Science.gov

Sample records for active virus replication

  1. Autophagic machinery activated by dengue virus enhances virus replication

    SciTech Connect

    Lee, Y.-R.; Lei, H.-Y.; Liu, M.-T.; Wang, J.-R.; Chen, S.-H.; Jiang-Shieh, Y.-F.; Lin, Y.-S.; Yeh, T.-M.; Liu, C.-C.; Liu, H.-S.

    2008-05-10

    Autophagy is a cellular response against stresses which include the infection of viruses and bacteria. We unravel that Dengue virus-2 (DV2) can trigger autophagic process in various infected cell lines demonstrated by GFP-LC3 dot formation and increased LC3-II formation. Autophagosome formation was also observed under the transmission electron microscope. DV2-induced autophagy further enhances the titers of extracellular and intracellular viruses indicating that autophagy can promote viral replication in the infected cells. Moreover, our data show that ATG5 protein is required to execute DV2-induced autophagy. All together, we are the first to demonstrate that DV can activate autophagic machinery that is favorable for viral replication.

  2. DNA Virus Replication Compartments

    PubMed Central

    Schmid, Melanie; Speiseder, Thomas; Dobner, Thomas

    2014-01-01

    Viruses employ a variety of strategies to usurp and control cellular activities through the orchestrated recruitment of macromolecules to specific cytoplasmic or nuclear compartments. Formation of such specialized virus-induced cellular microenvironments, which have been termed viroplasms, virus factories, or virus replication centers, complexes, or compartments, depends on molecular interactions between viral and cellular factors that participate in viral genome expression and replication and are in some cases associated with sites of virion assembly. These virus-induced compartments function not only to recruit and concentrate factors required for essential steps of the viral replication cycle but also to control the cellular mechanisms of antiviral defense. In this review, we summarize characteristic features of viral replication compartments from different virus families and discuss similarities in the viral and cellular activities that are associated with their assembly and the functions they facilitate for viral replication. PMID:24257611

  3. Activities of proteasome and m-calpain are essential for Chikungunya virus replication.

    PubMed

    Karpe, Yogesh A; Pingale, Kunal D; Kanade, Gayatri D

    2016-10-01

    Replication of many viruses is dependent on the ubiquitin proteasome system. The present study demonstrates that Chikungunya virus replication increases proteasome activity and induces unfolded protein response (UPR) in cultured cells. Further, it was seen that the virus replication was dependent on the activities of proteasomes and m-calpain. Proteasome inhibition induced accumulation of polyubiquitinated proteins and earlier visualization of UPR.

  4. Novel antiviral activity of bromocriptine against dengue virus replication.

    PubMed

    Kato, Fumihiro; Ishida, Yuki; Oishi, Shinya; Fujii, Nobutaka; Watanabe, Satoru; Vasudevan, Subhash G; Tajima, Shigeru; Takasaki, Tomohiko; Suzuki, Youichi; Ichiyama, Koji; Yamamoto, Naoki; Yoshii, Kentaro; Takashima, Ikuo; Kobayashi, Takeshi; Miura, Tomoyuki; Igarashi, Tatsuhiko; Hishiki, Takayuki

    2016-07-01

    Dengue virus (DENV) infectious disease is a major public health problem worldwide; however, licensed vaccines or specific antiviral drugs against this infection are not available. To identify novel anti-DENV compounds, we screened 1280 pharmacologically active compounds using focus reduction assay. Bromocriptine (BRC) was found to have potent anti-DENV activity and low cytotoxicity (half maximal effective concentration [EC50], 0.8-1.6 μM; and half maximal cytotoxicity concentration [CC50], 53.6 μM). Time-of-drug-addition and time-of-drug-elimination assays suggested that BRC inhibits translation and/or replication steps in the DENV life cycle. A subgenomic replicon system was used to verify that BRC restricts RNA replication step. Furthermore, a single amino acid substitution (N374H) was detected in the NS3 protein that conferred resistance to BRC. In summary, BRC was found to be a novel DENV inhibitor and a potential candidate for the treatment of DENV infectious disease. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Inhibition of respiratory syncytial virus replication and virus-induced p38 kinase activity by berberine.

    PubMed

    Shin, Han-Bo; Choi, Myung-Soo; Yi, Chae-Min; Lee, Jun; Kim, Nam-Jung; Inn, Kyung-Soo

    2015-07-01

    Respiratory syncytial virus (RSV) causes severe lower respiratory tract infection and poses a major public health threat worldwide. No effective vaccines or therapeutics are currently available; berberine, an isoquinoline alkaloid from various medicinal plants, has been shown to exert antiviral and several other biological effects. Recent studies have shown that p38 mitogen-activated protein kinase (MAPK) activity is implicated in infection by and replication of viruses such as RSV and the influenza virus. Because berberine has previously been implicated in modulating the activity of p38 MAPK, its effects on RSV infection and RSV-mediated p38 MAPK activation were examined. Replication of RSV in epithelial cells was significantly reduced by treatment with berberine. Berberine treatment caused decrease in viral protein and mRNA syntheses. Similar to previously reported findings, RSV infection caused phosphorylation of p38 MAPK at a very early time point of infection, and phosphorylation was dramatically reduced by berberine treatment. In addition, production of interleukin-6 mRNA upon RSV infection was significantly suppressed by treatment with berberine, suggesting the anti-inflammatory role of berberine during RSV infection. Taken together, we showed that berberine, a natural compound already proven to be safe for human consumption, suppresses the replication of RSV. In addition, the current study suggests that inhibition of RSV-mediated early p38 MAPK activation, which has been implicated as an early step in viral infection, as a potential molecular mechanism. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence.

    PubMed

    McPherson, Robert Lyle; Abraham, Rachy; Sreekumar, Easwaran; Ong, Shao-En; Cheng, Shang-Jung; Baxter, Victoria K; Kistemaker, Hans A V; Filippov, Dmitri V; Griffin, Diane E; Leung, Anthony K L

    2017-02-14

    Chikungunya virus (CHIKV), an Old World alphavirus, is transmitted to humans by infected mosquitoes and causes acute rash and arthritis, occasionally complicated by neurologic disease and chronic arthritis. One determinant of alphavirus virulence is nonstructural protein 3 (nsP3) that contains a highly conserved MacroD-type macrodomain at the N terminus, but the roles of nsP3 and the macrodomain in virulence have not been defined. Macrodomain is a conserved protein fold found in several plus-strand RNA viruses that binds to the small molecule ADP-ribose. Prototype MacroD-type macrodomains also hydrolyze derivative linkages on the distal ribose ring. Here, we demonstrated that the CHIKV nsP3 macrodomain is able to hydrolyze ADP-ribose groups from mono(ADP-ribosyl)ated proteins. Using mass spectrometry, we unambiguously defined its substrate specificity as mono(ADP-ribosyl)ated aspartate and glutamate but not lysine residues. Mutant viruses lacking hydrolase activity were unable to replicate in mammalian BHK-21 cells or mosquito Aedes albopictus cells and rapidly reverted catalytically inactivating mutations. Mutants with reduced enzymatic activity had slower replication in mammalian neuronal cells and reduced virulence in 2-day-old mice. Therefore, nsP3 mono(ADP-ribosyl)hydrolase activity is critical for CHIKV replication in both vertebrate hosts and insect vectors, and for virulence in mice.

  7. Peroxisome Proliferators Activated Receptor (PPAR) agonists activate hepatitis B virus replication in vivo.

    PubMed

    Du, Lingyao; Ma, Yuanji; Liu, Miao; Yan, Libo; Tang, Hong

    2017-05-25

    PPAR agonists are often used in HBV infected patients with metabolic disorders. However, as liver-enriched transcriptional factors, PPARs would activate HBV replication. Risks exsit in such patients. This study aimed to assess the influence of commonly used synthetic PPAR agonists on hepatitis B virus (HBV) transcription, replication and expression through HBV replicative mouse models, providing information for physicians to make necessary monitoring and therapeutic adjustment when HBV infected patients receive PPAR agonists treatment. The HBV replicative mouse model was established by hydrodynamic injection of HBV replicative plasmid and the mice were divided into four groups and treated daily for 3 days with saline, PPAR pan-agonist (bezafibrate), PPARα agonist (fenofibrate) and PPARγ agonist (rosiglitazone) respectively. Their serum samples were collected for ECLIA analysis of HBsAg and HBeAg and real-time PCR analysis of Serum HBV DNA. The liver samples were collected for DNA (Southern) filter hybridization of HBV replication intermediates, real-time PCR analysis of HBV mRNA and immunohistochemistry (IHC) analysis of hepatic HBcAg. The alternation of viral transcription, replication and expression were compared in these groups. Serum HBsAg, HBeAg and HBV DNA were significantly elevated after PPAR agonist treatment. So did the viral replication intermediates in mouse livers. HBV mRNA was also significantly increased by these PPAR agonists, implying that PPAR agonists activate HBV replication at transcription level. Moreover, hepatic HBcAg expression in mouse livers with PPAR agonist treatment was elevated as well. Our in vivo study proved that synthetic PPAR agonists bezafibrate, fenofibrate and rosiglitazone would increase HBV replication. It suggested that when HBV infected patients were treated with PPARs agonists because of metabolic diseases, HBV viral load should be monitored and regimens may need to be adjusted, an antiviral therapy may be added.

  8. Hepatitis B virus replication in steroid-treated severe HBsAg-positive chronic active hepatitis.

    PubMed

    Davis, G L; Czaja, A J; Taswell, H F; Ludwig, J; Go, V L

    1985-02-01

    To determine the effect of corticosteroids on the replication of hepatitis B virus and to assess the relationship between virus replication and prognosis, the behavior of serum and tissue HBcAg was evaluated in 16 patients with severe HBsAg-positive chronic active hepatitis who were treated with prednisone and followed for up to 10 years (mean +/- SEM, 66 +/- 9 months). Hepatitis B virus replication was assessed in serum by a solid-phase radioimmunoassay of Dane particle-associated HBcAg and in liver tissue by indirect immunoperoxidase staining for HBcAg. Despite the presence of severe inflammatory activity, only low levels of hepatitis B virus replication were demonstrated. Mean serum HBcAg levels were low at accession and remained essentially unchanged or gradually decreased during corticosteroid therapy. Serum HBcAg appeared in only one patient in whom no virus replication was detected prior to therapy. HBeAg was frequently detected at low titers by radioimmunoassay when serum HBcAg was undetectable. Loss of HBcAg preceded loss of HBeAg by radioimmunoassay, and disappearance of both markers was a prerequisite for sustained histologic remission. In eight patients, inflammation was present despite absence of serum or tissue HBcAg; in three of these, disease activity continued after loss of HBeAg. We conclude that low levels of hepatitis B virus replication may be associated with severe inflammatory activity, and these levels are not increased by long-term corticosteroid therapy. Inflammation can continue despite loss of HBeAg and absence of detectable virus replication.

  9. Matriptase proteolytically activates influenza virus and promotes multicycle replication in the human airway epithelium.

    PubMed

    Beaulieu, Alexandre; Gravel, Émilie; Cloutier, Alexandre; Marois, Isabelle; Colombo, Éloïc; Désilets, Antoine; Verreault, Catherine; Leduc, Richard; Marsault, Éric; Richter, Martin V

    2013-04-01

    Influenza viruses do not encode any proteases and must rely on host proteases for the proteolytic activation of their surface hemagglutinin proteins in order to fuse with the infected host cells. Recent progress in the understanding of human proteases responsible for influenza virus hemagglutinin activation has led to the identification of members of the type II transmembrane serine proteases TMPRSS2 and TMPRSS4 and human airway trypsin-like protease; however, none has proved to be the sole enzyme responsible for hemagglutinin cleavage. In this study, we identify and characterize matriptase as an influenza virus-activating protease capable of supporting multicycle viral replication in the human respiratory epithelium. Using confocal microscopy, we found matriptase to colocalize with hemagglutinin at the apical surface of human epithelial cells and within endosomes, and we showed that the soluble form of the protease was able to specifically cleave hemagglutinins from H1 virus, but not from H2 and H3 viruses, in a broad pH range. We showed that small interfering RNA (siRNA) knockdown of matriptase in human bronchial epithelial cells significantly blocked influenza virus replication in these cells. Lastly, we provide a selective, slow, tight-binding inhibitor of matriptase that significantly reduces viral replication (by 1.5 log) of H1N1 influenza virus, including the 2009 pandemic virus. Our study establishes a three-pronged model for the action of matriptase: activation of incoming viruses in the extracellular space in its shed form, upon viral attachment or exit in its membrane-bound and/or shed forms at the apical surface of epithelial cells, and within endosomes by its membrane-bound form where viral fusion takes place.

  10. Matriptase Proteolytically Activates Influenza Virus and Promotes Multicycle Replication in the Human Airway Epithelium

    PubMed Central

    Beaulieu, Alexandre; Gravel, Émilie; Cloutier, Alexandre; Marois, Isabelle; Colombo, Éloïc; Désilets, Antoine; Verreault, Catherine; Leduc, Richard; Marsault, Éric

    2013-01-01

    Influenza viruses do not encode any proteases and must rely on host proteases for the proteolytic activation of their surface hemagglutinin proteins in order to fuse with the infected host cells. Recent progress in the understanding of human proteases responsible for influenza virus hemagglutinin activation has led to the identification of members of the type II transmembrane serine proteases TMPRSS2 and TMPRSS4 and human airway trypsin-like protease; however, none has proved to be the sole enzyme responsible for hemagglutinin cleavage. In this study, we identify and characterize matriptase as an influenza virus-activating protease capable of supporting multicycle viral replication in the human respiratory epithelium. Using confocal microscopy, we found matriptase to colocalize with hemagglutinin at the apical surface of human epithelial cells and within endosomes, and we showed that the soluble form of the protease was able to specifically cleave hemagglutinins from H1 virus, but not from H2 and H3 viruses, in a broad pH range. We showed that small interfering RNA (siRNA) knockdown of matriptase in human bronchial epithelial cells significantly blocked influenza virus replication in these cells. Lastly, we provide a selective, slow, tight-binding inhibitor of matriptase that significantly reduces viral replication (by 1.5 log) of H1N1 influenza virus, including the 2009 pandemic virus. Our study establishes a three-pronged model for the action of matriptase: activation of incoming viruses in the extracellular space in its shed form, upon viral attachment or exit in its membrane-bound and/or shed forms at the apical surface of epithelial cells, and within endosomes by its membrane-bound form where viral fusion takes place. PMID:23365447

  11. Determination of the minimal amount of Tat activity required for human immunodeficiency virus type 1 replication.

    PubMed

    Verhoef, K; Koper, M; Berkhout, B

    1997-10-27

    The Tat protein of human immunodeficiency virus type 1 (HIV-1) is a potent trans-activator of transcription from the viral LTR promoter. Previous mutagenesis studies have identified domains within Tat responsible for binding to its TAR RNA target and for transcriptional activation. The minimal Tat activation domain is composed of the N-terminal 48 residues, and mutational analyses identified a cluster of critical cysteines. The importance of four highly conserved aromatic amino acids within the activation domain has not been thoroughly investigated. We have systematically substituted these aromatic residues (Y26, F32, F38, Y47) of the HIV-1 LAI Tat protein with other aromatic residues (conservative mutation) or alanine (nonconservative mutation). The activity of the mutant Tat constructs was measured in different cell lines by transfection with a LTR-CAT reporter plasmid. The range of transcriptional activities measured for this set of Tat mutants allowed careful assessment of the level of Tat activity required for optimal viral replication. To test this, the mutant Tat genes were introduced into the pLAI infectious molecular clone and tested for their effect on virus replication in a T-cell line. We found that a twofold reduction in Tat activity already affects viral replication, and no virus replication was measured for Tat mutants with less than 15% activity. This strict correlation between Tat activity and viral replication demonstrates the importance of the Tat function to viral fitness. Interestingly, a less pronounced replication defect was observed in primary cell types. This finding may correlate with the frequent detection of proviruses with Tat-inactivating mutations in clinical samples. Copyright 1997 Academic Press.

  12. Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro.

    PubMed

    Ocazionez, Raquel Elvira; Meneses, Rocio; Torres, Flor Angela; Stashenko, Elena

    2010-05-01

    The inhibitory effect of Lippia alba and Lippia citriodora essential oils on dengue virus serotypes replication in vitro was investigated. The cytotoxicity (CC50) was evaluated by the MTT assay and the mode of viral inhibitory effect was investigated with a plaque reduction assay. The virus was treated with the essential oil for 2 h at 37 masculineC before cell adsorption and experiments were conducted to evaluate inhibition of untreated-virus replication in the presence of oil. Antiviral activity was defined as the concentration of essential oil that caused 50% reduction of the virus plaque number (IC50). L. alba oil resulted in less cytotoxicity than L. citriodora oil (CC50: 139.5 vs. 57.6 microg/mL). Virus plaque reduction for all four dengue serotypes was observed by treatment of the virus before adsorption on cell. The IC50 values for L. alba oil were between 0.4-32.6 microg/mL and between 1.9-33.7 microg/mL for L. citriodora oil. No viral inhibitory effect was observed by addition of the essential oil after virus adsorption. The inhibitory effect of the essential oil seems to cause direct virus inactivation before adsorption on host cell.

  13. Definition of herpes simplex virus type 1 helper activities for adeno-associated virus early replication events.

    PubMed

    Alazard-Dany, Nathalie; Nicolas, Armel; Ploquin, Aurélie; Strasser, Regina; Greco, Anna; Epstein, Alberto L; Fraefel, Cornel; Salvetti, Anna

    2009-03-01

    The human parvovirus Adeno-Associated Virus (AAV) type 2 can only replicate in cells co-infected with a helper virus, such as Adenovirus or Herpes Simplex Virus type 1 (HSV-1); whereas, in the absence of a helper virus, it establishes a latent infection. Previous studies demonstrated that the ternary HSV-1 helicase/primase (HP) complex (UL5/8/52) and the single-stranded DNA-Binding Protein (ICP8) were sufficient to induce AAV-2 replication in transfected cells. We independently showed that, in the context of a latent AAV-2 infection, the HSV-1 ICP0 protein was able to activate rep gene expression. The present study was conducted to integrate these observations and to further explore the requirement of other HSV-1 proteins during early AAV replication steps, i.e. rep gene expression and AAV DNA replication. Using a cellular model that mimics AAV latency and composite constructs coding for various sets of HSV-1 genes, we first confirmed the role of ICP0 for rep gene expression and demonstrated a synergistic effect of ICP4 and, to a lesser extent, ICP22. Conversely, ICP27 displayed an inhibitory effect. Second, our analyses showed that the effect of ICP0, ICP4, and ICP22 on rep gene expression was essential for the onset of AAV DNA replication in conjunction with the HP complex and ICP8. Third, and most importantly, we demonstrated that the HSV-1 DNA polymerase complex (UL30/UL42) was critical to enhance AAV DNA replication to a significant level in transfected cells and that its catalytic activity was involved in this process. Altogether, this work represents the first comprehensive study recapitulating the series of early events taking place during HSV-1-induced AAV replication.

  14. Four-Dimensional Visualization of the Simultaneous Activity of Alternative Adeno-Associated Virus Replication Origins†

    PubMed Central

    Glauser, Daniel L.; Saydam, Okay; Balsiger, N. Alexander; Heid, Irma; Linden, R. Michael; Ackermann, Mathias; Fraefel, Cornel

    2005-01-01

    The adeno-associated virus (AAV) inverted terminal repeats (ITRs) contain the AAV Rep protein-binding site (RBS) and the terminal resolution site (TRS), which together act as a minimal origin of DNA replication. The AAV p5 promoter also contains an RBS, which is involved in Rep-mediated regulation of promoter activity, as well as a functional TRS, and origin activity of these signals has in fact been demonstrated previously in the presence of adenovirus helper functions. Here, we show that in the presence of herpes simplex virus type 1 (HSV-1) and AAV Rep protein, p5 promoter-bearing plasmids are efficiently amplified to form large head-to-tail concatemers, which are readily packaged in HSV-1 virions if an HSV-1 DNA-packaging/cleavage signal is provided in cis. We also demonstrate simultaneous and independent replication from the two alternative AAV replication origins, p5 and ITR, on the single-cell level using multicolor-fluorescence live imaging, a finding which raises the possibility that both origins may contribute to the AAV life cycle. Furthermore, we assess the differential affinities of Rep for the two different replication origins, p5 and ITR, both in vitro and in live cells and identify this as a potential mechanism to control the replicative and promoter activities of p5. PMID:16160148

  15. Four-dimensional visualization of the simultaneous activity of alternative adeno-associated virus replication origins.

    PubMed

    Glauser, Daniel L; Saydam, Okay; Balsiger, N Alexander; Heid, Irma; Linden, R Michael; Ackermann, Mathias; Fraefel, Cornel

    2005-10-01

    The adeno-associated virus (AAV) inverted terminal repeats (ITRs) contain the AAV Rep protein-binding site (RBS) and the terminal resolution site (TRS), which together act as a minimal origin of DNA replication. The AAV p5 promoter also contains an RBS, which is involved in Rep-mediated regulation of promoter activity, as well as a functional TRS, and origin activity of these signals has in fact been demonstrated previously in the presence of adenovirus helper functions. Here, we show that in the presence of herpes simplex virus type 1 (HSV-1) and AAV Rep protein, p5 promoter-bearing plasmids are efficiently amplified to form large head-to-tail concatemers, which are readily packaged in HSV-1 virions if an HSV-1 DNA-packaging/cleavage signal is provided in cis. We also demonstrate simultaneous and independent replication from the two alternative AAV replication origins, p5 and ITR, on the single-cell level using multicolor-fluorescence live imaging, a finding which raises the possibility that both origins may contribute to the AAV life cycle. Furthermore, we assess the differential affinities of Rep for the two different replication origins, p5 and ITR, both in vitro and in live cells and identify this as a potential mechanism to control the replicative and promoter activities of p5.

  16. Tuning a cellular lipid kinase activity adapts hepatitis C virus to replication in cell culture.

    PubMed

    Harak, Christian; Meyrath, Max; Romero-Brey, Inés; Schenk, Christian; Gondeau, Claire; Schult, Philipp; Esser-Nobis, Katharina; Saeed, Mohsan; Neddermann, Petra; Schnitzler, Paul; Gotthardt, Daniel; Perez-Del-Pulgar, Sofia; Neumann-Haefelin, Christoph; Thimme, Robert; Meuleman, Philip; Vondran, Florian W R; Francesco, Raffaele De; Rice, Charles M; Bartenschlager, Ralf; Lohmann, Volker

    2016-12-19

    With a single exception, all isolates of hepatitis C virus (HCV) require adaptive mutations to replicate efficiently in cell culture. Here, we show that a major class of adaptive mutations regulates the activity of a cellular lipid kinase, phosphatidylinositol 4-kinase IIIα (PI4KA). HCV needs to stimulate PI4KA to create a permissive phosphatidylinositol 4-phosphate-enriched membrane microenvironment in the liver and in primary human hepatocytes (PHHs). In contrast, in Huh7 hepatoma cells, the virus must acquire loss-of-function mutations that prevent PI4KA overactivation. This adaptive mechanism is necessitated by increased PI4KA levels in Huh7 cells compared with PHHs, and is conserved across HCV genotypes. PI4KA-specific inhibitors promote replication of unadapted viral isolates and allow efficient replication of patient-derived virus in cell culture. In summary, this study has uncovered a long-sought mechanism of HCV cell-culture adaptation and demonstrates how a virus can adapt to changes in a cellular environment associated with tumorigenesis.

  17. Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C activity

    PubMed Central

    Hoffmann, H.-Heinrich; Palese, Peter; Shaw, Megan L.

    2008-01-01

    In recent years, increasing levels of resistance to the four FDA-approved anti-influenza virus drugs have been described and vaccine manufacturers have experienced demands that exceed their capacity. This situation underlines the urgent need for novel antivirals as well as innovations in vaccine production in preparation for the next influenza epidemic. Here we report the development of a cell-based high-throughput screen which we have used for the identification of compounds that modulate influenza virus growth either negatively or positively. We screened a library of compounds with known biological activity and identified distinct groups of inhibitors and enhancers that target sodium channels or protein kinase C (PKC). We confirmed these results in viral growth assays and find that treatment with a sodium channel opener or PKC inhibitor significantly reduces viral replication. In contrast, inhibition of sodium channels or activation of PKC leads to enhanced virus production in tissue culture. These diametrically opposing effects strongly support a role for PKC activity and the regulation of Na+ currents in influenza virus replication and both may serve as targets for antiviral drugs. Furthermore, we raise the possibility that compounds that result in increased viral titers may be beneficial for boosting the production of tissue culture-grown influenza vaccines. PMID:18585796

  18. Biological or pharmacological activation of protein kinase C alpha constrains hepatitis E virus replication.

    PubMed

    Wang, Wenshi; Wang, Yijin; Debing, Yannick; Zhou, Xinying; Yin, Yuebang; Xu, Lei; Herrera Carrillo, Elena; Brandsma, Johannes H; Poot, Raymond A; Berkhout, Ben; Neyts, Johan; Peppelenbosch, Maikel P; Pan, Qiuwei

    2017-04-01

    Although hepatitis E has emerged as a global health issue, there is limited knowledge of its infection biology and no FDA-approved medication is available. Aiming to investigate the role of protein kinases in hepatitis E virus (HEV) infection and to identify potential antiviral targets, we screened a library of pharmacological kinase inhibitors in a cell culture model, a subgenomic HEV replicon containing luciferase reporter. We identified protein kinase C alpha (PKCα) as an essential cell host factor restricting HEV replication. Both specific inhibitor and shRNA-mediated knockdown of PKCα enhanced HEV replication. Conversely, over-expression of the activated form of PKCα or treatment with its pharmacological activator strongly inhibited HEV replication. Interestingly, upon the stimulation by its activator, PKCα efficiently activates its downstream Activator Protein 1 (AP-1) pathway, leading to the induction of antiviral interferon-stimulated genes (ISGs). This process is independent of the JAK-STAT machinery and interferon production. However, PKCα induced HEV inhibition appears independent of the AP1 cascade. The discovery that activated PKCα restricts HEV replication reveals new insight of HEV-host interactions and provides new target for antiviral drug development.

  19. Contribution of HN protein length diversity to Newcastle disease virus virulence, replication and biological activities

    PubMed Central

    Jin, Jihui; Zhao, Jing; Ren, Yingchao; Zhong, Qi; Zhang, Guozhong

    2016-01-01

    To evaluate the contribution of length diversity in the hemagglutinin-neuraminidase (HN) protein to the pathogenicity, replication and biological characteristics of Newcastle disease virus (NDV), we used reverse genetics to generate a series of recombinant NDVs containing truncated or extended HN proteins based on an infectious clone of genotype VII NDV (SG10 strain). The mean death times and intracerebral pathogenicity indices of these viruses showed that the different length mutations in the HN protein did not alter the virulence of NDV. In vitro studies of recombinant NDVs containing truncated or extended HN proteins revealed that the extension of HN protein increased its hemagglutination titer, receptor-binding ability and impaired its neuraminidase activity, fusogenic activity and replication ability. Furthermore, the hemadsorption, neuraminidase and fusogenic promotion activities at the protein level were consistent with those of viral level. Taken together, our results demonstrate that the HN biological activities affected by the C-terminal extension are associated with NDV replication but not the virulence. PMID:27833149

  20. Herpes simplex virus type 1 infection activates the Epstein-Barr virus replicative cycle via a CREB-dependent mechanism.

    PubMed

    Wu, Hongling; Li, Ting; Zeng, Musheng; Peng, Tao

    2012-04-01

    The reactivation of latent Epstein-Barr virus (EBV) to lytic replication is important in pathogenesis and requires virus-host cellular interactions. However, the mechanism underlying the reactivation of EBV is not yet fully understood. In the present study, herpes simplex virus type 1 (HSV-1) was shown to induce the reactivation of latent EBV by triggering BZLF1 expression. The BZLF1 promoter (Zp) was not activated by HSV-1 essential glycoprotein-induced membrane fusion. Nevertheless, Zp was activated within 6 h post HSV-1 infection in virus entry-dependent and replication-independent manners. Using a panel of Zp deletion mutants, HSV-1 was shown to promote Zp through a cyclic adenosine monophosphate (cAMP) response element (CRE) located in ZII. The phosphorylated cAMP response element-binding (phos-CREB) protein, the cellular transactivator that binds to CRE, also increased after HSV-1 infection. By transient transfection, cAMP-dependent protein kinase A and HSV-1 US3 protein were found to be capable of activating Zp in CREB- and CRE-dependent manners. The relationship between EBV activation and HSV-1 infection revealed a possible common mechanism that stimulated latent EBV into lytic cycles in vivo.

  1. Fullerene Derivatives Strongly Inhibit HIV-1 Replication by Affecting Virus Maturation without Impairing Protease Activity

    PubMed Central

    Martinez, Zachary S.; Castro, Edison; Seong, Chang-Soo; Cerón, Maira R.

    2016-01-01

    Three compounds (1, 2, and 3) previously reported to inhibit HIV-1 replication and/or in vitro activity of reverse transcriptase were studied, but only fullerene derivatives 1 and 2 showed strong antiviral activity on the replication of HIV-1 in human CD4+ T cells. However, these compounds did not inhibit infection by single-round infection vesicular stomatitis virus glycoprotein G (VSV-G)-pseudotyped viruses, indicating no effect on the early steps of the viral life cycle. In contrast, analysis of single-round infection VSV-G-pseudotyped HIV-1 produced in the presence of compound 1 or 2 showed a complete lack of infectivity in human CD4+ T cells, suggesting that the late stages of the HIV-1 life cycle were affected. Quantification of virion-associated viral RNA and p24 indicates that RNA packaging and viral production were unremarkable in these viruses. However, Gag and Gag-Pol processing was affected, as evidenced by immunoblot analysis with an anti-p24 antibody and the measurement of virion-associated reverse transcriptase activity, ratifying the effect of the fullerene derivatives on virion maturation of the HIV-1 life cycle. Surprisingly, fullerenes 1 and 2 did not inhibit HIV-1 protease in an in vitro assay at the doses that potently blocked viral infectivity, suggesting a protease-independent mechanism of action. Highlighting the potential therapeutic relevance of fullerene derivatives, these compounds block infection by HIV-1 resistant to protease and maturation inhibitors. PMID:27431232

  2. Antiviral Activity of Diterpene Esters on Chikungunya Virus and HIV Replication.

    PubMed

    Nothias-Scaglia, Louis-Félix; Pannecouque, Christophe; Renucci, Franck; Delang, Leen; Neyts, Johan; Roussi, Fanny; Costa, Jean; Leyssen, Pieter; Litaudon, Marc; Paolini, Julien

    2015-06-26

    Recently, new daphnane, tigliane, and jatrophane diterpenoids have been isolated from various Euphorbiaceae species, of which some have been shown to be potent inhibitors of chikungunya virus (CHIKV) replication. To further explore this type of compound, the antiviral activity of a series of 29 commercially available natural diterpenoids was evaluated. Phorbol-12,13-didecanoate (11) proved to be the most potent inhibitor, with an EC50 value of 6.0 ± 0.9 nM and a selectivity index (SI) of 686, which is in line with the previously reported anti-CHIKV potency for the structurally related 12-O-tetradecanoylphorbol-13-acetate (13). Most of the other compounds exhibited low to moderate activity, including an ingenane-type diterpene ester, compound 28, with an EC50 value of 1.2 ± 0.1 μM and SI = 6.4. Diterpene compounds are known also to inhibit HIV replication, so the antiviral activities of compounds 1-29 were evaluated also against HIV-1 and HIV-2. Tigliane- (4β-hydroxyphorbol analogues 10, 11, 13, 15, 16, and 18) and ingenane-type (27 and 28) diterpene esters were shown to inhibit HIV replication in vitro at the nanomolar level. A Pearson analysis performed with the anti-CHIKV and anti-HIV data sets demonstrated a linear relationship, which supported the hypothesis made that PKC may be an important target in CHIKV replication.

  3. Effects of mutations in the Exo III motif of the herpes simplex virus DNA polymerase gene on enzyme activities, viral replication, and replication fidelity.

    PubMed Central

    Hwang, Y T; Liu, B Y; Coen, D M; Hwang, C B

    1997-01-01

    The herpes simplex virus DNA polymerase catalytic subunit, which has intrinsic polymerase and 3'-5' exonuclease activities, contains sequence motifs that are homologous to those important for 3'-5' exonuclease activity in other polymerases. The role of one such motif, Exo III, was examined in this study. Mutated polymerases containing either a single tyrosine-to-histidine change at residue 577 or this change plus an aspartic acid-to-alanine at residue 581 in the Exo III motif exhibited defective or undetectable exonuclease activity, respectively, yet retained substantial polymerase activity. Despite the defects in exonuclease activity, the mutant polymerases were able to support viral replication in transient complementation assays, albeit inefficiently. Viruses replicated via the action of these mutant polymerases exhibited substantially increased frequencies of mutants resistant to ganciclovir. Furthermore, when the Exo III mutations were incorporated into the viral genome, the resulting mutant viruses displayed only modestly defect in replication in Vero cells and exhibited substantially increased mutation frequencies. The results suggest that herpes simplex virus can replicate despite severely impaired exonuclease activity and that the 3'-5' exonuclease contributes substantially to the fidelity of viral DNA replication. PMID:9311864

  4. PKR Activation Favors Infectious Pancreatic Necrosis Virus Replication in Infected Cells

    PubMed Central

    Gamil, Amr A.A.; Xu, Cheng; Mutoloki, Stephen; Evensen, Øystein

    2016-01-01

    The double-stranded RNA-activated protein kinase R (PKR) is a Type I interferon (IFN) stimulated gene that has important biological and immunological functions. In viral infections, in general, PKR inhibits or promotes viral replication, but PKR-IPNV interaction has not been previously studied. We investigated the involvement of PKR during infectious pancreatic necrosis virus (IPNV) infection using a custom-made rabbit antiserum and the PKR inhibitor C16. Reactivity of the antiserum to PKR in CHSE-214 cells was confirmed after IFNα treatment giving an increased protein level. IPNV infection alone did not give increased PKR levels by Western blot, while pre-treatment with PKR inhibitor before IPNV infection gave decreased eukaryotic initiation factor 2-alpha (eIF2α) phosphorylation. This suggests that PKR, despite not being upregulated, is involved in eIF2α phosphorylation during IPNV infection. PKR inhibitor pre-treatment resulted in decreased virus titers, extra- and intracellularly, concomitant with reduction of cells with compromised membranes in IPNV-permissive cell lines. These findings suggest that IPNV uses PKR activation to promote virus replication in infected cells. PMID:27338445

  5. Transforming growth factor β-activated kinase 1 transcriptionally suppresses hepatitis B virus replication

    PubMed Central

    Pang, Jinke; Zhang, Geng; Lin, Yong; Xie, Zhanglian; Liu, Hongyan; Tang, Libo; Lu, Mengji; Yan, Ran; Guo, Haitao; Sun, Jian; Hou, Jinlin; Zhang, Xiaoyong

    2017-01-01

    Hepatitis B Virus (HBV) replication in hepatocytes is restricted by the host innate immune system and related intracellular signaling pathways. Transforming growth factor β-activated kinase 1 (TAK1) is a key mediator of toll-like receptors and pro-inflammatory cytokine signaling pathways. Here, we report that silencing or inhibition of endogenous TAK1 in hepatoma cell lines leads to an upregulation of HBV replication, transcription, and antigen expression. In contrast, overexpression of TAK1 significantly suppresses HBV replication, while an enzymatically inactive form of TAK1 exerts no effect. By screening TAK1-associated signaling pathways with inhibitors and siRNAs, we found that the MAPK-JNK pathway was involved in TAK1-mediated HBV suppression. Moreover, TAK1 knockdown or JNK pathway inhibition induced the expression of farnesoid X receptor α, a transcription factor that upregulates HBV transcription. Finally, ectopic expression of TAK1 in a HBV hydrodynamic injection mouse model resulted in lower levels of HBV DNA and antigens in both liver and serum. In conclusion, our data suggest that TAK1 inhibits HBV primarily at viral transcription level through activation of MAPK-JNK pathway, thus TAK1 represents an intrinsic host restriction factor for HBV replication in hepatocytes. PMID:28045080

  6. Dengue Virus Type 2: Protein Binding and Active Replication in Human Central Nervous System Cells

    PubMed Central

    Salazar, Ma Isabel; Pérez-García, Marissa; Terreros-Tinoco, Marisol; Castro-Mussot, María Eugenia; Diegopérez-Ramírez, Jaime; Ramírez-Reyes, Alma Griselda; Aguilera, Penélope; Cedillo-Barrón, Leticia; García-Flores, María Martha

    2013-01-01

    An increased number of dengue cases with neurological complications have been reported in recent years. The lack of reliable animal models for dengue has hindered studies on dengue virus (DENV) pathogenesis and cellular tropism in vivo. We further investigate the tropism of DENV for the human central nervous system (CNS), characterizing DENV interactions with cell surface proteins in human CNS cells by virus overlay protein binding assays (VOPBA) and coimmunoprecipitations. In VOPBA, three membrane proteins (60, 70, and 130 kDa) from the gray matter bound the entire virus particle, whereas only a 70 kDa protein bound in white matter. The coimmunoprecipitation assays revealed three proteins from gray matter consistently binding virus particles, one clearly distinguishable protein (~32 kDa) and two less apparent proteins (100 and 130 kDa). Monoclonal anti-NS3 targeted the virus protein in primary cell cultures of human CNS treated with DENV-2, which also stained positive for NeuH, a neuron-specific marker. Thus, our results indicate (1) that DENV-2 exhibited a direct tropism for human neurons and (2) that human neurons sustain an active DENV replication as was demonstrated by the presence of the NS3 viral antigen in primary cultures of these cells treated with DENV-2. PMID:24302878

  7. Dengue virus type 2: protein binding and active replication in human central nervous system cells.

    PubMed

    Salazar, Ma Isabel; Pérez-García, Marissa; Terreros-Tinoco, Marisol; Castro-Mussot, María Eugenia; Diegopérez-Ramírez, Jaime; Ramírez-Reyes, Alma Griselda; Aguilera, Penélope; Cedillo-Barrón, Leticia; García-Flores, María Martha

    2013-01-01

    An increased number of dengue cases with neurological complications have been reported in recent years. The lack of reliable animal models for dengue has hindered studies on dengue virus (DENV) pathogenesis and cellular tropism in vivo. We further investigate the tropism of DENV for the human central nervous system (CNS), characterizing DENV interactions with cell surface proteins in human CNS cells by virus overlay protein binding assays (VOPBA) and coimmunoprecipitations. In VOPBA, three membrane proteins (60, 70, and 130 kDa) from the gray matter bound the entire virus particle, whereas only a 70 kDa protein bound in white matter. The coimmunoprecipitation assays revealed three proteins from gray matter consistently binding virus particles, one clearly distinguishable protein (~32 kDa) and two less apparent proteins (100 and 130 kDa). Monoclonal anti-NS3 targeted the virus protein in primary cell cultures of human CNS treated with DENV-2, which also stained positive for NeuH, a neuron-specific marker. Thus, our results indicate (1) that DENV-2 exhibited a direct tropism for human neurons and (2) that human neurons sustain an active DENV replication as was demonstrated by the presence of the NS3 viral antigen in primary cultures of these cells treated with DENV-2.

  8. Antiviral activity of chloroquine against dengue virus type 2 replication in Aotus monkeys.

    PubMed

    Farias, Kleber Juvenal Silva; Machado, Paula Renata Lima; Muniz, José Augusto Pereira Carneiro; Imbeloni, Aline Amaral; da Fonseca, Benedito Antônio Lopes

    2015-04-01

    Dengue virus (DENV) of the Flaviviridae family is a single positive-stranded RNA virus that is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. The objective of this study was to investigate the use of chloroquine (CLQ) as an antiviral drug against dengue virus in monkeys. To analyze the action of the drug in vivo, nonhuman primates groups (Aotus azarai infulatus) were inoculated with a subcutaneous injection of a virulent strain of DENV-2, treated and untreated CLQ. Blood hematological, viremia, and serum biochemical values were obtained from 16 DENV-2-inoculated, treated and untreated; four received only CLQ and one mock-infected Aotus monkeys. Monkey serum samples (day 0-10 post-inoculation) were assayed by reverse transcription polymerase chain reaction and Cytometric Bead Array for determination of viremia and inflammatory cytokines, respectively. Additionally, body temperature and activity levels were determined. In the present work, CLQ was effective on replication of DENV-2 in Aotus monkeys; a time viremia reduction was observed compared with the controls. The concentration of tumor necrosis factor alpha and interferon gamma in the serum of the animals had a statistically significant reduction in the groups treated with CLQ after infection compared with the controls. A significant decrease in systemic levels of the liver enzyme aspartate aminotransferase (AST) was also observed in the animals treated with CLQ after infection compared with the controls. These results suggest that CLQ interferes in DENV-2 replication in Aotus monkeys.

  9. Antiviral Activity of Chloroquine Against Dengue Virus Type 2 Replication in Aotus Monkeys

    PubMed Central

    Machado, Paula Renata Lima; Muniz, José Augusto Pereira Carneiro; Imbeloni, Aline Amaral; da Fonseca, Benedito Antônio Lopes

    2015-01-01

    Abstract Dengue virus (DENV) of the Flaviviridae family is a single positive-stranded RNA virus that is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. The objective of this study was to investigate the use of chloroquine (CLQ) as an antiviral drug against dengue virus in monkeys. To analyze the action of the drug in vivo, nonhuman primates groups (Aotus azarai infulatus) were inoculated with a subcutaneous injection of a virulent strain of DENV-2, treated and untreated CLQ. Blood hematological, viremia, and serum biochemical values were obtained from 16 DENV-2-inoculated, treated and untreated; four received only CLQ and one mock-infected Aotus monkeys. Monkey serum samples (day 0–10 post-inoculation) were assayed by reverse transcription polymerase chain reaction and Cytometric Bead Array for determination of viremia and inflammatory cytokines, respectively. Additionally, body temperature and activity levels were determined. In the present work, CLQ was effective on replication of DENV-2 in Aotus monkeys; a time viremia reduction was observed compared with the controls. The concentration of tumor necrosis factor alpha and interferon gamma in the serum of the animals had a statistically significant reduction in the groups treated with CLQ after infection compared with the controls. A significant decrease in systemic levels of the liver enzyme aspartate aminotransferase (AST) was also observed in the animals treated with CLQ after infection compared with the controls. These results suggest that CLQ interferes in DENV-2 replication in Aotus monkeys. PMID:25664975

  10. Fullerene Derivatives Strongly Inhibit HIV-1 Replication by Affecting Virus Maturation without Impairing Protease Activity.

    PubMed

    Martinez, Zachary S; Castro, Edison; Seong, Chang-Soo; Cerón, Maira R; Echegoyen, Luis; Llano, Manuel

    2016-10-01

    Three compounds (1, 2, and 3) previously reported to inhibit HIV-1 replication and/or in vitro activity of reverse transcriptase were studied, but only fullerene derivatives 1 and 2 showed strong antiviral activity on the replication of HIV-1 in human CD4(+) T cells. However, these compounds did not inhibit infection by single-round infection vesicular stomatitis virus glycoprotein G (VSV-G)-pseudotyped viruses, indicating no effect on the early steps of the viral life cycle. In contrast, analysis of single-round infection VSV-G-pseudotyped HIV-1 produced in the presence of compound 1 or 2 showed a complete lack of infectivity in human CD4(+) T cells, suggesting that the late stages of the HIV-1 life cycle were affected. Quantification of virion-associated viral RNA and p24 indicates that RNA packaging and viral production were unremarkable in these viruses. However, Gag and Gag-Pol processing was affected, as evidenced by immunoblot analysis with an anti-p24 antibody and the measurement of virion-associated reverse transcriptase activity, ratifying the effect of the fullerene derivatives on virion maturation of the HIV-1 life cycle. Surprisingly, fullerenes 1 and 2 did not inhibit HIV-1 protease in an in vitro assay at the doses that potently blocked viral infectivity, suggesting a protease-independent mechanism of action. Highlighting the potential therapeutic relevance of fullerene derivatives, these compounds block infection by HIV-1 resistant to protease and maturation inhibitors. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Inhibition of herpes simplex virus type 1 replication by adeno-associated virus rep proteins depends on their combined DNA-binding and ATPase/helicase activities.

    PubMed

    Glauser, Daniel L; Seyffert, Michael; Strasser, Regina; Franchini, Marco; Laimbacher, Andrea S; Dresch, Christiane; de Oliveira, Anna Paula; Vogel, Rebecca; Büning, Hildegard; Salvetti, Anna; Ackermann, Mathias; Fraefel, Cornel

    2010-04-01

    Adeno-associated virus (AAV) has previously been shown to inhibit the replication of its helper virus herpes simplex virus type 1 (HSV-1), and the inhibitory activity has been attributed to the expression of the AAV Rep proteins. In the present study, we assessed the Rep activities required for inhibition of HSV-1 replication using a panel of wild-type and mutant Rep proteins lacking defined domains and activities. We found that the inhibition of HSV-1 replication required Rep DNA-binding and ATPase/helicase activities but not endonuclease activity. The Rep activities required for inhibition of HSV-1 replication precisely coincided with the activities that were responsible for induction of cellular DNA damage and apoptosis, suggesting that these three processes are closely linked. Notably, the presence of Rep induced the hyperphosphorylation of a DNA damage marker, replication protein A (RPA), which has been reported not to be normally hyperphosphorylated during HSV-1 infection and to be sequestered away from HSV-1 replication compartments during infection. Finally, we demonstrate that the execution of apoptosis is not required for inhibition of HSV-1 replication and that the hyperphosphorylation of RPA per se is not inhibitory for HSV-1 replication, suggesting that these two processes are not directly responsible for the inhibition of HSV-1 replication by Rep.

  12. Plant virus replication and movement.

    PubMed

    Heinlein, Manfred

    2015-05-01

    Replication and intercellular spread of viruses depend on host mechanisms supporting the formation, transport and turnover of functional complexes between viral genomes, virus-encoded products and cellular factors. To enhance these processes, viruses assemble and replicate in membrane-associated complexes that may develop into "virus factories" or "viroplasms" in which viral components and host factors required for replication are concentrated. Many plant viruses replicate in association with the cortical ER-actin network that is continuous between cells through plasmodesmata. The replication complexes can be highly organized and supported by network interactions between the viral genome and the virus-encoded proteins. Intracellular PD targeting of replication complexes links the process of movement to replication and provides specificity for transport of the viral genome by the virus-encoded movement proteins. The formation and trafficking of replication complexes and also the development and anchorage of replication factories involves important roles of the cortical cytoskeleton and associated motor proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication by transcriptional activation at the long terminal repeat.

    PubMed Central

    Zhang, Y; Nakata, K; Weiden, M; Rom, W N

    1995-01-01

    Tuberculosis has emerged as an epidemic fueled by the large number of individuals infected with the human immunodeficiency virus, especially those who are injecting drug users. We found a striking increase from 4- to 208-fold in p24 levels in bronchoalveolar lavage fluid from involved sites of Mycobacterium tuberculosis infection vs uninvolved sites in three HIV+ patients. We used an in vitro cell culture model to determine if tuberculosis could activate replication of HIV-1. Mononuclear phagocyte cell lines U937 and THP-1 infected with HIV-1JR-CSF, in vitro and stimulated with live M. tuberculosis H37Ra, had a threefold increase in p24 in culture supernatants. Using the HIV-1 long terminal repeat with a chloramphenicol acetyltransferase (CAT) reporter construct, live M. tuberculosis increased transcription 20-fold in THP-1 cells, and cell wall components stimulated CAT expression to a lesser extent. The nuclear factor-kappa B enhancer element was responsible for the majority of the increased CAT activity although two upstream nuclear factor-IL6 sites may also contribute to enhanced transcription. Antibodies to TNF-alpha and IL-1 inhibited the increase in CAT activity of the HIV-1 long terminal repeat by M. tuberculosis from 21-fold to 8-fold. Stimulation of HIV-1 replication by M. tuberculosis may exacerbate dysfunction of the host immune response in dually infected individuals. Images PMID:7738195

  14. The Hepatitis B Virus (HBV) HBx Protein Activates AKT To Simultaneously Regulate HBV Replication and Hepatocyte Survival

    PubMed Central

    Rawat, Siddhartha

    2014-01-01

    ABSTRACT Chronic infection with hepatitis B virus (HBV) is a risk factor for developing liver diseases such as hepatocellular carcinoma (HCC). HBx is a multifunctional protein encoded by the HBV genome; HBx stimulates HBV replication and is thought to play an important role in the development of HBV-associated HCC. HBx can activate the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway in some cell lines; however, whether HBx regulates PI3K/AKT signaling in normal hepatocytes has not been evaluated. In studies described here, we assessed HBx activation of PI3K/AKT signaling in an ex vivo model of cultured primary hepatocytes and determined how this HBx activity affects HBV replication. We report that HBx activates AKT in primary hepatocytes and that the activation of AKT decreases HBV replication and HBV mRNA and core protein levels. We show that the transcription factor hepatocyte nuclear factor 4α (HNF4α) is a target of HBx-regulated AKT, and we link HNF4α to HBx-regulated AKT modulation of HBV transcription and replication. Although we and others have shown that HBx stimulates and is likely required for HBV replication, we now report that HBx also activates signals that can diminish the overall level of HBV replication. While this may seem counterintuitive, we show that an important effect of HBx activation of AKT is inhibition of apoptosis. Consequently, our studies suggest that HBx balances HBV replication and cell survival by stimulating signaling pathways that enhance hepatocyte survival at the expense of higher levels of HBV replication. IMPORTANCE Chronic hepatitis B virus (HBV) infection is a common cause of the development of liver cancer. Regulation of cell signaling pathways by the HBV HBx protein is thought to influence the development of HBV-associated liver cancer. HBx stimulates, and may be essential for, HBV replication. We show that HBx activates AKT in hepatocytes to reduce HBV replication. While this seems contradictory to an

  15. Cyclooxygenase activity is important for efficient replication of mouse hepatitis virus at an early stage of infection.

    PubMed

    Raaben, Matthijs; Einerhand, Alexandra W C; Taminiau, Lucas J A; van Houdt, Michel; Bouma, Janneke; Raatgeep, Rolien H; Büller, Hans A; de Haan, Cornelis A M; Rossen, John W A

    2007-06-07

    Cyclooxygenases (COXs) play a significant role in many different viral infections with respect to replication and pathogenesis. Here we investigated the role of COXs in the mouse hepatitis coronavirus (MHV) infection cycle. Blocking COX activity by different inhibitors or by RNA interference affected MHV infection in different cells. The COX inhibitors reduced MHV infection at a post-binding step, but early in the replication cycle. Both viral RNA and viral protein synthesis were affected with subsequent loss of progeny virus production. Thus, COX activity appears to be required for efficient MHV replication, providing a potential target for anti-coronaviral therapy.

  16. Antiviral Activity of Hatay Propolis Against Replication of Herpes Simplex Virus Type 1 and Type 2

    PubMed Central

    Yildirim, Ayse; Duran, Gulay Gulbol; Duran, Nizami; Jenedi, Kemal; Bolgul, Behiye Sezgin; Miraloglu, Meral; Muz, Mustafa

    2016-01-01

    Background Propolis is a bee product widely used in folk medicine and possessing many pharmacological properties. In this study we aimed to investigate: i) the antiviral activities of Hatay propolis samples against HSV-1 and HSV-2 in HEp-2 cell line, and ii) the presence of the synergistic effects of propolis with acyclovir against these viruses. Material/Methods All experiments were carried out in HEp-2 cell cultures. Proliferation assays were performed in 24-well flat bottom microplates. We inoculated 1×105 cells per ml and RPMI 1640 medium with 10% fetal calf serum into each well. Studies to determine cytotoxic effect were performed. To investigate the presence of antiviral activity of propolis samples, different concentrations of propolis (3200, 1600, 800, 400, 200, 100, 75, 50, and 25 μg/mL) were added into the culture medium. The amplifications of HSV-1 and HSV-2 DNA were performed by real-time PCR method. Acyclovir (Sigma, USA) was chosen as a positive control. Cell morphology was evaluated by scanning electron microscopy (SEM). Results The replication of HSV-1 and HSV-2 was significantly suppressed in the presence of 25, 50, and 100 μg/mL of Hatay propolis. We found that propolis began to inhibit HSV-1 replication after 24 h of incubation and propolis activity against HSV-2 was found to start at 48 h following incubation. The activity of propolis against both HSV-1 and HSV-2 was confirmed by a significant decrease in the number of viral copies. Conclusions We determined that Hatay propolis samples have important antiviral effects compared with acyclovir. In particular, the synergy produced by antiviral activity of propolis and acyclovir combined had a stronger effect against HSV-1 and HSV-2 than acyclovir alone. PMID:26856414

  17. Antiviral Activity of Hatay Propolis Against Replication of Herpes Simplex Virus Type 1 and Type 2.

    PubMed

    Yildirim, Ayse; Duran, Gulay Gulbol; Duran, Nizami; Jenedi, Kemal; Bolgul, Behiye Sezgin; Miraloglu, Meral; Muz, Mustafa

    2016-02-09

    BACKGROUND Propolis is a bee product widely used in folk medicine and possessing many pharmacological properties. In this study we aimed to investigate: i) the antiviral activities of Hatay propolis samples against HSV-1 and HSV-2 in HEp-2 cell line, and ii) the presence of the synergistic effects of propolis with acyclovir against these viruses. MATERIAL AND METHODS All experiments were carried out in HEp-2 cell cultures. Proliferation assays were performed in 24-well flat bottom microplates. We inoculated 1x105 cells per ml and RPMI 1640 medium with 10% fetal calf serum into each well. Studies to determine cytotoxic effect were performed. To investigate the presence of antiviral activity of propolis samples, different concentrations of propolis (3200, 1600, 800, 400, 200, 100, 75, 50, and 25 μg/mL) were added into the culture medium. The amplifications of HSV-1 and HSV-2 DNA were performed by real-time PCR method. Acyclovir (Sigma, USA) was chosen as a positive control. Cell morphology was evaluated by scanning electron microscopy (SEM). RESULTS The replication of HSV-1 and HSV-2 was significantly suppressed in the presence of 25, 50, and 100 μg/mL of Hatay propolis. We found that propolis began to inhibit HSV-1 replication after 24 h of incubation and propolis activity against HSV-2 was found to start at 48 h following incubation. The activity of propolis against both HSV-1 and HSV-2 was confirmed by a significant decrease in the number of viral copies. CONCLUSIONS We determined that Hatay propolis samples have important antiviral effects compared with acyclovir. In particular, the synergy produced by antiviral activity of propolis and acyclovir combined had a stronger effect against HSV-1 and HSV-2 than acyclovir alone.

  18. Active RNA Replication of Hepatitis C Virus Downregulates CD81 Expression

    PubMed Central

    Ke, Po-Yuan; Chen, Steve S.-L.

    2013-01-01

    So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81. PMID:23349980

  19. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    PubMed

    Ke, Po-Yuan; Chen, Steve S-L

    2013-01-01

    So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  20. Primary naive and interleukin-2-activated natural killer cells do not support efficient ectromelia virus replication.

    PubMed

    Parker, April Keim; Yokoyama, Wayne M; Corbett, John A; Chen, Nanhai; Buller, R Mark L

    2008-03-01

    Natural killer (NK) cells are known for their ability to lyse tumour cell targets. Studies of infections by a number of viruses, including poxviruses and herpesviruses, have demonstrated that NK cells are vital for recovery from these infections. Little is known of the ability of viruses to infect and complete a productive replication cycle within NK cells. Even less is known concerning the effect of infection on NK cell biology. This study investigated the ability of ectromelia virus (ECTV) to infect NK cells in vitro and in vivo. Following ECTV infection, NK cell gamma interferon (IFN-gamma) production was diminished and infected cells ceased proliferating and lost viability. ECTV infection of NK cells led to early and late virus gene expression and visualization of immature and mature virus particles, but no detectable increase in viable progeny virus. It was not unexpected that early gene expression occurred in infected NK cells, as the complete early transcription system is packaged within the virions. The detection of the secreted early virus-encoded immunomodulatory proteins IFN-gamma-binding protein and ectromelia inhibitor of complement enzymes (EMICE) in NK cell culture supernatants suggests that even semi-permissive infection may permit immunomodulation of the local environment.

  1. Suppressing active replication of a live attenuated simian immunodeficiency virus vaccine does not abrogate protection from challenge

    SciTech Connect

    Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver; Plesker, Roland; Coulibaly, Cheick; Cichutek, Klaus; Mühlebach, Michael D.; Bannert, Norbert; Kurth, Reinhard; Norley, Stephen

    2016-02-15

    Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequent challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.

  2. Replication-Competent Controlled Herpes Simplex Virus.

    PubMed

    Bloom, David C; Feller, Joyce; McAnany, Peterjon; Vilaboa, Nuria; Voellmy, Richard

    2015-10-01

    We present the development and characterization of a replication-competent controlled herpes simplex virus 1 (HSV-1). Replication-essential ICP4 and ICP8 genes of HSV-1 wild-type strain 17syn+ were brought under the control of a dually responsive gene switch. The gene switch comprises (i) a transactivator that is activated by a narrow class of antiprogestins, including mifepristone and ulipristal, and whose expression is mediated by a promoter cassette that comprises an HSP70B promoter and a transactivator-responsive promoter and (ii) transactivator-responsive promoters that drive the ICP4 and ICP8 genes. Single-step growth experiments in different cell lines demonstrated that replication of the recombinant virus, HSV-GS3, is strictly dependent on an activating treatment consisting of administration of a supraphysiological heat dose in the presence of an antiprogestin. The replication-competent controlled virus replicates with an efficiency approaching that of the wild-type virus from which it was derived. Essentially no replication occurs in the absence of activating treatment or if HSV-GS3-infected cells are exposed only to heat or antiprogestin. These findings were corroborated by measurements of amounts of viral DNA and transcripts of the regulated ICP4 gene and the glycoprotein C (gC) late gene, which was not regulated. Similar findings were made in experiments with a mouse footpad infection model. The alphaherpesviruses have long been considered vectors for recombinant vaccines and oncolytic therapies. The traditional approach uses vector backbones containing attenuating mutations that restrict replication to ensure safety. The shortcoming of this approach is that the attenuating mutations tend to limit both the immune presentation and oncolytic properties of these vectors. HSV-GS3 represents a novel type of vector that, when activated, replicates with the efficiency of a nonattenuated virus and whose safety is derived from deliberate, stringent regulation of

  3. Replication-Competent Controlled Herpes Simplex Virus

    PubMed Central

    Bloom, David C.; Feller, Joyce; McAnany, Peterjon; Vilaboa, Nuria

    2015-01-01

    ABSTRACT We present the development and characterization of a replication-competent controlled herpes simplex virus 1 (HSV-1). Replication-essential ICP4 and ICP8 genes of HSV-1 wild-type strain 17syn+ were brought under the control of a dually responsive gene switch. The gene switch comprises (i) a transactivator that is activated by a narrow class of antiprogestins, including mifepristone and ulipristal, and whose expression is mediated by a promoter cassette that comprises an HSP70B promoter and a transactivator-responsive promoter and (ii) transactivator-responsive promoters that drive the ICP4 and ICP8 genes. Single-step growth experiments in different cell lines demonstrated that replication of the recombinant virus, HSV-GS3, is strictly dependent on an activating treatment consisting of administration of a supraphysiological heat dose in the presence of an antiprogestin. The replication-competent controlled virus replicates with an efficiency approaching that of the wild-type virus from which it was derived. Essentially no replication occurs in the absence of activating treatment or if HSV-GS3-infected cells are exposed only to heat or antiprogestin. These findings were corroborated by measurements of amounts of viral DNA and transcripts of the regulated ICP4 gene and the glycoprotein C (gC) late gene, which was not regulated. Similar findings were made in experiments with a mouse footpad infection model. IMPORTANCE The alphaherpesviruses have long been considered vectors for recombinant vaccines and oncolytic therapies. The traditional approach uses vector backbones containing attenuating mutations that restrict replication to ensure safety. The shortcoming of this approach is that the attenuating mutations tend to limit both the immune presentation and oncolytic properties of these vectors. HSV-GS3 represents a novel type of vector that, when activated, replicates with the efficiency of a nonattenuated virus and whose safety is derived from deliberate

  4. Phosphorylation of Herpes Simplex Virus 1 dUTPase Upregulated Viral dUTPase Activity To Compensate for Low Cellular dUTPase Activity for Efficient Viral Replication

    PubMed Central

    Kato, Akihisa; Hirohata, Yoshitaka; Arii, Jun

    2014-01-01

    ABSTRACT We recently reported that herpes simplex virus 1 (HSV-1) protein kinase Us3 phosphorylated viral dUTPase (vdUTPase) at serine 187 (Ser-187) to upregulate its enzymatic activity, which promoted HSV-1 replication in human neuroblastoma SK-N-SH cells but not in human carcinoma HEp-2 cells. In the present study, we showed that endogenous cellular dUTPase activity in SK-N-SH cells was significantly lower than that in HEp-2 cells and that overexpression of cellular dUTPase in SK-N-SH cells increased the replication of an HSV-1 mutant with an alanine substitution for Ser-187 (S187A) in vdUTPase to the wild-type level. In addition, we showed that knockdown of cellular dUTPase in HEp-2 cells significantly reduced replication of the mutant vdUTPase (S187A) virus but not that of wild-type HSV-1. Furthermore, the replacement of Ser-187 in vdUTPase with aspartic acid, which mimics constitutive phosphorylation, and overexpression of cellular dUTPase restored viral replication to the wild-type level in cellular dUTPase knockdown HEp-2 cells. These results indicated that sufficient dUTPase activity was required for efficient HSV-1 replication and supported the hypothesis that Us3 phosphorylation of vdUTPase Ser-187 upregulated vdUTPase activity in host cells with low cellular dUTPase activity to produce efficient viral replication.virus. IMPORTANCE It has long been assumed that dUTPase activity is important for replication of viruses encoding a dUTPase and that the viral dUTPase (vdUTPase) activity was needed if host cell dUTPase activity was not sufficient for efficient viral replication. In the present study, we showed that the S187A mutation in HSV-1 vdUTPase, which impaired its enzymatic activity, reduced viral replication in SK-N-SH cells, which have low endogenous cellular dUTPase activity, and that overexpression of cellular dUTPase restored viral replication to the wild-type level. We also showed that knockdown of cellular dUTPase in HEp-2 cells, which have higher

  5. Hepatitis C Virus Co-Opts Ras-GTPase-Activating Protein-Binding Protein 1 for Its Genome Replication

    PubMed Central

    Yi, Zhigang; Pan, Tingting; Wu, Xianfang; Song, Wuhui; Wang, Shanshan; Xu, Yan; Rice, Charles M.; MacDonald, Margaret R.; Yuan, Zhenghong

    2011-01-01

    We recently reported that Ras-GTPase-activating protein-binding protein 1 (G3BP1) interacts with hepatitis C virus (HCV) nonstructural protein (NS)5B and the 5′ end of the HCV minus-strand RNA. In the current study we confirmed these observations using immunoprecipitation and RNA pulldown assays, suggesting that G3BP1 might be an HCV replication complex (RC) component. In replicon cells, transfected G3BP1 interacts with multiple HCV nonstructural proteins. Using immunostaining and confocal microscopy, we demonstrate that G3BP1 is colocalized with HCV RCs in replicon cells. Small interfering RNA (siRNA)-mediated knockdown of G3BP1 moderately reduces established HCV RNA replication in HCV replicon cells and dramatically reduces HCV replication-dependent colony formation and cell-culture-produced HCV (HCVcc) infection. In contrast, knockdown of G3BP2 has no effect on HCVcc infection. Transient replication experiments show that G3BP1 is involved in HCV genome amplification. Thus, G3BP1 is associated with HCV RCs and may be co-opted as a functional RC component for viral replication. These findings may facilitate understanding of the molecular mechanisms of HCV genome replication. PMID:21561913

  6. Human Cytomegalovirus Induces JC Virus DNA Replication in Human Fibroblasts

    NASA Astrophysics Data System (ADS)

    Heilbronn, Regine; Albrecht, Ingrid; Stephan, Sonja; Burkle, Alexander; Zur Hausen, Harald

    1993-12-01

    JC virus, a human papovavirus, is the causative agent of the demyelinating brain disease progressive multifocal leucoencephalopathy (PML). PML is a rare but fatal disease which develops as a complication of severe immunosuppression. Latent JC virus is harbored by many asymptomatic carriers and is transiently reactivated from the latent state upon immunosuppression. JC virus has a very restricted host range, with human glial cells being the only tissue in which it can replicate at reasonable efficiency. Evidence that latent human cytomegalovirus is harbored in the kidney similar to latent JC virus led to the speculation that during episodes of impaired immunocompetence, cytomegalovirus might serve as helper virus for JC virus replication in otherwise nonpermissive cells. We show here that cytomegalovirus infection indeed leads to considerable JC virus DNA replication in cultured human fibroblasts that are nonpermissive for the replication of JC virus alone. Cytomegalovirus-mediated JC virus replication is dependent on the JC virus origin of replication and T antigen. Ganciclovir-induced inhibition of cytomegalovirus replication is associated with a concomitant inhibition of JC virus replication. These results suggest that reactivation of cytomegalovirus during episodes of immunosuppression might lead to activation of latent JC virus, which would enhance the probability of subsequent PML development. Ganciclovir-induced repression of both cytomegalovirus and JC virus replication may form the rational basis for the development of an approach toward treatment or prevention of PML.

  7. Autophagy Negatively Regulates Transmissible Gastroenteritis Virus Replication.

    PubMed

    Guo, Longjun; Yu, Haidong; Gu, Weihong; Luo, Xiaolei; Li, Ren; Zhang, Jian; Xu, Yunfei; Yang, Lijun; Shen, Nan; Feng, Li; Wang, Yue

    2016-03-31

    Autophagy is an evolutionarily ancient pathway that has been shown to be important in the innate immune defense against several viruses. However, little is known about the regulatory role of autophagy in transmissible gastroenteritis virus (TGEV) replication. In this study, we found that TGEV infection increased the number of autophagosome-like double- and single-membrane vesicles in the cytoplasm of host cells, a phenomenon that is known to be related to autophagy. In addition, virus replication was required for the increased amount of the autophagosome marker protein LC3-II. Autophagic flux occurred in TGEV-infected cells, suggesting that TGEV infection triggered a complete autophagic response. When autophagy was pharmacologically inhibited by wortmannin or LY294002, TGEV replication increased. The increase in virus yield via autophagy inhibition was further confirmed by the use of siRNA duplexes, through which three proteins required for autophagy were depleted. Furthermore, TGEV replication was inhibited when autophagy was activated by rapamycin. The antiviral response of autophagy was confirmed by using siRNA to reduce the expression of gene p300, which otherwise inhibits autophagy. Together, the results indicate that TGEV infection activates autophagy and that autophagy then inhibits further TGEV replication.

  8. Role of Single-Stranded DNA Binding Activity of T Antigen in Simian Virus 40 DNA Replication

    PubMed Central

    Wu, Chunxiao; Roy, Rupa; Simmons, Daniel T.

    2001-01-01

    We have previously mapped the single-stranded DNA binding domain of large T antigen to amino acid residues 259 to 627. By using internal deletion mutants, we show that this domain most likely begins after residue 301 and that the region between residues 501 and 550 is not required. To study the function of this binding activity, a series of single-point substitutions were introduced in this domain, and the mutants were tested for their ability to support simian virus 40 (SV40) replication and to bind to single-stranded DNA. Two replication-defective mutants (429DA and 460EA) were grossly impaired in single-stranded DNA binding. These two mutants were further tested for other biochemical activities needed for viral DNA replication. They bound to origin DNA and formed double hexamers in the presence of ATP. Their ability to unwind origin DNA and a helicase substrate was severely reduced, although they still had ATPase activity. These results suggest that the single-stranded DNA binding activity is involved in DNA unwinding. The two mutants were also very defective in structural distortion of origin DNA, making it likely that single-stranded DNA binding is also required for this process. These data show that single-stranded DNA binding is needed for at least two steps during SV40 DNA replication. PMID:11222709

  9. Prolonged control of replication-competent dual- tropic human immunodeficiency virus-1 following cessation of highly active antiretroviral therapy.

    PubMed

    Salgado, Maria; Rabi, S Alireza; O'Connell, Karen A; Buckheit, Robert W; Bailey, Justin R; Chaudhry, Amina A; Breaud, Autumn R; Marzinke, Mark A; Clarke, William; Margolick, Joseph B; Siliciano, Robert F; Blankson, Joel N

    2011-12-05

    While initiation of highly active antiretroviral therapy (HAART) during primary HIV-1 infection occasionally results in transient control of viral replication after treatment interruption, the vast majority of patients eventually experience a rebound in plasma viremia. Here we report a case of a patient who was started on HAART during symptomatic primary infection and who has subsequently maintained viral loads of < 50 copies/mL for more than nine years after the cessation of treatment. This patient had a high baseline viral load and has maintained a relatively high frequency of latently infected CD4(+) T cells. In addition, he does not have any known protective HLA alleles. Thus it is unlikely that he was destined to become a natural elite controller or suppressor. The mechanism of control of viral replication is unclear; he is infected with a CCR5/CXCR4 dual-tropic virus that is fully replication-competent in vitro. In addition, his spouse, who transmitted the virus to him, developed AIDS. The patient's CD4(+) T cells are fully susceptible to HIV-1 infection, and he has low titers of neutralizing antibodies to heterologous and autologous HIV-1 isolates. Furthermore, his CD8(+) T cells do not have potent HIV suppressive activity. This report suggests that some patients may be capable of controlling pathogenic HIV-1 isolates for extended periods of time after the cessation of HAART through a mechanism that is distinct from the potent cytotoxic T lymphocyte (CTL) mediated suppression that has been reported in many elite suppressors.

