication in Huh7 cells.

    PubMed

    Jiang, Xia; Kanda, Tatsuo; Nakamoto, Shingo; Saito, Kengo; Nakamura, Masato; Wu, Shuang; Haga, Yuki; Sasaki, Reina; Sakamoto, Naoya; Shirasawa, Hiroshi; Okamoto, Hiroaki; Yokosuka, Osamu

    2015-03-20

    The JAK2 inhibitor AZD1480 has been reported to inhibit La protein expression. We previously demonstrated that the inhibition of La expression could inhibit hepatitis A virus (HAV) internal ribosomal entry-site (IRES)-mediated translation and HAV replication in vitro. In this study, we analyzed the effects of AZD1480 on HAV IRES-mediated translation and replication. HAV IRES-mediated translation in COS7-HAV-IRES cells was inhibited by 0.1-1 μM AZD1480, a dosage that did not affect cell viability. Results showed a significant reduction in intracellular HAV HA11-1299 genotype IIIA RNA levels in Huh7 cells treated with AZD1480. Furthermore, AZD1480 inhibited the expression of phosphorylated-(Tyr-705)-signal transducer and activator of transcription 3 (STAT3) and La in Huh7 cells. Therefore, we propose that AZD1480 can inhibit HAV IRES activity and HAV replication through the inhibition of the La protein. PMID:25704089

  7. The SIRT1 inhibitor, nicotinamide, inhibits hepatitis B virus replication in vitro and in vivo.

    PubMed

    Li, Wan-Yu; Ren, Ji-Hua; Tao, Na-Na; Ran, Long-Kuan; Chen, Xiang; Zhou, Hong-Zhong; Liu, Bo; Li, Xiao-Song; Huang, Ai-Long; Chen, Juan

    2016-03-01

    We previously reported that SIRT1, an NAD(+)-dependent deacetylase belonging to the class III histone deacetylases, enhances hepatitis virus B (HBV) replication by targeting the transcription factor AP-1. However, the potential antiviral effects of nicotinamide, a SIRT1 inhibitor, have not yet been explored. In this study, we show that nicotinamide exhibits potent anti-HBV activity with little cytotoxicity. Nicotinamide suppressed both HBV DNA replicative intermediates and 3.5-kb mRNA expression. Moreover, nicotinamide treatment also suppressed core protein expression and the secretion of the hepatitis B surface antigen (HBsAg) and the hepatitis B e antigen (HBeAg) in HBV-expressing cell models. Importantly, nicotinamide treatment suppressed serum HBV DNA, HBsAg and HBeAg levels and liver HBV DNA in HBV-transgenic mice. Furthermore, using a dual-luciferase reporter assay, it was found that nicotinamide exhibited a marked inhibitory effect on the HBV core, SpI, SpII and X promoters, accompanied by decreased expression of the transcription factors AP-1, C/EBPα and PPARα. Therefore, nicotinamide suppresses HBV replication in vitro and in vivo by diminishing HBV promoter activity. This study highlights the potential application of nicotinamide in HBV therapy. PMID:26660162

  8. hCLE/C14orf166, a cellular protein required for viral replication, is incorporated into influenza virus particles

    PubMed Central

    Rodriguez-Frandsen, Ariel; de Lucas, Susana; Pérez-González, Alicia; Pérez-Cidoncha, Maite; Roldan-Gomendio, Alejandro; Pazo, Alejandra; Marcos-Villar, Laura; Landeras-Bueno, Sara; Ortín, Juan; Nieto, Amelia

    2016-01-01

    The influenza A virus polymerase associates with a number of cellular transcription-related factors, including the RNA polymerase II (RNAP II). We previously described that the cellular protein hCLE/C14orf166 interacts with and stimulates influenza virus polymerase as well as RNAP II activities. Here we show that, despite the considerable cellular shut-off observed in infected cells, which includes RNAP II degradation, hCLE protein levels increase throughout infection in a virus replication-dependent manner. Human and avian influenza viruses of various subtypes increase hCLE levels, but other RNA or DNA viruses do not. hCLE colocalises and interacts with viral ribonucleoproteins (vRNP) in the nucleus, as well as in the cytoplasm late in infection. Furthermore, biochemical analysis of purified virus particles and immunoelectron microscopy of infected cells show hCLE in virions, in close association with viral vRNP. These findings indicate that hCLE, a cellular protein important for viral replication, is one of the very few examples of transcription factors that are incorporated into particles of an RNA-containing virus. PMID:26864902

  9. Rabies virus replication in primary murine bone marrow macrophages and in human and murine macrophage-like cell lines: implications for viral persistence.

    PubMed

    Ray, N B; Ewalt, L C; Lodmell, D L

    1995-02-01

    persistently infected cells was more efficient in infecting and replicating in naive U937 cells than the virus which was used to establish the persistent infection. These results suggest that macrophages may serve as reservoirs of infection in vivo, sequestering virus which may subsequently be activated from its persistent state, resulting in clinical infection and death. PMID:7815541

  10. Compatibility of lyotropic liquid crystals with viruses and mammalian cells that support the replication of viruses.

    PubMed

    Cheng, Li-Lin; Luk, Yan-Yeung; Murphy, Christopher J; Israel, Barbara A; Abbott, Nicholas L

    2005-12-01

    We report a study that investigates the biocompatibility of materials that form lyotropic liquid crystals (LCs) with viruses and mammalian cells that support the replication of viruses. This study is focused on aqueous solutions of tetradecyldimethyl-amineoxide (C(14)AO) and decanol (D), or disodium cromoglycate (DSCG; C(23)H(14)O(11)Na(2)), which can form optically birefringent, liquid crystalline phases. The influence of these materials on the ability of vesicular stomatitis virus (VSV) to infect human epitheloid cervical carcinoma (HeLa) cells was examined by two approaches. First, VSV was dispersed in aqueous C(14)AO+ D or DSCG, and then HeLa cells were inoculated by contacting the cells with the aqueous C(14)AO + D or DSCG containing VSV. The infectivity of VSV to the HeLa cells was subsequently determined. Second, VSV was incubated in LC phases of either C(14)AO + D or DSCG for 4 h, and the concentration (titer) of infectious virus in the LC was determined by dilution into cell culture medium and subsequent inoculation of HeLa cells. Using these approaches, we found that the LC containing C(14)AO + D caused inactivation of virus as well as cell death. In contrast, we determined that VSV retained its infectivity in the presence of aqueous DSCG, and that greater than 74-82% of the HeLa cells survived contact with aqueous DSCG (depending on concentration of DSCG). Because VSV maintained its function (and we infer structure) in LCs formed from DSCG, we further explored the influence of the virus on the ordering of the LC. Whereas the LC formed from DSCG was uniformly aligned on surfaces prepared from self-assembled monolayers (SAMs) of HS(CH(2))(11)(OCH(2)CH(2))(4)OH on obliquely deposited films of gold in the absence of VSV, the introduction of 10(7)-10(8) infectious virus particles per milliliter caused the LC to assume a non-uniform orientation and a colorful appearance that was readily distinguished from the uniformly aligned LCs. Control experiments using

  11. Foot-and-mouth disease virus utilizes an autophagic pathway during viral replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV) is the type species of the Aphthovirus genus, of the family Picornaviridae. Infection of cells with positive-strand RNA viruses results in a rearrangement of intracellular membranes into viral replication complexes. However, the origin of these membranes remains u...

  12. Virus entry and replication in the Glassy-winged sharpshhoter, Homalodisca vitripennis (Hemiptera: Cicadellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recently discovered leafhopper viral pathogen was examined to determine the route of virus entry and sites of replication in the glassy-winged sharpshooter, GWSS, (Homalodisca vitripennis, Hemiptera: Cicadellidae). The virus, HoCV-1, has been associated with increased nymphal mortality and is a co...

  13. Variability of tropism and replicative capacity of two naturally occurring influenza A H9N2 viruses in cell cultures from different tissues.

    PubMed

    Tombari, Wafa; ElBehi, Imen; Amouna, Faten; Ghram, Abdeljelil

    2016-01-01

    Studies carried out on cell permissivity are of great interest to understand virus replication and pathogenicity. We described the results of a comparative analysis of replication efficiency of two naturally occurring influenza A H9N2 variants isolated from poultry and wild birds, differing by only two substitutions Q226L and T384N, in the receptor-binding site of haemagglutinin and the 380 loop region of NA proteins, respectively. Considering the overall growth of both viruses, lung cultures ensured the most efficient growth of TUN12L226N384 strain with titres up to 10(9) TCID50/ml whereas small intestine culture was highly susceptible to the TUN51Q226T384 virus reaching a titre of 10(6) TCID50/ml. The lowest replication was shown in liver cells. The addition of trypsin was essential for the replication of either virus in primary fibroblasts, but it had a marginal positive effect on virus replication in the four other culture types with maximum titres of 10(8) TCID50/ml. This means that in chicken, the proteolytic activation of the H9N2 viruses with the cleavage motif RSSR may be mediated by other endoproteases than trypsin. Further investigations should concentrate on the production of the appropriate set of viruses by a reverse genetics approach and the examination of cellular protease expression in chicken tissues. This would lead to a more complete understanding of the tropism of low-pathogenic Influenza A viruses. PMID:26813086

  14. Two single amino acid substitutions in the intervening region of Newcastle disease virus HN protein attenuate viral replication and pathogenicity

    PubMed Central

    Liu, Bin; Ji, Yanhong; Lin, Zhongqing; Fu, Yuguang; Muhammad Dafallah, Rihab; Zhu, Qiyun

    2015-01-01

    Among the proteins encoded by Newcastle disease virus (NDV), the attachment protein (HN) is an important determinant of virulence and pathogenicity. HN has been molecularly characterized at the protein level; however, the relationship between the molecular character of HN and the animal pathotype it causes has not been well explored. Here, we revisited the intervening region (IR) of the HN stalk and extended the known biological functions of HN. Three distinct substitutions (A89Q, P93A, and L94A) in the IR of genotype VII NDV (G7 strain) HN protein were analyzed. The A89Q and L94A mutations weakened the fusion promotion activity of HN to 44% and 41% of that of wild type, respectively, whereas P93A decreased the neuraminidase activity to 21% of the parental level. At the virus level, P93A and L94A-bearing viruses displayed impaired receptor recognition ability, neuraminidase activity, and fusion-promoting activity, all of which led to virus attenuation. In addition, the L94A-mutated virus showed a dramatic decline in replication and was attenuated in cells and in chickens. Our data demonstrate that the HN biological activities and functions modulated by these specific amino acids in the IR are associated with NDV replication and pathogenicity. PMID:26267791

  15. Further Evidence that Human Endogenous Retrovirus K102 is a Replication Competent Foamy Virus that may Antagonize HIV-1 Replication

    PubMed Central

    Laderoute, Marian P.; Larocque, Louise J.; Giulivi, Antonio; Diaz-Mitoma, Francisco

    2015-01-01

    Objective: The goals of the research were to determine if a foamy effect on macrophages was due to human endogenous retrovirus K102 (HERV-K102) replication, and to further address its potential significance in HIV-1 infection. Methods: An RT-PCR HERV-K HML-2 pol method was used to screen the unknown HERV, and isolated bands were sent for sequencing. Confirmation of RNA expression was performed by a real time quantitative PCR (qPCR) pol ddCt method. Rabbit antibodies to Env peptides were used to assess expression by immunohistology and processing of Env by western blots. A qPCR pol ddCt method to ascertain genomic copy number was performed on genomic DNA isolated from plasma comparing HIV-1 exposed seronegative (HESN) commercial sex workers (CSW) to normal controls and contrasted with HIV-1 patients. Results: HERV-K102 expression, particle production and replication were associated with foamy macrophage generation in the cultures of cord blood mononuclear cells under permissive conditions. A five-fold increased HERV-K102 pol genomic copy number was found in the HESN cohort over normal which was not found in HIV-1 positive patients (p=0.0005). Conclusions: This work extends the evidence that HERV-K102 has foamy virus attributes, is replication competent, and is capable of high replication rate in vivo and in vitro. This may be the first characterization of a replication-competent, foamy-like virus of humans. High particle production inferred by increased integration in the HESN cohort over HIV-1 patients raises the issue of the clinical importance of HERV-K102 particle production as an early protective innate immune response against HIV-1 replication. PMID:26793281

  16. A chimeric measles virus with a lentiviral envelope replicates exclusively in CD4+/CCR5+ cells

    SciTech Connect

    Mourez, Thomas; Mesel-Lemoine, Mariana; Combredet, Chantal; Najburg, Valerie; Cayet, Nadege; Tangy, Frederic

    2011-10-25

    We generated a replicating chimeric measles virus in which the hemagglutinin and fusion surface glycoproteins were replaced with the gp160 envelope glycoprotein of simian immunodeficiency virus (SIVmac239). Based on a previously cloned live-attenuated Schwarz vaccine strain of measles virus (MV), this chimera was rescued at high titers using reverse genetics in CD4+ target cells. Cytopathic effect consisted in the presence of large cell aggregates evolving to form syncytia, as observed during SIV infection. The morphology of the chimeric virus was identical to that of the parent MV particles. The presence of SIV gp160 as the only envelope protein on chimeric particles surface altered the cell tropism of the new virus from CD46+ to CD4+ cells. Used as an HIV candidate vaccine, this MV/SIVenv chimeric virus would mimic transient HIV-like infection, benefiting both from HIV-like tropism and the capacity of MV to replicate in dendritic cells, macrophages and lymphocytes.

  17. Antiviral activity of silymarin against chikungunya virus

    PubMed Central

    Lani, Rafidah; Hassandarvish, Pouya; Chiam, Chun Wei; Moghaddam, Ehsan; Chu, Justin Jang Hann; Rausalu, Kai; Merits, Andres; Higgs, Stephen; Vanlandingham, Dana; Abu Bakar, Sazaly; Zandi, Keivan

    2015-01-01

    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection. PMID:26078201

  18. Antiviral activity of silymarin against chikungunya virus.

    PubMed

    Lani, Rafidah; Hassandarvish, Pouya; Chiam, Chun Wei; Moghaddam, Ehsan; Chu, Justin Jang Hann; Rausalu, Kai; Merits, Andres; Higgs, Stephen; Vanlandingham, Dana; Abu Bakar, Sazaly; Zandi, Keivan

    2015-01-01

    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection. PMID:26078201

  19. Identification and characterization of the role of c-terminal Src kinase in dengue virus replication

    PubMed Central

    Kumar, Rinki; Agrawal, Tanvi; Khan, Naseem Ahmed; Nakayama, Yuji; Medigeshi, Guruprasad R.

    2016-01-01

    We screened a siRNA library targeting human tyrosine kinases in Huh-7 cells and identified c-terminal Src kinase (Csk) as one of the kinases involved in dengue virus replication. Knock-down of Csk expression by siRNAs or inhibition of Csk by an inhibitor reduced dengue virus RNA levels but did not affect viral entry. Csk partially colocalized with viral replication compartments. Dengue infection was drastically reduced in cells lacking the three ubiquitous src family kinases, Src, Fyn and Yes. Csk knock-down in these cells failed to block dengue virus replication suggesting that the effect of Csk is via regulation of Src family kinases. Csk was found to be hyper-phosphorylated during dengue infection and inhibition of protein kinase A led to a block in Csk phosphorylation and dengue virus replication. Overexpression studies suggest an important role for the kinase and SH3 domains in this process. Our results identified a novel role for Csk as a host tyrosine kinase involved in dengue virus replication and provide further insights into the role of host factors in dengue replication. PMID:27457684

  20. Identification and characterization of the role of c-terminal Src kinase in dengue virus replication.

    PubMed

    Kumar, Rinki; Agrawal, Tanvi; Khan, Naseem Ahmed; Nakayama, Yuji; Medigeshi, Guruprasad R

    2016-01-01

    We screened a siRNA library targeting human tyrosine kinases in Huh-7 cells and identified c-terminal Src kinase (Csk) as one of the kinases involved in dengue virus replication. Knock-down of Csk expression by siRNAs or inhibition of Csk by an inhibitor reduced dengue virus RNA levels but did not affect viral entry. Csk partially colocalized with viral replication compartments. Dengue infection was drastically reduced in cells lacking the three ubiquitous src family kinases, Src, Fyn and Yes. Csk knock-down in these cells failed to block dengue virus replication suggesting that the effect of Csk is via regulation of Src family kinases. Csk was found to be hyper-phosphorylated during dengue infection and inhibition of protein kinase A led to a block in Csk phosphorylation and dengue virus replication. Overexpression studies suggest an important role for the kinase and SH3 domains in this process. Our results identified a novel role for Csk as a host tyrosine kinase involved in dengue virus replication and provide further insights into the role of host factors in dengue replication. PMID:27457684

  1. Replication of the Shrimp Virus WSSV Depends on Glutamate-Driven Anaplerosis

    PubMed Central

    Li, Chun-Yuan; Wang, Yi-Jan; Huang, Shiao-Wei; Cheng, Cheng-Shun; Wang, Han-Ching

    2016-01-01

    Infection with the white spot syndrome virus (WSSV) induces a metabolic shift in shrimp that resembles the “Warburg effect” in mammalian cells. This effect is triggered via activation of the PI3K-Akt-mTOR pathway, and it is usually accompanied by the activation of other metabolic pathways that provide energy and direct the flow of carbon and nitrogen. Here we show that unlike the glutamine metabolism (glutaminolysis) seen in most cancer cells to double deaminate glutamine to produce glutamate and the TCA cycle intermediate α-ketoglutarate (α-KG), at the WSSV genome replication stage (12 hpi), although glutaminase (GLS) expression was upregulated, only glutamate was taken up by the hemocytes of WSSV-infected shrimp. At the same time, we observed an increase in the activity of the two enzymes that convert glutamate to α-KG, glutamate dehydrogenase (GDH) and aspartate aminotransferase (ASAT). α-ketoglutarate concentration was also increased. A series of inhibition experiments suggested that the up-regulation of GDH is regulated by mTORC2, and that the PI3K-mTORC1 pathway is not involved. Suppression of GDH and ASAT by dsRNA silencing showed that both of these enzymes are important for WSSV replication. In GDH-silenced shrimp, direct replenishment of α-KG rescued both ATP production and WSSV replication. From these results, we propose a model of glutamate-driven anaplerosis that fuels the TCA cycle via α-KG and ultimately supports WSSV replication. PMID:26751681

  2. Accommodation of pyrimidine dimers during replication of UV-damaged simian virus 40 DNA.

    PubMed Central

    Stacks, P C; White, J H; Dixon, K

    1983-01-01

    UV irradiation of simian virus 40-infected cells at fluences between 20 and 60 J/m2, which yield one to three pyrimidine dimers per simian virus 40 genome, leads to a fluence-dependent progressive decrease in simian virus 40 DNA replication as assayed by incorporation of [3H]deoxyribosylthymine into viral DNA. We used a variety of biochemical and biophysical techniques to show that this decrease is due to a block in the progression of replicative-intermediate molecules to completed form I molecules, with a concomitant decrease in the entry of molecules into the replicating pool. Despite this UV-induced inhibition of replication, some pyrimidine dimer-containing molecules become fully replicated after UV irradiation. The fraction of completed molecules containing dimers goes up with time such that by 3 h after a UV fluence of 40 J/m2, more than 50% of completed molecules contain pyrimidine dimers. We postulate that the cellular replication machinery can accommodate limited amounts of UV-induced damage and that the progressive decrease in simian virus 40 DNA synthesis after UV irradiation is due to the accumulation in the replication pool of blocked molecules containing levels of damage greater than that which can be tolerated. PMID:6621531

  3. Identification of Epstein-Barr Virus Replication Proteins in Burkitt's Lymphoma Cells.

    PubMed

    Traylen, Chris; Ramasubramanyan, Sharada; Zuo, Jianmin; Rowe, Martin; Almohammad, Rajaei; Heesom, Kate; Sweet, Steve M M; Matthews, David A; Sinclair, Alison J

    2015-01-01

    The working model to describe the mechanisms used to replicate the cancer-associated virus Epstein-Barr virus (EBV) is partly derived from comparisons with other members of the Herpes virus family. Many genes within the EBV genome are homologous across the herpes virus family. Published transcriptome data for the EBV genome during its lytic replication cycle show extensive transcription, but the identification of the proteins is limited. We have taken a global proteomics approach to identify viral proteins that are expressed during the EBV lytic replication cycle. We combined an enrichment method to isolate cells undergoing EBV lytic replication with SILAC-labeling coupled to mass-spectrometry and identified viral and host proteins expressed during the OPEN ACCESS Pathogens 2015, 4 740 EBV lytic replication cycle. Amongst the most frequently identified viral proteins are two components of the DNA replication machinery, the single strand DNA binding protein BALF2, DNA polymerase accessory protein BMRF1 and both subunits of the viral ribonucleoside-diphosphate reductase enzyme (BORF2 and BaRF1). An additional 42 EBV lytic cycle proteins were also detected. This provides proteomic identification for many EBV lytic replication cycle proteins and also identifies post-translational modifications. PMID:26529022

  4. Identification of Epstein-Barr Virus Replication Proteins in Burkitt’s Lymphoma Cells

    PubMed Central

    Traylen, Chris; Ramasubramanyan, Sharada; Zuo, Jianmin; Rowe, Martin; Almohammad, Rajaei; Heesom, Kate; Sweet, Steve M. M.; Matthews, David A.; Sinclair, Alison J.

    2015-01-01

    The working model to describe the mechanisms used to replicate the cancer-associated virus Epstein-Barr virus (EBV) is partly derived from comparisons with other members of the Herpes virus family. Many genes within the EBV genome are homologous across the herpes virus family. Published transcriptome data for the EBV genome during its lytic replication cycle show extensive transcription, but the identification of the proteins is limited. We have taken a global proteomics approach to identify viral proteins that are expressed during the EBV lytic replication cycle. We combined an enrichment method to isolate cells undergoing EBV lytic replication with SILAC-labeling coupled to mass-spectrometry and identified viral and host proteins expressed during the EBV lytic replication cycle. Amongst the most frequently identified viral proteins are two components of the DNA replication machinery, the single strand DNA binding protein BALF2, DNA polymerase accessory protein BMRF1 and both subunits of the viral ribonucleoside-diphosphate reductase enzyme (BORF2 and BaRF1). An additional 42 EBV lytic cycle proteins were also detected. This provides proteomic identification for many EBV lytic replication cycle proteins and also identifies post-translational modifications. PMID:26529022

  5. Inducible gene expression of the human immunodeficiency virus LTR in a replication-incompetent herpes simplex virus vector.

    PubMed

    Warden, M P; Weir, J P

    1996-12-01

    Although replication-incompetent herpes simplex virus (HSV) vectors have the capability to express foreign genes, successful development of these vectors for gene delivery would require that expression of the foreign gene be regulated. To investigate the feasibility of obtaining inducible expression of a foreign gene in such a vector, a replication-incompetent HSV vector, vd120/LTR beta, was developed that used the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) to express the Escherichia coli lacZ gene. Examination of lacZ expression from the HIV-1 LTR in vd120/LTR beta-infected cells indicated that the LTR was active as a promoter under both replicating and nonreplicating conditions, although expression of lacZ under nonreplicating conditions was approximately 4-fold lower. In addition, the LTR expressed lacZ in a manner distinct from that of well-characterized HSV-1 promoters of each temporal class. The effect of the HIV-1 regulatory protein Tat on expression from the LTR in vd120/LTR beta was examined by infection of two different HeLa-derived cell lines that constitutively expressed Tat, HL2/3, and HLtat. Compared to infection of HeLa cells, lacZ expression from vd120/LTR beta-infected HL2/3 and HLtat cells increased from 4- to 24-fold, depending on the multiplicity of vector infection. Sustained expression of lacZ from the LTR in vd120/LTR beta-infected cells was not observed even in the continuous presence of Tat, although vector could be recovered for up to 5 days after infection. However, the amount of recoverable vector decreased during this time, suggesting that cellular cytotoxicity may account for some of the decrease in Tat-mediated expression from the LTR. PMID:8941330

  6. Inhibition of tomato yellow leaf curl virus replication by artificial zinc-finger proteins.

    PubMed

    Takenaka, Kosuke; Koshino-Kimura, Yoshihiro; Aoyama, Yasuhiro; Sera, Takashi

    2007-01-01

    Previously, we designed an artificial zinc-finger protein (AZP) for blocking a replication protein (Rep) of beet severe curly top virus (BSCTV) from binding to its replication origin and demonstrated that transgenic Arabidopsis plants expressing the AZP are completely resistant to the virus infection. Here we applied the AZP technology to tomato yellow leaf curl virus (TYLCV) infective to an important agricultural crop, tomato. We designed an AZP binding to the direct repeat to block the TYLCV Rep binding and confirmed in gel shift assays that the designed AZP has a higher affinity to the replication origin than that of Rep. Furthermore, we demonstrated in competitive binding assays that the AZP effectively inhibited the Rep binding in vitro. We discuss properties of the AZP for inhibition of TYLCV replication in detail. PMID:18029770

  7. Tomato yellow leaf curl virus: No evidence for replication in the insect vector Bemisia tabaci

    PubMed Central

    Sánchez-Campos, Sonia; Rodríguez-Negrete, Edgar A.; Cruzado, Lucía; Grande-Pérez, Ana; Bejarano, Eduardo R.; Navas-Castillo, Jesús; Moriones, Enrique

    2016-01-01

    Begomovirus ssDNA plant virus (family Geminiviridae) replication within the Bemisia tabaci vector is controversial. Transovarial transmission, alteration to whitefly biology, or detection of viral transcripts in the vector are proposed as indirect evidence of replication of tomato yellow leaf curl virus (TYLCV). Recently, contrasting direct evidence has been reported regarding the capacity of TYLCV to replicate within individuals of B. tabaci based on quantitave PCR approaches. Time-course experiments to quantify complementary and virion sense viral nucleic acid accumulation within B. tabaci using a recently implemented two step qPCR procedure revealed that viral DNA quantities did not increase for time points up to 96 hours after acquisition of the virus. Our findings do not support a recent report claiming TYLCV replication in individuals of B. tabaci. PMID:27476582

  8. Tomato yellow leaf curl virus: No evidence for replication in the insect vector Bemisia tabaci.

    PubMed

    Sánchez-Campos, Sonia; Rodríguez-Negrete, Edgar A; Cruzado, Lucía; Grande-Pérez, Ana; Bejarano, Eduardo R; Navas-Castillo, Jesús; Moriones, Enrique

    2016-01-01

    Begomovirus ssDNA plant virus (family Geminiviridae) replication within the Bemisia tabaci vector is controversial. Transovarial transmission, alteration to whitefly biology, or detection of viral transcripts in the vector are proposed as indirect evidence of replication of tomato yellow leaf curl virus (TYLCV). Recently, contrasting direct evidence has been reported regarding the capacity of TYLCV to replicate within individuals of B. tabaci based on quantitave PCR approaches. Time-course experiments to quantify complementary and virion sense viral nucleic acid accumulation within B. tabaci using a recently implemented two step qPCR procedure revealed that viral DNA quantities did not increase for time points up to 96 hours after acquisition of the virus. Our findings do not support a recent report claiming TYLCV replication in individuals of B. tabaci. PMID:27476582

  9. Polyprotein-Driven Formation of Two Interdependent Sets of Complexes Supporting Hepatitis C Virus Genome Replication

    PubMed Central

    Gomes, Rafael G. B.; Isken, Olaf; Tautz, Norbert; McLauchlan, John

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) requires proteins from the NS3-NS5B polyprotein to create a replicase unit for replication of its genome. The replicase proteins form membranous compartments in cells to facilitate replication, but little is known about their functional organization within these structures. We recently reported on intragenomic replicons, bicistronic viral transcripts expressing an authentic replicase from open reading frame 2 (ORF2) and a second duplicate nonstructural (NS) polyprotein from ORF1. Using these constructs and other methods, we have assessed the polyprotein requirements for rescue of different lethal point mutations across NS3-5B. Mutations readily tractable to rescue broadly fell into two groupings: those requiring expression of a minimum NS3-5A and those requiring expression of a minimum NS3-5B polyprotein. A cis-acting mutation that blocked NS3 helicase activity, T1299A, was tolerated when introduced into either ORF within the intragenomic replicon, but unlike many other mutations required the other ORF to express a functional NS3-5B. Three mutations were identified as more refractile to rescue: one that blocked cleavage of the NS4B5A boundary (S1977P), another in the NS3 helicase (K1240N), and a third in NS4A (V1665G). Introduced into ORF1, these exhibited a dominant negative phenotype, but with K1240N inhibiting replication as a minimum NS3-5A polyprotein whereas V1665G and S1977P only impaired replication as a NS3-5B polyprotein. Furthermore, an S1977P-mutated NS3-5A polyprotein complemented other defects shown to be dependent on NS3-5A for rescue. Overall, our findings suggest the existence of two interdependent sets of protein complexes supporting RNA replication, distinguishable by the minimum polyprotein requirement needed for their formation. IMPORTANCE Positive-strand RNA viruses reshape the intracellular membranes of cells to form a compartment within which to replicate their genome, but little is known about the functional

  10. Flexibility of NS5 Methyltransferase-Polymerase Linker Region Is Essential for Dengue Virus Replication

    PubMed Central

    Zhao, Yongqian; Soh, Tingjin Sherryl; Chan, Kitti Wing Ki; Fung, Sarah Suet Yin; Swaminathan, Kunchithapadam; Lim, Siew Pheng; Shi, Pei-Yong; Huber, Thomas; Lescar, Julien

    2015-01-01

    We examined the function of the conserved Val/Ile residue within the dengue virus NS5 interdomain linker (residues 263 to 272) by site-directed mutagenesis. Gly substitution or Gly/Pro insertion after the conserved residue increased the linker flexibility and created slightly attenuated viruses. In contrast, Pro substitution abolished virus replication by imposing rigidity in the linker and restricting NS5's conformational plasticity. Our biochemical and reverse genetics experiments demonstrate that NS5 utilizes conformational regulation to achieve optimum viral replication. PMID:26269182

  11. Modeling HIV-1 Latency in Primary T Cells Using a Replication-Competent Virus.

    PubMed

    Martins, Laura J; Bonczkowski, Pawel; Spivak, Adam M; De Spiegelaere, Ward; Novis, Camille L; DePaula-Silva, Ana Beatriz; Malatinkova, Eva; Typsteen, Wim; Bosque, Alberto; Vanderkerckhove, Linos; Planelles, Vicente

    2016-02-01

    HIV-1 latently infected cells in vivo can be found in extremely low frequencies. Therefore, in vitro cell culture models have been used extensively for the study of HIV-1 latency. Often, these in vitro systems utilize defective viruses. Defective viruses allow for synchronized infections and circumvent the use of antiretrovirals. In addition, replication-defective viruses cause minimal cytopathicity because they fail to spread and usually do not encode env or accessory genes. On the other hand, replication-competent viruses encode all or most viral genes and better recapitulate the nuances of the viral replication cycle. The study of latency with replication-competent viruses requires the use of antiretroviral drugs in culture, and this mirrors the use of antiretroviral treatment (ART) in vivo. We describe a model that utilizes cultured central memory CD4(+) T cells and replication-competent HIV-1. This method generates latently infected cells that can be reactivated using latency reversing agents in the presence of antiretroviral drugs. We also describe a method for the removal of productively infected cells prior to viral reactivation, which takes advantage of the downregulation of CD4 by HIV-1, and the use of a GFP-encoding virus for increased throughput. PMID:26171776

  12. Cyclophilin E Functions as a Negative Regulator to Influenza Virus Replication by Impairing the Formation of the Viral Ribonucleoprotein Complex

    PubMed Central

    Wang, Zengfu; Liu, Xiaoling; Zhao, Zhendong; Xu, Chongfeng; Zhang, Ke; Chen, Caiwei; Sun, Lei; Gao, George F.; Ye, Xin; Liu, Wenjun

    2011-01-01

    Background The nucleoprotein (NP) of influenza A virus is a multifunctional protein that plays a critical role in the replication and transcription of the viral genome. Therefore, examining host factors that interact with NP may shed light on the mechanism of host restriction barriers and the tissue tropism of influenza A virus. Here, Cyclophilin E (CypE), a member of the peptidyl-propyl cis-trans isomerase (PPIase) family, was found to bind to NP and inhibit viral replication and transcription. Methodology/Principal Findings In the present study, CypE was found to interact with NP but not with the other components of the viral ribonucleoprotein complex (vRNP): PB1, PB2, and PA. Mutagenesis data revealed that the CypE domain comprised of residues 137–186 is responsible for its binding to NP. Functional analysis results indicated that CypE is a negative regulator in the influenza virus life cycle. Furthermore, knock-down of CypE resulted in increased levels of three types of viral RNA, suggesting that CypE negatively affects viral replication and transcription. Moreover, up-regulation of CypE inhibited the activity of influenza viral polymerase. We determined that the molecular mechanism by which CypE negatively regulates influenza virus replication and transcription is by interfering with NP self-association and the NP-PB1 and NP-PB2 interactions. Conclusions/Significance CypE is a host restriction factor that inhibits the functions of NP, as well as viral replication and transcription, by impairing the formation of the vRNP. The data presented here will help us to better understand the molecular mechanisms of host restriction barriers, host adaptation, and tissue tropism of influenza A virus. PMID:21887220

  13. Triterpenoid Saponins Isolated from Platycodon grandiflorum Inhibit Hepatitis C Virus Replication.

    PubMed

    Kim, Jong-Woo; Park, Sang Jin; Lim, Jong Hwan; Yang, Jae Won; Shin, Jung Cheul; Lee, Sang Wook; Suh, Joo Won; Hwang, Soon B

    2013-01-01

    Hepatitis C virus (HCV) infection is a major cause of liver disease, including cirrhosis and hepatocellular carcinoma. Due to significant adverse effects and emergence of resistant strains of currently developed anti-HCV agents, plant extracts have been considered to be potential sources of new bioactive compounds against HCV. The aim of this study was to evaluate the functional effects of triterpenoid saponins contained in the root extract of Platycodon grandiflorum (PG) on viral enzyme activities and replication in both HCV replicon cells and cell culture grown HCV- (HCVcc-) infected cells. Inhibitory activities of triterpenoid saponins from PG were verified by NS5B RNA-dependent RNA polymerase assay and were further confirmed in the context of HCV replication. Six triterpenoid saponins (platycodin D, platycodin D2, platycodin D3, deapioplatycodin D, deapioplatycodin D2, and platyconic acid A), PG saponin mixture (PGSM), were identified as active components exerting anti-HCV activity. Importantly, PGSM exerted synergistic anti-HCV activity in combination with either interferon- α or NS5A inhibitors. We demonstrated that combinatorial treatment of PGSM and IFN- α efficiently suppressed colony formation with significant reduction in drug resistant variant of HCV. These data suggest that triterpenoid saponin may represent a novel anti-HCV therapeutic agent. PMID:24489585

  14. Triterpenoid Saponins Isolated from Platycodon grandiflorum Inhibit Hepatitis C Virus Replication

    PubMed Central

    Kim, Jong-Woo; Park, Sang Jin; Lim, Jong Hwan; Yang, Jae Won; Shin, Jung Cheul; Lee, Sang Wook; Suh, Joo Won; Hwang, Soon B.

    2013-01-01

    Hepatitis C virus (HCV) infection is a major cause of liver disease, including cirrhosis and hepatocellular carcinoma. Due to significant adverse effects and emergence of resistant strains of currently developed anti-HCV agents, plant extracts have been considered to be potential sources of new bioactive compounds against HCV. The aim of this study was to evaluate the functional effects of triterpenoid saponins contained in the root extract of Platycodon grandiflorum (PG) on viral enzyme activities and replication in both HCV replicon cells and cell culture grown HCV- (HCVcc-) infected cells. Inhibitory activities of triterpenoid saponins from PG were verified by NS5B RNA-dependent RNA polymerase assay and were further confirmed in the context of HCV replication. Six triterpenoid saponins (platycodin D, platycodin D2, platycodin D3, deapioplatycodin D, deapioplatycodin D2, and platyconic acid A), PG saponin mixture (PGSM), were identified as active components exerting anti-HCV activity. Importantly, PGSM exerted synergistic anti-HCV activity in combination with either interferon-α or NS5A inhibitors. We demonstrated that combinatorial treatment of PGSM and IFN-α efficiently suppressed colony formation with significant reduction in drug resistant variant of HCV. These data suggest that triterpenoid saponin may represent a novel anti-HCV therapeutic agent. PMID:24489585

  15. Ebola virus VP40 late domains are not essential for viral replication in cell culture.

    PubMed

    Neumann, Gabriele; Ebihara, Hideki; Takada, Ayato; Noda, Takeshi; Kobasa, Darwyn; Jasenosky, Luke D; Watanabe, Shinji; Kim, Jin H; Feldmann, Heinz; Kawaoka, Yoshihiro

    2005-08-01

    Ebola virus particle formation and budding are mediated by the VP40 protein, which possesses overlapping PTAP and PPXY late domain motifs (7-PTAPPXY-13). These late domain motifs have also been found in the Gag proteins of retroviruses and the matrix proteins of rhabdo- and arenaviruses. While in vitro studies suggest a critical role for late domain motifs in the budding of these viruses, including Ebola virus, it remains unclear as to whether the VP40 late domains play a role in Ebola virus replication. Alteration of both late domain motifs drastically reduced VP40 particle formation in vitro. However, using reverse genetics, we were able to generate recombinant Ebola virus containing mutations in either or both of the late domains. Viruses containing mutations in one or both of their late domain motifs were attenuated by one log unit. Transmission and scanning electron microscopy did not reveal appreciable differences between the mutant and wild-type viruses released from infected cells. These findings indicate that the Ebola VP40 late domain motifs enhance virus replication but are not absolutely required for virus replication in cell culture. PMID:16051823

  16. Measles virus replication in lymphatic cells and organs of CD150 (SLAM) transgenic mice

    PubMed Central

    Welstead, G. Grant; Iorio, Caterina; Draker, Ryan; Bayani, Jane; Squire, Jeremy; Vongpunsawad, Sompong; Cattaneo, Roberto; Richardson, Christopher D.

    2005-01-01

    A transgenic mouse containing the complete human SLAM (hSLAM/CD150) gene, including its endogenous promoter for transcription, was generated by using human genomic DNA cloned into a bacterial artificial chromosome. hSLAM, the primary receptor for measles viruses (MV), was expressed on activated B, T, and dendritic cells with an expression profile equivalent to that of humans. We demonstrated that hSLAM+ cells obtained from the transgenic mouse, including activated B, T, and dendritic cells, were susceptible to MV infection in a receptor-dependent manner. Evidence was provided for transient infection in the nasal lymph nodes of hSLAM+ mice after intranasal inoculation. Virus was rapidly cleared without signs of secondary replication. To improve the efficiency of MV production, the hSLAM+ mice were bred with mice having a Stat1-deficient background. These mice were more susceptible to MV infection and produced more virus particles. After intranasal and intraperitoneal inoculation of these mice with MV, infections of the thymus, spleen, nasal, mesenteric, and leg lymph nodes were detected. Upon necropsy, enlarged lymph nodes and spleen were apparent. Flow cytometric analysis showed that abnormally large numbers of mature neutrophils and natural killer cells caused the splenomegaly. The hSLAM transgenic mouse constitutes an improved rodent model for studying the interaction of MV with immune cells that more accurately reflects the infection pattern found in humans. PMID:16260741

  17. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    PubMed Central

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-01-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses. PMID:27080193

  18. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses.

    PubMed

    Simon, Philippe F; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M; Kobasa, Darwyn; Beauchemin, Catherine A A

    2016-01-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain's generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses. PMID:27080193

  19. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    NASA Astrophysics Data System (ADS)

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-04-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.

  20. No virus replication in domestic cats fed with RHDV-infected rabbit livers.

    PubMed

    Zheng, T; Lu, G; Napier, A M; Lockyer, S J

    2003-08-29

    Previous studies have shown that feral cats (Felis catus) from rabbit haemorrhagic disease (RHD) epidemic areas in New Zealand had antibodies against RHD Virus (RHDV) and RHDV RNA was identified by nested RT-PCR from one seropositive feral cat liver. To assess whether RHDV replicates and produces clinical consequences in cats following the consumption of RHDV-infected rabbit, a challenge trial was conducted by feeding cats RHDV-infected rabbit livers. Antibodies against RHDV were detected by immunoassay from sera of cats collected 10 days after the consumption of RHDV-infected livers. Animals fed four times with RHDV-infected livers, had higher antibody titres than animals fed only once. RHDV RNA was detected by nested RT-PCR from mesenteric lymph nodes, tonsil, spleen and liver of cats fed with RHDV-infected livers. RHDV anti-genomic RNA was also detected by nested RT-PCR from mesenteric lymph nodes collected from one animal 2 days after the fourth feed. RHDV was detected by antigen ELISA from cat faeces 1-2 days after the consumption of RHDV-infected livers. Even though a large amount of RHDV has been used, cats did not show any signs of disease. Although abortive RHDV replication could not be ruled out, active RHDV replication was not demonstrated. PMID:12860077

  1. DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus

    PubMed Central

    Jeske, Holger; Lütgemeier, Martin; Preiß, Werner

    2001-01-01

    Geminiviruses have spread worldwide and have become increasingly important in crop plants during recent decades. Recombination among geminiviruses was one major source of new variants. Geminiviruses replicate via rolling circles, confirmed here by electron microscopic visualization and two-dimensional gel analysis of Abutilon mosaic virus (AbMV) DNA. However, only a minority of DNA intermediates are consistent with this model. The majority are compatible with recombination-dependent replication (RDR). During development of naturally infected leaves, viral intermediates compatible with both models appeared simultaneously, whereas agro-infection of leaf discs with AbMV led to an early appearance of RDR forms but no RCR intermediates. Inactivation of viral genes ac2 and ac3 delayed replication, but produced the same DNA types as after wild-type infection, indicating that these genes were not essential for RDR in leaf discs. In conclusion, host factors alone or in combination with the viral AC1 protein are necessary and sufficient for the production of RDR intermediates. The consequences of an inherent geminiviral recombination activity for the use of pathogen-derived resistance traits are discussed. PMID:11689455

  2. Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and pro-inflammatory dysregulation

    PubMed Central

    Chang, Pengxiang; Kuchipudi, Suresh V.; Mellits, Kenneth H.; Sebastian, Sujith; James, Joe; Liu, Jinhua; Shelton, Holly; Chang, Kin-Chow

    2015-01-01

    Pigs are evidently more resistant to avian than swine influenza A viruses, mediated in part through frontline epithelial cells and alveolar macrophages (AM). Although porcine AM (PAM) are crucial in influenza virus control, their mode of control is unclear. To gain insight into the possible role of PAM in the mediation of avian influenza virus resistance, we compared the host effects and replication of two avian (H2N3 and H6N1) and three mammalian (swine H1N1, human H1N1 and pandemic H1N1) influenza viruses in PAM. We found that PAM were readily susceptible to initial infection with all five avian and mammalian influenza viruses but only avian viruses caused early and extensive apoptosis (by 6 h of infection) resulting in reduced virus progeny and moderated pro-inflammation. Full length viral PB1-F2 present only in avian influenza viruses is a virulence factor that targets AM for mitochondrial-associated apoptotic cell death. With the use of reverse genetics on an avian H5N1 virus, we found that full length PB1-F2 contributed to increased apoptosis and pro-inflammation but not to reduced virus replication. Taken together, we propose that early apoptosis of PAM limits the spread of avian influenza viruses and that PB1-F2 could play a contributory role in the process. PMID:26642934

  3. Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and pro-inflammatory dysregulation.