  10. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication.

    PubMed

    Thai, Minh; Graham, Nicholas A; Braas, Daniel; Nehil, Michael; Komisopoulou, Evangelia; Kurdistani, Siavash K; McCormick, Frank; Graeber, Thomas G; Christofk, Heather R

    2014-04-01

    Virus infections trigger metabolic changes in host cells that support the bioenergetic and biosynthetic demands of viral replication. Although recent studies have characterized virus-induced changes in host cell metabolism (Munger et al., 2008; Terry et al., 2012), the molecular mechanisms by which viruses reprogram cellular metabolism have remained elusive. Here, we show that the gene product of adenovirus E4ORF1 is necessary for adenovirus-induced upregulation of host cell glucose metabolism and sufficient to promote enhanced glycolysis in cultured epithelial cells by activation of MYC. E4ORF1 localizes to the nucleus, binds to MYC, and enhances MYC binding to glycolytic target genes, resulting in elevated expression of specific glycolytic enzymes. E4ORF1 activation of MYC promotes increased nucleotide biosynthesis from glucose intermediates and enables optimal adenovirus replication in primary lung epithelial cells. Our findings show how a viral protein exploits host cell machinery to reprogram cellular metabolism and promote optimal progeny virion generation. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Long Terminal Repeat Circular DNA as Markers of Active Viral Replication of Human T Lymphotropic Virus-1 in Vivo

    PubMed Central

    Fox, James M; Hilburn, Silva; Demontis, Maria-Antonietta; Brighty, David W; Rios Grassi, Maria Fernanda; Galvão-Castro, Bernardo; Taylor, Graham P; Martin, Fabiola

    2016-01-01

    Clonal expansion of human T-lymphotropic virus type-1 (HTLV-1) infected cells in vivo is well documented. Unlike human immunodeficiency virus type 1 (HIV-1), HTLV-1 plasma RNA is sparse. The contribution of the “mitotic” spread of HTLV-1 compared with infectious spread of the virus to HTLV-1 viral burden in established infection is uncertain. Since extrachromosomal long terminal repeat (LTR) DNA circles are indicators of viral replication in HIV-1 carriers with undetectable plasma HIV RNA, we hypothesised that HTLV-1 LTR circles could indicate reverse transcriptase (RT) usage and infectious activity. 1LTR and 2LTR DNA circles were measured in HTLV-1 cell lines and peripheral blood mononuclear cells (PBMC) of asymptomatic carriers (ACs) and patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) or adult T cell leukaemia/lymphoma (ATLL). 1LTR DNA circles were detected in 14/20 patients at a mean of 1.38/100 PBMC but did not differentiate disease status nor correlate with HTLV-1 DNA copies. 2LTR DNA circles were detected in 30/31 patients and at higher concentrations in patients with HTLV-1-associated diseases, independent of HTLV-1 DNA load. In an incident case the 2LTR DNA circle concentration increased 2.1 fold at the onset of HAM/TSP compared to baseline. Detectable and fluctuating levels of HTLV-1 DNA circles in patients indicate viral RT usage and virus replication. Our results indicate HTLV-1 viral replication capacity is maintained in chronic infection and may be associated with disease onset. PMID:26985903

  12. Methamphetamine Reduces Human Influenza A Virus Replication

    PubMed Central

    Chen, Yun-Hsiang; Wu, Kuang-Lun; Chen, Chia-Hsiang

    2012-01-01

    Methamphetamine (meth) is a highly addictive psychostimulant that is among the most widely abused illicit drugs, with an estimated over 35 million users in the world. Several lines of evidence suggest that chronic meth abuse is a major factor for increased risk of infections with human immunodeficiency virus and possibly other pathogens, due to its immunosuppressive property. Influenza A virus infections frequently cause epidemics and pandemics of respiratory diseases among human populations. However, little is known about whether meth has the ability to enhance influenza A virus replication, thus increasing severity of influenza illness in meth abusers. Herein, we investigated the effects of meth on influenza A virus replication in human lung epithelial A549 cells. The cells were exposed to meth and infected with human influenza A/WSN/33 (H1N1) virus. The viral progenies were titrated by plaque assays, and the expression of viral proteins and cellular proteins involved in interferon responses was examined by Western blotting and immunofluorescence staining. We report the first evidence that meth significantly reduces, rather than increases, virus propagation and the susceptibility to influenza infection in the human lung epithelial cell line, consistent with a decrease in viral protein synthesis. These effects were apparently not caused by meth’s effects on enhancing virus-induced interferon responses in the host cells, reducing viral biological activities, or reducing cell viability. Our results suggest that meth might not be a great risk factor for influenza A virus infection among meth abusers. Although the underlying mechanism responsible for the action of meth on attenuating virus replication requires further investigation, these findings prompt the study to examine whether other structurally similar compounds could be used as anti-influenza agents. PMID:23139774

  13. Potential antiviral lignans from the roots of Saururus chinensis with activity against Epstein-Barr virus lytic replication.

    PubMed

    Cui, Hui; Xu, Bo; Wu, Taizong; Xu, Jun; Yuan, Yan; Gu, Qiong

    2014-01-24

    Epstein-Barr virus (EBV) is a member of the γ-herpes virus subfamily and has been implicated in the pathogenesis of several human malignancies. Bioassay-guided fractionation was conducted on an EtOAc-soluble extract of the roots of Saururus chinensis and monitored using an EBV lytic replication assay. This led to the isolation of 19 new (1-19) and nine known (20-28) lignans. The absolute configurations of the new lignans were established by Mosher's ester, ECD, and computational methods. Eight lignans, including three sesquineolignans (19, 23, and 24) and five dineolignans (3, 4, 26, 27, and 28), exhibited inhibitory effects toward EBV lytic replication with EC50 values from 1.09 to 7.55 μM and SI values from 3.3 to 116.4. In particular, manassantin B (27) exhibited the most promising inhibition, with an EC50 of 1.72 μM, low cytotoxicity, CC50 > 200 μM, and SI > 116.4. This is the first study demonstrating that lignans possess anti-EBV lytic replication activity.

  14. TT virus (TTV) loads associated with different peripheral blood cell types and evidence for TTV replication in activated mononuclear cells.

    PubMed

    Maggi, F; Fornai, C; Zaccaro, L; Morrica, A; Vatteroni, M L; Isola, P; Marchi, S; Ricchiuti, A; Pistello, M; Bendinelli, M

    2001-06-01

    TT virus (TTV) loads associated with the peripheral blood cells of seven patients known to carry the virus in plasma were investigated by real-time PCR. Whereas red cells/platelets were uniformly negative, six and four patients yielded positive peripheral blood mononuclear cells (PBMCs) and polymorphonuclear leukocytes, respectively, but viral titres were generally low. Fractionation of PBMCs into monocyte- and B, T4, and T8 lymphocyte-enriched subpopulations showed no pattern in the viral loads that might suggest the preferential association of TTV to one or more specific cell types. TTV-negative PBMCs absorbed measurable amounts of virus when incubated with infected plasma at 4 degrees C. Furthermore, cultures of TTV-negative phytohaemagglutinin-stimulated PBMCs exposed in vitro to virus-positive plasma and faecal extracts released considerable levels of infectious TTV into the supernatant fluid and the same was true for TTV-positive stimulated PBMCs. These results indicate that, whereas freshly harvested resting PBMCs seem to produce little, if any TTV, stimulated PBMCs actively replicate the virus.

  15. Hepatitis C Virus RNA Replication Depends on Specific Cis- and Trans-Acting Activities of Viral Nonstructural Proteins

    PubMed Central

    Kazakov, Teymur; Yang, Feng; Ramanathan, Harish N.; Kohlway, Andrew; Diamond, Michael S.; Lindenbach, Brett D.

    2015-01-01

    Many positive-strand RNA viruses encode genes that can function in trans, whereas other genes are required in cis for genome replication. The mechanisms underlying trans- and cis-preferences are not fully understood. Here, we evaluate this concept for hepatitis C virus (HCV), an important cause of chronic liver disease and member of the Flaviviridae family. HCV encodes five nonstructural (NS) genes that are required for RNA replication. To date, only two of these genes, NS4B and NS5A, have been trans-complemented, leading to suggestions that other replicase genes work only in cis. We describe a new quantitative system to measure the cis- and trans-requirements for HCV NS gene function in RNA replication and identify several lethal mutations in the NS3, NS4A, NS4B, NS5A, and NS5B genes that can be complemented in trans, alone or in combination, by expressing the NS3–5B polyprotein from a synthetic mRNA. Although NS5B RNA binding and polymerase activities can be supplied in trans, NS5B protein expression was required in cis, indicating that NS5B has a cis-acting role in replicase assembly distinct from its known enzymatic activity. Furthermore, the RNA binding and NTPase activities of the NS3 helicase domain were required in cis, suggesting that these activities play an essential role in RNA template selection. A comprehensive complementation group analysis revealed functional linkages between NS3-4A and NS4B and between NS5B and the upstream NS3–5A genes. Finally, NS5B polymerase activity segregated with a daclatasvir-sensitive NS5A activity, which could explain the synergy of this antiviral compound with nucleoside analogs in patients. Together, these studies define several new aspects of HCV replicase structure-function, help to explain the potency of HCV-specific combination therapies, and provide an experimental framework for the study of cis- and trans-acting activities in positive-strand RNA virus replication more generally. PMID:25875808

  16. HSV-1-induced activation of NF-κB protects U937 monocytic cells against both virus replication and apoptosis

    PubMed Central

    Marino-Merlo, Francesca; Papaianni, Emanuela; Medici, Maria Antonietta; Macchi, Beatrice; Grelli, Sandro; Mosca, Claudia; Borner, Christoph; Mastino, Antonio

    2016-01-01

    The transcription factor nuclear factor-kappa B (NF-κB) is a crucial player of the antiviral innate response. Intriguingly, however, NF-κB activation is assumed to favour herpes simplex virus (HSV) infection rather than restrict it. Apoptosis, a form of innate response to viruses, is completely inhibited by HSV in fully permissive cells, but not in cells incapable to fully sustain HSV replication, such as immunocompetent cells. To resolve the intricate interplay among NF-κB signalling, apoptosis and permissiveness to HSV-1 in monocytic cells, we utilized U937 monocytic cells in which NF-κB activation was inhibited by expressing a dominant-negative IκBα. Surprisingly, viral production was increased in monocytic cells in which NF-κB was inhibited. Moreover, inhibition of NF-κB led to increased apoptosis following HSV-1 infection, associated with lysosomal membrane permeabilization. High expression of late viral proteins and induction of apoptosis occurred in distinct cells. Transcriptional analysis of known innate response genes by real-time quantitative reverse transcription-PCR excluded a contribution of the assayed genes to the observed phenomena. Thus, in monocytic cells NF-κB activation simultaneously serves as an innate process to restrict viral replication as well as a mechanism to limit the damage of an excessive apoptotic response to HSV-1 infection. This finding may clarify mechanisms controlling HSV-1 infection in monocytic cells. PMID:27584793

  17. HSV-1-induced activation of NF-κB protects U937 monocytic cells against both virus replication and apoptosis.

    PubMed

    Marino-Merlo, Francesca; Papaianni, Emanuela; Medici, Maria Antonietta; Macchi, Beatrice; Grelli, Sandro; Mosca, Claudia; Borner, Christoph; Mastino, Antonio

    2016-09-01

    The transcription factor nuclear factor-kappa B (NF-κB) is a crucial player of the antiviral innate response. Intriguingly, however, NF-κB activation is assumed to favour herpes simplex virus (HSV) infection rather than restrict it. Apoptosis, a form of innate response to viruses, is completely inhibited by HSV in fully permissive cells, but not in cells incapable to fully sustain HSV replication, such as immunocompetent cells. To resolve the intricate interplay among NF-κB signalling, apoptosis and permissiveness to HSV-1 in monocytic cells, we utilized U937 monocytic cells in which NF-κB activation was inhibited by expressing a dominant-negative IκBα. Surprisingly, viral production was increased in monocytic cells in which NF-κB was inhibited. Moreover, inhibition of NF-κB led to increased apoptosis following HSV-1 infection, associated with lysosomal membrane permeabilization. High expression of late viral proteins and induction of apoptosis occurred in distinct cells. Transcriptional analysis of known innate response genes by real-time quantitative reverse transcription-PCR excluded a contribution of the assayed genes to the observed phenomena. Thus, in monocytic cells NF-κB activation simultaneously serves as an innate process to restrict viral replication as well as a mechanism to limit the damage of an excessive apoptotic response to HSV-1 infection. This finding may clarify mechanisms controlling HSV-1 infection in monocytic cells.

  18. LUC7L3/CROP inhibits replication of hepatitis B virus via suppressing enhancer II/basal core promoter activity

    PubMed Central

    Li, Yuan; Ito, Masahiko; Sun, Suofeng; Chida, Takeshi; Nakashima, Kenji; Suzuki, Tetsuro

    2016-01-01

    The core promoter of hepatitis B virus (HBV) genome is a critical region for transcriptional initiation of 3.5 kb, pregenome and precore RNAs and for the viral replication. Although a number of host-cell factors that potentially regulate the viral promoter activities have been identified, the molecular mechanisms of the viral gene expression, in particular, regulatory mechanisms of the transcriptional repression remain elusive. In this study, we identified LUC7 like 3 pre-mRNA splicing factor (LUC7L3, also known as hLuc7A or CROP) as a novel interacting partner of HBV enhancer II and basal core promoter (ENII/BCP), key elements within the core promoter, through the proteomic screening and found that LUC7L3 functions as a negative regulator of ENII/BCP. Gene silencing of LUC7L3 significantly increased expression of the viral genes and antigens as well as the activities of ENII/BCP and core promoter. In contrast, overexpression of LUC7L3 inhibited their activities and HBV replication. In addition, LUC7L3 possibly contributes to promotion of the splicing of 3.5 kb RNA, which may also be involved in negative regulation of the pregenome RNA level. This is the first to demonstrate the involvement of LUC7L3 in regulation of gene transcription and in viral replication. PMID:27857158

  19. Inhibition of dengue virus replication by novel inhibitors of RNA-dependent RNA polymerase and protease activities.

    PubMed

    Pelliccia, Sveva; Wu, Yu-Hsuan; Coluccia, Antonio; La Regina, Giuseppe; Tseng, Chin-Kai; Famiglini, Valeria; Masci, Domiziana; Hiscott, John; Lee, Jin-Ching; Silvestri, Romano

    2017-12-01

    Dengue virus (DENV) is the leading mosquito-transmitted viral infection in the world. With more than 390 million new infections annually, and up to 1 million clinical cases with severe disease manifestations, there continues to be a need to develop new antiviral agents against dengue infection. In addition, there is no approved anti-DENV agents for treating DENV-infected patients. In the present study, we identified new compounds with anti-DENV replication activity by targeting viral replication enzymes - NS5, RNA-dependent RNA polymerase (RdRp) and NS3 protease, using cell-based reporter assay. Subsequently, we performed an enzyme-based assay to clarify the action of these compounds against DENV RdRp or NS3 protease activity. Moreover, these compounds exhibited anti-DENV activity in vivo in the ICR-suckling DENV-infected mouse model. Combination drug treatment exhibited a synergistic inhibition of DENV replication. These results describe novel prototypical small anti-DENV molecules for further development through compound modification and provide potential antivirals for treating DENV infection and DENV-related diseases.

  20. Tunicamycin enhances virus replication and inhibits antiviral activity of interferon in mice: correlation with natural killer cells.

    PubMed

    Singh, V K; Damewood, G P; Friedman, R M; Maheshwari, R K

    1987-01-01

    Earlier we reported that tunicamycin (TM) treatment enhances Semliki Forest virus (SFV) and encephalomyocarditis virus (EMCV) replication in Swiss mice. Interferon (IFN) mediated antiviral protection was also inhibited in mice treated with TM. The in vitro natural killer (NK) cell reactivity of mice was significantly decreased after in vivo administration of TM; however, TM treatment did not affect the response of the same cells to mitogens. TM also inhibited the boosting of NK reactivity by IFN in vivo. In this paper, we have shown that depletion of NK cells by asialo-GM1 antiserum enhances SFV/EMCV replication in mice. Both TM and anti-asialo GM1 treatment significantly inhibited the large granular lymphocyte (LGL) populations in the spleen. Similar to Swiss mice, the in vitro NK cell activity of athymic nude mice was significantly decreased after in vivo administration of TM and TM also inhibited the boosting effect on NK cells reactivity induced by IFN in vivo. TM treatment of nude mice also enhanced the SFV/EMCV in brains of infected mice and also inhibited the antiviral activity of IFN in nude mice. These results suggest that NK cells may be involved in SFV/EMCV infection and in antiviral protection afforded by IFN.

  1. MEK/ERK activation plays a decisive role in yellow fever virus replication: implication as an antiviral therapeutic target.

    PubMed

    Albarnaz, Jonas D; De Oliveira, Leonardo C; Torres, Alice A; Palhares, Rafael M; Casteluber, Marisa C; Rodrigues, Claudiney M; Cardozo, Pablo L; De Souza, Aryádina M R; Pacca, Carolina C; Ferreira, Paulo C P; Kroon, Erna G; Nogueira, Maurício L; Bonjardim, Cláudio A

    2014-11-01

    Exploiting the inhibition of host signaling pathways aiming for discovery of potential antiflaviviral compounds is clearly a beneficial strategy for the control of life-threatening diseases caused by flaviviruses. Here we describe the antiviral activity of the MEK1/2 inhibitor U0126 against Yellow fever virus 17D vaccine strain (YFV-17D). Infection of VERO cells with YFV-17D stimulates ERK1/2 phosphorylation early during infection. Pharmacological inhibition of MEK1/2 through U0126 treatment of VERO cells blockades not only the YFV-stimulated ERK1/2 phosphorylation, but also inhibits YFV replication by ∼99%. U0126 was also effective against dengue virus (DENV-2 and -3) and Saint-Louis encephalitis virus (SLEV). Levels of NS4AB, as detected by immunofluorescence, are diminished upon treatment with the inhibitor, as well as the characteristic endoplasmic reticulum membrane invagination stimulated during the infection. Though not protective, treatment of YFV-infected, adult BALB/c mice with U0126 resulted in significant reduction of virus titers in brains. Collectively, our data suggest the potential targeting of the MEK1/2 kinase as a therapeutic tool against diseases caused by flaviviruses such as yellow fever, adverse events associated with yellow fever vaccination and dengue. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Fucoidan from Fucus vesiculosus suppresses hepatitis B virus replication by enhancing extracellular signal-regulated Kinase activation.

    PubMed

    Li, Huifang; Li, Junru; Tang, Yuan; Lin, Lin; Xie, Zhanglian; Zhou, Jia; Zhang, Liyun; Zhang, Xiaoyong; Zhao, Xiaoshan; Chen, Zhengliang; Zuo, Daming

    2017-09-16

    Hepatitis B virus (HBV) infection is a serious public health problem leading to cirrhosis and hepatocellular carcinoma. As the clinical utility of current therapies is limited, the development of new therapeutic approaches for the prevention and treatment of HBV infection is imperative. Fucoidan is a natural sulfated polysaccharide that extracted from different species of brown seaweed, which was reported to exhibit various bioactivities. However, it remains unclear whether fucoidan influences HBV replication or not. The HBV-infected mouse model was established by hydrodynamic injection of HBV replicative plasmid, and the mice were treated with saline or fucoidan respectively. Besides, we also tested the inhibitory effect of fucoidan against HBV infection in HBV-transfected cell lines. The result showed that fucoidan from Fucus vesiculosus decreased serum HBV DNA, HBsAg and HBeAg levels and hepatic HBcAg expression in HBV-infected mice. Moreover, fucoidan treatment also suppressed intracellular HBcAg expression and the secretion of the HBV DNA as well as HBsAg and HBeAg in HBV-expressing cells. Furthermore, we proved that the inhibitory activity by fucoidan was due to the activation of the extracellular signal-regulated kinase (ERK) pathway and the subsequent production of type I interferon. Using specific inhibitor of ERK pathway abrogated the fucoidan-mediated inhibition of HBV replication. This study highlights that fucoidan might be served as an alternative therapeutic approach for the treatment of HBV infection.

  3. No activation of new initiation points for deoxyribonucleic acid replication in BALB/c 3T3 cells transformed by Kirsten sarcoma virus

    SciTech Connect

    Oppenheim, A.; Horowitz, A.T.

    1981-08-01

    BALB/c 3T3 cells were transformed by Kirsten sarcoma virus, and five clones were isolated in soft agar. Average replicon sizes of the transformed cell lines were stimated by the method of fiber-autoradiography and found to be the same size as the nontransformed 3T3 cells, analyzed in parallel. The results indicate that, unlike simian virus 40 and Epstein-Barr virus, Kirsten sarcoma virus does not activate new initiation points for cellular deoxyribonucleic acid replication in murine sarcome virus-transformed BALB/c 3T3 cells.

  4. Replication-defective viruses as vaccines and vaccine vectors.

    PubMed

    Dudek, Tim; Knipe, David M

    2006-01-05

    The classical viral vaccine approaches using inactivated virus or live-attenuated virus have not been successful for some viruses, such as human immunodeficiency virus or herpes simplex virus. Therefore, new types of vaccines are needed to combat these infections. Replication-defective mutant viruses are defective for one or more functions that are essential for viral genome replication or synthesis and assembly of viral particles. These viruses are propagated in complementing cell lines expressing the missing gene product; however, in normal cells, they express viral gene products but do not replicate to form progeny virions. As vaccines, these mutant viruses have advantages of both classical types of viral vaccines in being as safe as inactivated virus but expressing viral antigens inside infected cells so that MHC class I and class II presentation can occur efficiently. Replication-defective viruses have served both as vaccines for the virus itself and as a vector for the expression of heterologous antigens. The potential advantages and disadvantages of these vaccines are discussed as well as contrasting them with single-cycle mutant virus vaccines and replicon/amplicon versions of vaccines. Replication-defective viruses have also served as important probes of the host immune response in helping to define the importance of the first round of infected cells in the host immune response, the mechanisms of activation of innate immune response, and the role of the complement pathway in humoral immune responses to viruses.

  5. Replication-selective viruses for cancer therapy.

    PubMed

    Biederer, Carola; Ries, Stefan; Brandts, Christian H; McCormick, Frank

    2002-03-01

    Advances in our understanding of the molecular basis of cancer and the availability of technology to genetically engineer viruses have led to the development of replication-competent viruses to treat cancer. In theory, replication-selective viruses offer several appealing properties as biological agents for cancer therapy: they kill tumor cells selectively, and their replication leads to amplification of their oncolytic potential. Most preclinical experiments in tissue culture and in animal models support this notion. Clinical data on the first generation of replication-selective viruses are now rapidly accruing. The therapeutic index, and ultimately the clinical outcome, will depend on a complex balance between host and viral factors. This review discusses strategies to kill cancer cells based on our understanding of their molecular defects and the progress being made using replication-competent viruses for tumor therapy. We focus our discussion on a replication-selective adenovirus called ONYX-015 that has recently demonstrated encouraging results in clinical trials

  6. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases.

    PubMed

    Bloom, Kristie; Ely, Abdullah; Mussolino, Claudio; Cathomen, Toni; Arbuthnot, Patrick

    2013-10-01

    Chronic hepatitis B virus (HBV) infection remains an important global health problem. Stability of the episomal covalently closed circular HBV DNA (cccDNA) is largely responsible for the modest curative efficacy of available therapy. Since licensed anti-HBV drugs have a post-transcriptional mechanism of action, disabling cccDNA is potentially of therapeutic benefit. To develop this approach, we engineered mutagenic transcription activator-like effector nucleases (TALENs) that target four HBV-specific sites within the viral genome. TALENs with cognate sequences in the S or C open-reading frames (ORFs) efficiently disrupted sequences at the intended sites and suppressed markers of viral replication. Following triple transfection of cultured HepG2.2.15 cells under mildly hypothermic conditions, the S TALEN caused targeted mutation in ~35% of cccDNA molecules. Markers of viral replication were also inhibited in vivo in a murine hydrodynamic injection model of HBV replication. HBV target sites within S and C ORFs of the injected HBV DNA were mutated without evidence of toxicity. These findings are the first to demonstrate a targeted nuclease-mediated disruption of HBV cccDNA. Efficacy in vivo also indicates that these engineered nucleases have potential for use in treatment of chronic HBV infection.

  7. Novel PKCη Is Required To Activate Replicative Functions of the Major Nonstructural Protein NS1 of Minute Virus of Mice

    PubMed Central

    Lachmann, Sylvie; Rommeleare, Jean; Nüesch, Jürg P. F.

    2003-01-01

    The multifunctional protein NS1 of minute virus of mice (MVMp) is posttranslationally modified and at least in part regulated by phosphorylation. The atypical lambda isoform of protein kinase C (PKCλ) phosphorylates residues T435 and S473 in vitro and in vivo, leading directly to an activation of NS1 helicase function, but it is insufficient to activate NS1 for rolling circle replication. The present study identifies an additional cellular protein kinase phosphorylating and regulating NS1 activities. We show in vitro that the recombinant novel PKCη phosphorylates NS1 and in consequence is able to activate the viral polypeptide in concert with PKCλ for rolling circle replication. Moreover, this role of PKCη was confirmed in vivo. We thereby created stably transfected A9 mouse fibroblasts, a typical MVMp-permissive host cell line with Flag-tagged constitutively active or inactive PKCη mutants, in order to alter the activity of the NS1 regulating kinase. Indeed, tryptic phosphopeptide analyses of metabolically 32P-labeled NS1 expressed in the presence of a dominant-negative mutant, PKCηDN, showed a lack of distinct NS1 phosphorylation events. This correlates with impaired synthesis of viral DNA replication intermediates, as detected by Southern blotting at the level of the whole cell population and by BrdU incorporation at the single-cell level. Remarkably, MVM infection triggers an accumulation of endogenous PKCη in the nuclear periphery, suggesting that besides being a target for PKCη, parvovirus infections may also affect the regulation of this NS1 regulating kinase. Altogether, our results underline the tight interconnection between PKC-mediated signaling and the parvoviral life cycle. PMID:12829844

  8. Inhibitory activity of Melissa officinalis L. extract on Herpes simplex virus type 2 replication.

    PubMed

    Mazzanti, G; Battinelli, L; Pompeo, C; Serrilli, A M; Rossi, R; Sauzullo, I; Mengoni, F; Vullo, V

    2008-01-01

    Melissa officinalis L. (Lamiaceae) (lemon balm) is used in folk medicine for nervous complaints, lower abdominal disorders and, more recently, for treating Herpes simplex lesions. In this work the antiviral activity of a hydroalcoholic extract of lemon balm leaves against the Herpes simplex virus type 2 (HSV-2) was assessed by the cytopathic effect inhibition assay on Vero cells (ATCC CCL-81), in comparison with acyclovir. The cytotoxicity of the extract on Vero cells was previously tested by evaluating the cellular death and was confirmed by the Trypan blue test. Lemon balm showed to reduce the cytopathic effect of HSV-2 on Vero cells, in the range of non-toxic concentrations of 0.025-1 mg mL(-1) (with reference to the starting crude herbal material). The maximum inhibiting effect (60%) was obtained with 0.5 mg mL(-1). The viral binding assay showed that the extract does not prevent the entry of HSV-2 in the cells, thus suggesting a mechanism of action subsequent to the penetration of the virus in the cell. The extract was also chemically characterised by NMR and HPLC analysis; it showed to contain cinnamic acid-like compounds, mainly rosmarinic acid (4.1% w/w). Our experiments support the use of lemon balm for treating Herpes simplex lesions and encourage clinical trials on this medicinal plant.

  9. Discovery of a small molecule Tat-trans-activation-responsive RNA antagonist that potently inhibits human immunodeficiency virus-1 replication.

    PubMed

    Hwang, Seongwoo; Tamilarasu, Natarajan; Kibler, Karen; Cao, Hong; Ali, Akbar; Ping, Yueh-Hsin; Jeang, Kuan-Teh; Rana, Tariq M

    2003-10-03

    Antiretroviral therapy to treat AIDS uses molecules that target the reverse transcriptase and protease enzymes of human immunodeficiency virus, type 1 (HIV-1). A major problem associated with these treatments, however, is the emergence of drug-resistant strains. Thus, there is a compelling need to find drugs against other viral targets. One such target is the interaction between Tat, an HIV-1 regulatory protein essential for viral replication, and trans-activation-responsive (TAR) RNA. Here we describe the design and synthesis of an encoded combinatorial library containing 39,304 unnatural small molecules. Using a rapid high through-put screening technology, we identified 59 compounds. Structure-activity relationship studies led to the synthesis of 19 compounds that bind TAR RNA with high affinities. In the presence of a representative Tat-TAR inhibitor (5 microM TR87), we observed potent and sustained suppression of HIV replication in cultured cells over 24 days. The same concentration of this inhibitor did not exhibit any toxicity in cell cultures or in mice. TR87 was also shown to specifically disrupt Tat-TAR binding in vitro and inhibit Tat-mediated transcriptional activation in vitro and in vivo, providing a strong correlation between its activities and inhibition of HIV-1 replication. These results provide a structural scaffold for further development of new drugs, alone or in combination with other drugs, for treatment of HIV-1-infected individuals. Our results also suggest a general strategy for discovering pharmacophores targeting RNA structures that are essential in progression of other infectious, inflammatory, and genetic diseases.

  10. Adenovirus vectors lacking virus-associated RNA expression enhance shRNA activity to suppress hepatitis C virus replication

    NASA Astrophysics Data System (ADS)

    Pei, Zheng; Shi, Guoli; Kondo, Saki; Ito, Masahiko; Maekawa, Aya; Suzuki, Mariko; Saito, Izumu; Suzuki, Tetsuro; Kanegae, Yumi

    2013-12-01

    First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.

  11. Modified vaccinia virus Ankara can activate NF-kappaB transcription factors through a double-stranded RNA-activated protein kinase (PKR)-dependent pathway during the early phase of virus replication.

    PubMed

    Lynch, Heather E; Ray, Caroline A; Oie, Katrina L; Pollara, Justin J; Petty, Ian T D; Sadler, Anthony J; Williams, Bryan R G; Pickup, David J

    2009-09-01

    Modified vaccinia virus Ankara (MVA), which is a promising replication-defective vaccine vector, is unusual among the orthopoxviruses in activating NF-kappaB transcription factors in cells of several types. In human embryonic kidney (HEK 293T) cells, the MVA-induced depletion of IkappaBalpha required to activate NF-kappaB is inhibited by UV-inactivation of the virus, and begins before viral DNA replication. In HEK 293T, CHO, or RK13 cells, expression of the cowpox virus CP77 early gene, or the vaccinia virus K1L early gene suppresses MVA-induced IkappaBalpha depletion. In mouse embryonic fibroblasts (MEFs), MVA induction of IkappaBalpha depletion is dependent on the expression of mouse or human double-stranded RNA-activated protein kinase (PKR). These results demonstrate that events during the early phase of MVA replication can induce PKR-mediated processes contributing both to the activation of NF-kappaB signaling, and to processes that may restrict viral replication. This property may contribute to the efficacy of this vaccine virus.

  12. Cholesterol 25-Hydroxylase Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication through Enzyme Activity-Dependent and -Independent Mechanisms.

    PubMed

    Ke, Wenting; Fang, Liurong; Jing, Huiyuan; Tao, Ran; Wang, Ting; Li, Yang; Long, Siwen; Wang, Dang; Xiao, Shaobo

    2017-10-01

    Cholesterol 25-hydroxylase (CH25H) has recently been identified as a host restriction factor that exerts antiviral effects by catalyzing the production of 25-hydroxycholesterol (25HC). CH25H can be rapidly induced upon infection with some viruses. Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, has ranked among the most important swine pathogens since it was discovered in the late 1980s. In this study, we found that PRRSV infection significantly downregulated the expression of CH25H in cells by a so-far unknown mechanism, suggesting that CH25H exerts antiviral activity against PRRSV. Indeed, overexpression of CH25H inhibited PRRSV replication, whereas knockdown of CH25H by short interfering RNA (siRNA) promoted PRRSV infection. The anti-PRRSV effect of 25HC operates via inhibition of viral penetration. Interestingly, a CH25H mutant (CH25H-M) lacking hydroxylase activity still inhibited PRRSV infection. Screening using a yeast two-hybrid system followed by coimmunoprecipitation and immunofluorescence colocalization analyses confirmed that both CH25H and CH25H-M interact with the nonstructural protein 1 alpha (nsp1α) of PRRSV. Unexpectedly, the expression of nsp1α decreased following coexpression with CH25H or CH25H-M. Detailed analyses demonstrated that CH25H/CH25H-M could degrade nsp1α through the ubiquitin-proteasome pathway and that site K169 in the nsp1α protein is the key site of ubiquitination. Taken together, our findings demonstrate that CH25H restricts PRRSV replication by targeting viral penetration as well as degrading nsp1α, revealing a novel antiviral mechanism used by CH25H.IMPORTANCE PRRSV has been a continuous threat to the global swine industry, and current vaccines are insufficient to provide sustainable control. CH25H has been found to exert a broad antiviral effect; thus, it is an attractive target for the development of anti-PRRSV drugs. Here, we demonstrate that CH25H is an interferon-stimulated gene that is

  13. Activation of human macrophages by bacterial components relieves the restriction on replication of an interferon-inducing Parainfluenza Virus 5 (PIV5) P/V mutant

    PubMed Central

    Briggs, Caitlin M.; Holder, Robert C.; Reid, Sean D.; Parks, Griffith D.

    2010-01-01

    Macrophages regulate immune responses during many viral infections, and can be a major determinant of pathogenesis, virus replication and immune response to infection. Here, we have addressed the question of the outcome of infection of primary human macrophages with parainfluenza virus 5 (PIV5) and a PIV5 mutant (P/V-CPI-) that is unable to counteract interferon (IFN) responses. In cultures of naïve monocyte-derived macrophages (MDMs), WT PIV5 established a highly productive infection, whereas the P/V-CPI- mutant was restricted for replication in MDMs by IFN-beta. Restricted replication in vitro was relieved in MDM that had been activated by prior exposure to heat killed Gram positive bacteria, including Listeria monocytogenes, Streptococcus pyogenes, and Bacillus anthracis. Enhanced replication of the P/V mutant in MDM previously activated by bacterial components correlated with a reduced ability to produce IFN-beta in response to virus infection, whereas IFN signaling was intact. Activated MDM were found to upregulate the synthesis of IRAK-M, which has been previously shown to negatively regulate factors involved in TLR signaling and IFN-beta production. We discuss these results in terms of the implications for mixed bacteria-virus infections and for the use of live RNA virus vectors that have been engineered to be attenuated for IFN sensitivity. PMID:21185944

  14. Adiponectin, a downstream target gene of peroxisome proliferator-activated receptor {gamma}, controls hepatitis B virus replication

    SciTech Connect

    Yoon, Sarah; Jung, Jaesung; Kim, Taeyeung; Park, Sun; Chwae, Yong-Joon; Shin, Ho-Joon; Kim, Kyongmin

    2011-01-20

    In this study, HepG2-hepatitis B virus (HBV)-stable cells that did not overexpress HBx and HBx-deficient mutant-transfected cells were analyzed for their expression of HBV-induced, upregulated adipogenic and lipogenic genes. The mRNAs of CCAAT enhancer binding protein {alpha} (C/EBP{alpha}), peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), adiponectin, liver X receptor {alpha} (LXR{alpha}), sterol regulatory element binding protein 1c (SREBP1c), and fatty acid synthase (FAS) were expressed at higher levels in HepG2-HBV and lamivudine-treated stable cells and HBx-deficient mutant-transfected cells than in the HepG2 cells. Lamivudine treatment reduced the mRNA levels of PPAR{gamma} and C/EBP{alpha}. Conversely, HBV replication was upregulated by adiponectin and PPAR{gamma} agonist rosiglitazone treatments and was downregulated by adiponectin siRNAs. Collectively, our results demonstrate that HBV replication and/or protein expression, even in the absence of HBx, upregulated adipogenic or lipogenic genes, and that the control of adiponectin might prove useful as a therapeutic modality for the treatment of chronic hepatitis B.

  15. Involvement of fish signal transducer and activator of transcription 3 (STAT3) in SGIV replication and virus induced paraptosis.

    PubMed

    Huang, Xiaohong; Huang, Youhua; Yang, Ying; Wei, Shina; Qin, Qiwei

    2014-12-01

    Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor which plays crucial roles in immune regulation, inflammation, cell proliferation, transformation, and other physiological processes of the organism. In this study, a novel STAT3 gene from orange spotted grouper (Ec-STAT3) was cloned and characterized. Bioinformatic analysis revealed that full-length of Ec-STAT3 was 3105-bp long and contained a 280-bp 5'UTR, a 470-bp 3'UTR, and a 2355-bp open reading frame (ORF) that encoded a 784-amino acid peptide. The deduced protein of Ec-STAT3 showed 98% identity to that of turbot (Scophthalmus maximus). Amino acid alignment showed that Ec-STAT3 contained four conserved domains, including a protein interaction domain, a coiled coil domain, a DNA binding domain, and an SH2 domain. Quantitative real-time PCR analysis showed that the highest expression level was detected in the liver, followed by skin and spleen. After injection with Singapore grouper iridovirus (SGIV), the transcript of Ec-STAT3 in spleen was increased significantly. To further explore the function of Ec-STAT3, we investigated the roles of Ec-STAT3 in SGIV infection in vitro. Immune fluorescence analysis indicated that SGIV infection altered the distribution of phosphorylated Ec-STAT3 in nucleus, and a small part of phosphorylated Ec-STAT3 was associated with virus assembly sites, suggesting that Ec-STAT3 might be important for SGIV infection. Using STAT3 specific inhibitor, S3I-201, we found that inhibition of Ec-STAT3 activation decreased the SGIV replication significantly. Moreover, inhibition of Ec-STAT3 activation obviously altered SGIV infection induced cell cycle arrest and the expression of pro-survival genes, including Bcl-2, Bcl-xL and Bax inhibitor. Together, our results firstly demonstrated the critical roles of fish STAT3 in DNA virus replication and virus induced paraptosis, but also provided new insights into the mechanism of iridovirus pathogenesis.

  16. The latent origin of replication of Epstein-Barr virus directs viral genomes to active regions of the nucleus.

    PubMed

    Deutsch, Manuel J; Ott, Elisabeth; Papior, Peer; Schepers, Aloys

    2010-03-01

    The Epstein-Barr virus efficiently infects human B cells. The EBV genome is maintained extrachromosomally and replicates synchronously with the host's chromosomes. The latent origin of replication (oriP) guarantees plasmid stability by mediating two basic functions: replication and segregation of the viral genome. While the segregation process of EBV genomes is well understood, little is known about its chromatin association and nuclear distribution during interphase. Here, we analyzed the nuclear localization of EBV genomes and the role of functional oriP domains FR and DS for basic functions such as the transformation of primary cells, their role in targeting EBV genomes to distinct nuclear regions, and their association with epigenetic domains. Fluorescence in situ hybridization visualized the localization of extrachromosomal EBV genomes in the regions adjacent to chromatin-dense territories called the perichromatin. Further, immunofluorescence experiments demonstrated a preference of the viral genome for histone 3 lysine 4-trimethylated (H3K4me3) and histone 3 lysine 9-acetylated (H3K9ac) nuclear regions. To determine the role of FR and DS for establishment and subnuclear localization of EBV genomes, we transformed primary human B lymphocytes with recombinant mini-EBV genomes containing different oriP mutants. The loss of DS results in a slightly increased association in H3K27me3 domains. This study demonstrates that EBV genomes or oriP-based extrachromosomal vector systems are integrated into the higher order nuclear organization. We found that viral genomes are not randomly distributed in the nucleus. FR but not DS is crucial for the localization of EBV in perichromatic regions that are enriched for H3K4me3 and H3K9ac, which are hallmarks of transcriptionally active regions.

  17. (+)RNA viruses rewire cellular pathways to build replication organelles.

    PubMed

    Belov, George A; van Kuppeveld, Frank J M

    2012-12-01

    Positive-strand RNA [(+)RNA] viruses show a significant degree of conservation of their mechanisms of replication. The universal requirement of (+)RNA viruses for cellular membranes for genome replication, and the formation of membranous replication organelles with similar architecture, suggest that they target essential control mechanisms of membrane metabolism conserved among eukaryotes. Recently, significant progress has been made in understanding the role of key host factors and pathways that are hijacked for the development of replication organelles. In addition, electron tomography studies have shed new light on their ultrastructure. Collectively, these studies reveal an unexpected complexity of the spatial organization of the replication membranes and suggest that (+)RNA viruses actively change cellular membrane composition to build their replication organelles. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Ribavirin: a drug active against many viruses with multiple effects on virus replication and propagation. Molecular basis of ribavirin resistance.

    PubMed

    Beaucourt, Stéphanie; Vignuzzi, Marco

    2014-10-01

    Ribavirin has proven to be effective against several viruses in the clinical setting and a multitude of viruses in vitro. With up to five different proposed mechanisms of action, recent advances have begun to discern the hierarchy of antiviral effects at play depending on the virus and the host conditions under scrutiny. Studies reveal that for many viruses, antiviral mechanisms may differ depending on cell type in vitro and in vivo. Further analyses are thus required to accurately identify mechanisms to more optimally determine clinical treatments. In recent years, a growing number of ribavirin resistant and sensitive variants have been identified. These variants not only inform on the specific mechanisms by which ribavirin enfeebles the virus, but also can themselves be tools to identify new antiviral compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Polygonum cuspidatum and Its Active Components Inhibit Replication of the Influenza Virus through Toll-Like Receptor 9-Induced Interferon Beta Expression

    PubMed Central

    Lin, Chao-jen; Lin, Hui-Ju; Chen, Ter-Hsin; Hsu, Yu-An; Liu, Chin-San; Hwang, Guang-Yuh; Wan, Lei

    2015-01-01

    Influenza virus infection is a global public health issue. The effectiveness of antiviral therapies for influenza has been limited by the emergence of drug-resistant viral strains. Therefore, there is an urgent need to identify novel antiviral therapies. Here we tested the effects of 300 traditional Chinese medicines on the replication of various influenza virus strains in a lung cell line, A549, using an influenza-specific luciferase reporter assay. Of the traditional medicines tested, Polygonum cuspidatum (PC) and its active components, resveratrol and emodin, were found to attenuate influenza viral replication in A549 cells. Furthermore, they preferentially inhibited the replication of influenza A virus, including clinical strains isolated in 2009 and 2011 in Taiwan and the laboratory strain A/WSN/33 (H1N1). In addition to inhibiting the expression of hemagglutinin and neuraminidase, PC, emodin, and resveratrol also increased the expression of interferon beta (IFN-β) through Toll-like receptor 9 (TLR9). Moreover, the anti-viral activity of IFN-β or resveratrol was reduced when the A549 cells were treated with neutralizing anti-IFN-β antibodies or a TLR9 inhibitor, suggesting that IFN-β likely acts synergistically with resveratrol to inhibit H1N1 replication. This potential antiviral mechanism, involving direct inhibition of virus replication and simultaneous activation of the host immune response, has not been previously described for a single antiviral molecule. In conclusion, our data support the use of PC, resveratrol or emodin for inhibiting influenza virus replication directly and via TLR-9–induced IFN-β production. PMID:25658356

  20. HERP Binds TBK1 To Activate Innate Immunity and Repress Virus Replication in Response to Endoplasmic Reticulum Stress.

    PubMed

    Ge, Maolin; Luo, Zhen; Qiao, Zhi; Zhou, Yao; Cheng, Xin; Geng, Qibin; Cai, Yanyan; Wan, Pin; Xiong, Ying; Liu, Fang; Wu, Kailang; Liu, Yingle; Wu, Jianguo

    2017-09-27

    Host innate immunity is crucial for cellular responses against viral infection sensed by distinct pattern recognition receptors and endoplasmic reticulum (ER) stress. Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and neurological diseases. However, the exact mechanism underlying the link between ER stress induced by EV71 infection and host innate immunity is largely unknown. In this study, we demonstrated that EV71 infection induces the homocysteine-induced ER protein (HERP), a modulator of the ER stress response which is dependent on the participation of MAVS. Virus-induced HERP subsequently stimulates host innate immunity to repress viral replication by promoting type-I IFNs (IFN-α and IFN-β) and type-III IFN (IFN-λ1) expression. Through interacting with TANK-binding kinase 1, HERP amplifies the MAVS signaling and facilitates the phosphorylation and nuclear translocation of IFN regulatory factor 3 and NF-κB to enhance the expression of IFNs, which leads to a broad inhibition of the replication of RNA viruses, including EV71, Sendai virus, influenza A virus, and vesicular stomatitis virus. Therefore, we demonstrated that HERP plays an important role in the regulation of host innate immunity in response to ER stress during the infection of RNA viruses. These findings provide new insights into the mechanism underlying the replication of RNA viruses and the production of IFNs, and also demonstrate a new role of HERP in the regulation of host innate immunity in response to viral infection. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Methadone enhances human influenza A virus replication.

    PubMed

    Chen, Yun-Hsiang; Wu, Kuang-Lun; Tsai, Ming-Ta; Chien, Wei-Hsien; Chen, Mao-Liang; Wang, Yun

    2017-01-01

    Growing evidence has indicated that opioids enhance replication of human immunodeficiency virus and hepatitis C virus in target cells. However, it is unknown whether opioids can enhance replication of other clinically important viral pathogens. In this study, the interaction of opioid agonists and human influenza A/WSN/33 (H1N1) virus was examined in human lung epithelial A549 cells. Cells were exposed to morphine, methadone or buprenorphine followed by human H1N1 viral infection. Exposure to methadone differentially enhanced viral propagation, consistent with an increase in virus adsorption, susceptibility to virus infection and viral protein synthesis. In contrast, morphine or buprenorphine did not alter H1N1 replication. Because A549 cells do not express opioid receptors, methadone-enhanced H1N1 replication in human lung cells may not be mediated through these receptors. The interaction of methadone and H1N1 virus was also examined in adult mice. Treatment with methadone significantly increased H1N1 viral replication in lungs. Our data suggest that use of methadone facilitates influenza A viral infection in lungs and might raise concerns regarding the possible consequence of an increased risk of serious influenza A virus infection in people who receive treatment in methadone maintenance programs. © 2015 Society for the Study of Addiction.

  2. 5'PPP-RNA induced RIG-I activation inhibits drug-resistant avian H5N1 as well as 1918 and 2009 pandemic influenza virus replication

    PubMed Central

    2010-01-01

    Background Emergence of drug-resistant strains of influenza viruses, including avian H5N1 with pandemic potential, 1918 and 2009 A/H1N1 pandemic viruses to currently used antiviral agents, neuraminidase inhibitors and M2 Ion channel blockers, underscores the importance of developing novel antiviral strategies. Activation of innate immune pathogen sensor Retinoic Acid Inducible Gene-I (RIG-I) has recently been shown to induce antiviral state. Results In the present investigation, using real time RT-PCR, immunofluorescence, immunoblot, and plaque assay we show that 5'PPP-containing single stranded RNA (5'PPP-RNA), a ligand for the intracytoplasmic RNA sensor, RIG-I can be used as a prophylactic agent against known drug-resistant avian H5N1 and pandemic influenza viruses. 5'PPP-RNA treatment of human lung epithelial cells inhibited replication of drug-resistant avian H5N1 as well as 1918 and 2009 pandemic influenza viruses in a RIG-I and type 1 interferon dependant manner. Additionally, 5'PPP-RNA treatment also inhibited 2009 H1N1 viral replication in vivo in mice. Conclusions Our findings suggest that 5'PPP-RNA mediated activation of RIG-I can suppress replication of influenza viruses irrespective of their genetic make-up, pathogenicity, and drug-sensitivity status. PMID:20492658

  3. Identification of a New Ribonucleoside Inhibitor of Ebola Virus Replication

    PubMed Central

    Reynard, Olivier; Nguyen, Xuan-Nhi; Alazard-Dany, Nathalie; Barateau, Véronique; Cimarelli, Andrea; Volchkov, Viktor E.

    2015-01-01

    The current outbreak of Ebola virus (EBOV) in West Africa has claimed the lives of more than 15,000 people and highlights an urgent need for therapeutics capable of preventing virus replication. In this study we screened known nucleoside analogues for their ability to interfere with EBOV replication. Among them, the cytidine analogue β-d-N4-hydroxycytidine (NHC) demonstrated potent inhibitory activities against EBOV replication and spread at non-cytotoxic concentrations. Thus, NHC constitutes an interesting candidate for the development of a suitable drug treatment against EBOV. PMID:26633464

  4. The molecular biology of Bluetongue virus replication.

    PubMed

    Patel, Avnish; Roy, Polly

    2014-03-01

    The members of Orbivirus genus within the Reoviridae family are arthropod-borne viruses which are responsible for high morbidity and mortality in ruminants. Bluetongue virus (BTV) which causes disease in livestock (sheep, goat, cattle) has been in the forefront of molecular studies for the last three decades and now represents the best understood orbivirus at a molecular and structural level. The complex nature of the virion structure has been well characterised at high resolution along with the definition of the virus encoded enzymes required for RNA replication; the ordered assembly of the capsid shell as well as the protein and genome sequestration required for it; and the role of host proteins in virus entry and virus release. More recent developments of Reverse Genetics and Cell-Free Assembly systems have allowed integration of the accumulated structural and molecular knowledge to be tested at meticulous level, yielding higher insight into basic molecular virology, from which the rational design of safe efficacious vaccines has been possible. This article is centred on the molecular dissection of BTV with a view to understanding the role of each protein in the virus replication cycle. These areas are important in themselves for BTV replication but they also indicate the pathways that related viruses, which includes viruses that are pathogenic to man and animals, might also use providing an informed starting point for intervention or prevention.

  5. Emergence of Avian Influenza Viruses with Enhanced Transcription Activity by a Single Amino Acid Substitution in the Nucleoprotein during Replication in Chicken Brains ▿

    PubMed Central

    Tada, Tatsuya; Suzuki, Koutaro; Sakurai, Yu; Kubo, Masanori; Okada, Hironao; Itoh, Toshihiro; Tsukamoto, Kenji

    2011-01-01

    To explore the genetic basis of the pathogenesis and adaptation of avian influenza viruses (AIVs) to chickens, the A/duck/Yokohama/aq10/2003 (H5N1) (DkYK10) virus was passaged five times in the brains of chickens. The brain-passaged DkYK10-B5 caused quick death of chickens through rapid and efficient replication in tissues, accompanied by severe apoptosis. Genome sequence comparison of two viruses identified a single amino acid substitution at position 109 in NP from isoleucine to threonine (NP I109T). By analyzing viruses constructed by the reverse-genetic method, we established that the NP I109T substitution also contributed to increased viral replication and polymerase activity in chicken embryo fibroblasts, but not in duck embryo fibroblasts. Real-time RT-PCR analysis demonstrated that the NP I109T substitution enhances mRNA synthesis quickly and then cRNA and viral RNA (vRNA) synthesis slowly. Next, to determine the mechanism underlying the appearance of the NP I109T substitution during passages, four H5N1 highly pathogenic AIVs (HPAIVs) were passaged in the lungs and brains of chicken embryos. Single-nucleotide polymorphism analysis, together with a database search, suggests that the NP I109T mutation would be induced frequently during replication of HPAIVs in brains, but not in lungs. These results demonstrate that the amino acid at position 109 in NP enhances viral RNA synthesis and the pathogenicity of highly pathogenic avian influenza viruses in chickens and that the NP mutation emerges quickly during replication of the viruses in chicken brains. PMID:21795332

  6. Multiscale modeling of virus replication and spread.

    PubMed

    Kumberger, Peter; Frey, Felix; Schwarz, Ulrich S; Graw, Frederik

    2016-07-01

    Replication and spread of human viruses is based on the simultaneous exploitation of many different host functions, bridging multiple scales in space and time. Mathematical modeling is essential to obtain a systems-level understanding of how human viruses manage to proceed through their life cycles. Here, we review corresponding advances for viral systems of large medical relevance, such as human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV). We will outline how the combination of mathematical models and experimental data has advanced our quantitative knowledge about various processes of these pathogens, and how novel quantitative approaches promise to fill remaining gaps. © 2016 Federation of European Biochemical Societies.

  7. Herpes simplex virus induces the replication of foreign DNA

    SciTech Connect

    Danovich, R.M.; Frenkel, N.

    1988-08-01

    Plasmids containing the simian virus 40 (SV40) DNA replication origin and the large T gene are replicated in Vero monkey cells but not in rabbit skin cells. Efficient replication of the plasmids was observed in rabbit cells infected with herpes simplex virus type 1 (HSV-1) and HSV-2. The HSV-induced replication required the large T antigen and the SV40 replication origin. However, it produced concatemeric molecules resembling replicative intermediates of HSV DNA and was sensitive to phosphonoacetate at concentrations known to inhibit the HSV DNA polymerase. Therefore, it involved the HSV DNA polymerase itself or a viral gene product(s) which was expressed following the replication of HSV DNA. Analyses of test plasmids lacking SV40 or HSV DNA sequences showed that, under some conditions. HSV also induced low-level replication of test plasmids containing no known eucaryotic replication origins. Together, these results show that HSV induces a DNA replicative activity which amplifies foreign DNA. The relevance of these findings to the putative transforming potential of HSV is discussed.

  8. Replication of biotinylated human immunodeficiency viruses.

    PubMed

    Belshan, Michael; Matthews, John M; Madson, Christian J

    2011-01-01

    Previous work demonstrated recently the adaptation of the Escherichia coli biotin ligase BirA - biotin acceptor sequence (BAS) labeling system to produce human immunodeficiency virus type 1 viruses with biotinylated integrase (NLXIN(B)) and matrix (NLXMA(B)) proteins (Belshan et al., 2009). This report describes the construction of an HIV permissive cell line stably expressing BirA (SupT1.BirA). Consistent with the results in the previous report, NLXMA(B) replicated similar to wild-type levels and expressed biotinylated Gag and MA proteins in the SupT1.BirA cells, whereas the replication of NLXIN(B) was reduced severely. Three additional HIV type 2 (HIV-2) viruses were constructed with the BAS inserted into the vpx and vpr accessory genes. Two BAS insertions were made into the C-terminal half of the Vpx, including one internal insertion, and one at the N-terminus of Vpr. All three viruses were replication competent in the SupT1.BirA cells and their target proteins biotinylated efficiently and incorporated into virions. These results demonstrate the potential utility of the biotinylation system to label and capture HIV protein complexes in the context of replicating virus.

  9. The c-Jun N-terminal kinase pathway of a vector insect is activated by virus capsid protein and promotes viral replication

    PubMed Central

    Wang, Wei; Zhao, Wan; Li, Jing; Luo, Lan; Kang, Le; Cui, Feng

    2017-01-01

    No evidence has shown whether insect-borne viruses manipulate the c-Jun N-terminal kinase (JNK) signaling pathway of vector insects. Using a system comprising the plant virus Rice stripe virus (RSV) and its vector insect, the small brown planthopper, we have studied the response of the vector insect’s JNK pathway to plant virus infection. We found that RSV increased the level of Tumor Necrosis Factor-α and decreased the level of G protein Pathway Suppressor 2 (GPS2) in the insect vector. The virus capsid protein competitively bound GPS2 to release it from inhibiting the JNK activation machinery. We confirmed that JNK activation promoted RSV replication in the vector, whereas JNK inhibition caused a significant reduction in virus production and thus delayed the disease incidence of plants. These findings suggest that inhibition of insect vector JNK may be a useful strategy for controling the transmission of plant viruses. DOI: http://dx.doi.org/10.7554/eLife.26591.001 PMID:28716183

  10. Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment.

    PubMed

    Reiss, Simon; Rebhan, Ilka; Backes, Perdita; Romero-Brey, Ines; Erfle, Holger; Matula, Petr; Kaderali, Lars; Poenisch, Marion; Blankenburg, Hagen; Hiet, Marie-Sophie; Longerich, Thomas; Diehl, Sarah; Ramirez, Fidel; Balla, Tamas; Rohr, Karl; Kaul, Artur; Bühler, Sandra; Pepperkok, Rainer; Lengauer, Thomas; Albrecht, Mario; Eils, Roland; Schirmacher, Peter; Lohmann, Volker; Bartenschlager, Ralf

    2011-01-20

    Hepatitis C virus (HCV) is a major causative agent of chronic liver disease in humans. To gain insight into host factor requirements for HCV replication, we performed a siRNA screen of the human kinome and identified 13 different kinases, including phosphatidylinositol-4 kinase III alpha (PI4KIIIα), as being required for HCV replication. Consistent with elevated levels of the PI4KIIIα product phosphatidylinositol-4-phosphate (PI4P) detected in HCV-infected cultured hepatocytes and liver tissue from chronic hepatitis C patients, the enzymatic activity of PI4KIIIα was critical for HCV replication. Viral nonstructural protein 5A (NS5A) was found to interact with PI4KIIIα and stimulate its kinase activity. The absence of PI4KIIIα activity induced a dramatic change in the ultrastructural morphology of the membranous HCV replication complex. Our analysis suggests that the direct activation of a lipid kinase by HCV NS5A contributes critically to the integrity of the membranous viral replication complex.

  11. Glucocorticoids activate Epstein Barr Virus lytic replication through the upregulation of immediate early BZLF1 gene expression

    PubMed Central

    Yang, Eric V.; Webster Marketon, Jeanette I.; Chen, Min; Lo, Kwok Wai; Kim, Seung-jae; Glaser, Ronald

    2010-01-01

    Psychological stress-associated immune dysregulation has been shown to disrupt the steady state expression and reactivate latent herpes viruses. One such virus is the Epstein Barr virus (EBV), which is associated with several human malignancies. EBV infects >90% of people living in North America and persists for life in latently infected cells. Although several studies have shown that glucocorticoids (GCs) can directly induce reactivation of the latent virus, the mechanism of stress hormone involvement in the control of EBV gene expression is not well understood. In this study, we tested the hypothesis that GCs can induce the latent EBV genome to lytically replicate through the induction of the EBV immediate early gene BZLF1 which encodes the lytic transactivator protein ZEBRA. We show a dose-dependent upregulation of BZLF1 mRNA expression by hydrocortisone (HC) and dexamethasone (Dex) in Daudi cells, an EBV genome positive Burkitt’s lymphoma cell line, and Dex-induction of the early gene products BLLF3 (encoding for the EBV dUTPase) and BALF5 (encoding for the EBV DNA polymerase). We show that Daudi cells express glucocorticoid receptors (GR) that mediate Dex-dependent upregulation of BZLF1 mRNA levels. This effect was inhibited by both the glucocorticoid receptor antagonist RU486 and by cycloheximide. The results suggest that GCs, in addition to inducing stress-related immune dysregulation, can mediate latent EBV reactivation through the induction of the BZLF1 gene. PMID:20466055

  12. Residues 41V and/or 210D in the NP protein enhance polymerase activities and potential replication of novel influenza (H7N9) viruses at low temperature.

    PubMed

    Zhu, Wenfei; Zou, Xiaohui; Zhou, Jianfang; Tang, Jing; Shu, Yuelong

    2015-05-05

    The influenza A (H7N9) virus emerged in the spring of 2013 in China. It contained six internal genes from Y280-like H9N2 viruses, which have co-circulated with G1-like lineage viruses throughout poultry in China. Accompanied with continuous reassortment among H7N9 and H9N2 viruses in poultry, it is possible for H7N9 viruses to acquire internal genes of G1-lineage viruses. Thus, it is important to evaluate potential impact of G1-like viruses on the H7N9 viruses. We used in vitro assays of polymerase activities and growth kinetics to evaluate the potential contribution of G1-like virus genes to the replication abilities of H7N9 viruses. Two mutations in the NP protein (41V and/or 210D) could enhance H7N9 RNP activities, especially at low temperature (33°C, which is similar to the temperature of human upper respiratory tract). Meanwhile, G1 viruses with V41I or D210E substitutions exhibited poor growth ability in the early infection stage at low temperature. The D210E substitution also reduced the replication ability of G1 virus at 12 and 24 hour post infection at 37°C. In both tested temperatures, V41I could compensate for the defective virus replication induced by the D210E mutation. Mutations 41V and/or 210D in the NP protein conferred improved RNP activity in H7N9 viruses and promoted the replication ability of H9N2 viruses, particularly at lower temperature. Substitutions at these two positions may promote the replication ability of H7N9 viruses in low temperature and thus might contribute to viral transmissibility. While these two residues have not yet been observed in H7N9 viruses, attention should be devoted to these two residues.

  13. Differential Phosphatidylinositol-3-Kinase-Akt-mTOR Activation by Semliki Forest and Chikungunya Viruses Is Dependent on nsP3 and Connected to Replication Complex Internalization

    PubMed Central

    Biasiotto, Roberta; Eng, Kai; Neuvonen, Maarit; Götte, Benjamin; Rheinemann, Lara; Mutso, Margit; Utt, Age; Varghese, Finny; Balistreri, Giuseppe; Merits, Andres; Ahola, Tero; McInerney, Gerald M.

    2015-01-01

    ABSTRACT Many viruses affect or exploit the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, a crucial prosurvival signaling cascade. We report that this pathway was strongly activated in cells upon infection with the Old World alphavirus Semliki Forest virus (SFV), even under conditions of complete nutrient starvation. We mapped this activation to the hyperphosphorylated/acidic domain in the C-terminal tail of SFV nonstructural protein nsP3. Viruses with a deletion of this domain (SFV-Δ50) but not of other regions in nsP3 displayed a clearly delayed and reduced capacity of Akt stimulation. Ectopic expression of the nsP3 of SFV wild type (nsP3-wt), but not nsP3-Δ50, equipped with a membrane anchor was sufficient to activate Akt. We linked PI3K-Akt-mTOR stimulation to the intracellular dynamics of viral replication complexes, which are formed at the plasma membrane and subsequently internalized in a process blocked by the PI3K inhibitor wortmannin. Replication complex internalization was observed upon infection of cells with SFV-wt and SFV mutants with deletions in nsP3 but not with SFV-Δ50, where replication complexes were typically accumulated at the cell periphery. In cells infected with the closely related chikungunya virus (CHIKV), the PI3K-Akt-mTOR pathway was only moderately activated. Replication complexes of CHIKV were predominantly located at the cell periphery. Exchanging the hypervariable C-terminal tail of nsP3 between SFV and CHIKV induced the phenotype of strong PI3K-Akt-mTOR activation and replication complex internalization in CHIKV. In conclusion, infection with SFV but not CHIKV boosts PI3K-Akt-mTOR through the hyperphosphorylated/acidic domain of nsP3 to drive replication complex internalization. IMPORTANCE SFV and CHIKV are very similar in terms of molecular and cell biology, e.g., regarding replication and molecular interactions, but are strikingly different regarding pathology: CHIKV is a relevant human

  14. Direct interaction of cellular hnRNP-F and NS1 of influenza A virus accelerates viral replication by modulation of viral transcriptional activity and host gene expression

    SciTech Connect

    Lee, Jun Han; Kim, Sung-Hak; Pascua, Philippe Noriel Q.; Song, Min-Suk; Baek, Yun Hee; Jin, Xun; Choi, Joong-Kook; Kim, Chul-Joong; Kim, Hyunggee; Choi, Young Ki

    2010-02-05

    To investigate novel NS1-interacting proteins, we conducted a yeast two-hybrid analysis, followed by co-immunoprecipitation assays. We identified heterogeneous nuclear ribonucleoprotein F (hnRNP-F) as a cellular protein interacting with NS1 during influenza A virus infection. Co-precipitation assays suggest that interaction between hnRNP-F and NS1 is a common and direct event among human or avian influenza viruses. NS1 and hnRNP-F co-localize in the nucleus of host cells, and the RNA-binding domain of NS1 directly interacts with the GY-rich region of hnRNP-F determined by GST pull-down assays with truncated proteins. Importantly, hnRNP-F expression levels in host cells indicate regulatory role on virus replication. hnRNP-F depletion by small interfering RNA (siRNA) shows 10- to 100-fold increases in virus titers corresponding to enhanced viral RNA polymerase activity. Our results delineate novel mechanism of action by which NS1 accelerates influenza virus replication by modulating normal cellular mRNA processes through direct interaction with cellular hnRNP-F protein.

  15. Saikosaponin A inhibits influenza A virus replication and lung immunopathology

    PubMed Central

    Zhao, Yaqin; Ling, Fangfang; Xiao, Kun; Li, Qian; Li, Bin; Lu, Chunni; Qi, Wenbao; Zeng, Zhenling; Liao, Ming; Liu, Yahong; Chen, Weisan

    2015-01-01

    Fatal influenza outcomes result from a combination of rapid virus replication and collateral lung tissue damage caused by exaggerated pro-inflammatory host immune cell responses. There are few therapeutic agents that target both biological processes for the attenuation of influenza-induced lung pathology. We show that Saikosaponin A, a bioactive triterpene saponin with previouslyestablished anti-inflammatory effects, demonstrates both in vitro and in vivo anti-viral activity against influenza A virus infections. Saikosaponin A attenuated the replication of three different influenza A virus strains, including a highly pathogenic H5N1 strain, in human alveolar epithelial A549 cells. This anti-viral activity occurred through both downregulation of NF-κB signaling and caspase 3-dependent virus ribonucleoprotein nuclear export as demonstrated by NF-κB subunit p65 and influenza virus nucleoprotein nuclear translocation studies in influenza virus infected A549 cells. Critically, Saikosaponin A also attenuated viral replication, aberrant pro-inflammatory cytokine production and lung histopathology in the widely established H1N1 PR8 model of influenza A virus lethality in C57BL/6 mice. Flow cytometry studies of mouse bronchoalveolar lavage cells revealed that SSa exerted immunomodulatory effects through a selective attenuation of lung neutrophil and monocyte recruitment during the early peak of the innate immune response to PR8 infection. Altogether, our results indicate that Saikosaponin A possesses novel therapeutic potential for the treatment of pathological influenza virus infections. PMID:26637810

  16. Pyrrolidine Dithiocarbamate Inhibits Herpes Simplex Virus 1 and 2 Replication, and Its Activity May Be Mediated through Dysregulation of the Ubiquitin-Proteasome System

    PubMed Central

    Qiu, Min; Chen, Yu; Cheng, Lin; Chu, Ying; Song, Hong-Yong

    2013-01-01

    Pyrrolidine dithiocarbamate (PDTC) is widely used as an antioxidant or an NF-κB inhibitor. It has been reported to inhibit the replication of human rhinoviruses, poliovirus, coxsackievirus, and influenza virus. In this paper, we report that PDTC could inhibit the replication of herpes simplex virus 1 and 2 (HSV-1 and HSV-2). PDTC suppressed the expression of HSV-1 and HSV-2 viral immediate early (IE) and late (membrane protein gD) genes and the production of viral progeny. This antiviral property was mediated by the dithiocarbamate moiety of PDTC and required the presence of Zn2+. Although PDTC could potently block reactive oxygen species (ROS) generation, it was found that this property did not contribute to its anti-HSV activity. PDTC showed no activity in disrupting the mitogen-activated protein kinase (MAPK) pathway activation induced by viral infection that was vital for the virus's propagation. We found that PDTC modulated cellular ubiquitination and, furthermore, influenced HSV-2-induced IκB-α degradation to inhibit NF-κB activation and enhanced PML stability in the nucleus, resulting in the inhibition of viral gene expression. These results suggested that the antiviral activity of PDTC might be mediated by its dysregulation of the cellular ubiquitin-proteasome system (UPS). PMID:23740985

  17. Experimental hepatitis A virus (HAV) infection in cynomolgus monkeys (Macaca fascicularis): evidence of active extrahepatic site of HAV replication

    PubMed Central

    Amado, Luciane A; Marchevsky, Renato S; de Paula, Vanessa S; Hooper, Cleber; Freire, Marcos da S; Gaspar, Ana Maria C; Pinto, Marcelo A

    2010-01-01

    This work studied the replication sites of hepatitis A virus (HAV) in cynomolgus monkeys (Macaca fascicularis) after intravenous inoculation. The cynomolgus monkeys were inoculated with the Brazilian hepatitis A virus strain (HAF-203). Monkeys were euthanized on days 15, 30, 45 and 60 postinoculation (pi). Liver samples, submandibular salivary gland, mesenteric lymph node and tonsils were removed for virological and pathological evaluation. Immunofluorescence analyses on liver and salivary gland sections using confocal laser scanning microscopy revealed the presence of HAV antigen (HAV Ag). The presence of HAV genome was monitored by real-time PCR. The HAV RNA was detected at 7 days postinoculation (dpi), concomitantly in serum, saliva and faeces. The highest HAV viral load was observed in faeces at 15 dpi (105 copies/ml), followed by serum viral load of 104 copies/ml at 20 dpi and saliva viral load of 103copies/ml at 7 dpi. The animals showed first histological and biochemical signs of hepatitis at 15 dpi. The HAV antigen (Ag) was present from day 7 until day 60 pi in the liver and salivary glands. The HAV replicative intermediate was also detected in the liver (4.5 × 104 copies/mg), salivary glands (1.9 × 103 copies/mg), tonsils (4.2 × 101 copies/mg) and lymph nodes (3.4 × 101 copies/mg). Our data demonstrated that the salivary gland as an extrahepatic site of early HAV replication could create a potential risk of saliva transmitted infection. In addition, the cynomolgus monkey was confirmed as a suitable model to study the pathogenesis of HAV human infection. PMID:20096073

  18. Vaccinia Virus Requires Glutamine but Not Glucose for Efficient Replication

    PubMed Central

    Fontaine, Krystal A.; Camarda, Roman

    2014-01-01

    ABSTRACT Viruses require host cell metabolism to provide the necessary energy and biosynthetic precursors for successful viral replication. Vaccinia virus (VACV) is a member of the Poxviridae family, and its use as a vaccine enabled the eradication of variola virus, the etiologic agent of smallpox. A global metabolic screen of VACV-infected primary human foreskin fibroblasts suggested that glutamine metabolism is altered during infection. Glutamine and glucose represent the two main carbon sources for mammalian cells. Depriving VACV-infected cells of exogenous glutamine led to a substantial decrease in infectious virus production, whereas starving infected cells of exogenous glucose had no significant impact on replication. Viral yield in glutamine-deprived cells or in cells treated with an inhibitor of glutaminolysis, the pathway of glutamine catabolism, could be rescued by the addition of multiple tricarboxylic acid (TCA) cycle intermediates. Thus, VACV infection induces a metabolic alteration to fully rely on glutamine to anaplerotically maintain the TCA cycle. VACV protein synthesis, but not viral transcription, was decreased in glutamine-deprived cells, which corresponded with a dramatic reduction in all VACV morphogenetic intermediates. This study reveals the unique carbon utilization program implemented during poxvirus infection and provides a potential metabolic pathway to target viral replication. IMPORTANCE Viruses are dependent on the metabolic machinery of the host cell to supply the energy and molecular building blocks needed for critical processes including genome replication, viral protein synthesis, and membrane production. This study investigates how vaccinia virus (VACV) infection alters global cellular metabolism, providing the first metabolomic analysis for a member of the poxvirus family. Unlike most viruses examined to date, VACV does not activate glycolysis, and exogenous glucose is not required for maximal virus production. Instead, VACV

  19. Highly Pathogenic New World Arenavirus Infection Activates the Pattern Recognition Receptor Protein Kinase R without Attenuating Virus Replication in Human Cells.

    PubMed

    Huang, Cheng; Kolokoltsova, Olga A; Mateer, Elizabeth J; Koma, Takaaki; Paessler, Slobodan

    2017-10-15

    The arenavirus family consists of several highly pathogenic viruses, including the Old World (OW) arenavirus Lassa fever virus (LASV) and the New World (NW) Junin virus (JUNV) and Machupo virus (MACV). Host response to infection by these pathogenic arenaviruses is distinct in many aspects. JUNV and MACV infections readily induce an interferon (IFN) response in human cells, while LASV infection usually triggers an undetectable or weak IFN response. JUNV induces an IFN response through RIG-I, suggesting that the host non-self RNA sensor readily detects JUNV viral RNAs (vRNAs) during infection and activates IFN response. Double-stranded-RNA (dsRNA)-activated protein kinase R (PKR) is another host non-self RNA sensor classically known for its vRNA recognition activity. Here we report that infection with NW arenaviruses JUNV and MACV, but not OW LASV, activated PKR, concomitant with elevated phosphorylation of the translation initiation factor α subunit of eukaryotic initiation factor 2 (eIF2α). Host protein synthesis was substantially suppressed in MACV- and JUNV-infected cells but was only marginally reduced in LASV-infected cells. Despite the antiviral activity known for PKR against many other viruses, the replication of JUNV and MACV was not impaired but was slightly augmented in wild-type (wt) cells compared to that in PKR-deficient cells, suggesting that PKR or PKR activation did not negatively affect JUNV and MACV infection. Additionally, we found an enhanced IFN response in JUNV- or MACV-infected PKR-deficient cells, which was inversely correlated with virus replication.IMPORTANCE The detection of viral RNA by host non-self RNA sensors, including RIG-I and MDA5, is critical to the initiation of the innate immune response to RNA virus infection. Among pathogenic arenaviruses, the OW LASV usually does not elicit an interferon response. However, the NW arenaviruses JUNV and MACV readily trigger an IFN response in a RIG-I-dependent manner. Here, we demonstrate for

  20. A novel functional site in the PB2 subunit of influenza A virus essential for acetyl-CoA interaction, RNA polymerase activity, and viral replication.

    PubMed

    Hatakeyama, Dai; Shoji, Masaki; Yamayoshi, Seiya; Hirota, Takenori; Nagae, Monami; Yanagisawa, Shin; Nakano, Masahiro; Ohmi, Naho; Noda, Takeshi; Kawaoka, Yoshihiro; Kuzuhara, Takashi

    2014-09-05

    The PA, PB1, and PB2 subunits, components of the RNA-dependent RNA polymerase of influenza A virus, are essential for viral transcription and replication. The PB2 subunit binds to the host RNA cap (7-methylguanosine triphosphate (m(7)GTP)) and supports the endonuclease activity of PA to "snatch" the cap from host pre-mRNAs. However, the structure of PB2 is not fully understood, and the functional sites remain unknown. In this study, we describe a novel Val/Arg/Gly (VRG) site in the PB2 cap-binding domain, which is involved in interaction with acetyl-CoA found in eukaryotic histone acetyltransferases (HATs). In vitro experiments revealed that the recombinant PB2 cap-binding domain that includes the VRG site interacts with acetyl-CoA; moreover, it was found that this interaction could be blocked by CoA and various HAT inhibitors. Interestingly, m(7)GTP also inhibited this interaction, suggesting that the same active pocket is capable of interacting with acetyl-CoA and m(7)GTP. To elucidate the importance of the VRG site on PB2 function and viral replication, we constructed a PB2 recombinant protein and recombinant viruses including several patterns of amino acid mutations in the VRG site. Substitutions of the valine and arginine residues or of all 3 residues of the VRG site to alanine significantly reduced the binding ability of PB2 to acetyl-CoA and its RNA polymerase activity. Recombinant viruses containing the same mutations could not be replicated in cultured cells. These results indicate that the PB2 VRG sequence is a functional site that is essential for acetyl-CoA interaction, RNA polymerase activity, and viral replication. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Vaccinia virus as a subhelper for AAV replication and packaging.

    PubMed

    Moore, Andrea R; Dong, Biao; Chen, Lingxia; Xiao, Weidong

    2015-01-01

    Adeno-associated virus (AAV) has been widely used as a gene therapy vector to treat a variety of disorders. While these vectors are increasingly popular and successful in the clinic, there is still much to learn about the viruses. Understanding the biology of these viruses is essential in engineering better vectors and generating vectors more efficiently for large-scale use. AAV requires a helper for production and replication making this aspect of the viral life cycle crucial. Vaccinia virus (VV) has been widely cited as a helper virus for AAV. However, to date, there are no detailed analyses of its helper function. Here, the helper role of VV was studied in detail. In contrast to common belief, we demonstrated that VV was not a sufficient helper virus for AAV replication. Vaccinia failed to produce rAAV and activate AAV promoters. While this virus could not support rAAV production, Vaccinia could initiate AAV replication and packaging when AAV promoter activation is not necessary. This activity is due to the ability of Vaccinia-driven Rep78 to transcribe in the cytoplasm and subsequently translate in the nucleus and undergo typical functions in the AAV life cycle. As such, VV is subhelper for AAV compared to complete helper functions of adenovirus.

  2. The RNA Helicase and Nucleotide Triphosphatase Activities of the Bovine Viral Diarrhea Virus NS3 Protein Are Essential for Viral Replication

    PubMed Central

    Gu, Baohua; Liu, Changbao; Lin-Goerke, Juili; Maley, Derrick R.; Gutshall, Lester L.; Feltenberger, Cynthia A.; Del Vecchio, Alfred M.

    2000-01-01

    Helicase/nucleoside triphosphatase (NTPase) motifs have been identified in many RNA virus genomes. Similarly, all the members of the Flaviviridae family contain conserved helicase/NTPase motifs in their homologous NS3 proteins. Although this suggests that this activity plays a critical role in the viral life cycle, the precise role of the helicase/NTPase in virus replication or whether it is essential for virus replication is still unknown. To determine the role of the NS3 helicase/NTPase in the viral life cycle, deletion and point mutations in the helicase/NTPase motifs of the bovine viral diarrhea virus (BVDV) (NADL strain) NS3 protein designed to abolish either helicase activity alone (motif II, DEYH to DEYA) or both NTPase and helicase activity (motif I, GKT to GAT and deletion of motif VI) were generated. The C-terminal domain of NS3 (BVDV amino acids 1854 to 2362) of these mutants and wild type was expressed in bacteria, purified, and assayed for RNA helicase and ATPase activity. These mutations behaved as predicted with respect to RNA helicase and NTPase activities in vitro. When engineered back into an infectious cDNA for BVDV (NADL strain), point mutations in either the GKT or DEYH motif or deletion of motif VI yielded RNA transcripts that no longer produced infectious virus upon transfection of EBTr cells. Further analysis indicated that these mutants did not synthesize minus-strand RNA. These findings represent the first report unequivocably demonstrating that helicase activity is essential for minus-strand synthesis. PMID:10644352

  3. Promotion of Hendra Virus Replication by MicroRNA 146a

    PubMed Central

    Marsh, Glenn A.; Jenkins, Kristie A.; Gantier, Michael P.; Tizard, Mark L.; Middleton, Deborah; Lowenthal, John W.; Haining, Jessica; Izzard, Leonard; Gough, Tamara J.; Deffrasnes, Celine; Stambas, John; Robinson, Rachel; Heine, Hans G.; Pallister, Jackie A.; Foord, Adam J.; Bean, Andrew G.; Wang, Lin-Fa

    2013-01-01

    Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-κB-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-κB activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-κB activity aids Hendra virus replication. Furthermore, overexpression of the IκB superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease. PMID:23345523

  4. Chikungunya virus infectivity, RNA replication and non-structural polyprotein processing depend on the nsP2 protease's active site cysteine residue.

    PubMed

    Rausalu, Kai; Utt, Age; Quirin, Tania; Varghese, Finny S; Žusinaite, Eva; Das, Pratyush Kumar; Ahola, Tero; Merits, Andres

    2016-11-15

    Chikungunya virus (CHIKV), genus Alphavirus, family Togaviridae, has a positive-stand RNA genome approximately 12 kb in length. In infected cells, the genome is translated into non-structural polyprotein P1234, an inactive precursor of the viral replicase, which is activated by cleavages carried out by the non-structural protease, nsP2. We have characterized CHIKV nsP2 using both cell-free and cell-based assays. First, we show that Cys478 residue in the active site of CHIKV nsP2 is indispensable for P1234 processing. Second, the substrate requirements of CHIKV nsP2 are quite similar to those of nsP2 of related Semliki Forest virus (SFV). Third, substitution of Ser482 residue, recently reported to contribute to the protease activity of nsP2, with Ala has almost no negative effect on the protease activity of CHIKV nsP2. Fourth, Cys478 to Ala as well as Trp479 to Ala mutations in nsP2 completely abolished RNA replication in CHIKV and SFV trans-replication systems. In contrast, trans-replicases with Ser482 to Ala mutation were similar to wild type counterparts. Fifth, Cys478 to Ala as well as Trp479 to Ala mutations in nsP2 abolished the rescue of infectious virus from CHIKV RNA transcripts while Ser482 to Ala mutation had no effect. Thus, CHIKV nsP2 is a cysteine protease.

  5. [Helper viruses of adeno-associated virus type 4 replication].

    PubMed

    Dreĭzin, R S; Zhuravel', T F; Shalunova, N V; Klenova, A V; Zolotarskaia, E E

    1979-01-01

    In replication of adeno-associated virus type 4 (AAV-4) the helper function may be performed by a non-defective virus from the same group of parvoviruses (Kilham virus). The synthesis of AAV-4 antigen was observed in a pig embryo kidney cell line, SPEV, chronically infected with Kilham virus, strain RV-13, 45--52 passages. A one-day-old SPEV-Kilham culture was infected with AAV-4. The AAV-4 antigen was detected by immunofluorescence at 6, 8, 12, 18 hours, 2, 3, 4, and 5 days after inoculation. During the first 2--4 days after inoculation the AAV-4 antigen was found in the nucleus and perinuclear zone, later in the cytoplasm. A "new" helper virus for AAV-4 replication has been found: simiancytomegalovirus in human embryo fibroblast cell culture permissive for the helper virus. In the systems where AAV-4 replicates, its antigen can be detected in the nucleus and perinuclear zone by IF. AAV-4 did not replicate in a system insensitive to the helper virus or under non-permissive conditions: at the time, the AAV-4 antigen localized only in the cell cytoplasm was detected.

  6. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication

    PubMed Central

    Herod, Morgan R.; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C.; Verdaguer, Nuria; Rowlands, David J.

    2016-01-01

    ABSTRACT The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. IMPORTANCE Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome

  7. The role of surface basic amino acids of dengue virus NS3 helicase in viral RNA replication and enzyme activities.

    PubMed

    Chiang, Pao-Yin; Wu, Huey-Nan

    2016-07-01

    Structure-based mutagenesis analysis on selected conserved surface basic residues of DENV NS3 helicase was performed using a selectable replicon and recombinant protein. We found a requirement for basic side chains of NS3 residues #225, #268, and #538 to activate viral RNA replication and ensure RNA-stimulated ATPase activity, and a critical role for R560 and R599 residues in maintaining NS3 helicase structure, linked to its biological function and catalytic activity. Three screened NS3 second-site mutations for R225A and R268A/E mutations elevated the functional RNA binding of NS3 helicase and compensated the replication defect of the original NS3 mutant replicons. © 2016 Federation of European Biochemical Societies.

  8. Calsyntenin-1 mediates hepatitis C virus replication.

    PubMed

    Awan, Zunaira; Tay, Enoch S E; Eyre, Nicholas S; Wu, Lindsay E; Beard, Michael R; Boo, Irene; Drummer, Heidi E; George, Jacob; Douglas, Mark W

    2016-08-01

    The hepatitis C virus (HCV) RNA genome of 9.6 kb encodes only 10 proteins, and so is highly dependent on host hepatocyte factors to facilitate replication. We aimed to identify host factors involved in the egress of viral particles. By screening the supernatant of HCV-infected Huh7 cells using SILAC-based proteomics, we identified the transmembrane protein calsyntenin-1 as a factor specifically secreted by infected cells. Calsyntenin-1 has previously been shown to mediate transport of endosomes along microtubules in neurons, through interactions with kinesin light chain-1. Here we demonstrate for the first time, we believe, a similar role for calsyntenin-1 in Huh7 cells, mediating intracellular transport of endosomes. In HCV-infected cells we show that calsyntenin-1 contributes to the early stages of the viral replication cycle and the formation of the replication complex. Importantly, we demonstrate in our model that silencing calsyntenin-1 disrupts the viral replication cycle, confirming the reliance of HCV on this protein as a host factor. Characterizing the function of calsyntenin-1 will increase our understanding of the HCV replication cycle and pathogenesis, with potential application to other viruses sharing common pathways.

  9. Ultrastructural Characterization of Zika Virus Replication Factories.

    PubMed

    Cortese, Mirko; Goellner, Sarah; Acosta, Eliana Gisela; Neufeldt, Christopher John; Oleksiuk, Olga; Lampe, Marko; Haselmann, Uta; Funaya, Charlotta; Schieber, Nicole; Ronchi, Paolo; Schorb, Martin; Pruunsild, Priit; Schwab, Yannick; Chatel-Chaix, Laurent; Ruggieri, Alessia; Bartenschlager, Ralf

    2017-02-28

    A global concern has emerged with the pandemic spread of Zika virus (ZIKV) infections that can cause severe neurological symptoms in adults and newborns. ZIKV is a positive-strand RNA virus replicating in virus-induced membranous replication factories (RFs). Here we used various imaging techniques to investigate the ultrastructural details of ZIKV RFs and their relationship with host cell organelles. Analyses of human hepatic cells and neural progenitor cells infected with ZIKV revealed endoplasmic reticulum (ER) membrane invaginations containing pore-like openings toward the cytosol, reminiscent to RFs in Dengue virus-infected cells. Both the MR766 African strain and the H/PF/2013 Asian strain, the latter linked to neurological diseases, induce RFs of similar architecture. Importantly, ZIKV infection causes a drastic reorganization of microtubules and intermediate filaments forming cage-like structures surrounding the viral RF. Consistently, ZIKV replication is suppressed by cytoskeleton-targeting drugs. Thus, ZIKV RFs are tightly linked to rearrangements of the host cell cytoskeleton.

  10. Junín Virus Pathogenesis and Virus Replication

    PubMed Central

    Grant, Ashley; Seregin, Alexey; Huang, Cheng; Kolokoltsova, Olga; Brasier, Allan; Peters, Clarence; Paessler, Slobodan

    2012-01-01

    Junín virus, the etiological agent of Argentine hemorrhagic fever, causes significant morbidity and mortality. The virus is spread through the aerosolization of host rodent excreta and endemic to the humid pampas of Argentina. Recently, significant progress has been achieved with the development of new technologies (e.g. reverse genetics) that have expanded knowledge about the pathogenesis and viral replication of Junín virus. We will review the pathogenesis of Junín virus in various animal models and the role of innate and adaptive immunity during infection. We will highlight current research regarding the role of molecular biology of Junín virus in elucidating virus attenuation. We will also summarize current knowledge on Junín virus pathogenesis focusing on the recent development of vaccines and potential therapeutics. PMID:23202466

  11. In vitro antiviral activity of circular triple helix forming oligonucleotide RNA towards Feline Infectious Peritonitis virus replication.

    PubMed

    Choong, Oi Kuan; Mehrbod, Parvaneh; Tejo, Bimo Ario; Omar, Abdul Rahman

    2014-01-01

    Feline Infectious Peritonitis (FIP) is a severe fatal immune-augmented disease in cat population. It is caused by FIP virus (FIPV), a virulent mutant strain of Feline Enteric Coronavirus (FECV). Current treatments and prophylactics are not effective. The in vitro antiviral properties of five circular Triple-Helix Forming Oligonucleotide (TFO) RNAs (TFO1 to TFO5), which target the different regions of virulent feline coronavirus (FCoV) strain FIPV WSU 79-1146 genome, were tested in FIPV-infected Crandell-Rees Feline Kidney (CRFK) cells. RT-qPCR results showed that the circular TFO RNAs, except TFO2, inhibit FIPV replication, where the viral genome copy numbers decreased significantly by 5-fold log10 from 10(14) in the virus-inoculated cells to 10(9) in the circular TFO RNAs-transfected cells. Furthermore, the binding of the circular TFO RNA with the targeted viral genome segment was also confirmed using electrophoretic mobility shift assay. The strength of binding kinetics between the TFO RNAs and their target regions was demonstrated by NanoITC assay. In conclusion, the circular TFOs have the potential to be further developed as antiviral agents against FIPV infection.

  12. Human T-cell leukemia virus type 2 Rex carboxy terminus is an inhibitory/stability domain that regulates Rex functional activity and viral replication.

    PubMed

    Xie, Li; Kesic, Matthew; Yamamoto, Brenda; Li, Min; Younis, Ihab; Lairmore, Michael D; Green, Patrick L

    2009-05-01

    Human T-cell leukemia virus (HTLV) regulatory protein, Rex, functions to increase the expression of the viral structural and enzymatic gene products. The phosphorylation of two serine residues (S151 and S153) at the C terminus is important for the function of HTLV-2 Rex (Rex-2). The Rex-2 phosphomimetic double mutant (S151D, S153D) is locked in a functionally active conformation. Since rex and tax genes overlap, Rex S151D and S153D mutants were found to alter the Tax oncoprotein coding sequence and transactivation activities. Therefore, additional Rex-2 mutants including P152D, A157D, S151Term, and S158Term were generated and characterized ("Term" indicates termination codon). All Rex-2 mutants and wild-type (wt) Rex-2 localized predominantly to the nucleus/nucleolus, but in contrast to the detection of phosphorylated and unphosphorylated forms of wt Rex-2 (p26 and p24), mutant proteins were detected as a single phosphoprotein species. We found that Rex P152D, A157D, and S158Term mutants are more functionally active than wt Rex-2 and that the Rex-2 C terminus and its specific phosphorylation state are required for stability and optimal expression. In the context of the provirus, the more active Rex mutants (A157D or S158Term) promoted increased viral protein production, increased viral infectious spread, and enhanced HTLV-2-mediated cellular proliferation. Moreover, these Rex mutant viruses replicated and persisted in inoculated rabbits despite higher antiviral antibody responses. Thus, we identified in Rex-2 a novel C-terminal inhibitory domain that regulates functional activity and is positively regulated through phosphorylation. The ability of this domain to modulate viral replication likely plays a key role in the infectious spread of the virus and in virus-induced cellular proliferation.

  13. Herpes simplex virus type 1 glycoprotein K is not essential for infectious virus production in actively replicating cells but is required for efficient envelopment and translocation of infectious virions from the cytoplasm to the extracellular space.

    PubMed Central

    Jayachandra, S; Baghian, A; Kousoulas, K G

    1997-01-01

    We characterized the glycoprotein K (gK)-null herpes simplex virus type 1 [HSV-1] (KOS) delta gK and compared it to the gK-null virus HSV-1 F-gKbeta (L. Hutchinson et al., J. Virol. 69:5401-5413, 1995). delta gK and F-gKbeta mutant viruses produced small plaques on Vero cell monolayers at 48 h postinfection. F-gKbeta caused extensive fusion of 143TK cells that was sensitive to melittin, a specific inhibitor of gK-induced cell fusion, while delta gK virus did not fuse 143TK cells. A recombinant plasmid containing the truncated gK gene specified by F-gKbeta failed to rescue the ICP27-null virus KOS (d27-1), while a plasmid with the delta gK deletion rescued the d27-1 virus efficiently. delta gK virus yield was approximately 100,000-fold lower in stationary cells than in actively replicating Vero cells. The plaquing efficiencies of delta gK and F-gKbeta virus stocks on VK302 cells were similar, while the plaquing efficiency of F-gKbeta virus stocks on Vero cells was reduced nearly 10,000-fold in comparison to that of delta gK virus. Mutant delta gK and F-gKbeta infectious virions accumulated within Vero and HEp-2 cells but failed to translocate to extracellular spaces. delta gK capsids accumulated in the nuclei of Vero but not HEp-2 cells. Enveloped delta gK virions were visualized in the cytoplasms of both Vero and HEp-2 cells, and viral capsids were found in the cytoplasm of HEp-2 cells within vesicles. Glycoproteins B, C, D, and H were expressed on the surface of delta gK-infected Vero cells in amounts similar to those for KOS-infected Vero cells. These results indicate that gK is involved in nucleocapsid envelopment, and more importantly in the translocation of infectious virions from the cytoplasm to the extracellular spaces, and that actively replicating cells can partially compensate for the envelopment but not for the cellular egress deficiency of the delta gK virus. Comparison of delta gK and F-gKbeta viruses suggests that the inefficient viral replication

  14. Serine/Arginine-rich Splicing Factor 2 Modulates Herpes Simplex Virus Type 1 Replication via Regulating Viral Gene Transcriptional Activity and Pre-mRNA Splicing.

    PubMed

    Wang, Ziqiang; Liu, Qing; Lu, Jinhua; Fan, Ping; Xie, Weidong; Qiu, Wei; Wang, Fan; Hu, Guangnan; Zhang, Yaou

    2016-12-16

    Once it enters the host cell, herpes simplex virus type 1 (HSV-1) recruits a series of host cell factors to facilitate its life cycle. Here, we demonstrate that serine/arginine-rich splicing factor 2 (SRSF2), which is an important component of the splicing speckle, mediates HSV-1 replication by regulating viral gene expression at the transcriptional and posttranscriptional levels. Our results indicate that SRSF2 functions as a transcriptional activator by directly binding to infected cell polypeptide 0 (ICP0), infected cell polypeptide 27 (ICP27), and thymidine kinase promoters. Moreover, SRSF2 participates in ICP0 pre-mRNA splicing by recognizing binding sites in ICP0 exon 3. These findings provide insight into the functions of SRSF2 in HSV-1 replication and gene expression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Activation of new replication foci under conditions of replication stress

    PubMed Central

    Rybak, P; Waligórska, A; Bujnowicz, Ł; Hoang, A; Dobrucki, JW

    2015-01-01

    DNA damage, binding of drugs to DNA or a shortage of nucleotides can decrease the rate or completely halt the progress of replication forks. Although the global rate of replication decreases, mammalian cells can respond to replication stress by activating new replication origins. We demonstrate that a moderate level of stress induced by inhibitors of topoisomerase I, commencing in early, mid or late S-phase, induces activation of new sites of replication located within or in the immediate vicinity of the original replication factories; only in early S some of these new sites are also activated at a distance greater than 300 nm. Under high stress levels very few new replication sites are activated; such sites are located within the original replication regions. There is a large variation in cellular response to stress – while in some cells the number of replication sites increases even threefold, it decreases almost twofold in other cells. Replication stress results in a loss of PCNA from replication factories and a twofold increase in nuclear volume. These observations suggest that activation of new replication origins from the pool of dormant origins within replication cluster under conditions of mild stress is generally restricted to the original replication clusters (factories) active at a time of stress initiation, while activation of distant origins and new replication factories is suppressed. PMID:26212617

  16. Replication strategy of human hepatitis B virus

    SciTech Connect

    Will, H.; Reiser, W.; Weimer, T.; Pfaff, E.; Buescher, M.; Sprengel, R.; Cattaneo, R.; Schaller, H.

    1987-03-01

    To study the replication strategy of the human hepatitis B virus, the 5' end of the RNA pregenome and the initiation sites of DNA plus and minus strands have been mapped. The RNA pregenome was found to be terminally redundant by 120 nucleotides; it is initiated within the pre-C region and may also function as mRNA for synthesis of the major core protein and the hepatitis B virus reverse transcriptase. The hepatitis B virus DNA minus strand is initiated within the direct repeat sequence DR1, it contains a terminal redundancy of up to eight nucleotides, and its synthesis does not require any template switch. The DNA plus strand is primed by a short oligoribonucleotide probably derived from the 5' end of the RNA pregenome, and its synthesis is initiated close to the direct repeat sequence DR2. For its elongation to pass the discontinuity in the DNA minus strand an intramolecular template switch occurs using the terminal redundancy of this template. Thus, the route of reverse transcription and DNA replication of hepatitis B viruses is fundamentally different from that of retroviruses.

  17. Extracellular Vpr protein increases cellular permissiveness to human immunodeficiency virus replication and reactivates virus from latency.

    PubMed Central

    Levy, D N; Refaeli, Y; Weiner, D B

    1995-01-01

    The vpr gene product of human immunodeficiency virus (HIV) and simian immunodeficiency virus is a virion-associated regulatory protein that has been shown using vpr mutant viruses to increase virus replication, particularly in monocytes/macrophages. We have previously shown that vpr can directly inhibit cell proliferation and induce cell differentiation, events linked to the control of HIV replication, and also that the replication of a vpr mutant but not that of wild-type HIV type 1 (HIV-1) was compatible with cellular proliferation (D. N. Levy, L. S. Fernandes, W. V. Williams, and D. B. Weiner, Cell 72:541-550, 1993). Here we show that purified recombinant Vpr protein, in concentrations of < 100 pg/ml to 100 ng/ml, increases wild-type HIV-1 replication in newly infected transformed cell lines via a long-lasting increase in cellular permissiveness to HIV replication. The activity of extracellular Vpr protein could be completely inhibited by anti-Vpr antibodies. Extracellular Vpr also induced efficient HIV-1 replication in newly infected resting peripheral blood mononuclear cells. Extracellular Vpr transcomplemented a vpr mutant virus which was deficient in replication in promonocytic cells, restoring full replication competence. In addition, extracellular Vpr reactivated HIV-1 expression in five latently infected cell lines of T-cell, B-cell, and promonocytic origin which normally express very low levels of HIV RNA and protein, indicating an activation of translational or pretranslational events in the virus life cycle. Together, these results describe a novel pathway governing HIV replication and a potential target for the development of anti-HIV therapeutics. PMID:7815499

  18. Replication and transmission of influenza viruses in Japanese quail

    PubMed Central

    Makarova, Natalia V.; Ozaki, Hiroishi; Kida, Hiroshi; Webster, Robert G.; Perez, Daniel R.

    2015-01-01

    Quail have emerged as a potential intermediate host in the spread of avian influenza A viruses in poultry in Hong Kong. To better understand this possible role, we tested the replication and transmission in quail of influenza A viruses of all 15 HA subtypes. Quail supported the replication of at least 14 subtypes. Influenza A viruses replicated predominantly in the respiratory tract. Transmission experiments suggested that perpetuation of avian influenza viruses in quail requires adaptation. Swine influenza viruses were isolated from the respiratory tract of quail at low levels. There was no evidence of human influenza A or B virus replication. Interestingly, a human–avian recombinant containing the surface glycoprotein genes of a quail virus and the internal genes of a human virus replicated and transmitted readily in quail; therefore, quail could function as amplifiers of influenza virus reassortants that have the potential to infect humans and/or other mammalian species. PMID:12788625

  19. Downregulation of cellular c-Jun N-terminal protein kinase and NF-κB activation by berberine may result in inhibition of herpes simplex virus replication.

    PubMed

    Song, Siwei; Qiu, Min; Chu, Ying; Chen, Deyan; Wang, Xiaohui; Su, Airong; Wu, Zhiwei

    2014-09-01

    Berberine is a quaternary ammonium salt from the protoberberine group of isoquinoline alkaloids. Some reports show that berberine exhibits anti-inflammatory, antitumor, and antiviral properties by modulating multiple cellular signaling pathways, including p53, nuclear factor κB (NF-κB), and mitogen-activated protein kinase. In the present study, we investigated the antiviral effect of berberine against herpes simplex virus (HSV) infection. Current antiherpes medicines such as acyclovir can lessen the recurring activation when used early at infection but are unable to prevent or cure infections where treatment has selected for resistant mutants. In searching for new antiviral agents against herpesvirus infection, we found that berberine reduced viral RNA transcription, protein synthesis, and virus titers in a dose-dependent manner. To elucidate the mechanism of its antiviral activity, the effect of berberine on the individual steps of viral replication cycle of HSV was investigated via time-of-drug addition assay. We found that berberine acted at the early stage of HSV replication cycle, between viral attachment/entry and genomic DNA replication, probably at the immediate-early gene expression stage. We further demonstrated that berberine significantly reduced HSV-induced NF-κB activation, as well as IκB-α degradation and p65 nuclear translocation. Moreover, we found that berberine also depressed HSV-induced c-Jun N-terminal kinase (JNK) phosphorylation but had little effect on p38 phosphorylation. Our results suggest that the berberine inhibition of HSV infection may be mediated through modulating cellular JNK and NF-κB pathways.

  20. Downregulation of Cellular c-Jun N-Terminal Protein Kinase and NF-κB Activation by Berberine May Result in Inhibition of Herpes Simplex Virus Replication

    PubMed Central

    Song, Siwei; Qiu, Min; Chu, Ying; Chen, Deyan; Wang, Xiaohui; Su, Airong

    2014-01-01

    Berberine is a quaternary ammonium salt from the protoberberine group of isoquinoline alkaloids. Some reports show that berberine exhibits anti-inflammatory, antitumor, and antiviral properties by modulating multiple cellular signaling pathways, including p53, nuclear factor κB (NF-κB), and mitogen-activated protein kinase. In the present study, we investigated the antiviral effect of berberine against herpes simplex virus (HSV) infection. Current antiherpes medicines such as acyclovir can lessen the recurring activation when used early at infection but are unable to prevent or cure infections where treatment has selected for resistant mutants. In searching for new antiviral agents against herpesvirus infection, we found that berberine reduced viral RNA transcription, protein synthesis, and virus titers in a dose-dependent manner. To elucidate the mechanism of its antiviral activity, the effect of berberine on the individual steps of viral replication cycle of HSV was investigated via time-of-drug addition assay. We found that berberine acted at the early stage of HSV replication cycle, between viral attachment/entry and genomic DNA replication, probably at the immediate-early gene expression stage. We further demonstrated that berberine significantly reduced HSV-induced NF-κB activation, as well as IκB-α degradation and p65 nuclear translocation. Moreover, we found that berberine also depressed HSV-induced c-Jun N-terminal kinase (JNK) phosphorylation but had little effect on p38 phosphorylation. Our results suggest that the berberine inhibition of HSV infection may be mediated through modulating cellular JNK and NF-κB pathways. PMID:24913175

  1. Reciprocal regulation of farnesoid X receptor α activity and hepatitis B virus replication in differentiated HepaRG cells and primary human hepatocytes.

    PubMed

    Radreau, Pauline; Porcherot, Marine; Ramière, Christophe; Mouzannar, Karim; Lotteau, Vincent; André, Patrice

    2016-09-01

    Hepatitis B virus (HBV) and bile salt metabolism seem tightly connected. HBV enters hepatocytes by binding to sodium taurocholate cotransporting polypeptide (NTCP), the genome of which contains 2 active farnesoid X receptor (FXR) α response elements that participate in HBV transcriptional activity. We investigated in differentiated HepaRG cells and in primary human hepatocytes (PHHs) effects of FXR activation on HBV replication and of infection on the FXR pathway. In HepaRG cells, FXR agonists (6-ethyl chenodeoxycholic acid and GW4064), but no antagonist, and an FXR-unrelated bile salt inhibited viral mRNA, DNA, and protein production (IC50, 0.1-0.5 μM) and reduced covalently closed circular DNA pool size. These effects were independent of the NTCP inhibitor cyclosporine-A, which suggests inhibition occurred at a postentry step. Similar results were obtained in PHHs with GW4064. Infection of these cells increased expression of FXR and modified expression of FXR-regulated genes SHP, APOA1, NTCP, CYP7A1, and CYP8B1 with a more pronounced effect in PHHs than in HepaRG cells. FXR agonists reversed all but one of the HBV-induced FXR gene profile modifications. HBV replication and FXR regulation seem to be interdependent, and altered bile salt metabolism homeostasis might contribute to the persistence of HBV infection.-Radreau, P., Porcherot, M., Ramière, C., Mouzannar, K., Lotteau, V., André, P. Reciprocal regulation of farnesoid X receptor α activity and hepatitis B virus replication in differentiated HepaRG cells and primary human hepatocytes.

  2. Chikungunya virus infectivity, RNA replication and non-structural polyprotein processing depend on the nsP2 protease’s active site cysteine residue

    PubMed Central

    Rausalu, Kai; Utt, Age; Quirin, Tania; Varghese, Finny S.; Žusinaite, Eva; Das, Pratyush Kumar; Ahola, Tero; Merits, Andres

    2016-01-01

    Chikungunya virus (CHIKV), genus Alphavirus, family Togaviridae, has a positive-stand RNA genome approximately 12 kb in length. In infected cells, the genome is translated into non-structural polyprotein P1234, an inactive precursor of the viral replicase, which is activated by cleavages carried out by the non-structural protease, nsP2. We have characterized CHIKV nsP2 using both cell-free and cell-based assays. First, we show that Cys478 residue in the active site of CHIKV nsP2 is indispensable for P1234 processing. Second, the substrate requirements of CHIKV nsP2 are quite similar to those of nsP2 of related Semliki Forest virus (SFV). Third, substitution of Ser482 residue, recently reported to contribute to the protease activity of nsP2, with Ala has almost no negative effect on the protease activity of CHIKV nsP2. Fourth, Cys478 to Ala as well as Trp479 to Ala mutations in nsP2 completely abolished RNA replication in CHIKV and SFV trans-replication systems. In contrast, trans-replicases with Ser482 to Ala mutation were similar to wild type counterparts. Fifth, Cys478 to Ala as well as Trp479 to Ala mutations in nsP2 abolished the rescue of infectious virus from CHIKV RNA transcripts while Ser482 to Ala mutation had no effect. Thus, CHIKV nsP2 is a cysteine protease. PMID:27845418

  3. Zinc ionophores pyrithione inhibits herpes simplex virus replication through interfering with proteasome function and NF-κB activation.

    PubMed

    Qiu, Min; Chen, Yu; Chu, Ying; Song, Siwei; Yang, Na; Gao, Jie; Wu, Zhiwei

    2013-10-01

    Pyrithione (PT), known as a zinc ionophore, is effective against several pathogens from the Streptococcus and Staphylococcus genera. The antiviral activity of PT was also reported against a number of RNA viruses. In this paper, we showed that PT could effectively inhibit herpes simplex virus types 1 and 2 (HSV-1 and HSV-2). PT inhibited HSV late gene (Glycoprotein D, gD) expression and the production of viral progeny, and this action was dependent on Zn(2+). Further studies showed that PT suppressed the expression of HSV immediate early (IE) gene, the infected cell polypeptide 4 (ICP4), but had less effect on another regulatory IE protein, ICP0. It was found that PT treatment could interfere with cellular ubiquitin-proteasome system (UPS), leading to the inhibition of HSV-2-induced IκB-α degradation to inhibit NF-κB activation and enhanced promyelocytic leukemia protein (PML) stability in nucleus. However, PT did not show direct inhibition of 26S proteasome activity. Instead, it induced Zn(2+) influx, which facilitated the dysregulation of UPS and the accumulation of intracellular ubiquitin-conjugates. UPS inhibition by PT caused disruption of IκB-α degradation and NF-κB activation thus leading to marked reduction of viral titer.

  4. A Y526Q Mutation in the Newcastle Disease Virus HN Protein Reduces Its Functional Activities and Attenuates Virus Replication and Pathogenicity▿

    PubMed Central

    Khattar, Sunil K.; Yan, Yongqi; Panda, Aruna; Collins, Peter L.; Samal, Siba K.

    2009-01-01

    The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is a multifunctional protein that plays a crucial role in virus infectivity. In this study, using the mesogenic strain Beaudette C (BC), we mutated three conserved amino acids thought to be part of the binding/catalytic active site in the HN protein. We also mutated five additional residues near the proposed active site that are nonconserved between BC and the avirulent strain LaSota. The eight recovered NDV HN mutants were assessed for effects on biological activities. While most of the mutations had surprisingly little effect, mutation at conserved residue Y526 reduced the neuraminidase, receptor binding, and fusion activities and attenuated viral virulence in eggs and young birds. PMID:19474107

  5. Rubella Virus Replication and Links to Teratogenicity

    PubMed Central

    Lee, Jia-Yee; Bowden, D. Scott

    2000-01-01

    Rubella virus (RV) is the causative agent of the disease known more popularly as German measles. Rubella is predominantly a childhood disease and is endemic throughout the world. Natural infections of rubella occur only in humans and are generally mild. Complications of rubella infection, most commonly polyarthralgia in adult women, do exist; occasionally more serious sequelae occur. However, the primary public health concern of RV infection is its teratogenicity. RV infection of women during the first trimester of pregnancy can induce a spectrum of congenital defects in the newborn, known as congenital rubella syndrome (CRS). The development of vaccines and implementation of vaccination strategies have substantially reduced the incidence of disease and in turn of CRS in developed countries. The pathway whereby RV infection leads to teratogenesis has not been elucidated, but the cytopathology in infected fetal tissues suggests necrosis and/or apoptosis as well as inhibition of cell division of critical precursor cells involved in organogenesis. In cell culture, a number of unusual features of RV replication have been observed, including mitochondrial abnormalities, and disruption of the cytoskeleton; these manifestations are most probably linked and play some role in RV teratogenesis. Further understanding of the mechanism of RV teratogenesis will be brought about by the investigation of RV replication and virus-host interactions. PMID:11023958

  6. DNA intercalator stimulates influenza transcription and virus replication.

    PubMed

    Li, Olive T W; Poon, Leo L M

    2011-03-15

    Influenza A virus uses its host transcription machinery to facilitate viral RNA synthesis, an event that is associated with cellular RNA polymerase II (RNAPII). In this study, various RNAPII transcription inhibitors were used to investigate the effect of RNAPII phosphorylation status on viral RNA transcription. A low concentration of DNA intercalators, such as actinomycin D (ActD), was found to stimulate viral polymerase activity and virus replication. This effect was not observed in cells treated with RNAPII kinase inhibitors. In addition, the loss of RNAPII(a) in infected cells was due to the shift of nonphosphorylated RNAPII (RNAPII(a)) to hyperphosphorylated RNAPII (RNAPII(o)).

  7. Dengue virus replicates and accumulates in Aedes aegypti salivary glands.

    PubMed

    Raquin, Vincent; Lambrechts, Louis

    2017-07-01

    Dengue virus (DENV) is an RNA virus transmitted among humans by mosquito vectors, mainly Aedes aegypti. DENV transmission requires viral dissemination from the mosquito midgut to the salivary glands. During this process the virus undergoes several population bottlenecks, which are stochastic reductions in population size that restrict intra-host viral genetic diversity and limit the efficiency of natural selection. Despite the implications for virus transmission and evolution, DENV replication in salivary glands has not been directly demonstrated. Here, we used a strand-specific quantitative RT-PCR assay to demonstrate that negative-strand DENV RNA is produced in Ae. aegypti salivary glands, providing conclusive evidence that viral replication occurs in this tissue. Furthermore, we showed that the concentration of DENV genomic RNA in salivary glands increases significantly over time, indicating that active replication likely replenishes DENV genetic diversity prior to transmission. These findings improve our understanding of the biological determinants of DENV fitness and evolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Pyruvate dehydrogenase kinase regulates hepatitis C virus replication

    PubMed Central

    Jung, Gwon-Soo; Jeon, Jae-Han; Choi, Yeon-Kyung; Jang, Se Young; Park, Soo Young; Kim, Sung-Woo; Byun, Jun-Kyu; Kim, Mi-Kyung; Lee, Sungwoo; Shin, Eui-Cheol; Lee, In-Kyu; Kang, Yu Na; Park, Keun-Gyu

    2016-01-01

    During replication, hepatitis C virus (HCV) utilizes macromolecules produced by its host cell. This process requires host cellular metabolic reprogramming to favor elevated levels of aerobic glycolysis. Therefore, we evaluated whether pyruvate dehydrogenase kinase (PDK), a mitochondrial enzyme that promotes aerobic glycolysis, can regulate HCV replication. Levels of c-Myc, hypoxia-inducible factor-1α (HIF-1α), PDK1, PDK3, glucokinase, and serine biosynthetic enzymes were compared between HCV-infected and uninfected human liver and Huh-7.5 cells infected with or without HCV. Protein and mRNA expression of c-Myc, HIF-1α, and glycolytic enzymes were significantly higher in HCV-infected human liver and hepatocytes than in uninfected controls. This increase was accompanied by upregulation of serine biosynthetic enzymes, suggesting cellular metabolism was altered toward facilitated nucleotide synthesis essential for HCV replication. JQ1, a c-Myc inhibitor, and dichloroacetate (DCA), a PDK inhibitor, decreased the expression of glycolytic and serine synthetic enzymes in HCV-infected hepatocytes, resulting in suppressed viral replication. Furthermore, when co-administered with IFN-α or ribavirin, DCA further inhibited viral replication. In summary, HCV reprograms host cell metabolism to favor glycolysis and serine biosynthesis; this is mediated, at least in part, by increased PDK activity, which provides a surplus of nucleotide precursors. Therefore, blocking PDK activity might have therapeutic benefits against HCV replication. PMID:27471054

  9. Lambda-Interferons Inhibit Herpes Simplex Virus Type 2 Replication in Human Cervical Epithelial Cells by Activating the JAK/STAT Pathway.

    PubMed

    Li, Zhu; Lu, Xuan; Zhu, Yufan; Cheng, Pengfei; Liu, Shi; Zhang, Yi; Tang, Jingfeng; Yang, Sijun; Zhou, Li

    2017-07-24

    Herpes simplex virus type 2 (HSV-2) is associated with a variety of diseases that are health problems worldwide. Our early study showed that lambda-interferons (IFN-λs), induced by the activation of the Toll-like receptor 3 and retinoic acid-inducible protein I signaling pathways, contribute to inhibition of HSV-2 replication in human cervical epithelial cells. However, anti-HSV-2 mechanisms and specific differences in signaling transduction by different IFN-λs in human cervical epithelial cells remain unclear. In this study, we demonstrated potent inhibition of HSV-2 replication by IFN-λs without cytotoxicity. Investigation of the underlying mechanism(s) showed that IFN-λs induced expression of IFN-stimulated genes (ISGs) and enhanced the expression of several pattern recognition receptors (PRRs). Among the IFN-λs, IFN-λ3 induced higher levels of ISG and PRR expression. In addition, IFN-λs up-regulated a number of genes that encode components of the Janus kinase signal transducers and activators of transcription (JAK/STAT) signaling pathway. Inhibition of the JAK/STAT signaling pathway by a JAK inhibitor abolished IFN-λ-mediated anti-HSV-2 activity and induction of ISGs and PRRs, whereas the induction of ISGs and PRRs by IFN-λs was not compromised by HSV-2 infection. These findings provide further experimental evidence that IFN-λs have therapeutic potential for HSV-2 infections.

  10. Structure-activity relationships: analogues of the dicaffeoylquinic and dicaffeoyltartaric acids as potent inhibitors of human immunodeficiency virus type 1 integrase and replication.

    PubMed

    King, P J; Ma, G; Miao, W; Jia, Q; McDougall, B R; Reinecke, M G; Cornell, C; Kuan, J; Kim, T R; Robinson, W E

    1999-02-11

    The dicaffeoylquinic acids (DCQAs) and dicaffeoyltartaric acids (DCTAs) are potent and selective inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase. They also inhibit HIV-1 replication at nontoxic concentrations. Since integrase is an excellent target for anti-HIV therapy, structure-activity relationships were employed to synthesize compounds with: (1) improved potency against HIV-1 integrase, (2) improved anti-HIV effect in tissue culture, and (3) increased selectivity as indicated by low cellular toxicity. Thirty-four analogues of the DCTAs and DCQAs were synthesized and tested for cell toxicity, anti-HIV activity, and inhibition of HIV-1 integrase. Seventeen of the 34 analogues had potent activity against HIV-1 integrase ranging from 0. 07 to >10 microM. Seventeen analogues that were synthesized or purchased had no inhibitory activity against integrase at concentrations of 25 microM. Of the biologically active analogues, 7 of the 17 inhibited HIV replication at nontoxic concentrations. The most potent compounds were D-chicoric acid, meso-chicoric acid, bis(3,4-dihydroxydihydrocinnamoyl)-L-tartaric acid, digalloyl-L-tartaric acid, bis(3,4-dihydroxybenzoyl)-L-tartaric acid, dicaffeoylglyceric acid, and bis(3, 4-dihydroxyphenylacetyl)-L-tartaric acid. Anti-HIV activity of the active compounds in tissue culture ranged from 35 to 0.66 microM. Structure-activity relationships demonstrated that biscatechol moieties were absolutely required for inhibition of integrase, while at least one free carboxyl group was required for anti-HIV activity. These data demonstrate that analogues of the DCTAs and the DCQAs can be synthesized which have improved activity against HIV integrase.

  11. Prostaglandin A1 inhibits avian influenza virus replication at a postentry level: Effect on virus protein synthesis and NF-κB activity.

    PubMed

    Carta, Stefania; La Frazia, Simone; Donatelli, Isabella; Puzelli, Simona; Rossi, Antonio; Santoro, M Gabriella

    2014-12-01

    Influenza A viruses (IAV) have the potential to cause devastating pandemics. In recent years, the emergence of new avian strains able to infect humans represents a serious threat to global human health. The increase in drug-resistant IAV strains underscores the need for novel approaches to anti-influenza chemotherapy. Herein we show that prostaglandin-A1 (PGA1) possesses antiviral activity against avian IAV, including H5N9, H7N1 and H1N1 strains, acting at a level different from the currently available anti-influenza drugs. PGA1 acts at postentry level, causing dysregulation of viral protein synthesis and preventing virus-induced disassembly of host microtubular network and activation of pro-inflammatory factor NF-κB. The antiviral activity is dependent on the presence of a cyclopentenone ring structure and is associated with activation of a cytoprotective heat shock response in infected cells. The results suggest that cyclopentenone prostanoids or prostanoids-derived molecules may represent a new tool to combat avian influenza virus infection.

  12. Replication of Oral BK Virus in Human Salivary Gland Cells

    PubMed Central

    Burger-Calderon, Raquel; Madden, Victoria; Hallett, Ryan A.; Gingerich, Aaron D.; Nickeleit, Volker

    2014-01-01

    BK polyomavirus (BKPyV) is the most common viral pathogen among allograft patients. Increasing evidence links BKPyV to the human oral compartment and to HIV-associated salivary gland disease (HIVSGD). To date, few studies have analyzed orally derived BKPyV. This study aimed to characterize BKPyV isolated from throat wash (TW) samples from HIVSGD patients. The replication potential of HIVSGD-derived clinical isolates HIVSGD-1 and HIVSGD-2, both containing the noncoding control region (NCCR) architecture OPQPQQS, were assessed and compared to urine-derived virus. The BKPyV isolates displayed significant variation in replication potential. Whole-genome alignment of the two isolates revealed three nucleotide differences that were analyzed for a potential effect on the viral life cycle. Analysis revealed a negligible difference in NCCR promoter activity despite sequence variation and emphasized the importance of functional T antigen (Tag) for efficient replication. HIVSGD-1 encoded full-length Tag, underwent productive infection in both human salivary gland cells and kidney cells, and expressed viral DNA and Tag protein. Additionally, HIVSGD-1 generated DNase-resistant particles and by far surpassed the replication potential of the kidney-derived isolate in HSG cells. HIVSGD-2 encoded a truncated form of Tag and replicated much less efficiently. Quantitation of infectious virus, via the fluorescent forming unit assay, suggested that HIVSGD BKPyV had preferential tropism for salivary gland cells over kidney cells. Similarly, the results suggested that kidney-derived virus had preferential tropism for kidney cells over salivary gland cells. Evidence of HIVSGD-derived BKPyV oral tropism and adept viral replication in human salivary gland cells corroborated the potential link between HIVSGD pathogenesis and BKPyV. PMID:24173219

  13. Low Oxygen Tension Enhances Hepatitis C Virus Replication

    PubMed Central

    Kalliampakou, K. I.; Kotta-Loizou, I.; Befani, C.; Liakos, P.; Simos, G.; Mentis, A. F.; Kalliaropoulos, A.; Doumba, P. P.; Smirlis, D.; Foka, P.; Bauhofer, O.; Poenisch, M.; Windisch, M. P.; Lee, M. E.; Koskinas, J.; Bartenschlager, R.

    2013-01-01

    Low oxygen tension exerts a significant effect on the replication of several DNA and RNA viruses in cultured cells. In vitro propagation of hepatitis C virus (HCV) has thus far been studied under atmospheric oxygen levels despite the fact that the liver tissue microenvironment is hypoxic. In this study, we investigated the efficiency of HCV production in actively dividing or differentiating human hepatoma cells cultured under low or atmospheric oxygen tensions. By using both HCV replicons and infection-based assays, low oxygen was found to enhance HCV RNA replication whereas virus entry and RNA translation were not affected. Hypoxia signaling pathway-focused DNA microarray and real-time quantitative reverse transcription-PCR (qRT-PCR) analyses revealed an upregulation of genes related to hypoxic stress, glycolytic metabolism, cell growth, and proliferation when cells were kept under low (3% [vol/vol]) oxygen tension, likely reflecting cell adaptation to anaerobic conditions. Interestingly, hypoxia-mediated enhancement of HCV replication correlated directly with the increase in anaerobic glycolysis and creatine kinase B (CKB) activity that leads to elevated ATP production. Surprisingly, activation of hypoxia-inducible factor alpha (HIF-α) was not involved in the elevation of HCV replication. Instead, a number of oncogenes known to be associated with glycolysis were upregulated and evidence that these oncogenes contribute to hypoxia-mediated enhancement of HCV replication was obtained. Finally, in liver biopsy specimens of HCV-infected patients, the levels of hypoxia and anaerobic metabolism markers correlated with HCV RNA levels. These results provide new insights into the impact of oxygen tension on the intricate HCV-host cell interaction. PMID:23269812

  14. Extract of Scutellaria baicalensis inhibits dengue virus replication

    PubMed Central

    2013-01-01

    Background Scutellaria baicalensis (S. baicalensis) is one of the traditional Chinese medicinal herbs that have been shown to possess many health benefits. In the present study, we evaluated the in vitro antiviral activity of aqueous extract of the roots of S. baicalensis against all the four dengue virus (DENV) serotypes. Methods Aqueous extract of S. baicalensis was prepared by microwave energy steam evaporation method (MEGHE™), and the anti-dengue virus replication activity was evaluated using the foci forming unit reduction assay (FFURA) in Vero cells. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was used to determine the actual dengue virus RNA copy number. The presence of baicalein, a flavonoid known to inhibit dengue virus replication was determined by mass spectrometry. Results The IC50 values for the S. baicalensis extract on Vero cells following DENV adsorption ranged from 86.59 to 95.19 μg/mL for the different DENV serotypes. The IC50 values decreased to 56.02 to 77.41 μg/mL when cells were treated with the extract at the time of virus adsorption for the different DENV serotypes. The extract showed potent direct virucidal activity against extracellular infectious virus particles with IC50 that ranged from 74.33 to 95.83 μg/mL for all DENV serotypes. Weak prophylactic effects with IC50 values that ranged from 269.9 to 369.8 μg/mL were noticed when the cells were pre-treated 2 hours prior to virus inoculation. The concentration of baicalein in the S. baicalensis extract was ~1% (1.03 μg/gm dried extract). Conclusions Our study demonstrates the in vitro anti-dengue virus replication property of S. baicalensis against all the four DENV serotypes investigated. The extract reduced DENV infectivity and replication in Vero cells. The extract was rich in baicalein, and could be considered for potential development of anti-DENV therapeutics. PMID:23627436

  15. [Appearance of hepatitis C virus replication and increase of aminotransferase activity after corticoid treatment of presumed autoimmune hepatitis. 2 cases].

    PubMed

    Béchade, D; Oui, B; Mayet, F; Trouette, H; Schouler, L; Jouglen, J; Raymond, J M; Couzigou, P

    1996-01-01

    Autoimmune-related and hepatitis C virus-related chronic hepatitis are sometimes difficult to differentiate. We report two cases of chronic hepatitis with high levels of serum anti-smooth muscle antibodies, positive hepatitis C virus serology, and negative serum RNA, which were first treated with corticotherapy. Both patients responded with marked increases in aminotransferase levels, and positive RNA. The first case may have been type 1 autoimmune hepatitis with hepatitis C virus infection, and the second chronic hepatitis C with positive serum auto-antibodies. The increase in viral antigen expression on the surface of the hepatocytes following corticosteroid treatment may have favoured a direct cytopathogenic effect of hepatitis C virus.

  16. Comparative Proteomic Analysis of Wild-Type and SAP Domain Mutant Foot-and-Mouth Disease Virus-Infected Porcine Cells Identifies the Ubiquitin-Activating Enzyme UBE1 Required for Virus Replication.

    PubMed

    Zhu, Zixiang; Yang, Fan; Zhang, Keshan; Cao, Weijun; Jin, Ye; Wang, Guoqing; Mao, Ruoqing; Li, Dan; Guo, Jianhong; Liu, Xiangtao; Zheng, Haixue

    2015-10-02

    Leader protein (L(pro)) of foot-and-mouth disease virus (FMDV) manipulates the activities of several host proteins to promote viral replication and pathogenicity. L(pro) has a conserved protein domain SAP that is suggested to subvert interferon (IFN) production to block antiviral responses. However, apart from blocking IFN production, the roles of the SAP domain during FMDV infection in host cells remain unknown. Therefore, we identified host proteins associated with the SAP domain of L(pro) by a high-throughput quantitative proteomic approach [isobaric tags for relative and absolute quantitation (iTRAQ) in conjunction with liquid chromatography/electrospray ionization tandem mass spectrometry]. Comparison of the differentially regulated proteins in rA/FMDVΔmSAP- versus rA/FMDV-infected SK6 cells revealed 45 down-regulated and 32 up-regulated proteins that were mostly associated with metabolic, ribosome, spliceosome, and ubiquitin-proteasome pathways. The results also imply that the SAP domain has a function similar to SAF-A/B besides its potential protein inhibitor of activated signal transducer and activator of transcription (PIAS) function. One of the identified proteins UBE1 was further analyzed and displayed a novel role for the SAP domain of L(pro). Overexpression of UBE1 enhanced the replication of FMDV, and knockdown of UBE1 decreased FMDV replication. This shows that FMDV manipulates UBE1 for increased viral replication, and the SAP domain was involved in this process.

  17. Low-Resolution Structure of Vaccinia Virus DNA Replication Machinery

    PubMed Central

    Sèle, Céleste; Gabel, Frank; Gutsche, Irina; Ivanov, Ivan; Burmeister, Wim P.

    2013-01-01

    Smallpox caused by the poxvirus variola virus is a highly lethal disease that marked human history and was eradicated in 1979 thanks to a worldwide mass vaccination campaign. This virus remains a significant threat for public health due to its potential use as a bioterrorism agent and requires further development of antiviral drugs. The viral genome replication machinery appears to be an ideal target, although very little is known about its structure. Vaccinia virus is the prototypic virus of the Orthopoxvirus genus and shares more than 97% amino acid sequence identity with variola virus. Here we studied four essential viral proteins of the replication machinery: the DNA polymerase E9, the processivity factor A20, the uracil-DNA glycosylase D4, and the helicase-primase D5. We present the recombinant expression and biochemical and biophysical characterizations of these proteins and the complexes they form. We show that the A20D4 polymerase cofactor binds to E9 with high affinity, leading to the formation of the A20D4E9 holoenzyme. Small-angle X-ray scattering yielded envelopes for E9, A20D4, and A20D4E9. They showed the elongated shape of the A20D4 cofactor, leading to a 150-Å separation between the polymerase active site of E9 and the DNA-binding site of D4. Electron microscopy showed a 6-fold rotational symmetry of the helicase-primase D5, as observed for other SF3 helicases. These results favor a rolling-circle mechanism of vaccinia virus genome replication similar to the one suggested for tailed bacteriophages. PMID:23175373

  18. Tumor viruses and replicative immortality--avoiding the telomere hurdle.

    PubMed

    Chen, Xinsong; Kamranvar, Siamak Akbari; Masucci, Maria G

    2014-06-01

    Tumor viruses promote cell proliferation in order to gain access to an environment suitable for persistence and replication. The expression of viral products that promote growth transformation is often accompanied by the induction of multiple signs of telomere dysfunction, including telomere shortening, damage of telomeric DNA and chromosome instability. Long-term survival and progression to full malignancy require the bypassing of senescence programs that are triggered by the damaged telomeres. Here we review different strategies by which tumor viruses interfere with telomere homeostasis during cell transformation. This frequently involves the activation of telomerase, which assures both the integrity and functionality of telomeres. In addition, recent evidence suggests that oncogenic viruses may activate a recombination-based mechanism for telomere elongation known as Alternative Lengthening of Telomeres (ALT). This error-prone strategy promotes genomic instability and could play an important role in viral oncogenesis.

  19. Low-pH Stability of Influenza A Virus Sialidase Contributing to Virus Replication and Pandemic.

    PubMed

    Takahashi, Tadanobu; Suzuki, Takashi

    2015-01-01

    The spike glycoprotein neuraminidase (NA) of influenza A virus (IAV) has sialidase activity that cleaves the terminal sialic acids (viral receptors) from oligosaccharide chains of glycoconjugates. A new antigenicity of viral surface glycoproteins for humans has pandemic potential. We found "low-pH stability of sialidase activity" in NA. The low-pH stability can maintain sialidase activity under acidic conditions of pH 4-5. For human IAVs, NAs of all pandemic viruses were low-pH-stable, whereas those of almost all human seasonal viruses were not. The low-pH stability was dependent on amino acid residues near the active site, the calcium ion-binding site, and the subunit interfaces of the NA homotetramer, suggesting effects of the active site and the homotetramer on structural stability. IAVs with the low-pH-stable NA showed much higher virus replication rates than those of IAVs with low-pH-unstable NA, which was correlated with maintenance of sialidase activity under an endocytic pathway of the viral cell entry mechanism, indicating contribution of low-pH stability to high replication rates of pandemic viruses. The low-pH-stable NA of the 1968 H3N2 pandemic virus was derived from the low-pH-stable NA of H2N2 human seasonal virus, one of two types classified by both low-pH stability in N2 NA and a phylogenetic tree of N2 NA genes. The 2009 H1N1 pandemic virus acquired low-pH-stable NA by two amino acid substitutions at the early stage of the 2009 pandemic. It is thought that low-pH stability contributes to infection spread in a pandemic through enhancement of virus replication.

  20. Varicella-Zoster Virus Activates CREB, and Inhibition of the pCREB-p300/CBP Interaction Inhibits Viral Replication In Vitro and Skin Pathogenesis In Vivo

    PubMed Central

    François, Sylvie; Sen, Nandini; Mitton, Bryan; Xiao, Xiangshu; Sakamoto, Kathleen M.

    2016-01-01

    ABSTRACT Varicella-zoster virus (VZV) is an alphaherpesvirus that causes varicella upon primary infection and zoster upon reactivation from latency in sensory ganglion neurons. The replication of herpesviruses requires manipulation of cell signaling pathways. Notably, CREB, a factor involved in the regulation of several cellular processes, is activated upon infection of T cells with VZV. Here, we report that VZV infection also induced CREB phosphorylation in fibroblasts and that XX-650-23, a newly identified inhibitor of the phosphorylated-CREB (pCREB) interaction with p300/CBP, restricted cell-cell spread of VZV in vitro. CREB phosphorylation did not require the viral open reading frame 47 (ORF47) and ORF66 kinases encoded by VZV. Evaluating the biological relevance of these observations during VZV infection of human skin xenografts in the SCID mouse model of VZV pathogenesis showed both that pCREB was upregulated in infected skin and that treatment with XX-650-23 reduced infectious-virus production and limited lesion formation compared to treatment with a vehicle control. Thus, processes of CREB activation and p300/CBP binding are important for VZV skin infection and may be targeted for antiviral drug development. IMPORTANCE Varicella-zoster virus (VZV) is a common pathogen that causes chicken pox and shingles. As with all herpesviruses, the infection is acquired for life, and the virus can periodically reactivate from latency. Although VZV infection is usually benign with few or no deleterious consequences, infection can be life threatening in immunocompromised patients. Otherwise healthy elderly individuals who develop zoster as a consequence of viral reactivation are at risk for postherpetic neuralgia (PHN), a painful and long-lasting complication. Current vaccines use a live attenuated virus that is usually safe but cannot be given to many immunodeficient patients and retains the capacity to establish latency and reactivate, causing zoster. Antiviral drugs

  1. Fusion of Protegrin-1 and Plectasin to MAP30 Shows Significant Inhibition Activity against Dengue Virus Replication

    PubMed Central

    Rothan, Hussin A.; Bahrani, Hirbod; Mohamed, Zulqarnain; Abd Rahman, Noorsaadah; Yusof, Rohana

    2014-01-01

    Dengue virus (DENV) broadly disseminates in tropical and sub-tropical countries and there are no vaccine or anti-dengue drugs available. DENV outbreaks cause serious economic burden due to infection complications that requires special medical care and hospitalization. This study presents a new strategy for inexpensive production of anti-DENV peptide-fusion protein to prevent and/or treat DENV infection. Antiviral cationic peptides protegrin-1 (PG1) and plectasin (PLSN) were fused with MAP30 protein to produce recombinant antiviral peptide-fusion protein (PG1-MAP30-PLSN) as inclusion bodies in E. coli. High yield production of PG1-MAP30-PLSN protein was achieved by solubilization of inclusion bodies in alkaline buffer followed by the application of appropriate refolding techniques. Antiviral PG1-MAP30-PLSN protein considerably inhibited DENV protease (NS2B-NS3pro) with half-maximal inhibitory concentration (IC50) 0.5±0.1 μM. The real-time proliferation assay (RTCA) and the end-point proliferation assay (MTT assay) showed that the maximal-nontoxic dose of the peptide-fusion protein against Vero cells is approximately 0.67±0.2 μM. The cell-based assays showed considerable inhibition of the peptide-fusion protein against binding and proliferating stages of DENV2 into the target cells. The peptide-fusion protein protected DENV2-challeged mice with 100% of survival at the dose of 50 mg/kg. In conclusion, producing recombinant antiviral peptide-fusion protein by combining short antiviral peptide with a central protein owning similar activity could be useful to minimize the overall cost of short peptide production and take advantage of its synergistic antiviral activities. PMID:24722532

  2. Small Molecule Inhibition of Epstein - Barr Virus Nuclear Antigen-1 DNA Binding Activity Interferes with Replication and Persistence of the Viral Genome

    PubMed Central

    Noh, Ka-Won; Joo, Eun Hye; Zhao, Bo; Kieff, Elliott; Kang, Myung-Soo

    2014-01-01

    The replication and persistence of extra chromosomal Epstein-Barr virus (EBV) episome in latently infected cells are primarily dependent on the binding of EBV-encoded nuclear antigen 1 (EBNA1) to the cognate EBV oriP element. In continuation of the previous study, herein we characterized EBNA1 small molecule inhibitors (H20, H31) and their underlying inhibitory mechanisms. In silico docking analyses predicted that H20 fits into a pocket in the EBNA1 DNA binding domain (DBD). However, H20 did not significantly affect EBNA1 binding to its cognate sequence. A limited structure-relationship study of H20 identified a hydrophobic compound H31, as an EBNA1 inhibitor. An in vitro EBNA1 EMSA and in vivo EGFP-EBNA1 confocal microscopy analysis showed that H31 inhibited EBNA1-dependent oriP sequence-specific DNA binding activity, but not sequence-nonspecific chromosomal association. Consistent with this, H31 repressed the EBNA1-dependent transcription, replication, and persistence of an EBV oriP plasmid. Furthermore, H31 induced progressive loss of EBV episome. In addition, H31 selectively retarded the growth of EBV-infected LCL or Burkitt’s lymphoma cells. These data indicate that H31 inhibition of EBNA1-dependent DNA binding decreases transcription from and persistence of EBV episome in EBV-infected cells. These new compounds might be useful probes for dissecting EBNA1 functions in vitro and in vivo. PMID:24486954

  3. In vitro replication activity of bovine viral diarrhea virus in an epithelial cell line and in bovine peripheral blood mononuclear cells.

    PubMed

    Turin, Lauretta; Lucchini, Barbara; Bronzo, Valerio; Luzzago, Camilla

    2012-11-01

    The present study focused on the in vitro infection of Madin-Darby bovine kidney (MDBK) cells and bovine peripheral blood mononuclear cells (PBMCs) from naÏve animals with non-cytopathic (ncp, BVDV-1b NY-1) and cytopathic (cp, BVDV-1a NADL) strains. Infections with 0.1 and 1 multiplicity of infections (MOI) and incubation times of 18 and 36 hr were compared. Twelve BVDV naÏve heifers were enrolled to collect PBMCs. The viral loads in MDBK cells and in PBMCs after in vitro infections were measured by real-time polymerase chain reaction (PCR) assays. The highest viral loads were measured at 1 MOI and 36 hr post infection in both cell systems and the lowest at 0.1 MOI and 18 hr with the exception of the cp strain NADL in PBMCs, for which the highest viral load was observed at 0.1 MOI and 36 hr. Viral load mean values were higher for the cp strain than the ncp strain irrespective of the extent of the infection period and MOI. The models of infection studied uncovered different replication activities respectively according to the biotype of virus, the cell substrate and the duration of infection. Replication tends to be higher in PBMCs, particularly at low MOIs and for the ncp strain.

  4. Protein Phosphatase-1 Regulates Rift Valley Fever Virus Replication

    PubMed Central

    Baer, Alan; Shafagati, Nazly; Benedict, Ashwini; Ammosova, Tatiana; Ivanov, Andrey; Hakami, Ramin M.; Terasaki, Kaori; Makino, Shinji; Nekhai, Sergei; Kehn-Hall, Kylene

    2016-01-01

    Rift Valley fever virus (RVFV), genus Phlebovirus family Bunyaviridae, is an arthropod-borne virus endemic throughout sub-Saharan Africa. Recent outbreaks have resulted in cyclic epidemics with an increasing geographic footprint, devastating both livestock and human populations. Despite being recognized as an emerging threat, relatively little is known about the virulence mechanisms and host interactions of RVFV. To date there are no FDA approved therapeutics or vaccines for RVF and there is an urgent need for their development. The Ser/Thr protein phosphatase 1 (PP1) has previously been shown to play a significant role in the replication of several viruses. Here we demonstrate for the first time that PP1 plays a prominent role in RVFV replication early on during the viral life cycle. Both siRNA knockdown of PP1α and a novel PP1-targeting small molecule compound 1E7-03, resulted in decreased viral titers across several cell lines. Deregulation of PP1 was found to inhibit viral RNA production, potentially through the disruption of viral RNA transcript/protein interactions, and indicates a potential link between PP1α and the viral L polymerase and nucleoprotein. These results indicate that PP1 activity is important for RVFV replication early on during the viral life cycle and may prove an attractive therapeutic target. PMID:26801627

  5. Protein Phosphatase-1 regulates Rift Valley fever virus replication.

    PubMed

    Baer, Alan; Shafagati, Nazly; Benedict, Ashwini; Ammosova, Tatiana; Ivanov, Andrey; Hakami, Ramin M; Terasaki, Kaori; Makino, Shinji; Nekhai, Sergei; Kehn-Hall, Kylene

    2016-03-01

    Rift Valley fever virus (RVFV), genus Phlebovirus family Bunyaviridae, is an arthropod-borne virus endemic throughout sub-Saharan Africa. Recent outbreaks have resulted in cyclic epidemics with an increasing geographic footprint, devastating both livestock and human populations. Despite being recognized as an emerging threat, relatively little is known about the virulence mechanisms and host interactions of RVFV. To date there are no FDA approved therapeutics or vaccines for RVF and there is an urgent need for their development. The Ser/Thr protein phosphatase 1 (PP1) has previously been shown to play a significant role in the replication of several viruses. Here we demonstrate for the first time that PP1 plays a prominent role in RVFV replication early on during the viral life cycle. Both siRNA knockdown of PP1α and a novel PP1-targeting small molecule compound 1E7-03, resulted in decreased viral titers across several cell lines. Deregulation of PP1 was found to inhibit viral RNA production, potentially through the disruption of viral RNA transcript/protein interactions, and indicates a potential link between PP1α and the viral L polymerase and nucleoprotein. These results indicate that PP1 activity is important for RVFV replication early on during the viral life cycle and may prove an attractive therapeutic target.