    PubMed

    Chang, Pengxiang; Kuchipudi, Suresh V; Mellits, Kenneth H; Sebastian, Sujith; James, Joe; Liu, Jinhua; Shelton, Holly; Chang, Kin-Chow

    2015-01-01

    Pigs are evidently more resistant to avian than swine influenza A viruses, mediated in part through frontline epithelial cells and alveolar macrophages (AM). Although porcine AM (PAM) are crucial in influenza virus control, their mode of control is unclear. To gain insight into the possible role of PAM in the mediation of avian influenza virus resistance, we compared the host effects and replication of two avian (H2N3 and H6N1) and three mammalian (swine H1N1, human H1N1 and pandemic H1N1) influenza viruses in PAM. We found that PAM were readily susceptible to initial infection with all five avian and mammalian influenza viruses but only avian viruses caused early and extensive apoptosis (by 6 h of infection) resulting in reduced virus progeny and moderated pro-inflammation. Full length viral PB1-F2 present only in avian influenza viruses is a virulence factor that targets AM for mitochondrial-associated apoptotic cell death. With the use of reverse genetics on an avian H5N1 virus, we found that full length PB1-F2 contributed to increased apoptosis and pro-inflammation but not to reduced virus replication. Taken together, we propose that early apoptosis of PAM limits the spread of avian influenza viruses and that PB1-F2 could play a contributory role in the process. PMID:26642934

  4. Esterase D enhances type I interferon signal transduction to suppress foot-and-mouth disease virus replication.

    PubMed

    Li, Weiwei; Zhu, Zixiang; Cao, Weijun; Yang, Fan; Zhang, Xiangle; Li, Dan; Zhang, Keshan; Li, Pengfei; Mao, Ruoqing; Liu, Xiangtao; Zheng, Haixue

    2016-07-01

    The enzymatic activities of esterase D (ESD) are involved in many human diseases. However, no antiviral property of ESD has been described to date. Foot-and-mouth disease virus (FMDV) is the etiological agent of foot-and-mouth disease. In this study, we showed that FMDV infection triggered ESD expression. Overexpression of ESD significantly suppressed FMDV replication and knockdown of ESD expression enhanced virus replication, showing an essential antiviral role of ESD. Furthermore, we found that Sendai-virus-induced interferon (IFN) signaling was enhanced by upregulation of ESD, and ESD promoted activation of the IFN-β promoter simulated by IFN regulatory factor (IRF)3 or its upstream molecules (retinoic acid-inducible gene-I, melanoma differentiation-associated protein 5, virus-induced signaling adaptor and TANK binding kinase 1). Detailed analysis revealed that ESD protein enhanced IRF3 phosphorylation during FMDV infection. Overexpression of ESD also promoted the expression of various antiviral interferon-stimulated genes (ISGs) and knockdown of ESD impaired the expression of these antiviral genes during FMDV infection. Our findings demonstrate a new mechanism evolved by ESD to enhance type I IFN signal transduction and suppress viral replication during FMDV infection. PMID:27267271

  5. Searching for Interferon-Induced Genes That Inhibit Hepatitis B Virus Replication in Transgenic Mouse Hepatocytes†

    PubMed Central

    Wieland, Stefan F.; Vega, Raquel G.; Müller, Rolf; Evans, Claire F.; Hilbush, Brian; Guidotti, Luca G.; Sutcliffe, J. Gregor; Schultz, Peter G.; Chisari, Francis V.

    2003-01-01

    We have previously shown that alpha/beta interferon (IFN-α/β) and IFN-γ inhibit hepatitis B virus (HBV) replication noncytopathically in the livers of HBV transgenic mice and in hepatocyte cell lines derived from these mice. The present study was designed to identify transcriptionally controlled hepatocellular genes that are tightly associated with the inhibition of HBV replication and that might, therefore, mediate the antiviral effect of these cytokines. Twenty-nine genes were identified, many of which have known or potential antiviral activity. Notably, multiple components of the immunoproteasome and ubiquitin-like proteins were strongly induced by both IFN-α/β and IFN-γ, as were a number of GTP-binding proteins, including GTPases with known antiviral activity, chemokines, signaling molecules, and miscellaneous genes associated with antigen processing, DNA-binding, or cochaperone activity and several expressed sequence tags. The results suggest that one or more members of this relatively small subset of genes may mediate the antiviral effect of IFN-α/β and IFN-γ against HBV. We have already exploited this information by demonstrating that the antiviral activity of IFN-α/β and IFN-γ is proteasome dependent. PMID:12502840

  6. Replication Vesicles are Load- and Choke-Points in the Hepatitis C Virus Lifecycle

    PubMed Central

    Clausznitzer, Diana; Schulze, Manuel; Hüber, Christian M.; Lenz, Simon M.; Schlöder, Johannes P.; Trippler, Martin; Bartenschlager, Ralf; Lohmann, Volker; Kaderali, Lars

    2013-01-01

    Hepatitis C virus (HCV) infection develops into chronicity in 80% of all patients, characterized by persistent low-level replication. To understand how the virus establishes its tightly controlled intracellular RNA replication cycle, we developed the first detailed mathematical model of the initial dynamic phase of the intracellular HCV RNA replication. We therefore quantitatively measured viral RNA and protein translation upon synchronous delivery of viral genomes to host cells, and thoroughly validated the model using additional, independent experiments. Model analysis was used to predict the efficacy of different classes of inhibitors and identified sensitive substeps of replication that could be targeted by current and future therapeutics. A protective replication compartment proved to be essential for sustained RNA replication, balancing translation versus replication and thus effectively limiting RNA amplification. The model predicts that host factors involved in the formation of this compartment determine cellular permissiveness to HCV replication. In gene expression profiling, we identified several key processes potentially determining cellular HCV replication efficiency. PMID:23990783

  7. Prostratin and 12-O-tetradecanoylphorbol 13-acetate are potent and selective inhibitors of Chikungunya virus replication.

    PubMed

    Bourjot, Mélanie; Delang, Leen; Nguyen, Van Hung; Neyts, Johan; Guéritte, Françoise; Leyssen, Pieter; Litaudon, Marc

    2012-12-28

    A chemical study of the Vietnamese plant species Trigonostemon howii led to the isolation of a new tigliane-type diterpenoid, trigowiin A (1), along with several known coumarins and phenylpropanoids. The planar structure and the relative configuration of compound 1 were elucidated based on spectroscopic analysis, including 1D- and 2D-NMR experiments, mass spectrometry, and comparison with literature data. Trigowiin A (1) exhibited moderate antiviral activity in a virus-cell-based assay for Chikungunya virus (CHIKV). Since the structure of compound 1 is closely related to those of well-known tigliane diterpenoids such as prostratin (2), phorbol (3), 12-O-tetradecanoylphorbol 13-acetate (TPA) (4), and 4α-TPA (5), the antiviral activity of the latter compounds was also evaluated against CHIKV, as well as in virus-cell-based assays of two additional members of the genus Alphavirus (Sindbis virus, SINV, and Semliki forest virus, SFV). Whereas prostratin inhibited CHIKV replication with a moderate EC(50) of 2.6 μM and a selectivity index (SI) approximating 30, compound 4 proved to be an extremely potent inhibitor, with an EC(50) of ∼3 nM and a SI near 2000. Interestingly, no or very little activity was observed on the replication of SINV and SFV. PMID:23215460

  8. Universal Temporal Profile of Replication Origin Activation in Eukaryotes

    NASA Astrophysics Data System (ADS)

    Goldar, Arach

    2011-03-01

    The complete and faithful transmission of eukaryotic genome to daughter cells involves the timely duplication of mother cell's DNA. DNA replication starts at multiple chromosomal positions called replication origin. From each activated replication origin two replication forks progress in opposite direction and duplicate the mother cell's DNA. While it is widely accepted that in eukaryotic organisms replication origins are activated in a stochastic manner, little is known on the sources of the observed stochasticity. It is often associated to the population variability to enter S phase. We extract from a growing Saccharomyces cerevisiae population the average rate of origin activation in a single cell by combining single molecule measurements and a numerical deconvolution technique. We show that the temporal profile of the rate of origin activation in a single cell is similar to the one extracted from a replicating cell population. Taking into account this observation we exclude the population variability as the origin of observed stochasticity in origin activation. We confirm that the rate of origin activation increases in the early stage of S phase and decreases at the latter stage. The population average activation rate extracted from single molecule analysis is in prefect accordance with the activation rate extracted from published micro-array data, confirming therefore the homogeneity and genome scale invariance of dynamic of replication process. All these observations point toward a possible role of replication fork to control the rate of origin activation.

  9. The Interferon-Inducible Mouse Apolipoprotein L9 and Prohibitins Cooperate to Restrict Theiler’s Virus Replication

    PubMed Central

    Kreit, Marguerite; Vertommen, Didier; Gillet, Laurent; Michiels, Thomas

    2015-01-01

    Apolipoprotein L9b (Apol9b) is an interferon-stimulated gene (ISG) that has antiviral activity and is weakly expressed in primary mouse neurons as compared to other cell types. Here, we show that both Apol9 isoforms (Apol9b and Apol9a) inhibit replication of Theiler’s murine encephalomyelitis virus (TMEV) but not replication of vesicular stomatitis virus (VSV), Murid herpesvirus-4 (MuHV-4), or infection by a lentiviral vector. Apol9 genes are strongly expressed in mouse liver and, to a lesser extent, in pancreas, adipose tissue and intestine. Their expression is increased by type I interferon and viral infection. In contrast to genuine apolipoproteins that are involved in lipid transport, ApoL9 has an intracytoplasmic localization and does not seem to be secreted. The cytoplasmic localization of ApoL9 is in line with the observation that ApoL9 inhibits the replication step of TMEV infection. In contrast to human ApoL6, ApoL9 did not sensitize cells to apoptosis, in spite of the presence of a conserved putative BH3 domain, required for antiviral activity. ApoL9a and b isoforms interact with cellular prohibitin 1 (Phb1) and prohibitin 2 (Phb2) and this interaction might contribute to ApoL9 antiviral activity. Knocking down Phb2 slightly increased TMEV replication, irrespective of ApoL9 overexpression. The antiviral activity of prohibitins against TMEV contrasts with the pro-viral activity of prohibitins observed for VSV and reported previously for Dengue 2 (DENV-2), Chikungunya (CHIKV) and influenza H5N1 viruses. ApoL9 is thus an example of ISG displaying a narrow antiviral range, which likely acts in complex with prohibitins to restrict TMEV replication. PMID:26196674

  10. Template RNA Length Determines the Size of Replication Complex Spherules for Semliki Forest Virus

    PubMed Central

    Kallio, Katri; Hellström, Kirsi; Balistreri, Giuseppe; Spuul, Pirjo; Jokitalo, Eija

    2013-01-01

    The replication complexes of positive-strand RNA viruses are always associated with cellular membranes. The morphology of the replication-associated membranes is altered in different ways in different viral systems, but many viruses induce small membrane invaginations known as spherules as their replication sites. We show here that for Semliki Forest virus (SFV), an alphavirus, the size of the spherules is tightly connected with the length of the replicating RNA template. Cells with different model templates, expressed in trans and copied by the viral replicase, were analyzed with correlative light and electron microscopy. It was demonstrated that the viral-genome-sized template of 11.5 kb induced spherules that were ∼58 nm in diameter, whereas a template of 6 kb yielded ∼39-nm spherules. Different sizes of viral templates were replicated efficiently in trans, as assessed by radioactive labeling and Northern blotting. The replication of two different templates, in cis and trans, yielded two size classes of spherules in the same cell. These results indicate that RNA plays a crucial determining role in spherule assembly for SFV, in direct contrast with results from other positive-strand RNA viruses, in which either the presence of viral RNA or the RNA size do not contribute to spherule formation. PMID:23760239

  11. Replication of parainfluenza (Sendai) virus in isolated rat pulmonary type II alveolar epithelial cells.

    PubMed Central

    Castleman, W. L.; Northrop, P. J.; McAllister, P. K.

    1989-01-01

    The major objectives of this study were to determine whether alveolar type II epithelial cells isolated from rat lung and maintained in tissue culture would support productive replication of parainfluenza type 1 (Sendai) virus and to determine whether isolated type II cells from neonatal (5-day-old) rats that are more susceptible to viral-induced alveolar dysplasia supported viral replication to a greater extent than those from weanling (25-day-old) rats. Isolated and cultured type II cells from neonatal and weanling rats that were inoculated with Sendai virus supported productive replication as indicated by ultrastructural identification of budding virions and viral nucleocapsids in type II cells and by demonstration of rising titers of infectious virus from inoculated type II cell cultures. Alveolar macrophages from neonatal and weanling rats also supported viral replication, although infectious viral titers in macrophage cultures were lower than those from type II cell cultures. Only minor differences were detected between viral titers from neonatal and weanling type II epithelial cell cultures. Higher densities of viral nucleocapsids were observed in neonatal type II cells than in those from weanling rats. The results indicate that isolated type II alveolar epithelial cells support productive replication of parainfluenza virus and that type II cells are probably more efficient in supporting productive viral replication than are alveolar macrophages. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:2541612

  12. Influenza Virus Induces Inflammatory Response in Mouse Primary Cortical Neurons with Limited Viral Replication.

    PubMed

    Wang, Gefei; Li, Rui; Jiang, Zhiwu; Gu, Liming; Chen, Yanxia; Dai, Jianping; Li, Kangsheng

    2016-01-01

    Unlike stereotypical neurotropic viruses, influenza A viruses have been detected in the brain tissues of human and animal models. To investigate the interaction between neurons and influenza A viruses, mouse cortical neurons were isolated, infected with human H1N1 influenza virus, and then examined for the production of various inflammatory molecules involved in immune response. We found that replication of the influenza virus in neurons was limited, although early viral transcription was not affected. Virus-induced neuron viability decreased at 6 h postinfection (p.i.) but increased at 24 h p.i. depending upon the viral strain. Virus-induced apoptosis and cytopathy in primary cortical neurons were not apparent at 24 h p.i. The mRNA levels of inflammatory cytokines, chemokines, and type I interferons were upregulated at 6 h and 24 h p.i. These results indicate that the influenza virus induces inflammatory response in mouse primary cortical neurons with limited viral replication. The cytokines released in viral infection-induced neuroinflammation might play critical roles in influenza encephalopathy, rather than in viral replication-induced cytopathy. PMID:27525278

  13. Influenza Virus Induces Inflammatory Response in Mouse Primary Cortical Neurons with Limited Viral Replication

    PubMed Central

    Jiang, Zhiwu; Gu, Liming; Chen, Yanxia

    2016-01-01

    Unlike stereotypical neurotropic viruses, influenza A viruses have been detected in the brain tissues of human and animal models. To investigate the interaction between neurons and influenza A viruses, mouse cortical neurons were isolated, infected with human H1N1 influenza virus, and then examined for the production of various inflammatory molecules involved in immune response. We found that replication of the influenza virus in neurons was limited, although early viral transcription was not affected. Virus-induced neuron viability decreased at 6 h postinfection (p.i.) but increased at 24 h p.i. depending upon the viral strain. Virus-induced apoptosis and cytopathy in primary cortical neurons were not apparent at 24 h p.i. The mRNA levels of inflammatory cytokines, chemokines, and type I interferons were upregulated at 6 h and 24 h p.i. These results indicate that the influenza virus induces inflammatory response in mouse primary cortical neurons with limited viral replication. The cytokines released in viral infection-induced neuroinflammation might play critical roles in influenza encephalopathy, rather than in viral replication-induced cytopathy. PMID:27525278

  14. Herpes simplex ICP27 mutant viruses exhibit reduced expression of specific DNA replication genes.

    PubMed Central

    Uprichard, S L; Knipe, D M

    1996-01-01

    Herpes simplex virus type 1 mutants with certain lesions in the ICP27 gene show a 5- to 10-fold reduction in viral DNA synthesis. To determine how ICP27 promotes amplification of viral DNA, we examined the synthesis, accumulation, and stability of the essential viral replication proteins and steady-state levels of the replication gene transcripts throughout the course of ICP27 mutant virus infections. These studies reveal that in the absence of ICP27, expression of the UL5, UL8, UL52, UL9, UL42, and UL30 genes is significantly reduced at the level of mRNA accumulation. In contrast to that of these beta genes, ICP8 expression is unaltered in mutant virus-infected cells, indicating that ICP27 selectively stimulates only a subset of herpes simplex virus beta genes. Analysis of multiple ICP27 mutant viruses indicates a quantitative correlation between the ability of these mutants to replicate viral DNA and the level of replication proteins produced by each mutant. Therefore, we conclude that the primary defect responsible for restricted viral DNA synthesis in cells infected with ICP27 mutants is insufficient expression of most of the essential replication genes. Of further interest, this analysis also provides new information about the structure of the UL52 gene transcripts. PMID:8627723

  15. Opposite Effects of SDF-1 on Human Immunodeficiency Virus Type 1 Replication

    PubMed Central

    Maréchal, Valérie; Arenzana-Seisdedos, Fernando; Heard, Jean-Michel; Schwartz, Olivier

    1999-01-01

    The α-chemokine SDF-1 binds CXCR4, a coreceptor for human immunodeficiency virus type 1 (HIV-1), and inhibits viral entry mediated by this receptor. Since chemokines are potent chemoattractants and activators of leukocytes, we examined whether the stimulation of HIV target cells by SDF-1 affects the replication of virus with different tropisms. We observed that SDF-1 inhibited the entry of X4 strains and increased the infectivity of particles bearing either a CCR5-tropic HIV-1 envelope or a vesicular stomatitis virus G envelope. In contrast to the inhibitory effect of SDF-1 on X4 strains, which is at the level of entry, the stimulatory effect does not involve envelope-receptor interactions or proviral DNA synthesis. Rather, we observed an increased ability of Tat to transactivate the HIV-1 long terminal repeat in the presence of the chemokine. Therefore, the effects of SDF-1 on the HIV-1 life cycle can be multiple and opposite, including both an inhibition of viral entry and a stimulation of proviral gene expression. PMID:10196252

  16. Inhibitory effects of Pycnogenol® on hepatitis C virus replication.

    PubMed

    Ezzikouri, Sayeh; Nishimura, Tomohiro; Kohara, Michinori; Benjelloun, Soumaya; Kino, Yoichiro; Inoue, Kazuaki; Matsumori, Akira; Tsukiyama-Kohara, Kyoko

    2015-01-01

    Chronic hepatitis C virus (HCV) infection increases the risk of liver cirrhosis and hepatocellular carcinoma. In the last decade, the current standard HCV treatment, pegylated interferon and ribavirin, have limited efficacy and significant side effects. Novel direct acting antivirals show promise, but escape mutants are expected, along with potential side effects. Pycnogenol®, a French maritime pine extract, has been reported to have antioxidant and antiviral effects. Here, we evaluated the effect of Pycnogenol® on HCV replication. Wild-type and protease inhibitor (VX-950; telaprevir)-resistant HCV replicon cells were treated with Pycnogenol®, Pycnogenol® and interferon-alpha, and ribavirin and telaprevir. Pycnogenol® effects on replication were also evaluated in HCV-infected chimeric mice. Pycnogenol® treatment showed antiviral effects without cytotoxicity at doses up to 50 μg/mL. Pycnogenol® in combination with interferon-alpha or ribavirin showed synergistic effects. Moreover, Pycnogenol® inhibited HCV replication in telaprevir-resistant replicon cells; telaprevir and Pycnogenol® acted additively to reduce HCV RNA levels in wild-type HCV replicon cells without significantly increasing cytotoxicity. Pycnogenol® antiviral activity was higher than its components procyanidin and taxifolin. Further, treatment of infected chimeric mice with Pycnogenol® suppressed HCV replication and showed a synergistic effect with interferon-alpha. In addition, Pycnogenol® treatment resulted in dose-dependent reduction of reactive oxygen species in HCV replicon cell lines. Pycnogenol® is a natural product that may be used to improve the efficacy of the current standard antiviral agents and even to eliminate resistant HCV mutants. PMID:25446333

  17. Nigericin is a potent inhibitor of the early stage of vaccinia virus replication.

    PubMed

    Myskiw, Chad; Piper, Jessica; Huzarewich, Rhiannon; Booth, Tim F; Cao, Jingxin; He, Runtao

    2010-12-01

    Poxviruses remain a significant public health concern due to their potential use as bioterrorist agents and the spread of animal borne poxviruses, such as monkeypox virus, to humans. Thus, the identification of small molecule inhibitors of poxvirus replication is warranted. Vaccinia virus is the prototypic member of the Orthopoxvirus genus, which also includes variola and monkeypox virus. In this study, we demonstrate that the carboxylic ionophore nigericin is a potent inhibitor of vaccinia virus replication in several human cell lines. In HeLa cells, we found that the 50% inhibitory concentration of nigericin against vaccinia virus was 7.9 nM, with a selectivity index of 1038. We present data demonstrating that nigericin targets vaccinia virus replication at a post-entry stage. While nigericin moderately inhibits both early vaccinia gene transcription and translation, viral DNA replication and intermediate and late gene expression are severely compromised in the presence of nigericin. Our results demonstrate that nigericin has the potential to be further developed into an effective antiviral to treat poxvirus infections. PMID:20951746

  18. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro

    PubMed Central

    Meneses, Rocío; Ocazionez, Raquel E; Martínez, Jairo R; Stashenko, Elena E

    2009-01-01

    Background An antiviral drug is needed for the treatment of patients suffering from yellow fever. Several compounds present in plants can inactive in vitro a wide spectrum of animal viruses. Aim In the present study the inhibitory effect of essential oils of Lippia alba, Lippia origanoides, Oreganum vulgare and Artemisia vulgaris on yellow fever virus (YFV) replication was investigated. Methods The cytotoxicity (CC50) on Vero cells was evaluated by the MTT reduction method. The minimum concentration of the essential oil that inhibited virus titer by more than 50% (MIC) was determined by virus yield reduction assay. YFV was incubated 24 h at 4°C with essential oil before adsorption on Vero cell, and viral replication was carried out in the absence or presence of essential oil. Vero cells were exposed to essential oil 24 h at 37°C before the adsorption of untreated-virus. Results The CC50 values were less than 100 μg/mL and the MIC values were 3.7 and 11.1 μg/mL. The CC50/MIC ratio was of 22.9, 26.4, 26.5 and 8.8 for L. alba, L origanoides, O. vulgare and A. vulgaris, respectively. The presence of essential oil in the culture medium enhances the antiviral effect: L. origanoides oil at 11.1 μg/mLproduced a 100% reduction of virus yield, and the same result was observed with L. alba, O. vulgare and A. vulgaris oils at100 μg/mL. No reduction of virus yield was observed when Vero cells were treated with essential oil before the adsorption of untreated-virus. Conclusion The essential oils evaluated in the study showed antiviral activities against YFV. The mode of action seems to be direct virus inactivation. PMID:19267922

  19. Identification of a new dengue virus inhibitor that targets the viral NS4B protein and restricts genomic RNA replication.

    PubMed

    van Cleef, Koen W R; Overheul, Gijs J; Thomassen, Michael C; Kaptein, Suzanne J F; Davidson, Andrew D; Jacobs, Michael; Neyts, Johan; van Kuppeveld, Frank J M; van Rij, Ronald P

    2013-08-01

    Dengue virus (DENV) is an important human arthropod-borne virus with a major impact on public health. Nevertheless, a licensed vaccine or specific treatment is still lacking. We therefore screened the NIH Clinical Collection (NCC), a library of drug-like small molecules, for inhibitors of DENV replication using a cell line that contains a stably replicating DENV serotype 2 (DENV2) subgenomic replicon. The most potent DENV inhibitor in the NCC was δ opioid receptor antagonist SDM25N. This compound showed antiviral activity against wild-type DENV2 in both Hela and BHK-21 cells, but not in the C6/36 cell line derived from the mosquito Aedes albopictus. The structurally related compound naltrindole also inhibited DENV replication, albeit less potently. Using a transient subgenomic replicon, we demonstrate that SDM25N restricts genomic RNA replication rather than translation of the viral genome. We identified a single amino acid substitution (F164L) in the NS4B protein that confers resistance to SDM25N. Remarkably, an NS4B amino acid substitution (P104L), which was previously shown to confer resistance to the DENV inhibitor NITD-618, also provided resistance to SDM25N. In conclusion, we have identified a new DENV inhibitor, SDM25N, which restricts genomic RNA replication by - directly or indirectly - targeting the viral NS4B protein. PMID:23735301

  20. African swine fever virus multigene family 360 genes affect virus replication and generalization of infection in Ornithodoros porcinus ticks.

    PubMed

    Burrage, T G; Lu, Z; Neilan, J G; Rock, D L; Zsak, L

    2004-03-01

    Recently, we reported that African swine fever virus (ASFV) multigene family (MGF) 360 and 530 genes are significant swine macrophage host range determinants that function by promoting infected-cell survival. To examine the function of these genes in ASFV's arthropod host, Ornithodoros porcinus porcinus, an MGF360/530 gene deletion mutant (Pr4Delta35) was constructed from an ASFV isolate of tick origin, Pr4. Pr4Delta35 exhibited a significant growth defect in ticks. The deletion of six MGF360 and two MGF530 genes from Pr4 markedly reduced viral replication in infected ticks 100- to 1,000-fold. To define the minimal set of MGF360/530 genes required for tick host range, additional gene deletion mutants lacking individual or multiple MGF genes were constructed. The deletion mutant Pr4Delta3-C2, which lacked three MGF360 genes (3HL, 3Il, and 3LL), exhibited reduced viral growth in ticks. Pr4Delta3-C2 virus titers in ticks were significantly reduced 100- to 1,000-fold compared to control values at various times postinfection. In contrast to the parental virus, with which high levels of virus replication were observed in the tissues of infected adults, Pr4Delta3-C2 replication was not detected in the midgut, hemolymph, salivary gland, coxal gland, or reproductive organs at 15 weeks postinfection. These data indicate that ASFV MGF360 genes are significant tick host range determinants and that they are required for efficient virus replication and generalization of infection. The impaired virus replication of Pr4Delta3-C2 in the tick midgut likely accounts for the absence of the generalized infection that is necessary for the natural transmission of virus from ticks to pigs. PMID:14963141

  1. African Swine Fever Virus Multigene Family 360 Genes Affect Virus Replication and Generalization of Infection in Ornithodoros porcinus Ticks

    PubMed Central

    Burrage, T. G.; Lu, Z.; Neilan, J. G.; Rock, D. L.; Zsak, L.

    2004-01-01

    Recently, we reported that African swine fever virus (ASFV) multigene family (MGF) 360 and 530 genes are significant swine macrophage host range determinants that function by promoting infected-cell survival. To examine the function of these genes in ASFV's arthropod host, Ornithodoros porcinus porcinus, an MGF360/530 gene deletion mutant (Pr4Δ35) was constructed from an ASFV isolate of tick origin, Pr4. Pr4Δ35 exhibited a significant growth defect in ticks. The deletion of six MGF360 and two MGF530 genes from Pr4 markedly reduced viral replication in infected ticks 100- to 1,000-fold. To define the minimal set of MGF360/530 genes required for tick host range, additional gene deletion mutants lacking individual or multiple MGF genes were constructed. The deletion mutant Pr4Δ3-C2, which lacked three MGF360 genes (3HL, 3Il, and 3LL), exhibited reduced viral growth in ticks. Pr4Δ3-C2 virus titers in ticks were significantly reduced 100- to 1,000-fold compared to control values at various times postinfection. In contrast to the parental virus, with which high levels of virus replication were observed in the tissues of infected adults, Pr4Δ3-C2 replication was not detected in the midgut, hemolymph, salivary gland, coxal gland, or reproductive organs at 15 weeks postinfection. These data indicate that ASFV MGF360 genes are significant tick host range determinants and that they are required for efficient virus replication and generalization of infection. The impaired virus replication of Pr4Δ3-C2 in the tick midgut likely accounts for the absence of the generalized infection that is necessary for the natural transmission of virus from ticks to pigs. PMID:14963141

  2. Template-Dependent Initiation of Sindbis Virus RNA Replication In Vitro

    PubMed Central

    Lemm, Julie A.; Bergqvist, Anders; Read, Carol M.; Rice, Charles M.

    1998-01-01

    Recent insights into the early events in Sindbis virus RNA replication suggest a requirement for either the P123 or P23 polyprotein, as well as mature nsP4, the RNA-dependent RNA polymerase, for initiation of minus-strand RNA synthesis. Based on this observation, we have succeeded in reconstituting an in vitro system for template-dependent initiation of SIN RNA replication. Extracts were isolated from cells infected with vaccinia virus recombinants expressing various SIN proteins and assayed by the addition of exogenous template RNAs. Extracts from cells expressing P123C>S, a protease-defective P123 polyprotein, and nsP4 synthesized a genome-length minus-sense RNA product. Replicase activity was dependent upon addition of exogenous RNA and was specific for alphavirus plus-strand RNA templates. RNA synthesis was also obtained by coexpression of nsP1, P23C>S, and nsP4. However, extracts from cells expressing nsP4 and P123, a cleavage-competent P123 polyprotein, had much less replicase activity. In addition, a P123 polyprotein containing a mutation in the nsP2 protease which increased the efficiency of processing exhibited very little, if any, replicase activity. These results provide further evidence that processing of the polyprotein inactivates the minus-strand initiation complex. Finally, RNA synthesis was detected when soluble nsP4 was added to a membrane fraction containing P123C>S, thus providing a functional assay for purification of the nsP4 RNA polymerase. PMID:9658098

  3. DNA Helicase Activity Is Associated with the Replication Initiator Protein Rep of Tomato Yellow Leaf Curl Geminivirus▿

    PubMed Central

    Clérot, Danielle; Bernardi, Françoise

    2006-01-01

    The Rep protein of tomato yellow leaf curl Sardinia virus (TYLCSV), a single-stranded DNA virus of plants, is the replication initiator essential for virus replication. TYLCSV Rep has been classified among ATPases associated with various cellular activities (AAA+ ATPases), in superfamily 3 of small DNA and RNA virus replication initiators whose paradigmatic member is simian virus 40 large T antigen. Members of this family are DNA- or RNA-dependent ATPases with helicase activity necessary for viral replication. Another distinctive feature of AAA+ ATPases is their quaternary structure, often composed of hexameric rings. TYLCSV Rep has ATPase activity, but the helicase activity, which is instrumental in further characterization of the mechanism of rolling-circle replication used by geminiviruses, has been a longstanding question. We present results showing that TYLCSV Rep lacking the 121 N-terminal amino acids has helicase activity comparable to that of the other helicases: requirements for a 3′ overhang and 3′-to-5′ polarity of unwinding, with some distinct features and with a minimal AAA+ ATPase domain. We also show that the helicase activity is dependent on the oligomeric state of the protein. PMID:16943286

  4. Evaluation of the minimal replication time of Cauliflower mosaic virus in different hosts

    SciTech Connect

    Khelifa, Mounia; Masse, Delphine; Blanc, Stephane; Drucker, Martin

    2010-01-20

    Though the duration of a single round of replication is an important biological parameter, it has been determined for only few viruses. Here, this parameter was determined for Cauliflower mosaic virus (CaMV) in transfected protoplasts from different hosts: the highly susceptible Arabidopsis and turnip, and Nicotiana benthamiana, where CaMV accumulates only slowly. Four methods of differing sensitivity were employed: labelling of (1) progeny DNA and (2) capsid protein, (3) immunocapture PCR,, and (4) progeny-specific PCR. The first progeny virus was detected about 21 h after transfection. This value was confirmed by all methods, indicating that our estimate was not biased by the sensitivity of the detection method, and approximated the actual time required for one round of CaMV replication. Unexpectedly, the replication kinetics were similar in the three hosts; suggesting that slow accumulation of CaMV in Nicotiana plants is determined by non-optimal interactions in other steps of the infection cycle.

  5. The cis-acting replication element of the Hepatitis C virus genome recruits host factors that influence viral replication and translation.

    PubMed

    Ríos-Marco, Pablo; Romero-López, Cristina; Berzal-Herranz, Alfredo

    2016-01-01

    The cis-acting replication element (CRE) of the hepatitis C virus (HCV) RNA genome is a region of conserved sequence and structure at the 3' end of the open reading frame. It participates in a complex and dynamic RNA-RNA interaction network involving, among others, essential functional domains of the 3' untranslated region and the internal ribosome entry site located at the 5' terminus of the viral genome. A proper balance between all these contacts is critical for the control of viral replication and translation, and is likely dependent on host factors. Proteomic analyses identified a collection of proteins from a hepatoma cell line as CRE-interacting candidates. A large fraction of these were RNA-binding proteins sharing highly conserved RNA recognition motifs. The vast majority of these proteins were validated by bioinformatics tools that consider RNA-protein secondary structure. Further characterization of representative proteins indicated that hnRNPA1 and HMGB1 exerted negative effects on viral replication in a subgenomic HCV replication system. Furthermore DDX5 and PARP1 knockdown reduced the HCV IRES activity, suggesting an involvement of these proteins in HCV translation. The identification of all these host factors provides new clues regarding the function of the CRE during viral cycle progression. PMID:27165399

  6. The cis-acting replication element of the Hepatitis C virus genome recruits host factors that influence viral replication and translation

    PubMed Central

    Ríos-Marco, Pablo; Romero-López, Cristina; Berzal-Herranz, Alfredo

    2016-01-01

    The cis-acting replication element (CRE) of the hepatitis C virus (HCV) RNA genome is a region of conserved sequence and structure at the 3′ end of the open reading frame. It participates in a complex and dynamic RNA-RNA interaction network involving, among others, essential functional domains of the 3′ untranslated region and the internal ribosome entry site located at the 5′ terminus of the viral genome. A proper balance between all these contacts is critical for the control of viral replication and translation, and is likely dependent on host factors. Proteomic analyses identified a collection of proteins from a hepatoma cell line as CRE-interacting candidates. A large fraction of these were RNA-binding proteins sharing highly conserved RNA recognition motifs. The vast majority of these proteins were validated by bioinformatics tools that consider RNA-protein secondary structure. Further characterization of representative proteins indicated that hnRNPA1 and HMGB1 exerted negative effects on viral replication in a subgenomic HCV replication system. Furthermore DDX5 and PARP1 knockdown reduced the HCV IRES activity, suggesting an involvement of these proteins in HCV translation. The identification of all these host factors provides new clues regarding the function of the CRE during viral cycle progression. PMID:27165399

  7. Analysis of JC virus DNA replication using a quantitative and high-throughput assay

    SciTech Connect

    Shin, Jong; Phelan, Paul J.; Chhum, Panharith; Bashkenova, Nazym; Yim, Sung; Parker, Robert; Gagnon, David; Gjoerup, Ole; Archambault, Jacques; Bullock, Peter A.

    2014-11-15

    Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication. - Highlights: • Development of a high-throughput screening assay for JCV DNA replication using C33A cells. • Evidence that T-ag fails to accumulate in the nuclei of established glioma cell lines. • Evidence that NF-1 directly promotes JCV DNA replication in C33A cells. • Proof-of-concept that the HTS assay can be used to identify pharmacological inhibitor of JCV DNA replication.

  8. Mechanisms of Cellular Membrane Reorganization to Support Hepatitis C Virus Replication

    PubMed Central

    Wang, Hongliang; Tai, Andrew W.

    2016-01-01

    Like all positive-sense RNA viruses, hepatitis C virus (HCV) induces host membrane alterations for its replication termed the membranous web (MW). Assembling replication factors at a membranous structure might facilitate the processes necessary for genome replication and packaging and shield viral components from host innate immune defenses. The biogenesis of the HCV MW is a complex process involving a concerted effort of HCV nonstructural proteins with a growing list of host factors. Although a comprehensive understanding of MW formation is still missing, a number of important viral and host determinants have been identified. This review will summarize the recent studies that have led to our current knowledge of the role of viral and host factors in the biogenesis of the MWs and discuss how HCV uses this specialized membrane structure for its replication. PMID:27213428

  9. Mechanisms of Cellular Membrane Reorganization to Support Hepatitis C Virus Replication.

    PubMed

    Wang, Hongliang; Tai, Andrew W

    2016-01-01

    Like all positive-sense RNA viruses, hepatitis C virus (HCV) induces host membrane alterations for its replication termed the membranous web (MW). Assembling replication factors at a membranous structure might facilitate the processes necessary for genome replication and packaging and shield viral components from host innate immune defenses. The biogenesis of the HCV MW is a complex process involving a concerted effort of HCV nonstructural proteins with a growing list of host factors. Although a comprehensive understanding of MW formation is still missing, a number of important viral and host determinants have been identified. This review will summarize the recent studies that have led to our current knowledge of the role of viral and host factors in the biogenesis of the MWs and discuss how HCV uses this specialized membrane structure for its replication. PMID:27213428

  10. Virus-Specific Messenger RNA and Nascent Polypeptides in Polyribosomes of Cells Replicating Murine Sarcoma-Leukemia Viruses

    PubMed Central

    Vecchio, G.; Tsuchida, N.; Shanmugam, G.; Green, M.

    1973-01-01

    We present evidence that virus-specific RNA is present in polyribosomes of transformed cells replicating the murine sarcoma-leukemia virus complex and that it serves as messenger RNA for the synthesis of viral-coded proteins. Both virus-specific RNA (detected by hybridization with the [3H]DNA product of the viral RNA-directed DNA polymerase) and nascent viral polypeptides (measured by precipitation with antiserum to purified virus) were found in membrane-bound and free polyribosomes. Membrane-bound polyribosomes contained a higher content of both virus-specific RNA and nascent viral polypeptides. From 60 to 70% of viral RNA sequences were released from polyribosomes with EDTA, consistent with a function as messenger RNA. Maximum amounts of both virus-specific RNA and nascent viral polypeptides were found in the polyribosome region sedimenting at about 350 S. PMID:4352969

  11. Hepatitis C Virus NS2 Protein Triggers Endoplasmic Reticulum Stress and Suppresses its Own Viral Replication

    PubMed Central

    von dem Bussche, Annette; Machida, Raiki; Li, Ke; Loevinsohn, Gideon; Khander, Amrin; Wang, Jianguo; Wakita, Takaji; Wands, Jack R.; Li, Jisu

    2010-01-01

    Background & Aims We previously reported that the NS2 protein of hepatitis C virus (HCV) inhibits the expression of reporter genes driven by a variety of cellular and viral promoters. The aim of the study was to determine whether the broad transcriptional repression is caused by endoplasmic reticulum (ER) stress. Methods Phosphorylation of the translation initiation factor eIF2α and HCV replication were detected by Western and Northern blot, respectively. De novo protein synthesis was measured by metabolic labeling. Activation of ER stress responsive genes was determined by promoter reporter assay, as well as mRNA and protein measurement by real time PCR and Western blot. Results Transient or inducible NS2 protein expression increased eIF2α phosphorylation and reduced de novo protein synthesis. It up-regulated promoter activities and transcript levels of ER stress inducible genes including GRP78, ATF6, and GADD153, as well as GRP78 protein level. The same effect was observed when NS2 was synthesized as part of the core-E1-E2-p7-NS2 polypeptide. NS2 protein also inhibited reporter gene expression from the HCV internal ribosome entry site and consequently reduced HCV replication. The full-length HCV replicon activated GRP78, ATF6, and GADD153 promoters more efficiently than the subgenomic replicon lacking the coding sequence for both the structural proteins and NS2. Abrogation of HCV infection/replication, by an inhibitor of the NS3 protease, relieved ER stress. Conclusions HCV infection can induce ER stress, with NS2 protein being a major mediator. The stress can be relieved by a feedback mechanism. PMID:20801537

  12. Involvement of the skin during bluetongue virus infection and replication in the ruminant host

    PubMed Central

    2012-01-01

    Bluetongue virus (BTV) is a double stranded (ds) RNA virus (genus Orbivirus; family Reoviridae), which is considered capable of infecting all species of domestic and wild ruminants, although clinical signs are seen mostly in sheep. BTV is arthropod-borne (“arbovirus”) and able to productively infect and replicate in many different cell types of both insects and mammalian hosts. Although the organ and cellular tropism of BTV in ruminants has been the subject of several studies, many aspects of its pathogenesis are still poorly understood, partly because of inherent problems in distinguishing between “virus replication” and “virus presence”.BTV replication and organ tropism were studied in a wide range of infected sheep tissues, by immuno-fluorescence-labeling of non-structural or structural proteins (NS2 or VP7 and core proteins, respectively) using confocal microscopy to distinguish between virus presence and replication. These results are compared to gross and microscopic pathological findings in selected organs from infected sheep. Replication was demonstrated in two major cell types: vascular endothelial cells, and agranular leukocytes which morphologically resemble lymphocytes, monocytes/macrophages and/or dendritic cells. Two organs (the skin and tonsils) were shown to support relatively high levels of BTV replication, although they have not previously been proposed as important replication sites during BTV infection. The high level of BTV replication in the skin is thought to be of major significance for the pathogenesis and transmission of BTV (via biting insects) and a refinement of our current model of BTV pathogenesis is discussed. PMID:22546071

  13. Interference with virus and bacteria replication by the tissue specific expression of antibodies and interfering molecules.

    PubMed

    Enjuanes, L; Sola, I; Izeta, A; Sánchez-Morgado, J M; González, J M; Alonso, S; Escors, D; Sánchez, C M

    1999-01-01

    Historically, protection against virus infections has relied on the use of vaccines, but the induction of an immune response requires several days and in certain situations, like in newborn animals that may be infected at birth and die in a few days, there is not sufficient time to elicit a protective immune response. Immediate protection in new born could be provided either by vectors that express virus-interfering molecules in a tissue specific form, or by the production of animals expressing resistance to virus replication. The mucosal surface is the largest body surface susceptible to virus infection that can serve for virus entry. Then, it is of high interest to develop strategies to prevent infections of these areas. Virus growth can be interfered intracellularly, extracellularly or both. The antibodies neutralize virus intra- and extracellularly and their molecular biology is well known. In addition, antibodies efficiently neutralize viruses in the mucosal areas. The autonomy of antibody molecules in virus neutralization makes them functional in cells different from those that produce the antibodies and in the extracellular medium. These properties have identified antibodies as very useful molecules to be expressed by vectors or in transgenic animals to provide resistance to virus infection. A similar role could be played by antimicrobial peptides in the case of bacteria. Intracellular interference with virus growth (intracellular immunity) can be mediated by molecules of very different nature: (i) full length or single chain antibodies; (ii) mutant viral proteins that strongly interfere with the replication of the wild type virus (dominant-negative mutants); (iii) antisense RNA and ribozyme sequences; and (iv) the product of antiviral genes such as the Mx proteins. All these molecules inhibiting virus replication may be used to obtain transgenic animals with resistance to viral infection built in their genomes. We have developed two strategies to target

  14. Replication-competent influenza A viruses expressing a red fluorescent protein

    PubMed Central

    Nogales, Aitor; Baker, Steven F.; Martínez-Sobrido, Luis

    2014-01-01

    Like most animal viruses, studying influenza A in model systems requires secondary methodologies to identify infected cells. To circumvent this requirement, we describe the generation of replication-competent influenza A red fluorescent viruses. These influenza A viruses encode mCherry fused to the viral non-structural 1 (NS1) protein and display comparable growth kinetics to wild-type viruses in vitro. Infection of cells with influenza A mCherry viruses was neutralized with monoclonal antibodies and inhibited with antivirals to levels similar to wild-type virus. Influenza A mCherry viruses were also able to lethally infect mice, and strikingly, dose- and time-dependent kinetics of viral replication were monitored in whole excised mouse lungs using an in vivo imaging system (IVIS). By eliminating the need for secondary labeling of infected cells, influenza A mCherry viruses provide an ideal tool in the ongoing struggle to better characterize the virus and identify new therapeutics against influenza A viral infections. PMID:25553516

  15. Hepatitis B Virus Stimulated Fibronectin Facilitates Viral Maintenance and Replication through Two Distinct Mechanisms

    PubMed Central

    Ren, Sheng; Wang, Jun; Chen, Tie-Long; Li, Hao-Yu; Wan, Yu-Shun; Peng, Nan-Fang; Gui, Xi-En; Zhu, Ying

    2016-01-01

    Fibronectin (FN) is a high molecular weight extracellular matrix protein that functions in cell adhesion, growth, migration, and embryonic development. However, little is known about the role of FN during viral infection. In the present study, we found significantly higher levels of FN in sera, and liver tissues from hepatitis B virus (HBV) patients relative to healthy individuals. HBV expression enhanced FN mRNA and protein levels in the hepatic cell lines Huh7 and HepG2. HBV infection of susceptible HepG2-sodium taurocholate co-transporting polypeptide cells also increased FN expression. We also found that transcriptional factor specificity protein 1 was involved in the induction of FN by HBV. Knockdown of FN expression significantly inhibited HBV DNA replication and protein synthesis through activating endogenous IFN-α production. In addition, FN interacted with the transforming growth factor β-activated protein kinase 1 (TAK1) and TAK1-binding protein complex and attenuated interferon signaling by inhibiting TAK1 phosphorylation. Furthermore, the nuclear translocation of NF-κB/p65 was found to be inhibited by FN. We also observed that FN promoted HBV enhancers to support HBV expression. These results suggest novel functions of endogenous FN involved in immune evasion and maintenance of HBV replication. PMID:27023403

  16. Hepatitis B Virus X Protein Promotes Degradation of SMC5/6 to Enhance HBV Replication.

    PubMed

    Murphy, Christopher M; Xu, Yanping; Li, Feng; Nio, Kouki; Reszka-Blanco, Natalia; Li, Xiaodong; Wu, Yaxu; Yu, Yanbao; Xiong, Yue; Su, Lishan

    2016-09-13

    The hepatitis B virus (HBV) regulatory protein X (HBx) activates gene expression from the HBV covalently closed circular DNA (cccDNA) genome. Interaction of HBx with the DDB1-CUL4-ROC1 (CRL4) E3 ligase is critical for this function. Using substrate-trapping proteomics, we identified the structural maintenance of chromosomes (SMC) complex proteins SMC5 and SMC6 as CRL4(HBx) substrates. HBx expression and HBV infection degraded the SMC5/6 complex in human hepatocytes in vitro and in humanized mice in vivo. HBx targets SMC5/6 for ubiquitylation by the CRL4(HBx) E3 ligase and subsequent degradation by the proteasome. Using a minicircle HBV (mcHBV) reporter system with HBx-dependent activity, we demonstrate that SMC5/6 knockdown, or inhibition with a dominant-negative SMC6, enhance HBx null mcHBV-Gluc gene expression. Furthermore, SMC5/6 knockdown rescued HBx-deficient HBV replication in human hepatocytes. These results indicate that a primary function of HBx is to degrade SMC5/6, which restricts HBV replication by inhibiting HBV gene expression. PMID:27626656