  6. Dengue virus induces and requires glycolysis for optimal replication.

    PubMed

    Fontaine, Krystal A; Sanchez, Erica L; Camarda, Roman; Lagunoff, Michael

    2015-02-01

    Viruses rely on host cellular metabolism to provide the energy and biosynthetic building blocks required for their replication. Dengue virus (DENV), a member of the Flaviviridae family, is one of the most important arthropod-borne human pathogens worldwide. We analyzed global intracellular metabolic changes associated with DENV infection of primary human cells. Our metabolic profiling data suggested that central carbon metabolism, particularly glycolysis, is strikingly altered during a time course of DENV infection. Glucose consumption is increased during DENV infection and depriving DENV-infected cells of exogenous glucose had a pronounced impact on viral replication. Furthermore, the expression of both glucose transporter 1 and hexokinase 2, the first enzyme of glycolysis, is upregulated in DENV-infected cells. Pharmacologically inhibiting the glycolytic pathway dramatically reduced DENV RNA synthesis and infectious virion production, revealing a requirement for glycolysis during DENV infection. Thus, these experiments suggest that DENV induces the glycolytic pathway to support efficient viral replication. This study raises the possibility that metabolic inhibitors, such as those that target glycolysis, could be used to treat DENV infection in the future. Approximately 400 million people are infected with dengue virus (DENV) annually, and more than one-third of the global population is at risk of infection. As there are currently no effective vaccines or specific antiviral therapies for DENV, we investigated the impact DENV has on the host cellular metabolome to identify metabolic pathways that are critical for the virus life cycle. We report an essential role for glycolysis during DENV infection. DENV activates the glycolytic pathway, and inhibition of glycolysis significantly blocks infectious DENV production. This study provides further evidence that viral metabolomic analyses can lead to the discovery of novel therapeutic targets to block the replication of

  7. Dengue Virus Induces and Requires Glycolysis for Optimal Replication

    PubMed Central

    Fontaine, Krystal A.; Sanchez, Erica L.; Camarda, Roman

    2014-01-01

    ABSTRACT Viruses rely on host cellular metabolism to provide the energy and biosynthetic building blocks required for their replication. Dengue virus (DENV), a member of the Flaviviridae family, is one of the most important arthropod-borne human pathogens worldwide. We analyzed global intracellular metabolic changes associated with DENV infection of primary human cells. Our metabolic profiling data suggested that central carbon metabolism, particularly glycolysis, is strikingly altered during a time course of DENV infection. Glucose consumption is increased during DENV infection and depriving DENV-infected cells of exogenous glucose had a pronounced impact on viral replication. Furthermore, the expression of both glucose transporter 1 and hexokinase 2, the first enzyme of glycolysis, is upregulated in DENV-infected cells. Pharmacologically inhibiting the glycolytic pathway dramatically reduced DENV RNA synthesis and infectious virion production, revealing a requirement for glycolysis during DENV infection. Thus, these experiments suggest that DENV induces the glycolytic pathway to support efficient viral replication. This study raises the possibility that metabolic inhibitors, such as those that target glycolysis, could be used to treat DENV infection in the future. IMPORTANCE Approximately 400 million people are infected with dengue virus (DENV) annually, and more than one-third of the global population is at risk of infection. As there are currently no effective vaccines or specific antiviral therapies for DENV, we investigated the impact DENV has on the host cellular metabolome to identify metabolic pathways that are critical for the virus life cycle. We report an essential role for glycolysis during DENV infection. DENV activates the glycolytic pathway, and inhibition of glycolysis significantly blocks infectious DENV production. This study provides further evidence that viral metabolomic analyses can lead to the discovery of novel therapeutic targets to block

  8. Silencing suppressor activity of a begomovirus DNA β encoded protein and its effect on heterologous helper virus replication.

    PubMed

    Eini, Omid; Dogra, Satish C; Dry, Ian B; Randles, John W

    2012-07-01

    DNA β satellites are circular single-stranded molecules associated with some monopartite begomoviruses in the family Geminiviridae. They co-infect with their helper viruses to induce severe disease in economically important crops. The βC1 protein encoded by DNA β is a pathogenicity determinant and has been reported to suppress post-transcriptional gene silencing (PTGS). The βC1 proteins from various DNA β molecules show low levels of amino acid sequence conservation. We show here that the βC1 from DNA β associated with Cotton leaf curl Multan virus (CLCuMV) is a suppressor of systemic PTGS. When this DNA β satellite co-inoculated with a heterologous helper virus, Tomato leaf curl virus (ToLCV), reduced the level of ToLCV siRNA and this was associated with a higher level of virus accumulation in infected tobacco plants. This may be a mechanism by which βC1 protects a heterologous virus from host gene silencing.

  9. Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates.

    PubMed Central

    Fenyö, E M; Morfeldt-Månson, L; Chiodi, F; Lind, B; von Gegerfelt, A; Albert, J; Olausson, E; Asjö, B

    1988-01-01

    According to their capacity to replicate in vitro, human immunodeficiency virus (HIV) isolates can be divided into two major groups, rapid/high and slow/low. Rapid/high viruses can easily be transmitted to a variety of cell lines of T-lymphoid (CEM, H9, and Jurkat) and monocytoid (U937) origin. In contrast, slow/low viruses replicate transiently, if at all, in these cell lines. Except for a few isolates, the great majority of slow/low viruses replicate in peripheral blood mononuclear cells and Jurkat-tatIII cells constitutively expressing the tatIII gene of HIV-1. The viruses able to replicate efficiently cause syncytium formation and are regularly isolated from immunodeficient patients. Poorly replicating HIV isolates, often obtained from individuals with no or mild disease, show syncytium formation and single-cell killing simultaneously or, with some isolates, cell killing only. Images PMID:2459416

  10. The lytic origin of herpesvirus papio is highly homologous to Epstein-Barr virus ori-Lyt: evolutionary conservation of transcriptional activation and replication signals.

    PubMed Central

    Ryon, J J; Fixman, E D; Houchens, C; Zong, J; Lieberman, P M; Chang, Y N; Hayward, G S; Hayward, S D

    1993-01-01

    Herpesvirus papio (HVP) is a B-lymphotropic baboon virus with an estimated 40% homology to Epstein-Barr virus (EBV). We have cloned and sequenced ori-Lyt of herpesvirus papio and found a striking degree of nucleotide homology (89%) with ori-Lyt of EBV. Transcriptional elements form an integral part of EBV ori-Lyt. The promoter and enhancer domains of EBV ori-Lyt are conserved in herpesvirus papio. The EBV ori-Lyt promoter contains four binding sites for the EBV lytic cycle transactivator Zta, and the enhancer includes one Zta and two Rta response elements. All five of the Zta response elements and one of the Rta motifs are conserved in HVP ori-Lyt, and the HVP DS-L leftward promoter and the enhancer were activated in transient transfection assays by the EBV Zta and Rta transactivators. The EBV ori-Lyt enhancer contains a palindromic sequence, GGTCAGCTGACC, centered on a PvuII restriction site. This sequence, with a single base change, is also present in the HVP ori-Lyt enhancer. DNase I footprinting demonstrated that the PvuII sequence was bound by a protein present in a Raji nuclear extract. Mobility shift and competition assays using oligonucleotide probes identified this sequence as a binding site for the cellular transcription factor MLTF. Mutagenesis of the binding site indicated that MLTF contributes significantly to the constitutive activity of the ori-Lyt enhancer. The high degree of conservation of cis-acting signal sequences in HVP ori-Lyt was further emphasized by the finding that an HVP ori-Lyt-containing plasmid was replicated in Vero cells by a set of cotransfected EBV replication genes. The central domain of EBV ori-Lyt contains two related AT-rich palindromes, one of which is partially duplicated in the HVP sequence. The AT-rich palindromes are functionally important cis-acting motifs. Deletion of these palindromes severely diminished replication of an ori-Lyt target plasmid. Images PMID:8389916

  11. Human cytomegalovirus function inhibits replication of herpes simplex virus

    SciTech Connect

    Cockley, K.D.; Shiraki, K.; Rapp, F.

    1988-01-01

    Human embryonic lung (HEL) cells infected with human cytomegalovirus (HCMV) restricted the replication of herpes simplex virus type 1 (HSV-1). A delay in HSV replication of 15 h as well as a consistent, almost 3 log inhibition of HSV replication in HCMV-infected cell cultures harvested 24 to 72 h after superinfection were observed compared with controls infected with HSV alone. Treatment of HCMV-infected HEL cells with cycloheximide (100 ..mu..g/ml) for 3 or 24 h was demonstrated effective in blocking HCMV protein synthesis, as shown by immunoprecipitation with HCMV antibody-positive polyvalent serum. Cycloheximide treatment of HCMV-infected HEL cells and removal of the cycloheximide block before superinfection inhibited HSV-1 replication more efficiently than non-drug-treated superinfected controls. HCMV DNA-negative temperature-sensitive mutants restricted HSV as efficiently as wild-type HCMV suggesting that immediate-early and/or early events which occur before viral DNA synthesis are sufficient for inhibition of HSV. Inhibition of HSV-1 in HCMV-infected HEL cells was unaffected by elevated temperature (40.5/sup 0/C). However, prior UV irradiation of HCMV removed the block to HSV replication, demonstrating the requirement for an active HCMV genome. HSV-2 replication was similarly inhibited in HCMV-infected HEL cells. Superinfection of HCMV-infected HEL cells with HSV-1 labeled with (/sup 3/H)thymidine provided evidence that the labeled virus could penetrate to the nucleus of cells after superinfection. Evidence for penetration of superinfecting HSV into HCMV-infected cells was also provided by blot hybridization of HSV DNA synthesized in cells infected with HSV alone versus superinfected cell cultures at 0 and 48 h after superinfection.

  12. Combined cytotoxic activity of an infectious, but non-replicative herpes simplex virus type 1 and plasmacytoid dendritic cells against tumour cells

    PubMed Central

    Thomann, Sabrina; Boscheinen, Jan B; Vogel, Karin; Knipe, David M; DeLuca, Neal; Gross, Stefanie; Schuler-Thurner, Beatrice; Schuster, Philipp; Schmidt, Barbara

    2015-01-01

    Malignant melanoma is an aggressive tumour of the skin with increasing incidence, frequent metastasis and poor prognosis. At the same time, it is an immunogenic type of cancer with spontaneous regressions. Most recently, the tumoricidal effect of plasmacytoid dendritic cells (pDC) and their capacity to overcome the immunosuppressive tumour microenvironment are being investigated. In this respect, we studied the effect of the infectious, but replication-deficient, herpes simplex virus 1 (HSV-1) d106S vaccine strain, which lacks essential immediate early genes, in pDC co-cultures with 11 melanoma cell lines. We observed a strong cytotoxic activity, inducing apoptotic and necrotic cell death in most melanoma cell lines. The cytotoxic activity of HSV-1 d106S plus pDC was comparable to the levels of cytotoxicity induced by natural killer cells, but required only a fraction of cells with effector : target ratios of 1 : 20 (P < 0·05). The suppressive activity of cell-free supernatants derived from virus-stimulated pDC was significantly neutralized using antibodies against the interferon-α receptor (P < 0·05). In addition to type I interferons, TRAIL and granzyme B contributed to the inhibitory effect of HSV-1 d106S plus pDC to a minor extent. UV-irradiated viral stocks were significantly less active than infectious particles, both in the absence and presence of pDC (P < 0·05), indicating that residual activity of HSV-1 d106S is a major component and sensitizes the tumour cells to interferon-producing pDC. Three leukaemic cell lines were also susceptible to this treatment, suggesting a general anti-tumour effect. In conclusion, the potential of HSV-1 d106S for therapeutic vaccination should be further evaluated in patients suffering from different malignancies. PMID:26194553

  13. Tissue Sites of Persistent Infection and Active Replication of Equine Infectious Anemia Virus during Acute Disease and Asymptomatic Infection in Experimentally Infected Equids

    PubMed Central

    Harrold, Sharon M.; Cook, Sheila J.; Cook, R. Frank; Rushlow, Keith E.; Issel, Charles J.; Montelaro, Ronald C.

    2000-01-01

    Equine infectious anemia virus (EIAV) infection of horses is characterized by recurring cycles of disease and viremia that typically progress to an inapparent infection in which clinical symptoms are absent as host immune responses maintain control of virus replication indefinitely. The dynamics of EIAV viremia and its association with disease cycles have been well characterized, but there has been to date no comprehensive quantitative analyses of the specific tissue sites of EIAV infection and replication in experimentally infected equids during acute disease episodes and during asymptomatic infections in long-term inapparent carriers. To characterize the in vivo site(s) of viral infection and replication, we developed a quantitative competitive PCR assay capable of detecting 10 copies of viral DNA and a quantitative competitive reverse transcription-PCR assay with a sensitivity of about 30 copies of viral singly spliced mRNA. Animals were experimentally infected with one of two reference viruses: the animal-passaged field isolate designated EIAVWyo and the virulent cell-adapted strain designated EIAVPV. Tissues and blood cells were isolated during the initial acute disease or from asymptomatic animals and analyzed for viral DNA and RNA levels by the respective quantitative assays. The results of these experiments demonstrated that the appearance of clinical symptoms in experimentally infected equids coincided with rapid widespread seeding of viral infection and replication in a variety of tissues. During acute disease, the predominant cellular site of viral infection and replication was the spleen, which typically accounted for over 90% of the cellular viral burden. In asymptomatic animals, viral DNA and RNA persisted in virtually all tissues tested, but at extremely low levels, a finding indicative of tight but incomplete immune control of EIAV replication. During all disease states, peripheral blood mononuclear cells (PBMC) were found to harbor less than 1% of

  14. Novel Polyanions Inhibiting Replication of Influenza Viruses

    PubMed Central

    Ciejka, Justyna; Milewska, Aleksandra; Wytrwal, Magdalena; Wojarski, Jacek; Golda, Anna; Ochman, Marek; Nowakowska, Maria

    2016-01-01

    Novel sulfonated derivatives of poly(allylamine hydrochloride) (NSPAHs) and N-sulfonated chitosan (NSCH) have been synthesized, and their activity against influenza A and B viruses has been studied and compared with that of a series of carrageenans, marine polysaccharides of well-documented anti-influenza activity. NSPAHs were found to be nontoxic and very soluble in water, in contrast to gel-forming and thus generally poorly soluble carrageenans. In vitro and ex vivo studies using susceptible cells (Madin-Darby canine kidney epithelial cells and fully differentiated human airway epithelial cultures) demonstrated the antiviral effectiveness of NSPAHs. The activity of NSPAHs was proportional to the molecular mass of the chain and the degree of substitution of amino groups with sulfonate groups. Mechanistic studies showed that the NSPAHs and carrageenans inhibit influenza A and B virus assembly in the cell. PMID:26729490

  15. 14-Deoxy-11,12-dehydroandrographolide exerts anti-influenza A virus activity and inhibits replication of H5N1 virus by restraining nuclear export of viral ribonucleoprotein complexes.

    PubMed

    Cai, Wentao; Li, Yongtao; Chen, Sunrui; Wang, Mengli; Zhang, Anding; Zhou, Hongbo; Chen, Huanchun; Jin, Meilin

    2015-06-01

    The highly pathogenic avian influenza H5N1 virus has become a worldwide public health threat, and current antiviral therapies have limited activity against the emerging, resistant influenza viruses. Therefore, effective drugs with novel targets against influenza A viruses, H5N1 strains in particular, should be developed. In the present study, 14-deoxy-11,12-dehydroandrographolide (DAP), a major component of the traditional Chinese medicine Andrographis paniculata, exerted potent anti-influenza A virus activity against A/chicken/Hubei/327/2004 (H5N1), A/duck/Hubei/XN/2007 (H5N1), A/PR/8/34 (H1N1), A/NanChang/08/2010 (H1N1) and A/HuNan/01/2014 (H3N2) in vitro. To elucidate the underlying mechanisms, a series of experiments was conducted using A/chicken/Hubei/327/2004 (H5N1) as an example. Our results demonstrated that DAP strongly inhibited H5N1 replication by reducing the production of viral nucleoprotein (NP) mRNA, NP and NS1proteins, whereas DAP had no effect on the absorption and release of H5N1 towards/from A549 cells. DAP also effectively restrained the nuclear export of viral ribonucleoprotein (vRNP) complexes. This inhibitory effect ought to be an important anti-H5N1 mechanism of DAP. Meanwhile, DAP significantly reduced the upregulated expression of all the tested proinflammatory cytokines (TNF-α, IL-6, IL-8, IFN-α, IL-1β and IFN-β) and chemokines (CXCL-10 and CCL-2) stimulated by H5N1. Overall results suggest that DAP impairs H5N1 replication at least in part by restraining nuclear export of vRNP complexes, and the inhibition of viral replication leads to a subsequent decrease of the intense proinflammatory cytokine/chemokine expression. In turn, the effect of modification of the host excessive immune response may contribute to overcoming H5N1. To our knowledge, this study is the first to reveal the antiviral and anti-inflammatory activities of DAP in vitro against H5N1 influenza A virus infection.

  16. Pattern of disease after murine hepatitis virus strain 3 infection correlates with macrophage activation and not viral replication.

    PubMed Central

    Pope, M; Rotstein, O; Cole, E; Sinclair, S; Parr, R; Cruz, B; Fingerote, R; Chung, S; Gorczynski, R; Fung, L

    1995-01-01

    Murine hepatitis virus strain (MHV-3) produces a strain-dependent pattern of disease which has been used as a model for fulminant viral hepatitis. This study was undertaken to examine whether there was a correlation between macrophage activation and susceptibility or resistance to MHV-3 infection. Peritoneal macrophages were isolated from resistant A/J and susceptible BALB/cJ mice and, following stimulation with MHV-3 or lipopolysaccharide (LPS), analyzed for transcription of mRNA and production of interleukin-1 (IL-1), tumor necrosis factor alpha (TNF-alpha), transforming growth factor beta (TGF-beta), mouse fibrinogen-like protein (musfiblp), tissue factor (TF), leukotriene B4, and prostaglandin E2 (PGE2). Macrophages from BALB/cJ mice produced greater amounts of IL-1, TNF-alpha, TGF-beta, leukotriene B4, and musfiblp following MHV-3 infection than macrophages from resistant A/J mice, whereas in response to LPS, equivalent amounts of IL-1, TNF-alpha, TGF-beta, and TF were produced by macrophages from both strains of mice. Levels of mRNA of IL-1, TNF-alpha, and musfiblp were greater and more persistent in BALB/cJ than in A/J macrophages, whereas the levels and kinetics of IL-1, TNF-alpha, and TF mRNA following LPS stimulation were identical in macrophages from both strains of mice. Levels of production of PGE2 by MHV-3-stimulated macrophages from resistant and susceptible mice were equivalent; however, the time course for induction of PGE2, differed, but the total quantity of PGE2 produced was insufficient to inhibit induction of musfiblp, a procoagulant known to correlate with development of fulminant hepatic necrosis in susceptible mice. These results demonstrate marked differences in production of inflammatory mediators to MHV-3 infection in macrophages from resistant A/J and susceptible BALB/cJ mice, which may explain the marked hepatic necrosis and fibrin deposition and account for the lethality of MHV-3 in susceptible mice. PMID:7636967

  17. Inhibition of Bim Enhances Replication of Varicella-Zoster Virus and Delays Plaque Formation in Virus-Infected Cells

    PubMed Central

    Liu, XueQiao

    2014-01-01

    Programmed cell death (apoptosis) is an important host defense mechanism against intracellular pathogens, such as viruses. Accordingly, viruses have evolved multiple mechanisms to modulate apoptosis to enhance replication. Varicella-zoster virus (VZV) induces apoptosis in human fibroblasts and melanoma cells. We found that VZV triggered the phosphorylation of the proapoptotic proteins Bim and BAD but had little or no effect on other Bcl-2 family members. Since phosphorylation of Bim and BAD reduces their proapoptotic activity, this may prevent or delay apoptosis in VZV-infected cells. Phosphorylation of Bim but not BAD in VZV-infected cells was dependent on activation of the MEK/extracellular signal-regulated kinase (ERK) pathway. Cells knocked down for Bim showed delayed VZV plaque formation, resulting in longer survival of VZV-infected cells and increased replication of virus, compared with wild-type cells infected with virus. Conversely, overexpression of Bim resulted in earlier plaque formation, smaller plaques, reduced virus replication, and increased caspase 3 activity. Inhibition of caspase activity in VZV-infected cells overexpressing Bim restored levels of virus production similar to those seen with virus-infected wild-type cells. Previously we showed that VZV ORF12 activates ERK and inhibits apoptosis in virus-infected cells. Here we found that VZV ORF12 contributes to Bim and BAD phosphorylation. In summary, VZV triggers Bim phosphorylation; reduction of Bim levels results in longer survival of VZV-infected cells and increased VZV replication. PMID:24227856

  18. Inhibition of Bim enhances replication of varicella-zoster virus and delays plaque formation in virus-infected cells.

    PubMed

    Liu, Xueqiao; Cohen, Jeffrey I

    2014-01-01

    Programmed cell death (apoptosis) is an important host defense mechanism against intracellular pathogens, such as viruses. Accordingly, viruses have evolved multiple mechanisms to modulate apoptosis to enhance replication. Varicella-zoster virus (VZV) induces apoptosis in human fibroblasts and melanoma cells. We found that VZV triggered the phosphorylation of the proapoptotic proteins Bim and BAD but had little or no effect on other Bcl-2 family members. Since phosphorylation of Bim and BAD reduces their proapoptotic activity, this may prevent or delay apoptosis in VZV-infected cells. Phosphorylation of Bim but not BAD in VZV-infected cells was dependent on activation of the MEK/extracellular signal-regulated kinase (ERK) pathway. Cells knocked down for Bim showed delayed VZV plaque formation, resulting in longer survival of VZV-infected cells and increased replication of virus, compared with wild-type cells infected with virus. Conversely, overexpression of Bim resulted in earlier plaque formation, smaller plaques, reduced virus replication, and increased caspase 3 activity. Inhibition of caspase activity in VZV-infected cells overexpressing Bim restored levels of virus production similar to those seen with virus-infected wild-type cells. Previously we showed that VZV ORF12 activates ERK and inhibits apoptosis in virus-infected cells. Here we found that VZV ORF12 contributes to Bim and BAD phosphorylation. In summary, VZV triggers Bim phosphorylation; reduction of Bim levels results in longer survival of VZV-infected cells and increased VZV replication.

  19. "Self" and "nonself" manipulation of interferon defense during persistent infection: bovine viral diarrhea virus resists alpha/beta interferon without blocking antiviral activity against unrelated viruses replicating in its host cells.

    PubMed

    Schweizer, Matthias; Mätzener, Philippe; Pfaffen, Gabriela; Stalder, Hanspeter; Peterhans, Ernst

    2006-07-01

    Bovine viral diarrhea virus (BVDV), together with Classical swine fever virus (CSFV) and Border disease virus (BDV) of sheep, belongs to the genus Pestivirus of the Flaviviridae. BVDV is either cytopathic (cp) or noncytopathic (ncp), as defined by its effect on cultured cells. Infection of pregnant animals with the ncp biotype may lead to the birth of persistently infected calves that are immunotolerant to the infecting viral strain. In addition to evading the adaptive immune system, BVDV evades key mechanisms of innate immunity. Previously, we showed that ncp BVDV inhibits the induction of apoptosis and alpha/beta interferon (IFN-alpha/beta) synthesis by double-stranded RNA (dsRNA). Here, we report that (i) both ncp and cp BVDV block the induction by dsRNA of the Mx protein (which can also be induced in the absence of IFN signaling); (ii) neither biotype blocks the activity of IFN; and (iii) once infection is established, BVDV is largely resistant to the activity of IFN-alpha/beta but (iv) does not interfere with the establishment of an antiviral state induced by IFN-alpha/beta against unrelated viruses. The results of our study suggest that, in persistent infection, BVDV is able to evade a central element of innate immunity directed against itself without generally compromising its activity against unrelated viruses ("nonself") that may replicate in cells infected with ncp BVDV. This highly selective "self" and "nonself" model of evasion of the interferon defense system may be a key element in the success of persistent infection in addition to immunotolerance initiated by the early time point of fetal infection.

  20. Curcumin inhibits Rift Valley fever virus replication in human cells.

    PubMed

    Narayanan, Aarthi; Kehn-Hall, Kylene; Senina, Svetlana; Lundberg, Lindsay; Van Duyne, Rachel; Guendel, Irene; Das, Ravi; Baer, Alan; Bethel, Laura; Turell, Michael; Hartman, Amy Lynn; Das, Bhaskar; Bailey, Charles; Kashanchi, Fatah

    2012-09-28

    Rift Valley fever virus (RVFV) is an arbovirus that is classified as a select agent, an emerging infectious virus, and an agricultural pathogen. Understanding RVFV-host interactions is imperative to the design of novel therapeutics. Here, we report that an infection by the MP-12 strain of RVFV induces phosphorylation of the p65 component of the NFκB cascade. We demonstrate that phosphorylation of p65 (serine 536) involves phosphorylation of IκBα and occurs through the classical NFκB cascade. A unique, low molecular weight complex of the IKK-β subunit can be observed in MP-12-infected cells, which we have labeled IKK-β2. The IKK-β2 complex retains kinase activity and phosphorylates an IκBα substrate. Inhibition of the IKK complex using inhibitors impairs viral replication, thus alluding to the requirement of an active IKK complex to the viral life cycle. Curcumin strongly down-regulates levels of extracellular infectious virus. Our data demonstrated that curcumin binds to and inhibits kinase activity of the IKK-β2 complex in infected cells. Curcumin partially exerts its inhibitory influence on RVFV replication by interfering with IKK-β2-mediated phosphorylation of the viral protein NSs and by altering the cell cycle of treated cells. Curcumin also demonstrated efficacy against ZH501, the fully virulent version of RVFV. Curcumin treatment down-regulated viral replication in the liver of infected animals. Our data point to the possibility that RVFV infection may result in the generation of novel versions of host components (such as IKK-β2) that, by virtue of altered protein interaction and function, qualify as unique therapeutic targets.

  1. Curcumin Inhibits Rift Valley Fever Virus Replication in Human Cells*

    PubMed Central

    Narayanan, Aarthi; Kehn-Hall, Kylene; Senina, Svetlana; Lundberg, Lindsay; Van Duyne, Rachel; Guendel, Irene; Das, Ravi; Baer, Alan; Bethel, Laura; Turell, Michael; Hartman, Amy Lynn; Das, Bhaskar; Bailey, Charles; Kashanchi, Fatah

    2012-01-01

    Rift Valley fever virus (RVFV) is an arbovirus that is classified as a select agent, an emerging infectious virus, and an agricultural pathogen. Understanding RVFV-host interactions is imperative to the design of novel therapeutics. Here, we report that an infection by the MP-12 strain of RVFV induces phosphorylation of the p65 component of the NFκB cascade. We demonstrate that phosphorylation of p65 (serine 536) involves phosphorylation of IκBα and occurs through the classical NFκB cascade. A unique, low molecular weight complex of the IKK-β subunit can be observed in MP-12-infected cells, which we have labeled IKK-β2. The IKK-β2 complex retains kinase activity and phosphorylates an IκBα substrate. Inhibition of the IKK complex using inhibitors impairs viral replication, thus alluding to the requirement of an active IKK complex to the viral life cycle. Curcumin strongly down-regulates levels of extracellular infectious virus. Our data demonstrated that curcumin binds to and inhibits kinase activity of the IKK-β2 complex in infected cells. Curcumin partially exerts its inhibitory influence on RVFV replication by interfering with IKK-β2-mediated phosphorylation of the viral protein NSs and by altering the cell cycle of treated cells. Curcumin also demonstrated efficacy against ZH501, the fully virulent version of RVFV. Curcumin treatment down-regulated viral replication in the liver of infected animals. Our data point to the possibility that RVFV infection may result in the generation of novel versions of host components (such as IKK-β2) that, by virtue of altered protein interaction and function, qualify as unique therapeutic targets. PMID:22847000

  2. Aurintricarboxylic Acid Inhibits the Early Stage of Vaccinia Virus Replication by Targeting both Cellular and Viral Factors▿

    PubMed Central

    Myskiw, Chad; Deschambault, Yvon; Jefferies, Kristel; He, Runtao; Cao, Jingxin

    2007-01-01

    Aurintricarboxylic acid (ATA) has been shown to inhibit the replication of viruses from several different families, including human immunodeficiency virus, vesicular stomatitis virus, and the coronavirus causing severe acute respiratory syndrome. This study characterizes the inhibitory effect of ATA on vaccinia virus replication in HeLa, Huh7, and AD293 cells. Vaccinia virus replication is significantly abrogated upon ATA treatment, which is associated with the inhibition of early viral gene transcription. This inhibitory effect may be attributed to two findings. First, ATA blocks the phosphorylation of extracellular signal-regulated kinase 1/2, an event shown to be essential for vaccinia virus replication. Second, ATA inhibits the phosphatase activity of the viral enzyme H1L, which is required to initiate viral transcription. Thus, ATA inhibits vaccinia virus replication by targeting both cellular and viral factors essential for the early stage of replication. PMID:17192307

  3. Coxsackievirus B3-induced calpain activation facilitates the progeny virus replication via a likely mechanism related with both autophagy enhancement and apoptosis inhibition in the early phase of infection: an in vitro study in H9c2 cells.

    PubMed

    Li, Minghui; Wang, Xinggang; Yu, Yong; Yu, Ying; Xie, Yeqing; Zou, Yunzeng; Ge, Junbo; Peng, Tianqing; Chen, Ruizhen

    2014-01-22

    Calpain is a family of neutral cysteine proteinase involved in many physiological and pathological processes including virus replication, autophagy and apoptosis. Previous study has indicated the involvement of calpain in pathogenesis of coxsackievirus B3 (CVB3)-induced myocarditis. Besides, many studies demonstrated that host cell autophagy and apoptosis mechanisms participate in virus life cycle. However, role of calpain in CVB3 replication via autophagy/apoptosis mechanisms has not been reported, which was discussed here in H9c2 cardiomyocytes. The data demonstrated that calpain was activated following CVB3 infection. Calpain inhibition decreased autophagy, indicating role of calpain in enhancing autophagy during CVB3 infection. Both calpain activity and autophagy were involved in facilitating CVB3 replication demonstrated by virus titer and CVB3 capsid protein VP1 expression alterations resulting from calpain inhibitor ALLN and autophagy inhibitor 3MA intervention. We also found that both calpain activity and autophagy suppressed caspase3 activity and host cell apoptosis 5-10h post-infection (p.i.). In summary, the present study shows that CVB3 infection of H9c2 cells hinders caspase3 activity provocation and cell apoptosis at least in the early phase of infection (5-10h p.i.) via calpain-induced autophagy enhancement, which might be a mechanism facilitating CVB3 replication in host cells.

  4. Trigocherrierin A, a potent inhibitor of chikungunya virus replication.

    PubMed

    Bourjot, Mélanie; Leyssen, Pieter; Neyts, Johan; Dumontet, Vincent; Litaudon, Marc

    2014-03-24

    Trigocherrierin A (1) and trigocherriolide E (2), two new daphnane diterpenoid orthoesters (DDOs), and six chlorinated analogues, trigocherrins A, B, F and trigocherriolides A-C, were isolated from the leaves of Trigonostemon cherrieri. Their structures were identified by mass spectrometry, extensive one- and two-dimensional NMR spectroscopy and through comparison with data reported in the literature. These compounds are potent and selective inhibitors of chikungunya virus (CHIKV) replication. Among the DDOs isolated, compound 1 exhibited the strongest anti-CHIKV activity (EC₅₀ = 0.6 ± 0.1 µM, SI = 71.7).

  5. The Virus-Host Interplay: Biogenesis of +RNA Replication Complexes

    PubMed Central

    Reid, Colleen R.; Airo, Adriana M.; Hobman, Tom C.

    2015-01-01

    Positive-strand RNA (+RNA) viruses are an important group of human and animal pathogens that have significant global health and economic impacts. Notable members include West Nile virus, Dengue virus, Chikungunya, Severe acute respiratory syndrome (SARS) Coronavirus and enteroviruses of the Picornaviridae family.Unfortunately, prophylactic and therapeutic treatments against these pathogens are limited. +RNA viruses have limited coding capacity and thus rely extensively on host factors for successful infection and propagation. A common feature among these viruses is their ability to dramatically modify cellular membranes to serve as platforms for genome replication and assembly of new virions. These viral replication complexes (VRCs) serve two main functions: To increase replication efficiency by concentrating critical factors and to protect the viral genome from host anti-viral systems. This review summarizes current knowledge of critical host factors recruited to or demonstrated to be involved in the biogenesis and stabilization of +RNA virus VRCs. PMID:26287230

  6. Impact of the MRN Complex on Adeno-Associated Virus Integration and Replication during Coinfection with Herpes Simplex Virus 1

    PubMed Central

    Millet, Rachel; Jolinon, Nelly; Nguyen, Xuan-Nhi; Berger, Gregory; Cimarelli, Andrea; Greco, Anna; Bertrand, Pascale; Odenthal, Margarete; Büning, Hildegard

    2015-01-01

    ABSTRACT Adeno-associated virus (AAV) is a helper-dependent parvovirus that requires coinfection with adenovirus (AdV) or herpes simplex virus 1 (HSV-1) to replicate. In the absence of the helper virus, AAV can persist in an episomal or integrated form. Previous studies have analyzed the DNA damage response (DDR) induced upon AAV replication to understand how it controls AAV replication. In particular, it was shown that the Mre11-Rad50-Nbs1 (MRN) complex, a major player of the DDR induced by double-stranded DNA breaks and stalled replication forks, could negatively regulate AdV and AAV replication during coinfection. In contrast, MRN favors HSV-1 replication and is recruited to AAV replication compartments that are induced in the presence of HSV-1. In this study, we examined the role of MRN during AAV replication induced by HSV-1. Our results indicated that knockdown of MRN significantly reduced AAV DNA replication after coinfection with wild-type (wt) HSV-1 or HSV-1 with the polymerase deleted. This effect was specific to wt AAV, since it did not occur with recombinant AAV vectors. Positive regulation of AAV replication by MRN was dependent on its DNA tethering activity but did not require its nuclease activities. Importantly, knockdown of MRN also negatively regulated AAV integration within the human AAVS1 site, both in the presence and in the absence of HSV-1. Altogether, this work identifies a new function of MRN during integration of the AAV genome and demonstrates that this DNA repair complex positively regulates AAV replication in the presence of HSV-1. IMPORTANCE Viral DNA genomes trigger a DNA damage response (DDR), which can be either detrimental or beneficial for virus replication. Adeno-associated virus (AAV) is a defective parvovirus that requires the help of an unrelated virus such as adenovirus (AdV) or herpes simplex virus 1 (HSV-1) for productive replication. Previous studies have demonstrated that the cellular Mre11-Rad50-Nbs1 (MRN) complex, a

  7. Cryptoporus volvatus extract inhibits influenza virus replication in vitro and in vivo.

    PubMed

    Gao, Li; Sun, Yipeng; Si, Jianyong; Liu, Jinhua; Sun, Guibo; Sun, Xiaobo; Cao, Li

    2014-01-01

    Influenza virus is the cause of significant morbidity and mortality, posing a serious health threat worldwide. Here, we evaluated the antiviral activities of Cryptoporus volvatus extract on influenza virus infection. Our results demonstrated that the Cryptoporus volvatus extract inhibited different influenza virus strain replication in MDCK cells. Time course analysis indicated that the extract exerted its inhibition at earlier and late stages in the replication cycle of influenza virus. Subsequently, we confirmed that the extract suppressed virus internalization into and released from cells. Moreover, the extract significantly reduced H1N1/09 influenza virus load in lungs and dramatically decreased lung lesions in mice. And most importantly, the extract protected mice from lethal challenge with H1N1/09 influenza virus. Our results suggest that the Cryptoporus volvatus extract could be a potential candidate for the development of a new anti-influenza virus therapy.

  8. Cytoskeletal Dynamics: Concepts in Measles Virus Replication and Immunomodulation

    PubMed Central

    Avota, Elita; Gassert, Evelyn; Schneider-Schaulies, Sibylle

    2011-01-01

    In common with most viruses, measles virus (MV) relies on the integrity of the cytoskeleton of its host cells both with regard to efficient replication in these cells, but also retention of their motility which favors viral dissemination. It is, however, the surface interaction of the viral glycoprotein (gp) complex with receptors present on lymphocytes and dendritic cells (DCs), that signals effective initiation of host cell cytoskeletal dynamics. For DCs, these may act to regulate processes as diverse as viral uptake and sorting, but also the ability of these cells to successfully establish and maintain functional immune synapses (IS) with T cells. In T cells, MV signaling causes actin cytoskeletal paralysis associated with a loss of polarization, adhesion and motility, which has been linked to activation of sphingomyelinases and subsequent accumulation of membrane ceramides. MV modulation of both DC and T cell cytoskeletal dynamics may be important for the understanding of MV immunosuppression at the cellular level. PMID:22049305

  9. Cyclophilin function in Cancer; lessons from virus replication.

    PubMed

    Lavin, Paul T M; Mc Gee, Margaret M

    2015-01-01

    Cyclophilins belong to a group of proteins that possess peptidyl prolyl isomerase activity and catalyse the cis-trans conversion of proline peptide bonds. Cyclophilin members play important roles in protein folding and as molecular chaperones, in addition to a well-established role as host factors required for completion of the virus life cycle. Members of the cyclophilin family are overexpressed in a range of human malignancies including hepatocellular cancer, pancreatic cancer, nonsmall cell lung cancer, gastric cancer, colorectal cancer and glioblastoma multiforme, however, their precise role in tumourigenesis remains unclear. In recent years, mounting evidence supports a role for prolyl isomerisation during mammalian cell division; a process with striking similarity to plasma membrane remodelling during virus replication. Here, we summarise our current understanding of the role of cyclophilins in cancer. We review the function of cyclophilins during mammalian cell division and during HIV-1 infection, and highlight common processes involving members of the ESCRT and Rab GTPase families.

  10. The effect of lithium chloride on the replication of herpes simplex virus.

    PubMed

    Skinner, G R; Hartley, C; Buchan, A; Harper, L; Gallimore, P

    1980-01-01

    Lithium chloride inhibited the replication of type 1 and type 2 Herpes simplex virus at concentrations which permitted host cell replication. Virus polypeptide and antigen synthesis were unaffected while viral DNA synthesis was inhibited. The replication of two other DNA viruses, pseudorabies and vaccinia virus, was inhibited but there was no inhibition of two RNA viruses, namely, EMC and influenze virus.

  11. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    NASA Astrophysics Data System (ADS)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  12. Replicative intermediates of maize streak virus found during leaf development.

    PubMed

    Erdmann, Julia B; Shepherd, Dionne N; Martin, Darren P; Varsani, Arvind; Rybicki, Edward P; Jeske, Holger

    2010-04-01

    Geminiviruses of the genera Begomovirus and Curtovirus utilize three replication modes: complementary-strand replication (CSR), rolling-circle replication (RCR) and recombination-dependent replication (RDR). Using two-dimensional gel electrophoresis, we now show for the first time that maize streak virus (MSV), the type member of the most divergent geminivirus genus, Mastrevirus, does the same. Although mastreviruses have fewer regulatory genes than other geminiviruses and uniquely express their replication-associated protein (Rep) from a spliced transcript, the replicative intermediates of CSR, RCR and RDR could be detected unequivocally within infected maize tissues. All replicative intermediates accumulated early and, to varying degrees, were already present in the shoot apex and leaves at different maturation stages. Relative to other replicative intermediates, those associated with RCR increased in prevalence during leaf maturation. Interestingly, in addition to RCR-associated DNA forms seen in other geminiviruses, MSV also apparently uses dimeric open circular DNA as a template for RCR.

  13. Glucocorticosteroids enhance replication of respiratory viruses: effect of adjuvant interferon

    PubMed Central

    Thomas, Belinda J.; Porritt, Rebecca A.; Hertzog, Paul J.; Bardin, Philip G.; Tate, Michelle D.

    2014-01-01

    Glucocorticosteroids (GCS) are used on a daily basis to reduce airway inflammation in asthma and chronic obstructive pulmonary disease (COPD). This treatment is usually escalated during acute disease exacerbations, events often associated with virus infections. We examined the impact of GCS on anti-viral defences and virus replication and assessed supplementary interferon (IFN) treatment. Here, we report that treatment of primary human airway cells in vitro with GCS prior to rhinovirus (RV) or influenza A virus (IAV) infection significantly reduces the expression of innate anti-viral genes and increases viral replication. Mice given intranasal treatment with GCS prior to IAV infection developed more severe disease associated with amplified virus replication and elevated inflammation in the airways. Adjuvant IFN treatment markedly reduced GCS-amplified infections in human airway cells and in mouse lung. This study demonstrates that GCS cause an extrinsic compromise in anti-viral defences, enhancing respiratory virus infections and provides a rationale for adjuvant IFN treatment. PMID:25417801

  14. Methamphetamine enhances Hepatitis C virus replication in human hepatocytes.

    PubMed

    Ye, L; Peng, J S; Wang, X; Wang, Y J; Luo, G X; Ho, W Z

    2008-04-01

    Very little is known about the interactions between hepatitis C virus (HCV) and methamphetamine, which is a highly abused psychostimulant and a known risk factor for human immunodeficiency virus (HIV)/HCV infection. This study examined whether methamphetamine has the ability to inhibit innate immunity in the host cells, facilitating HCV replication in human hepatocytes. Methamphetamine inhibited intracellular interferon alpha expression in human hepatocytes, which was associated with the increase in HCV replication. In addition, methamphetamine also compromised the anti-HCV effect of recombinant interferon alpha. Further investigation of mechanism(s) responsible for the methamphetamine action revealed that methamphetamine was able to inhibit the expression of the signal transducer and activator of transcription 1, a key modulator in interferon-mediated immune and biological responses. Methamphetamine also down-regulated the expression of interferon regulatory factor-5, a crucial transcriptional factor that activates the interferon pathway. These in vitro findings that methamphetamine compromises interferon alpha-mediated innate immunity against HCV infection indicate that methamphetamine may have a cofactor role in the immunopathogenesis of HCV disease.

  15. Methamphetamine enhances Hepatitis C virus replication in human hepatocytes

    PubMed Central

    Ye, L.; Peng, J. S.; Wang, X.; Wang, Y. J.; Luo, G. X.; Ho, W. Z.

    2009-01-01

    SUMMARY Very little is known about the interactions between hepatitis C virus (HCV) and methamphetamine, which is a highly abused psychostimulant and a known risk factor for human immunodeficiency virus (HIV)/HCV infection. This study examined whether methamphetamine has the ability to inhibit innate immunity in the host cells, facilitating HCV replication in human hepatocytes. Methamphetamine inhibited intracellular interferon alpha expression in human hepatocytes, which was associated with the increase in HCV replication. In addition, methamphetamine also compromised the anti-HCV effect of recombinant interferon alpha. Further investigation of mechanism(s) responsible for the methamphetamine action revealed that methamphetamine was able to inhibit the expression of the signal transducer and activator of transcription 1, a key modulator in interferon-mediated immune and biological responses. Methamphetamine also down-regulated the expression of interferon regulatory factor-5, a crucial transcriptional factor that activates the interferon pathway. These in vitro findings that methamphetamine compromises interferon alpha-mediated innate immunity against HCV infection indicate that methamphetamine may have a cofactor role in the immunopathogenesis of HCV disease. PMID:18307590

  16. Activation of BPV-1 replication in vitro by the transcription factor E2

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Li, Rong; Mohr, Ian J.; Clark, Robin; Botchan, Michael R.

    1991-10-01

    Soluble extracts from uninfected murine cells supplemented with purified viral E1 and E2 proteins support the replication of exogenously added papilloma virus DNA. The E2 transactivator stimulates the binding of the E1 replication protein to the minimal origin of replication and activates DNA replication. These results support the concept that transcription factors have a direct role in the initiation of DNA replication in eukaryotes by participating in the assembly of a complex at the origin of replication.

  17. Adeno-associated virus type 2 enhances goose parvovirus replication in embryonated goose eggs

    SciTech Connect

    Malkinson, Mertyn . E-mail: malkins@agri.huji.ac.il; Winocour, Ernest . E-mail: ernest.winocour@weizmann.ac.il

    2005-06-05

    The autonomous goose parvovirus (GPV) and the human helper-dependent adeno-associated virus type 2 (AAV2) share a high degree of homology. To determine if this evolutionary relationship has a biological impact, we studied viral replication in human 293 cells and in embryonated goose eggs coinfected with both viruses. Similar experiments were performed with the minute virus of mice (MVM), an autonomous murine parvovirus with less homology to AAV2. In human 293 cells, both GPV and MVM augmented AAV2 replication. In contrast, AAV2 markedly enhanced GPV replication in embryonated goose eggs under conditions where a similar effect was not observed with MVM. AAV2 did not replicate in embryonated goose eggs and AAV2 inactivated by UV-irradiation also enhanced GPV replication. To our knowledge, this is the first report that a human helper-dependent member of the Parvoviridae can provide helper activity for an autonomous parvovirus in a natural host.

  18. Determination of host RNA helicases activity in viral replication

    PubMed Central

    Sharma, Amit; Boris-Lawrie, Kathleen

    2016-01-01

    RNA helicases are encoded by all eukaryotic and prokaryotic cells and a minority of viruses. Activity of RNA helicases is necessary for all steps in the expression of cells and viruses and the host innate response to virus infection. Their vast functional repertoire is attributable to the core ATPase-dependent helicase domain in conjunction with flanking domains that are interchangeable and engage viral and cellular cofactors. Here, we address the important issue of host RNA helicases that are necessary for replication of a virus. The chapter covers approaches to identification and characterization of candidate helicases and methods to define the biochemical and biophysical parameters of specificity and functional activity of the enzymes. We discuss the context of cellular RNA helicase activity and virion-associated RNA helicases. The methodology and choice of controls fosters the assessment of the virologic scope of RNA helicases across divergent cell lineages and viral replication cycles. PMID:22713331

  19. Ultrastructural study of Mayaro virus replication in BHK-21 cells.

    PubMed

    Mezencio, J M; de Souza, W; Fonseca, M E; Rebello, M A

    1990-01-01

    The replication of Mayaro virus in BHK-21 cells was studied by electron microscopy. The infected cells show an intense vacuolization and proliferation of membranous structures. At 5 h post-infection, precursor virus particles were seen in the cytoplasm of infected cells. Later, mature virus particles were found outside the cells and budding from the plasma membrane. Enveloped virus particles were also observed inside the vesicles and budding across their membrane. The release of virus particles into the extracellular space by exocytosis was also observed. In a later stage of the infection, inclusion bodies were sometimes present in the cytoplasm of infected cells. We conclude that in BHK-21 cells, budding from the plasma membrane is the main process of Mayaro virus maturation, and in this kind of cell replication differs significantly from that observed in Aedes albopictus cells.

  20. Replication-Competent Influenza A Viruses Expressing Reporter Genes

    PubMed Central

    Breen, Michael; Nogales, Aitor; Baker, Steven F.; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo. PMID:27347991

  1. Replication-Competent Influenza A Viruses Expressing Reporter Genes.

    PubMed

    Breen, Michael; Nogales, Aitor; Baker, Steven F; Martínez-Sobrido, Luis

    2016-06-23

    Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo.

  2. Cryptoporic acid E from Cryptoporus volvatus inhibits influenza virus replication in vitro.

    PubMed

    Gao, Li; Han, Jiayuan; Si, Jianyong; Wang, Junchi; Wang, Hexiang; Sun, Yipeng; Bi, Yuhai; Liu, Jinhua; Cao, Li

    2017-07-01

    Influenza virus infection is a global public health issue. The efficacy of antiviral agents for influenza virus has been limited by the emergence of drug-resistant virus strains. Thus, there is an urgent need to identify novel antiviral therapies. Our previous studies have found that Cryptoporus volvatus extract can potently inhibit influenza virus replication in vitro and in vivo. However, the effective component of Cryptoporus volvatus, which mediates the antiviral activity, hasn't been identified. Here, we identified a novel anti-influenza virus molecule, Cryptoporic acid E (CAE), from Cryptoporus volvatus. Our results showed that CAE had broad-spectrum anti-influenza activity against 2009 pandemic strain A/Beijing/07/2009 (H1N1/09pdm), seasonal strain A/Beijing/CAS0001/2007(H3N2), mouse adapted strains A/WSN/33 (H1N1), and A/PR8/34 (H1N1). We further investigated the mode of CAE action. Time-course-analysis indicated that CAE exerted its inhibition mainly at the middle stages of the replication cycle of influenza virus. Subsequently, we confirmed that CAE inhibited influenza virus RNA polymerase activity and blocked virus RNA replication and transcription in MDCK cells. In addition, we found that CAE also impaired influenza virus infectivity by directly targeting virus particles. Our data suggest that CAE is a major effective component of Cryptoporus volvatus. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Unexpected Roles of Eukaryotic Translation Elongation Factors in RNA Virus Replication and Pathogenesis

    PubMed Central

    Li, Dongsheng; Wei, Ting; Abbott, Catherine M.

    2013-01-01

    SUMMARY The prokaryotic translation elongation factors were identified as essential cofactors for RNA-dependent RNA polymerase activity of the bacteriophage Qβ more than 40 years ago. A growing body of evidence now shows that eukaryotic translation elongation factors (eEFs), predominantly eEF1A, acting in partially characterized complexes sometimes involving additional eEFs, facilitate virus replication. The functions of eEF1A as a protein chaperone and an RNA- and actin-binding protein enable its “moonlighting” roles as a virus replication cofactor. A diverse group of viruses, from human immunodeficiency type 1 and West Nile virus to tomato bushy stunt virus, have adapted to use eEFs as cofactors for viral transcription, translation, assembly, and pathogenesis. Here we review the mechanisms used by viral pathogens to usurp these abundant cellular proteins for their replication. PMID:23699257

  4. Mucroporin-M1 Inhibits Hepatitis B Virus Replication by Activating the Mitogen-activated Protein Kinase (MAPK) Pathway and Down-regulating HNF4α in Vitro and in Vivo*

    PubMed Central

    Zhao, Zhenhuan; Hong, Wei; Zeng, Zhengyang; Wu, Yingliang; Hu, Kanghong; Tian, Xiaohui; Li, Wenxin; Cao, Zhijian

    2012-01-01

    Hepatitis B virus (HBV) is a noncytopathic human hepadnavirus that causes acute, chronic hepatitis and hepatocellular carcinoma (HCC). As the clinical utility of current therapies is limited, new anti-HBV agents and sources for such agents are still highly sought after. Here, we report that Mucroporin-M1, a scorpion venom-derived peptide, reduces the amount of extracellular HBsAg, HBeAg, and HBV DNA productions of HepG2.2.15 cells in a dose-dependent manner and inhibits HBV capsid DNA, HBV intracellular RNA replication intermediates and the HBV Core protein in the cytoplasm of HepG2.2.15 cells. Using a mouse model of HBV infection, we found that HBV replication was significantly inhibited by intravenous injection of the Mucroporin-M1 peptide. This inhibitory activity was due to a reduction in HBV promoter activity caused by a decrease in the binding of HNF4α to the precore/core promoter region. Furthermore, we confirmed that Mucroporin-M1 could selectively activate mitogen-activated protein kinases (MAPKs) and lead to the down-regulation of HNF4α expression, which explains the decreased binding of HNF4α to the HBV promoter. Moreover, when the protein phosphorylation activity of the MAPK pathway was inhibited, both HNF4α expression and HBV replication recovered. Finally, we proved that treatment with the Mucroporin-M1 peptide increased phosphorylation of the MAPK proteins in HBV-harboring mice. These results implicate Mucroporin-M1 peptide can activate the MAPK pathway and then reduce the expression of HNF4α, resulting in the inhibition of HBV replication in vitro and in vivo. Our work also opens new doors to discovering novel anti-HBV agents or sources. PMID:22791717

  5. Interferon action on Mayaro virus replication.

    PubMed

    Rebello, M C; Fonseca, M E; Marinho, J O; Rebello, M A

    1993-08-01

    Treatment of TC7 cells with interferon (IFN) drastically reduced the yield of infectious Mayaro virus under experimental conditions that virus attachment and penetration into the cells were not affected. In IFN-treated cells, synthesis of Mayaro virus proteins was inhibited and cellular protein synthesis was restored. This phenomenon is dependent on IFN concentration and multiplicity of infection. Electron microscopy of these cells revealed normal and anomalous viral particles inside cytoplasmic vacuoles. This suggests that IFN also interferes with Mayaro virus morphogenesis and inhibits the release of virions from cells.

  6. Influenza virus neuraminidase contributes to the dextran sulfate-dependent suppressive replication of some influenza A virus strains.

    PubMed

    Yamada, Hiroshi; Moriishi, Eiko; Haredy, Ahmad M; Takenaka, Nobuyuki; Mori, Yasuko; Yamanishi, Koichi; Okamoto, Shigefumi

    2012-12-01

    Dextran sulfate (DS), a negatively charged, sulfated polysaccharide, suppresses the replication of an influenza A virus strain, and this suppression is associated with inhibition of the hemagglutinin (HA)-dependent fusion activity. However, it remains unknown whether the replication of all or just some influenza A virus strains is suppressed by DS, or whether HA is the only target for the replication suppression. In the present study, we found that DS inhibited the replication of some, but not all influenza A virus strains. The suppression in the DS-sensitive strains was dose-dependent and neutralized by diethylaminoethyl-dextran (DD), which has a positive charge. The suppression by DS was observed not only at the initial stage of viral infection, which includes viral attachment and entry, but also at the late stage, which includes virus assembly and release from infected cells. Electron microscopy revealed that the DS induced viral aggregation at the cell surface. The neuraminidase (NA) activity of the strains whose viral replication was inhibited at the late stage was also more suppressed by DS than that of the strains whose replication was not inhibited, and this inhibition of NA activity was also neutralized by adding positively charged DD. Furthermore, we found that replacing the NA gene of a strain in which viral replication was inhibited by DS at the late stage with the NA gene from a strain in which viral replication was not inhibited, eliminated the DS-dependent suppression. These results suggest that the influenza virus NA contributes to the DS-suppressible virus release from infected cells at the late stage, and the suppression may involve the inhibition of NA activity by DS's negative charge.

  7. Cutthroat trout virus as a surrogate in vitro infection model for testing inhibitors of hepatitis E virus replication

    USGS Publications Warehouse

    Debing, Yannick; Winton, James; Neyts, Johan; Dallmeier, Kai

    2013-01-01

    Hepatitis E virus (HEV) is one of the most important causes of acute hepatitis worldwide. Although most infections are self-limiting, mortality is particularly high in pregnant women. Chronic infections can occur in transplant and other immune-compromised patients. Successful treatment of chronic hepatitis E has been reported with ribavirin and pegylated interferon-alpha, however severe side effects were observed. We employed the cutthroat trout virus (CTV), a non-pathogenic fish virus with remarkable similarities to HEV, as a potential surrogate for HEV and established an antiviral assay against this virus using the Chinook salmon embryo (CHSE-214) cell line. Ribavirin and the respective trout interferon were found to efficiently inhibit CTV replication. Other known broad-spectrum inhibitors of RNA virus replication such as the nucleoside analog 2′-C-methylcytidine resulted only in a moderate antiviral activity. In its natural fish host, CTV levels largely fluctuate during the reproductive cycle with the virus detected mainly during spawning. We wondered whether this aspect of CTV infection may serve as a surrogate model for the peculiar pathogenesis of HEV in pregnant women. To that end the effect of three sex steroids on in vitro CTV replication was evaluated. Whereas progesterone resulted in marked inhibition of virus replication, testosterone and 17β-estradiol stimulated viral growth. Our data thus indicate that CTV may serve as a surrogate model for HEV, both for antiviral experiments and studies on the replication biology of the Hepeviridae.

  8. Cutthroat trout virus as a surrogate in vitro infection model for testing inhibitors of hepatitis E virus replication.

    PubMed

    Debing, Yannick; Winton, James; Neyts, Johan; Dallmeier, Kai

    2013-10-01

    Hepatitis E virus (HEV) is one of the most important causes of acute hepatitis worldwide. Although most infections are self-limiting, mortality is particularly high in pregnant women. Chronic infections can occur in transplant and other immune-compromised patients. Successful treatment of chronic hepatitis E has been reported with ribavirin and pegylated interferon-alpha, however severe side effects were observed. We employed the cutthroat trout virus (CTV), a non-pathogenic fish virus with remarkable similarities to HEV, as a potential surrogate for HEV and established an antiviral assay against this virus using the Chinook salmon embryo (CHSE-214) cell line. Ribavirin and the respective trout interferon were found to efficiently inhibit CTV replication. Other known broad-spectrum inhibitors of RNA virus replication such as the nucleoside analog 2'-C-methylcytidine resulted only in a moderate antiviral activity. In its natural fish host, CTV levels largely fluctuate during the reproductive cycle with the virus detected mainly during spawning. We wondered whether this aspect of CTV infection may serve as a surrogate model for the peculiar pathogenesis of HEV in pregnant women. To that end the effect of three sex steroids on in vitro CTV replication was evaluated. Whereas progesterone resulted in marked inhibition of virus replication, testosterone and 17β-estradiol stimulated viral growth. Our data thus indicate that CTV may serve as a surrogate model for HEV, both for antiviral experiments and studies on the replication biology of the Hepeviridae.

  9. The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication.

    PubMed

    Portela, Agustín; Digard, Paul

    2002-04-01

    All viruses with negative-sense RNA genomes encode a single-strand RNA-binding nucleoprotein (NP). The primary function of NP is to encapsidate the virus genome for the purposes of RNA transcription, replication and packaging. The purpose of this review is to illustrate using the influenza virus NP as a well-studied example that the molecule is much more than a structural RNA-binding protein, but also functions as a key adapter molecule between virus and host cell processes. It does so through the ability to interact with a wide variety of viral and cellular macromolecules, including RNA, itself, two subunits of the viral RNA-dependent RNA polymerase and the viral matrix protein. NP also interacts with cellular polypeptides, including actin, components of the nuclear import and export apparatus and a nuclear RNA helicase. The evidence for the existence of each of these activities and their possible roles in transcription, replication and intracellular trafficking of the virus genome is considered.

  10. Plasmid-like replicative intermediates of the Epstein-Barr virus lytic origin of DNA replication.

    PubMed Central

    Pfüller, R; Hammerschmidt, W

    1996-01-01

    During the lytic phase of herpesviruses, intermediates of viral DNA replication are found as large concatemeric molecules in the infected cells. It is not known, however, what the early events in viral DNA replication that yield these concatemers are. In an attempt to identify these early steps of DNA replication, replicative intermediates derived from the lytic origin of Epstein-Barr virus, oriLyt, were analyzed. As shown by density shift experiments with bromodeoxyuridine, oriLyt replicated semiconservatively soon after induction of the lytic cycle and oriLyt-containing DNA is amplified to yield monomeric plasmid progeny DNA (besides multimeric forms and high-molecular-weight DNA). A new class of plasmid progeny DNA which have far fewer negative supercoils than do plasmids extracted from uninduced cells is present only in cells undergoing the lytic cycle of Epstein-Barr virus. This finding is consistent with plasmid DNAs having fewer nucleosomes before extraction. The newly replicated plasmid DNAs are dependent on a functional oriLyt in cis and support an efficient marker transfer into Escherichia coli as monomeric plasmids. Multimeric forms of presumably circular progeny DNA of oriLyt, as well as detected recombination events, indicate that oriLyt-mediated DNA replication is biphasic: an early theta-like mode is followed by a complex pattern which could result from rolling-circle DNA replication. PMID:8648674

  11. Inhibitors of the Interferon Response Enhance Virus Replication In Vitro

    PubMed Central

    Stewart, Claire E.; Randall, Richard E.; Adamson, Catherine S.

    2014-01-01

    Virus replication efficiency is influenced by two conflicting factors, kinetics of the cellular interferon (IFN) response and induction of an antiviral state versus speed of virus replication and virus-induced inhibition of the IFN response. Disablement of a virus's capacity to circumvent the IFN response enables both basic research and various practical applications. However, such IFN-sensitive viruses can be difficult to grow to high-titer in cells that produce and respond to IFN. The current default option for growing IFN-sensitive viruses is restricted to a limited selection of cell-lines (e.g. Vero cells) that have lost their ability to produce IFN. This study demonstrates that supplementing tissue-culture medium with an IFN inhibitor provides a simple, effective and flexible approach to increase the growth of IFN-sensitive viruses in a cell-line of choice. We report that IFN inhibitors targeting components of the IFN response (TBK1, IKK2, JAK1) significantly increased virus replication. More specifically, the JAK1/2 inhibitor Ruxolitinib enhances the growth of viruses that are sensitive to IFN due to (i) loss of function of the viral IFN antagonist (due to mutation or species-specific constraints) or (ii) mutations/host cell constraints that slow virus spread such that it can be controlled by the IFN response. This was demonstrated for a variety of viruses, including, viruses with disabled IFN antagonists that represent live-attenuated vaccine candidates (Respiratory Syncytial Virus (RSV), Influenza Virus), traditionally attenuated vaccine strains (Measles, Mumps) and a slow-growing wild-type virus (RSV). In conclusion, supplementing tissue culture-medium with an IFN inhibitor to increase the growth of IFN-sensitive viruses in a cell-line of choice represents an approach, which is broadly applicable to research investigating the importance of the IFN response in controlling virus infections and has utility in a number of practical applications including

  12. MicroRNA Regulation of RNA Virus Replication and Pathogenesis.

    PubMed

    Trobaugh, Derek W; Klimstra, William B

    2017-01-01

    microRNAs (miRNAs) are non-coding RNAs that regulate many processes within a cell by manipulating protein levels through direct binding to mRNA and influencing translation efficiency, or mRNA abundance. Recent evidence demonstrates that miRNAs can also affect RNA virus replication and pathogenesis through direct binding to the RNA virus genome or through virus-mediated changes in the host transcriptome. Here, we review the current knowledge on the interaction between RNA viruses and cellular miRNAs. We also discuss how cell and tissue-specific expression of miRNAs can directly affect viral pathogenesis. Understanding the role of cellular miRNAs during viral infection may lead to the identification of novel mechanisms to block RNA virus replication or cell-specific regulation of viral vector targeting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Molecular biology and replication of hepatitis E virus

    PubMed Central

    Cao, Dianjun; Meng, Xiang-Jin

    2012-01-01

    Hepatitis E virus (HEV), a single-stranded, positive-sense RNA virus, is responsible for acute hepatitis E epidemics in many developing countries, and the virus is also endemic in some industrialized countries. Hepatitis E is a recognized zoonotic disease, and several animal species, including pigs, are potential reservoirs for HEV. The genome of HEV contains three open reading frames (ORFs). ORF1 encodes the nonstructural proteins, ORF2 encodes the capsid protein, and ORF3 encodes a small multifunctional protein. The ORF2 and ORF3 proteins are translated from a single, bicistronic mRNA. The coding sequences for these two ORFs overlap each other, but neither overlaps with ORF1. Whereas the mechanisms underlying HEV replication are poorly understood, the construction of infectious viral clones, the identification of cell lines that support HEV replication, and the development of small animal models have allowed for more detailed study of the virus. As result of these advances, recently, our understanding of viral entry, genomic replication and viral egress has improved. Furthermore, the determination of the T=1 and T=3 structure of HEV virus-like particles has furthered our understanding of the replication of HEV. This article reviews the latest developments in the molecular biology of HEV with an emphasis on the genomic organization, the expression and function of genes, and the structure and replication of HEV. PMID:26038426

  14. Ectopic expression of vaccinia virus E3 and K3 cannot rescue ectromelia virus replication in rabbit RK13 cells.

    PubMed

    Hand, Erin S; Haller, Sherry L; Peng, Chen; Rothenburg, Stefan; Hersperger, Adam R

    2015-01-01

    As a group, poxviruses have been shown to infect a wide variety of animal species. However, there is individual variability in the range of species able to be productively infected. In this study, we observed that ectromelia virus (ECTV) does not replicate efficiently in cultured rabbit RK13 cells. Conversely, vaccinia virus (VACV) replicates well in these cells. Upon infection of RK13 cells, the replication cycle of ECTV is abortive in nature, resulting in a greatly reduced ability to spread among cells in culture. We observed ample levels of early gene expression but reduced detection of virus factories and severely blunted production of enveloped virus at the cell surface. This work focused on two important host range genes, named E3L and K3L, in VACV. Both VACV and ECTV express a functional protein product from the E3L gene, but only VACV contains an intact K3L gene. To better understand the discrepancy in replication capacity of these viruses, we examined the ability of ECTV to replicate in wild-type RK13 cells compared to cells that constitutively express E3 and K3 from VACV. The role these proteins play in the ability of VACV to replicate in RK13 cells was also analyzed to determine their individual contribution to viral replication and PKR activation. Since E3L and K3L are two relevant host range genes, we hypothesized that expression of one or both of them may have a positive impact on the ability of ECTV to replicate in RK13 cells. Using various methods to assess virus growth, we did not detect any significant differences with respect to the replication of ECTV between wild-type RK13 compared to versions of this cell line that stably expressed VACV E3 alone or in combination with K3. Therefore, there remain unanswered questions related to the factors that limit the host range of ECTV.

  15. Identification of critical elements within the JC virus DNA replication origin.

    PubMed Central

    Lynch, K J; Frisque, R J

    1990-01-01

    The T antigen of JC virus (JCV) does not interact productively with the simian virus 40 (SV40) origin of replication. In contrast, the SV40 T antigen does drive replication from the JCV origin as well as from its own. The basis for this restricted interaction was investigated by analyzing the structure of the JCV replication origin. The replication activities of JCV-SV40 hybrid origin plasmids were tested in cells constitutively producing either the JCV or SV40 T antigen. Results indicated that a region of the JCV origin critical for interaction with the JCV T antigen was positioned to the late side of the central palindrome of the putative core origin. A mutational analysis of this region indicated that the sequence of the A + T-rich tract was primarily responsible for determining the efficiency with which JCV can initiate replication from its origin. The tandemly repeated pentameric sequence AGGGA located proximal to the A + T-rich tract in the JCV enhancer element was found to stimulate JCV, but not SV40, T antigen-mediated replication. The effect on replication of other elements within the JCV enhancer was also dependent on the T antigen employed for initiation. A plasmid containing the replication origin of prototype BK virus was unable to replicate in cells containing JCV T antigen, again indicating the inflexibility of the JCV T antigen in interacting with heterologous origins. Images PMID:2173768

  16. Inhibition of Mayaro virus replication by prostaglandin A1 and B2 in Vero cells.

    PubMed

    Ishimaru, D; Marcicano, F G; Rebello, M A

    1998-09-01

    The effect of prostaglandins (PGA1 and PGB2) on the replication of Mayaro virus was studied in Vero cells. PGA1 and PGB2 antiviral activity was found to be dose-dependent. However, while 10 micrograms/ml PGB2 inhibited virus yield by 60%, at the same dose PGA1 suppressed virus replication by more than 90%. SDS-PAGE analysis of [35S]-methionine-labelled proteins showed that PGA1 did not alter cellular protein synthesis. In infected cells, PGA1 slightly inhibited the synthesis of protein C, while drastically inhibiting the synthesis of glycoproteins E1 and E2.

  17. Effects of dimethyl prostaglandin A1 on herpes simplex virus and human immunodeficiency virus replication

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; McGrath, M. S.; Hanks, D.; Erickson, S.; Pulliam, L.

    1992-01-01

    We have investigated the direct effect of dimethyl prostaglandin A1 (dmPGA1) on the replication of herpes simplex virus (HSV) and human immunodeficiency virus type 1 (HIV-1). dmPGA1 significantly inhibited viral replication in both HSV and HIV infection systems at concentrations of dmPGA1 that did not adversely alter cellular DNA synthesis. The 50% inhibitory concentration (ID50) for several HSV type 1 (HSV-1) strains ranged from 3.8 to 5.6 micrograms/ml for Vero cells and from 4.6 to 7.3 micrograms/ml for human foreskin fibroblasts. The ID50s for two HSV-2 strains varied from 3.8 to 4.5 micrograms/ml for Vero cells; the ID50 was 5.7 micrograms/ml for human foreskin fibroblasts. We found that closely related prostaglandins did not have the same effect on the replication of HSV; dmPGE2 and dmPGA2 caused up to a 60% increase in HSV replication compared with that in untreated virus-infected cells. HIV-1 replication in acutely infected T cells (VB line) and chronically infected macrophages was assessed by quantitative decreases in p24 concentration. The effective ID50s were 2.5 micrograms/ml for VB cells acutely infected with HIV-1 and 5.2 micrograms/m for chronically infected macrophages. dmPGA1 has an unusual broad-spectrum antiviral activity against both HSV and HIV-1 in vitro and offers a new class of potential therapeutic agents for in vivo use.

  18. Effects of dimethyl prostaglandin A1 on herpes simplex virus and human immunodeficiency virus replication

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; McGrath, M. S.; Hanks, D.; Erickson, S.; Pulliam, L.