  17. Property of hepatitis B virus replication in Tupaia belangeri hepatocytes.

    PubMed

    Sanada, Takahiro; Tsukiyama-Kohara, Kyoko; Yamamoto, Naoki; Ezzikouri, Sayeh; Benjelloun, Soumaya; Murakami, Shuko; Tanaka, Yasuhito; Tateno, Chise; Kohara, Michinori

    2016-01-01

    The northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3-6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>10(5) copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogen activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 10(4)-10(6) copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<10(3) copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV. PMID:26654952

  18. Swine alveolar macrophage cell model allows optimal replication of influenza A viruses regardless of their origin.

    PubMed

    Kasloff, Samantha B; Weingartl, Hana M

    2016-03-01

    The importance of pigs in interspecies transmission of influenza A viruses has been repeatedly demonstrated over the last century. Eleven influenza A viruses from avian, human and swine hosts were evaluated for replication phenotypes at three physiologically relevant temperatures (41°C, 37°C, 33°C) in an immortalized swine pulmonary alveolar macrophage cell line (IPAM 3D4/31) to determine whether this system would allow for their efficient replication. All isolates replicated well in IPAMs at 37°C while clear distinctions were observed at 41°C and 33°C, correlating to species of origin of the PB2, reflected in distinct amino acid residue profiles rather than in one particular PB2 residue. A strong TNF-α response was induced by some mammalian but not avian IAVs, while other selected cytokines remained below detection levels. Porcine IPAMs represent a natural host cell model for influenza virus replication where the only condition requiring modification for optimal IAV replication, regardless of virus origin. PMID:26855331

  19. Modeling the Intracellular Dynamics of Influenza Virus Replication To Understand the Control of Viral RNA Synthesis

    PubMed Central

    Frensing, Timo; Reichl, Udo

    2012-01-01

    Influenza viruses transcribe and replicate their negative-sense RNA genome inside the nucleus of host cells via three viral RNA species. In the course of an infection, these RNAs show distinct dynamics, suggesting that differential regulation takes place. To investigate this regulation in a systematic way, we developed a mathematical model of influenza virus infection at the level of a single mammalian cell. It accounts for key steps of the viral life cycle, from virus entry to progeny virion release, while focusing in particular on the molecular mechanisms that control viral transcription and replication. We therefore explicitly consider the nuclear export of viral genome copies (vRNPs) and a recent hypothesis proposing that replicative intermediates (cRNA) are stabilized by the viral polymerase complex and the nucleoprotein (NP). Together, both mechanisms allow the model to capture a variety of published data sets at an unprecedented level of detail. Our findings provide theoretical support for an early regulation of replication by cRNA stabilization. However, they also suggest that the matrix protein 1 (M1) controls viral RNA levels in the late phase of infection as part of its role during the nuclear export of viral genome copies. Moreover, simulations show an accumulation of viral proteins and RNA toward the end of infection, indicating that transport processes or budding limits virion release. Thus, our mathematical model provides an ideal platform for a systematic and quantitative evaluation of influenza virus replication and its complex regulation. PMID:22593159

  20. Modulation of the Host Lipid Landscape to Promote RNA Virus Replication: The Picornavirus Encephalomyocarditis Virus Converges on the Pathway Used by Hepatitis C Virus

    PubMed Central

    Dorobantu, Cristina M.; Albulescu, Lucian; Harak, Christian; Feng, Qian; van Kampen, Mirjam; Strating, Jeroen R. P. M.; Gorbalenya, Alexander E.; Lohmann, Volker

    2015-01-01

    Cardioviruses, including encephalomyocarditis virus (EMCV) and the human Saffold virus, are small non-enveloped viruses belonging to the Picornaviridae, a large family of positive-sense RNA [(+)RNA] viruses. All (+)RNA viruses remodel intracellular membranes into unique structures for viral genome replication. Accumulating evidence suggests that picornaviruses from different genera use different strategies to generate viral replication organelles (ROs). For instance, enteroviruses (e.g. poliovirus, coxsackievirus, rhinovirus) rely on the Golgi-localized phosphatidylinositol 4-kinase III beta (PI4KB), while cardioviruses replicate independently of the kinase. By which mechanisms cardioviruses develop their ROs is currently unknown. Here we show that cardioviruses manipulate another PI4K, namely the ER-localized phosphatidylinositol 4-kinase III alpha (PI4KA), to generate PI4P-enriched ROs. By siRNA-mediated knockdown and pharmacological inhibition, we demonstrate that PI4KA is an essential host factor for EMCV genome replication. We reveal that the EMCV nonstructural protein 3A interacts with and is responsible for PI4KA recruitment to viral ROs. The ensuing phosphatidylinositol 4-phosphate (PI4P) proved important for the recruitment of oxysterol-binding protein (OSBP), which delivers cholesterol to EMCV ROs in a PI4P-dependent manner. PI4P lipids and cholesterol are shown to be required for the global organization of the ROs and for viral genome replication. Consistently, inhibition of OSBP expression or function efficiently blocked EMCV RNA replication. In conclusion, we describe for the first time a cellular pathway involved in the biogenesis of cardiovirus ROs. Remarkably, the same pathway was reported to promote formation of the replication sites of hepatitis C virus, a member of the Flaviviridae family, but not other picornaviruses or flaviviruses. Thus, our results highlight the convergent recruitment by distantly related (+)RNA viruses of a host lipid

  1. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses

    PubMed Central

    Hendricks, Gabriel L.; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C.; Viswanathan, Karthik; Albers, Leila; Comolli, James C.; Shriver, Zachary; Knipe, David M.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Trevejo, Jose M.

    2016-01-01

    Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as ‘molecular sinks’ and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. PMID:25637710

  2. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses.

    PubMed

    Hendricks, Gabriel L; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C; Viswanathan, Karthik; Albers, Leila; Comolli, James C; Shriver, Zachary; Knipe, David M; Kurt-Jones, Evelyn A; Fygenson, Deborah K; Trevejo, Jose M; Wang, Jennifer P; Finberg, Robert W

    2015-04-01

    Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as 'molecular sinks' and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. PMID:25637710

  3. Replication of Simian Virus 40 Deoxyribonucleic Acid: Analysis of the One-Step Growth Cycle

    PubMed Central

    Manteuil, Simone; Pages, Jacqueline; Stehelin, Dominique; Girard, Marc

    1973-01-01

    The time course of replication of simian virus 40 deoxyribonucleic acid (DNA) was investigated in growing monolayer cultures of subcloned CV1 cells. At multiplicities of infection of 30 to 60 plaque-forming units (PFU)/cell, first progeny DNA molecules (component 1) were detected by 10 hr after infection. During the following 10 to 12 hr, accumulation of virus DNA proceeded at ever increasing rates, albeit in a non-exponential fashion. The rate of synthesis then remained constant, until approximately the 40th hour postinfection, when DNA replication stopped. Under these conditions, the duration of the virus growth cycle was approximately 50 hr. The time needed for the synthesis of one DNA molecule was found to be approximately 15 min. At multiplicities of infection of 1 or less than 1 PFU/cell, the onset of the linear phase of DNA accumulation was delayed, but the final rate of DNA synthesis was the same, independent of the input multiplicity. This was taken as a proof that templates for the synthesis of viral DNA multiply in the cell during the early phase of replication. However, the probability for every replicated DNA molecule to become in turn replicative decreased constantly during that phase. This could be accounted for by assuming a limited number of replication sites in the infected cell. PMID:4346282

  4. AR-12 Inhibits Multiple Chaperones Concomitant With Stimulating Autophagosome Formation Collectively Preventing Virus Replication.

    PubMed

    Booth, Laurence; Roberts, Jane L; Ecroyd, Heath; Tritsch, Sarah R; Bavari, Sina; Reid, St Patrick; Proniuk, Stefan; Zukiwski, Alexander; Jacob, Abraham; Sepúlveda, Claudia S; Giovannoni, Federico; García, Cybele C; Damonte, Elsa; González-Gallego, Javier; Tuñón, María J; Dent, Paul

    2016-10-01

    We have recently demonstrated that AR-12 (OSU-03012) reduces the function and ATPase activities of multiple HSP90 and HSP70 family chaperones. Combined knock down of chaperones or AR-12 treatment acted to reduce the expression of virus receptors and essential glucosidase proteins. Combined knock down of chaperones or AR-12 treatment inactivated mTOR and elevated ATG13 S318 phosphorylation concomitant with inducing an endoplasmic reticulum stress response that in an eIF2α-dependent fashion increased Beclin1 and LC3 expression and autophagosome formation. Over-expression of chaperones prevented the reduction in receptor/glucosidase expression, mTOR inactivation, the ER stress response, and autophagosome formation. AR-12 reduced the reproduction of viruses including Mumps, Influenza, Measles, Junín, Rubella, HIV (wild type and protease resistant), and Ebola, an effect replicated by knock down of multiple chaperone proteins. AR-12-stimulated the co-localization of Influenza, EBV and HIV virus proteins with LC3 in autophagosomes and reduced viral protein association with the chaperones HSP90, HSP70, and GRP78. Knock down of Beclin1 suppressed drug-induced autophagosome formation and reduced the anti-viral protection afforded by AR-12. In an animal model of hemorrhagic fever virus, a transient exposure of animals to low doses of AR-12 doubled animal survival from ∼30% to ∼60% and suppressed liver damage as measured by ATL, GGT and LDH release. Thus through inhibition of chaperone protein functions; reducing the production, stability and processing of viral proteins; and stimulating autophagosome formation/viral protein degradation, AR-12 acts as a broad-specificity anti-viral drug in vitro and in vivo. We argue future patient studies with AR-12 are warranted. J. Cell. Physiol. 231: 2286-2302, 2016. © 2016 Wiley Periodicals, Inc. PMID:27187154

  5. Replication characteristics of infectious laryngotracheitis virus in the respiratory and conjunctival mucosa.

    PubMed

    Reddy, Vishwanatha R A P; Steukers, Lennert; Li, Yewei; Fuchs, Walter; Vanderplasschen, Alain; Nauwynck, Hans J

    2014-01-01

    Avian infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus of poultry that is spread worldwide. ILTV enters its host via the respiratory tract and the eyes. Although ILTV has been known for a long time, the replication characteristics of the virus in the respiratory and conjunctival mucosa are still poorly studied. To study these characteristics, two in vitro explant models were developed. Light microscopy and fluorescent terminal deoxynucleotidyl transferase dUTP nick end-labelling staining were used to evaluate the viability of mucosal explants, which were found to be viable up to the end of the experiment at 96 h of cultivation. The tracheal and conjunctival mucosal explants were inoculated with ILTV and collected at 0, 24, 48 and 72 h post inoculation (p.i.). ILTV spread in a plaque-wise manner in both mucosae. A reproducible quantitative analysis of this mucosal spread was evaluated by measuring plaque numbers, plaque latitude and invasion depth underneath the basement membrane. No major differences in plaque numbers were observed over time. Plaque latitude progressively increased to 70.4 ± 12.9 μm in the trachea and 97.8 ± 9.5 μm in the conjunctiva at 72 h p.i. The virus had difficulty crossing the basement membrane and was first observed only at 48 h p.i. The virus was observed at 72 h p.i. in 56% (trachea) and 74% (conjunctiva) of the plaques. Viability analysis of infected explants indicated that ILTV blocks apoptosis in infected cells of both mucosae but activates apoptosis in bystander cells. PMID:25144137

  6. A heat shock transcription factor in pea is differentially controlled by heat and virus replication.

    PubMed

    Aranda, M A; Escaler, M; Thomas, C L; Maule, A J

    1999-10-01

    Since some heat-inducible genes [heat shock (hs) genes] can be induced by virus infection in pea [e.g. Hsp70; Aranda et al. 1996, Proc. Natl Acad. Sci. USA 93, 15289-15293], we have investigated the effect that heat and virus replication may have on the expression of a heat-shock transcription factor gene (Hsf). We have characterized what appears to be the only member of the Hsf family in pea, PsHsfA. Similar to Hsp70, PsHsfA is heat-inducible in vegetative and embryonic tissues, which is concordant with the presence of heat shock elements (HSEs) and stress responsive elements (STREs) on its promoter sequence. The expression of PsHsfA during virus replication was studied in pea cotyledons and leaves, and compared to that of Hsp70. In situ hybridization experiments showed that whereas Hsp70 is induced, there is no detectable increased accumulation of PsHsfA RNA associated with the replication of pea seed-borne mosaic potyvirus (PSbMV). These experiments indicate that there is a selective control of virus-induced hs gene expression, and suggest that different regulatory pathways control hs gene expression during heat shock and virus replication. PMID:10571875

  7. Effect of Temperature on Replication of Epizootic Hemorrhagic Disease Viruses in Culicoides sonorensis (Diptera: Ceratopogonidae).

    PubMed

    Ruder, Mark G; Stallknecht, David E; Howerth, Elizabeth W; Carter, Deborah L; Pfannenstiel, Robert S; Allison, Andrew B; Mead, Daniel G

    2015-09-01

    Replication of arboviruses, including orbiviruses, within the vector has been shown to be temperature dependent. Cooler ambient temperatures slow virus replication in arthropod vectors, whereas viruses replicate faster and to higher titers at warmer ambient temperatures. Previous research with epizootic hemorrhagic disease virus (EHDV) serotype 1 demonstrated that higher temperatures were associated with shorter extrinsic incubation periods in Culicoides sonorensis Wirth & Jones, a confirmed vector of EHDV in North America. To further our understanding of the effect of temperature on replication of EHDV within the vector, C. sonorensis were experimentally infected with one of three EHDV strains representing three serotypes (1, 2, and 7). Midges were fed defibrinated white-tailed deer (Odocoileus virginianus) blood spiked with EHDV (≥10(6.5) TCID(50)/ml) through a parafilm membrane using an artificial feeding device and were then held at 20, 25, or 30°C. In addition to this in vitro method, a white-tailed deer experimentally infected with EHDV-7 was used to provide an infectious bloodmeal to determine if the results were comparable with those from the in vitro feeding method. Whole midges were processed for virus isolation and titration at regular intervals following feeding; midges with ≥10(2.7) TCID(50) were considered potentially competent to transmit virus. The virus recovery rates were high throughout the study and all three viruses replicated within C. sonorensis to high titer (≥ 10(2.7) TCID(50)/midge). Across all virus strains, the time to detection of potentially competent midges decreased with increasing temperature: 12-16 d postfeeding (dpf) at 20°C, 4-6 dpf at 25°C, and 2-4 dpf at 30°C. Significant differences in replication of the three viruses in C. sonorensis were observed, with EHDV-2 replicating to a high titer in a smaller proportion of midges and with lower peak titers. The findings are consistent with previous studies of related

  8. Tight Chk1 Levels Control Replication Cluster Activation in Xenopus

    PubMed Central

    Wiggins, Jennifer M.; Barbosa, Pedro; Libeau, Pierre; Priam, Pierre; Narassimprakash, Hemalatha; Grodzenski, Xenia; Marheineke, Kathrin

    2015-01-01

    DNA replication in higher eukaryotes initiates at thousands of origins according to a spatio-temporal program. The ATR/Chk1 dependent replication checkpoint inhibits the activation of later firing origins. In the Xenopus in vitro system initiations are not sequence dependent and 2-5 origins are grouped in clusters that fire at different times despite a very short S phase. We have shown that the temporal program is stochastic at the level of single origins and replication clusters. It is unclear how the replication checkpoint inhibits late origins but permits origin activation in early clusters. Here, we analyze the role of Chk1 in the replication program in sperm nuclei replicating in Xenopus egg extracts by a combination of experimental and modelling approaches. After Chk1 inhibition or immunodepletion, we observed an increase of the replication extent and fork density in the presence or absence of external stress. However, overexpression of Chk1 in the absence of external replication stress inhibited DNA replication by decreasing fork densities due to lower Cdk2 kinase activity. Thus, Chk1 levels need to be tightly controlled in order to properly regulate the replication program even during normal S phase. DNA combing experiments showed that Chk1 inhibits origins outside, but not inside, already active clusters. Numerical simulations of initiation frequencies in the absence and presence of Chk1 activity are consistent with a global inhibition of origins by Chk1 at the level of clusters but need to be combined with a local repression of Chk1 action close to activated origins to fit our data. PMID:26046346

  9. Cell-Free Transmission and In Vivo Replication of Marek's Disease Virus 1

    PubMed Central

    Nazerian, K.; Witter, R. L.

    1970-01-01

    Marek's disease virus recovered from the feather follicle of infected chickens was found to be infectious for chickens in cell-free preparations. The virus replicated in epithelial cells of the germinative layer of the feather follicle epidermis, producing both intranuclear and round or diffuse cytoplasmic inclusion bodies in the infected cells. It was found at this site 2 weeks postinoculation and prior to the development of tumor or other gross lesions. In the nucleus, many naked and a few enveloped herpesvirions were found, whereas the cytoplasm contained predominantly enveloped herpesvirions, which were usually within the cytoplasmic inclusion bodies. Approximately 80% of the extracellular virions were enveloped. Studies with both virulent and avirulent strains of the virus revealed a relationship between virulence, contagiousness, and replication of the virus in the feather follicle. Images PMID:4191324

  10. Varicella-zoster virus (VZV) origin of DNA replication oriS influences origin-dependent DNA replication and flanking gene transcription.

    PubMed

    Khalil, Mohamed I; Sommer, Marvin H; Hay, John; Ruyechan, William T; Arvin, Ann M

    2015-07-01

    The VZV genome has two origins of DNA replication (oriS), each of which consists of an AT-rich sequence and three origin binding protein (OBP) sites called Box A, C and B. In these experiments, the mutation in the core sequence CGC of the Box A and C not only inhibited DNA replication but also inhibited both ORF62 and ORF63 expression in reporter gene assays. In contrast the Box B mutation did not influence DNA replication or flanking gene transcription. These results suggest that efficient DNA replication enhances ORF62 and ORF63 transcription. Recombinant viruses carrying these mutations in both sites and one with a deletion of the whole oriS were constructed. Surprisingly, the recombinant virus lacking both copies of oriS retained the capacity to replicate in melanoma and HELF cells suggesting that VZV has another origin of DNA replication. PMID:25795313

  11. Hsp90 inhibitors reduce influenza virus replication in cell culture

    SciTech Connect

    Chase, Geoffrey; Deng, Tao; Fodor, Ervin; Leung, B.W.; Mayer, Daniel; Schwemmle, Martin Brownlee, George

    2008-08-01

    The viral RNA polymerase complex of influenza A virus consists of three subunits PB1, PB2 and PA. Recently, the cellular chaperone Hsp90 was shown to play a role in nuclear import and assembly of the trimeric polymerase complex by binding to PB1 and PB2. Here we show that Hsp90 inhibitors, geldanamycin or its derivative 17-AAG, delay the growth of influenza virus in cell culture resulting in a 1-2 log reduction in viral titre early in infection. We suggest that this is caused by the reduced half-life of PB1 and PB2 and inhibition of nuclear import of PB1 and PA which lead to reduction in viral RNP assembly. Hsp90 inhibitors may represent a new class of antiviral compounds against influenza viruses.

  12. Simian Immunodeficiency Virus Replicates to High Levels in Naturally Infected African Green Monkeys without Inducing Immunologic or Neurologic Disease

    PubMed Central

    Broussard, Suzanne R.; Staprans, Silvija I.; White, Robert; Whitehead, Evelyn M.; Feinberg, Mark B.; Allan, Jonathan S.

    2001-01-01

    African green monkeys can maintain long-term persistent infection with simian immunodeficiency viruses (SIVagm) without developing AIDS and thus provide an important model for understanding mechanisms of natural host resistance to disease. This study assessed the levels and anatomic distribution of SIVagm in healthy, naturally infected monkeys. Quantitative competitive reverse transcriptase PCR assays developed to measure SIVagm from two African green monkey subspecies demonstrated high levels of SIV RNA in plasma (>6 × 106 RNA copies/ml) in sabaeus and vervet monkeys. Infectious virus was readily recovered from plasma and peripheral blood mononuclear cells and shown to be highly cytopathic in human cell lines and macrophages. SIVagm DNA levels were highest in the gastrointestinal tract, suggesting that the gut is a major site for SIVagm replication in vivo. Appreciable levels of virus were also found within the brain parenchyma and the cerebrospinal fluid (CSF), with lower levels detected in peripheral blood cells and lymph nodes. Virus isolates from the CSF and brain parenchyma readily infected macrophages in culture, whereas lymph node isolates were more restricted to growth in human T-cell lines. Comparison of env V2-C4 sequences showed extensive amino acid diversity between SIVagm recovered from the central nervous system and that recovered from lymphoid tissues. Homology between brain and CSF viruses, macrophage tropism, and active replication suggest compartmentalization in the central nervous system without associated neuropathology in naturally infected monkeys. These studies provide evidence that the nonpathogenic nature of SIVagm in the natural host can be attributed neither to more effective host control over viral replication nor to differences in the tissue and cell tropism from those for human immunodeficiency virus type 1-infected humans or SIV-infected macaques. PMID:11160730

  13. RNA1-Independent Replication and GFP Expression from Tomato marchitez virus Isolate M Cloned cDNA.

    PubMed

    Ferriol, I; Turina, M; Zamora-Macorra, E J; Falk, B W

    2016-05-01

    Tomato marchitez virus (ToMarV; synonymous with Tomato apex necrosis virus) is a positive-strand RNA virus in the genus Torradovirus within the family Secoviridae. ToMarV is an emergent whitefly-transmitted virus that causes important diseases in tomato (Solanum lycopersicum) in Mexico. Here, the genome sequence of the ToMarV isolate M (ToMarV-M) was determined. We engineered full-length cDNA clones of the ToMarV-M genomic RNA (RNA1 and RNA2), separately, into a binary vector. Coinfiltration of both triggered systemic infections in Nicotiana benthamiana, tomato, and tomatillo (Physalis philadelphica) plants and recapitulated the biological activity of the wild-type virus. The viral progeny generated from tomato and tomatillo plants were transmissible by the whitefly Bemisia tabaci biotype B. Also, we assessed whether these infectious clones could be used for screening tomato cultivars for resistance to ToMarV and our results allowed us to differentiate resistant and susceptible tomato lines. We demonstrated that RNA1 of ToMarV-M is required for the replication of RNA2, and it can replicate independently of RNA2. From this, ToMarV-M RNA2 was used to express the green fluorescent protein in N. benthamiana plants, which allowed us to track cell-to-cell movement. The construction of full-length infectious cDNA clones of ToMarV-M provides an excellent tool to investigate virus-host-vector interactions and elucidate the functions of torradovirus-encoded proteins or the mechanisms of replication of torradovirus genomic RNA. PMID:26756828

  14. Targeting the pseudorabies virus DNA polymerase processivity factor UL42 by RNA interference efficiently inhibits viral replication.

    PubMed

    Wang, Yi-Ping; Huang, Li-Ping; Du, Wen-Juan; Wei, Yan-Wu; Wu, Hong-Li; Feng, Li; Liu, Chang-Ming

    2016-08-01

    RNA interference (RNAi) is a conserved gene-silencing mechanism in which small interfering RNAs (siRNAs) induce the sequence-specific degradation of homologous RNAs. It has been shown to be a novel and effective antiviral therapy against a wide range of viruses. The pseudorabies virus (PRV) processivity factor UL42 can enhance the catalytic activity of the DNA polymerase and is essential for viral replication, thus it may represent a potential drug target of antiviral therapy against PRV infection. Here, we synthesized three siRNAs (siR-386, siR-517, and siR-849) directed against UL42 and determined their antiviral activities in cell culture. We first examined the kinetics of UL42 expression and found it was expressed with early kinetics during PRV replication. We verified that siR-386, siR-517, and siR-849 efficiently inhibited UL42 expression in an in vitro transfection system, thereby validating their inhibitory effects. Furthermore, we confirmed that these three siRNAs induced potent inhibitory effects on UL42 expression after PRV infection, comparable to the positive control siRNA, siR-1046, directed against the PRV DNA polymerase, the UL30 gene product, which is essential for virus replication. In addition, PRV replication was markedly reduced upon downregulation of UL42 expression. These results indicate that UL42-targeted RNAi efficiently inhibits target gene expression and impairs viral replication. This study provides a new clue for the design of an intervention strategy against herpesviruses by targeting their processivity factors. PMID:27387827

  15. Suppressor of Cytokine Signaling 3 Expression Induced by Varicella-Zoster Virus Infection Results in the Modulation of Virus Replication.

    PubMed

    Choi, E-J; Lee, C-H; Shin, O S

    2015-10-01

    Varicella-zoster virus (VZV) is an important viral pathogen that is responsible for causing varicella (chickenpox) and herpes zoster (shingles). VZV has been shown to suppress early anti-viral innate immune responses, but the exact mechanisms are not yet well understood. Here we demonstrate that host control of VZV is impaired by the expression of suppressor of cytokine signaling (SOCS)3. We used three different cell types to characterize VZV-induced anti-viral and inflammatory responses. Infection of human fibroblasts (MRC-5) and human macrophages (THP-1) with VZV triggered upregulation of anti-viral responsive gene expression (IFN-α, IFN-β) in the early phases of infection, followed by the waning of these IFNs in the late phases of infection. Conversely, VZV infection in keratinocytes (HaCaT) resulted in a persistent increase in type I IFN gene expression. Interestingly, increase in SOCS1 and 3 expressions coincided with a reduction in phosphorylation of the signal transducer and activator of transcription protein 3 (STAT3) in VZV-infected MRC-5 cells. Furthermore, VZV infection increased the production of pro-inflammatory cytokines, including interleukin (IL)-6, -8, and IFN-γ-inducible protein 10 (IP-10). Knockdown of SOCS3 inhibited viral replication and enhanced secretion levels of IL-6, whereas overexpression of SOCS3 did not affect viral replication efficiency and host response. In conclusion, our data suggest that VZV infection induces SOCS3 expression, resulting in modulation of type I IFN signaling and viral replication. PMID:26072679

  16. A Nucleotide Binding Motif in Hepatitis C Virus (HCV) NS4B Mediates HCV RNA Replication

    PubMed Central

    Einav, Shirit; Elazar, Menashe; Danieli, Tsafi; Glenn, Jeffrey S.

    2004-01-01

    Hepatitis C virus (HCV) is a major cause of viral hepatitis. There is no effective therapy for most patients. We have identified a nucleotide binding motif (NBM) in one of the virus's nonstructural proteins, NS4B. This structural motif binds and hydrolyzes GTP and is conserved across HCV isolates. Genetically disrupting the NBM impairs GTP binding and hydrolysis and dramatically inhibits HCV RNA replication. These results have exciting implications for the HCV life cycle and novel antiviral strategies. PMID:15452248

  17. T-antigen-DNA polymerase alpha complex implicated in simian virus 40 DNA replication.

    PubMed Central

    Smale, S T; Tjian, R

    1986-01-01

    We have combined in vitro DNA replication reactions and immunological techniques to analyze biochemical interactions between simian virus (SV40) large T antigen and components of the cellular replication apparatus. First, in vitro SV40 DNA replication was characterized with specific origin mutants. Next, monoclonal antibodies were used to demonstrate that a specific domain of T antigen formed a complex with cellular DNA polymerase alpha. Several antibodies were identified that coprecipitated T antigen and DNA polymerase alpha, while others were found to selectively prevent this interaction and concomitantly inhibit DNA replication. DNA polymerase alpha also bound efficiently to a T-antigen affinity column, confirming the immunoprecipitation results and providing a useful method for purification of the complete protein complex. Taken together, these results suggest that the T-antigen-polymerase association may be a key step in the initiation of SV40 DNA replication. Images PMID:3025630

  18. FKBP8 interact with classical swine fever virus NS5A protein and promote virus RNA replication.

    PubMed

    Li, Helin; Zhang, Chengcheng; Cui, Hongjie; Guo, Kangkang; Wang, Fang; Zhao, Tianyue; Liang, Wulong; Lv, Qizhuang; Zhang, Yanming

    2016-02-01

    The non-structural 5A (NS5A) protein of classical swine fever virus (CSFV) is proven to be involved in viral replication and can also modulate cellular signaling and host cellular responses via to its ability to interact with various cellular proteins. FKBP8 is also reported to promote virus replication. Here, we show that NS5A specifically interacts with FKBP8 through coimmunoprecipitation and GST-pulldown studies. Additionally, confocal microscopy study showed that NS5A and FKBP8 colocalized in the cytoplasm. Overexpression of FKBP8 via the eukaryotic expression plasmid pDsRED N1 significantly promoted viral RNA synthesis. The cells knockdown of FKBP8 by lentivirus-mediated shRNA markedly decreased the virus replication when infected with CSFV. These data suggest that FKBP8 plays a critical role in the viral life cycle, particularly during the virus RNA replication period. The investigation of FKBP8 protein functions may be beneficial for developing new strategies to treat CSFV infection. PMID:26748656

  19. Inhibition of hepatitis B virus replication by targeting ribonucleotide reductase M2 protein.

    PubMed

    Liu, Xia; Xu, Zhijian; Hou, Chuanwei; Wang, Meng; Chen, Xinhuan; Lin, Qinghui; Song, Rui; Lou, Meng; Zhu, Lijun; Qiu, Yunqing; Chen, Zhi; Yang, Chunhao; Zhu, Weiliang; Shao, Jimin

    2016-03-01

    Chronic hepatitis B virus (HBV) infection is a key factor for hepatocellular carcinoma worldwide. Ribonucleotide reductase (RR) regulates the deoxyribonucleoside triphosphates biosynthesis and serves as a target for anti-cancer therapy. Here, we demonstrate that RR is essential for HBV replication and the viral covalently-closed-circular DNA (cccDNA) synthesis in host liver cells. By performing computer-assisted virtual screening against the crystal structure of RR small subunit M2 (RRM2), osalmid, was identified as a potential RRM2-targeting compound. Osalmid was shown to be 10-fold more active in inhibiting RR activity than hydroxyurea, and significantly inhibited HBV DNA and cccDNA synthesis in HepG2.2.15 cells. In contrast, hydroxyurea and the RR large subunit (RRM1)-inhibitory drug gemcitabine showed little selective activity against HBV replication. In addition, osalmid also was shown to possess potent activity against a 3TC-resistant HBV strain, suggesting utility in treating drug-resistant HBV infections. Interestingly, osalmid showed synergistic effects with lamivudine (3TC) in vitro and in vivo without significant toxicity, and was shown to inhibit RR activity in vivo, thus verifying its in vivo function. Furthermore, 4-cyclopropyl-2-fluoro-N-(4-hydroxyphenyl) benzamide (YZ51), a novel derivative of osalmid, showed higher efficacy than osalmid with more potent RR inhibitory activity. These results suggest that RRM2 might be targeted for HBV inhibition, and the RRM2-targeting compound osalmid and its derivative YZ51 could be a novel class of anti-HBV candidates with potential use for hepatitis B and HBV-related HCC treatment. PMID:26774458

  20. Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays.

    PubMed Central

    Fixman, E D; Hayward, G S; Hayward, S D

    1995-01-01

    Using a transient replication assay in which cosmid DNAs were cotransfected into Vero cells, we had previously demonstrated that oriLyt replication required six Epstein-Barr virus (EBV)-encoded replication genes. No oriLyt origin-binding protein was identified in this study, but oriLyt replication in the cotransfection assay was also dependent on the three lytic cycle transactivators Zta, Rta, and Mta and an activity encoded by the EBV Sal/I F fragment. We have now used expression plasmids for the six known replication proteins to further examine the question of the requirement for an oriLyt origin-binding protein. The activity in Sal/I-F was shown to be encoded by BKRF3. The predicted product of this open reading frame is an enzyme, uracyl DNA glycosylase, not an origin-binding protein, and is dispensable for replication in assays using expression plasmids. BBLF2, which is positionally related to the gene for the herpes simplex virus (HSV) UL9 origin-binding protein, was confirmed to be expressed as a spliced transcript with BBLF3 and not as an independent product. Examination of the requirement for the EBV transactivators revealed that Rta, while contributing to replication efficiency, was dispensable. Mta could be substituted by HSV IE63, and in complementation experiments with HSV replication genes, Mta was no longer required for replication of EBV oriLyt, suggesting that the contribution of Mta to replication may be indirect. Zta continued to be required for detectable oriLyt replication both with the EBV replication proteins and in the complementation assays with HSV replication proteins. We conclude that EBV does not encode an equivalent of HSV UL9 and that Zta is the sole virally encoded protein serving an essential origin-binding function. PMID:7707526

  1. Correlation between Marek’s disease virus pathotype and replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV) is an alphaherpesvirus that causes Marek’s disease (MD), a lymphoproliferative disease in chickens. Pathotyping has become an increasingly important assay for monitoring shifts in virulence of field strains, however, it is time-consuming and expensive and alternatives are...

  2. Polyamine biosynthesis and the replication of turnip yellow mosaic virus

    SciTech Connect

    Balint, R.F.

    1984-01-01

    Turnip yellow mosaic virus (TYMV) contains large amounts of nonexchangeable spermidine and induces an accumulation of spermidine in infected Chinese cabbage. By seven days after inoculation, a majority of protoplasts isolated from newly-emerging leaves stain with fluorescent antibody to the virus. These protoplasts contain 1-2 x 10/sup 6/ virions per cell and continue to produce virus in culture for at least 48 hours. (/sup 14/C)-Spermidine (10 ..mu..M) was taken up by these cells in amounts comparable to the original endogenous pool within 24 hours. However, the spermidine content of the cell was only marginally affected, implying considerable regulation of the endogenous pool(s). Putrescine and spermine were major products of the metabolism of exogenous spermidine. Radioactivity from exogenous (/sup 14/C)-spermidine was also readily incorporated into the nucleic acid-containing component of the virus, where it appeared as both spermidine and spermine. Thus, newly-formed virions contained predominantly newly-synthesized spermidine and spermine. However, inhibition of spermidine synthesis by dicyclohexylamine (DCHA) led to incorporation of pre-existing spermidine and increased amounts of spermine into newly-formed virions. The latter results were tested and confirmed in a second cellular system, consisting of health protoplasts infected with TYMC in vitro.

  3. Activation of a human chromosomal replication origin by protein tethering

    PubMed Central

    Chen, Xiaomi; Liu, Guoqi; Leffak, Michael

    2013-01-01

    The specification of mammalian chromosomal replication origins is incompletely understood. To analyze the assembly and activation of prereplicative complexes (pre-RCs), we tested the effects of tethered binding of chromatin acetyltransferases and replication proteins on chromosomal c-myc origin deletion mutants containing a GAL4-binding cassette. GAL4DBD (DNA binding domain) fusions with Orc2, Cdt1, E2F1 or HBO1 coordinated the recruitment of the Mcm7 helicase subunit, the DNA unwinding element (DUE)-binding protein DUE-B and the minichromosome maintenance (MCM) helicase activator Cdc45 to the replicator, and restored origin activity. In contrast, replication protein binding and origin activity were not stimulated by fusion protein binding in the absence of flanking c-myc DNA. Substitution of the GAL4-binding site for the c-myc replicator DUE allowed Orc2 and Mcm7 binding, but eliminated origin activity, indicating that the DUE is essential for pre-RC activation. Additionally, tethering of DUE-B was not sufficient to recruit Cdc45 or activate pre-RCs formed in the absence of a DUE. These results show directly in a chromosomal background that chromatin acetylation, Orc2 or Cdt1 suffice to recruit all downstream replication initiation activities to a prospective origin, and that chromosomal origin activity requires singular DNA sequences. PMID:23658226

  4. Roles of Serine and Threonine Residues of Mumps Virus P Protein in Viral Transcription and Replication

    PubMed Central

    Pickar, Adrian; Xu, Pei; Elson, Andrew; Li, Zhuo; Zengel, James

    2014-01-01

    ABSTRACT Mumps virus (MuV), a paramyxovirus containing a negative-sense nonsegmented RNA genome, is a human pathogen that causes an acute infection with symptoms ranging from parotitis to mild meningitis and severe encephalitis. Vaccination against mumps virus has been effective in reducing mumps cases. However, recently large outbreaks have occurred in vaccinated populations. There is no anti-MuV drug. Understanding replication of MuV may lead to novel antiviral strategies. MuV RNA-dependent RNA polymerase minimally consists of the phosphoprotein (P) and the large protein (L). The P protein is heavily phosphorylated. To investigate the roles of serine (S) and threonine (T) residues of P in viral RNA transcription and replication, P was subjected to mass spectrometry and mutational analysis. P, a 392-amino acid residue protein, has 64 S and T residues. We have found that mutating nine S/T residues significantly reduced and mutating residue T at 101 to A (T101A) significantly enhanced activity in a minigenome system. A recombinant virus containing the P-T101A mutation (rMuV-P-T101A) was recovered and analyzed. rMuV-P-T101A grew to higher titers and had increased protein expression at early time points. Together, these results suggest that phosphorylation of MuV-P-T101 plays a negative role in viral RNA synthesis. This is the first time that the P protein of a paramyxovirus has been systematically analyzed for S/T residues that are critical for viral RNA synthesis. IMPORTANCE Mumps virus (MuV) is a reemerging paramyxovirus that caused large outbreaks in the United States, where vaccination coverage is very high. There is no anti-MuV drug. In this work, we have systematically analyzed roles of Ser/Thr residues of MuV P in viral RNA synthesis. We have identified S/T residues of P critical for MuV RNA synthesis and phosphorylation sites that are important for viral RNA synthesis. This work leads to a better understanding of viral RNA synthesis as well as to potential

  5. Determinants of the Bovine Leukemia Virus Envelope Glycoproteins Involved in Infectivity, Replication and Pathogenesis

    PubMed Central

    de Brogniez, Alix; Mast, Jan; Willems, Luc

    2016-01-01

    Interaction of viral envelope proteins with host cell membranes has been extensively investigated in a number of systems. However, the biological relevance of these interactions in vivo has been hampered by the absence of adequate animal models. Reverse genetics using the bovine leukemia virus (BLV) genome highlighted important functional domains of the envelope protein involved in the viral life cycle. For example, immunoreceptor tyrosine-based activation motifs (ITAM) of the envelope transmembrane protein (TM) are essential determinants of infection. Although cell fusion directed by the aminoterminal end of TM is postulated to be essential, some proviruses expressing fusion-deficient envelope proteins unexpectedly replicate at wild-type levels. Surprisingly also, a conserved N-linked glycosylation site of the extracellular envelope protein (SU) inhibits cell-to-cell transmission suggesting that infectious potential has been limited during evolution. In this review, we summarize the knowledge pertaining to the BLV envelope protein in the context of viral infection, replication and pathogenesis. PMID:27023592

  6. Inhibition of Hepatitis E Virus Replication by Peptide-Conjugated Morpholino Oligomers

    PubMed Central

    Nan, Yuchen; Ma, Zexu; Kannan, Harilakshmi; Stein, David A.; Iversen, Patrick I.; Meng, Xiang-Jin; Zhang, Yan-Jin

    2015-01-01

    Hepatitis E virus (HEV) infection is a cause of hepatitis in humans worldwide and has been associated with a mortality rate of up to 30% in pregnant women. Recently, persistent and chronic HEV infections have been recognized as a serious clinical problem, especially in immunocompromised individuals. To date, there are no FDA-approved HEV-specific antiviral drugs. In this study, we evaluated antisense peptide-conjugated morpholino oligomers (PPMO) designed against HEV genomic sequences as potential HEV-specific antiviral compounds. Two genetically-distinct strains of human HEV, genotype 1 Sar55 and genotype 3 Kernow-C1, isolated from patients with acute and chronic hepatitis, respectively, were used to evaluate inhibition of viral replication by PPMO in liver cells. The anti-HEV PPMO produced a significant reduction in the levels of HEV RNA and capsid protein, indicating effective inhibition of HEV replication. PPMO HP1, which targets a highly conserved sequence in the start site region of ORF1, was also effective against the genotype 3 Kernow-C1 strain in stably-infected HepG2/C3A liver cells. The antiviral activity observed was specific, dose-responsive and potent, suggesting that further exploration of PPMO HP1 as a potential HEV-specific antiviral agent is warranted. PMID:26086884

  7. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development

    PubMed Central

    Marques, Rafael E; Guabiraba, Rodrigo; Del Sarto, Juliana L; Rocha, Rebeca F; Queiroz, Ana Luiza; Cisalpino, Daniel; Marques, Pedro E; Pacca, Carolina C; Fagundes, Caio T; Menezes, Gustavo B; Nogueira, Maurício L; Souza, Danielle G; Teixeira, Mauro M

    2015-01-01

    Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5−/− mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5. PMID:25939314

  8. Determinants of the Bovine Leukemia Virus Envelope Glycoproteins Involved in Infectivity, Replication and Pathogenesis.

    PubMed

    de Brogniez, Alix; Mast, Jan; Willems, Luc

    2016-01-01

    Interaction of viral envelope proteins with host cell membranes has been extensively investigated in a number of systems. However, the biological relevance of these interactions in vivo has been hampered by the absence of adequate animal models. Reverse genetics using the bovine leukemia virus (BLV) genome highlighted important functional domains of the envelope protein involved in the viral life cycle. For example, immunoreceptor tyrosine-based activation motifs (ITAM) of the envelope transmembrane protein (TM) are essential determinants of infection. Although cell fusion directed by the aminoterminal end of TM is postulated to be essential, some proviruses expressing fusion-deficient envelope proteins unexpectedly replicate at wild-type levels. Surprisingly also, a conserved N-linked glycosylation site of the extracellular envelope protein (SU) inhibits cell-to-cell transmission suggesting that infectious potential has been limited during evolution. In this review, we summarize the knowledge pertaining to the BLV envelope protein in the context of viral infection, replication and pathogenesis. PMID:27023592

  9. Human Parainfluenza Virus Type 2 Vector Induces Dendritic Cell Maturation Without Viral RNA Replication/Transcription

    PubMed Central

    Hara, Kenichiro; Fukumura, Masayuki; Ohtsuka, Junpei; Kawano, Mitsuo

    2013-01-01

    Abstract The dendritic cell (DC), a most potent antigen-presenting cell, plays a key role in vaccine therapy against infectious diseases and malignant tumors. Although advantages of viral vectors for vaccine therapy have been reported, potential risks for adverse effects prevent them from being licensed for clinical use. Human parainfluenza virus type 2 (hPIV2), one of the members of the Paramyxoviridae family, is a nonsegmented and negative-stranded RNA virus. We have developed a reverse genetics system for the production of infectious hPIV2 lacking the F gene (hPIV2ΔF), wherein various advantages for vaccine therapy exist, such as cytoplasmic replication/transcription, nontransmissible infectivity, and extremely high transduction efficacy in various types of target cells. Here we demonstrate that hPIV2ΔF shows high transduction efficiency in human DCs, while not so high in mouse DCs. In addition, hPIV2ΔF sufficiently induces maturation of both human and murine DCs, and the maturation state of both human and murine DCs is almost equivalent to that induced by lipopolysaccharide. Moreover, alkylating agent β-propiolactone-inactivated hPIV2ΔF (BPL-hPIV2ΔF) elicits DC maturation without viral replication/transcription. These results suggest that hPIV2ΔF may be a useful tool for vaccine therapy as a novel type of paramyxoviral vector, which is single-round infectious vector and has potential adjuvant activity. PMID:23790317

  10. Functionality of host proteins in Cucumber mosaic virus replication: GAPDH is obligatory to promote interaction between replication-associated proteins.