    1992-01-01

    We have investigated the direct effect of dimethyl prostaglandin A1 (dmPGA1) on the replication of herpes simplex virus (HSV) and human immunodeficiency virus type 1 (HIV-1). dmPGA1 significantly inhibited viral replication in both HSV and HIV infection systems at concentrations of dmPGA1 that did not adversely alter cellular DNA synthesis. The 50% inhibitory concentration (ID50) for several HSV type 1 (HSV-1) strains ranged from 3.8 to 5.6 micrograms/ml for Vero cells and from 4.6 to 7.3 micrograms/ml for human foreskin fibroblasts. The ID50s for two HSV-2 strains varied from 3.8 to 4.5 micrograms/ml for Vero cells; the ID50 was 5.7 micrograms/ml for human foreskin fibroblasts. We found that closely related prostaglandins did not have the same effect on the replication of HSV; dmPGE2 and dmPGA2 caused up to a 60% increase in HSV replication compared with that in untreated virus-infected cells. HIV-1 replication in acutely infected T cells (VB line) and chronically infected macrophages was assessed by quantitative decreases in p24 concentration. The effective ID50s were 2.5 micrograms/ml for VB cells acutely infected with HIV-1 and 5.2 micrograms/m for chronically infected macrophages. dmPGA1 has an unusual broad-spectrum antiviral activity against both HSV and HIV-1 in vitro and offers a new class of potential therapeutic agents for in vivo use.

  19. Surface glycoproteins of influenza A H3N2 virus modulate virus replication in the respiratory tract of ferrets.

    PubMed

    Cheng, Xing; Zengel, James R; Xu, Qi; Jin, Hong

    2012-10-10

    The hemagglutinin (HA) genes of the influenza A H3N2 subtype viruses isolated from 1968 to 2010 have evolved substantially but their neuraminidase (NA) genes have been relatively less divergent. The H3N2 viruses isolated since 1995 were found to replicate in the lower respiratory tract of ferrets less efficiently than the earlier isolates. To evaluate whether the HA or/and NA or the internal protein gene segments of the H3N2 virus affected viral replication in the respiratory tract of ferrets, recombinant A/California/07/2004 (CA04) (H3N2) virus and its reassortants that contained the same CA04 internal protein gene segments and the HA and/or NA of A/Udorn/309/1972 (UD72) or A/Wuhan/359/1995 (WH95) H3N2 viruses were generated and evaluated for their replication in the respiratory tract of ferrets. All the reassortant viruses replicated efficiently in the upper respiratory tract of ferrets, but their replication in the lower respiratory tract of ferrets varied. In contrast to the UD72-HA reassortant virus that replicated efficiently in the lungs of ferrets, the virus with the WH95-HA or the CA04-HA either replicated modestly or did not replicate in the lungs of ferrets. The reassortants with the WH95-HA and UD72-NA or CA04-NA had the tendency to lose a N-linked glycosylation site at residue 246 in the HA, resulting in viral lung titer of 100-fold higher than the virus with the HA and NA from WH95. The UD72-NA had the highest neuraminidase activity and increased viral replication by up to 100-fold in tissue culture cells during early infection. Thus, our data indicate that both the HA and NA glycoproteins play important roles in viral replication of the H3N2 influenza virus in ferrets. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Structures of herpes simplex virus type 1 genes required for replication of virus DNA.

    PubMed Central

    McGeoch, D J; Dalrymple, M A; Dolan, A; McNab, D; Perry, L J; Taylor, P; Challberg, M D

    1988-01-01

    Recently, a method has been developed to identify regions in the genome of herpes simplex virus type 1 (HSV-1) which contain genes required for DNA synthesis from an HSV-1 origin of DNA replication, and seven genomic loci have been identified as representing the necessary and sufficient gene set for such replication (C. A. Wu, N. J. Nelson, D. J. McGeoch, and M. D. Challberg, J. Virol. 62:435-443, 1988). Two of the loci represent the well-known genes for DNA polymerase and major DNA-binding protein, but the remainder had little or no previous characterization. In this report we present the DNA sequences of the five newly identified genes and their deduced transcript organizations and encoded amino acid sequences. These genes were designated UL5, UL8, UL9, UL42, and UL52 and were predicted to encode proteins with molecular weights of, respectively, 99,000, 80,000, 94,000, 51,000, and 114,000. All of these genes had clear counterparts in the genome of the related alphaherpesvirus varicella-zoster virus, but only UL5 and UL52 were detectably conserved in the distantly related gammaherpesvirus Epstein-Barr virus, as judged by amino acid sequence similarity. The sequence of the UL5 protein, and of its counterparts in the other viruses, contained a region closely resembling known ATP-binding sites; this could be indicative, for instance, of a helicase or primase activity. PMID:2826807

  1. CD11c controls herpes simplex virus 1 responses to limit virus replication during primary infection.

    PubMed

    Allen, Sariah J; Mott, Kevin R; Chentoufi, Aziz A; BenMohamed, Lbachir; Wechsler, Steven L; Ballantyne, Christie M; Ghiasi, Homayon

    2011-10-01

    CD11c is expressed on the surface of dendritic cells (DCs) and is one of the main markers for identification of DCs. DCs are the effectors of central innate immune responses, but they also affect acquired immune responses to infection. However, how DCs influence the efficacy of adaptive immunity is poorly understood. Here, we show that CD11c(+) DCs negatively orchestrate both adaptive and innate immunity against herpes simplex virus type 1 (HSV-1) ocular infection. The effectiveness and quantity of virus-specific CD8(+) T cell responses are increased in CD11c-deficient animals. In addition, the levels of CD83, CD11b, alpha interferon (IFN-α), and IFN-β, but not IFN-γ, were significantly increased in CD11c-deficient animals. Higher levels of IFN-α, IFN-β, and CD8(+) T cells in the CD11c-deficient mice may have contributed to lower virus replication in the eye and trigeminal ganglia (TG) during the early period of infection than in wild-type mice. However, the absence of CD11c did not influence survival, severity of eye disease, or latency. Our studies provide for the first time evidence that CD11c expression may abrogate the ability to reduce primary virus replication in the eye and TG via higher activities of type 1 interferon and CD8(+) T cell responses.

  2. Multiple Natural Substitutions in Avian Influenza A Virus PB2 Facilitate Efficient Replication in Human Cells

    PubMed Central

    Mänz, Benjamin; de Graaf, Miranda; Mögling, Ramona; Richard, Mathilde; Bestebroer, Theo M.; Rimmelzwaan, Guus F.

    2016-01-01

    ABSTRACT A strong restriction of the avian influenza A virus polymerase in mammalian cells generally limits viral host-range switching. Although substitutions like E627K in the PB2 polymerase subunit can facilitate polymerase activity to allow replication in mammals, many human H5N1 and H7N9 viruses lack this adaptive substitution. Here, several previously unknown, naturally occurring, adaptive substitutions in PB2 were identified by bioinformatics, and their enhancing activity was verified using in vitro assays. Adaptive substitutions enhanced polymerase activity and virus replication in mammalian cells for avian H5N1 and H7N9 viruses but not for a partially human-adapted H5N1 virus. Adaptive substitutions toward basic amino acids were frequent and were mostly clustered in a putative RNA exit channel in a polymerase crystal structure. Phylogenetic analysis demonstrated divergent dependency of influenza viruses on adaptive substitutions. The novel adaptive substitutions found in this study increase basic understanding of influenza virus host adaptation and will help in surveillance efforts. IMPORTANCE Influenza viruses from birds jump the species barrier into humans relatively frequently. Such influenza virus zoonoses may pose public health risks if the virus adapts to humans and becomes a pandemic threat. Relatively few amino acid substitutions—most notably in the receptor binding site of hemagglutinin and at positions 591 and 627 in the polymerase protein PB2—have been identified in pandemic influenza virus strains as determinants of host adaptation, to facilitate efficient virus replication and transmission in humans. Here, we show that substantial numbers of amino acid substitutions are functionally compensating for the lack of the above-mentioned mutations in PB2 and could facilitate influenza virus emergence in humans. PMID:27076644

  3. Microbial Translocation and Inflammation Occur in Hyperacute Immunodeficiency Virus Infection and Compromise Host Control of Virus Replication

    PubMed Central

    DiNapoli, Sarah R.; Greene, Justin M.; Lehrer-Brey, Gabrielle; Gieger, Samantha M.; Buechler, Connor R.; Crosno, Kristin A.; Peterson, Eric J.; Wiseman, Roger W.; Estes, Jacob D.; Sacha, Jonah B.; Brenchley, Jason M.; O’Connor, David H.

    2016-01-01

    Within the first three weeks of human immunodeficiency virus (HIV) infection, virus replication peaks in peripheral blood. Despite the critical, causal role of virus replication in determining transmissibility and kinetics of progression to acquired immune deficiency syndrome (AIDS), there is limited understanding of the conditions required to transform the small localized transmitted founder virus population into a large and heterogeneous systemic infection. Here we show that during the hyperacute “pre-peak” phase of simian immunodeficiency virus (SIV) infection in macaques, high levels of microbial DNA transiently translocate into peripheral blood. This, heretofore unappreciated, hyperacute-phase microbial translocation was accompanied by sustained reduction of lipopolysaccharide (LPS)-specific antibody titer, intestinal permeability, increased abundance of CD4+CCR5+ T cell targets of virus replication, and T cell activation. To test whether increasing gastrointestinal permeability to cause microbial translocation would amplify viremia, we treated two SIV-infected macaque ‘elite controllers’ with a short-course of dextran sulfate sodium (DSS)–stimulating a transient increase in microbial translocation and a prolonged recrudescent viremia. Altogether, our data implicates translocating microbes as amplifiers of immunodeficiency virus replication that effectively undermine the host’s capacity to contain infection. PMID:27926931

  4. PAN substitutions A37S, A37S/I61T and A37S/V63I attenuate the replication of H7N7 influenza A virus by impairing the polymerase and endonuclease activities.

    PubMed

    Hu, Meng; Yuan, Shuofeng; Ye, Zi-Wei; Singh, Kailash; Li, Cun; Shuai, Huiping; Fai, Ng; Chow, Billy K C; Chu, Hin; Zheng, Bo-Jian

    2017-01-22

    Substitutions in the PA N-terminus (PAN) of influenza A viruses (IAVs) are associated with viral pathogenicity. During our previous study that identified PAN-V63I and -A37S/I61T/V63I/V100A substitutions as virulence determinants, we observed a severe decrease in virus growth and transcription/replication capacity posed by PAN-A37S/V100A substitution. To further delineate the significance of substitutions at these positions, we generated mutant H7N7 viruses bearing substitutions PAN-A37S, -A37S/I61T, -A37S/V63I, -V100A, -I61T/V100A and -V63I/V100A by reverse genetics. Our results showed that all mutant viruses except PAN-V100A showed a significantly reduced growth capability in infected cells. At the same time, the PAN-A37S, -A37S/I61T and -A37S/V63I mutant viruses displayed decreased viral transcription and replication by diminishing virus RNA synthesis activity. Biochemical assays indicated that the substitutions PAN-A37S, -A37S/I61T and -A37S/V63I suppressed the polymerase activity and the endonuclease activity when compared to those of the wild type. Together, our results demonstrated that the PAN-A37S, -A37S/I61T and -A37S/V63I substitutions contributed to a decreased pathogenicity of avian H7N7 IAV.

  5. Experimental African swine fever: apoptosis of lymphocytes and virus replication in other cells.

    PubMed

    Gómez-Villamandos, J C; Hervás, J; Méndez, A; Carrasco, L; Martín de las Mulas, J; Villeda, C J; Wilkinson, P J; Sierra, M A

    1995-09-01

    In order to determine the cause of cellular death of lymphocytes in pigs with acute African swine fever and the relationships between African swine fever virus (ASFV) and interstitial cells, ten pigs were inoculated with a highly virulent strain of ASFV (Malawi '83) and samples taken for ultrastructural study of hepatic and renal interstitial tissues. We demonstrated death by apoptosis of lymphocytes and virus replication in fibroblasts, smooth muscle cells and endothelial cells in the interstitial tissues of pigs inoculated with ASFV. From day 5 onwards, apoptotic lymphocyte and intense virus replication in hepatic interstitial macrophages and fibroblasts were observed. By day 7, apoptotic lymphocytes and virus replication in macrophages, interstitial capillary endothelial cells and fibroblasts in the kidney were observed. Virus replication was also seen in smooth muscle cells of hepatic and renal arterioles and venules. Our results suggest that mononuclear phagocyte system (MPS) cell activation, and the resulting release of cytokines, could induce apoptosis of lymphocytes and virus replication in non-MPS cells.

  6. Enhanced replication of herpes simplex virus type 1 in human cells

    SciTech Connect

    Miller, C.S.; Smith, K.O. )

    1991-02-01

    The effects of DNA-damaging agents on the replication of herpes simplex virus type 1 (HSV-1) were assessed in vitro. Monolayers of human lung fibroblast cell lines were exposed to DNA-damaging agents (methyl methanesulfonate (MMS), methyl methanethiosulfonate (MMTS), ultraviolet light (UV), or gamma radiation (GR)) at specific intervals, before or after inoculation with low levels of HSV-1. The ability of cell monolayers to support HSV-1 replication was measured by direct plaque assay and was compared with that of untreated control samples. In this system, monolayers of different cell lines infected with identical HSV-1 strains demonstrated dissimilar levels of recovery of the infectious virus. Exposure of DNA-repair-competent cell cultures to DNA-damaging agents produced time-dependent enhanced virus replication. Treatment with agent before virus inoculation significantly (p less than 0.025) increased the number of plaques by 10 to 68%, compared with untreated control cultures, while treatment with agent after virus adsorption significantly increased (p less than 0.025) the number of plaques by 7 to 15%. In a parallel series of experiments, cells deficient in DNA repair (xeroderma pigmentosum) failed to support enhanced virus replication. These results suggest that after exposure to DNA-damaging agents, fibroblasts competent in DNA repair amplify the replication of HSV-1, and that DNA-repair mechanisms that act on a variety of chromosomal lesions may be involved in the repair and biological activation of HSV-1 genomes.

  7. Inhibitors of nucleotidyltransferase superfamily enzymes suppress herpes simplex virus replication.

    PubMed

    Tavis, John E; Wang, Hong; Tollefson, Ann E; Ying, Baoling; Korom, Maria; Cheng, Xiaohong; Cao, Feng; Davis, Katie L; Wold, William S M; Morrison, Lynda A

    2014-12-01

    Herpesviruses are large double-stranded DNA viruses that cause serious human diseases. Herpesvirus DNA replication depends on multiple processes typically catalyzed by nucleotidyltransferase superfamily (NTS) enzymes. Therefore, we investigated whether inhibitors of NTS enzymes would suppress replication of herpes simplex virus 1 (HSV-1) and HSV-2. Eight of 42 NTS inhibitors suppressed HSV-1 and/or HSV-2 replication by >10-fold at 5 μM, with suppression at 50 μM reaching ∼1 million-fold. Five compounds in two chemical families inhibited HSV replication in Vero and human foreskin fibroblast cells as well as the approved drug acyclovir did. The compounds had 50% effective concentration values as low as 0.22 μM with negligible cytotoxicity in the assays employed. The inhibitors suppressed accumulation of viral genomes and infectious particles and blocked events in the viral replication cycle before and during viral DNA replication. Acyclovir-resistant mutants of HSV-1 and HSV-2 remained highly sensitive to the NTS inhibitors. Five of six NTS inhibitors of the HSVs also blocked replication of another herpesvirus pathogen, human cytomegalovirus. Therefore, NTS enzyme inhibitors are promising candidates for new herpesvirus treatments that may have broad efficacy against members of the herpesvirus family.

  8. Involvement of FKBP6 in hepatitis C virus replication

    PubMed Central

    Kasai, Hirotake; Kawakami, Kunihiro; Yokoe, Hiromasa; Yoshimura, Kentaro; Matsuda, Masanori; Yasumoto, Jun; Maekawa, Shinya; Yamashita, Atsuya; Tanaka, Tomohisa; Ikeda, Masanori; Kato, Nobuyuki; Okamoto, Toru; Matsuura, Yoshiharu; Sakamoto, Naoya; Enomoto, Nobuyuki; Takeda, Sen; Fujii, Hideki; Tsubuki, Masayoshi; Kusunoki, Masami; Moriishi, Kohji

    2015-01-01

    The chaperone system is known to be exploited by viruses for their replication. In the present study, we identified the cochaperone FKBP6 as a host factor required for hepatitis C virus (HCV) replication. FKBP6 is a peptidyl prolyl cis-trans isomerase with three domains of the tetratricopeptide repeat (TPR), but lacks FK-506 binding ability. FKBP6 interacted with HCV nonstructural protein 5A (NS5A) and also formed a complex with FKBP6 itself or FKBP8, which is known to be critical for HCV replication. The Val121 of NS5A and TPR domains of FKBP6 were responsible for the interaction between NS5A and FKBP6. FKBP6 was colocalized with NS5A, FKBP8, and double-stranded RNA in HCV-infected cells. HCV replication was completely suppressed in FKBP6-knockout hepatoma cell lines, while the expression of FKBP6 restored HCV replication in FKBP6-knockout cells. A treatment with the FKBP8 inhibitor N-(N′, N′-dimethylcarboxamidomethyl)cycloheximide impaired the formation of a homo- or hetero-complex consisting of FKBP6 and/or FKBP8, and suppressed HCV replication. HCV infection promoted the expression of FKBP6, but not that of FKBP8, in cultured cells and human liver tissue. These results indicate that FKBP6 is an HCV-induced host factor that supports viral replication in cooperation with NS5A. PMID:26567527

  9. Inhibition of Dengue Virus Replication by a Class of Small-Molecule Compounds That Antagonize Dopamine Receptor D4 and Downstream Mitogen-Activated Protein Kinase Signaling

    PubMed Central

    Smith, Jessica L.; Stein, David A.; Shum, David; Fischer, Matthew A.; Radu, Constantin; Bhinder, Bhavneet; Djaballah, Hakim; Nelson, Jay A.; Früh, Klaus

    2014-01-01

    ABSTRACT Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds—dihydrodibenzothiepines (DHBTs), identified through high-throughput screening—with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of this class, displayed activity against all four serotypes of DENV, as well as against a related flavivirus, West Nile virus (WNV), and an alphavirus, Sindbis virus (SINV). This compound was characterized to determine its mechanism of antiviral activity. Investigation of the stage of the viral life cycle affected revealed that an early event in the life cycle is inhibited. Due to the structural similarity of the DHBTs to known antagonists of the dopamine and serotonin receptors, we explored the roles of two of these receptors, serotonin receptor 2A (5HTR2A) and the D4 dopamine receptor (DRD4), in DENV infection. Antagonism of DRD4 and subsequent downstream phosphorylation of epidermal growth factor receptor (EGFR)-related kinase (ERK) were found to impact DENV infection negatively, and blockade of signaling through this network was confirmed as the mechanism of anti-DENV activity for this class of compounds. IMPORTANCE The dengue viruses are mosquito-borne, reemerging human pathogens that are the etiological agents of a spectrum of febrile diseases. Currently, there are no approved therapeutic treatments for dengue-associated disease, nor is there a vaccine. This study identifies a small molecule, SKI-417616, with potent anti-dengue virus activity. Further analysis revealed that SKI-417616 acts through antagonism of the host cell dopamine D4 receptor and subsequent repression of the ERK phosphorylation pathway. These results suggest that SKI-417616, or other

  10. Inhibition of dengue virus replication by a class of small-molecule compounds that antagonize dopamine receptor d4 and downstream mitogen-activated protein kinase signaling.

    PubMed

    Smith, Jessica L; Stein, David A; Shum, David; Fischer, Matthew A; Radu, Constantin; Bhinder, Bhavneet; Djaballah, Hakim; Nelson, Jay A; Früh, Klaus; Hirsch, Alec J

    2014-05-01

    Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds-dihydrodibenzothiepines (DHBTs), identified through high-throughput screening-with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of this class, displayed activity against all four serotypes of DENV, as well as against a related flavivirus, West Nile virus (WNV), and an alphavirus, Sindbis virus (SINV). This compound was characterized to determine its mechanism of antiviral activity. Investigation of the stage of the viral life cycle affected revealed that an early event in the life cycle is inhibited. Due to the structural similarity of the DHBTs to known antagonists of the dopamine and serotonin receptors, we explored the roles of two of these receptors, serotonin receptor 2A (5HTR2A) and the D4 dopamine receptor (DRD4), in DENV infection. Antagonism of DRD4 and subsequent downstream phosphorylation of epidermal growth factor receptor (EGFR)-related kinase (ERK) were found to impact DENV infection negatively, and blockade of signaling through this network was confirmed as the mechanism of anti-DENV activity for this class of compounds. The dengue viruses are mosquito-borne, reemerging human pathogens that are the etiological agents of a spectrum of febrile diseases. Currently, there are no approved therapeutic treatments for dengue-associated disease, nor is there a vaccine. This study identifies a small molecule, SKI-417616, with potent anti-dengue virus activity. Further analysis revealed that SKI-417616 acts through antagonism of the host cell dopamine D4 receptor and subsequent repression of the ERK phosphorylation pathway. These results suggest that SKI-417616, or other compounds targeting the same

  11. Lytic Replication of Epstein-Barr Virus During Space Flight

    NASA Technical Reports Server (NTRS)

    Stowe, R. P.; Pierson, D. L.; Barrett, A. D. T.

    1999-01-01

    Reactivation of latent Epstein-Barr virus (EBV) may be an important threat to crew health during extended space missions. Cellular immunity, which is decreased during and after space flight, is responsible for controlling EBV replication in vivo. In this study, we investigated the effects of short-term space flight on latent EBV reactivation.

  12. VIRUS: a massively replicated IFU spectrograph for HET

    NASA Astrophysics Data System (ADS)

    Hill, Gary J.; MacQueen, Phillip J.; Tejada, Carlos; Cobos, Francisco J.; Palunas, Povilas; Gebhardt, Karl; Drory, Niv

    2004-09-01

    We investigate the role of industrial replication in the construction of the next generation of spectrographs for large telescopes. In this paradigm, a simple base spectrograph unit is replicated to provide multiplex advantage, while the engineering costs are amortized over many copies. We argue that this is a cost-effective approach when compared to traditional spectrograph design, where each instrument is essentially a one-off prototype with heavy expenditure on engineering effort. As an example of massive replication, we present the design of, and the science drivers for, the Visible IFU Replicable Ultra-cheap Spectrograph (VIRUS). This instrument is made up of 132 individually small and simple spectrographs, each fed by a fiber integral field unit. The total VIRUS-132 instrument covers ~29 sq. arcminutes per observation, providing integral field spectroscopy from 340 to 570 nm, simultaneously, of 32,604 spatial elements, each 1 sq. arcsecond on the sky. VIRUS-132 will be mounted on the 9.2 m Hobby-Eberly Telescope and fed by a new wide-field corrector with a science field in excess of 16.5 arcminutes diameter. VIRUS represents a new approach to spectrograph design, offering the science multiplex advantage of huge sky coverage for an integral field spectrograph, coupled with the engineering multiplex advantage of >102 spectrographs making up a whole.

  13. Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication.

    PubMed Central

    Engelman, A; Englund, G; Orenstein, J M; Martin, M A; Craigie, R

    1995-01-01

    The integration of a DNA copy of the human immunodeficiency virus type 1 (HIV-1) genome into a chromosome of an infected cell is a pivotal step in virus replication. Integration requires the activity of the virus-encoded integrase, which enters the cell as a component of the virion. Results of numerous mutagenesis studies have identified amino acid residues and protein domains of HIV-1 integrase critical for in vitro activity, but only a few of these mutants have been studied for their effects on HIV replication. We have introduced site-directed changes into an infectious DNA clone of HIV-1 and show that integrase mutations can affect virus replication at a variety of steps. We identified mutations that altered virion morphology, levels of particle-associated integrase and reverse transcriptase, and viral DNA synthesis. One replication-defective mutant virus which had normal morphology and protein composition displayed increased levels of circular viral DNA following infection of a T-cell line. This virus also had a significant titer in a CD4-positive indicator cell assay, which requires the viral Tat protein. Although unintegrated viral DNA can serve as a template for Tat expression in infected indicator cells, this level of expression is insufficient to support a spreading viral infection in CD4-positive lymphocytes. PMID:7535863

  14. Inhibition of human immunodeficiency virus replication by antisense oligodeoxynucleotides.

    PubMed Central

    Goodchild, J; Agrawal, S; Civeira, M P; Sarin, P S; Sun, D; Zamecnik, P C

    1988-01-01

    Twenty different target sites within human immunodeficiency virus (HIV) RNA were selected for studies of inhibition of HIV replication by antisense oligonucleotides. Target sites were selected based on their potential capacity to block recognition functions during viral replication. Antisense oligomers complementary to sites within or near the sequence repeated at the ends of retrovirus RNA (R region) and to certain splice sites were most effective. The effect of antisense oligomer length on inhibiting virus replication was also investigated, and preliminary toxicity studies in mice show that these compounds are toxic only at high levels. The results indicate potential usefulness for these oligomers in the treatment of patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex either alone or in combination with other drugs. PMID:3041414

  15. Inhibition of Human Immunodeficiency Virus Replication by Antisense Oligodeoxynucleotides

    NASA Astrophysics Data System (ADS)

    Goodchild, John; Agrawal, Sudhir; Civeira, Maria P.; Sarin, Prem S.; Sun, Daisy; Zamecnik, Paul C.

    1988-08-01

    Twenty different target sites within human immunodeficiency virus (HIV) RNA were selected for studies of inhibition of HIV replication by antisense oligonucleotides. Target sites were selected based on their potential capacity to block recognition functions during viral replication. Antisense oligomers complementary to sites within or near the sequence repeated at the ends of retrovirus RNA (R region) and to certain splice sites were most effective. The effect of antisense oligomer length on inhibiting virus replication was also investigated, and preliminary toxicity studies in mice show that these compounds are toxic only at high levels. The results indicate potential usefulness for these oligomers in the treatment of patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex either alone or in combination with other drugs.

  16. Ring Expanded Nucleoside Analogues Inhibit RNA Helicase and Intracellular Human Immunodeficiency virus type 1 Replication

    PubMed Central

    Yedavalli, Venkat S.R.K; Zhang, Ning; Cai, Hongyi; Zhang, Peng; Starost, Matthew F.; Hosmane, Ramachandra S.; Jeang, Kuan-Teh

    2008-01-01

    A series of ring expanded nucleoside (REN) analogues were synthesized and screened for inhibition of cellular RNA helicase activity and human immunodeficiency virus type 1 (HIV-1) replication. We identified two compounds 1 and 2 that inhibited the ATP dependent activity of human RNA helicase DDX3. Compounds 1 and 2 also suppressed HIV-1 replication in T cells and monocyte-derived macrophages. Neither compound at therapeutic doses was significantly toxic in ex vivo cell culture or in vivo in mice. Our findings provide proof-of-concept that a cellular factor, an RNA helicase, could be targeted for inhibiting HIV-1 replication. PMID:18680273

  17. The citrus flavanone naringenin impairs dengue virus replication in human cells.

    PubMed

    Frabasile, Sandra; Koishi, Andrea Cristine; Kuczera, Diogo; Silveira, Guilherme Ferreira; Verri, Waldiceu Aparecido; Duarte Dos Santos, Claudia Nunes; Bordignon, Juliano

    2017-02-03

    Dengue is one of the most significant health problems in tropical and sub-tropical regions throughout the world. Nearly 390 million cases are reported each year. Although a vaccine was recently approved in certain countries, an anti-dengue virus drug is still needed. Fruits and vegetables may be sources of compounds with medicinal properties, such as flavonoids. This study demonstrates the anti-dengue virus activity of the citrus flavanone naringenin, a class of flavonoid. Naringenin prevented infection with four dengue virus serotypes in Huh7.5 cells. Additionally, experiments employing subgenomic RepDV-1 and RepDV-3 replicon systems confirmed the ability of naringenin to inhibit dengue virus replication. Antiviral activity was observed even when naringenin was used to treat Huh7.5 cells 24 h after dengue virus exposure. Finally, naringenin anti-dengue virus activity was demonstrated in primary human monocytes infected with dengue virus sertoype-4, supporting the potential use of naringenin to control dengue virus replication. In conclusion, naringenin is a suitable candidate molecule for the development of specific dengue virus treatments.

  18. The citrus flavanone naringenin impairs dengue virus replication in human cells

    PubMed Central

    Frabasile, Sandra; Koishi, Andrea Cristine; Kuczera, Diogo; Silveira, Guilherme Ferreira; Verri, Waldiceu Aparecido; Duarte dos Santos, Claudia Nunes; Bordignon, Juliano

    2017-01-01

    Dengue is one of the most significant health problems in tropical and sub-tropical regions throughout the world. Nearly 390 million cases are reported each year. Although a vaccine was recently approved in certain countries, an anti-dengue virus drug is still needed. Fruits and vegetables may be sources of compounds with medicinal properties, such as flavonoids. This study demonstrates the anti-dengue virus activity of the citrus flavanone naringenin, a class of flavonoid. Naringenin prevented infection with four dengue virus serotypes in Huh7.5 cells. Additionally, experiments employing subgenomic RepDV-1 and RepDV-3 replicon systems confirmed the ability of naringenin to inhibit dengue virus replication. Antiviral activity was observed even when naringenin was used to treat Huh7.5 cells 24 h after dengue virus exposure. Finally, naringenin anti-dengue virus activity was demonstrated in primary human monocytes infected with dengue virus sertoype-4, supporting the potential use of naringenin to control dengue virus replication. In conclusion, naringenin is a suitable candidate molecule for the development of specific dengue virus treatments. PMID:28157234

  19. Replication of chicken anemia virus (CAV) requires apoptin and is complemented by VP3 of human torque teno virus (TTV).

    PubMed

    Prasetyo, Afiono Agung; Kamahora, Toshio; Kuroishi, Ayumu; Murakami, Kyoko; Hino, Shigeo

    2009-03-01

    To test requirement for apoptin in the replication of chicken anemia virus (CAV), an apoptin-knockout clone, pCAV/Ap(-), was constructed. DNA replication was completely abolished in cells transfected with replicative form of CAV/Ap(-). A reverse mutant competent in apoptin production regained the full level of DNA replication. DNA replication and virus-like particle (VLP) production of CAV/Ap(-) was fully complemented by supplementation of the wild-type apoptin. The virus yield of a point mutant, CAV/ApT(108)I, was 1/40 that of the wild type, even though its DNA replication level was full. The infectious titer of CAV was fully complemented by supplementing apoptin. Progeny virus was free from reverse mutation for T(108)I. To localize the domain within apoptin molecule inevitable for CAV replication, apoptin-mutant expressing plasmids, pAp1, pAp2, pAp3, and pAp4, were constructed by deleting amino acids 10-36, 31-59, 59-88 and 80-112, respectively. While Ap1 and Ap2 were preferentially localized in nuclei, Ap3 and Ap4 were mainly present in cytoplasm. Although complementation capacity of Ap3 and Ap4 was 1/10 of the wild type, neither of them completely lost its activity. VP3 of TTV did fully complement the DNA replication and VLP of CAV/Ap(-). These data suggest that apoptin is inevitable not only for DNA replication but also VLP of CAV. The common feature of apoptin and TTV-VP3 presented another evidence for close relatedness of CAV and TTV.

  20. Differentiated swine airway epithelial cell cultures for the investigation of influenza A virus infection and replication

    PubMed Central

    Bateman, Allen C.; Karasin, Alexander I.; Olsen, Christopher W.

    2013-01-01

    Please cite this paper as: Bateman et al. (2013) Differentiated swine airway epithelial cell cultures for the investigation of influenza A virus infection and replication. Influenza and Other Respiratory Viruses 7(2) 139–150. Background  Differentiated human airway epithelial cell cultures have been utilized to investigate cystic fibrosis, wound healing, and characteristics of viral infections. These cultures, grown at an air–liquid interface (ALI) in media with defined hormones and growth factors, recapitulate many aspects of the in vivo respiratory tract and allow for experimental studies at the cellular level. Objectives  To optimize growth conditions for differentiated swine airway epithelial cultures and to use these cultures to examine influenza virus infection and replication. Methods  Primary swine respiratory epithelial cells were grown at an air–liquid interface with varying amounts of retinoic acid and epidermal growth factor. Cells grown with optimized concentrations of these factors for 4 weeks differentiated into multilayer epithelial cell cultures resembling the lining of the swine respiratory tract. Influenza virus infection and replication were examined in these cultures. Results/Conclusions  Retinoic acid promoted ciliogenesis, whereas epidermal growth factor controlled the thickness of the pseudoepithelium. The optimal concentrations for differentiated swine cell cultures were 1·5 ng/ml epidermal growth factor and 100 nm retinoic acid. Influenza A viruses infected and productively replicated in these cultures in the absence of exogenous trypsin, suggesting that the cultures express a protease capable of activating influenza virus hemagglutinin. Differences in virus infection and replication characteristics found previously in pigs in vivo were recapitulated in the swine cultures. This system could be a useful tool for a range of applications, including investigating influenza virus species specificity, defining cell tropism

  1. Subset of Suz12/PRC2 target genes is activated during hepatitis B virus replication and liver carcinogenesis associated with HBV X protein.

    PubMed

    Studach, Leo L; Menne, Stephan; Cairo, Stefano; Buendia, Marie Annick; Hullinger, Ronald L; Lefrançois, Lydie; Merle, Philippe; Andrisani, Ourania M

    2012-10-01

    Chronic hepatitis B virus (HBV) infection is a major risk factor for developing liver cancer, and the HBV X protein (pX) has been implicated as a cofactor in hepatocyte transformation. We have shown that HBV replication as well as in vitro transformation by pX are associated with induction of the mitotic polo-like kinase 1 (Plk1) and down-regulation of the chromatin remodeling components Suz12 and Znf198. Herein, we demonstrate the same inverse relationship between Plk1 and Suz12/Znf198 in liver tumors from X/c-myc bitransgenic mice and woodchuck hepatitis virus (WHV)-infected woodchucks. Employing these animal models and the HBV replicating HepAD38 cells we examined the effect of Suz12/Znf198 down-regulation on gene expression. Genes analyzed include hepatic cancer stem cell markers BAMBI, DKK1,2, DLK1, EpCAM, MYC, and proliferation genes CCNA1, CCND2, IGFII, MCM4-6, PLK1, RPA2, and TYMS. Suz12 occupancy at the promoters of BAMBI, CCND2, DKK2, DLK1, EpCAM, and IGFII was demonstrated by chromatin immunoprecipitation in untransformed hepatocytes, but was markedly reduced in pX-transformed and Suz12 knockdown cells. Accordingly, we refer to these genes as "Suz12 repressed" genes in untransformed hepatocytes. The Suz12 repressed genes and proliferation genes were induced in HBV-replicating HepAD38 cells and, interestingly, they exhibited distinct expression profiles during hepatocellular carcinoma (HCC) progression in X/c-myc bitransgenics. Specifically, CCND2, EpCAM, and IGFII expression was elevated at the proliferative and preneoplastic stages in X/c-myc bitransgenic livers, whereas BAMBI and PLK1 were overexpressed in hepatic tumors from X/c-myc bitransgenics and WHV-infected woodchucks. Importantly, most of these genes were selectively up-regulated in HBV-induced HCCs. The distinct expression profile of the identified Suz12 repressed genes in combination with the proliferation genes hold promise as biomarkers for progression of chronic HBV infection to HCC

  2. Tomato Mosaic Virus Replication Protein Suppresses Virus-Targeted Posttranscriptional Gene Silencing

    PubMed Central

    Kubota, Kenji; Tsuda, Shinya; Tamai, Atsushi; Meshi, Tetsuo

    2003-01-01

    Posttranscriptional gene silencing (PTGS), a homology-dependent RNA degradation system, has a role in defending against virus infection in plants, but plant viruses encode a suppressor to combat PTGS. Using transgenic tobacco in which the expression of green fluorescent protein (GFP) is posttranscriptionally silenced, we investigated a tomato mosaic virus (ToMV)-encoded PTGS suppressor. Infection with wild-type ToMV (L strain) interrupted GFP silencing in tobacco, coincident with visible symptoms, whereas some attenuated strains of ToMV (L11 and L11A strains) failed to suppress GFP silencing. Analyses of recombinant viruses containing the L and L11A strains revealed that a single base change in the replicase gene, which causes an amino acid substitution, is responsible for the symptomless and suppressor-defective phenotypes of the attenuated strains. An agroinfiltration assay indicated that the 130K replication protein acts as a PTGS suppressor. Small interfering RNAs (siRNAs) of 21 to 25 nucleotides accumulated during ToMV infection, suggesting that the major target of the ToMV-encoded suppressor is downstream from the production of siRNAs in the PTGS pathway. Analysis with GFP-tagged recombinant viruses revealed that the suppressor inhibits the establishment of the ToMV-targeted PTGS system in the inoculated leaves but does not detectably suppress the activity of the preexisting, sequence-specific PTGS machinery there. Taken together, these results indicate that it is likely that the ToMV-encoded suppressor, the 130K replication protein, blocks the utilization of silencing-associated small RNAs, so that a homology-dependent RNA degradation machinery is not newly formed. PMID:14512550

  3. Adaptive strategies of the influenza virus polymerase for replication in humans.

    PubMed

    Mehle, Andrew; Doudna, Jennifer A

    2009-12-15

    Transmission of influenza viruses into the human population requires surmounting barriers to cross-species infection. Changes in the influenza polymerase overcome one such barrier. Viruses isolated from birds generally contain polymerases with the avian-signature glutamic acid at amino acid 627 in the PB2 subunit. These polymerases display restricted activity in human cells. An adaptive change in this residue from glutamic acid to the human-signature lysine confers high levels of polymerase activity in human cells. This mutation permits escape from a species-specific restriction factor that targets polymerases from avian viruses. A 2009 swine-origin H1N1 influenza A virus recently established a pandemic infection in humans, even though the virus encodes a PB2 with the restrictive glutamic acid at amino acid 627. We show here that the 2009 H1N1 virus has acquired second-site suppressor mutations in its PB2 polymerase subunit that convey enhanced polymerase activity in human cells. Introduction of this polymorphism into the PB2 subunit of a primary avian isolate also increased polymerase activity and viral replication in human and porcine cells. An alternate adaptive strategy has also been identified, whereby introduction of a human PA subunit into an avian polymerase overcomes restriction in human cells. These data reveal a strategy used by the 2009 H1N1 influenza A virus and identify other pathways by which avian and swine-origin viruses may evolve to enhance replication, and potentially pathogenesis, in humans.

  4. Harnessing host ROS-generating machinery for the robust genome replication of a plant RNA virus.

    PubMed

    Hyodo, Kiwamu; Hashimoto, Kenji; Kuchitsu, Kazuyuki; Suzuki, Nobuhiro; Okuno, Tetsuro

    2017-02-14

    As sessile organisms, plants have to accommodate to rapid changes in their surrounding environment. Reactive oxygen species (ROS) act as signaling molecules to transduce biotic and abiotic stimuli into plant stress adaptations. It is established that a respiratory burst oxidase homolog B of Nicotiana benthamiana (NbRBOHB) produces ROS in response to microbe-associated molecular patterns to inhibit pathogen infection. Plant viruses are also known as causative agents of ROS induction in infected plants; however, the function of ROS in plant-virus interactions remains obscure. Here, we show that the replication of red clover necrotic mosaic virus (RCNMV), a plant positive-strand RNA [(+)RNA] virus, requires NbRBOHB-mediated ROS production. The RCNMV replication protein p27 plays a pivotal role in this process, redirecting the subcellular localization of NbRBOHB and a subgroup II calcium-dependent protein kinase of N. benthamiana (NbCDPKiso2) from the plasma membrane to the p27-containing intracellular aggregate structures. p27 also induces an intracellular ROS burst in an RBOH-dependent manner. NbCDPKiso2 was shown to be an activator of the p27-triggered ROS accumulations and to be required for RCNMV replication. Importantly, this RBOH-derived ROS is essential for robust viral RNA replication. The need for RBOH-derived ROS was demonstrated for the replication of another (+)RNA virus, brome mosaic virus, suggesting that this characteristic is true for plant (+)RNA viruses. Collectively, our findings revealed a hitherto unknown viral strategy whereby the host ROS-generating machinery is diverted for robust viral RNA replication.

  5. Harnessing host ROS-generating machinery for the robust genome replication of a plant RNA virus

    PubMed Central

    Hashimoto, Kenji; Kuchitsu, Kazuyuki; Suzuki, Nobuhiro; Okuno, Tetsuro

    2017-01-01

    As sessile organisms, plants have to accommodate to rapid changes in their surrounding environment. Reactive oxygen species (ROS) act as signaling molecules to transduce biotic and abiotic stimuli into plant stress adaptations. It is established that a respiratory burst oxidase homolog B of Nicotiana benthamiana (NbRBOHB) produces ROS in response to microbe-associated molecular patterns to inhibit pathogen infection. Plant viruses are also known as causative agents of ROS induction in infected plants; however, the function of ROS in plant–virus interactions remains obscure. Here, we show that the replication of red clover necrotic mosaic virus (RCNMV), a plant positive-strand RNA [(+)RNA] virus, requires NbRBOHB-mediated ROS production. The RCNMV replication protein p27 plays a pivotal role in this process, redirecting the subcellular localization of NbRBOHB and a subgroup II calcium-dependent protein kinase of N. benthamiana (NbCDPKiso2) from the plasma membrane to the p27-containing intracellular aggregate structures. p27 also induces an intracellular ROS burst in an RBOH-dependent manner. NbCDPKiso2 was shown to be an activator of the p27-triggered ROS accumulations and to be required for RCNMV replication. Importantly, this RBOH-derived ROS is essential for robust viral RNA replication. The need for RBOH-derived ROS was demonstrated for the replication of another (+)RNA virus, brome mosaic virus, suggesting that this characteristic is true for plant (+)RNA viruses. Collectively, our findings revealed a hitherto unknown viral strategy whereby the host ROS-generating machinery is diverted for robust viral RNA replication. PMID:28154139

  6. Replication-competent fluorescent-expressing influenza B virus

    PubMed Central

    Nogales, Aitor; Rodríguez-Sánchez, Irene; Monte, Kristen; Lenschow, Deborah J.; Perez, Daniel R.; Martínez-Sobrido, Luis

    2016-01-01

    Influenza B viruses (IBVs) cause annual outbreaks of respiratory illness in humans and are increasingly recognized as a major cause of influenza-associated morbidity and mortality. Studying influenza viruses requires the use of secondary methodologies to identify virus-infected cells. To this end, replication-competent influenza A viruses (IAVs) expressing easily traceable fluorescent proteins have been recently developed. In contrast, similar approaches for IBV are mostly lacking. In this report, we describe the generation and characterization of replication-competent influenza B/Brisbane/60/2008 viruses expressing fluorescent mCherry or GFP fused to the C-terminal of the viral non-structural 1 (NS1) protein. Fluorescent-expressing IBVs display similar growth kinetics and plaque phenotype to wild-type IBV, while fluorescent protein expression allows for the easy identification of virus-infected cells. Without the need of secondary approaches to monitor viral infection, fluorescent-expressing IBVs represent an ideal approach to study the biology of IBV and an excellent platform for the rapid identification and characterization of antiviral therapeutics or neutralizing antibodies using high-throughput screening approaches. Lastly, fluorescent-expressing IBVs can be combined with the recently described reporter-expressing IAVs for the identification of novel therapeutics to combat these two important human respiratory pathogens. PMID:26590325

  7. The oligomeric Rep protein of Mungbean yellow mosaic India virus (MYMIV) is a likely replicative helicase.

    PubMed

    Choudhury, Nirupam Roy; Malik, Punjab Singh; Singh, Dharmendra Kumar; Islam, Mohammad Nurul; Kaliappan, Kosalai; Mukherjee, Sunil Kumar

    2006-01-01

    Geminiviruses replicate by rolling circle mode of replication (RCR) and the viral Rep protein initiates RCR by the site-specific nicking at a conserved nonamer (TAATATT downward arrow AC) sequence. The mechanism of subsequent steps of the replication process, e.g. helicase activity to drive fork-elongation, etc. has largely remained obscure. Here we show that Rep of a geminivirus, namely, Mungbean yellow mosaic India virus (MYMIV), acts as a replicative helicase. The Rep-helicase, requiring > or =6 nt space for its efficient activity, translocates in the 3'-->5' direction, and the presence of forked junction in the substrate does not influence the activity to any great extent. Rep forms a large oligomeric complex and the helicase activity is dependent on the oligomeric conformation ( approximately 24mer). The role of Rep as a replicative helicase has been demonstrated through ex vivo studies in Saccharomyces cerevisiae and in planta analyses in Nicotiana tabacum. We also establish that such helicase activity is not confined to the MYMIV system alone, but is also true with at least two other begomoviruses, viz., Mungbean yellow mosaic virus (MYMV) and Indian cassava mosaic virus (ICMV).

  8. The oligomeric Rep protein of Mungbean yellow mosaic India virus (MYMIV) is a likely replicative helicase

    PubMed Central

    Choudhury, Nirupam Roy; Malik, Punjab Singh; Singh, Dharmendra Kumar; Islam, Mohammad Nurul; Kaliappan, Kosalai; Mukherjee, Sunil Kumar

    2006-01-01

    Geminiviruses replicate by rolling circle mode of replication (RCR) and the viral Rep protein initiates RCR by the site-specific nicking at a conserved nonamer (TAATATT↓ AC) sequence. The mechanism of subsequent steps of the replication process, e.g. helicase activity to drive fork-elongation, etc. has largely remained obscure. Here we show that Rep of a geminivirus, namely, Mungbean yellow mosaic India virus (MYMIV), acts as a replicative helicase. The Rep-helicase, requiring ≥6 nt space for its efficient activity, translocates in the 3′→5′ direction, and the presence of forked junction in the substrate does not influence the activity to any great extent. Rep forms a large oligomeric complex and the helicase activity is dependent on the oligomeric conformation (∼24mer). The role of Rep as a replicative helicase has been demonstrated through ex vivo studies in Saccharomyces cerevisiae and in planta analyses in Nicotiana tabacum. We also establish that such helicase activity is not confined to the MYMIV system alone, but is also true with at least two other begomoviruses, viz., Mungbean yellow mosaic virus (MYMV) and Indian cassava mosaic virus (ICMV). PMID:17142233

  9. Essential role of Rta in lytic DNA replication of Epstein-Barr virus.

    PubMed

    El-Guindy, Ayman; Ghiassi-Nejad, Maryam; Golden, Sean; Delecluse, Henri-Jacques; Miller, George

    2013-01-01

    Two transcription factors, ZEBRA and Rta, switch Epstein-Barr virus (EBV) from the latent to the lytic state. While ZEBRA also plays an obligatory role as an activator of replication, it is not known whether Rta is directly required for replication. Rta is dispensable for amplification of an oriLyt-containing plasmid in a transient-replication assay. Here, we assessed the requirement for Rta in activation of viral DNA synthesis from the endogenous viral genome, a function that has not been established. Initially, we searched for a ZEBRA mutant that supports viral replication but not transcription. We found that Z(S186A), a mutant of ZEBRA unable to activate transcription of Rta or viral genes encoding replication proteins, is competent to bind to oriLyt and to function as an origin recognition protein. Ectopic expression of the six components of the EBV lytic replication machinery failed to rescue replication by Z(S186A). However, addition of Rta to Z(S186A) and the mixture of replication factors activated viral replication and late gene expression. Deletion mutagenesis of Rta indicated that the C-terminal 10 amino acids (aa) were essential for the function of Rta in replication. In vivo DNA binding studies revealed that Rta interacted with the enhancer region of oriLyt. In addition, expression of Rta and Z(S186A) together, but not individually, activated synthesis of the BHLF1 transcript, a lytic transcript required for the process of viral DNA replication. Our findings demonstrate that Rta plays an indispensable role in the process of lytic DNA replication.

  10. HIV-protease inhibitors block the replication of both vesicular stomatitis and influenza viruses at an early post-entry replication step

    SciTech Connect

    Federico, Maurizio

    2011-08-15

    The inhibitors of HIV-1 protease (PIs) have been designed to block the activity of the viral aspartyl-protease. However, it is now accepted that this family of inhibitors can also affect the activity of cell proteases. Since the replication of many virus species requires the activity of host cell proteases, investigating the effects of PIs on the life cycle of viruses other than HIV would be of interest. Here, the potent inhibition induced by saquinavir and nelfinavir on the replication of both vesicular stomatitis and influenza viruses is described. These are unrelated enveloped RNA viruses infecting target cells upon endocytosis and intracellular fusion. The PI-induced inhibition was apparently a consequence of a block at the level of the fusion between viral envelope and endosomal membranes. These findings would open the way towards the therapeutic use of PIs against enveloped RNA viruses other than HIV.

  11. Beet yellows virus replicase and replicative compartments: parallels with other RNA viruses.

    PubMed

    Gushchin, Vladimir A; Solovyev, Andrey G; Erokhina, Tatyana N; Morozov, Sergey Y; Agranovsky, Alexey A

    2013-01-01

    In eukaryotic virus systems, infection leads to induction of membranous compartments in which replication occurs. Virus-encoded subunits of the replication complex mediate its interaction with membranes. As replication platforms, RNA viruses use the cytoplasmic surfaces of different membrane compartments, e.g., endoplasmic reticulum (ER), Golgi, endo/lysosomes, mitochondria, chloroplasts, and peroxisomes. Closterovirus infections are accompanied by formation of multivesicular complexes from cell membranes of ER or mitochondrial origin. So far the mechanisms for vesicles formation have been obscure. In the replication-associated 1a polyprotein of Beet yellows virus (BYV) and other closteroviruses, the region between the methyltransferase and helicase domains (1a central region (CR), 1a CR) is marginally conserved. Computer-assisted analysis predicts several putative membrane-binding domains in the BYV 1a CR. Transient expression of a hydrophobic segment (referred to here as CR-2) of the BYV 1a in Nicotiana benthamiana led to reorganization of the ER and formation of ~1-μm mobile globules. We propose that the CR-2 may be involved in the formation of multivesicular complexes in BYV-infected cells. This provides analogy with membrane-associated proteins mediating the build-up of "virus factories" in cells infected with diverse positive-strand RNA viruses (alpha-like viruses, picorna-like viruses, flaviviruses, and nidoviruses) and negative-strand RNA viruses (bunyaviruses).

  12. Hepatocyte Factor JMJD5 Regulates Hepatitis B Virus Replication through Interaction with HBx

    PubMed Central

    Kouwaki, Takahisa; Okamoto, Toru; Ito, Ayano; Sugiyama, Yukari; Yamashita, Kazuo; Suzuki, Tatsuya; Kusakabe, Shinji; Hirano, Junki; Fukuhara, Takasuke; Yamashita, Atsuya; Saito, Kazunobu; Okuzaki, Daisuke; Watashi, Koichi; Sugiyama, Masaya; Yoshio, Sachiyo; Standley, Daron M.; Kanto, Tatsuya; Mizokami, Masashi; Moriishi, Kohji

    2016-01-01

    ABSTRACT Hepatitis B virus (HBV) is a causative agent for chronic liver diseases such as hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HBx protein encoded by the HBV genome plays crucial roles not only in pathogenesis but also in replication of HBV. Although HBx has been shown to bind to a number of host proteins, the molecular mechanisms by which HBx regulates HBV replication are largely unknown. In this study, we identified jumonji C-domain-containing 5 (JMJD5) as a novel binding partner of HBx interacting in the cytoplasm. DNA microarray analysis revealed that JMJD5-knockout (JMJD5KO) Huh7 cells exhibited a significant reduction in the expression of transcriptional factors involved in hepatocyte differentiation, such as HNF4A, CEBPA, and FOXA3. We found that hydroxylase activity of JMJD5 participates in the regulation of these transcriptional factors. Moreover, JMJD5KO Huh7 cells exhibited a severe reduction in HBV replication, and complementation of HBx expression failed to rescue replication of a mutant HBV deficient in HBx, suggesting that JMJD5 participates in HBV replication through an interaction with HBx. We also found that replacing Gly135 with Glu in JMJD5 abrogates binding with HBx and replication of HBV. Moreover, the hydroxylase activity of JMJD5 was crucial for HBV replication. Collectively, these results suggest that direct interaction of JMJD5 with HBx facilitates HBV replication through the hydroxylase activity of JMJD5. IMPORTANCE HBx protein encoded by hepatitis B virus (HBV) plays important roles in pathogenesis and replication of HBV. We identified jumonji C-domain-containing 5 (JMJD5) as a novel binding partner to HBx. JMJD5 was shown to regulate several transcriptional factors to maintain hepatocyte function. Although HBx had been shown to support HBV replication, deficiency of JMJD5 abolished contribution of HBx in HBV replication, suggesting that HBx-mediated HBV replication is largely dependent on JMJD5. We showed that

  13. The low-pH stability discovered in neuraminidase of 1918 pandemic influenza A virus enhances virus replication.

    PubMed

    Takahashi, Tadanobu; Kurebayashi, Yuuki; Ikeya, Kumiko; Mizuno, Takashi; Fukushima, Keijo; Kawamoto, Hiroko; Kawaoka, Yoshihiro; Suzuki, Yasuo; Suzuki, Takashi

    2010-12-09

    The "Spanish" pandemic influenza A virus, which killed more than 20 million worldwide in 1918-19, is one of the serious pathogens in recorded history. Characterization of the 1918 pandemic virus reconstructed by reverse genetics showed that PB1, hemagglutinin (HA), and neuraminidase (NA) genes contributed to the viral replication and virulence of the 1918 pandemic influenza virus. However, the function of the NA gene has remained unknown. Here we show that the avian-like low-pH stability of sialidase activity discovered in the 1918 pandemic virus NA contributes to the viral replication efficiency. We found that deletion of Thr at position 435 or deletion of Gly at position 455 in the 1918 pandemic virus NA was related to the low-pH stability of the sialidase activity in the 1918 pandemic virus NA by comparison with the sequences of other human N1 NAs and sialidase activity of chimeric constructs. Both amino acids were located in or near the amino acid resides that were important for stabilization of the native tetramer structure in a low-pH condition like the N2 NAs of pandemic viruses that emerged in 1957 and 1968. Two reverse-genetic viruses were generated from a genetic background of A/WSN/33 (H1N1) that included low-pH-unstable N1 NA from A/USSR/92/77 (H1N1) and its counterpart N1 NA in which sialidase activity was converted to a low-pH-stable property by a deletion and substitutions of two amino acid residues at position 435 and 455 related to the low-pH stability of the sialidase activity in 1918 NA. The mutant virus that included "Spanish Flu"-like low-pH-stable NA showed remarkable replication in comparison with the mutant virus that included low-pH-unstable N1 NA. Our results suggest that the avian-like low-pH stability of sialidase activity in the 1918 pandemic virus NA contributes to the viral replication efficiency.

  14. Porcine Epidemic Diarrhea Virus Induces Autophagy to Benefit Its Replication

    PubMed Central

    Guo, Xiaozhen; Zhang, Mengjia; Zhang, Xiaoqian; Tan, Xin; Guo, Hengke; Zeng, Wei; Yan, Guokai; Memon, Atta Muhammad; Li, Zhonghua; Zhu, Yinxing; Zhang, Bingzhou; Ku, Xugang; Wu, Meizhou; Fan, Shengxian; He, Qigai

    2017-01-01

    The new porcine epidemic diarrhea (PED) has caused devastating economic losses to the swine industry worldwide. Despite extensive research on the relationship between autophagy and virus infection, the concrete role of autophagy in porcine epidemic diarrhea virus (PEDV) infection has not been reported. In this study, autophagy was demonstrated to be triggered by the effective replication of PEDV through transmission electron microscopy, confocal microscopy, and Western blot analysis. Moreover, autophagy was confirmed to benefit PEDV replication by using autophagy regulators and RNA interference. Furthermore, autophagy might be associated with the expression of inflammatory cytokines and have a positive feedback loop with the NF-κB signaling pathway during PEDV infection. This work is the first attempt to explore the complex interplay between autophagy and PEDV infection. Our findings might accelerate our understanding of the pathogenesis of PEDV infection and provide new insights into the development of effective therapeutic strategies. PMID:28335505

  15. Porcine Epidemic Diarrhea Virus Induces Autophagy to Benefit Its Replication.

    PubMed

    Guo, Xiaozhen; Zhang, Mengjia; Zhang, Xiaoqian; Tan, Xin; Guo, Hengke; Zeng, Wei; Yan, Guokai; Memon, Atta Muhammad; Li, Zhonghua; Zhu, Yinxing; Zhang, Bingzhou; Ku, Xugang; Wu, Meizhou; Fan, Shengxian; He, Qigai

    2017-03-19

    The new porcine epidemic diarrhea (PED) has caused devastating economic losses to the swine industry worldwide. Despite extensive research on the relationship between autophagy and virus infection, the concrete role of autophagy in porcine epidemic diarrhea virus (PEDV) infection has not been reported. In this study, autophagy was demonstrated to be triggered by the effective replication of PEDV through transmission electron microscopy, confocal microscopy, and Western blot analysis. Moreover, autophagy was confirmed to benefit PEDV replication by using autophagy regulators and RNA interference. Furthermore, autophagy might be associated with the expression of inflammatory cytokines and have a positive feedback loop with the NF-κB signaling pathway during PEDV infection. This work is the first attempt to explore the complex interplay between autophagy and PEDV infection. Our findings might accelerate our understanding of the pathogenesis of PEDV infection and provide new insights into the development of effective therapeutic strategies.

  16. Membranous Replication Factories Induced by Plus-Strand RNA Viruses

    PubMed Central

    Romero-Brey, Inés; Bartenschlager, Ralf

    2014-01-01

    In this review, we summarize the current knowledge about the membranous replication factories of members of plus-strand (+) RNA viruses. We discuss primarily the architecture of these complex membrane rearrangements, because this topic emerged in the last few years as electron tomography has become more widely available. A general denominator is that two “morphotypes” of membrane alterations can be found that are exemplified by flaviviruses and hepaciviruses: membrane invaginations towards the lumen of the endoplasmatic reticulum (ER) and double membrane vesicles, representing extrusions also originating from the ER, respectively. We hypothesize that either morphotype might reflect common pathways and principles that are used by these viruses to form their membranous replication compartments. PMID:25054883

  17. Dissecting host-virus interaction in lytic replication of a model herpesvirus.

    PubMed

    Dong, Xiaonan; Feng, Pinghui

    2011-10-07

    In response to viral infection, a host develops various defensive responses, such as activating innate immune signaling pathways that lead to antiviral cytokine production. In order to colonize the host, viruses are obligate to evade host antiviral responses and manipulate signaling pathways. Unraveling the host-virus interaction will shed light on the development of novel therapeutic strategies against viral infection. Murine γHV68 is closely related to human oncogenic Kaposi's sarcoma-associated herpesvirus and Epsten-Barr virus. γHV68 infection in laboratory mice provides a tractable small animal model to examine the entire course of host responses and viral infection in vivo, which are not available for human herpesviruses. In this protocol, we present a panel of methods for phenotypic characterization and molecular dissection of host signaling components in γHV68 lytic replication both in vivo and ex vivo. The availability of genetically modified mouse strains permits the interrogation of the roles of host signaling pathways during γHV68 acute infection in vivo. Additionally, mouse embryonic fibroblasts (MEFs) isolated from these deficient mouse strains can be used to further dissect roles of these molecules during γHV68 lytic replication ex vivo. Using virological and molecular biology assays, we can pinpoint the molecular mechanism of host-virus interactions and identify host and viral genes essential for viral lytic replication. Finally, a bacterial artificial chromosome (BAC) system facilitates the introduction of mutations into the viral factor(s) that specifically interrupt the host-virus interaction. Recombinant γHV68 carrying these mutations can be used to recapitulate the phenotypes of γHV68 lytic replication in MEFs deficient in key host signaling components. This protocol offers an excellent strategy to interrogate host-pathogen interaction at multiple levels of intervention in vivo and ex vivo. Recently, we have discovered that γHV68 usurps

  18. Silver nanoparticles impair Peste des petits ruminants virus replication.

    PubMed

    Khandelwal, Nitin; Kaur, Gurpreet; Chaubey, Kundan Kumar; Singh, Pushpendra; Sharma, Shalini; Tiwari, Archana; Singh, Shoor Vir; Kumar, Naveen

    2014-09-22

    In the present study, we evaluated the antiviral efficacy of the silver nanoparticles (SNPs) against Peste des petits ruminants virus (PPRV), a prototype Morbillivirus. The leaf extract of the Argemone maxicana was used as a reducing agent for biological synthesis of the SNPs from silver nitrate. The SNPs were characterized using UV-vis absorption spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The TEM analysis revealed particle size of 5-30 nm and the XRD analysis revealed their characteristic silver structure. The treatment of Vero cells with the SNPs at a noncytotoxic concentration significantly inhibited PPRV replication in vitro. The time-course and virus step-specific assays showed that the SNPs impair PPRV replication at the level of virus entry. The TEM analysis showed that the SNPs interact with the virion surface as well with the virion core. However, this interaction has no direct virucidal effect, instead exerts a blocking effect on viral entry into the target cells. This is the first documented evidence indicating that the SNPs are capable of inhibiting a Morbillivirus replication in vitro. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Monkey Viperin Restricts Porcine Reproductive and Respiratory Syndrome Virus Replication.

    PubMed

    Fang, Jianyu; Wang, Haiyan; Bai, Juan; Zhang, Qiaoya; Li, Yufeng; Liu, Fei; Jiang, Ping

    2016-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen which causes huge economic damage globally in the swine industry. Current vaccination strategies provide only limited protection against PRRSV infection. Viperin is an interferon (IFN) stimulated protein that inhibits some virus infections via IFN-dependent or IFN-independent pathways. However, the role of viperin in PRRSV infection is not well understood. In this study, we cloned the full-length monkey viperin (mViperin) complementary DNA (cDNA) from IFN-α-treated African green monkey Marc-145 cells. It was found that the mViperin is up-regulated following PRRSV infection in Marc-145 cells along with elevated IRF-1 gene levels. IFN-α induced mViperin expression in a dose- and time-dependent manner and strongly inhibits PRRSV replication in Marc-145 cells. Overexpression of mViperin suppresses PRRSV replication by blocking the early steps of PRRSV entry and genome replication and translation but not inhibiting assembly and release. And mViperin co-localized with PRRSV GP5 and N protein, but only interacted with N protein in distinct cytoplasmic loci. Furthermore, it was found that the 13-16 amino acids of mViperin were essential for inhibiting PRRSV replication, by disrupting the distribution of mViperin protein from the granular distribution to a homogeneous distribution in the cytoplasm. These results could be helpful in the future development of novel antiviral therapies against PRRSV infection.

  20. Molecular Mechanisms of DNA Replication Checkpoint Activation

    PubMed Central

    Recolin, Bénédicte; van der Laan, Siem; Tsanov, Nikolay; Maiorano, Domenico

    2014-01-01

    The major challenge of the cell cycle is to deliver an intact, and fully duplicated, genetic material to the daughter cells. To this end, progression of DNA synthesis is monitored by a feedback mechanism known as replication checkpoint that is untimely linked to DNA replication. This signaling pathway ensures coordination of DNA synthesis with cell cycle progression. Failure to activate this checkpoint in response to perturbation of DNA synthesis (replication stress) results in forced cell division leading to chromosome fragmentation, aneuploidy, and genomic instability. In this review, we will describe current knowledge of the molecular determinants of the DNA replication checkpoint in eukaryotic cells and discuss a model of activation of this signaling pathway crucial for maintenance of genomic stability. PMID:24705291

  1. Investigation of the HIV-1 matrix interactome during virus replication.

    PubMed

    Li, Yan; Frederick, Kristin M; Haverland, Nicole A; Ciborowski, Pawel; Belshan, Michael

    2016-02-01

    Like all viruses, human immunodeficiency virus type 1 (HIV-1) requires host cellular factors for productive replication. Identification of these factors may lead to the development of novel cell-based inhibitors. A Strep-tag was inserted into the C-terminus of the matrix (MA) region of the HIV-1 gag gene. The resultant virus was replication competent and used to infect Jurkat T-cells. MA complexes were affinity purified with Strep-Tactin agarose. Protein quantification was performed using sequential window acquisition of all theoretical fragment ion spectra (SWATH) MS, data were log2 -transformed, and Student t-tests with Bonferroni correction used to determine statistical significance. Several candidate proteins were validated by immunoblot and investigated for their role in virus infection by siRNA knockdown assays. A total of 17 proteins were found to be statistically different between the infected versus uninfected and untagged control samples. X-ray repair cross-complementing protein 6 (Ku70), X-ray repair cross-complementing protein 5 (Ku80), and Y-box binding protein 1 (YB-1) were confirmed to interact with MA by immunoblot. Knockdown of two candidates, EZRIN and Y-box binding protein 1, enhanced HIV infection in vitro. The Strep-tag allowed for the capture of viral protein complexes in the context of virus replication. Several previously described factors were identified and at least two candidate proteins were found to play a role in HIV-1 infection. These data further increase our understanding of HIV host -cell interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Inhibition of hepatitis C virus replication in vitro by xanthohumol, a natural product present in hops.

    PubMed

    Lou, Sai; Zheng, Yi-Min; Liu, Shan-Lu; Qiu, Jianming; Han, Qunying; Li, Na; Zhu, Qianqian; Zhang, Pingping; Yang, Cuiling; Liu, Zhengwen

    2014-02-01

    Hepatitis C virus is a major cause of chronic liver disease worldwide. Xanthohumol, a prenylated flavonoid from hops, has various biological activities including an antiviral effect. It was previously characterized as a compound that inhibits bovine viral diarrhea virus, a surrogate model of hepatitis C virus. In the present work, xanthohumol was examined for its ability to inhibit hepatitis C virus replication in a cell culture system carrying replicating hepatitis C virus RNA replicon. 0.2 % DMSO and 500 units/mL interferon-alpha treatments were set as a negative and positive control, respectively. The inhibitory effect by xanthohumol was determined by the luciferase activity of the infected Huh7.5 cell lysates and the hepatitis C virus RNA levels in the culture. Xanthohumol at 3.53 µM significantly decreased the luciferase activity compared to the negative control (p < 0.01). Xanthohumol at 7.05 µM further decreased the luciferase activity compared to xanthohumol at 3.53 µM (p = 0.015). Xanthohumol at 7.05 µM or 14.11 µM achieved an inhibitory effect similar to that of interferon-alpha 2b (p > 0.05). Xanthohumol at 3.53 µM significantly reduced the hepatitis C virus RNA level compared to the negative control (p = 0.001). Although the results of xanthohumol at 7.05 µM had a higher variation, xanthohumol at the 7.05 µM and 14.11 µM decreased the hepatitis C virus RNA level to that achieved by interferon-alpha (p > 0.05). In conclusion, xanthohumol displays anti-hepatitis C virus activity in a cell culture system and may be potentially used as an alternative or complementary treatment against the hepatitis C virus.

  3. Human cytomegalovirus renders cells non-permissive for replication of herpes simplex viruses

    SciTech Connect

    Cockley, K.D.

    1988-01-01

    The herpes simplex virus (HSV) genome during production infection in vitro may be subject to negative regulation which results in modification of the cascade of expression of herpes virus macromolecular synthesis leading to establishment of HSV latency. In the present study, human embryonic lung (HEL) cells infected with human cytomegalovirus (HCMV) restricted the replication of HSV type-1 (HSV-1). A delay in HSV replication of 15 hr as well as a consistent, almost 1000-fold inhibition of HSV replication in HCMV-infected cell cultures harvested 24 to 72 hr after superinfection were observed compared with controls infected with HSV alone. HSV type-2 (HSV-2) replication was similarly inhibited in HCMV-infected HEL cells. Prior ultraviolet-irradiation (UV) of HCMV removed the block to HSV replication, demonstrating the requirement for an active HCMV genome. HCMV deoxyribonucleic acid (DNA) negative temperature-sensitive (ts) mutants inhibited HSV replications as efficiently as wild-type (wt) HCMV at the non-permissive temperature. Evidence for penetration and replication of superinfecting HSV into HCMV-infected cells was provided by blot hybridization of HSV DNA synthesized in HSV-superinfected cell cultures and by cesium chloride density gradient analysis of ({sup 3}H)-labeled HSV-1-superinfected cells.

  4. Inhibition of Mayaro virus replication by prostaglandin A(1) in Vero cells.

    PubMed

    Burlandy, F M; Rebello, M A

    2001-01-01

    Prostaglandins exhibit antiviral activity against a wide variety of RNA and DNA viruses. In the present report, we describe the effect of cyclopentenone prostaglandin A(1) (PGA(1)) on Mayaro virus replication in Vero cells. Virus yield was significantly reduced at nontoxic concentrations which did not suppress DNA, RNA or protein synthesis in uninfected or infected cells. Antiviral action decreased if PGA(1) was added at later times after infection. In Mayaro virus-infected cells, PGA(1) inhibited the synthesis of virus proteins. This effect is accompanied by the induction of heat shock proteins (HSPs). Actinomycin D treatment not only inhibited the induction of HSPs but also partially prevented PGA(1) antiviral activity.

  5. Synthetic 1,4-Pyran Naphthoquinones Are Potent Inhibitors of Dengue Virus Replication

    PubMed Central

    da Costa, Emmerson C. B.; Amorim, Raquel; da Silva, Fernando C.; Rocha, David R.; Papa, Michelle P.; de Arruda, Luciana B.; Mohana-Borges, Ronaldo; Ferreira, Vitor F.; Tanuri, Amilcar

    2013-01-01

    Dengue virus infection is a serious public health problem in endemic areas of the world where 2.5 billion people live. Clinical manifestations of the Dengue infection range from a mild fever to fatal cases of hemorrhagic fever. Although being the most rapidly spreading mosquito-borne viral infection in the world, until now no strategies are available for effective prevention or control of Dengue infection. In this scenario, the development of compounds that specifically inhibit viral replication with minimal effects to the human hosts will have a substantial effect in minimizing the symptoms of the disease and help to prevent viral transmission in the affected population. The aim of this study was to screen compounds with potential activity against dengue virus from a library of synthetic naphthoquinones. Several 1,2- and 1,4-pyran naphthoquinones were synthesized by a three-component reaction of lawsone, aldehyde (formaldehyde or arylaldehydes) and different dienophiles adequately substituted. These compounds were tested for the ability to inhibit the ATPase activity of the viral NS3 enzyme in in vitro assays and the replication of dengue virus in cultured cells. We have identified two 1,4-pyran naphthoquinones, which inhibited dengue virus replication in mammal cells by 99.0% and three others that reduced the dengue virus ATPase activity of NS3 by two-fold in in vitro assays. PMID:24376541

  6. Mutations in the phosphorylation sites of simian virus 40 (SV40) T antigen alter its origin DNA-binding specificity for sites I or II and affect SV40 DNA replication activity.