    PubMed

    Chaturvedi, Sonali; Seo, Jang-Kyun; Rao, A L N

    2016-07-01

    Here, we evaluated the role of two host proteins, a Bromo domain containing RNA binding protein (BRP1) and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), in the replication of Cucumber mosaic virus (CMV). LC-MS/MS analysis of host/viral proteins pull down against BRP1 from CMV-infected plants co-infiltrated with BRP1-FLAG agroconstruct identified that BRP1 specifically interacts with a ten amino acid motif (843-SPQDVVPLVR-852) encompassing the helicase domain of replicase protein p1a. The interaction between BRP1 and p1a was subsequently confirmed using a BiFC assay. Among fourteen other host proteins identified to interact with BRP1 during CMV infection, six were found to block accumulation of viral progeny in Arabidopsis thaliana lines defective in each of these host proteins. Additional BiFC assays followed by trans-complementation assays identified that plant lines defective in the expression of GAPDH blocked CMV replication by interfering with p1a:p2a interaction. Distinct roles of BRP1 and GAPDH in the replication of CMV are discussed. PMID:27077230

  11. A Scorpion Defensin BmKDfsin4 Inhibits Hepatitis B Virus Replication in Vitro.

    PubMed

    Zeng, Zhengyang; Zhang, Qian; Hong, Wei; Xie, Yingqiu; Liu, Yun; Li, Wenxin; Wu, Yingliang; Cao, Zhijian

    2016-01-01

    Hepatitis B virus (HBV) infection is a major worldwide health problem which can cause acute and chronic hepatitis and can significantly increase the risk of liver cirrhosis and primary hepatocellular carcinoma (HCC). Nowadays, clinical therapies of HBV infection still mainly rely on nucleotide analogs and interferons, the usage of which is limited by drug-resistant mutation or side effects. Defensins had been reported to effectively inhibit the proliferation of bacteria, fungi, parasites and viruses. Here, we screened the anti-HBV activity of 25 scorpion-derived peptides most recently characterized by our group. Through evaluating anti-HBV activity and cytotoxicity, we found that BmKDfsin4, a scorpion defensin with antibacterial and Kv1.3-blocking activities, has a comparable high inhibitory rate of both HBeAg and HBsAg in HepG2.2.15 culture medium and low cytotoxicity to HepG2.2.15. Then, our experimental results further showed that BmKDfsin4 can dose-dependently decrease the production of HBV DNA and HBV viral proteins in both culture medium and cell lysate. Interestingly, BmKDfsin4 exerted high serum stability. Together, this study indicates that the scorpion defensin BmKDfsin4 also has inhibitory activity against HBV replication along with its antibacterial and potassium ion channel Kv1.3-blocking activities, which shows that BmKDfsin4 is a uniquely multifunctional defensin molecule. Our work also provides a good molecule material which will be used to investigate the link or relationship of its antiviral, antibacterial and ion channel-modulating activities in the future. PMID:27128943

  12. A Scorpion Defensin BmKDfsin4 Inhibits Hepatitis B Virus Replication in Vitro

    PubMed Central

    Zeng, Zhengyang; Zhang, Qian; Hong, Wei; Xie, Yingqiu; Liu, Yun; Li, Wenxin; Wu, Yingliang; Cao, Zhijian

    2016-01-01

    Hepatitis B virus (HBV) infection is a major worldwide health problem which can cause acute and chronic hepatitis and can significantly increase the risk of liver cirrhosis and primary hepatocellular carcinoma (HCC). Nowadays, clinical therapies of HBV infection still mainly rely on nucleotide analogs and interferons, the usage of which is limited by drug-resistant mutation or side effects. Defensins had been reported to effectively inhibit the proliferation of bacteria, fungi, parasites and viruses. Here, we screened the anti-HBV activity of 25 scorpion-derived peptides most recently characterized by our group. Through evaluating anti-HBV activity and cytotoxicity, we found that BmKDfsin4, a scorpion defensin with antibacterial and Kv1.3-blocking activities, has a comparable high inhibitory rate of both HBeAg and HBsAg in HepG2.2.15 culture medium and low cytotoxicity to HepG2.2.15. Then, our experimental results further showed that BmKDfsin4 can dose-dependently decrease the production of HBV DNA and HBV viral proteins in both culture medium and cell lysate. Interestingly, BmKDfsin4 exerted high serum stability. Together, this study indicates that the scorpion defensin BmKDfsin4 also has inhibitory activity against HBV replication along with its antibacterial and potassium ion channel Kv1.3-blocking activities, which shows that BmKDfsin4 is a uniquely multifunctional defensin molecule. Our work also provides a good molecule material which will be used to investigate the link or relationship of its antiviral, antibacterial and ion channel–modulating activities in the future. PMID:27128943

  13. A Novel DNA Motif Contributes to Selective Replication of a Geminivirus-Associated Betasatellite by a Helper Virus-Encoded Replication-Related Protein

    PubMed Central

    Zhang, Tong; Xu, Xiongbiao; Huang, Changjun; Qian, Yajuan; Li, Zhenghe

    2015-01-01

    ABSTRACT Rolling-circle replication of single-stranded genomes of plant geminiviruses is initiated by sequence-specific DNA binding of the viral replication-related protein (Rep) to its cognate genome at the replication origin. Monopartite begomovirus-associated betasatellites can be trans replicated by both cognate and some noncognate helper viruses, but the molecular basis of replication promiscuity of betasatellites remains uncharacterized. Earlier studies showed that when tomato yellow leaf curl China virus (TYLCCNV) or tobacco curly shoot virus (TbCSV) is coinoculated with both cognate and noncognate betasatellites, the cognate betasatellite dominates over the noncognate one at the late stages of infection. In this study, we constructed reciprocal chimeric betasatellites between tomato yellow leaf curl China betasatellite and tobacco curly shoot betasatellite and assayed their competitiveness against wild-type betasatellite when coinoculated with TYLCCNV or TbCSV onto plants. We mapped a region immediately upstream of the conserved rolling-circle cruciform structure of betasatellite origin that confers the cognate Rep-mediated replication advantage over the noncognate satellite. DNase I protection and in vitro binding assays further identified a novel sequence element termed Rep-binding motif (RBM), which specifically binds to the cognate Rep protein and to the noncognate Rep, albeit at lower affinity. Furthermore, we showed that RBM-Rep binding affinity is correlated with betasatellite replication efficiency in protoplasts. Our data suggest that although strict specificity of Rep-mediated replication does not exist, betasatellites have adapted to their cognate Reps for efficient replication during coevolution. IMPORTANCE Begomoviruses are numerous circular DNA viruses that cause devastating diseases of crops worldwide. Monopartite begomoviruses are frequently associated with betasatellites which are essential for induction of typical disease symptoms

  14. Pandemic Influenza A (H1N1) Virus Infection Increases Apoptosis and HIV-1 Replication in HIV-1 Infected Jurkat Cells

    PubMed Central

    Wang, Xue; Tan, Jiying; Biswas, Santanu; Zhao, Jiangqin; Devadas, Krishnakumar; Ye, Zhiping; Hewlett, Indira

    2016-01-01

    Influenza virus infection has a significant impact on public health, since it is a major cause of morbidity and mortality. It is not well-known whether influenza virus infection affects cell death and human immunodeficiency virus (HIV)-1 replication in HIV-1-infected patients. Using a lymphoma cell line, Jurkat, we examined the in vitro effects of pandemic influenza A (H1N1) virus (pH1N1) infection on cell death and HIV-1 RNA production in infected cells. We found that pH1N1 infection increased apoptotic cell death through Fas and Bax-mediated pathways in HIV-1-infected Jurkat cells. Infection with pH1N1 virus could promote HIV-1 RNA production by activating host transcription factors including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), nuclear factor of activated T-cells (NFAT) and activator protein 1 (AP-1) through mitogen-activated protein kinases (MAPK) pathways and T-cell antigen receptor (TCR)-related pathways. The replication of HIV-1 latent infection could be reactivated by pH1N1 infection through TCR and apoptotic pathways. These data indicate that HIV-1 replication can be activated by pH1N1 virus in HIV-1-infected cells resulting in induction of cell death through apoptotic pathways. PMID:26848681

  15. Dengue Virus Reporter Replicon is a Valuable Tool for Antiviral Drug Discovery and Analysis of Virus Replication Mechanisms.

    PubMed

    Kato, Fumihiro; Hishiki, Takayuki

    2016-01-01

    Dengue, the most prevalent arthropod-borne viral disease, is caused by the dengue virus (DENV), a member of the Flaviviridae family, and is a considerable public health threat in over 100 countries, with 2.5 billion people living in high-risk areas. However, no specific antiviral drug or licensed vaccine currently targets DENV infection. The replicon system has all the factors needed for viral replication in cells. Since the development of replicon systems, transient and stable reporter replicons, as well as reporter viruses, have been used in the study of various virological aspects of DENV and in the identification of DENV inhibitors. In this review, we summarize the DENV reporter replicon system and its applications in high-throughput screening (HTS) for identification of anti-DENV inhibitors. We also describe the use of this system in elucidation of the mechanisms of virus replication and viral dynamics in vivo and in vitro. PMID:27164125

  16. Dengue Virus Reporter Replicon is a Valuable Tool for Antiviral Drug Discovery and Analysis of Virus Replication Mechanisms

    PubMed Central

    Kato, Fumihiro; Hishiki, Takayuki

    2016-01-01

    Dengue, the most prevalent arthropod-borne viral disease, is caused by the dengue virus (DENV), a member of the Flaviviridae family, and is a considerable public health threat in over 100 countries, with 2.5 billion people living in high-risk areas. However, no specific antiviral drug or licensed vaccine currently targets DENV infection. The replicon system has all the factors needed for viral replication in cells. Since the development of replicon systems, transient and stable reporter replicons, as well as reporter viruses, have been used in the study of various virological aspects of DENV and in the identification of DENV inhibitors. In this review, we summarize the DENV reporter replicon system and its applications in high-throughput screening (HTS) for identification of anti-DENV inhibitors. We also describe the use of this system in elucidation of the mechanisms of virus replication and viral dynamics in vivo and in vitro. PMID:27164125

  17. In Vitro Characterization of A-315675, a Highly Potent Inhibitor of A and B Strain Influenza Virus Neuraminidases and Influenza Virus Replication

    PubMed Central

    Kati, Warren M.; Montgomery, Debra; Carrick, Robert; Gubareva, Larisa; Maring, Clarence; McDaniel, Keith; Steffy, Kevin; Molla, Akhteruzzaman; Hayden, Frederick; Kempf, Dale; Kohlbrenner, William

    2002-01-01

    A-315675 is a novel, pyrrolidine-based compound that was evaluated in this study for its ability to inhibit A and B strain influenza virus neuraminidases in enzyme assays and influenza virus replication in cell culture. A-315675 effectively inhibited influenza A N1, N2, and N9 and B strain neuraminidases with inhibitor constant (Ki) values between 0.024 and 0.31 nM. These values were comparable to or lower than the Ki values measured for oseltamivir carboxylate (GS4071), zanamivir, and BCX-1812, except for the N1 enzymes that were found to be the most sensitive to BCX-1812. The time-dependent inhibition of neuraminidase catalytic activity observed with A-315675 is likely due to its very low rate of dissociation from the active site of neuraminidase. The half times for dissociation of A-315675 from B/Memphis/3/89 and A/Tokyo/3/67 (H3N2) influenza virus neuraminidases of 10 to 12 h are significantly slower than the half times measured for oseltamivir carboxylate (33 to 60 min). A-315675 inhibited the replication of several laboratory strains of influenza virus in cell culture with potencies that were comparable or superior to those for oseltamivir carboxylate and BCX-1812, except for the A/H1N1 viruses that were found to be two- to fourfold more susceptible to BCX-1812. A-315675 and oseltamivir carboxylate exhibited comparable potencies against a panel of A/H1N1 and A/H3N2 influenza virus clinical isolates, but A-315675 was found to be significantly more potent than oseltamivir carboxylate against the B strain isolates. The favorable in vitro results relative to other clinically effective agents provide strong support for the further investigation of A-315675 as a potential therapy for influenza virus infections. PMID:11897583

  18. Programmed Ribosomal Frameshift Alters Expression of West Nile Virus Genes and Facilitates Virus Replication in Birds and Mosquitoes

    PubMed Central

    Du, Fangyao; Owens, Nick; Bosco-Lauth, Angela M.; Nagasaki, Tomoko; Rudd, Stephen; Brault, Aaron C.; Bowen, Richard A.; Hall, Roy A.; van den Hurk, Andrew F.; Khromykh, Alexander A.

    2014-01-01

    West Nile virus (WNV) is a human pathogen of significant medical importance with close to 40,000 cases of encephalitis and more than 1,600 deaths reported in the US alone since its first emergence in New York in 1999. Previous studies identified a motif in the beginning of non-structural gene NS2A of encephalitic flaviviruses including WNV which induces programmed −1 ribosomal frameshift (PRF) resulting in production of an additional NS protein NS1′. We have previously demonstrated that mutant WNV with abolished PRF was attenuated in mice. Here we have extended our previous observations by showing that PRF does not appear to have a significant role in virus replication, virion formation, and viral spread in several cell lines in vitro. However, we have also shown that PRF induces an over production of structural proteins over non-structural proteins in virus-infected cells and that mutation abolishing PRF is present in ∼11% of the wild type virus population. In vivo experiments in house sparrows using wild type and PRF mutant of New York 99 strain of WNV viruses showed some attenuation for the PRF mutant virus. Moreover, PRF mutant of Kunjin strain of WNV showed significant decrease compared to wild type virus infection in dissemination of the virus from the midgut through the haemocoel, and ultimately the capacity of infected mosquitoes to transmit virus. Thus our results demonstrate an important role for PRF in regulating expression of viral genes and consequently virus replication in avian and mosquito hosts. PMID:25375107

  19. Expression of Raf kinase inhibitor protein is downregulated in response to Newcastle disease virus infection to promote viral replication.

    PubMed

    Yin, Renfu; Liu, Xinxin; Bi, Yuhai; Xie, Guangyao; Zhang, Pingze; Meng, Xin; Ai, Lili; Xu, Rongyi; Sun, Yuzhang; Stoeger, Tobias; Ding, Zhuang

    2015-09-01

    Newcastle disease virus (NDV) causes a severe and economically significant disease affecting almost the entire poultry industry worldwide. However, factors that affect NDV replication in host cells are poorly understood. Raf kinase inhibitory protein (RKIP) is a physiological inhibitor of c-RAF kinase and NF-κB signalling, known for their functions in the control of immune response as well as tumour invasion and metastasis. In the present study, we investigated the consequences of overexpression of host RKIP during viral infection. We demonstrate that NDV infection represses RKIP expression thereby promoting virus replication. Experimental upregulation of RKIP in turn acts as a potential antiviral defence mechanism in host cells that restricts NDV replication by repressing the activation of Raf/MEK/ERK and IκBα/NF-κB signalling pathways. Our results not only extend the concept of linking NDV-host interactions, but also reveal RKIP as a new class of protein-kinase-inhibitor protein that affects NDV replication with therapeutic potential. PMID:26297355

  20. Cellular miR-130b inhibits replication of porcine reproductive and respiratory syndrome virus in vitro and in vivo.

    PubMed

    Li, Liwei; Gao, Fei; Jiang, Yifeng; Yu, Lingxue; Zhou, Yanjun; Zheng, Hao; Tong, Wu; Yang, Shen; Xia, Tianqi; Qu, Zehui; Tong, Guangzhi

    2015-01-01

    MicroRNAs (miRNAs) can impact viral infections by binding to sequences with partial complementarity on viral RNA transcripts, usually resulting in the repression of virus replication. In the present study, we identified a potential binding site for miR-130 in the 5' untranslated region (bps 155-162) of the porcine reproductive and respiratory syndrome virus (PRRSV) genome. We found that the delivery of multiple miR-130 family mimics, especially miR-130b, resulted in inhibition of PRRSV replication in vitro. miR-130 was effective in inhibiting the replication of multiple type 2 PRRSV strains, but not against vSHE, a classical type 1 strain. miR-130 over-expression did not induce IFN-α or TNF-α expression in either uninfected or PRRSV-infected porcine alveolar macrophages. Results from luciferase reporter assays indicated that miR-130 directly targeted the PRRSV 5' UTR. Intranasal inoculation of piglets with miR-130b exhibited antiviral activity in vivo and partially protected piglets from an otherwise lethal challenge with HP-PRRSV strain vJX143. Overall, these results demonstrate the importance of the miR-130 family in modulating PRRSV replication and also provide a scientific basis for using cellular miRNAs in anti-PRRSV therapies. PMID:26581169

  1. Cellular miR-130b inhibits replication of porcine reproductive and respiratory syndrome virus in vitro and in vivo

    PubMed Central

    Li, Liwei; Gao, Fei; Jiang, Yifeng; Yu, Lingxue; Zhou, Yanjun; Zheng, Hao; Tong, Wu; Yang, Shen; Xia, Tianqi; Qu, Zehui; Tong, Guangzhi

    2015-01-01

    MicroRNAs (miRNAs) can impact viral infections by binding to sequences with partial complementarity on viral RNA transcripts, usually resulting in the repression of virus replication. In the present study, we identified a potential binding site for miR-130 in the 5′ untranslated region (bps 155-162) of the porcine reproductive and respiratory syndrome virus (PRRSV) genome. We found that the delivery of multiple miR-130 family mimics, especially miR-130b, resulted in inhibition of PRRSV replication in vitro. miR-130 was effective in inhibiting the replication of multiple type 2 PRRSV strains, but not against vSHE, a classical type 1 strain. miR-130 over-expression did not induce IFN-α or TNF-α expression in either uninfected or PRRSV-infected porcine alveolar macrophages. Results from luciferase reporter assays indicated that miR-130 directly targeted the PRRSV 5′ UTR. Intranasal inoculation of piglets with miR-130b exhibited antiviral activity in vivo and partially protected piglets from an otherwise lethal challenge with HP-PRRSV strain vJX143. Overall, these results demonstrate the importance of the miR-130 family in modulating PRRSV replication and also provide a scientific basis for using cellular miRNAs in anti-PRRSV therapies. PMID:26581169

  2. Respiratory Syncytial Virus and Cellular Stress Responses: Impact on Replication and Physiopathology

    PubMed Central

    Cervantes-Ortiz, Sandra L.; Zamorano Cuervo, Natalia; Grandvaux, Nathalie

    2016-01-01

    Human respiratory syncytial virus (RSV), a member of the Paramyxoviridae family, is a major cause of severe acute lower respiratory tract infection in infants, elderly and immunocompromised adults. Despite decades of research, a complete integrated picture of RSV-host interaction is still missing. Several cellular responses to stress are involved in the host-response to many virus infections. The endoplasmic reticulum stress induced by altered endoplasmic reticulum (ER) function leads to activation of the unfolded-protein response (UPR) to restore homeostasis. Formation of cytoplasmic stress granules containing translationally stalled mRNAs is a means to control protein translation. Production of reactive oxygen species is balanced by an antioxidant response to prevent oxidative stress and the resulting damages. In recent years, ongoing research has started to unveil specific regulatory interactions of RSV with these host cellular stress responses. Here, we discuss the latest findings regarding the mechanisms evolved by RSV to induce, subvert or manipulate the ER stress, the stress granule and oxidative stress responses. We summarize the evidence linking these stress responses with the regulation of RSV replication and the associated pathogenesis. PMID:27187445

  3. Favipiravir elicits antiviral mutagenesis during virus replication in vivo

    PubMed Central

    Arias, Armando; Thorne, Lucy; Goodfellow, Ian

    2014-01-01

    Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses. DOI: http://dx.doi.org/10.7554/eLife.03679.001 PMID:25333492

  4. Dendritic Cells in Dengue Virus Infection: Targets of Virus Replication and Mediators of Immunity

    PubMed Central

    Schmid, Michael A.; Diamond, Michael S.; Harris, Eva

    2014-01-01

    Dendritic cells (DCs) are sentinels of the immune system and detect pathogens at sites of entry, such as the skin. In addition to the ability of DCs to control infections directly via their innate immune functions, DCs help to prime adaptive B- and T-cell responses by processing and presenting antigen in lymphoid tissues. Infected Aedes aegypti or Aedes albopictus mosquitoes transmit the four dengue virus (DENV) serotypes to humans while probing for small blood vessels in the skin. DENV causes the most prevalent arthropod-borne viral disease in humans, yet no vaccine or specific therapeutic is currently licensed. Although primary DENV infection confers life-long protective immunity against re-infection with the same DENV serotype, secondary infection with a different DENV serotype can lead to increased disease severity via cross-reactive T-cells or enhancing antibodies. This review summarizes recent findings in humans and animal models about DENV infection of DCs, monocytes, and macrophages. We discuss the dual role of DCs as both targets of DENV replication and mediators of innate and adaptive immunity, and summarize immune evasion strategies whereby DENV impairs the function of infected DCs. We suggest that DCs play a key role in priming DENV-specific neutralizing or potentially harmful memory B- and T-cell responses, and that future DC-directed therapies may help induce protective memory responses and reduce dengue pathogenesis. PMID:25566258

  5. Role of human GRP75 in miRNA mediated regulation of dengue virus replication.

    PubMed

    Kakumani, Pavan Kumar; Medigeshi, Guruprasad R; Kaur, Inderjeet; Malhotra, Pawan; Mukherjee, Sunil K; Bhatnagar, Raj K

    2016-07-15

    In recent times, RNAi has emerged as an important defence system that regulates replication of pathogens in host cells. Many RNAi related host factors especially the host miRNAs play important roles in all intrinsic cellular functions, including viral infection. We have been working on identification of mammalian host factors involved in Dengue virus infection. In the present study, we identified Glucose Regulated Protein 75kDa (GRP75), as a host factor that is associated with dicer complex, in particular with HADHA (trifunctional enzyme subunit alpha, mitochondrial), an auxiliary component of dicer complex. Knockdown of GRP75 by respective siRNAs in Huh-7 cells resulted in the accumulation of dengue viral genomic RNA suggesting a role of GRP75 in regulating dengue virus replication in human cell lines. To elucidate the mode of action of GRP75, we over expressed the protein in Huh-7 cells and analysed the host miRNAs processing. The results revealed that, GRP75 is involved in processing of host miRNA, hsa-mir-126, that down regulates dengue virus replication. These findings suggest a regulatory role of human miRNA pathway especially GRP75 protein and hsa-mir-126 in dengue virus replication. These results thus provide insights into the role of miRNAs and RNAi machinery in dengue life cycle. PMID:27039024

  6. Applications of Replicating-Competent Reporter-Expressing Viruses in Diagnostic and Molecular Virology

    PubMed Central

    Li, Yongfeng; Li, Lian-Feng; Yu, Shaoxiong; Wang, Xiao; Zhang, Lingkai; Yu, Jiahui; Xie, Libao; Li, Weike; Ali, Razim; Qiu, Hua-Ji

    2016-01-01

    Commonly used tests based on wild-type viruses, such as immunostaining, cannot meet the demands for rapid detection of viral replication, high-throughput screening for antivirals, as well as for tracking viral proteins or virus transport in real time. Notably, the development of replicating-competent reporter-expressing viruses (RCREVs) has provided an excellent option to detect directly viral replication without the use of secondary labeling, which represents a significant advance in virology. This article reviews the applications of RCREVs in diagnostic and molecular virology, including rapid neutralization tests, high-throughput screening systems, identification of viral receptors and virus-host interactions, dynamics of viral infections in vitro and in vivo, vaccination approaches and others. However, there remain various challenges associated with RCREVs, including pathogenicity alterations due to the insertion of a reporter gene, instability or loss of the reporter gene expression, or attenuation of reporter signals in vivo. Despite all these limitations, RCREVs have become powerful tools for both basic and applied virology with the development of new technologies for generating RCREVs, the inventions of novel reporters and the better understanding of regulation of viral replication. PMID:27164126

  7. Applications of Replicating-Competent Reporter-Expressing Viruses in Diagnostic and Molecular Virology.

    PubMed

    Li, Yongfeng; Li, Lian-Feng; Yu, Shaoxiong; Wang, Xiao; Zhang, Lingkai; Yu, Jiahui; Xie, Libao; Li, Weike; Ali, Razim; Qiu, Hua-Ji

    2016-01-01

    Commonly used tests based on wild-type viruses, such as immunostaining, cannot meet the demands for rapid detection of viral replication, high-throughput screening for antivirals, as well as for tracking viral proteins or virus transport in real time. Notably, the development of replicating-competent reporter-expressing viruses (RCREVs) has provided an excellent option to detect directly viral replication without the use of secondary labeling, which represents a significant advance in virology. This article reviews the applications of RCREVs in diagnostic and molecular virology, including rapid neutralization tests, high-throughput screening systems, identification of viral receptors and virus-host interactions, dynamics of viral infections in vitro and in vivo, vaccination approaches and others. However, there remain various challenges associated with RCREVs, including pathogenicity alterations due to the insertion of a reporter gene, instability or loss of the reporter gene expression, or attenuation of reporter signals in vivo. Despite all these limitations, RCREVs have become powerful tools for both basic and applied virology with the development of new technologies for generating RCREVs, the inventions of novel reporters and the better understanding of regulation of viral replication. PMID:27164126

  8. PHENOTYPE-BASED IDENTIFICATION OF HOST GENES REQUIRED FOR REPLICATION OF AFRICAN SWINE FEVER VIRUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    African Swine Fever Virus (ASFV) produces a fatal acute hemorrhagic fever in domesticated pigs that potentially is a worldwide economic threat. Using an expressed sequence tag (EST)-library-based antisense method of random gene inactivation and a phenotypic screen for limitation of ASFV replication ...