    PubMed Central

    Schneider, J; Fanning, E

    1988-01-01

    A series of mutants of simian virus 40 was constructed by oligonucleotide-directed mutagenesis to study the role of phosphorylation in the functions of large T antigen. Each of the previously mapped phosphorylated serine and threonine residues in large T antigen was replaced by an alanine or cysteine residue or, in one case, by glutamic acid. Mutant DNAs were assayed for plaque-forming activity, viral DNA replication, expression of T antigen, and morphological transformation of rat cells. Viable mutants were isolated, suggesting that modification of some residues is not essential for the biological functions of T antigen. Two of these mutants replicated more efficiently than did the wild type. Seven mutants were partially or completely deficient in viral DNA replication but retained cell transformation activity comparable with that of the wild-type protein. Biochemical analysis of the mutant T antigens demonstrated novel origin DNA-binding properties of several mutant proteins. The results are consistent with the idea that differential phosphorylation defines several functional subclasses of T-antigen molecules. Images PMID:3357207

  7. Generation of influenza A viruses as live but replication-incompetent virus vaccines.

    PubMed

    Si, Longlong; Xu, Huan; Zhou, Xueying; Zhang, Ziwei; Tian, Zhenyu; Wang, Yan; Wu, Yiming; Zhang, Bo; Niu, Zhenlan; Zhang, Chuanling; Fu, Ge; Xiao, Sulong; Xia, Qing; Zhang, Lihe; Zhou, Demin

    2016-12-02

    The conversion of life-threatening viruses into live but avirulent vaccines represents a revolution in vaccinology. In a proof-of-principle study, we expanded the genetic code of the genome of influenza A virus via a transgenic cell line containing orthogonal translation machinery. This generated premature termination codon (PTC)-harboring viruses that exerted full infectivity but were replication-incompetent in conventional cells. Genome-wide optimization of the sites for incorporation of multiple PTCs resulted in highly reproductive and genetically stable progeny viruses in transgenic cells. In mouse, ferret, and guinea pig models, vaccination with PTC viruses elicited robust humoral, mucosal, and T cell-mediated immunity against antigenically distinct influenza viruses and even neutralized existing infecting strains. The methods presented here may become a general approach for generating live virus vaccines that can be adapted to almost any virus.

  8. Uracil DNA Glycosylase BKRF3 Contributes to Epstein-Barr Virus DNA Replication through Physical Interactions with Proteins in Viral DNA Replication Complex

    PubMed Central

    Su, Mei-Tzu; Liu, I-Hua; Wu, Chia-Wei; Chang, Shu-Ming; Tsai, Ching-Hwa; Yang, Pei-Wen; Chuang, Yu-Chia; Lee, Chung-Pei

    2014-01-01

    ABSTRACT Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmunoprecipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. IMPORTANCE Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme

  9. Receptor tyrosine kinase signaling regulates replication of the peste des petits ruminants virus.

    PubMed

    Chaudhary, K; Chaubey, K K; Singh, S V; Kumar, N

    2015-03-01

    In this study, we found out that blocking the receptor tyrosine kinase (RTK) signaling in Vero cells by tryphostin AG879 impairs the in vitro replication of the peste des petits ruminants virus (PPRV). A reduced virus replication in Trk1-knockdown (siRNA) Vero cells confirmed the essential role of RTK in the virus replication, in particular a specific regulation of viral RNA synthesis. These data represent the first evidence that the RTK signaling regulates replication of a morbillivirus.

  10. Inhibition of hepatitis B virus and human immunodeficiency virus (HIV-1) replication by Warscewiczia coccinea (Vahl) Kl. (Rubiaceae) ethanol extract.

    PubMed

    Quintero, A; Fabbro, R; Maillo, M; Barrios, M; Milano, M B; Fernández, A; Williams, B; Michelangeli, F; Rangel, H R; Pujol, F H

    2011-09-01

    The primary objective of this study was to search for natural products capable of inhibiting hepatitis B virus (HBV) replication. The research design, methods and procedures included testing hydro-alcoholic extracts (n = 66) of 31 species from the Venezuelan Amazonian rain forest on the cell line HepG2 2.2.15, which constitutively produces HBV. The main outcomes and results were as follows: the species Euterpe precatoria, Jacaranda copaia, Jacaranda obtusifolia, Senna silvestris, Warscewiczia coccinea and Vochysia glaberrima exerted some degree of inhibition on HBV replication. The leaves of W. coccinea showed a significant antiviral activity: 80% inhibition with 100 µg mL⁻¹ of extract. This extract also exerted inhibition on covalently closed circular deoxyribonucleic acid (cccDNA) production and on HIV-1 replication in MT4 cells (more than 90% inhibition with 50 µg mL⁻¹ of extract). Initial fractionation using organic solvents of increasing polarity and water showed that the ethanol fraction was responsible for most of the antiviral inhibitory activities of both the viruses. It was concluded that Warscewiczia coccinea extract showed inhibition of HBV and HIV-1 replication. Bioassay-guided purification of this fraction may allow the isolation of an antiviral compound with inhibitory activity against both viruses.

  11. Ferret airway epithelial cell cultures support efficient replication of influenza B virus but not mumps virus.

    PubMed

    Elderfield, Ruth A; Parker, Lauren; Stilwell, Peter; Roberts, Kim L; Schepelmann, Silke; Barclay, Wendy S

    2015-08-01

    Ferrets have become the model animal of choice for influenza pathology and transmission experiments as they are permissive and susceptible to human influenza A viruses. However, inoculation of ferrets with mumps virus (MuV) did not lead to successful infections. We evaluated the use of highly differentiated ferret tracheal epithelium cell cultures, FTE, for predicting the potential of ferrets to support respiratory viral infections. FTE cultures supported productive replication of human influenza A and B viruses but not of MuV, whereas analogous cells generated from human airways supported replication of all three viruses. We propose that in vitro strategies using these cultures might serve as a method of triaging viruses and potentially reducing the use of ferrets in viral studies.

  12. Two PDZ binding motifs within NS5 have roles in Tick-borne encephalitis virus replication.

    PubMed

    Melik, Wessam; Ellencrona, Karin; Wigerius, Michael; Hedström, Christer; Elväng, Annelie; Johansson, Magnus

    2012-10-01

    The flavivirus genus includes important human neurotropic pathogens like Tick-borne encephalitis virus (TBEV) and West-Nile virus (WNV). Flavivirus replication occurs at replication complexes, where the NS5 protein provides both RNA cap methyltransferase and RNA-dependent RNA polymerase activities. TBEVNS5 contains two PDZ binding motifs (PBMs) important for specific targeting of human PDZ proteins including Scribble, an association important for viral down regulation of cellular defense systems and neurite outgrowth. To determine whether the PBMs of TBEVNS5 affects virus replication we constructed a DNA based sub-genomic TBEV replicon expressing firefly luciferase. The PBMs within NS5 were mutated individually and in concert and the replicons were assayed in cell culture. Our results show that the replication rate was impaired in all mutants, which indicates that PDZ dependent host interactions influence TBEV replication. We also find that the C-terminal PBMs present in TBEVNS5 and WNVNS5 are targeting various human PDZ domain proteins. TBEVNS5 has affinity to Zonula occludens-2 (ZO-2), GIAP C-terminus interacting protein (GIPC), calcium/calmodulin-dependent serine protein kinase (CASK), glutamate receptor interacting protein 2, (GRIP2) and Interleukin 16 (IL-16). A different pattern was observed for WNVNS5 as it associate with a broader repertoire of putative host PDZ proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Characterization of Uncultivable Bat Influenza Virus Using a Replicative Synthetic Virus

    PubMed Central

    Bawa, Bhupinder; Wang, Wei; Shabman, Reed S.; Duff, Michael; Lee, Jinhwa; Lang, Yuekun; Cao, Nan; Nagy, Abdou; Lin, Xudong; Stockwell, Timothy B.; Richt, Juergen A.; Wentworth, David E.; Ma, Wenjun

    2014-01-01

    Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses. PMID:25275541

  14. Characterization of uncultivable bat influenza virus using a replicative synthetic virus.

    PubMed

    Zhou, Bin; Ma, Jingjiao; Liu, Qinfang; Bawa, Bhupinder; Wang, Wei; Shabman, Reed S; Duff, Michael; Lee, Jinhwa; Lang, Yuekun; Cao, Nan; Nagy, Abdou; Lin, Xudong; Stockwell, Timothy B; Richt, Juergen A; Wentworth, David E; Ma, Wenjun

    2014-10-01

    Bats harbor many viruses, which are periodically transmitted to humans resulting in outbreaks of disease (e.g., Ebola, SARS-CoV). Recently, influenza virus-like sequences were identified in bats; however, the viruses could not be cultured. This discovery aroused great interest in understanding the evolutionary history and pandemic potential of bat-influenza. Using synthetic genomics, we were unable to rescue the wild type bat virus, but could rescue a modified bat-influenza virus that had the HA and NA coding regions replaced with those of A/PR/8/1934 (H1N1). This modified bat-influenza virus replicated efficiently in vitro and in mice, resulting in severe disease. Additional studies using a bat-influenza virus that had the HA and NA of A/swine/Texas/4199-2/1998 (H3N2) showed that the PR8 HA and NA contributed to the pathogenicity in mice. Unlike other influenza viruses, engineering truncations hypothesized to reduce interferon antagonism into the NS1 protein didn't attenuate bat-influenza. In contrast, substitution of a putative virulence mutation from the bat-influenza PB2 significantly attenuated the virus in mice and introduction of a putative virulence mutation increased its pathogenicity. Mini-genome replication studies and virus reassortment experiments demonstrated that bat-influenza has very limited genetic and protein compatibility with Type A or Type B influenza viruses, yet it readily reassorts with another divergent bat-influenza virus, suggesting that the bat-influenza lineage may represent a new Genus/Species within the Orthomyxoviridae family. Collectively, our data indicate that the bat-influenza viruses recently identified are authentic viruses that pose little, if any, pandemic threat to humans; however, they provide new insights into the evolution and basic biology of influenza viruses.

  15. Gamma interferon-induced, nitric oxide-mediated inhibition of vaccinia virus replication.

    PubMed Central

    Harris, N; Buller, R M; Karupiah, G

    1995-01-01

    Gamma interferon (IFN-gamma)-induced nitric oxide synthase (iNOS) and nitric oxide (NO) production in the murine macrophage-like RAW 264.7 cells were previously shown to inhibit the replication of the poxviruses vaccinia virus (VV) and ectromelia virus and herpes simplex virus type 1. In the current study, we performed biochemical analyses to determine the stage in the viral life cycle blocked by IFN-gamma-induced NO. Antibodies specific for temporally expressed viral proteins, a VV-specific DNA probe, and transmission electron microscopy were used to show that the cytokine-induced NO inhibited late protein synthesis, DNA replication, and virus particle formation but not expression of the early proteins analyzed. Essentially similar results were obtained with hydroxyurea and cytosine arabinoside, inhibitors of DNA replication. Enzymatically active iNOS was detected in the lysates of IFN-gamma-treated but not in untreated RAW 264.7 cells. The IFN-gamma-treated RAW 264.7 cells which express iNOS not only were resistant to productive infection but also efficiently blocked the replication of VV in infected bystander cells of epithelial origin. This inhibition was arginine dependent, correlated with nitric production in cultures, and was reversible by the NOS inhibitor N omega-monomethyl-L-arginine. PMID:7529336

  16. Characterization of infection and replication of Mason-Pfizer monkey virus in human cell cultures.

    PubMed

    Fine, D L; Clarke, G C; Arthur, L O

    1979-08-01

    Human cells derived from both normal and neoplastic tissues can be infected by Mason-Pfizer monkey virus (MPMV) without accompanying cytopathology. Infection of cell cultures such as human rhabdomyosarcoma (A204) results in a persistenly infected cell line which can be subcultured over 30 sequential culture passages without significant change in phenotype properties according to reverse, transcriptase (RT), MPMV p27 antigen content, virus particle count and infectivity titre. Productive virus infections were established at relatively low virus particle (VP) input multiplicities (p.i.m.; about 0.06 VP/cell) In A204 cell cultures. At higher p.i.m. (about 600 to 6000 VP/cell) newly synthesized virus was detected within 4 days post infection. Although virus production was cumulative following primary infection, after subculture of infected cultures MPVM production was greater during active cell division. Using synchronization techniques, MPMV replication in persistently infected cultures was found to be cell cycle-dependent. The major internal antigen, p27, was synthesized in G2 and newly synthesized virus particles were released predominantly during mitosis and early G1. Colcemid arrest of cells during mitosis inhibited subsequent MPMV release. Consequently, production of extracellular virus depends upon the progression of cells through the mitotic stage. These data, which provided a basic understanding of the virus-host relationship that occurs in primate cells productively infected with MPMV, were used as a guideline for isolating MPMV-like viruses from experimentally and naturally infected Rhesus monkey.

  17. Measles virus induces persistent infection by autoregulation of viral replication

    PubMed Central

    Doi, Tomomitsu; Kwon, Hyun-Jeong; Honda, Tomoyuki; Sato, Hiroki; Yoneda, Misako; Kai, Chieko

    2016-01-01

    Natural infection with measles virus (MV) establishes lifelong immunity. Persistent infection with MV is likely involved in this phenomenon, as non-replicating protein antigens never induce such long-term immunity. Although MV establishes stable persistent infection in vitro and possibly in vivo, the mechanism by which this occurs is largely unknown. Here, we demonstrate that MV changes the infection mode from lytic to non-lytic and evades the innate immune response to establish persistent infection without viral genome mutation. We found that, in the persistent phase, the viral RNA level declined with the termination of interferon production and cell death. Our analysis of viral protein dynamics shows that during the establishment of persistent infection, the nucleoprotein level was sustained while the phosphoprotein and large protein levels declined. The ectopic expression of nucleoprotein suppressed viral replication, indicating that viral replication is self-regulated by nucleoprotein accumulation during persistent infection. The persistently infected cells were able to produce interferon in response to poly I:C stimulation, suggesting that MV does not interfere with host interferon responses in persistent infection. Our results may provide mechanistic insight into the persistent infection of this cytopathic RNA virus that induces lifelong immunity. PMID:27883010

  18. Correlation between Virus Replication and Antibody Responses in Macaques following Infection with Pandemic Influenza A Virus

    PubMed Central

    Koopman, Gerrit; Dekking, Liesbeth; Mortier, Daniëlla; Nieuwenhuis, Ivonne G.; van Heteren, Melanie; Kuipers, Harmjan; Remarque, Edmond J.; Radošević, Katarina; Bogers, Willy M. J. M.

    2015-01-01

    ABSTRACT Influenza virus infection of nonhuman primates is a well-established animal model for studying pathogenesis and for evaluating prophylactic and therapeutic intervention strategies. However, usually a standard dose is used for the infection, and there is no information on the relation between challenge dose and virus replication or the induction of immune responses. Such information is also very scarce for humans and largely confined to evaluation of attenuated virus strains. Here, we have compared the effect of a commonly used dose (4 × 106 50% tissue culture infective doses) versus a 100-fold-higher dose, administered by intrabronchial installation, to two groups of 6 cynomolgus macaques. Animals infected with the high virus dose showed more fever and had higher peak levels of gamma interferon in the blood. However, virus replication in the trachea was not significantly different between the groups, although in 2 out of 6 animals from the high-dose group it was present at higher levels and for a longer duration. The virus-specific antibody response was not significantly different between the groups. However, antibody enzyme-linked immunosorbent assay, virus neutralization, and hemagglutination inhibition antibody titers correlated with cumulative virus production in the trachea. In conclusion, using influenza virus infection in cynomolgus macaques as a model, we demonstrated a relationship between the level of virus production upon infection and induction of functional antibody responses against the virus. IMPORTANCE There is only very limited information on the effect of virus inoculation dose on the level of virus production and the induction of adaptive immune responses in humans or nonhuman primates. We found only a marginal and variable effect of virus dose on virus production in the trachea but a significant effect on body temperature. The induction of functional antibody responses, including virus neutralization titer, hemagglutination inhibition

  19. Dynamics of alternative modes of RNA replication for positive-sense RNA viruses.

    PubMed

    Sardanyés, Josep; Martínez, Fernando; Daròs, José-Antonio; Elena, Santiago F

    2012-04-07

    We propose and study nonlinear mathematical models describing the intracellular time dynamics of viral RNA accumulation for positive-sense single-stranded RNA viruses. Our models consider different replication modes ranging between two extremes represented by the geometric replication (GR) and the linear stamping machine replication (SMR). We first analyse a model that quantitatively reproduced experimental data for the accumulation dynamics of both polarities of turnip mosaic potyvirus RNAs. We identify a non-degenerate transcritical bifurcation governing the extinction of both strands depending on three key parameters: the mode of replication (α), the replication rate (r) and the degradation rate (δ) of viral strands. Our results indicate that the bifurcation associated with α generically takes place when the replication mode is closer to the SMR, thus suggesting that GR may provide viral strands with an increased robustness against degradation. This transcritical bifurcation, which is responsible for the switching from an active to an absorbing regime, suggests a smooth (i.e. second-order), absorbing-state phase transition. Finally, we also analyse a simplified model that only incorporates asymmetry in replication tied to differential replication modes.

  20. The Ebola virus genomic replication promoter is bipartite and follows the rule of six.

    PubMed

    Weik, Michael; Enterlein, Sven; Schlenz, Kathrin; Mühlberger, Elke

    2005-08-01

    In this work we investigated the cis-acting signals involved in replication of Ebola virus (EBOV) genomic RNA. A set of mingenomes with mutant 3' ends were generated and used in a reconstituted replication and transcription system. Our results suggest that the EBOV genomic replication promoter is bipartite, consisting of a first element located within the leader region of the genome and a second, downstream element separated by a spacer region. While proper spacing of the two promoter elements is a prerequisite for replication, the nucleotide sequence of the spacer is not important. Replication activity was only observed when six or a multiple of six nucleotides were deleted or inserted, while all other changes in length abolished replication completely. These data indicate that the EBOV replication promoter obeys the rule of six, although the genome length is not divisible by six. The second promoter element is located in the 3' nontranslated region of the first gene and consists of eight UN5 hexamer repeats, where N is any nucleotide. However, three consecutive hexamers, which could be located anywhere within the promoter element, were sufficient to support replication as long as the hexameric phase was preserved. By using chemical modification assays, we could demonstrate that nucleotides 5 to 44 of the EBOV leader are involved in the formation of a stable secondary structure. Formation of the RNA stem-loop occurred independently of the presence of the trailer, indicating that a panhandle structure is not formed between the 3' and 5' ends.

  1. Replication of the resident Marek's Disease virus genome in synchronized nonproducer MKT-1 cells.

    PubMed

    Lau, R Y; Nonoyama, M

    1980-02-01

    MKT-1, a virus nonproducer lymphoblastoid cell line established from a Marek's disease tumor, was synchronized by double thymidine block to determine the sequence of events in the synthesis of cellular and latent marek's disease virus DNA. Cellular DNA synthesis was measured by incorporation of [3H]thymidine, whereas viral DNA synthesis was determined by DNA-DNA reassociation kinetics. The results of these studies indicate that the resident Marek's disease viral DNA in MKT-1 cells replicates during the early S phase of the cell cycle, before the onset of active cellular DNA synthesis. This observation is similar to that seen in the replication of resident Epstein-Barr virus DNA in synchronized Raji cells.

  2. Secretory expression of porcine interferon-gamma in baculovirus using HBM signal peptide and its inhibition activity on the replication of porcine reproductive and respiratory syndrome virus.

    PubMed

    Wang, Yan-Bin; Wang, Zhen-Ya; Chen, Hong-Ying; Cui, Bao-An; Wang, Ya-Bin; Zhang, Hong-Ying; Wang, Rui

    2009-12-15

    The gene sequence encoding mature porcine interferon-gamma (PoIFN-gamma) fused with a C-terminal 6x histidine tag was cloned into the baculovirus pFastBac Dual vector of the Bac-to-Bac Baculovirus expression system under the control of PH promoter. The authentic signal sequence of porcine interferon-gamma was substituted with the honeybee melittin (HBM) signal sequence, and expressed in insect cells. The recombinant proteins were detected by SDS-PAGE and immunofluorescence assay. The nickel affinity column purified recombinant porcine interferon-gamma with HBM signal peptide (rPoIFN-gammaH) was shown to be a 19kDa protein as confirmed by Western blot analysis. The recombinant PoIFN-gammaH was shown to have cytokine activity, inhibiting the cytopathic effect of vesicular stomatitis virus (VSV) in PK-15 cells at about 1.07x10(6)U/mL. The 2(-7) dilution of the rPoIFN-gammaH in culture supernatant protected the MARC-145 cells from the cytopathic effect caused by 100TCID(50) of porcine reproductive and respiratory syndrome virus.

  3. HSP90 Protects the Human T-Cell Leukemia Virus Type 1 (HTLV-1) Tax Oncoprotein from Proteasomal Degradation To Support NF-κB Activation and HTLV-1 Replication

    PubMed Central

    Gao, Linlin

    2013-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 genome encodes the Tax protein that plays essential regulatory roles in HTLV-1 replication and oncogenic transformation of T lymphocytes. Despite intensive study of Tax, how Tax interfaces with host signaling pathways to regulate virus replication and drive T-cell proliferation and immortalization remains poorly understood. To gain new insight into the mechanisms of Tax function and regulation, we used tandem affinity purification and mass spectrometry to identify novel cellular Tax-interacting proteins. This screen identified heat shock protein 90 (HSP90) as a new binding partner of Tax. The interaction between HSP90 and Tax was validated by coimmunoprecipitation assays, and colocalization between the two proteins was observed by confocal microscopy. Treatment of HTLV-1-transformed cells with the HSP90 inhibitor 17-DMAG elicited proteasomal degradation of Tax in the nuclear matrix with concomitant inhibition of NF-κB and HTLV-1 long terminal repeat (LTR) activation. Knockdown of HSP90 by lentiviral shRNAs similarly provoked a loss of Tax protein in HTLV-1-transformed cells. Finally, treatment of HTLV-1-transformed cell lines with 17-DMAG suppressed HTLV-1 replication and promoted apoptotic cell death. Taken together, our results reveal that Tax is a novel HSP90 client protein and HSP90 inhibitors may exert therapeutic benefits for ATL and HAM/TSP patients. PMID:24109220

  4. Effect of temperature on replication of epizootic hemorrhagic disease viruses in Culicoides sonorensis (Diptera: Ceratopogonidae)

    USDA-ARS?s Scientific Manuscript database

    Replication of many arboviruses, including some orbiviruses, within the vector has been shown to be temperature-dependent. In general, cooler ambient temperatures slow virus replication in arthropod vectors, whereas viruses replicate faster and to higher titers at warmer ambient temperatures. Prev...

  5. Phosphorylation at the Homotypic Interface Regulates Nucleoprotein Oligomerization and Assembly of the Influenza Virus Replication Machinery

    PubMed Central

    Mondal, Arindam; Potts, Gregory K.; Dawson, Anthony R.; Coon, Joshua J.; Mehle, Andrew

    2015-01-01

    Negative-sense RNA viruses assemble large ribonucleoprotein (RNP) complexes that direct replication and transcription of the viral genome. Influenza virus RNPs contain the polymerase, genomic RNA and multiple copies of nucleoprotein (NP). During RNP assembly, monomeric NP oligomerizes along the length of the genomic RNA. Regulated assembly of the RNP is essential for virus replication, but how NP is maintained as a monomer that subsequently oligomerizes to form RNPs is poorly understood. Here we elucidate a mechanism whereby NP phosphorylation regulates oligomerization. We identified new evolutionarily conserved phosphorylation sites on NP and demonstrated that phosphorylation of NP decreased formation of higher-order complexes. Two phosphorylation sites were located on opposite sides of the NP:NP interface. In both influenza A and B virus, mutating or mimicking phosphorylation at these residues blocked homotypic interactions and drove NP towards a monomeric form. Highlighting the central role of this process during infection, these mutations impaired RNP formation, polymerase activity and virus replication. Thus, dynamic phosphorylation of NP regulates RNP assembly and modulates progression through the viral life cycle. PMID:25867750

  6. MYC-induced reprogramming of glutamine catabolism supports optimal virus replication

    PubMed Central

    Thai, Minh; Thaker, Shivani K.; Feng, Jun; Du, Yushen; Hu, Hailiang; Ting Wu, Ting; Graeber, Thomas G.; Braas, Daniel; Christofk, Heather R.

    2015-01-01

    Viruses rewire host cell glucose and glutamine metabolism to meet the bioenergetic and biosynthetic demands of viral propagation. However, the mechanism by which viruses reprogram glutamine metabolism and the metabolic fate of glutamine during adenovirus infection have remained elusive. Here, we show MYC activation is necessary for adenovirus-induced upregulation of host cell glutamine utilization and increased expression of glutamine transporters and glutamine catabolism enzymes. Adenovirus-induced MYC activation promotes increased glutamine uptake, increased use of glutamine in reductive carboxylation and increased use of glutamine in generating hexosamine pathway intermediates and specific amino acids. We identify glutaminase (GLS) as a critical enzyme for optimal adenovirus replication and demonstrate that GLS inhibition decreases replication of adenovirus, herpes simplex virus 1 and influenza A in cultured primary cells. Our findings show that adenovirus-induced reprogramming of glutamine metabolism through MYC activation promotes optimal progeny virion generation, and suggest that GLS inhibitors may be useful therapeutically to reduce replication of diverse viruses. PMID:26561297

  7. Variable Inhibition of Zika Virus Replication by Different Wolbachia Strains in Mosquito Cell Cultures.

    PubMed

    Schultz, Michaela J; Isern, Sharon; Michael, Scott F; Corley, Ronald B; Connor, John H; Frydman, Horacio M

    2017-07-15

    ZIKV replication in mosquitoes. One exciting approach for this is to use a bacterial endosymbiont called Wolbachia that can populate mosquito cells and inhibit ZIKV replication. Here we show that two different strains of Wolbachia, wAlbB and wStri, are effective at repressing ZIKV in mosquito cell lines. Repression of virus growth is through the inhibition of an early stage of infection and requires actively replicating Wolbachia Our findings further the understanding of Wolbachia viral inhibition and provide novel tools that can be used in an effort to limit ZIKV replication in the mosquito vector, thereby interrupting the transmission and spread of the virus. Copyright © 2017 American Society for Microbiology.

  8. Replication protein of tobacco mosaic virus cotranslationally binds the 5′ untranslated region of genomic RNA to enable viral replication

    PubMed Central

    Kawamura-Nagaya, Kazue; Ishibashi, Kazuhiro; Huang, Ying-Ping; Miyashita, Shuhei; Ishikawa, Masayuki

    2014-01-01

    Genomic RNA of positive-strand RNA viruses replicate via complementary (i.e., negative-strand) RNA in membrane-bound replication complexes. Before replication complex formation, virus-encoded replication proteins specifically recognize genomic RNA molecules and recruit them to sites of replication. Moreover, in many of these viruses, selection of replication templates by the replication proteins occurs preferentially in cis. This property is advantageous to the viruses in several aspects of viral replication and evolution, but the underlying molecular mechanisms have not been characterized. Here, we used an in vitro translation system to show that a 126-kDa replication protein of tobacco mosaic virus (TMV), a positive-strand RNA virus, binds a 5′-terminal ∼70-nucleotide region of TMV RNA cotranslationally, but not posttranslationally. TMV mutants that carried nucleotide changes in the 5′-terminal region and showed a defect in the binding were unable to synthesize negative-strand RNA, indicating that this binding is essential for template selection. A C-terminally truncated 126-kDa protein, but not the full-length 126-kDa protein, was able to posttranslationally bind TMV RNA in vitro, suggesting that binding of the 126-kDa protein to the 70-nucleotide region occurs during translation and before synthesis of the C-terminal inhibitory domain. We also show that binding of the 126-kDa protein prevents further translation of the bound TMV RNA. These data provide a mechanistic explanation of how the 126-kDa protein selects replication templates in cis and how fatal collision between translating ribosomes and negative-strand RNA-synthesizing polymerases on the genomic RNA is avoided. PMID:24711385

  9. Suppression of hepatitis C virus replication by cyclosporin a is mediated by blockade of cyclophilins.

    PubMed

    Nakagawa, Mina; Sakamoto, Naoya; Tanabe, Yoko; Koyama, Tomoyuki; Itsui, Yasuhiro; Takeda, Yoshie; Chen, Cheng-Hsin; Kakinuma, Sei; Oooka, Shinya; Maekawa, Shinya; Enomoto, Nobuyuki; Watanabe, Mamoru

    2005-09-01

    Cyclosporin A specifically suppresses hepatitis C virus (HCV) replication in vitro at clinically achievable concentrations. In this study, we investigated the mechanisms of action of cyclosporin A against HCV replication. The in vitro effects of cyclosporin A on HCV replication were analyzed using an HCV replicon system that expresses chimeric luciferase reporter protein. The significant effects of cyclosporin A on expression of an HCV replicon and the absence of such effects of FK506, which shares mechanisms of action with cyclosporin A, suggested the involvement of intracellular ligands of cyclosporin A, the cyclophilins. Transient and stable knockdown of the expression of cytoplasmic cyclophilins A, B, and C by short hairpin RNA-expressing vectors suppressed HCV replication significantly. A cyclosporin analogue, cyclosporin D, which lacks immunosuppressive activity but exhibits cyclophilin binding, induced a similar suppression of HCV replication. Furthermore, cyclosporin A treatment of Huh7 cells induced an unfolded protein response exemplified by expression of cellular BiP/GRP78. Treatment of cells with thapsigargin and mercaptoethanol, which induce the unfolded protein responses, suppressed HCV replication, suggesting that the cyclosporin-induced unfolded protein responses might contribute to the suppression of HCV protein processing and replication. The anti-HCV activity of cyclosporin A is mediated through a specific blockade of cyclophilins, and these molecules may constitute novel targets for anti-HCV therapeutics.

  10. Effect of monensin on Mayaro virus replication in monkey kidney and Aedes albopictus cells.

    PubMed

    De Campos, R M; Ferreira, D F; Da Veiga, V F; Rebello, M A; Rebello, M C S

    2003-01-01

    The effect of a cationic ionophore, monensin, on the replication of Mayaro virus in monkey kidney TC7 and Aedes albopictus cells has been studied. Treatment of these cells with 1 micromol/l monensin during infection did not affect the virus protein synthesis but inhibited severely the virus replication. Electron microscopy of the cells infected with Mayaro virus and treated with monensin revealed that the morphogenesis of Mayaro virus was impaired in TC7 but not in A. albopictus cells.

  11. Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast

    SciTech Connect

    Barajas, Daniel; Xu, Kai; Sharma, Monika; Wu, Cheng-Yu; Nagy, Peter D.

    2014-12-15

    Positive-stranded RNA viruses induce new membranous structures and promote membrane proliferation in infected cells to facilitate viral replication. In this paper, the authors show that a plant-infecting tombusvirus upregulates transcription of phospholipid biosynthesis genes, such as INO1, OPI3 and CHO1, and increases phospholipid levels in yeast model host. This is accomplished by the viral p33 replication protein, which interacts with Opi1p FFAT domain protein and Scs2p VAP protein. Opi1p and Scs2p are phospholipid sensor proteins and they repress the expression of phospholipid genes. Accordingly, deletion of OPI1 transcription repressor in yeast has a stimulatory effect on TBSV RNA accumulation and enhanced tombusvirus replicase activity in an in vitro assay. Altogether, the presented data convincingly demonstrate that de novo lipid biosynthesis is required for optimal TBSV replication. Overall, this work reveals that a (+)RNA virus reprograms the phospholipid biosynthesis pathway in a unique way to facilitate its replication in yeast cells. - Highlights: • Tombusvirus p33 replication protein interacts with FFAT-domain host protein. • Tombusvirus replication leads to upregulation of phospholipids. • Tombusvirus replication depends on de novo lipid synthesis. • Deletion of FFAT-domain host protein enhances TBSV replication. • TBSV rewires host phospholipid synthesis.

  12. An avian leukosis virus subgroup J isolate with a Rous sarcoma virus-like 5'-LTR shows enhanced replication capability.

    PubMed

    Gao, Yanni; Guan, Xiaolu; Liu, Yongzhen; Li, Xiaofei; Yun, Bingling; Qi, Xiaole; Wang, Yongqiang; Gao, Honglei; Cui, Hongyu; Liu, Changjun; Zhang, Yanping; Wang, Xiaomei; Gao, Yulong

    2015-01-01

    Avian leukosis virus subgroup J (ALV-J) was first isolated from meat-producing chickens that had developed myeloid leukosis. However, ALV-J infections associated with hemangiomas have occurred in egg-producing (layer) flocks in China. In this study, we identified an ALV-J layer isolate (HLJ13SH01) as a recombinant of ALV-J and a Rous sarcoma virus Schmidt-Ruppin B strain (RSV-SRB), which contained the RSV-SRB 5'-LTR and the other genes of ALV-J. Replication kinetic testing indicated that the HLJ13SH01 strain replicated faster than other ALV-J layer isolates in vitro. Sequence analysis indicated that the main difference between the two isolates was the 5'-LTR sequences, particularly the U3 sequences. A 19 nt insertion was uniquely found in the U3 region of the HLJ13SH01 strain. The results of a Dual-Glo luciferase assay revealed that the 19 nt insertion in the HLJ13SH01 strain increased the enhancer activity of the U3 region. Moreover, an additional CCAAT/enhancer element was found in the 19 nt insertion and the luciferase assay indicated that this element played a key role in increasing the enhancer activity of the 5'-U3 region. To confirm the potentiation effect of the 19 nt insertion and the CCAAT/enhancer element on virus replication, three infectious clones with 5'-U3 region variations were constructed and rescued. Replication kinetic testing of the rescued viruses demonstrated that the CCAAT/enhancer element in the 19 nt insertion enhanced the replication capacity of the ALV-J recombinant in vitro.

  13. Spring viraemia of carp virus induces autophagy for necessary viral replication.

    PubMed

    Liu, Liyue; Zhu, Bibo; Wu, Shusheng; Lin, Li; Liu, Guangxin; Zhou, Yang; Wang, Weimin; Asim, Muhammad; Yuan, Junfa; Li, Lijuan; Wang, Min; Lu, Yuanan; Wang, Huanling; Cao, Jianbo; Liu, Xueqin

    2015-04-01

    Outbreaks of spring viraemia of carp virus (SVCV) in several carp species and other cultivated fish can cause significant mortality and jeopardize the billion-dollar worldwide fish industry. Spring viraemia of carp virus, also known as Rhabdovirus carpio, is a bullet-shaped RNA virus that enters and amplifies in gill epithelium and later spreads to internal organs. Young fish under stressed conditions (spring cold water, etc.) are more vulnerable to SVCV-induced lethality because of their lack of a mature immune system. Currently, the host response of SVCV remains largely unknown. Here, we observed that autophagy is activated in SVCV-infected epithelioma papulosum cyprini (EPC) cells. We demonstrated that the SVCV glycoprotein, rather than viral replication, activates the autophagy pathway. In addition, SVCV utilized the autophagy pathway to facilitate its own genomic RNA replication and to enhance its titres in the supernatants. Autophagy promoted the survival of SVCV-infected cells by eliminating damaged mitochondrial DNA generated during viral infection. We further showed that SVCV induces autophagy in EPC cells through the ERK/mTOR signalling pathway. Our results reveal a connection between autophagy and SVCV replication and propose autophagy suppression as a novel means to restrict SVCV viral replication. © 2014 John Wiley & Sons Ltd.

  14. [Paradoxes of replication of RNA of a bacterial virus].

    PubMed

    Chetverin, A B

    2011-01-01

    The extraordinary ability of the bacteriophage Qbeta replicase to amplify RNA outside the cell attracted attention of molecular biologists in the late 60's-early 70's. However, at that time, a number of puzzling properties of the enzyme did not received a rational explanation. Only recently, Qbeta-replicase began to uncover its secrets, promising to give a key not only to understanding the mechanism of replication of the genome of the bacterial virus, but also to the solution of more general fundamental and applied problems.

  15. Phosphorylation of NS5A Serine-235 is essential to hepatitis C virus RNA replication and normal replication compartment formation

    SciTech Connect

    Eyre, Nicholas S.; Hampton-Smith, Rachel J.; Aloia, Amanda L.; Eddes, James S.; Simpson, Kaylene J.; Hoffmann, Peter; Beard, Michael R.

    2016-04-15

    Hepatitis C virus (HCV) NS5A protein is essential for HCV RNA replication and virus assembly. Here we report the identification of NS5A phosphorylation sites Ser-222, Ser-235 and Thr-348 during an infectious HCV replication cycle and demonstrate that Ser-235 phosphorylation is essential for HCV RNA replication. Confocal microscopy revealed that both phosphoablatant (S235A) and phosphomimetic (S235D) mutants redistribute NS5A to large juxta-nuclear foci that display altered colocalization with known replication complex components. Using electron microscopy (EM) we found that S235D alters virus-induced membrane rearrangements while EM using ‘APEX2’-tagged viruses demonstrated S235D-mediated enrichment of NS5A in irregular membranous foci. Finally, using a customized siRNA screen of candidate NS5A kinases and subsequent analysis using a phospho-specific antibody, we show that phosphatidylinositol-4 kinase III alpha (PI4KIIIα) is important for Ser-235 phosphorylation. We conclude that Ser-235 phosphorylation of NS5A is essential for HCV RNA replication and normal replication complex formation and is regulated by PI4KIIIα. - Highlights: • NS5A residues Ser-222, Ser-235 and Thr-348 are phosphorylated during HCV infection. • Phosphorylation of Ser-235 is essential to HCV RNA replication. • Mutation of Ser-235 alters replication compartment localization and morphology. • Phosphatidylinositol-4 kinase III alpha is important for Ser-235 phosphorylation.

  16. TRAF6 is a novel NS3-interacting protein that inhibits classical swine fever virus replication.

    PubMed

    Lv, Huifang; Dong, Wang; Cao, Zhi; Li, Xiaomeng; Wang, Jie; Qian, Gui; Lv, Qizhuang; Wang, Chengbao; Guo, Kangkang; Zhang, Yanming

    2017-07-27

    Classical swine fever virus (CSFV) non-structural protein 3 (NS3) is a multifunctional non-structural protein that plays a major role in viral replication. However, how exactly NS3 exerts these functions remains unknown. Here, we identified tumour necrosis factor receptor-associated factor 6 (TRAF6) as a novel NS3-interacting protein via yeast two-hybrid analysis, co-immunoprecipitation, and glutathione S-transferase pull-down assays. Furthermore, we observed that TRAF6 overexpression significantly inhibited CSFV replication, and TRAF6 knockdown promoted CSFV replication in porcine alveolar macrophages. Additionally, TRAF6 was degraded during CSFV infection or NS3 expression exclusively, indicating that CSFV and TRAF6 were mutually antagonistic and that TRAF6 degradation might contribute to persistent CSFV replication. Moreover, nuclear factor-kappa B (NF-κB) activity and interferon (IFN)-β and interleukin (IL)-6 expression were increased in TRAF6-overexpressing cells, whereas TRAF6-knockdown cells exhibited decreased NF-κB activity and IFN-β and IL-6 levels. Notably, TRAF6 overexpression did not reduce CSFV replication following inhibition of NF-κB activation by p65 knockdown. Our findings revealed that TRAF6 inhibits CSFV replication via activation of NF-κB-signalling pathways along with increases in the expression of its targets IFN-β and IL-6. This work addresses a novel aspect concerning the regulation of innate antiviral immune response during CSFV infection.

  17. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication

    PubMed Central

    Sacramento, Carolina Q.; de Melo, Gabrielle R.; de Freitas, Caroline S.; Rocha, Natasha; Hoelz, Lucas Villas Bôas; Miranda, Milene; Fintelman-Rodrigues, Natalia; Marttorelli, Andressa; Ferreira, André C.; Barbosa-Lima, Giselle; Abrantes, Juliana L.; Vieira, Yasmine Rangel; Bastos, Mônica M.; de Mello Volotão, Eduardo; Nunes, Estevão Portela; Tschoeke, Diogo A.; Leomil, Luciana; Loiola, Erick Correia; Trindade, Pablo; Rehen, Stevens K.; Bozza, Fernando A.; Bozza, Patrícia T.; Boechat, Nubia; Thompson, Fabiano L.; de Filippis, Ana M. B.; Brüning, Karin; Souza, Thiago Moreno L.

    2017-01-01

    Zika virus (ZIKV) is a member of the Flaviviridae family, along with other agents of clinical significance such as dengue (DENV) and hepatitis C (HCV) viruses. Since ZIKV causes neurological disorders during fetal development and in adulthood, antiviral drugs are necessary. Sofosbuvir is clinically approved for use against HCV and targets the protein that is most conserved among the members of the Flaviviridae family, the viral RNA polymerase. Indeed, we found that sofosbuvir inhibits ZIKV RNA polymerase, targeting conserved amino acid residues. Sofosbuvir inhibited ZIKV replication in different cellular systems, such as hepatoma (Huh-7) cells, neuroblastoma (SH-Sy5y) cells, neural stem cells (NSC) and brain organoids. In addition to the direct inhibition of the viral RNA polymerase, we observed that sofosbuvir also induced an increase in A-to-G mutations in the viral genome. Together, our data highlight a potential secondary use of sofosbuvir, an anti-HCV drug, against ZIKV. PMID:28098253

  18. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication.

    PubMed

    Sacramento, Carolina Q; de Melo, Gabrielle R; de Freitas, Caroline S; Rocha, Natasha; Hoelz, Lucas Villas Bôas; Miranda, Milene; Fintelman-Rodrigues, Natalia; Marttorelli, Andressa; Ferreira, André C; Barbosa-Lima, Giselle; Abrantes, Juliana L; Vieira, Yasmine Rangel; Bastos, Mônica M; de Mello Volotão, Eduardo; Nunes, Estevão Portela; Tschoeke, Diogo A; Leomil, Luciana; Loiola, Erick Correia; Trindade, Pablo; Rehen, Stevens K; Bozza, Fernando A; Bozza, Patrícia T; Boechat, Nubia; Thompson, Fabiano L; de Filippis, Ana M B; Brüning, Karin; Souza, Thiago Moreno L

    2017-01-18

    Zika virus (ZIKV) is a member of the Flaviviridae family, along with other agents of clinical significance such as dengue (DENV) and hepatitis C (HCV) viruses. Since ZIKV causes neurological disorders during fetal development and in adulthood, antiviral drugs are necessary. Sofosbuvir is clinically approved for use against HCV and targets the protein that is most conserved among the members of the Flaviviridae family, the viral RNA polymerase. Indeed, we found that sofosbuvir inhibits ZIKV RNA polymerase, targeting conserved amino acid residues. Sofosbuvir inhibited ZIKV replication in different cellular systems, such as hepatoma (Huh-7) cells, neuroblastoma (SH-Sy5y) cells, neural stem cells (NSC) and brain organoids. In addition to the direct inhibition of the viral RNA polymerase, we observed that sofosbuvir also induced an increase in A-to-G mutations in the viral genome. Together, our data highlight a potential secondary use of sofosbuvir, an anti-HCV drug, against ZIKV.

  19. Effects of inducing or inhibiting apoptosis on Sindbis virus replication in mosquito cells.

    PubMed

    Wang, Hua; Blair, Carol D; Olson, Ken E; Clem, Rollie J

    2008-11-01

    Sindbis virus (SINV) is a mosquito-borne virus in the genus Alphavirus, family Togaviridae. Like most alphaviruses, SINVs exhibit lytic infection (apoptosis) in many mammalian cell types, but are generally thought to cause persistent infection with only moderate cytopathic effects in mosquito cells. However, there have been several reports of apoptotic-like cell death in mosquitoes infected with alphaviruses or flaviviruses. Given that apoptosis has been shown to be an antiviral response in other systems, we have constructed recombinant SINVs that express either pro-apoptotic or anti-apoptotic genes in order to test the effects of inducing or inhibiting apoptosis on SINV replication in mosquito cells. Recombinant SINVs expressing the pro-apoptotic genes reaper (rpr) from Drosophila or michelob_x (mx) from Aedes aegypti caused extensive apoptosis in cells from the mosquito cell line C6/36, thus changing the normal persistent infection observed with SINV to a lytic infection. Although the infected cells underwent apoptosis, high levels of virus replication were still observed during the initial infection. However, virus production subsequently decreased compared with persistently infected cells, which continued to produce high levels of virus over the next several days. Infection of C6/36 cells with SINV expressing the baculovirus caspase inhibitor P35 inhibited actinomycin D-induced caspase activity and protected infected cells from actinomycin D-induced apoptosis, but had no observable effect on virus replication. This study is the first to test directly whether inducing or inhibiting apoptosis affects arbovirus replication in mosquito cells.

  20. Human Choline Kinase-α Promotes Hepatitis C Virus RNA Replication through Modulation of Membranous Viral Replication Complex Formation

    PubMed Central

    Wong, Mun-Teng

    2016-01-01

    ABSTRACT Hepatitis C virus (HCV) infection reorganizes cellular membranes to create an active viral replication site named the membranous web (MW). The role that human choline kinase-α (hCKα) plays in HCV replication remains elusive. Here, we first showed that hCKα activity, not the CDP-choline pathway, promoted viral RNA replication. Confocal microscopy and subcellular fractionation of HCV-infected cells revealed that a small fraction of hCKα colocalized with the viral replication complex (RC) on the endoplasmic reticulum (ER) and that HCV infection increased hCKα localization to the ER. In the pTM-NS3-NS5B model, NS3-NS5B expression increased the localization of the wild-type, not the inactive D288A mutant, hCKα on the ER, and hCKα activity was required for effective trafficking of hCKα and NS5A to the ER. Coimmunoprecipitation showed that hCKα was recruited onto the viral RC presumably through its binding to NS5A domain 1 (D1). hCKα silencing or treatment with CK37, an hCKα activity inhibitor, abolished HCV-induced MW formation. In addition, hCKα depletion hindered NS5A localization on the ER, interfered with NS5A and NS5B colocalization, and mitigated NS5A-NS5B interactions but had no apparent effect on NS5A-NS4B and NS4B-NS5B interactions. Nevertheless, hCKα activity was not essential for the binding of NS5A to hCKα or NS5B. These findings demonstrate that hCKα forms a complex with NS5A and that hCKα activity enhances the targeting of the complex to the ER, where hCKα protein, not activity, mediates NS5A binding to NS5B, thereby promoting functional membranous viral RC assembly and viral RNA replication. IMPORTANCE HCV infection reorganizes the cellular membrane to create an active viral replication site named the membranous web (MW). Here, we report that human choline kinase-α (hCKα) acts as an essential host factor for HCV RNA replication. A fraction of hCKα colocalizes with the viral replication complex (RC) on the endoplasmic reticulum

  1. Dissecting Virus Entry: Replication-Independent Analysis of Virus Binding, Internalization, and Penetration Using Minimal Complementation of β-Galactosidase

    PubMed Central

    Burkard, Christine; Bloyet, Louis-Marie; Wicht, Oliver; van Kuppeveld, Frank J.; Rottier, Peter J. M.; de Haan, Cornelis A. M.; Bosch, Berend Jan

    2014-01-01

    Studies of viral entry into host cells often rely on the detection of post-entry parameters, such as viral replication or the expression of a reporter gene, rather than on measuring entry per se. The lack of assays to easily detect the different steps of entry severely hampers the analysis of this key process in virus infection. Here we describe novel, highly adaptable viral entry assays making use of minimal complementation of the E. coli β-galactosidase in mammalian cells. Enzyme activity is reconstituted when a small intravirion peptide (α-peptide) is complementing the inactive mutant form ΔM15 of β-galactosidase. The method allows to dissect and to independently detect binding, internalization, and fusion of viruses during host cell entry. Here we use it to confirm and extend current knowledge on the entry process of two enveloped viruses: vesicular stomatitis virus (VSV) and murine hepatitis coronavirus (MHV). PMID:25025332

  2. Enrichment of Phosphatidylethanolamine in Viral Replication Compartments via Co-opting the Endosomal Rab5 Small GTPase by a Positive-Strand RNA Virus

    PubMed Central

    Xu, Kai; Nagy, Peter D.

    2016-01-01

    Positive-strand RNA viruses build extensive membranous replication compartments to support replication and protect the virus from antiviral responses by the host. These viruses require host factors and various lipids to form viral replication complexes (VRCs). The VRCs built by Tomato bushy stunt virus (TBSV) are enriched with phosphatidylethanolamine (PE) through a previously unknown pathway. To unravel the mechanism of PE enrichment within the TBSV replication compartment, in this paper, the authors demonstrate that TBSV co-opts the guanosine triphosphate (GTP)-bound active form of the endosomal Rab5 small GTPase via direct interaction with the viral replication protein. Deletion of Rab5 orthologs in a yeast model host or expression of dominant negative mutants of plant Rab5 greatly decreases TBSV replication and prevents the redistribution of PE to the sites of viral replication. We also show that enrichment of PE in the viral replication compartment is assisted by actin filaments. Interestingly, the closely related Carnation Italian ringspot virus, which replicates on the boundary membrane of mitochondria, uses a similar strategy to the peroxisomal TBSV to hijack the Rab5-positive endosomes into the viral replication compartments. Altogether, usurping the GTP-Rab5–positive endosomes allows TBSV to build a PE-enriched viral replication compartment, which is needed to support peak-level replication. Thus, the Rab family of small GTPases includes critical host factors assisting VRC assembly and genesis of the viral replication compartment. PMID:27760128

  3. Grape Seed Extract Attenuates Hepatitis C Virus Replication and Virus-Induced Inflammation

    PubMed Central

    Chen, Wei-Chun; Tseng, Chin-Kai; Chen, Bing-Hung; Lin, Chun-Kuang; Lee, Jin-Ching

    2016-01-01

    Hepatitis C virus (HCV) infection is a causative factor leading to hepatocellular carcinoma due to chronic inflammation and cirrhosis. The aim of the study was first to explore the effects of grape seed extract (GSE) in HCV replication, and then to study mechanisms. The results indicated that a GSE treatment showed significant anti-HCV activity and suppressed HCV-elevated cyclooxygenase-2 (COX-2) expression. In contrast, exogenous COX-2 expression gradually attenuated antiviral effects of GSE, suggesting that GSE inhibited HCV replication by suppressing an aberrant COX-2 expression caused by HCV, which was correlated with the inactivation of IKK-regulated NF-κB and MAPK/ERK/JNK signaling pathways. In addition, GSE also attenuated HCV-induced inflammatory cytokine gene expression. Notably, a combined administration of GSE with interferon or other FDA-approved antiviral drugs revealed a synergistic anti-HCV effect. Collectively, these findings demonstrate the possibility of developing GSE as a dietary supplement to treat patients with a chronic HCV infection. PMID:28066241

  4. Function and Structural Organization of the Replication Protein of Bamboo mosaic virus

    PubMed Central

    Meng, Menghsiao; Lee, Cheng-Cheng

    2017-01-01

    The genus Potexvirus is one of the eight genera belonging to the family Alphaflexiviridae according to the Virus Taxonomy 2015 released by International Committee on Taxonomy of Viruses (www.ictvonline.org/index.asp). Currently, the genus contains 35 known species including many agricultural important viruses, e.g., Potato virus X (PVX). Members of this genus are characterized by flexuous, filamentous virions of 13 nm in diameter and 470–580 nm in length. A potexvirus has a monopartite positive-strand RNA genome, encoding five open-reading frames (ORFs), with a cap structure at the 5′ end and a poly(A) tail at the 3′ end. Besides PVX, Bamboo mosaic virus (BaMV) is another potexvirus that has received intensive attention due to the wealth of knowledge on the molecular biology of the virus. In this review, we discuss the enzymatic activities associated with each of the functional domains of the BaMV replication protein, a 155-kDa polypeptide encoded by ORF1. The unique cap formation mechanism, which may be conserved across the alphavirus superfamily, is particularly addressed. The recently identified interactions between the replication protein and the plant host factors are also described. PMID:28400766

  5. Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing.

    PubMed

    Senkevich, Tatiana G; Bruno, Daniel; Martens, Craig; Porcella, Stephen F; Wolf, Yuri I; Moss, Bernard

    2015-09-01

    Poxviruses reproduce in the host cytoplasm and encode most or all of the enzymes and factors needed for expression and synthesis of their double-stranded DNA genomes. Nevertheless, the mode of poxvirus DNA replication and the nature and location of the replication origins remain unknown. A current but unsubstantiated model posits only leading strand synthesis starting at a nick near one covalently closed end of the genome and continuing around the other end to generate a concatemer that is subsequently resolved into unit genomes. The existence of specific origins has been questioned because any plasmid can replicate in cells infected by vaccinia virus (VACV), the prototype poxvirus. We applied directional deep sequencing of short single-stranded DNA fragments enriched for RNA-primed nascent strands isolated from the cytoplasm of VACV-infected cells to pinpoint replication origins. The origins were identified as the switching points of the fragment directions, which correspond to the transition from continuous to discontinuous DNA synthesis. Origins containing a prominent initiation point mapped to a sequence within the hairpin loop at one end of the VACV genome and to the same sequence within the concatemeric junction of replication intermediates. These findings support a model for poxvirus genome replication that involves leading and lagging strand synthesis and is consistent with the requirements for primase and ligase activities as well as earlier electron microscopic and biochemical studies implicating a replication origin at the end of the VACV genome.

  6. Hili inhibits HIV replication in activated T cells.

    PubMed

    Peterlin, B Matija; Liu, Pingyang; Wang, Xiaoyun; Cary, Daniele; Shao, Wei; Leoz, Marie; Hong, Tian; Pan, Tao; Fujinaga, Koh

    2017-03-22

    Piwil proteins restrict the replication of mobile genetic elements in the germline. They are also expressed in many transformed cell lines. In this report, we discovered that the human piwil 2 (hili) can also inhibit HIV replication, especially in activated CD4+ T cells that are the preferred target cells for this virus in the infected host. Although resting cells did not express hili, it was rapidly induced following T cell activation. In these cells and transformed cell lines, depletion of hili increased levels of viral proteins and new viral particles. Further studies revealed that hili binds to tRNA. Some of them represent rare tRNA species, whose codons are over-represented in the viral genome. Targeting tRNA(Arg)(UCU) with an antisense oligonucleotide replicated effects of hili and also inhibited HIV replication. Finally, hili also inhibited the retrotransposition of the endogenous intracysternal A particle (IAP) by a similar mechanism. Thus, hili joins a list of host proteins that inhibit the replication of HIV and other mobile genetic elements.IMPORTANCE Piwil proteins inhibit the movement of mobile genetic elements in the germline. In their absence, sperm does not form and male mice are sterile. This inhibition is thought to occur via small piRNAs. However, in some species and in human somatic cells, piwil proteins bind primarily to tRNA. In this report, we demonstrate that human piwil proteins, especially hili, not only bind to select tRNA species that include rare tRNAs, but also inhibit HIV replication. Importantly, T cell activation induces the expression of hili in CD4+ T cells. Since hili also inhibited the movement of an endogenous retrovirus (IAP), our finding shed new light on this intracellular resistance to exogenous and endogenous retroviruses as well as other mobile genetic elements.

  7. Replication of human immunodeficiency virus type 1 in primary dendritic cell cultures.

    PubMed Central

    Langhoff, E; Terwilliger, E F; Bos, H J; Kalland, K H; Poznansky, M C; Bacon, O M; Haseltine, W A

    1991-01-01

    The ability of the human immunodeficiency virus type 1 (HIV-1) to replicate in primary blood dendritic cells was investigated. Dendritic cells compose less than 1% of the circulating leukocytes and are nondividing cells. Highly purified preparations of dendritic cells were obtained using recent advances in cell fractionation. The results of these experiments show that dendritic cells, in contrast to monocytes and T cells, support the active replication of all strains of HIV-1 tested, including T-cell tropic and monocyte/macrophage tropic isolates. The dendritic cell cultures supported much more virus production than did cultures of primary unseparated T cells, CD4+ T cells, and adherent as well as nonadherent monocytes. Replication of HIV-1 in dendritic cells produces no noticeable cytopathic effect nor does it decrease total cell number. The ability of the nonreplicating dendritic cells to support high levels of replication of HIV-1 suggests that this antigen-presenting cell population, which is also capable of supporting clonal T-cell growth, may play a central role in HIV pathogenesis, serving as a source of continued infection of CD4+ T cells and as a reservoir of virus infection. Images PMID:1910172

  8. TRAF2 Facilitates Vaccinia Virus Replication by Promoting Rapid Virus Entry

    PubMed Central

    Haga, Ismar R.; Pechenick Jowers, Tali; Griffiths, Samantha J.; Haas, Juergen

    2014-01-01

    ABSTRACT Tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2) is a pivotal intracellular mediator of signaling pathways downstream of TNFR1 and -2 with known pro- and antiviral effects. We investigated its role in the replication of the prototype poxvirus vaccinia virus (VACV). Loss of TRAF2 expression, either through small interfering RNA treatment of HeLa cells or through genetic knockout in murine embryonic fibroblasts (MEFs), led to significant reductions in VACV growth following low-multiplicity infection. In single-cycle infections, there was delayed production of both early and late VACV proteins as well as accelerated virus-induced alterations to cell morphology, indicating that TRAF2 influences early stages of virus replication. Consistent with an early role, uncoating assays showed normal virus attachment but delayed virus entry in the absence of TRAF2. Although alterations to c-Jun N-terminal kinase (JNK) signaling were apparent in VACV-infected TRAF2−/− MEFs, treatment of wild-type cells with a JNK inhibitor did not affect virus entry. Instead, treatment with an inhibitor of endosomal acidification greatly reduced virus entry into TRAF2−/− MEFs, suggesting that VACV is reliant on the endosomal route of entry in the absence of TRAF2. Thus, TRAF2 is a proviral factor for VACV that plays a role in promoting efficient viral entry, most likely via the plasma membrane. IMPORTANCE Tumor necrosis factor receptor-associated factors (TRAFs) are key facilitators of intracellular signaling with roles in innate and adaptive immunity and stress responses. We have discovered that TRAF2 is a proviral factor in vaccinia virus replication in both HeLa cells and mouse embryonic fibroblasts and that its influence is exercised through promotion of efficient virus entry. PMID:24429366

  9. A Dynamic View of Hepatitis C Virus Replication Complexes▿ ‡

    PubMed Central

    Wölk, Benno; Büchele, Benjamin; Moradpour, Darius; Rice, Charles M.

    2008-01-01

    Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex (RC). Specific membrane alterations, designated membranous webs, represent predominant sites of HCV RNA replication. The principles governing HCV RC and membranous web formation are poorly understood. Here, we used replicons harboring a green fluorescent protein (GFP) insertion in nonstructural protein 5A (NS5A) to study HCV RCs in live cells. Two distinct patterns of NS5A-GFP were observed. (i) Large structures, representing membranous webs, showed restricted motility, were stable over many hours, were partitioned among daughter cells during cell division, and displayed a static internal architecture without detectable exchange of NS5A-GFP. (ii) In contrast, small structures, presumably representing small RCs, showed fast, saltatory movements over long distances. Both populations were associated with endoplasmic reticulum (ER) tubules, but only small RCs showed ER-independent, microtubule (MT)-dependent transport. We suggest that this MT-dependent transport sustains two distinct RC populations, which are both required during the HCV life cycle. PMID:18715913

  10. 5'-triphosphate-siRNA activates RIG-I-dependent type I interferon production and enhances inhibition of hepatitis B virus replication in HepG2.2.15 cells.

    PubMed

    Chen, Xiaojuan; Qian, Yuanyu; Yan, Fei; Tu, Jian; Yang, Xingxing; Xing, Yaling; Chen, Zhongbin

    2013-12-05

    Hepatitis B virus (HBV) infection often results in acute or chronic viral hepatitis and other liver diseases including cirrhosis and hepatocellular carcinoma. Current therapies for HBV usually have severe side effects and can cause development of drug-resistant mutants. An alternative and safe immunotherapeutic approach for HBV infection is urgently needed for effective anti-HBV therapy. In this study, we propose a new strategy for anti-HBV therapy that activates type-I interferon (IFN) antiviral innate immunity through stimulating pattern-recognition receptors with RNA interference (RNAi) using a 5'-end triphosphate-modified small interfering RNA (3p-siRNA). We designed and generated a 3p-siRNA targeting overlapping region of S gene and P gene of the HBV genome at the 5'-end of pregenomic HBV RNA. Our results demonstrated that 3p-siRNA induced a RIG-I-dependent antiviral type-I IFN response when transfected into HepG2.2.15 cells that support HBV replication. The 3p-siRNA significantly inhibited HBsAg and HBeAg secretion from HepG2.2.15 cells in a RIG-I-dependent manner, and the antiviral effect of 3p-siRNA was superior to that of siRNA. Furthermore, 3p-siRNA had more pronounced inhibition effects on the replication of HBV DNA and the transcription of mRNA than that of siRNA. Finally, 3p-siRNA displayed antiviral activity with long-term suppression of HBV replication. In conclusion, our findings suggest that 3p-siRNA could act as a powerful bifunctional antiviral molecule with potential for developing a promising therapeutic against chronic HBV infection.

  11. Interferon lambda inhibits dengue virus replication in epithelial cells.

    PubMed

    Palma-Ocampo, Helen K; Flores-Alonso, Juan C; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio; Flores-Mendoza, Lilian; Herrera-Camacho, Irma; Rosas-Murrieta, Nora H; Santos-López, Gerardo

    2015-09-28

    In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection. Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR. We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression. Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.

  12. Impairment of Human Immunodeficiency Virus Type-1 Integrase SUMOylation Correlates with an Early Replication Defect*

    PubMed Central

    Zamborlini, Alessia; Coiffic, Audrey; Beauclair, Guillaume; Delelis, Olivier; Paris, Joris; Koh, Yashuiro; Magne, Fabian; Giron, Marie-Lou; Tobaly-Tapiero, Joelle; Deprez, Eric; Emiliani, Stephane; Engelman, Alan; de Thé, Hugues; Saïb, Ali

    2011-01-01

    HIV-1 integrase (IN) orchestrates the integration of the reverse transcribed viral cDNA into the host cell genome and participates also in other steps of HIV-1 replication. Cellular and viral factors assist IN in performing its multiple functions, and post-translational modifications contribute to modulate its activities. Here, we show that HIV-1 IN is modified by SUMO proteins and that phylogenetically conserved SUMOylation consensus motifs represent major SUMO acceptor sites. Viruses harboring SUMOylation site IN mutants displayed a replication defect that was mapped during the early stages of infection, before integration but after reverse transcription. Because SUMOylation-defective IN mutants retained WT catalytic activity, we hypothesize that SUMOylation might regulate the affinity of IN for co-factors, contributing to efficient HIV-1 replication. PMID:21454548

  13. Bagaza virus inhibits Japanese encephalitis & West Nile virus replication in Culex tritaeniorhynchus & Cx. quinquefasciatus mosquitoes.

    PubMed

    Sudeep, A B; Bondre, V P; George, R; Ghodke, Y S; Aher, R V; Gokhale, M D

    2015-12-01

    Studies have shown that certain flaviviruses influence susceptibility of mosquitoes by inhibiting/enhancing replication of important flaviviruses. Hence, a study was designed to determine whether Bagaza virus (BAGV), a flavivirus isolated from Culex tritaeniorhynchus mosquitoes in India, alters susceptibility of Cx. tritaeniorhynchus and Cx. quinquefasciatus mosquitoes to Japanese encephalitis (JEV) and West Nile viruses (WNV). JEV and WNV infection in Cx. tritaeniorhynchus and Cx. quinquefasciatus mosquitoes in the presence of BAGV was carried out by intrathoracic (IT) inoculation and oral feeding methods. Mosquitoes were infected with BAGV and WNV/JEV either simultaneously or in a phased manner, in which mosquitoes were infected with BAGV by IT inoculation followed by super-infection with JEV/WNV after eight days post-infection (PI). JEV and WNV yield on 7 [th] and 14 [th] day PI after super-infection was determined by 50 per cent tissue culture infective dose (TCID 50 ) method. In Cx. tritaeniorhynchus mosquitoes, prior infection with BAGV significantly reduced JEV and WNV replication while in Cx. quinquefasciatus, BAGV influence was only seen with WNV. Reduction in virus titre was observed in IT inoculated and oral fed mosquitoes irrespective of the infection mode. JEV replication was also found reduced in Cx. tritaeniorhynchus mosquitoes persistently infected with BAGV at passage four. BAGV infection in Cx. tritaeniorhynchus and Cx. quinquefasciatus mosquitoes altered their susceptibility to JEV and WNV producing low virus yield. However, the role of BAGV in inhibiting JEV/WNV replication in field mosquitoes needs further investigations.

  14. Peroxisome proliferator-activated receptor-{gamma} agonists inhibit the replication of respiratory syncytial virus (RSV) in human lung epithelial cells

    SciTech Connect

    Arnold, Ralf . E-mail: ralf.arnold@medizin.uni-magdeburg.de; Koenig, Wolfgang

    2006-07-05

    We have previously shown that peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) agonists inhibited the inflammatory response of RSV-infected human lung epithelial cells. In this study, we supply evidence that specific PPAR{gamma} agonists (15d-PGJ{sub 2}, ciglitazone, troglitazone, Fmoc-Leu) efficiently blocked the RSV-induced cytotoxicity and development of syncytia in tissue culture (A549, HEp-2). All PPAR{gamma} agonists under study markedly inhibited the cell surface expression of the viral G and F protein on RSV-infected A549 cells. This was paralleled by a reduced cellular amount of N protein-encoding mRNA determined by real-time RT-PCR. Concomitantly, a reduced release of infectious progeny virus into the cell supernatants of human lung epithelial cells (A549, normal human bronchial epithelial cells (NHBE)) was observed. Similar results were obtained regardless whether PPAR{gamma} agonists were added prior to RSV infection or thereafter, suggesting that the agonists inhibited viral gene expression and not the primary adhesion or fusion process.

  15. Interferon-Inducible Cholesterol-25-Hydroxylase Inhibits Hepatitis C Virus Replication via Distinct Mechanisms

    PubMed Central

    Chen, Yongzhi; Wang, Shanshan; Yi, Zhaohong; Tian, Huabin; Aliyari, Roghiyh; Li, Yanhua; Chen, Gang; Liu, Ping; Zhong, Jin; Chen, Xinwen; Du, Peishuang; Su, Lishan; Qin, F. Xiao-Feng; Deng, Hongyu; Cheng, Genhong

    2014-01-01

    Cholesterol 25-hydroxylase (CH25H) as an interferon-stimulated gene (ISG) has recently been shown to exert broad antiviral activity through the production of 25-hydroxycholesterol (25HC), which is believed to inhibit the virus-cell membrane fusion during viral entry. However, little is known about the function of CH25H on HCV infection and replication and whether antiviral function of CH25H is exclusively mediated by 25HC. In the present study, we have found that although 25HC produced by CH25H can inhibit HCV replication, CH25H mutants lacking the hydroxylase activity still carry the antiviral activity against HCV but not other viruses such as MHV-68. Further studies have revealed that CH25H can interact with the NS5A protein of HCV and inhibit its dimer formation, which is essential for HCV replication. Thus, our work has uncovered a novel mechanism by which CH25H restricts HCV replication, suggesting that CH25H inhibits viral infection through both 25HC-dependent and independent events. PMID:25467815

  16. Replication but not transcription of simian virus 40 DNA is dependent on nuclear domain 10.

    PubMed

    Tang, Q; Bell, P; Tegtmeyer, P; Maul, G G

    2000-10-01

    DNA viruses from several families including herpes simplex virus type 1, adenovirus type 5, and simian virus 40 (SV40), start their transcription and replication adjacent to a specific nuclear domain, ND10. We asked whether a specific viral DNA sequence determines the location of these synthetic activities at such restricted nuclear sites. Partial and overlapping SV40 sequences were introduced into a beta-galactosidase expression vector, and the beta-galactosidase transcripts were localized by in situ hybridization. Transcripts derived from control plasmids were found throughout the nucleus and at highly concentrated sites but not at ND10. SV40 genomic segments supported ND10-associated transcription only when the origin and the coding sequence for the large T antigen were present. When the large T-antigen coding sequence was eliminated but the T antigen was constitutively expressed in COS-7 cells, the viral origin was sufficient to localize transcription and replication to ND10. Deletion analysis showed that only the large T-antigen binding site II (the core origin) was required but the T antigen was needed for detectable transcription at ND10. Large T antigen expressed from plasmids without the viral core origin did not bind or localize to ND10. Blocking of DNA replication prevented the accumulation of transcripts at ND10, indicating that only sites with replicating templates accumulated transcripts. Transcription at ND10 did not enhance total protein synthesis of plasmid transcripts. These findings suggest that viral transcription at ND10 may only be a consequence of viral genomes directed to ND10 for replication. Although plasmid transcription can take place anywhere in the nucleus, T-antigen-directed replication is apparently restricted to ND10.

  17. Human MicroRNA miR-532-5p Exhibits Antiviral Activity against West Nile Virus via Suppression of Host Genes SESTD1 and TAB3 Required for Virus Replication

    PubMed Central

    Slonchak, Andrii; Shannon, Rory P.; Pali, Gabor

    2015-01-01

    ABSTRACT West Nile virus (WNV) is a mosquito-transmitted flavivirus that naturally circulates between mosquitos and birds but can also infect humans, causing severe neurological disease. The early host response to WNV infection in vertebrates primarily relies on the type I interferon pathway; however, recent studies suggest that microRNAs (miRNAs) may also play a notable role. In this study, we assessed the role of host miRNAs in response to WNV infection in human cells. We employed small RNA sequencing (RNA-seq) analysis to determine changes in the expression of host miRNAs in HEK293 cells infected with an Australian strain of WNV, Kunjin (WNVKUN), and identified a number of host miRNAs differentially expressed in response to infection. Three of these miRNAs were confirmed to be significantly upregulated in infected cells by quantitative reverse transcription (qRT)-PCR and Northern blot analyses, and one of them, miR-532-5p, exhibited a significant antiviral effect against WNVKUN infection. We have demonstrated that miR-532-5p targets and downregulates expression of the host genes SESTD1 and TAB3 in human cells. Small interfering RNA (siRNA) depletion studies showed that both SESTD1 and TAB3 were required for efficient WNVKUN replication. We also demonstrated upregulation of mir-532-5p expression and a corresponding decrease in the expression of its targets, SESTD1 and TAB3, in the brains of WNVKUN -infected mice. Our results show that upregulation of miR-532-5p and subsequent suppression of the SESTD1 and TAB3 genes represent a host antiviral response aimed at limiting WNVKUN infection and highlight the important role of miRNAs in controlling RNA virus infections in mammalian hosts. IMPORTANCE West Nile virus (WNV) is a significant viral pathogen that poses a considerable threat to human health across the globe. There is no specific treatment or licensed vaccine available for WNV, and deeper insight into how the virus interacts with the host is required to

  18. The Interaction between Bamboo Mosaic Virus Replication Protein and Coat Protein Is Critical for Virus Movement in Plant Hosts ▿

    PubMed Central

    Lee, Cheng-Cheng; Ho, Yuan-Ning; Hu, Rei-Hsing; Yen, Yu-Ting; Wang, Zheng-Cheng; Lee, Ya-Chien; Hsu, Yau-Heiu; Meng, Menghsiao

    2011-01-01

    Bamboo mosaic virus (BaMV) is a positive-sense RNA virus belonging to the genus Potexvirus. Open reading frame 1 (ORF1) encodes the viral replication protein that consists of a capping enzyme domain, a helicase-like domain (HLD), and an RNA-dependent RNA polymerase domain from the N to C terminus. ORF5 encodes the viral coat protein (CP) required for genome encapsidation and the virus movement in plants. In this study, application of a yeast-two hybrid assay detected an interaction between the viral HLD and CP. However, the interaction did not affect the NTPase activity of the HLD. To identify the critical amino acids of CP interacting with the HLD, a random mutational library of CP was created using error-prone PCR, and the mutations adversely affecting the interaction were screened by a bacterial two-hybrid system. As a result, the mutations A209G and N210S in CP were found to weaken the interaction. To determine the significance of the interaction, the mutations were introduced into a BaMV infectious clone, and the mutational effects on viral replication, movement, and genome encapsidation were investigated. There was no effect on accumulations of BaMV CP and genomic RNAs within protoplasts; however, the virus cell-to-cell movement in plants was restricted. Sequence alignment revealed that A209 of BaMV CP is conserved in many potexviruses. Mutation of the corresponding residue in Foxtail mosaic virus CP also reduced the viral HLD-CP interaction and restricted the virus movement, suggesting that interaction between CP and a widely conserved HLD in the potexviral replication protein is crucial for viral trafficking through plasmodesmata. PMID:21917973

  19. Interactions between the Structural Domains of the RNA Replication Proteins of Plant-Infecting RNA Viruses

    PubMed Central

    O’Reilly, Erin K.; Wang, Zhaohui; French, Roy; Kao, C. Cheng

    1998-01-01

    Brome mosaic virus (BMV), a positive-strand RNA virus, encodes two replication proteins: the 2a protein, which contains polymerase-like sequences, and the 1a protein, with N-terminal putative capping and C-terminal helicase-like sequences. These two proteins are part of a multisubunit complex which is necessary for viral RNA replication. We have previously shown that the yeast two-hybrid assay consistently duplicated results obtained from in vivo RNA replication assays and biochemical assays of protein-protein interaction, thus permitting the identification of additional interacting domains. We now map an interaction found to take place between two 1a proteins. Using previously characterized 1a mutants, a perfect correlation was found between the in vivo phenotypes of these mutants and their abilities to interact with wild-type 1a (wt1a) and each other. Western blot analysis revealed that the stabilities of many of the noninteracting mutant proteins were similar to that of wt1a. Deletion analysis of 1a revealed that the N-terminal 515 residues of the 1a protein are required and sufficient for 1a-1a interaction. This intermolecular interaction between the putative capping domain and itself was detected in another tripartite RNA virus, cucumber mosaic virus (CMV), suggesting that the 1a-1a interaction is a feature necessary for the replication of tripartite RNA viruses. The boundaries for various activities are placed in the context of the predicted secondary structures of several 1a-like proteins of members of the alphavirus-like superfamily. Additionally, we found a novel interaction between the putative capping and helicase-like portions of the BMV and CMV 1a proteins. Our cumulative data suggest a working model for the assembly of the BMV RNA replicase. PMID:9696810

  20. The Acyclic Retinoid Peretinoin Inhibits Hepatitis C Virus Replication and Infectious Virus Release in Vitro

    NASA Astrophysics Data System (ADS)

    Shimakami, Tetsuro; Honda, Masao; Shirasaki, Takayoshi; Takabatake, Riuta; Liu, Fanwei; Murai, Kazuhisa; Shiomoto, Takayuki; Funaki, Masaya; Yamane, Daisuke; Murakami, Seishi; Lemon, Stanley M.; Kaneko, Shuichi

    2014-04-01

    Clinical studies suggest that the oral acyclic retinoid Peretinoin may reduce the recurrence of hepatocellular carcinoma (HCC) following surgical ablation of primary tumours. Since hepatitis C virus (HCV) infection is a major cause of HCC, we assessed whether Peretinoin and other retinoids have any effect on HCV infection. For this purpose, we measured the effects of several retinoids on the replication of genotype 1a, 1b, and 2a HCV in vitro. Peretinoin inhibited RNA replication for all genotypes and showed the strongest antiviral effect among the retinoids tested. Furthermore, it reduced infectious virus release by 80-90% without affecting virus assembly. These effects could be due to reduced signalling from lipid droplets, triglyceride abundance, and the expression of mature sterol regulatory element-binding protein 1c and fatty acid synthase. These negative effects of Peretinoin on HCV infection may be beneficial in addition to its potential for HCC chemoprevention in HCV-infected patients.

  1. Vesicular stomatitis virus infects resident cells of the central nervous system and induces replication-dependent inflammatory responses

    SciTech Connect

    Chauhan, Vinita S.; Furr, Samantha R.; Sterka, David G.; Nelson, Daniel A.; Moerdyk-Schauwecker, Megan; Marriott, Ian; Grdzelishvili, Valery Z.

    2010-05-10

    Vesicular stomatitis virus (VSV) infection of mice via intranasal administration results in a severe encephalitis with rapid activation and proliferation of microglia and astrocytes. We have recently shown that these glial cells express RIG-I and MDA5, cytosolic pattern recognition receptors for viral RNA. However, it is unclear whether VSV can replicate in glial cells or if such replication is required for their inflammatory responses. Here we demonstrate that primary microglia and astrocytes are permissive for VSV infection and limited productive replication. Importantly, we show that viral replication is required for robust inflammatory mediator production by these cells. Finally, we have confirmed that in vivo VSV administration can result in viral infection of glial cells in situ. These results suggest that viral replication within resident glial cells might play an important role in CNS inflammation following infection with VSV and possibly other neurotropic nonsegmented negative-strand RNA viruses.

  2. Identification of Small Molecule Compounds That Selectively Inhibit Varicella-Zoster Virus Replication

    PubMed Central

    Visalli, Robert J.; Fairhurst, Jeanette; Srinivas, Shamala; Hu, William; Feld, Boris; DiGrandi, Martin; Curran, Kevin; Ross, Adma; Bloom, Jonathan D.; van Zeijl, Marja; Jones, Thomas R.; O'Connell, John; Cohen, Jeffrey I.

    2003-01-01

    A series of nonnucleoside, N-α-methylbenzyl-N′-arylthiourea analogs were identified which demonstrated selective activity against varicella-zoster virus (VZV) but were inactive against other human herpesviruses, including herpes simplex virus. Representative compounds had potent activity against VZV early-passage clinical isolates and an acyclovir-resistant isolate. Resistant viruses generated against one inhibitor were also resistant to other compounds in the series, suggesting that this group of related small molecules was acting on the same virus-specific target. Sequencing of the VZV ORF54 gene from two independently derived resistant viruses revealed mutations in ORF54 compared to the parental VZV strain Ellen sequence. Recombinant VZV in which the wild-type ORF54 sequence was replaced with the ORF54 gene from either of the resistant viruses became resistant to the series of inhibitor compounds. Treatment of VZV-infected cells with the inhibitor impaired morphogenesis of capsids. Inhibitor-treated cells lacked DNA-containing dense-core capsids in the nucleus, and only incomplete virions were present on the cell surface. These data suggest that the VZV-specific thiourea inhibitor series block virus replication by interfering with the function of the ORF54 protein and/or other proteins that interact with the ORF54 protein. PMID:12551972

  3. Anti-ulcer agent teprenone inhibits hepatitis C virus replication: potential treatment for hepatitis C.

    PubMed

    Ikeda, Masanori; Kawai, Yoshinari; Mori, Kyoko; Yano, Masahiko; Abe, Ken-ichi; Nishimura, Go; Dansako, Hiromichi; Ariumi, Yasuo; Wakita, Takaji; Yamamoto, Kazuhide; Kato, Nobuyuki

    2011-07-01

    Previously we reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, statins, inhibited hepatitis C virus (HCV) RNA replication. Furthermore, recent reports revealed that the statins are associated with a reduced risk of hepatocellular carcinoma and lower portal pressure in patients with cirrhosis. The statins exhibited anti-HCV activity by inhibiting geranylgeranylation of host proteins essential for HCV RNA replication. Geranylgeranyl pyrophosphate (GGPP) is a substrate for geranylgeranyltransferase. Therefore, we examined the potential of geranyl compounds with chemical structures similar to those of GGPP to inhibit HCV RNA replication. We tested geranyl compounds [geranylgeraniol, geranylgeranoic acid, vitamin K(2) and teprenone (Selbex)] for their effects on HCV RNA replication using genome-length HCV RNA-replicating cells (the OR6 assay system) and a JFH-1 infection cell culture system. Teprenone is the major component of the anti-ulcer agent, Selbex. We also examined the anti-HCV activities of the geranyl compounds in combination with interferon (IFN)-α or statins. Among the geranyl compounds tested, only teprenone exhibited anti-HCV activity at a clinically achievable concentration. However, other anti-ulcer agents tested had no inhibitory effect on HCV RNA replication. The combination of teprenone and IFN-α exhibited a strong inhibitory effect on HCV RNA replication. Although teprenone alone did not inhibit geranylgeranylation, surprisingly, statins' inhibitory action against geranylgeranylation was enhanced by cotreatment with teprenone. The anti-ulcer agent teprenone inhibited HCV RNA replication and enhanced statins' inhibitory action against geranylgeranylation. This newly discovered function of teprenone may improve the treatment of HCV-associated liver diseases as an adjuvant to statins. © 2011 John Wiley & Sons A/S.

  4. Structural Protein VP2 of African Horse Sickness Virus Is Not Essential for Virus Replication In Vitro.

    PubMed

    van Gennip, René G P; van de Water, Sandra G P; Potgieter, Christiaan A; van Rijn, Piet A

    2017-02-15

    The Reoviridae family consists of nonenveloped multilayered viruses with a double-stranded RNA genome consisting of 9 to 12 genome segments. The Orbivirus genus of the Reoviridae family contains African horse sickness virus (AHSV), bluetongue virus, and epizootic hemorrhagic disease virus, which cause notifiable diseases and are spread by biting Culicoides species. Here, we used reverse genetics for AHSV to study the role of outer capsid protein VP2, encoded by genome segment 2 (Seg-2). Expansion of a previously found deletion in Seg-2 indicates that structural protein VP2 of AHSV is not essential for virus replication in vitro In addition, in-frame replacement of RNA sequences in Seg-2 by that of green fluorescence protein (GFP) resulted in AHSV expressing GFP, which further confirmed that VP2 is not essential for virus replication. In contrast to virus replication without VP2 expression in mammalian cells, virus replication in insect cells was strongly reduced, and virus release from insect cells was completely abolished. Further, the other outer capsid protein, VP5, was not copurified with virions for virus mutants without VP2 expression. AHSV without VP5 expression, however, could not be recovered, indicating that outer capsid protein VP5 is essential for virus replication in vitro Our results demonstrate for the first time that a structural viral protein is not essential for orbivirus replication in vitro, which opens new possibilities for research on other members of the Reoviridae family.

  5. MITA/STING and Its Alternative Splicing Isoform MRP Restrict Hepatitis B Virus Replication

    PubMed Central

    Liu, Shuhui; Zhao, Kaitao; Su, Xi; Lu, Lu; Zhao, He; Zhang, Xianwen; Wang, Yun; Wu, Chunchen; Chen, Jizheng; Zhou, Yuan; Hu, Xue; Wang, Yanyi; Lu, Mengji; Chen, Xinwen; Pei, Rongjuan

    2017-01-01

    An efficient clearance of hepatitis B virus (HBV) requires the coordinated work of both the innate and adaptive immune responses. MITA/STING, an adapter protein of the innate immune signaling pathways, plays a key role in regulating innate and adaptive immune responses to DNA virus infection. Previously, we identified an alternatively spliced isoform of MITA/STING, called MITA-related protein (MRP), and found that MRP could specifically block MITA-mediated interferon (IFN) induction while retaining the ability to activate NF-κB. Here, we asked whether MITA/STING and MRP were able to control the HBV replication. Both MITA/STING and MRP significantly inhibited HBV replication in vitro. MITA overexpression stimulated IRF3-IFN pathway; while MRP overexpression activated NF-κB pathway, suggesting these two isoforms may inhibit HBV replication through different ways. Using a hydrodynamic injection (HI) mouse model, we found that HBV replication was reduced following MITA/STING and MRP expression vectors in mice and was enhanced by the knockout of MITA/STING (MITA/STING-/-). The HBV specific humoral and CD8+ T cell responses were impaired in MITA/STING deficient mice, suggesting the participation of MITA/STING in the initiation of host adaptive immune responses. In summary, our data suggest that MITA/STING and MRP contribute to HBV control via modulation of the innate and adaptive responses. PMID:28056087

  6. MITA/STING and Its Alternative Splicing Isoform MRP Restrict Hepatitis B Virus Replication.

    PubMed

    Liu, Shuhui; Zhao, Kaitao; Su, Xi; Lu, Lu; Zhao, He; Zhang, Xianwen; Wang, Yun; Wu, Chunchen; Chen, Jizheng; Zhou, Yuan; Hu, Xue; Wang, Yanyi; Lu, Mengji; Chen, Xinwen; Pei, Rongjuan

    2017-01-01

    An efficient clearance of hepatitis B virus (HBV) requires the coordinated work of both the innate and adaptive immune responses. MITA/STING, an adapter protein of the innate immune signaling pathways, plays a key role in regulating innate and adaptive immune responses to DNA virus infection. Previously, we identified an alternatively spliced isoform of MITA/STING, called MITA-related protein (MRP), and found that MRP could specifically block MITA-mediated interferon (IFN) induction while retaining the ability to activate NF-κB. Here, we asked whether MITA/STING and MRP were able to control the HBV replication. Both MITA/STING and MRP significantly inhibited HBV replication in vitro. MITA overexpression stimulated IRF3-IFN pathway; while MRP overexpression activated NF-κB pathway, suggesting these two isoforms may inhibit HBV replication through different ways. Using a hydrodynamic injection (HI) mouse model, we found that HBV replication was reduced following MITA/STING and MRP expression vectors in mice and was enhanced by the knockout of MITA/STING (MITA/STING-/-). The HBV specific humoral and CD8+ T cell responses were impaired in MITA/STING deficient mice, suggesting the participation of MITA/STING in the initiation of host adaptive immune responses. In summary, our data suggest that MITA/STING and MRP contribute to HBV control via modulation of the innate and adaptive responses.

  7. Foot and mouth disease virus non structural protein 2C interacts with Beclin1 modulating virus replication

    USDA-ARS?s Scientific Manuscript database

    Foot-and-mouth disease virus (FMDV), the causative agent of foot-and-mouth disease (FMD), is an Apthovirus within the Picornaviridae family. Replication of the virus occurs in association with replication complexes that are formed by host cell membrane rearrangements. The largest viral protein in th...

  8. Noncytopathic Replication of Venezuelan Equine Encephalitis Virus and Eastern Equine Encephalitis Virus Replicons in Mammalian Cells

    PubMed Central

    Petrakova, Olga; Volkova, Eugenia; Gorchakov, Rodion; Paessler, Slobodan; Kinney, Richard M.; Frolov, Ilya

    2005-01-01

    Venezuelan equine encephalitis (VEE) and eastern equine encephalitis (EEE) viruses are important, naturally emerging zoonotic viruses. They are significant human and equine pathogens which still pose a serious public health threat. Both VEE and EEE cause chronic infection in mosquitoes and persistent or chronic infection in mosquito-derived cell lines. In contrast, vertebrate hosts infected with either virus develop an acute infection with high-titer viremia and encephalitis, followed by host death or virus clearance by the immune system. Accordingly, EEE and VEE infection in vertebrate cell lines is highly cytopathic. To further understand the pathogenesis of alphaviruses on molecular and cellular levels, we designed EEE- and VEE-based replicons and investigated their replication and their ability to generate cytopathic effect (CPE) and to interfere with other viral infections. VEE and EEE replicons appeared to be less cytopathic than Sindbis virus-based constructs that we designed in our previous research and readily established persistent replication in BHK-21 cells. VEE replicons required additional mutations in the 5′ untranslated region and nsP2 or nsP3 genes to further reduce cytopathicity and to become capable of persisting in cells with no defects in alpha/beta interferon production or signaling. The results indicated that alphaviruses strongly differ in virus-host cell interactions, and the ability to cause CPE in tissue culture does not necessarily correlate with pathogenesis and strongly depends on the sequence of viral nonstructural proteins. PMID:15919912

  9. Noncytopathic replication of Venezuelan equine encephalitis virus and eastern equine encephalitis virus replicons in Mammalian cells.

    PubMed

    Petrakova, Olga; Volkova, Eugenia; Gorchakov, Rodion; Paessler, Slobodan; Kinney, Richard M; Frolov, Ilya

    2005-06-01

    Venezuelan equine encephalitis (VEE) and eastern equine encephalitis (EEE) viruses are important, naturally emerging zoonotic viruses. They are significant human and equine pathogens which still pose a serious public health threat. Both VEE and EEE cause chronic infection in mosquitoes and persistent or chronic infection in mosquito-derived cell lines. In contrast, vertebrate hosts infected with either virus develop an acute infection with high-titer viremia and encephalitis, followed by host death or virus clearance by the immune system. Accordingly, EEE and VEE infection in vertebrate cell lines is highly cytopathic. To further understand the pathogenesis of alphaviruses on molecular and cellular levels, we designed EEE- and VEE-based replicons and investigated their replication and their ability to generate cytopathic effect (CPE) and to interfere with other viral infections. VEE and EEE replicons appeared to be less cytopathic than Sindbis virus-based constructs that we designed in our previous research and readily established persistent replication in BHK-21 cells. VEE replicons required additional mutations in the 5' untranslated region and nsP2 or nsP3 genes to further reduce cytopathicity and to become capable of persisting in cells with no defects in alpha/beta interferon production or signaling. The results indicated that alphaviruses strongly differ in virus-host cell interactions, and the ability to cause CPE in tissue culture does not necessarily correlate with pathogenesis and strongly depends on the sequence of viral nonstructural proteins.

  10. A chimera of EBNA1 and the estrogen receptor activates transcription but not replication.

    PubMed Central

    Middleton, T; Sugden, B

    1992-01-01

    DNA replication from the plasmid origin of replication of Epstein-Barr virus requires one viral protein, EBNA1. This protein also acts as a transcriptional activator. Mutational analyses of EBNA1 have led to the conclusion that it supports transcription and DNA replication similarly. Such analyses have not probed the DNA-binding domain of EBNA1. To test whether domains of EBNA1 specifically required for either transcription or replication lie within its DNA-binding domain, we constructed a functional transcriptional activator by placing the EBNA1 DNA-binding domain in the context of the activation domains of the estrogen receptor. This hybrid protein did not support DNA replication, which indicates that the DNA-binding domain does not contain a replication-specific domain that can function along with heterologous transcriptional activating domains. Images PMID:1738208

  11. Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication.

    PubMed Central

    Croen, K D

    1993-01-01

    Nitric oxide (NO) has antimicrobial activity against a wide spectrum of infectious pathogens, but an antiviral effect has not been reported. The impact of NO, from endogenous and exogenous sources, on herpes simplex virus type 1 (HSV 1) replication was studied in vitro. HSV 1 replication in RAW 264.7 macrophages was reduced 1,806-fold in monolayers induced to make NO by activation with gamma IFN and LPS. A competitive and a noncompetitive inhibitor of nitric oxide synthetase substantially reduced the antiviral effect of activated RAW macrophages. S-nitroso-L-acetyl penicillamine (SNAP) is a donor of NO and was added to the media of infected monolayers to assess the antiviral properties of NO in the absence of gamma IFN and LPS. A single dose of S-nitroso-L-acetyl penicillamine 3 h after infection inhibited HSV 1 replication in Vero, HEp2, and RAW 264.7 cells in a dose-dependent manner. Neither virucidal nor cytocidal effects of NO were observed under conditions that inhibited HSV 1 replication. Nitric oxide had inhibitory effects, comparable to that of gamma IFN/LPS, on protein and DNA synthesis as well as on cell replication. This report demonstrates that, among its diverse properties, NO has an antiviral effect. PMID:8390481

  12. Human immunodeficiency virus infection of monoblastoid cells: cellular differentiation determines the pattern of virus replication.

    PubMed Central

    Pauza, C D; Galindo, J; Richman, D D

    1988-01-01

    Stringent control of human immunodeficiency virus (HIV) replication was observed in the human monoblastoid cell line U937. A low-multiplicity infection of these cells by the LAV1 strain of HIV was productive for 2.5 days; then virus replication became restricted and no further evidence of virion production was observed. The dramatic decrease in HIV production was due in part of reduced accumulation of cytoplasmic viral RNA and occurred in the absence of evident cytopathic effects. In contrast, infected cells induced to differentiate by phorbol ester, vitamin D3, or lymphokine supernatant did not release markers of HIV despite the accumulation of significant levels of cytoplasmic viral RNA. HIV infection altered the pattern of c-myc RNA accumulation in U937 cells. Expression of this gene changes normally in response to the state of cellular differentiation; in infected cells the level of c-myc expression was correlated to the levels of viral RNA accumulation and not to cellular differentiation. These results suggest that restricted replication of HIV in monocytes might be an important mechanism of virus persistence and demonstrate a relationship between HIV replication and monocyte differentiation. Images PMID:2458483

  13. Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies.

    PubMed

    Silva, Laurie A; Dermody, Terence S

    2017-03-01

    Chikungunya virus (CHIKV), a reemerging arbovirus, causes a crippling musculoskeletal inflammatory disease in humans characterized by fever, polyarthralgia, myalgia, rash, and headache. CHIKV is transmitted by Aedes species of mosquitoes and is capable of an epidemic, urban transmission cycle with high rates of infection. Since 2004, CHIKV has spread to new areas, causing disease on a global scale, and the potential for CHIKV epidemics remains high. Although CHIKV has caused millions of cases of disease and significant economic burden in affected areas, no licensed vaccines or antiviral therapies are available. In this Review, we describe CHIKV epidemiology, replication cycle, pathogenesis and host immune responses, and prospects for effective vaccines and highlight important questions for future research.

  14. The importance of alfalfa mosaic virus coat protein dimers in the initiation of replication.

    PubMed

    Choi, Jiwon; Kim, Bong-Suk; Zhao, Xiaoxia; Loesch-Fries, Sue

    2003-01-05

    Deletion and substitution mutations affecting the oligomerization of alfalfa mosaic virus (AMV) coat protein (CP) were studied in protoplasts to determine their effect on genome activation, an early step in AMV replication. The CP mutants that formed dimers, CPDeltaC9 and CPC-A(R)F, were highly active in initiating replication with 63-84% of wild-type (wt) CP activity. However, all mutants that did not form dimers, CPDeltaC18, CPDeltaC19, CPC-WFP, and CPC-W, were much less active with 19-33% of wt CP activity. The accumulation and solubility of mutant CPs expressed from a virus-based vector in Nicotiana benthamiana were similar to that of wt CP. Analysis of CP-RNA interactions indicated that CP dimers and CP monomers interacted very differently with AMV RNA 3' ends. These results suggest that CP dimers are more efficient for replication than CP monomers because of differences in RNA binding rather than differences in expression and accumulation of the mutant CPs in infected cells.

  15. Replication of type 2 herpes simplex virus in human endocervical tissue in organ culture.

    PubMed

    Birch, J; Fink, C G; Skinner, G R; Thomas, G H; Jordan, J A

    1976-08-01

    The replication of type 2 herpes simplex virus in human endocervical tissue in organ culture was investigated. The temporal profile of virus replication was related to the initial virus inoculum; high input inocula induced a rapid increase in virus titre while lower multiplicities induced a more slow-rising increase in virus titre. Our evidence suggested that explants were capable of initiating and supporting virus replication for at least 2 weeks following establishment of the culture. Virus yields were optimal when explants were cultured at 37 degrees and in serum-supplemented medium. Explants also supported the replication of type 1 herpes simplex virus and a "non-human" herpes simplex virus (pseudo-rabies virus). The optimal conditions for replication of type 2 herpes simplex virus in human endocervical explants have been established and will provide a model permitting precise investigation of lytic or other virus-cervical cell interactions and their possible relationship to herpes virus-induced pre-invasive carcinoma of this organ.

  16. Replication of type 2 herpes simplex virus in human endocervical tissue in organ culture.

    PubMed Central

    Birch, J.; Fink, C. G.; Skinner, G. R.; Thomas, G. H.; Jordan, J. A.

    1976-01-01

    The replication of type 2 herpes simplex virus in human endocervical tissue in organ culture was investigated. The temporal profile of virus replication was related to the initial virus inoculum; high input inocula induced a rapid increase in virus titre while lower multiplicities induced a more slow-rising increase in virus titre. Our evidence suggested that explants were capable of initiating and supporting virus replication for at least 2 weeks following establishment of the culture. Virus yields were optimal when explants were cultured at 37 degrees and in serum-supplemented medium. Explants also supported the replication of type 1 herpes simplex virus and a "non-human" herpes simplex virus (pseudo-rabies virus). The optimal conditions for replication of type 2 herpes simplex virus in human endocervical explants have been established and will provide a model permitting precise investigation of lytic or other virus-cervical cell interactions and their possible relationship to herpes virus-induced pre-invasive carcinoma of this organ. Images Fig. 1 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:183806

  17. Rabies viruses leader RNA interacts with host Hsc70 and inhibits virus replication.

    PubMed

    Zhang, Ran; Liu, Chuangang; Cao, Yunzi; Jamal, Muhammad; Chen, Xi; Zheng, Jinfang; Li, Liang; You, Jing; Zhu, Qi; Liu, Shiyong; Dai, Jinxia; Cui, Min; Fu, Zhen F; Cao, Gang

    2017-03-23

    Viruses have been shown to be equipped with regulatory RNAs to evade host defense system. It has long been known that rabies virus (RABV) transcribes a small regulatory RNA, leader RNA (leRNA), which mediates the transition from viral RNA transcription to replication. However, the detailed molecular mechanism remains enigmatic. In the present study, we determined the genetic architecture of RABV leRNA and demonstrated its inhibitory effect on replication of wild-type rabies, DRV-AH08. The RNA immunoprecipitation results suggest that leRNA inhibits RABV replication via interfering the binding of RABV nucleoprotein with genomic RNA. Furthermore, we identified heat shock cognate 70 kDa protein (Hsc70) as a leRNA host cellular interacting protein, of which the expression level was dynamically regulated by RABV infection. Notably, our data suggest that Hsc70 was involved in suppressing RABV replication by leader RNA. Finally, our experiments imply that leRNA might be potentially useful as a novel drug in rabies post-exposure prophylaxis. Together, this study suggested leRNA in concert with its host interacting protein Hsc70, dynamically down-regulate RABV replication.

  18. The N-Terminal Fragment of a PB2 Subunit from the Influenza A Virus (A/Hong Kong/156/1997 H5N1) Effectively Inhibits RNP Activity and Viral Replication

    PubMed Central

    Kashiwagi, Takahito; Hara, Koyu; Nakazono, Yoko; Uemura, Yusaku; Imamura, Yoshihiro; Hamada, Nobuyuki; Watanabe, Hiroshi

    2014-01-01

    Background Influenza A virus has a RNA-dependent RNA polymerase (RdRp) that is composed of three subunits (PB1, PB2 and PA subunit), which assemble with nucleoproteins (NP) and a viral RNA (vRNA) to form a RNP complex in the host nucleus. Recently, we demonstrated that the combination of influenza ribonucleoprotein (RNP) components is important for both its assembly and activity. Therefore, we questioned whether the inhibition of the RNP combination via an incompatible component in the RNP complex could become a methodology for an anti-influenza drug. Methodology/Principal Findings We found that a H5N1 PB2 subunit efficiently inhibits H1N1 RNP assembly and activity. Moreover, we determined the domains and important amino acids on the N-terminus of the PB2 subunit that are required for a strong inhibitory effect. The NP binding site of the PB2 subunit is important for the inhibition of RNP activity by another strain. A plaque assay also confirmed that a fragment of the PB2 subunit could inhibit viral replication. Conclusions/Significance Our results suggest that the N-terminal fragment of a PB2 subunit becomes an inhibitor that targets influenza RNP activity that is different from that targeted by current drugs such as M2 and NA inhibitors. PMID:25460916

  19. Mutations that decrease DNA binding of the processivity factor of the herpes simplex virus DNA polymerase reduce viral yield, alter the kinetics of viral DNA replication, and decrease the fidelity of DNA replication.

    PubMed

    Jiang, Changying; Hwang, Ying T; Randell, John C W; Coen, Donald M; Hwang, Charles B C

    2007-04-01

    The processivity subunit of the herpes simplex virus DNA polymerase, UL42, is essential for viral replication and possesses both Pol- and DNA-binding activities. Previous studies demonstrated that the substitution of alanine for each of four arginine residues, which reside on the positively charged surface of UL42, resulted in decreased DNA binding affinity and a decreased ability to synthesize long-chain DNA by the polymerase. In this study, the effects of each substitution on the production of viral progeny, viral DNA replication, and DNA replication fidelity were examined. Each substitution mutant was able to complement the replication of a UL42 null mutant in transient complementation assays and to support the replication of plasmid DNA containing herpes simplex virus type 1 (HSV-1) origin sequences in transient DNA replication assays. Mutant viruses containing each substitution and a lacZ insertion in a nonessential region of the genome were constructed and characterized. In single-cycle growth assays, the mutants produced significantly less progeny virus than the control virus containing wild-type UL42. Real-time PCR assays revealed that these UL42 mutants synthesized less viral DNA during the early phase of infection. Interestingly, during the late phase of infection, the mutant viruses synthesized larger amounts of viral DNA than the control virus. The frequencies of mutations of the virus-borne lacZ gene increased significantly in the substitution mutants compared to those observed for the control virus. These results demonstrate that the reduced DNA binding of UL42 is associated with significant effects on virus yields, viral DNA replication, and replication fidelity. Thus, a processivity factor can influence replication fidelity in mammalian cells.

  20. The Barley stripe mosaic virus γb protein promotes chloroplast-targeted replication by enhancing unwinding of RNA duplexes.

    PubMed

    Zhang, Kun; Zhang, Yongliang; Yang, Meng; Liu, Songyu; Li, Zhenggang; Wang, Xianbing; Han, Chenggui; Yu, Jialin; Li, Dawei

    2017-04-07

    RNA viruses encode various RNA binding proteins that function in many steps of viral infection cycles. These proteins function as RNA helicases, methyltransferases, RNA-dependent RNA polymerases, RNA silencing suppressors, RNA chaperones, movement proteins, and so on. Although many of the proteins bind the viral RNA genome during different stages of infection, our knowledge about the coordination of their functions is limited. In this study, we describe a novel role for the Barley stripe mosaic virus (BSMV) γb as an enhancer of αa RNA helicase activity, and we show that the γb protein is recruited by the αa viral replication protein to chloroplast membrane sites of BSMV replication. Mutagenesis or deletion of γb from BSMV resulted in reduced positive strand (+) RNAα accumulation, but γb mutations abolishing viral suppressor of RNA silencing (VSR) activity did not completely eliminate genomic RNA replication. In addition, cis- or trans-expression of the Tomato bushy stunt virus p19 VSR protein failed to complement the γb replication functions, indicating that the direct involvement of γb in BSMV RNA replication is independent of VSR functions. These data support a model whereby two BSMV-encoded RNA-binding proteins act coordinately to regulate viral genome replication and provide new insights into strategies whereby double-stranded viral RNA unwinding is regulated, as well as formation of viral replication complexes.

  1. The Barley stripe mosaic virus γb protein promotes chloroplast-targeted replication by enhancing unwinding of RNA duplexes

    PubMed Central

    Yang, Meng; Liu, Songyu; Li, Zhenggang; Wang, Xianbing; Han, Chenggui; Yu, Jialin

    2017-01-01

    RNA viruses encode various RNA binding proteins that function in many steps of viral infection cycles. These proteins function as RNA helicases, methyltransferases, RNA-dependent RNA polymerases, RNA silencing suppressors, RNA chaperones, movement proteins, and so on. Although many of the proteins bind the viral RNA genome during different stages of infection, our knowledge about the coordination of their functions is limited. In this study, we describe a novel role for the Barley stripe mosaic virus (BSMV) γb as an enhancer of αa RNA helicase activity, and we show that the γb protein is recruited by the αa viral replication protein to chloroplast membrane sites of BSMV replication. Mutagenesis or deletion of γb from BSMV resulted in reduced positive strand (+) RNAα accumulation, but γb mutations abolishing viral suppressor of RNA silencing (VSR) activity did not completely eliminate genomic RNA replication. In addition, cis- or trans-expression of the Tomato bushy stunt virus p19 VSR protein failed to complement the γb replication functions, indicating that the direct involvement of γb in BSMV RNA replication is independent of VSR functions. These data support a model whereby two BSMV-encoded RNA-binding proteins act coordinately to regulate viral genome replication and provide new insights into strategies whereby double-stranded viral RNA unwinding is regulated, as well as formation of viral replication complexes. PMID:28388677

  2. [Phosphoramidate derivatives of acyclovir--herpes virus replication inhibitors].

    PubMed

    Zakirova, N F; Shipitsyn, A V; Ias'ko, M V; Kochetkov, S N

    2011-01-01

    A number of new phosphoramidates of acyclovir--compounds of interest as anti-virals against resistant strains of virus herpes was synthesized. Several methods of synthesis of these compounds were suggested. Optimal method appeared to be the obtaining of phosphoramidates through the phosphomonocloride with its subsequent treatment with various amines. Two compounds have shown moderate activity against HSV-1.

  3. Replication of many human viruses is refractory to inhibition by endogenous cellular microRNAs.

    PubMed

    Bogerd, Hal P; Skalsky, Rebecca L; Kennedy, Edward M; Furuse, Yuki; Whisnant, Adam W; Flores, Omar; Schultz, Kimberly L W; Putnam, Nicole; Barrows, Nicholas J; Sherry, Barbara; Scholle, Frank; Garcia-Blanco, Mariano A; Griffin, Diane E; Cullen, Bryan R

    2014-07-01

    The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. Importance: Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of

  4. Replication of Many Human Viruses Is Refractory to Inhibition by Endogenous Cellular MicroRNAs

    PubMed Central

    Bogerd, Hal P.; Skalsky, Rebecca L.; Kennedy, Edward M.; Furuse, Yuki; Whisnant, Adam W.; Flores, Omar; Schultz, Kimberly L. W.; Putnam, Nicole; Barrows, Nicholas J.; Sherry, Barbara; Scholle, Frank; Garcia-Blanco, Mariano A.; Griffin, Diane E.

    2014-01-01

    ABSTRACT The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. IMPORTANCE Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of

  5. A Loss of Function Analysis of Host Factors Influencing Vaccinia virus Replication by RNA Interference

    PubMed Central

    Gonzalez, Orland; Haga, Ismar R.; Pechenick Jowers, Tali; Reynolds, Danielle K.; Wildenhain, Jan; Tekotte, Hille; Auer, Manfred; Tyers, Mike; Ghazal, Peter; Zimmer, Ralf; Haas, Jürgen

    2014-01-01

    Vaccinia virus (VACV) is a large, cytoplasmic, double-stranded DNA virus that requires complex interactions with host proteins in order to replicate. To explore these interactions a functional high throughput small interfering RNA (siRNA) screen targeting 6719 druggable cellular genes was undertaken to identify host factors (HF) influencing the replication and spread of an eGFP-tagged VACV. The experimental design incorporated a low multiplicity of infection, thereby enhancing detection of cellular proteins involved in cell-to-cell spread of VACV. The screen revealed 153 pro- and 149 anti-viral HFs that strongly influenced VACV replication. These HFs were investigated further by comparisons with transcriptional profiling data sets and HFs identified in RNAi screens of other viruses. In addition, functional and pathway analysis of the entire screen was carried out to highlight cellular mechanisms involved in VACV replication. This revealed, as anticipated, that many pro-viral HFs are involved in translation of mRNA and, unexpectedly, suggested that a range of proteins involved in cellular transcriptional processes and several DNA repair pathways possess anti-viral activity. Multiple components of the AMPK complex were found to act as pro-viral HFs, while several septins, a group of highly conserved GTP binding proteins with a role in sequestering intracellular bacteria, were identified as strong anti-viral VACV HFs. This screen has identified novel and previously unexplored roles for cellular factors in poxvirus replication. This advancement in our understanding of the VACV life cycle provides a reliable knowledge base for the improvement of poxvirus-based vaccine vectors and development of anti-viral theraputics. PMID:24901222

  6. Zinc finger antiviral protein inhibits coxsackievirus B3 virus replication and protects against viral myocarditis.

    PubMed

    Li, Min; Yan, Kepeng; Wei, Lin; Yang, Jie; Lu, Chenyu; Xiong, Fei; Zheng, Chunfu; Xu, Wei

    2015-11-01

    The host Zinc finger antiviral protein (ZAP) has been reported exhibiting antiviral activity against positive-stranded RNA viruses (Togaviridae), negative-stranded RNA viruses (Filoviridae) and retroviruses (Retroviridae). However, whether ZAP restricts the infection of enterovirus and the development of enterovirus mediated disease remains unknown. Here, we reported the antiviral properties of ZAP against coxsackievirus B3 (CVB3), a single-stranded RNA virus of the Enterovirus genus within the Picornaviridae as a major causative agent of viral myocarditis (VMC). We found that the expression of ZAP was significantly induced after CVB3 infection in heart tissues of VMC mice. ZAP potently inhibited CVB3 replication in cells after infection, while overexpression of ZAP in mice significantly increased the resistance to CVB3 replication and viral myocarditis by significantly reducing cardiac inflammatory cytokine production. The ZAP-responsive elements (ZREs) were mapped to the 3'UTR and 5'UTR of viral RNA. Taken together, ZAP confers resistance to CVB3 infection via directly targeting viral RNA and protects mice from acute myocarditis by suppressing viral replication and cardiac inflammatory cytokine production. Our finding further expands ZAP's range of viral targets, and suggests ZAP as a potential therapeutic target for viral myocarditis caused by CVB3.

  7. Cellular DDX3 regulates Japanese encephalitis virus replication by interacting with viral un-translated regions.

    PubMed

    Li, Chen; Ge, Ling-ling; Li, Peng-peng; Wang, Yue; Dai, Juan-juan; Sun, Ming-xia; Huang, Li; Shen, Zhi-qiang; Hu, Xiao-chun; Ishag, Hassan; Mao, Xiang

    2014-01-20

    Japanese encephalitis virus is one of the most common causes for epidemic viral encephalitis in humans and animals. Herein we demonstrated that cellular helicase DDX3 is involved in JEV replication. DDX3 knockdown inhibits JEV replication. The helicase activity of DDX3 is crucial for JEV replication. GST-pulldown and co-immunoprecipitation experiments demonstrated that DDX3 could interact with JEV non-structural proteins 3 and 5. Co-immunoprecipitation and confocal microscopy analysis confirmed that DDX3 interacts and colocalizes with these viral proteins and viral RNA during the infection. We determined that DDX3 binds to JEV 5' and 3' un-translated regions. We used a JEV-replicon system to demonstrate that DDX3 positively regulates viral RNA translation, which might affect viral RNA replication at the late stage of virus infection. Collectively, we identified that DDX3 is necessary for JEV infection, suggesting that DDX3 might be a novel target to design new antiviral agents against JEV or other flavivirus infections.

  8. Suppression of Rac1 Signaling by Influenza A Virus NS1 Facilitates Viral Replication

    PubMed Central

    Jiang, Wei; Sheng, Chunjie; Gu, Xiuling; Liu, Dong; Yao, Chen; Gao, Shijuan; Chen, Shuai; Huang, Yinghui; Huang, Wenlin; Fang, Min

    2016-01-01

    Influenza A virus (IAV) is a major human pathogen with the potential to become pandemic. IAV contains only eight RNA segments; thus, the virus must fully exploit the host cellular machinery to facilitate its own replication. In an effort to comprehensively characterize the host machinery taken over by IAV in mammalian cells, we generated stable A549 cell lines with over-expression of the viral non-structural protein (NS1) to investigate the potential host factors that might be modulated by the NS1 protein. We found that the viral NS1 protein directly interacted with cellular Rac1 and facilitated viral replication. Further research revealed that NS1 down-regulated Rac1 activity via post-translational modifications. Therefore, our results demonstrated that IAV blocked Rac1-mediated host cell signal transduction through the NS1 protein to facilitate its own replication. Our findings provide a novel insight into the mechanism of IAV replication and indicate new avenues for the development of potential therapeutic targets. PMID:27869202

  9. CD8+ Lymphocytes Can Control HIV Infection in vitro by Suppressing Virus Replication

    NASA Astrophysics Data System (ADS)

    Walker, Christopher M.; Moody, Dewey J.; Stites, Daniel P.; Levy, Jay A.

    1986-12-01

    Lymphocytes bearing the CD8 marker were shown to suppress replication of human immunodeficiency virus (HIV) in peripheral blood mononuclear cells. The effect was dose-dependent and most apparent with autologous lymphocytes; it did not appear to be mediated by a cytotoxic response. This suppression of HIV replication could be demonstrated by the addition of CD8+ cells at the initiation of virus production as well as after several weeks of virus replication by cultured cells. The observations suggest a potential approach to therapy in which autologous CD8 lymphocytes could be administered to individuals to inhibit HIV replication and perhaps progression of disease.

  10. Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8+ T-cell priming and viral control

    PubMed Central

    Duhan, Vikas; Khairnar, Vishal; Friedrich, Sarah-Kim; Zhou, Fan; Gassa, Asmae; Honke, Nadine; Shaabani, Namir; Gailus, Nicole; Botezatu, Lacramioara; Khandanpour, Cyrus; Dittmer, Ulf; Häussinger, Dieter; Recher, Mike; Hardt, Cornelia; Lang, Philipp A.; Lang, Karl S.

    2016-01-01

    Clinically used human vaccination aims to induce specific antibodies that can guarantee long-term protection against a pathogen. The reasons that other immune components often fail to induce protective immunity are still debated. Recently we found that enforced viral replication in secondary lymphoid organs is essential for immune activation. In this study we used the lymphocytic choriomeningitis virus (LCMV) to determine whether enforced virus replication occurs in the presence of virus-specific antibodies or virus-specific CD8+ T cells. We found that after systemic recall infection with LCMV-WE the presence of virus-specific antibodies allowed intracellular replication of virus in the marginal zone of spleen. In contrast, specific antibodies limited viral replication in liver, lung, and kidney. Upon recall infection with the persistent virus strain LCMV-Docile, viral replication in spleen was essential for the priming of CD8+ T cells and for viral control. In contrast to specific antibodies, memory CD8+ T cells inhibited viral replication in marginal zone but failed to protect mice from persistent viral infection. We conclude that virus-specific antibodies limit viral infection in peripheral organs but still allow replication of LCMV in the marginal zone, a mechanism that allows immune boosting during recall infection and thereby guarantees control of persistent virus. PMID:26805453

  11. CD11c Controls Herpes Simplex Virus 1 Responses To Limit Virus Replication during Primary Infection ▿ †

    PubMed Central

    Allen, Sariah J.; Mott, Kevin R.; Chentoufi, Aziz A.; BenMohamed, Lbachir; Wechsler, Steven L.; Ballantyne, Christie M.; Ghiasi, Homayon

    2011-01-01

    CD11c is expressed on the surface of dendritic cells (DCs) and is one of the main markers for identification of DCs. DCs are the effectors of central innate immune responses, but they also affect acquired immune responses to infection. However, how DCs influence the efficacy of adaptive immunity is poorly understood. Here, we show that CD11c+ DCs negatively orchestrate both adaptive and innate immunity against herpes simplex virus type 1 (HSV-1) ocular infection. The effectiveness and quantity of virus-specific CD8+ T cell responses are increased in CD11c-deficient animals. In addition, the levels of CD83, CD11b, alpha interferon (IFN-α), and IFN-β, but not IFN-γ, were significantly increased in CD11c-deficient animals. Higher levels of IFN-α, IFN-β, and CD8+ T cells in the CD11c-deficient mice may have contributed to lower virus replication in the eye and trigeminal ganglia (TG) during the early period of infection than in wild-type mice. However, the absence of CD11c did not influence survival, severity of eye disease, or latency. Our studies provide for the first time evidence that CD11c expression may abrogate the ability to reduce primary virus replication in the eye and TG via higher activities of type 1 interferon and CD8+ T cell responses. PMID:21775452

  12. Amino Acids in the Basic Domain of Epstein-Barr Virus ZEBRA Protein Play Distinct Roles in DNA Binding, Activation of Early Lytic Gene Expression, and Promotion of Viral DNA Replication

    PubMed Central

    Heston, Lee; El-Guindy, Ayman; Countryman, Jill; Dela Cruz, Charles; Delecluse, Henri-Jacques; Miller, George

    2006-01-01

    The ZEBRA protein of Epstein-Barr virus (EBV) drives the viral lytic cycle cascade. The capacity of ZEBRA to recognize specific DNA sequences resides in amino acids 178 to 194, a region in which 9 of 17 residues are either lysine or arginine. To define the basic domain residues essential for activity, a series of 46 single-amino-acid-substitution mutants were examined for their ability to bind ZIIIB DNA, a high-affinity ZEBRA binding site, and for their capacity to activate early and late EBV lytic cycle gene expression. DNA binding was obligatory for the protein to activate the lytic cascade. Nineteen mutants that failed to bind DNA were unable to disrupt latency. A single acidic replacement of a basic amino acid destroyed DNA binding and the biologic activity of the protein. Four mutants that bound weakly to DNA were defective at stimulating the expression of Rta, the essential first target of ZEBRA in lytic cycle activation. Four amino acids, R183, A185, C189, and R190, are likely to contact ZIIIB DNA specifically, since alanine or valine substitutions at these positions drastically weakened or eliminated DNA binding. Twenty-three mutants were proficient in binding to ZIIIB DNA. Some DNA binding-proficient mutants were refractory to supershift by BZ-1 monoclonal antibody (epitope amino acids 214 to 230), likely as the result of the increased solubility of the mutants. Mutants competent to bind DNA could be separated into four functional groups: the wild-type group (eight mutants), a group defective at activating Rta (five mutants, all with mutations at the S186 site), a group defective at activating EA-D (three mutants with the R179A, S186T, and K192A mutations), and a group specifically defective at activating late gene expression (seven mutants). Three late mutants, with a Y180A, Y180E, or K188A mutation, were defective at stimulating EBV DNA replication. This catalogue of point mutants reveals that basic domain amino acids play distinct functions in binding

  13. Identification of Novel Antipoxviral Agents: Mitoxantrone Inhibits Vaccinia Virus Replication by Blocking Virion Assembly▿

    PubMed Central

    Deng, Liang; Dai, Peihong; Ciro, Anthony; Smee, Donald F.; Djaballah, Hakim; Shuman, Stewart

    2007-01-01

    The bioterror threat of a smallpox outbreak in an unvaccinated population has mobilized efforts to develop new antipoxviral agents. By screening a library of known drugs, we identified 13 compounds that inhibited vaccinia virus replication at noncytotoxic doses. The anticancer drug mitoxantrone is unique among the inhibitors identified in that it has no apparent impact on viral gene expression. Rather, it blocks processing of viral structural proteins and assembly of mature progeny virions. The isolation of mitoxantrone-resistant vaccinia strains underscores that a viral protein is the likely target of the drug. Whole-genome sequencing of mitoxantrone-resistant viruses pinpointed missense mutations in the N-terminal domain of vaccinia DNA ligase. Despite its favorable activity in cell culture, mitoxantrone administered intraperitoneally at the maximum tolerated dose failed to protect mice against a lethal intranasal infection with vaccinia virus. PMID:17928345

  14. ACH-806, an NS4A antagonist, inhibits hepatitis C virus replication by altering the composition of viral replication complexes.

    PubMed

    Yang, Wengang; Sun, Yongnian; Hou, Xiaohong; Zhao, Yongsen; Fabrycki, Joanne; Chen, Dawei; Wang, Xiangzhu; Agarwal, Atul; Phadke, Avinash; Deshpande, Milind; Huang, Mingjun

    2013-07-01

    Treatment of hepatitis C patients with direct-acting antiviral drugs involves the combination of multiple small-molecule inhibitors of distinctive mechanisms of action. ACH-806 (or GS-9132) is a novel, small-molecule inhibitor specific for hepatitis C virus (HCV). It inhibits viral RNA replication in HCV replicon cells and was active in genotype 1 HCV-infected patients in a proof-of-concept clinical trial (1). Here, we describe a potential mechanism of action (MoA) wherein ACH-806 alters viral replication complex (RC) composition and function. We found that ACH-806 did not affect HCV polyprotein translation and processing, the early events of the formation of HCV RC. Instead, ACH-806 triggered the formation of a homodimeric form of NS4A with a size of 14 kDa (p14) both in replicon cells and in Huh-7 cells where NS4A was expressed alone. p14 production was negatively regulated by NS3, and its appearance in turn was associated with reductions in NS3 and, especially, NS4A content in RCs due to their accelerated degradation. A previously described resistance substitution near the N terminus of NS3, where NS3 interacts with NS4A, attenuated the reduction of NS3 and NS4A conferred by ACH-806 treatment. Taken together, we show that the compositional changes in viral RCs are associated with the antiviral activity of ACH-806. Small molecules, including ACH-806, with this novel MoA hold promise for further development and provide unique tools for clarifying the functions of NS4A in HCV replication.

  15. Mutational analysis of the human immunodeficiency virus: the orf-B region down-regulates virus replication.

    PubMed Central

    Luciw, P A; Cheng-Mayer, C; Levy, J A

    1987-01-01

    Mutations were made by recombinant DNA techniques in an infectious molecular clone of the human immunodeficiency virus San Francisco isolate 2 (HIVSF2) [formerly the prototype isolate of the acquired immunodeficiency syndrome-associated retrovirus (ARV-2)]. The effect of these changes on the replicative and cytopathologic properties of the virus was studied by transfecting modified virus clones into cultured human cells. Mutations in the gag, pol, env, and tat regions precluded virus replication and cytopathology in lymphoid cells. A mutation in orf-A dramatically reduced but did not abolish virus replication. Mutant viruses with deletions in the orf-B region were highly cytopathic and replicated to approximately 5-fold higher levels than wild-type virus. They also produced approximately 5-fold more viral DNA in infected lymphoid cells than did wild-type virus. Thus, the orf-B region may function to down-regulate virus replication. This mutational analysis of the HIVSF2 genome is a means of assessing genes regulating viral replication and cytopathology. Images PMID:2434956

  16. In vitro RNA interference targeting the DNA polymerase gene inhibits orf virus replication in primary ovine fetal turbinate cells.

    PubMed

    Wang, Gaili; He, Wenqi; Song, Deguang; Li, Jida; Bao, Yingfu; Lu, Rongguang; Bi, Jingying; Zhao, Kui; Gao, Feng

    2014-05-01

    Orf, which is caused by orf virus (ORFV), is distributed worldwide and is endemic in most sheep- and/or goat-raising countries. RNA interference (RNAi) pathways have emerged as important regulators of virus-host cell interactions. In this study, the specific effect of RNAi on the replication of ORFV was explored. The application of RNA interference (RNAi) inhibited the replication of ORFV in cell culture by targeting the ORF025 gene of ORFV, which encodes the viral polymerase. Three small interfering RNA (siRNA) (named siRNA704, siRNA1017 and siRNA1388) were prepared by in vitro transcription. The siRNAs were evaluated for antiviral activity against the ORFV Jilin isolate by the observation of cytopathic effects (CPE), virus titration, and real-time PCR. After 48 h of infection, siRNA704, siRNA1017 and siRNA1388 reduced virus titers by 59- to 199-fold and reduced the level of viral replication by 73-89 %. These results suggest that these three siRNAs can efficiently inhibit ORFV genome replication and infectious virus production. RNAi targeting of the DNA polymerase gene is therefore potentially useful for studying the replication of ORFV and may have potential therapeutic applications.

  17. Recombinant human immunodeficiency virus type 1 genomes with tat unconstrained by overlapping reading frames reveal residues in Tat important for replication in tissue culture.

    PubMed

    Neuveut, C; Jeang, K T

    1996-08-01

    Human immunodeficiency virus type 1 (HIV-1) Tat is essential for virus replication and is a potent trans activator of viral gene expression. Evidence suggests that Tat also influences virus infectivity and cytopathicity. Extensive structure-function studies of Tat in subgenomic settings with point mutagenesis and transient transfection readouts have been performed. These reporter assays have defined certain amino acid residues as being important for trans activation of reporter plasmids. However, they have not directly addressed functions related to virus replication. Here, we have studied Tat structure-function in the setting of replicating viruses. We characterized mutations that emerged in Tat during HIV-1 infections of T lymphocytes. To ensure that the selection pressure for change was directed toward protein function, we constructed HIV-Is in which the Tat reading frame was freed from constraints exerted by overlapping with the reading frames of vpr, rev, and env. When these recombinant viruses were passaged in T cells, 26 novel nucleotide changes in tat were observed from sequencing of 220 independently isolated clones. Recloning of these changes into a pNL4-3 molecular background allowed for the characterization of residues in Tat important for virus replication. Interestingly, many of the changes that affected replication when they were assayed in transient trans activation of plasmid reporters were found to be relatively neutral. We conclude that the structure-function of Tat in virus replication is incompletely reflected by activity measurements based only on subgenomic transient transfections.

  18. Recombinant human immunodeficiency virus type 1 genomes with tat unconstrained by overlapping reading frames reveal residues in Tat important for replication in tissue culture.

    PubMed Central

    Neuveut, C; Jeang, K T

    1996-01-01

    Human immunodeficiency virus type 1 (HIV-1) Tat is essential for virus replication and is a potent trans activator of viral gene expression. Evidence suggests that Tat also influences virus infectivity and cytopathicity. Extensive structure-function studies of Tat in subgenomic settings with point mutagenesis and transient transfection readouts have been performed. These reporter assays have defined certain amino acid residues as being important for trans activation of reporter plasmids. However, they have not directly addressed functions related to virus replication. Here, we have studied Tat structure-function in the setting of replicating viruses. We characterized mutations that emerged in Tat during HIV-1 infections of T lymphocytes. To ensure that the selection pressure for change was directed toward protein function, we constructed HIV-Is in which the Tat reading frame was freed from constraints exerted by overlapping with the reading frames of vpr, rev, and env. When these recombinant viruses were passaged in T cells, 26 novel nucleotide changes in tat were observed from sequencing of 220 independently isolated clones. Recloning of these changes into a pNL4-3 molecular background allowed for the characterization of residues in Tat important for virus replication. Interestingly, many of the changes that affected replication when they were assayed in transient trans activation of plasmid reporters were found to be relatively neutral. We conclude that the structure-function of Tat in virus replication is incompletely reflected by activity measurements based only on subgenomic transient transfections. PMID:8764071

  19. Indole derivatives inhibit hepatitis C virus replication through induction of pro-inflammatory cytokines.

    PubMed

    Lee, S; Jin, G; Kim, D; Son, S; Lee, K; Lee, C

    2015-03-01

    Previously, we discovered a series of indole derivatives as a new class of hepatitis C virus (HCV) replication inhibitors by using a target-free chemical genetic strategy. Through a structure-activity relationship study, the compound 12e was identified as the most potent inhibitor of this class (EC50 = 1.1 μmol/l) with minimal cytotoxicity (CC50 = 61.8 μmol/l). In order to gain insight into its detailed antiviral mechanism of action, we performed PCR array analyses and found that 12e was able to activate transcription of a number of pro-inflammatory as well as antiviral cytokine genes including CXCL-8, IL-1α, TNF-α, IL-3, IRAK-1, and DDX58. Their induction by 12e was verified by individual RT-PCR analyses. In addition, 12e was found to stimulate secretion of soluble factors with anti-HCV replication activity. Among the 12e-induced pro-inflammatory cytokines, CXCL-8 showed a strong positive correlation between its transcriptional activation and antiviral potency. Interestingly, a recombinant CXCL-8 protein also reduced HCV replication, though only moderately. In conclusion, we found a novel mode of action of indole derivatives in inhibiting HCV replication, particularly the induction of pro-inflammatory cytokines.

  20. Simian varicella virus open reading frame 63/70 expression is required for efficient virus replication in culture

    PubMed Central

    Brazeau, Elizabeth; Wellish, Mary; Kaufer, Benedict B.; Tischer, B. Karsten; Gray, Wayne; Zhou, Fuchun; Osterrieder, Nikolaus; Hanlon, Teri; Golive, Anjani; Hall, Travis; Nair, Sreekala; Owens, Gregory P.; Mueller, Niklaus H.; Cohrs, Randall J.; Pugazhenthi, Subbiah; Gilden, Don

    2011-01-01

    Simian varicella virus (SVV) open reading frame (ORF) 63, duplicated in the virus genome as ORF 70, is homologous to varicella zoster virus ORF 63/70. Transfection of bacterial artificial chromosome clones containing the wild-type SVV genome and mutants with stop codons in ORF 70, in both ORFs 63 and 70 and the repaired virus DNA sequences into Vero cells produced a cytopathic effect (CPE). The onset of CPE was much slower with the double-mutant transfectants (10 days vs. 3 days) and plaques were smaller. While SVV ORF 63 is not required for replication in culture, its expression leads to robust virus replication. PMID:21479719

  1. Borna disease virus phosphoprotein modulates epigenetic signaling in neurons to control viral replication.

    PubMed

    Bonnaud, Emilie M; Szelechowski, Marion; Bétourné, Alexandre; Foret, Charlotte; Thouard, Anne; Gonzalez-Dunia, Daniel; Malnou, Cécile E

    2015-06-01

    Understanding the modalities of interaction of neurotropic viruses with their target cells represents a major challenge that may improve our knowledge of many human neurological disorders for which viral origin is suspected. Borna disease virus (BDV) represents an ideal model to analyze the molecular mechanisms of viral persistence in neurons and its consequences for neuronal homeostasis. It is now established that BDV ensures its long-term maintenance in infected cells through a stable interaction of viral components with the host cell chromatin, in particular, with core histones. This has led to our hypothesis that such an interaction may trigger epigenetic changes in the host cell. Here, we focused on histone acetylation, which plays key roles in epigenetic regulation of gene expression, notably for neurons. We performed a comparative analysis of histone acetylation patterns of neurons infected or not infected by BDV, which revealed that infection decreases histone acetylation on selected lysine residues. We showed that the BDV phosphoprotein (P) is responsible for these perturbations, even when it is expressed alone independently of the viral context, and that this action depends on its phosphorylation by protein kinase C. We also demonstrated that BDV P inhibits cellular histone acetyltransferase activities. Finally, by pharmacologically manipulating cellular acetylation levels, we observed that inhibiting cellular acetyl transferases reduces viral replication in cell culture. Our findings reveal that manipulation of cellular epigenetics by BDV could be a means to modulate viral replication and thus illustrate a fascinating example of virus-host cell interaction. Persistent DNA viruses often subvert the mechanisms that regulate cellular chromatin dynamics, thereby benefitting from the resulting epigenetic changes to create a favorable milieu for their latent and persistent states. Here, we reasoned that Borna disease virus (BDV), the only RNA virus known to

  2. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral

    PubMed Central

    Smith, Claire M.; Scott, Paul D.; O’Callaghan, Christopher; Easton, Andrew J.; Dimmock, Nigel J.

    2016-01-01

    Defective interfering (DI) viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8) was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1); it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral. PMID:27556481

  3. A Defective Interfering Influenza RNA Inhibits Infectious Influenza Virus Replication in Human Respiratory Tract Cells: A Potential New Human Antiviral.

    PubMed

    Smith, Claire M; Scott, Paul D; O'Callaghan, Christopher; Easton, Andrew J; Dimmock, Nigel J

    2016-08-22

    Defective interfering (DI) viruses arise during the replication of influenza A virus and contain a non-infective version of the genome that is able to interfere with the production of infectious virus. In this study we hypothesise that a cloned DI influenza A virus RNA may prevent infection of human respiratory epithelial cells with infection by influenza A. The DI RNA (244/PR8) was derived by a natural deletion process from segment 1 of influenza A/PR/8/34 (H1N1); it comprises 395 nucleotides and is packaged in the DI virion in place of a full-length genome segment 1. Given intranasally, 244/PR8 DI virus protects mice and ferrets from clinical influenza caused by a number of different influenza A subtypes and interferes with production of infectious influenza A virus in cells in culture. However, evidence that DI influenza viruses are active in cells of the human respiratory tract is lacking. Here we show that 244/PR8 DI RNA is replicated by an influenza A challenge virus in human lung diploid fibroblasts, bronchial epithelial cells, and primary nasal basal cells, and that the yield of challenge virus is significantly reduced in a dose-dependent manner indicating that DI influenza virus has potential as a human antiviral.

  4. The V protein of canine distemper virus is required for virus replication in human epithelial cells.

    PubMed

    Otsuki, Noriyuki; Nakatsu, Yuichiro; Kubota, Toru; Sekizuka, Tsuyoshi; Seki, Fumio; Sakai, Kouji; Kuroda, Makoto; Yamaguchi, Ryoji; Takeda, Makoto

    2013-01-01

    Canine distemper virus (CDV) becomes able to use human receptors through a single amino acid substitution in the H protein. In addition, CDV strains possessing an intact C protein replicate well in human epithelial H358 cells. The present study showed that CDV strain 007Lm, which was isolated from lymph node tissue of a dog with distemper, failed to replicate in H358 cells, although it possessed an intact C protein. Sequence analyses suggested that a cysteine-to-tyrosine substitution at position 267 of the V protein caused this growth defect. Analyses using H358 cells constitutively expressing the CDV V protein showed that the V protein with a cysteine, but not that with a tyrosine, at this position effectively blocked the interferon-stimulated signal transduction pathway, and supported virus replication of 007Lm in H358 cells. Thus, the V protein as well as the C protein appears to be functional and essential for CDV replication in human epithelial cells.

  5. Replication of Tomato Yellow Leaf Curl Virus in Its Whitefly Vector, Bemisia tabaci.

    PubMed

    Pakkianathan, Britto Cathrin; Kontsedalov, Svetlana; Lebedev, Galina; Mahadav, Assaf; Zeidan, Muhammad; Czosnek, Henryk; Ghanim, Murad

    2015-10-01

    Tomato yellow leaf curl virus (TYLCV) is a begomovirus transmitted exclusively by the whitefly Bemisia tabaci in a persistent, circulative manner. Replication of TYLCV in its vector remains controversial, and thus far, the virus has been considered to be nonpropagative. Following 8 h of acquisition on TYLCV-infected tomato plants or purified virions and then transfer to non-TYLCV-host cotton plants, the amounts of virus inside whitefly adults significantly increased (>2-fold) during the first few days and then continuously decreased, as measured by the amounts of genes on both virus DNA strands. Reported alterations in insect immune and defense responses upon virus retention led us to hypothesize a role for the immune response in suppressing virus replication. After virus acquisition, stress conditions were imposed on whiteflies, and the levels of three viral gene sequences were measured over time. When whiteflies were exposed to TYLCV and treatment with two different pesticides, the virus levels continuously increased. Upon exposure to heat stress, the virus levels gradually decreased, without any initial accumulation. Switching of whiteflies between pesticide, heat stress, and control treatments caused fluctuating increases and decreases in virus levels. Fluorescence in situ hybridization analysis confirmed these results and showed virus signals inside midgut epithelial cell nuclei. Combining the pesticide and heat treatments with virus acquisition had significant effects on fecundity. Altogether, our results demonstrate for the first time that a single-stranded DNA plant virus can replicate in its hemipteran vector. Plant viruses in agricultural crops are of great concern worldwide. Many of them are transmitted from infected to healthy plants by insects. Persistently transmitted viruses often have a complex association with their vectors; however, most are believed not to replicate within these vectors. Such replication is important, as it contributes to the

  6. Toll-Like Receptor 2 Ligation Enhances HIV-1 Replication in Activated CCR6+ CD4+ T Cells by Increasing Virus Entry and Establishing a More Permissive Environment to Infection

    PubMed Central

    Bolduc, Jean-François; Ouellet, Michel; Hany, Laurent

    2016-01-01

    ABSTRACT In this study, we investigated the effect of Toll-like receptor 2 (TLR2) ligation on the permissiveness of activated CD4+ T cells to HIV-1 infection by focusing our experiments on the relative susceptibility of cell subsets based on their expression of CCR6. Purified primary human CD4+ T cells were first subjected to a CD3/CD28 costimulation before treatment with the TLR2 agonist Pam3CSK4. Finally, cells were inoculated with R5-tropic HIV-1 particles that permit us to study the effect of TLR2 triggering on virus production at both population and single-cell levels. We report here that HIV-1 replication is augmented in CD3/CD28-costimulated CCR6+ CD4+ T cells upon engagement of the cell surface TLR2. Additional studies indicate that a higher virus entry and polymerization of the cortical actin are seen in this cell subset following TLR2 stimulation. A TLR2-mediated increase in the level of phosphorylated NF-κB p65 subunit was also detected in CD3/CD28-costimulated CCR6+ CD4+ T cells. We propose that, upon antigenic presentation, an engagement of TLR2 acts specifically on CCR6+ CD4+ T cells by promoting virus entry in an intracellular milieu more favorable for productive HIV-1 infection. IMPORTANCE Following primary infection, HIV-1 induces an immunological and structural disruption of the gut mucosa, leading to bacterial translocation and release of microbial components in the bloodstream. These pathogen-derived constituents include several agonists of Toll-like receptors that may affect gut-homing CD4+ T cells, such as those expressing the chemokine receptor CCR6, which are highly permissive to HIV-1 infection. We demonstrate that TLR2 ligation in CD3/CD28-costimulated CCR6+ CD4+ T cells leads to enhanced virus production. Our results highlight the potential impact of bacterial translocation on the overall permissiveness of CCR6+ CD4+ T cells to productive HIV-1 infection. PMID:27928019

  7. Toll-Like Receptor 2 Ligation Enhances HIV-1 Replication in Activated CCR6+ CD4+ T Cells by Increasing Virus Entry and Establishing a More Permissive Environment to Infection.

    PubMed

    Bolduc, Jean-François; Ouellet, Michel; Hany, Laurent; Tremblay, Michel J

    2017-02-15

    In this study, we investigated the effect of Toll-like receptor 2 (TLR2) ligation on the permissiveness of activated CD4(+) T cells to HIV-1 infection by focusing our experiments on the relative susceptibility of cell subsets based on their expression of CCR6. Purified primary human CD4(+) T cells were first subjected to a CD3/CD28 costimulation before treatment with the TLR2 agonist Pam3CSK4. Finally, cells were inoculated with R5-tropic HIV-1 particles that permit us to study the effect of TLR2 triggering on virus production at both population and single-cell levels. We report here that HIV-1 replication is augmented in CD3/CD28-costimulated CCR6(+) CD4(+) T cells upon engagement of the cell surface TLR2. Additional studies indicate that a higher virus entry and polymerization of the cortical actin are seen in this cell subset following TLR2 stimulation. A TLR2-mediated increase in the level of phosphorylated NF-κB p65 subunit was also detected in CD3/CD28-costimulated CCR6(+) CD4(+) T cells. We propose that, upon antigenic presentation, an engagement of TLR2 acts specifically on CCR6(+) CD4(+) T cells by promoting virus entry in an intracellular milieu more favorable for productive HIV-1 infection. Following primary infection, HIV-1 induces an immunological and structural disruption of the gut mucosa, leading to bacterial translocation and release of microbial components in the bloodstream. These pathogen-derived constituents include several agonists of Toll-like receptors that may affect gut-homing CD4(+) T cells, such as those expressing the chemokine receptor CCR6, which are highly permissive to HIV-1 infection. We demonstrate that TLR2 ligation in CD3/CD28-costimulated CCR6(+) CD4(+) T cells leads to enhanced virus production. Our results highlight the potential impact of bacterial translocation on the overall permissiveness of CCR6(+) CD4(+) T cells to productive HIV-1 infection. Copyright © 2017 American Society for Microbiology.