  9. Changes in H3 influenza A virus receptor specificity during replication in humans.

    PubMed

    Ryan-Poirier, K; Suzuki, Y; Bean, W J; Kobasa, D; Takada, A; Ito, T; Kawaoka, Y

    1998-08-01

    Influenza A viruses of the H3 subtype caused the 1968 Hong Kong pandemic, the hemagglutinin (HA) gene being introduced into humans following a reassortment event with an avian virus. Receptor specificity and serum inhibitor sensitivity of the HA of influenza A viruses are linked to the host species. Human H3 viruses preferentially recognize N-acetyl sialic acid linked to galactose by alpha2,6 linkages (Neu5Acalpha2,6Gal) and are sensitive to serum inhibitors, whereas avian and equine viruses preferentially recognize Neu5Acalpha2,3Gal linkages and are resistant to serum inhibitors. We have examined the receptor specificity and serum inhibitor sensitivity of H3 human influenza A viruses from the time they were introduced into the human population to gain insight into the mechanism of viral molecular evolution and host tropism. All of the viruses were sensitive to neutralization and hemagglutination inhibition by horse serum. Early H3 viruses were resistant to pig and rabbit serum inhibitors. Viruses isolated after 1977 were uniformly sensitive to inhibition by pig and rabbit sera. The recognition of Neu5Acalpha2,3Gal or Neu5Acalpha2,6Gal linkages was not correlated with the serum sensitivity. These data showed that the receptor specificity of HA, measured as inhibitor sensitivity, has changed during replication in humans since its introduction from an avian virus. PMID:9783465

  10. Isothiafludine, a novel non-nucleoside compound, inhibits hepatitis B virus replication through blocking pregenomic RNA encapsidation

    PubMed Central

    Yang, Li; Shi, Li-ping; Chen, Hai-jun; Tong, Xian-Kun; Wang, Gui-feng; Zhang, Yang-ming; Wang, Wen-long; Feng, Chun-lan; He, Pei-lan; Zhu, Feng-hua; Hao, You-hua; Wang, Bao-ju; Yang, Dong-liang; Tang, Wei; Nan, Fa-jun; Zuo, Jian-ping

    2014-01-01

    Aim: To investigate the action of isothiafludine (NZ-4), a derivative of bis-heterocycle tandem pairs from the natural product leucamide A, on the replication cycle of hepatitis B virus (HBV) in vitro and in vivo. Methods: HBV replication cycle was monitored in HepG2.2.15 cells using qPCR, qRT-PCR, and Southern and Northern blotting. HBV protein expression and capsid assembly were detected using Western blotting and native agarose gel electrophoresis analysis. The interaction of pregenomic RNA (pgRNA) and the core protein was investigated by RNA immunoprecipitation. To evaluate the anti-HBV effect of NZ-4 in vivo, DHBV-infected ducks were orally administered NZ-4 (25, 50 or 100 mg·kg−1·d−1) for 15 d. Results: NZ-4 suppressed intracellular HBV replication in HepG2.2.15 cells with an IC50 value of 1.33 μmol/L, whereas the compound inhibited the cell viability with an IC50 value of 50.4 μmol/L. Furthermore, NZ-4 was active against the replication of various drug-resistant HBV mutants, including 3TC/ETV-dual-resistant and ADV-resistant HBV mutants. NZ-4 (5, 10, 20 μmol/L) concentration-dependently reduced the encapsidated HBV pgRNA, resulting in the assembly of replication-deficient capsids in HepG2.2.15 cells. Oral administration of NZ-4 dose-dependently inhibited DHBV DNA replication in the DHBV-infected ducks. Conclusion: NZ-4 inhibits HBV replication by interfering with the interaction between pgRNA and HBcAg in the capsid assembly process, thus increasing the replication-deficient HBV capsids. Such mechanism of action might provide a new therapeutic strategy to combat HBV infection. PMID:24487969

  11. Endoplasmic Reticulum Stress Induced Synthesis of a Novel Viral Factor Mediates Efficient Replication of Genotype-1 Hepatitis E Virus

    PubMed Central

    Nair, Vidya P.; Madhvi, Abhilasha; Bakshi, Karishma; Srivastava, Akriti; Shalimar; Nayak, Baibaswata; CT, Ranjith Kumar; Surjit, Milan

    2016-01-01

    Hepatitis E virus (HEV) causes acute hepatitis in many parts of the world including Asia, Africa and Latin America. Though self-limiting in normal individuals, it results in ~30% mortality in infected pregnant women. It has also been reported to cause acute and chronic hepatitis in organ transplant patients. Of the seven viral genotypes, genotype-1 virus infects humans and is a major public health concern in South Asian countries. Sporadic cases of genotype-3 and 4 infection in human and animals such as pigs, deer, mongeese have been reported primarily from industrialized countries. Genotype-5, 6 and 7 viruses are known to infect animals such as wild boar and camel, respectively. Genotype-3 and 4 viruses have been successfully propagated in the laboratory in mammalian cell culture. However, genotype-1 virus replicates poorly in mammalian cell culture and no other efficient model exists to study its life cycle. Here, we report that endoplasmic reticulum (ER) stress promotes genotype-1 HEV replication by inducing cap-independent, internal initiation mediated translation of a novel viral protein (named ORF4). Importantly, ORF4 expression and stimulatory effect of ER stress inducers on viral replication is specific to genotype-1. ORF4 protein sequence is mostly conserved among genotype-1 HEV isolates and ORF4 specific antibodies were detected in genotype-1 HEV patient serum. ORF4 interacted with multiple viral and host proteins and assembled a protein complex consisting of viral helicase, RNA dependent RNA polymerase (RdRp), X, host eEF1α1 (eukaryotic elongation factor 1 isoform-1) and tubulinβ. In association with eEF1α1, ORF4 stimulated viral RdRp activity. Furthermore, human hepatoma cells that stably express ORF4 or engineered proteasome resistant ORF4 mutant genome permitted enhanced viral replication. These findings reveal a positive role of ER stress in promoting genotype-1 HEV replication and pave the way towards development of an efficient model of the

  12. Retinoid-Dependent Restriction of Human Immunodeficiency Virus Type 1 Replication in Monocytes/Macrophages

    PubMed Central

    Hanley, Timothy M.; Kiefer, Heather L. B.; Schnitzler, Aletta C.; Marcello, Jennifer E.; Viglianti, Gregory A.

    2004-01-01

    Vitamin A deficiency has been correlated with increased severity of human immunodeficiency virus type 1 (HIV-1)-associated disease. Moreover, vitamin A supplementation can reduce AIDS-associated morbidity and mortality. Our group and others have shown that retinoids, the bioactive metabolites of vitamin A, repress HIV-1 replication in monocytic cell lines and primary macrophages by blocking long-terminal-repeat (LTR)-directed transcription. Based on these studies, we hypothesize that retinoids are natural repressors of HIV-1 in vivo. We show here that all-trans-retinoic acid (RA)-mediated repression of HIV-1 activation requires pretreatment for at least 12 h and is blocked by the protein synthesis inhibitors cycloheximide and puromycin. Studies of the kinetics of RA-mediated repression in U1 cells and primary monocyte-derived macrophages (MDMs) reveal that the repressive effects of RA on HIV-1 expression are long-lasting but reversible. We demonstrate that HIV-1 expression is activated when U1 cells or MDMs are cultured in retinoid-free synthetic medium and show that physiological concentrations of RA repress this activation. In addition, the synthetic pan-retinoic acid receptor antagonist BMS-204 493 activates HIV-1 replication in U1 cells in a dose-dependent manner, suggesting that RA-induced transactivation of cellular gene expression is required for HIV-1 repression. Together, these data support the hypothesis that retinoids present in tissue culture media in vitro and serum in vivo maintain HIV-1 in a transcriptionally repressed state in monocytes/macrophages. PMID:14990701

  13. Cell-Free Replication of the Hepatitis C Virus Subgenomic Replicon

    PubMed Central

    Ali, Naushad; Tardif, Keith D.; Siddiqui, Aleem

    2002-01-01

    The hepatitis C virus (HCV) contains a plus-strand RNA genome. The 5′ noncoding region (NCR) of the viral genome functions as an internal ribosome entry site, and its unique 3′ NCR is required for the assembly of the replication complex during initiation of HCV RNA replication. Lohmann et al. (V. Lohmann, F. Korner, J.-O. Koch, U. Herian, L. Theilman, and R. Batenschlager, Science 285:110-113, 1999) developed a subgenomic HCV replicon system, which represents an important tool in studying HCV replication in cultured cells. In this study, we describe a cell-free replication system that utilizes cytoplasmic lysates prepared from Huh-7 cells harboring the HCV subgenomic replicons. These lysates, which contain ribonucleoprotein complexes associated with cellular membranes, were capable of incorporating [α32P]CTP into newly synthesized RNA from subgenomic replicons in vitro. Replicative forms (RFs) and replicative intermediates (RIs) were synthesized from the endogenous HCV RNA templates. Consistent with previous observations, RFs were found to be resistant to RNase A digestion, whereas RIs were sensitive to RNase treatment. The radiolabeled HCV RF-RI complexes contained both minus and plus strands and were specific to the lysates derived from replicon-expressing cells. The availability of a cell-free replication system offers opportunities to probe the mechanism(s) of HCV replication. It also provides a novel assay for potential therapeutic agents. PMID:12414942

  14. Origin of replication in episomal bovine papilloma virus type 1 DNA isolated from transformed cells.

    PubMed Central

    Waldeck, W; Rösl, F; Zentgraf, H

    1984-01-01

    The origin of replication of bovine papilloma virus type 1 (BPV-1) has been determined by isolating replicative intermediates (RI) of BPV-transformed hamster embryo fibroblasts (HEF-BPV). These RI were treated with single cut restriction enzymes to determine the start-position (origin) of the extending replication eyes using electron microscopic techniques. 'Cairns'-type RI molecules were shown to contain one replication eye in monomeric as well as in dimeric molecules. The position of this eye was localized at 6940 +/- 5% bp in the physical map. In a second set of experiments BPV-1 DNA fragments cloned in pBR322 were tested for transient episomal replication. Transfected cells were harvested after increasing periods of time and screened for replication with isoschizomeric restriction enzymes to differentiate between input and replicated DNA. The part of the BPV genome harboring the replication origin spans the BPV ClaI-C restriction fragment corresponding to the non-coding region of the BPV genome and coincides with the DNase I-hypersensitive control region in the chromatin, isolated from transformed cells. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 7. PMID:6092063

  15. FAT10 Is Critical in Influenza A Virus Replication by Inhibiting Type I IFN.

    PubMed

    Zhang, Yanli; Tang, Jun; Yang, Ning; Liu, Qiang; Zhang, Qingchao; Zhang, Yanxu; Li, Ning; Zhao, Yan; Li, Shunwang; Liu, Song; Zhou, Huandi; Li, Xiao; Tian, Mingyao; Deng, Jiejie; Xie, Peng; Sun, Yang; Lu, Huijun; Zhang, Michael Q; Jin, Ningyi; Jiang, Chengyu

    2016-08-01

    The H5N1 avian influenza virus causes severe disease and high mortality, making it a major public health concern worldwide. The virus uses the host cellular machinery for several steps of its life cycle. In this report, we observed overexpression of the ubiquitin-like protein FAT10 following live H5N1 virus infection in BALB/c mice and in the human respiratory epithelial cell lines A549 and BEAS-2B. Further experiments demonstrated that FAT10 increased H5N1 virus replication and decreased the viability of infected cells. Total RNA extracted from H5N1 virus-infected cells, but not other H5N1 viral components, upregulated FAT10, and this process was mediated by the retinoic acid-induced protein I-NF-κB signaling pathway. FAT10 knockdown in A549 cells upregulated type I IFN mRNA expression and enhanced STAT1 phosphorylation during live H5N1 virus infection. Taken together, our data suggest that FAT10 was upregulated via retinoic acid-induced protein I and NF-κB during H5N1 avian influenza virus infection. And the upregulated FAT10 promoted H5N1 viral replication by inhibiting type I IFN. PMID:27354218

  16. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus

    PubMed Central

    Flather, Dylan; Semler, Bert L.

    2015-01-01

    The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review. PMID:26150805

  17. Pea embryonic tissues show common responses to the replication of a wide range of viruses.

    PubMed

    Escaler, M; Aranda, M A; Thomas, C L; Maule, A J

    2000-02-15

    The response of pea embryonic tissues to the replication of a range of different viruses was investigated using in situ hybridization to analyze changes in the expression of two host genes, heat shock protein 70 (hsp70) and lipoxygenase (lox1). Excised pea embryos were infected using microprojectile bombardment with a nonseed transmissible strain of Pea seed-borne mosaic potyvirus, or with Pea early browning tobravirus (PEBV), White Clover mosaic potexvirus, or Beet curly top geminivirus. Collectively, these examples represent families of viruses with differing genomic features, differing numbers of genomic components and differing replication strategies. In all cases, there was an induction of hsp70 associated with virus replication and, in most cases, a downregulation of lox1. Hence, either each virus has a direct inducer of these common responses or the induction is indirectly the result of a generic feature of virus infection. By exploiting the bipartite nature of the PEBV genome, the coat protein gene and genes involved in vector transmission were excluded as potential inducers. PMID:10662627

  18. Replication of type I herpes simplex virus in primary cultures of hairy cell leukemic leukocytes.

    PubMed Central

    Pozner, L. H.; Daniels, C. A.; Cooper, J. A.; Cohen, H. J.; Logue, G. L.; Croker, B. P.

    1978-01-01

    The ability of leukemic leukocytes to support the replication of herpes simplex virus (HSV) was studied. Mononuclear leukocytes (MNL) from the peripheral blood of patients with a variety of lymphoid leukemias were isolated on Ficoll-Hypaque gradients and infected with HSV at a multiplicity of infection of 5 to 10. No virus growth was detected in cells from patients with chronic lymphocytic leukemia (9), acute lymphocytic leukemia (1), or lymphosarcoma cell leukemia (2), HSV replication did occur in hairy cell leukemic MNL from all of 4 patients studied. Maximal titers of 10(3.7) to 10(4.7) PFU/ml occurred 1 to 7 days after incubation. By electron microscopy, herpesvirus particles were seen in the nuclei of these infected cells after 3 days of culture, but none was seen in the cells not exposed to virus. Fluorescent antibody examination confirmed the presence of HSV antigens in the nuclei of infected hairy cells. No difference in the adsorption or penetration of the virus was found with the various MNL studied. Productive infection of the cells thus appeared to depend on the ability of the leukocyte ;o support a later stage of infection, either uncoating or replication of the virus. Images Figure 1 PMID:202167

  19. Heterologous SH3-p85β inhibits influenza A virus replication

    PubMed Central

    2010-01-01

    Phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway can support the replication of influenza A virus through binding of viral NS1 protein to the Src homology 3 (SH3) domain of p85β regulatory subunit of PI3K. Here we investigated the effect of heterologously overexpressed SH3 on the replication of different influenza A virus subtypes/strains, and on the phosphorylation of Akt in the virus-infected cells. We found that heterologous SH3 reduced replication of influenza A viruses at varying degrees in a subtype/strain-dependent manner and SH3 overexpression reduced the induction of the phosphorylation of Akt in the cells infected with PR8(H1N1) and ST364(H3N2), but not with ST1233(H1N1), Ph2246(H9N2), and Qa199(H9N2). Our results suggest that interference with the NS1-p85β interaction by heterologous SH3 can be served as a useful antiviral strategy against influenza A virus infection. PMID:20653952

  20. Inhibition of human immunodeficiency virus replication in acutely infected CD4+ cells by CD8+ cells involves a noncytotoxic mechanism.

    PubMed Central

    Walker, C M; Erickson, A L; Hsueh, F C; Levy, J A

    1991-01-01

    The mechanism by which CD8+ T cells from human immunodeficiency virus (HIV)-infected individuals suppress HIV replication in acutely infected CD4+ T cells was investigated. Cytotoxicity was not involved, as the antiviral activity of the CD8+ cells did not correlate with the ability to lyse HIV-infected or uninfected CD4+ T cells. In addition, the frequency of HIV-infected CD4+ cells increased during coculture with CD8+ T cells even in the absence of detectable levels of virus replication. Moreover, separation of the CD4+ and CD8+ cells by a 0.4-micron-pore-size filter delayed HIV replication, indicating a role, at least in part, for a soluble factor. However, cell contact was required for optimal antiviral activity. These results extend further the observation on the mechanism of antiviral HIV activity by CD8+ cells from infected individuals. They support the conclusion that CD8+ cells can play a major role in preventing development of disease in HIV-infected individuals. PMID:1920621

  1. Truncation and Sequence Shuffling of Segment 6 Generate Replication-Competent Neuraminidase-Negative Influenza H5N1 Viruses

    PubMed Central

    Kalthoff, Donata; Röhrs, Susanne; Höper, Dirk; Hoffmann, Bernd; Bogs, Jessica; Stech, Jürgen

    2013-01-01

    Influenza viruses are highly genetically variable and escape from immunogenic pressure by antigenic changes in their surface proteins, referred to as “antigenic drift” and “antigenic shift.” To assess the potential genetic plasticity under strong selection pressure, highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 was passaged 50 times in embryonated chicken eggs in the presence of a neutralizing, polyclonal chicken serum. The resulting mutant acquired major alterations in the neuraminidase (NA)-encoding segment. Extensive deletions and rearrangements were detected, in contrast to only 12 amino acid substitutions within all other segments. Interestingly, this new neuraminidase segment resulted from complex sequence shuffling and insertion of a short fragment originating from the PA segment. Characterization of that novel variant revealed a loss of the neuraminidase protein and enzymatic activity, but its replication efficiency remained comparable to that of the wild type. Using reverse genetics, a recombinant virus consisting of the wild-type backbone and the shortened NA segment could be generated; however, generation of this recombinant virus required the polybasic hemagglutinin cleavage site. Two independent repetitions starting with egg passage 30 in the presence of alternative chicken-derived immune sera selected mutants with similar but different large deletions within the NA segment without any neuraminidase activity, indicating a general mechanism. In chicken, these virus variants were avirulent, even though the HPAIV polybasic hemagglutinin cleavage site was still present. Overall, the variants reported here are the first HPAIV H5N1 strains without a functional neuraminidase shown to grow efficiently without any helper factor. These novel HPAIV variants may facilitate future studies shedding light on the role of neuraminidase in virus replication and pathogenicity. PMID:24109212

  2. A comprehensive map of the influenza A virus replication cycle

    PubMed Central

    2013-01-01

    Background Influenza is a common infectious disease caused by influenza viruses. Annual epidemics cause severe illnesses, deaths, and economic loss around the world. To better defend against influenza viral infection, it is essential to understand its mechanisms and associated host responses. Many studies have been conducted to elucidate these mechanisms, however, the overall picture remains incompletely understood. A systematic understanding of influenza viral infection in host cells is needed to facilitate the identification of influential host response mechanisms and potential drug targets. Description We constructed a comprehensive map of the influenza A virus (‘IAV’) life cycle (‘FluMap’) by undertaking a literature-based, manual curation approach. Based on information obtained from publicly available pathway databases, updated with literature-based information and input from expert virologists and immunologists, FluMap is currently composed of 960 factors (i.e., proteins, mRNAs etc.) and 456 reactions, and is annotated with ~500 papers and curation comments. In addition to detailing the type of molecular interactions, isolate/strain specific data are also available. The FluMap was built with the pathway editor CellDesigner in standard SBML (Systems Biology Markup Language) format and visualized as an SBGN (Systems Biology Graphical Notation) diagram. It is also available as a web service (online map) based on the iPathways+ system to enable community discussion by influenza researchers. We also demonstrate computational network analyses to identify targets using the FluMap. Conclusion The FluMap is a comprehensive pathway map that can serve as a graphically presented knowledge-base and as a platform to analyze functional interactions between IAV and host factors. Publicly available webtools will allow continuous updating to ensure the most reliable representation of the host-virus interaction network. The FluMap is available at http

  3. Replication of adeno-associated virus in cells irradiated with UV light at 254 nm.

    PubMed Central

    Yakobson, B; Hrynko, T A; Peak, M J; Winocour, E

    1989-01-01

    Irradiation of simian virus 40 (ori mutant)-transformed Chinese hamster embryo cells (OD4 line) with UV light induced a cellular capacity which supported a full cycle of helper-independent adeno-associated virus replication. Monochromatic UV light at 254 nm was about 1,000-fold more effective than UV light at 313 nm, indicating that cellular nucleic acid is the primary chromophore in the UV-induced process leading to permissiveness for adeno-associated virus replication. The UV irradiation and the infection could be separated for up to 12 h without substantial loss of permissiveness. During this time interval, the induction process was partly sensitive to cycloheximide, suggesting a requirement for de novo protein synthesis. Images PMID:2536816