  8. Requirement of the eukaryotic translation initiation factor 4F complex in hepatitis E virus replication.

    PubMed

    Zhou, Xinying; Xu, Lei; Wang, Yijin; Wang, Wenshi; Sprengers, Dave; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2015-12-01

    Hepatitis E virus (HEV) infection, one of the foremost causes of acute hepatitis, is becoming a health problem of increasing magnitude. As other viruses, HEV exploits elements from host cell biochemistry, but we understand little as to which components of the human hepatocellular machinery are perverted for HEV multiplication. It is, however, known that the eukaryotic translation initiation factors 4F (eIF4F) complex, the key regulator of the mRNA-ribosome recruitment phase of translation initiation, serves as an important component for the translation and replication of many viruses. Here we aim to investigate the role of three subunits of the eIF4F complex: eukaryotic translation initiation factor 4A (eIF4A), eukaryotic translation initiation factor 4G (eIF4G) and eukaryotic translation initiation factor 4E (eIF4E) in HEV replication. We found that efficient replication of HEV requires eIF4A, eIF4G and eIF4E. Consistently, the negative regulatory factors of this complex: programmed cell death 4 (PDCD4) and eIF4E-binding protein 1 (4E-BP1) exert anti-HEV activities, which further illustrates the requirement for eIF4A and eIF4E in supporting HEV replication. Notably, phosphorylation of eIF4E induced by MNK1/2 activation is not involved in HEV replication. Although ribavirin and interferon-α (IFN-α), the most often-used off-label drugs for treating hepatitis E, interact with this complex, their antiviral activities are independent of eIF4E. In contrast, eIF4E silencing provokes enhanced anti-HEV activity of these compounds. Thus, HEV replication requires eIF4F complex and targeting essential elements of this complex provides important clues for the development of novel antiviral therapy against HEV. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Structural Protein VP2 of African Horse Sickness Virus Is Not Essential for Virus Replication In Vitro

    PubMed Central

    van de Water, Sandra G. P.; Potgieter, Christiaan A.; van Rijn, Piet A.

    2016-01-01

    ABSTRACT The Reoviridae family consists of nonenveloped multilayered viruses with a double-stranded RNA genome consisting of 9 to 12 genome segments. The Orbivirus genus of the Reoviridae family contains African horse sickness virus (AHSV), bluetongue virus, and epizootic hemorrhagic disease virus, which cause notifiable diseases and are spread by biting Culicoides species. Here, we used reverse genetics for AHSV to study the role of outer capsid protein VP2, encoded by genome segment 2 (Seg-2). Expansion of a previously found deletion in Seg-2 indicates that structural protein VP2 of AHSV is not essential for virus replication in vitro. In addition, in-frame replacement of RNA sequences in Seg-2 by that of green fluorescence protein (GFP) resulted in AHSV expressing GFP, which further confirmed that VP2 is not essential for virus replication. In contrast to virus replication without VP2 expression in mammalian cells, virus replication in insect cells was strongly reduced, and virus release from insect cells was completely abolished. Further, the other outer capsid protein, VP5, was not copurified with virions for virus mutants without VP2 expression. AHSV without VP5 expression, however, could not be recovered, indicating that outer capsid protein VP5 is essential for virus replication in vitro. Our results demonstrate for the first time that a structural viral protein is not essential for orbivirus replication in vitro, which opens new possibilities for research on other members of the Reoviridae family. IMPORTANCE Members of the Reoviridae family cause major health problems worldwide, ranging from lethal diarrhea caused by rotavirus in humans to economic losses in livestock production caused by different orbiviruses. The Orbivirus genus contains many virus species, of which bluetongue virus, epizootic hemorrhagic disease virus, and African horse sickness virus (AHSV) cause notifiable diseases according to the World Organization of Animal Health. Recently, it has

  10. Replication of influenza A virus in swine umbilical cord epithelial stem-like cells.

    PubMed

    Khatri, Mahesh; Chattha, Kuldeep S

    2015-01-01

    In this study, we describe the isolation and characterization of epithelial stem-like cells from the swine umbilical cord and their susceptibility to influenza virus infection. Swine umbilical cord epithelial stem cells (SUCECs) expressed stem cell and pluripotency associated markers such as SSEA-1, SSEA-4, TRA 1-60 and TRA 1-81 and Oct4. Morphologically, cells displayed polygonal morphology and were found to express epithelial markers; pancytokeratin, cytokeratin-18 and occludin; mesenchymal cell markers CD44, CD90 and haematopoietic cell marker CD45 were not detected on these cells. The cells had extensive proliferation and self- renewal properties. The cells also possessed immunomodulatory activity and inhibited the proliferation of T cells. Also, higher levels of anti-inflammatory cytokine IL-10 were detected in SUCEC-T cell co-cultures. The cells were multipotent and differentiated into lung epithelial cells when cultured in epithelial differentiation media. We also examined if SUCECs are susceptible to infection with influenza virus. SUCECs expressed sialic acid receptors, used by influenza virus for binding to cells. The 2009 pandemic influenza virus and swine influenza virus replicated in these cells. SUCECs due to their differentiation and immunoregulatory properties will be useful as cellular therapy in a pig model for human diseases. Additionally, our data indicate that influenza virus can infect SUCECs and may transmit influenza virus from mother to fetus through umbilical cord and transplantation of influenza virus-infected stem cells may transmit infection to recipients. Therefore, we propose that umbilical cord cells, in addition to other agents, should also be tested for influenza virus before cryopreservation for future use as a cell therapy for disease conditions.

  11. Hepatitis B virus: pathogenesis, viral intermediates, and viral replication.

    PubMed

    Lee, Jia-Yee; Locarnini, Stephen

    2004-05-01

    Although HBV has the potential to generate an almost limitless spectrum of quasispecies during chronic infection, the viability of the majority of these quasispecies is almost certainly impaired due to constraints imposed by the remarkably compact organization of the HBV genome. On the other hand, single mutations may affect more than one gene and result in complex and unpredictable effects on viral phenotype. Better understanding of the constraints imposed by gene overlap and of genotype-phenotype relationships should help in the development of improved antiviral strategies and management approaches. Although the probability of developing viral resistance is directly proportional to the intensity of selection pressure and the diversity of quasispecies, potent inhibition of HBV replication should be able to prevent development of drug resistance because mutagenesis is replication dependent. If viral replication can be suppressed for a sufficient length of time, viral load should decline to a point where the continued production of quasispecies with the potential to resist new drug treatments no longer occurs. Clinical application of this concept will require optimization of combination therapies analogous to highly active antiretroviral therapy (HAART) for HIV infection. Total cure of hepatitis B will require elimination of the intranuclear pool of viral minichromosomes, which will probably only be achieved by normal cell turnover, reactivation of host immunity, or elucidation of the antiviral mechanisms operating during cytokine clearance in acute hepatitis B (see Fig. 1).

  12. Involvement of matrix metalloproteinases in human immunodeficiency virus type 1-induced replication by clinical Mycobacterium avium isolates.

    PubMed

    Dezzutti, C S; Swords, W E; Guenthner, P C; Sasso, D R; Wahl, L M; Drummond, A H; Newman, G W; King, C H; Quinn, F D; Lal, R B

    1999-10-01

    The role of Mycobacterium avium isolates in modulating human immunodeficiency virus type 1 (HIV-1) replication was examined by use of an in vitro, resting T cell system. Two human clinical isolates (serotypes 1 and 4) but not an environmental M. avium isolate (serotype 2) enhanced HIV-1 replication. The M. avium-induced HIV-1 replication was not associated with cell activation or differential cytokine production or utilization. Addition of matrix metalloproteinase (MMP) inhibitors and their in vivo regulators, tissue inhibitors of metalloproteinases-1 and -2, abrogated M. avium-induced HIV-1 replication 80%-95%. The MMP inhibitors did not have any effect on the HIV-1 protease activity, suggesting that they may affect cellular processes. Furthermore, MMP-9 protein was differentially expressed after infection with clinical M. avium isolates and paralleled HIV-1 p24 production. Collectively, these data suggest that M. avium-induced HIV-1 replication is mediated, in part, through the induction of MMP-9.

  13. Replication of the Shrimp Virus WSSV Depends on Glutamate-Driven Anaplerosis.

    PubMed

    Li, Chun-Yuan; Wang, Yi-Jan; Huang, Shiao-Wei; Cheng, Cheng-Shun; Wang, Han-Ching

    2016-01-01

    Infection with the white spot syndrome virus (WSSV) induces a metabolic shift in shrimp that resembles the "Warburg effect" in mammalian cells. This effect is triggered via activation of the PI3K-Akt-mTOR pathway, and it is usually accompanied by the activation of other metabolic pathways that provide energy and direct the flow of carbon and nitrogen. Here we show that unlike the glutamine metabolism (glutaminolysis) seen in most cancer cells to double deaminate glutamine to produce glutamate and the TCA cycle intermediate α-ketoglutarate (α-KG), at the WSSV genome replication stage (12 hpi), although glutaminase (GLS) expression was upregulated, only glutamate was taken up by the hemocytes of WSSV-infected shrimp. At the same time, we observed an increase in the activity of the two enzymes that convert glutamate to α-KG, glutamate dehydrogenase (GDH) and aspartate aminotransferase (ASAT). α-ketoglutarate concentration was also increased. A series of inhibition experiments suggested that the up-regulation of GDH is regulated by mTORC2, and that the PI3K-mTORC1 pathway is not involved. Suppression of GDH and ASAT by dsRNA silencing showed that both of these enzymes are important for WSSV replication. In GDH-silenced shrimp, direct replenishment of α-KG rescued both ATP production and WSSV replication. From these results, we propose a model of glutamate-driven anaplerosis that fuels the TCA cycle via α-KG and ultimately supports WSSV replication.

  14. Zika Virus RNA Replication and Persistence in Brain and Placental Tissue.

    PubMed

    Bhatnagar, Julu; Rabeneck, Demi B; Martines, Roosecelis B; Reagan-Steiner, Sarah; Ermias, Yokabed; Estetter, Lindsey B C; Suzuki, Tadaki; Ritter, Jana; Keating, M Kelly; Hale, Gillian; Gary, Joy; Muehlenbachs, Atis; Lambert, Amy; Lanciotti, Robert; Oduyebo, Titilope; Meaney-Delman, Dana; Bolaños, Fernando; Saad, Edgar Alberto Parra; Shieh, Wun-Ju; Zaki, Sherif R

    2017-03-01

    Zika virus is causally linked with congenital microcephaly and may be associated with pregnancy loss. However, the mechanisms of Zika virus intrauterine transmission and replication and its tropism and persistence in tissues are poorly understood. We tested tissues from 52 case-patients: 8 infants with microcephaly who died and 44 women suspected of being infected with Zika virus during pregnancy. By reverse transcription PCR, tissues from 32 (62%) case-patients (brains from 8 infants with microcephaly and placental/fetal tissues from 24 women) were positive for Zika virus. In situ hybridization localized replicative Zika virus RNA in brains of 7 infants and in placentas of 9 women who had pregnancy losses during the first or second trimester. These findings demonstrate that Zika virus replicates and persists in fetal brains and placentas, providing direct evidence of its association with microcephaly. Tissue-based reverse transcription PCR extends the time frame of Zika virus detection in congenital and pregnancy-associated infections.

  15. Inhibition of Mayaro virus replication by cerulenin in Aedes albopictus cells.

    PubMed

    Pereira, H S; Rebello, M A

    1998-12-01

    The antibiotic cerulenin, an inhibitor of lipid synthesis, was shown to suppress Mayaro virus replication in Aedes albopictus cells at non-cytotoxic doses. Cerulenin blocked the incorporation of [3H]glycerol into lipids when present at any time post infection (p.i.). Cerulenin added at the beginning of infection inhibited the synthesis of virus proteins. However, when this antibiotic was added at later stages of infection, it had only a mild effect on the virus protein synthesis. The possibility that cerulenin acts by blocking an initial step in the Mayaro virus replication after virus entry and before late viral translation is discussed.

  16. Morphine inhibits intrahepatic interferon- alpha expression and enhances complete hepatitis C virus replication.

    PubMed

    Li, Yuan; Ye, Li; Peng, Jin-Song; Wang, Chuan-Qing; Luo, Guang-Xiang; Zhang, Ting; Wan, Qi; Ho, Wen-Zhe

    2007-09-01

    Heroin addicts are a high-risk group for hepatitis C virus (HCV) infection and the development of chronic HCV disease. We thus examined whether morphine, the active metabolite of heroin, has the ability to inhibit intrahepatic interferon (IFN)- alpha expression, facilitating HCV replication in human hepatocytes. Morphine inhibited intrahepatic IFN- alpha expression, which was associated with an increase in HCV replication in hepatocytes. Moreover, morphine compromised the anti-HCV effect of recombinant IFN- alpha . Investigation of the mechanism responsible for the morphine action revealed that morphine inhibited expression of IFN regulatory factor 5 in the hepatocytes. In addition, morphine suppressed the expression of p38, an important signal-transducing molecule involved in IFN- alpha -mediated anti-HCV activity. These findings indicate that morphine plays a cofactor role in facilitating HCV persistence in human hepatocytes.

  17. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence

    SciTech Connect

    Papaneri, Amy B.; Wirblich, Christoph; Cann, Jennifer A.; Cooper, Kurt; Jahrling, Peter B.; Schnell, Matthias J.; Blaney, Joseph E.

    2012-12-05

    We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RV{Delta}G-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RV{Delta}G-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RV{Delta}G-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RV{Delta}G-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.

  18. Interleukin-29 Functions Cooperatively with Interferon to Induce Antiviral Gene Expression and Inhibit Hepatitis C Virus Replication*

    PubMed Central

    Pagliaccetti, Nicole E.; Eduardo, Roger; Kleinstein, Steven H.; Mu, Xinmeng Jasmine; Bandi, Prasanthi; Robek, Michael D.

    2008-01-01

    The interferon (IFN)-related cytokine interleukin (IL)-29 (also known as IFN-λ1) inhibits virus replication by inducing a cellular antiviral response similar to that activated by IFN-α/β. However, because it binds to a unique receptor, this cytokine may function cooperatively with IFN-α/β or IFN-γ during natural infections to inhibit virus replication, and might also be useful therapeutically in combination with other cytokines to treat chronic viral infections such as hepatitis C (HCV). We therefore investigated the ability of IL-29 and IFN-α or IFN-γ to cooperatively inhibit virus replication and induce antiviral gene expression. Compared with the individual cytokines alone, the combination of IL-29 with IFN-α or IFN-γ was more effective at blocking vesicular stomatitis virus and HCV replication, and this cooperative antiviral activity correlated with the magnitude of induced antiviral gene expression. Although the combined effects of IL-29 and IFN-α were primarily additive, the IL-29/IFN-γ combination synergistically induced multiple genes and had the greatest antiviral activity. Two different mechanisms contributed to the enhanced gene expression induced by the cytokine combinations: increased activation of ISRE promoter elements and simultaneous activation of both ISRE and GAS elements within the same promoter. These findings provide new insight into the coregulation of a critical innate immune response by functionally distinct cytokine families. PMID:18757365

  19. Stimulation of BK virus DNA replication by NFI family transcription factors.

    PubMed

    Liang, Bo; Tikhanovich, Irina; Nasheuer, Heinz Peter; Folk, William R

    2012-03-01

    BK polyomavirus (BKV) establishes persistent, low-level, and asymptomatic infections in most humans and causes polyomavirus-associated nephropathy (PVAN) and other pathologies in some individuals. The activation of BKV replication following kidney transplantation, leading to viruria, viremia, and, ultimately, PVAN, is associated with immune suppression as well as inflammation and stress from ischemia-reperfusion injury of the allograft, but the stimuli and molecular mechanisms leading to these pathologies are not well defined. The replication of BKV DNA in cell cultures is regulated by the viral noncoding control region (NCCR) comprising the core origin and flanking sequences, to which BKV T antigen (Tag), cellular proteins, and small regulatory RNAs bind. Six nuclear factor I (NFI) binding sites occur in sequences flanking the late side of the core origin (the enhancer) of the archetype virus, and their mutation, either individually or in toto, reduces BKV DNA replication when placed in competition with templates containing intact BKV NCCRs. NFI family members interacted with the helicase domain of BKV Tag in pulldown assays, suggesting that NFI helps recruit Tag to the viral core origin and may modulate its function. However, Tag may not be the sole target of the replication-modulatory activities of NFI: the NFIC/CTF1 isotype stimulates BKV template replication in vitro at low concentrations of DNA polymerase-α primase (Pol-primase), and the p58 subunit of Pol-primase associates with NFIC/CTF1, suggesting that NFI also recruits Pol-primase to the NCCR. These results suggest that NFI proteins (and the signaling pathways that target them) activate BKV replication and contribute to the consequent pathologies caused by acute infection.

  20. uS10, a novel Npro-interacting protein, inhibits classical swine fever virus replication.

    PubMed

    Lv, Huifang; Dong, Wang; Qian, Gui; Wang, Jie; Li, Xiaomeng; Cao, Zhi; Lv, Qizhuang; Wang, Chengbao; Guo, Kangkang; Zhang, Yanming

    2017-07-01

    Classical swine fever (CSF) is a severe, febrile and highly contagious disease caused by classical swine fever virus (CSFV) that has resulted in huge economic losses in the pig industry worldwide. CSFV Npro has been actively studied but remains incompletely understood. Few studies have investigated the cellular proteins that interact with Npro and their participation in viral replication. Here, the yeast two-hybrid (Y2H) system was employed to screen Npro-interacting proteins from a porcine alveolar macrophage (PAM) cDNA library, and a blast search of the NCBI database revealed that 15 cellular proteins interact with Npro. The interaction of Npro with ribosomal protein S20, also known as universal S10 (uS10), was further confirmed by co-immunoprecipitation and glutathione S-transferase pull-down assays. Furthermore, uS10 overexpression inhibited CSFV replication, whereas the knockdown of uS10 promoted CSFV replication in PAMs. In addition, Npro or CSFV reduced uS10 expression in PAMs in a proteasome-dependent manner, indicating that Npro-uS10 interaction might contribute to persistent CSFV replication. Our previous research showed that CSFV decreases Toll-like receptor 3 (TLR3) expression. The results showed that uS10 knockdown reduced TLR3 expression, and that uS10 overexpression increased TLR3 expression. Notably, uS10 knockdown did not promote CSFV replication following TLR3 overexpression. Conversely, uS10 overexpression did not inhibit CSFV replication following TLR3 knockdown. These results revealed that uS10 inhibits CSFV replication by modulating TLR3 expression. This work addresses a novel aspect of the regulation of the innate antiviral immune response during CSFV infection.

  1. Investigations of Pro- and Anti-Apoptotic Factors Affecting African Swine Fever Virus Replication and Pathogenesis

    PubMed Central

    Dixon, Linda K.; Sánchez-Cordón, Pedro J.; Galindo, Inmaculada

    2017-01-01

    African swine fever virus (ASFV) is a large DNA virus that replicates predominantly in the cell cytoplasm and is the only member of the Asfarviridae family. The virus causes an acute haemorrhagic fever, African swine fever (ASF), in domestic pigs and wild boar resulting in the death of most infected animals. Apoptosis is induced at an early stage during virus entry or uncoating. However, ASFV encodes anti-apoptotic proteins which facilitate production of progeny virions. These anti-apoptotic proteins include A179L, a Bcl-2 family member; A224L, an inhibitor of apoptosis proteins (IAP) family member; EP153R a C-type lectin; and DP71L. The latter acts by inhibiting activation of the stress activated pro-apoptotic pathways pro-apoptotic pathways. The mechanisms by which these proteins act is summarised. ASF disease is characterised by massive apoptosis of uninfected lymphocytes which reduces the effectiveness of the immune response, contributing to virus pathogenesis. Mechanisms by which this apoptosis is induced are discussed. PMID:28841179

  2. Investigations of Pro- and Anti-Apoptotic Factors Affecting African Swine Fever Virus Replication and Pathogenesis.

    PubMed

    Dixon, Linda K; Sánchez-Cordón, Pedro J; Galindo, Inmaculada; Alonso, Covadonga

    2017-08-25

    African swine fever virus (ASFV) is a large DNA virus that replicates predominantly in the cell cytoplasm and is the only member of the Asfarviridae family. The virus causes an acute haemorrhagic fever, African swine fever (ASF), in domestic pigs and wild boar resulting in the death of most infected animals. Apoptosis is induced at an early stage during virus entry or uncoating. However, ASFV encodes anti-apoptotic proteins which facilitate production of progeny virions. These anti-apoptotic proteins include A179L, a Bcl-2 family member; A224L, an inhibitor of apoptosis proteins (IAP) family member; EP153R a C-type lectin; and DP71L. The latter acts by inhibiting activation of the stress activated pro-apoptotic pathways pro-apoptotic pathways. The mechanisms by which these proteins act is summarised. ASF disease is characterised by massive apoptosis of uninfected lymphocytes which reduces the effectiveness of the immune response, contributing to virus pathogenesis. Mechanisms by which this apoptosis is induced are discussed.

  3. H7N9 Influenza A Virus Exhibits Importin-α7-Mediated Replication in the Mammalian Respiratory Tract.

    PubMed

    Bertram, Stephanie; Thiele, Swantje; Dreier, Carola; Resa-Infante, Patricia; Preuß, Annette; van Riel, Debby; Mok, Chris K P; Schwalm, Folker; Peiris, Joseph S M; Klenk, Hans-Dieter; Gabriel, Gülsah

    2017-04-01

    The acute respiratory distress syndrome (ARDS) is the leading cause of death in influenza A virus (IAV)-infected patients. Hereby, the cellular importin-α7 gene plays a major role. It promotes viral replication in the lung, thereby increasing the risk for the development of pneumonia complicated by ARDS. Herein, we analyzed whether the recently emerged H7N9 avian IAV has already adapted to human importin-α7 use, which is associated with high-level virus replication in the mammalian lung. Using a cell-based viral polymerase activity assay, we could detect a decreased H7N9 IAV polymerase activity when importin-α7 was silenced by siRNA. Moreover, virus replication was diminished in the murine cells lacking the importin-α7 gene. Consistently, importin-α7 knockout mice presented reduced pulmonary virus titers and lung lesions as well as enhanced survival rates compared to wild-type mice. In summary, our results show that H7N9 IAV have acquired distinct features of adaptation to human host factors that enable enhanced virulence in mammals. In particular, adaptation to human importin-α7 mediates elevated virus replication in the mammalian lung, which might have contributed to ARDS observed in H7N9-infected patients.

  4. Redistribution of Endosomal Membranes to the African Swine Fever Virus Replication Site.

    PubMed

    Cuesta-Geijo, Miguel Ángel; Barrado-Gil, Lucía; Galindo, Inmaculada; Muñoz-Moreno, Raquel; Alonso, Covadonga

    2017-06-01

    African swine fever virus (ASFV) infection causes endosomal reorganization. Here, we show that the virus causes endosomal congregation close to the nucleus as the infection progresses, which is necessary to build a compact viral replication organelle. ASFV enters the cell by the endosomal pathway and reaches multivesicular late endosomes. Upon uncoating and fusion, the virus should exit to the cytosol to start replication. ASFV remodels endosomal traffic and redistributes endosomal membranes to the viral replication site. Virus replication also depends on endosomal membrane phosphoinositides (PtdIns) synthesized by PIKfyve. Endosomes could act as platforms providing membranes and PtdIns, necessary for ASFV replication. Our study has revealed that ASFV reorganizes endosome dynamics, in order to ensure a productive infection.

  5. Redistribution of Endosomal Membranes to the African Swine Fever Virus Replication Site

    PubMed Central

    Cuesta-Geijo, Miguel Ángel; Barrado-Gil, Lucía; Galindo, Inmaculada; Muñoz-Moreno, Raquel; Alonso, Covadonga

    2017-01-01

    African swine fever virus (ASFV) infection causes endosomal reorganization. Here, we show that the virus causes endosomal congregation close to the nucleus as the infection progresses, which is necessary to build a compact viral replication organelle. ASFV enters the cell by the endosomal pathway and reaches multivesicular late endosomes. Upon uncoating and fusion, the virus should exit to the cytosol to start replication. ASFV remodels endosomal traffic and redistributes endosomal membranes to the viral replication site. Virus replication also depends on endosomal membrane phosphoinositides (PtdIns) synthesized by PIKfyve. Endosomes could act as platforms providing membranes and PtdIns, necessary for ASFV replication. Our study has revealed that ASFV reorganizes endosome dynamics, in order to ensure a productive infection. PMID:28587154

  6. Positive-strand RNA viruses stimulate host phosphatidylcholine synthesis at viral replication sites

    PubMed Central

    Zhang, Jiantao; Zhang, Zhenlu; Chukkapalli, Vineela; Nchoutmboube, Jules A.; Li, Jianhui; Randall, Glenn; Belov, George A.; Wang, Xiaofeng

    2016-01-01

    All positive-strand RNA viruses reorganize host intracellular membranes to assemble their viral replication complexes (VRCs); however, how these viruses modulate host lipid metabolism to accommodate such membrane proliferation and rearrangements is not well defined. We show that a significantly increased phosphatidylcholine (PC) content is associated with brome mosaic virus (BMV) replication in both natural host barley and alternate host yeast based on a lipidomic analysis. Enhanced PC levels are primarily associated with the perinuclear ER membrane, where BMV replication takes place. More specifically, BMV replication protein 1a interacts with and recruits Cho2p (choline requiring 2), a host enzyme involved in PC synthesis, to the site of viral replication. These results suggest that PC synthesized at the site of VRC assembly, not the transport of existing PC, is responsible for the enhanced accumulation. Blocking PC synthesis by deleting the CHO2 gene resulted in VRCs with wider diameters than those in wild-type cells; however, BMV replication was significantly inhibited, highlighting the critical role of PC in VRC formation and viral replication. We further show that enhanced PC levels also accumulate at the replication sites of hepatitis C virus and poliovirus, revealing a conserved feature among a group of positive-strand RNA viruses. Our work also highlights a potential broad-spectrum antiviral strategy that would disrupt PC synthesis at the sites of viral replication but would not alter cellular processes. PMID:26858414

  7. Roles of nonstructural polyproteins and cleavage products in regulating Sindbis virus RNA replication and transcription.

    PubMed Central

    Lemm, J A; Rice, C M

    1993-01-01

    Using vaccinia virus to express Sindbis virus (SIN) nonstructural proteins (nsPs) and template RNAs, we showed previously that synthesis of all three viral RNAs occurred only during expression of either the entire nonstructural coding region or the polyprotein precursors P123 and P34. In this report, the vaccinia virus system was used to express cleavage-defective polyproteins and nsP4 proteins containing various N-terminal extensions to directly examine the roles of the P123 and P34 polyproteins in RNA replication. Replication and subgenomic mRNA transcription occurred during coexpression of P34 and P123 polyproteins in which cleavage was blocked at either or both of the 1/2 and 2/3 sites. For all cleavage-defective P123 polyproteins, however, the ratio of subgenomic to genomic RNA was decreased, suggesting that both the 1/2 and 2/3 cleavages are required for efficient subgenomic RNA transcription. These studies indicate that the uncleaved P123 polyprotein can function as a component of the viral replicase capable of synthesizing both plus- and minus-strand RNAs. In contrast, cleavage-defective P34 was unable to function in RNA replication, even in complementation experiments in which minus-strand RNAs were provided by nsP4. A P34 polyprotein whose cleavage site was not altered could only function in RNA replication in the presence of an active nsP2 protease. Although nsP4, the putative RNA polymerase, was capable of synthesizing only minus-strand RNAs during coexpression with P123, the addition of only 22 upstream residues to nsP4 allowed both replication and transcription of subgenomic RNA to occur. These data show that the conserved domains of both nsP3 and the nsP4 polymerase do not need to be present in a P34 polyprotein to form a functional plus-strand replicase-transcriptase and suggest that the presence of an active nsP2 protease and a cleavable 3/4 site correlates with synthesis of all virus-specific RNA species. Images PMID:8445717

  8. Interferon-Stimulated Poly(ADP-Ribose) Polymerases Are Potent Inhibitors of Cellular Translation and Virus Replication

    PubMed Central

    Atasheva, Svetlana; Frolova, Elena I.

    2014-01-01

    ABSTRACT The innate immune response is the first line of defense against most viral infections. Its activation promotes cell signaling, which reduces virus replication in infected cells and leads to induction of the antiviral state in yet-uninfected cells. This inhibition of virus replication is a result of the activation of a very broad spectrum of specific cellular genes, with each of their products usually making a small but detectable contribution to the overall antiviral state. The lack of a strong, dominant function for each gene product and the ability of many viruses to interfere with the development of the antiviral response strongly complicate identification of the antiviral activity of the activated individual cellular genes. However, we have previously developed and applied a new experimental system which allows us to define a critical function of some members of the poly(ADP-ribose) polymerase (PARP) family in clearance of Venezuelan equine encephalitis virus mutants from infected cells. In this new study, we demonstrate that PARP7, PARP10, and the long isoform of PARP12 (PARP12L) function as important and very potent regulators of cellular translation and virus replication. The translation inhibition and antiviral effect of PARP12L appear to be mediated by more than one protein function and are a result of its direct binding to polysomes, complex formation with cellular RNAs (which is determined by both putative RNA-binding and PARP domains), and catalytic activity. IMPORTANCE PMID:24335297

  9. Oleanane triterpenes from the flowers of Camellia japonica inhibit porcine epidemic diarrhea virus (PEDV) replication.

    PubMed

    Yang, Jun-Li; Ha, Thi-Kim-Quy; Dhodary, Basanta; Pyo, Euisun; Nguyen, Ngoc Hieu; Cho, Hyomoon; Kim, Eunhee; Oh, Won Keun

    2015-02-12

    Porcine epidemic diarrhea virus (PEDV) infections have resulted in a severe economic loss in the swine industry in many countries due to no effective treatment approach. Fifteen oleanane triterpenes (1-15), including nine new ones (1-4 and 10-14), were isolated from the flowers of Camellia japonica, and their molecular structures were determined by extensive spectroscopic methods. These compounds were evaluated for their antiviral activity against PEDV replication, and the structure-activity relationships (SARs) were discussed. Compounds 6, 9, 11, and 13 showed most potent inhibitory effects on PEDV replication. They were found to inhibit PEDV genes encoding GP6 nucleocapsid, GP2 spike, and GP5 membrane protein synthesis based on RT-PCR data. Western blot analysis also demonstrated their inhibitory effects on PEDV GP6 nucleocapsid and GP2 spike protein synthesis during viral replication. The present study suggested the potential of compounds 6, 9, 11, and 13 as promising scaffolds for treating PEDV infection via inhibiting viral replication.

  10. Differential Host Response, Rather Than Early Viral Replication Efficiency, Correlates with Pathogenicity Caused by Influenza Viruses

    PubMed Central

    Askovich, Peter S.; Sanders, Catherine J.; Rosenberger, Carrie M.; Diercks, Alan H.; Dash, Pradyot; Navarro, Garnet; Vogel, Peter; Doherty, Peter C.; Thomas, Paul G.; Aderem, Alan

    2013-01-01

    Influenza viruses exhibit large, strain-dependent differences in pathogenicity in mammalian hosts. Although the characteristics of severe disease, including uncontrolled viral replication, infection of the lower airway, and highly inflammatory cytokine responses have been extensively documented, the specific virulence mechanisms that distinguish highly pathogenic strains remain elusive. In this study, we focused on the early events in influenza infection, measuring the growth rate of three strains of varying pathogenicity in the mouse airway epithelium and simultaneously examining the global host transcriptional response over the first 24 hours. Although all strains replicated equally rapidly over the first viral life-cycle, their growth rates in both lung and tracheal tissue strongly diverged at later times, resulting in nearly 10-fold differences in viral load by 24 hours following infection. We identified separate networks of genes in both the lung and tracheal tissues whose rapid up-regulation at early time points by specific strains correlated with a reduced viral replication rate of those strains. The set of early-induced genes in the lung that led to viral growth restriction is enriched for both NF-κB binding site motifs and members of the TREM1 and IL-17 signaling pathways, suggesting that rapid, NF-κB –mediated activation of these pathways may contribute to control of viral replication. Because influenza infection extending into the lung generally results in severe disease, early activation of these pathways may be one factor distinguishing high- and low-pathogenicity strains. PMID:24073225

  11. Differential host response, rather than early viral replication efficiency, correlates with pathogenicity caused by influenza viruses.

    PubMed

    Askovich, Peter S; Sanders, Catherine J; Rosenberger, Carrie M; Diercks, Alan H; Dash, Pradyot; Navarro, Garnet; Vogel, Peter; Doherty, Peter C; Thomas, Paul G; Aderem, Alan

    2013-01-01

    Influenza viruses exhibit large, strain-dependent differences in pathogenicity in mammalian hosts. Although the characteristics of severe disease, including uncontrolled viral replication, infection of the lower airway, and highly inflammatory cytokine responses have been extensively documented, the specific virulence mechanisms that distinguish highly pathogenic strains remain elusive. In this study, we focused on the early events in influenza infection, measuring the growth rate of three strains of varying pathogenicity in the mouse airway epithelium and simultaneously examining the global host transcriptional response over the first 24 hours. Although all strains replicated equally rapidly over the first viral life-cycle, their growth rates in both lung and tracheal tissue strongly diverged at later times, resulting in nearly 10-fold differences in viral load by 24 hours following infection. We identified separate networks of genes in both the lung and tracheal tissues whose rapid up-regulation at early time points by specific strains correlated with a reduced viral replication rate of those strains. The set of early-induced genes in the lung that led to viral growth restriction is enriched for both NF-κB binding site motifs and members of the TREM1 and IL-17 signaling pathways, suggesting that rapid, NF-κB -mediated activation of these pathways may contribute to control of viral replication. Because influenza infection extending into the lung generally results in severe disease, early activation of these pathways may be one factor distinguishing high- and low-pathogenicity strains.

  12. Natural compounds isolated from Brazilian plants are potent inhibitors of hepatitis C virus replication in vitro.

    PubMed

    Jardim, A C G; Igloi, Z; Shimizu, J F; Santos, V A F F M; Felippe, L G; Mazzeu, B F; Amako, Y; Furlan, M; Harris, M; Rahal, P

    2015-03-01

    Compounds extracted from plants can provide an alternative approach to new therapies. They present characteristics such as high chemical diversity, lower cost of production and milder or inexistent side effects compared with conventional treatment. The Brazilian flora represents a vast, largely untapped, resource of potential antiviral compounds. In this study, we investigate the antiviral effects of a panel of natural compounds isolated from Brazilian plants species on hepatitis C virus (HCV) genome replication. To do this we used firefly luciferase-based HCV sub-genomic replicons of genotypes 2a (JFH-1), 1b and 3a and the compounds were assessed for their effects on both HCV replication and cellular toxicity. Initial screening of compounds was performed using the maximum non-toxic concentration and 4 compounds that exhibited a useful therapeutic index (favourable ratio of cytotoxicity to antiviral potency) were selected for extra analysis. The compounds APS (EC50=2.3μM), a natural alkaloid isolated from Maytrenus ilicifolia, and the lignans 3(∗)43 (EC50=4.0μM), 3(∗)20 (EC50=8.2μM) and 5(∗)362 (EC50=38.9μM) from Peperomia blanda dramatically inhibited HCV replication as judged by reductions in luciferase activity and HCV protein expression in both the subgenomic and infectious systems. We further show that these compounds are active against a daclatasvir resistance mutant subgenomic replicon. Consistent with inhibition of genome replication, production of infectious JFH-1 virus was significantly reduced by all 4 compounds. These data are the first description of Brazilian natural compounds possessing anti-HCV activity and further analyses are being performed in order to investigate the mode of action of those compounds.

  13. Prevailing PA Mutation K356R in Avian Influenza H9N2 Virus Increases Mammalian Replication and Pathogenicity

    PubMed Central

    Xu, Guanlong; Zhang, Xuxiao; Gao, Weihua; Wang, Chenxi; Wang, Jinliang; Sun, Honglei; Sun, Yipeng; Guo, Lu; Zhang, Rui; Chang, Kin-Chow; Liu, Jinhua

    2016-01-01

    ABSTRACT Adaptation of the viral polymerase complex comprising PB1, PB2, and PA is necessary for efficient influenza A virus replication in new host species. We found that PA mutation K356R (PA-K356R) has become predominant since 2014 in avian H9N2 viruses in China as with seasonal human H1N1 viruses. The same mutation is also found in most human isolates of emergent avian H7N9 and H10N8 viruses whose six internal gene segments are derived from the H9N2 virus. We further demonstrated the mammalian adaptive functionality of the PA-K356R mutation. Avian H9N2 virus with the PA-K356R mutation in human A549 cells showed increased nuclear accumulation of PA and increased viral polymerase activity that resulted in elevated levels of viral transcription and virus output. The same mutant virus in mice also enhanced virus replication and caused lethal infection. In addition, combined mutation of PA-K356R and PB2-E627K, a well-known mammalian adaptive marker, in the H9N2 virus showed further cooperative increases in virus production and severity of infection in vitro and in vivo. In summary, PA-K356R behaves as a novel mammalian tropism mutation, which, along with other mutations such as PB2-E627K, might render avian H9N2 viruses adapted for human infection. IMPORTANCE Mutations of the polymerase complex (PB1, PB2, and PA) of influenza A virus are necessary for viral adaptation to new hosts. This study reports a novel and predominant mammalian adaptive mutation, PA-K356R, in avian H9N2 viruses and human isolates of emergent H7N9 and H10N8 viruses. We found that PA-356R in H9N2 viruses causes significant increases in virus replication and severity of infection in human cells and mice and that PA-K356R cooperates with the PB2-E627K mutation, a well-characterized human adaptive marker, to exacerbate mammalian infection in vitro and in vivo. Therefore, the PA-K356R mutation is a significant adaptation in H9N2 viruses and related H7N9 and H10N8 reassortants toward human

  14. Inhibition of porcine reproductive and respiratory syndrome virus replication by flavaspidic acid AB.

    PubMed

    Yang, Qian; Gao, Li; Si, Jianyong; Sun, Yipeng; Liu, Jinhua; Cao, Li; Feng, Wen-Hai

    2013-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) represents a significant challenge to the swine industry worldwide. Current control strategies against PRRSV are still inadequate and there is an urgent need for new antiviral therapies. Flavaspidic acid AB (FA-AB) is a compound derived from Dryopteris crassirhizoma, a traditional antiviral Chinese medicine. Here, we first identified its anti-PRRSV activity through targeting multiple stages in PRRSV infection in vitro. Our studies demonstrated that FA-AB could inhibit the internalization and cell-to-cell spreading of PRRSV, but not block PRRSV binding to cells. By monitoring the kinetics of PRRSV replication, we showed that FA-AB significantly suppressed PRRSV replication when treatment was initiated 24h after virus infection. Furthermore, we confirmed that FA-AB was able to significantly induce IFN-α, IFN-β, and IL1-β expression in porcine alveolar macrophages, suggesting that induction of antiviral cytokines by FA-AB could contribute to FA-AB induced inhibition of PRRSV replication. In conclusion, we provide a foundation for the possibility to develop a new therapeutic agent to control PRRSV infection.

  15. Replication of avian influenza viruses in equine tracheal epithelium but not in horses.

    PubMed

    Chambers, Thomas M; Balasuriya, Udeni B R; Reedy, Stephanie E; Tiwari, Ashish

    2013-12-01

    We evaluated a hypothesis that horses are susceptible to avian influenza viruses by in vitro testing, using explanted equine tracheal epithelial cultures, and in vivo testing by aerosol inoculation of ponies. Results showed that several subtypes of avian influenza viruses detectably replicated in vitro. Three viruses with high in vitro replication competence were administered to ponies. None of the three demonstrably replicated or caused disease signs in ponies. While these results do not exhaustively test our hypothesis, they do highlight that the tracheal explant culture system is a poor predictor of in vivo infectivity.

  16. Selective replication of oncolytic virus M1 results in a bystander killing effect that is potentiated by Smac mimetics.

    PubMed

    Cai, Jing; Lin, Yuan; Zhang, Haipeng; Liang, Jiankai; Tan, Yaqian; Cavenee, Webster K; Yan, Guangmei

    2017-06-27

    Oncolytic virotherapy is a treatment modality that uses native or genetically modified viruses that selectively replicate in and kill tumor cells. Viruses represent a type of pathogen-associated molecular pattern and thereby induce the up-regulation of dozens of cytokines via activating the host innate immune system. Second mitochondria-derived activator of caspases (Smac) mimetic compounds (SMCs), which antagonize the function of inhibitor of apoptosis proteins (IAPs) and induce apoptosis, sensitize tumor cells to multiple cytokines. Therefore, we sought to determine whether SMCs sensitize tumor cells to cytokines induced by the oncolytic M1 virus, thus enhancing a bystander killing effect. Here, we report that SMCs potentiate the oncolytic effect of M1 in vitro, in vivo, and ex vivo. This strengthened oncolytic efficacy resulted from the enhanced bystander killing effect caused by the M1 virus via cytokine induction. Through a microarray analysis and subsequent validation using recombinant cytokines, we identified IL-8, IL-1A, and TRAIL as the key cytokines in the bystander killing effect. Furthermore, SMCs increased the replication of M1, and the accumulation of virus protein induced irreversible endoplasmic reticulum stress- and c-Jun N-terminal kinase-mediated apoptosis. Nevertheless, the combined treatment with M1 and SMCs had little effect on normal and human primary cells. Because SMCs selectively and significantly enhance the bystander killing effect and the replication of oncolytic virus M1 specifically in cancer cells, this combined treatment may represent a promising therapeutic strategy.

  17. Verdinexor, a Novel Selective Inhibitor of Nuclear Export, Reduces Influenza A Virus Replication In Vitro and In Vivo

    PubMed Central

    Perwitasari, Olivia; Johnson, Scott; Yan, Xiuzhen; Howerth, Elizabeth; Shacham, Sharon; Landesman, Yosef; Baloglu, Erkan; McCauley, Dilara; Tamir, Sharon; Tompkins, S. Mark

    2014-01-01

    ABSTRACT Influenza is a global health concern, causing death, morbidity, and economic losses. Chemotherapeutics that target influenza virus are available; however, rapid emergence of drug-resistant strains is common. Therapeutic targeting of host proteins hijacked by influenza virus to facilitate replication is an antiviral strategy to reduce the development of drug resistance. Nuclear export of influenza virus ribonucleoprotein (vRNP) from infected cells has been shown to be mediated by exportin 1 (XPO1) interaction with viral nuclear export protein tethered to vRNP. RNA interference screening has identified XPO1 as a host proinfluenza factor where XPO1 silencing results in reduced influenza virus replication. The Streptomyces metabolite XPO1 inhibitor leptomycin B (LMB) has been shown to limit influenza virus replication in vitro; however, LMB is toxic in vivo, which makes it unsuitable for therapeutic use. In this study, we tested the anti-influenza virus activity of a new class of orally available small-molecule selective inhibitors of nuclear export, specifically, the XPO1 antagonist KPT-335 (verdinexor). Verdinexor was shown to potently and selectively inhibit vRNP export and effectively inhibited the replication of various influenza virus A and B strains in vitro, including pandemic H1N1 virus, highly pathogenic H5N1 avian influenza virus, and the recently emerged H7N9 strain. In vivo, prophylactic and therapeutic administration of verdinexor protected mice against disease pathology following a challenge with influenza virus A/California/04/09 or A/Philippines/2/82-X79, as well as reduced lung viral loads and proinflammatory cytokine expression, while having minimal toxicity. These studies show that verdinexor acts as a novel anti-influenza virus therapeutic agent. IMPORTANCE Antiviral drugs represent important means of influenza virus control. However, substantial resistance to currently approved influenza therapeutic drugs has developed. New antiviral

  18. A self-perpetuating repressive state of a viral replication protein blocks superinfection by the same virus

    PubMed Central

    Zhang, Xiao-Feng; Sun, Rong; Guo, Qin; Zhang, Shaoyan; Li, Dawei

    2017-01-01

    Diverse animal and plant viruses block the re-infection of host cells by the same or highly similar viruses through superinfection exclusion (SIE), a widely observed, yet poorly understood phenomenon. Here we demonstrate that SIE of turnip crinkle virus (TCV) is exclusively determined by p28, one of the two replication proteins encoded by this virus. p28 expressed from a TCV replicon exerts strong SIE to a different TCV replicon. Transiently expressed p28, delivered simultaneously with, or ahead of, a TCV replicon, largely recapitulates this repressive activity. Interestingly, p28-mediated SIE is dramatically enhanced by C-terminally fused epitope tags or fluorescent proteins, but weakened by N-terminal modifications, and it inversely correlates with the ability of p28 to complement the replication of a p28-defective TCV replicon. Strikingly, p28 in SIE-positive cells forms large, mobile punctate inclusions that trans-aggregate a non-coalescing, SIE-defective, yet replication-competent p28 mutant. These results support a model postulating that TCV SIE is caused by the formation of multimeric p28 complexes capable of intercepting fresh p28 monomers translated from superinfector genomes, thereby abolishing superinfector replication. This model could prove to be applicable to other RNA viruses, and offer novel targets for antiviral therapy. PMID:28267773

  19. Determinants of the Bovine Leukemia Virus Envelope Glycoproteins Involved in Infectivity, Replication and Pathogenesis.

    PubMed

    de Brogniez, Alix; Mast, Jan; Willems, Luc

    2016-03-24

    Interaction of viral envelope proteins with host cell membranes has been extensively investigated in a number of systems. However, the biological relevance of these interactions in vivo has been hampered by the absence of adequate animal models. Reverse genetics using the bovine leukemia virus (BLV) genome highlighted important functional domains of the envelope protein involved in the viral life cycle. For example, immunoreceptor tyrosine-based activation motifs (ITAM) of the envelope transmembrane protein (TM) are essential determinants of infection. Although cell fusion directed by the aminoterminal end of TM is postulated to be essential, some proviruses expressing fusion-deficient envelope proteins unexpectedly replicate at wild-type levels. Surprisingly also, a conserved N-linked glycosylation site of the extracellular envelope protein (SU) inhibits cell-to-cell transmission suggesting that infectious potential has been limited during evolution. In this review, we summarize the knowledge pertaining to the BLV envelope protein in the context of viral infection, replication and pathogenesis.

  20. Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels

    PubMed Central

    Thomson, Alexander M.; Gillespie, Peter J.

    2010-01-01

    In the metazoan replication timing program, clusters of replication origins located in different subchromosomal domains fire at different times during S phase. We have used Xenopus laevis egg extracts to drive an accelerated replication timing program in mammalian nuclei. Although replicative stress caused checkpoint-induced slowing of the timing program, inhibition of checkpoint kinases in an unperturbed S phase did not accelerate it. Lowering cyclin-dependent kinase (Cdk) activity slowed both replication rate and progression through the timing program, whereas raising Cdk activity increased them. Surprisingly, modest alteration of Cdk activity changed the amount of DNA synthesized during different stages of the timing program. This was associated with a change in the number of active replication factories, whereas the distribution of origins within active factories remained relatively normal. The ability of Cdks to differentially effect replication initiation, factory activation, and progression through the timing program provides new insights into the way that chromosomal DNA replication is organized during S phase. PMID:20083602

  1. How the Double Spherules of Infectious Bronchitis Virus Impact Our Understanding of RNA Virus Replicative Organelles

    PubMed Central

    Neuman, Benjamin W.

    2013-01-01

    ABSTRACT Powered by advances in electron tomography, recent studies have extended our understanding of how viruses construct “replication factories” inside infected cells. Their function, however, remains an area of speculation with important implications for human health. It is clear from these studies that whatever their purpose, organelle structure is dynamic (M. Ulasli, M. H. Verheije, C. A. de Haan, and F. Reggiori, Cell. Microbiol. 12:844-861, 2010) and intricate (K. Knoops, M. Kikkert, S. H. Worm, J. C. Zevenhoven-Dobbe, Y. van der Meer, et al., PLOS Biol. 6:e226, 2008). But by concentrating on medically important viruses, these studies have failed to take advantage of the genetic variation inherent in a family of viruses that is as diverse as the archaea, bacteria, and eukaryotes combined (C. Lauber, J. J. Goeman, M. del Carmen Parquet, P. T. Nga, E. J. Snijder, et al., PLOS Pathog. 9:e1003500, 2013). In this climate, Maier et al. (H. J. Maier, P. C. Hawes, E. M. Cottam, J. Mantell, P. Verkade, et al., mBio 4:e00801-13, 2013) explored the replicative structures formed by an avian coronavirus that appears to have diverged at an early point in coronavirus evolution and shed light on controversial aspects of viral biology. PMID:24345746

  2. Involvement of the skin during bluetongue virus infection and replication in the ruminant host.

    PubMed

    Darpel, Karin E; Monaghan, Paul; Simpson, Jennifer; Anthony, Simon J; Veronesi, Eva; Brooks, Harriet W; Elliott, Heather; Brownlie, Joe; Takamatsu, Haru-Hisa; Mellor, Philip S; Mertens, Peter Pc

    2012-04-30

    Bluetongue virus (BTV) is a double stranded (ds) RNA virus (genus Orbivirus; family Reoviridae), which is considered capable of infecting all species of domestic and wild ruminants, although clinical signs are seen mostly in sheep. BTV is arthropod-borne ("arbovirus") and able to productively infect and replicate in many different cell types of both insects and mammalian hosts. Although the organ and cellular tropism of BTV in ruminants has been the subject of several studies, many aspects of its pathogenesis are still poorly understood, partly because of inherent problems in distinguishing between "virus replication" and "virus presence".BTV replication and organ tropism were studied in a wide range of infected sheep tissues, by immuno-fluorescence-labeling of non-structural or structural proteins (NS2 or VP7 and core proteins, respectively) using confocal microscopy to distinguish between virus presence and replication. These results are compared to gross and microscopic pathological findings in selected organs from infected sheep. Replication was demonstrated in two major cell types: vascular endothelial cells, and agranular leukocytes which morphologically resemble lymphocytes, monocytes/macrophages and/or dendritic cells. Two organs (the skin and tonsils) were shown to support relatively high levels of BTV replication, although they have not previously been proposed as important replication sites during BTV infection. The high level of BTV replication in the skin is thought to be of major significance for the pathogenesis and transmission of BTV (via biting insects) and a refinement of our current model of BTV pathogenesis is discussed.

  3. DNA replication origin activation in space and time.

    PubMed

    Fragkos, Michalis; Ganier, Olivier; Coulombe, Philippe; Méchali, Marcel

    2015-06-01

    DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.

  4. A replication-incompetent influenza virus bearing the HN glycoprotein of human parainfluenza virus as a bivalent vaccine.

    PubMed

    Kobayashi, Hirofumi; Iwatsuki-Horimoto, Kiyoko; Kiso, Maki; Uraki, Ryuta; Ichiko, Yurie; Takimoto, Toru; Kawaoka, Yoshihiro

    2013-12-16

    Influenza virus and human parainfluenza virus (HPIV) are major etiologic agents of acute respiratory illness in young children. Inactivated and live attenuated influenza vaccines are approved in several countries, yet no vaccine is licensed for HPIV. We previously showed that a replication-incompetent PB2-knockout (PB2-KO) virus that possesses a reporter gene in the coding region of the PB2 segment can serve as a platform for a bivalent vaccine. To develop a bivalent vaccine against influenza and parainfluenza virus, here, we generated a PB2-KO virus possessing the hemagglutinin-neuraminidase (HN) glycoprotein of HPIV type 3 (HPIV3), a major surface antigen of HPIV, in its PB2 segment. We confirmed that this virus replicated only in PB2-expressing cells and expressed HN. We then examined the efficacy of this virus as a bivalent vaccine in a hamster model. High levels of virus-specific IgG antibodies in sera and IgA, IgG, and IgM antibodies in bronchoalveolar lavage fluids against both influenza virus and HPIV3 were detected from hamsters immunized with this virus. The neutralizing capability of these serum antibodies was also confirmed. Moreover, the immunized hamsters were completely protected from virus challenge with influenza virus or HPIV3. These results indicate that PB2-KO virus expressing the HN of HPIV3 has the potential to be a novel bivalent vaccine against influenza and human parainfluenza viruses.

  5. The Synthetic Immunomodulator Murabutide Controls Human Immunodeficiency Virus Type 1 Replication at Multiple Levels in Macrophages and Dendritic Cells

    PubMed Central

    Darcissac, Edith C. A.; Truong, Marie-José; Dewulf, Joëlle; Mouton, Yves; Capron, André; Bahr, George M.

    2000-01-01

    Macrophages and dendritic cells are known to play an important role in the establishment and persistence of human immunodeficiency virus (HIV) infection. Besides antiretroviral therapy, several immune-based interventions are being evaluated with the aim of achieving better control of virus replication in reservoir cells. Murabutide is a safe synthetic immunomodulator presenting a capacity to enhance nonspecific resistance against viral infections and to target cells of the reticuloendothelial system. In this study, we have examined the ability of Murabutide to control HIV type 1 (HIV-1) replication in acutely infected monocyte-derived macrophages (MDMs) and dendritic cells (MDDCs). Highly significant suppression of viral replication was consistently observed in Murabutide-treated cultures of both cell types. Murabutide did not affect virus entry, reverse transcriptase activity, or early proviral DNA formation in the cytoplasm of infected cells. However, treated MDMs and MDDCs showed a dramatic reduction in nuclear viral two-long terminal repeat circular form and viral mRNA transcripts. This HIV-1-suppressive activity was not mediated by inhibiting cellular DNA synthesis or by activating p38 mitogen-activated protein kinase. Furthermore, Murabutide-stimulated cells expressed reduced CD4 and CCR5 receptors and secreted high levels of β-chemokines, although neutralization of the released chemokines did not alter the HIV-1-suppressive activity of Murabutide. These results provide evidence that a clinically acceptable immunomodulator can activate multiple effector pathways in macrophages and in dendritic cells, rendering them nonpermissive for HIV-1 replication. PMID:10933686

  6. Protein arginine methyltransferase 1 regulates herpes simplex virus replication through ICP27 RGG-box methylation

    SciTech Connect

    Yu, Jungeun; Shin, Bongjin; Park, Eui-Soon; Yang, Sujeong; Choi, Seunga; Kang, Misun; Rho, Jaerang

    2010-01-01

    Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain and examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.

  7. Replication of Subgenomic Hepatitis A Virus RNAs Expressing Firefly Luciferase Is Enhanced by Mutations Associated with Adaptation of Virus to Growth in Cultured Cells

    PubMed Central

    Yi, MinKyung; Lemon, Stanley M.

    2002-01-01

    Replication of hepatitis A virus (HAV) in cultured cells is inefficient and difficult to study due to its protracted and generally noncytopathic cycle. To gain a better understanding of the mechanisms involved, we constructed a subgenomic HAV replicon by replacing most of the P1 capsid-coding sequence from an infectious cDNA copy of the cell culture-adapted HM175/18f virus genome with sequence encoding firefly luciferase. Replication of this RNA in transfected Huh-7 cells (derived from a human hepatocellular carcinoma) led to increased expression of luciferase relative to that in cells transfected with similar RNA transcripts containing a lethal premature termination mutation in 3Dpol (RNA polymerase). However, replication could not be confirmed in either FrhK4 cells or BSC-1 cells, cells that are typically used for propagation of HAV. Replication was substantially slower than that observed with replicons derived from other picornaviruses, as the basal luciferase activity produced by translation of input RNA did not begin to increase until 24 to 48 h after transfection. Replication of the RNA was reversibly inhibited by guanidine. The inclusion of VP4 sequence downstream of the viral internal ribosomal entry site had no effect on the basal level of luciferase or subsequent increases in luciferase related to its amplification. Thus, in this system this sequence does not contribute to viral translation or replication, as suggested previously. Amplification of the replicon RNA was profoundly enhanced by the inclusion of P2 (but not 5′ noncoding sequence or P3) segment mutations associated with adaptation of wild-type virus to growth in cell culture. These results provide a simple reporter system for monitoring the translation and replication of HAV RNA and show that critical mutations that enhance the growth of virus in cultured cells do so by promoting replication of viral RNA in the absence of encapsidation, packaging, and cellular export of the viral genome. PMID

  8. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    SciTech Connect

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan; Lynn, Annie; Cotmore, Susan F.; Tattersall, Peter; Zhao, Haiyan; Tang, Liang

    2015-02-15

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase active site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.

  9. Ascorbic acid inhibits replication and infectivity of avian RNA tumor virus

    SciTech Connect

    BISSELL, MINA J; HATIE, CARROLL; FARSON, DEBORAH A.; SCHWARZ, RICHARD I.; SOO, WHAI-JEN

    1980-04-01

    Ascorbic acid, at nontoxic concentrations, causes a substantial reduction in the ability of avian tumor viruses to replicate in both primary avian tendon cells and chicken embryo fibroblasts. The virus-infected cultures appear to be less transformed in the presence of ascorbic acid by the criteria of morphology, reduced glucose uptake, and increased collagen synthesis. The vitamin does not act by altering the susceptibility of the cells to initial infection and transformation, but instead appears to interfere with the spread of infection through a reduction in virus replication and virus infectivity. The effect is reversible and requires the continuous presence of the vitamin in the culture medium.

  10. Potential Antivirals: Natural Products Targeting Replication Enzymes of Dengue and Chikungunya Viruses.

    PubMed

    Oliveira, Ana Flávia Costa da Silveira; Teixeira, Róbson Ricardo; Oliveira, André Silva de; Souza, Ana Paula Martins de; Silva, Milene Lopes da; Paula, Sérgio Oliveira de

    2017-03-22

    Dengue virus (DENV) and chikungunya virus (CHIKV) are reemergent arboviruses that are transmitted by mosquitoes of the Aedes genus. During the last several decades, these viruses have been responsible for millions of cases of infection and thousands of deaths worldwide. Therefore, several investigations were conducted over the past few years to find antiviral compounds for the treatment of DENV and CHIKV infections. One attractive strategy is the screening of compounds that target enzymes involved in the replication of both DENV and CHIKV. In this review, we describe advances in the evaluation of natural products targeting the enzymes involved in the replication of these viruses.

  11. Heat Shock Protein 90 Ensures Efficient Mumps Virus Replication by Assisting with Viral Polymerase Complex Formation.

    PubMed

    Katoh, Hiroshi; Kubota, Toru; Nakatsu, Yuichiro; Tahara, Maino; Kidokoro, Minoru; Takeda, Makoto

    2017-03-15

    Paramyxoviral RNAs are synthesized by a viral RNA-dependent RNA polymerase (RdRp) consisting of the large (L) protein and its cofactor phosphoprotein (P protein). The L protein is a multifunctional protein that catalyzes RNA synthesis, mRNA capping, and mRNA polyadenylation. Growing evidence shows that the stability of several paramyxovirus L proteins is regulated by heat shock protein 90 (Hsp90). In this study, we demonstrated that Hsp90 activity was important for mumps virus (MuV) replication. The Hsp90 activity was required for L-protein stability and activity because an Hsp90-specific inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), destabilized the MuV L protein and suppressed viral RNA synthesis. However, once the L protein formed a mature polymerase complex with the P protein, Hsp90 activity was no longer required for the stability and activity of the L protein. When the Hsp90 activity was inhibited, the MuV L protein was degraded through the CHIP (C terminus of Hsp70-interacting protein)-mediated proteasomal pathway. High concentrations of 17-AAG showed strong cytotoxicity to certain cell types, but combined use of an Hsp70 inhibitor, VER155008, potentiated degradation of the L protein, allowing a sufficient reduction of 17-AAG concentration to block MuV replication with minimum cytotoxicity. Regulation of the L protein by Hsp90 and Hsp70 chaperones was also demonstrated for another paramyxovirus, the measles virus. Collectively, our data show that the Hsp90/Hsp70 chaperone machinery assists in the maturation of the paramyxovirus L protein and thereby in the formation of a mature RdRp complex and efficient viral replication.IMPORTANCE Heat shock protein 90 (Hsp90) is nearly universally required for viral protein homeostasis. Here, we report that Hsp90 activity is required for efficient propagation of mumps virus (MuV). Hsp90 functions in the maintenance of the catalytic subunit of viral polymerase, the large (L) protein, prior to formation of a

  12. Myxoma virus M063R is a host range gene essential for virus replication in rabbit cells.

    PubMed

    Barrett, John W; Shun Chang, Chew; Wang, Gen; Werden, Steven J; Shao, Zhuhong; Barrett, Catherine; Gao, Xiujuan; Belsito, Tara A; Villenevue, Danielle; McFadden, Grant

    2007-04-25

    The myxoma virus M063R gene product exhibits some sequence similarity to the poxvirus host range gene, C7L, of vaccinia virus. To address the potential host range function of the M063R gene product in rabbits, a deletion mutant of myxoma virus (vMyx63KO) was generated and characterized. vMyx63KO replicated to normal titre levels and produced foci that were indistinguishable from those produced by MV in vitro in a monkey kidney cell line (BGMK) that are permissive for wild type MV. However, vMyx63KO failed to replicate in all rabbit cell lines tested, including both primary and established cells lines, as well as cells derived from a variety of tissues. M063R expression was not required for myxoma virus binding, entry or early gene expression, whereas DNA replication was aborted and late genes were not expressed in vMyx63KO infected rabbit cells. Thus, the replication block for vMyx63KO in rabbit cells preceded the stage of late gene expression and DNA replication. Finally, an in vivo pathogenesis study indicated that vMyx63KO failed to cause any signs of classic myxomatosis in infected rabbits, but functioned as a non-replicating vaccine and provided protection for subsequent challenge by wild type myxoma virus. Altogether, these observations demonstrate that M063R plays a critical role in determining the host specificity of myxoma virus in rabbit cells.

  13. 3'-Azido-3'-deoxythymidine inhibits the replication of avian leukosis virus.

    PubMed Central

    Olsen, J C; Furman, P; Fyfe, J A; Swanstrom, R

    1987-01-01

    We tested the ability of the thymidine analog 3'-azido-3'-deoxythymidine (BWA509U) to inhibit the replication of the retrovirus avian leukosis virus. Inhibition was measured with two different assays: inhibition of a single round of virus replication and inhibition of virus spread through a cell culture. With both assays, we detected inhibition of virus growth, although inhibition of a single round of virus replication required a 40-fold higher drug concentration than did inhibition of virus spread. We also detected variations in the concentrations of drug needed to inhibit virus replication in different cell types. Higher concentrations of drug were needed to inhibit virus replication in chicken embryo fibroblasts than in the continuous quail cell line QT6. Viral DNA synthesis in infected cells was shown to be inhibited in the presence of the drug. The triphosphate form of the analog acted as a competitive inhibitor of purified viral reverse transcriptase, with a Ki of 0.09 +/- 0.003 microM, and was incorporated as a chain terminator during reverse transcription of the natural viral RNA substrate in vitro. Images PMID:2441079

  14. Replication of swine and human influenza viruses in juvenile and layer turkey hens.

    PubMed

    Ali, Ahmed; Yassine, Hadi; Awe, Olusegun O; Ibrahim, Mahmoud; Saif, Yehia M; Lee, Chang-Won

    2013-04-12

    Since the first reported isolation of swine influenza viruses (SIVs) in turkeys in the 1980s, transmission of SIVs to turkeys was frequently documented. Recently, the 2009 pandemic H1N1 virus, that was thought to be of swine origin, was detected in turkeys with a severe drop in egg production. In this study, we assessed the infectivity of different mammalian influenza viruses including swine, pandemic H1N1 and seasonal human influenza viruses in both juvenile and layer turkeys. In addition, we investigated the potential influenza virus dissemination in the semen of experimentally infected turkey toms. Results showed that all mammalian origin influenza viruses tested can infect turkeys. SIVs were detected in respiratory and digestive tracts of both juvenile and layer turkeys. Variations in replication efficiencies among SIVs were observed especially in the reproductive tract of layer turkeys. Compared to SIVs, limited replication of seasonal human H1N1 and no detectable replication of recent human-like swine H1N2, pandemic H1N1 and seasonal human H3N2 viruses was noticed. All birds seroconverted to all tested viruses regardless of their replication level. In turkey toms, we were able to detect swine H3N2 virus in semen and reproductive tract of infected toms by real-time RT-PCR although virus isolation was not successful. These data suggest that turkey hens could be affected by diverse influenza strains especially SIVs. Moreover, the differences in the replication efficiency we demonstrated among SIVs and between SIV and human influenza viruses in layer turkeys suggest a possible use of turkeys as an animal model to study host tropism and pathogenesis of influenza viruses. Our results also indicate a potential risk of venereal transmission of influenza viruses in turkeys.

  15. RNA Polymerase Activity and Specific RNA Structure Are Required for Efficient HCV Replication in Cultured Cells

    PubMed Central

    Date, Tomoko; Akazawa, Daisuke; Tian, Xiao; Suzuki, Tetsuro; Kato, Takanobu; Tanaka, Yasuhito; Mizokami, Masashi; Wakita, Takaji; Toyoda, Tetsuya

    2010-01-01

    We have previously reported that the NS3 helicase (N3H) and NS5B-to-3′X (N5BX) regions are important for the efficient replication of hepatitis C virus (HCV) strain JFH-1 and viral production in HuH-7 cells. In the current study, we investigated the relationships between HCV genome replication, virus production, and the structure of N5BX. We found that the Q377R, A450S, S455N, R517K, and Y561F mutations in the NS5B region resulted in up-regulation of J6CF NS5B polymerase activity in vitro. However, the activation effects of these mutations on viral RNA replication and virus production with JFH-1 N3H appeared to differ. In the presence of the N3H region and 3′ untranslated region (UTR) of JFH-1, A450S, R517K, and Y561F together were sufficient to confer HCV genome replication activity and virus production ability to J6CF in cultured cells. Y561F was also involved in the kissing-loop interaction between SL3.2 in the NS5B region and SL2 in the 3′X region. We next analyzed the 3′ structure of HCV genome RNA. The shorter polyU/UC tracts of JFH-1 resulted in more efficient RNA replication than J6CF. Furthermore, 9458G in the JFH-1 variable region (VR) was responsible for RNA replication activity because of its RNA structures. In conclusion, N3H, high polymerase activity, enhanced kissing-loop interactions, and optimal viral RNA structure in the 3′UTR were required for J6CF replication in cultured cells. PMID:20442786

  16. Thiazolides as Novel Antiviral Agents: I. Inhibition of Hepatitis B Virus Replication

    PubMed Central

    Stachulski, Andrew V.; Pidathala, Chandrakala; Row, Eleanor C.; Sharma, Raman; Berry, Neil G.; Iqbal, Mazhar; Bentley, Joanne; Allman, Sarah A.; Edwards, Geoffrey; Helm, Alison; Hellier, Jennifer; Korba, Brent E.; Semple, J. Edward; Rossignol, Jean-Francois

    2011-01-01

    We report the syntheses and activities of a wide range of thiazolides [viz. 2-hydroxyaroyl-N-(thiazol-2-yl)amides] against hepatitis B virus replication, with QSAR analysis of our results. The prototypical thiazolide, nitazoxanide [2-hydroxybenzoyl-N-(5-nitrothiazol-2-yl)amide; NTZ] 1 is a broad spectrum antiinfective agent, effective against anaerobic bacteria, viruses and parasites. By contrast, 2-hydroxybenzoyl-N-(5-chlorothiazol-2-yl)amide 3 is a novel, potent and selective inhibitor of hepatitis B replication (EC50 = 0.33 μm) but is inactive against anaerobes. Several 4′- and 5′-substituted thiazolides show good activity against HBV; by contrast, some related salicyloylanilides show a narrower spectrum of activity. The ADME properties of 3 are similar to 1, viz. the O-acetate is an effective prodrug and the O-aryl glucuronide is a major metabolite. The QSAR study shows a good correlation of observed EC90 s for intracellular virions with thiazolide structural parameters. Finally we discuss the mechanism of action of thiazolides in relation to the present results. PMID:21553812

  17. Exploration of acetanilide derivatives of 1-(ω-phenoxyalkyl)uracils as novel inhibitors of Hepatitis C Virus replication.

    PubMed

    Magri, Andrea; Ozerov, Alexander A; Tunitskaya, Vera L; Valuev-Elliston, Vladimir T; Wahid, Ahmed; Pirisi, Mario; Simmonds, Peter; Ivanov, Alexander V; Novikov, Mikhail S; Patel, Arvind H

    2016-07-12

    Hepatitis C Virus (HCV) is a major public health problem worldwide. While highly efficacious directly-acting antiviral agents have been developed in recent years, their high costs and relative inaccessibility make their use limited. Here, we describe new 1-(ω-phenoxyalkyl)uracils bearing acetanilide fragment in 3 position of pyrimidine ring as potential antiviral drugs against HCV. Using a combination of various biochemical assays and in vitro virus infection and replication models, we show that our compounds are able to significantly reduce viral genomic replication, independently of virus genotype, with their IC50 values in the nanomolar range. We also demonstrate that our compounds can block de novo RNA synthesis and that effect is dependent on a chemical structure of the compounds. A detailed structure-activity relationship revealed that the most active compounds were the N(3)-substituted uracil derivatives containing 6-(4-bromophenoxy)hexyl or 8-(4-bromophenoxy)octyl fragment at N(1) position.

  18. Evaluation of porcine reproductive and respiratory syndrome virus replication in laboratory rodents

    PubMed Central

    Rosenfeld, Paul; Turner, Patricia V.; MacInnes, Janet I.; Nagy, Éva; Yoo, Dongwan

    2009-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major cause of economic losses in the swine industry. The disease is widespread worldwide, and so PRRSV-negative pigs are often difficult to find for the study of PRRSV in vivo. To determine if a small animal model could be developed for PRRSV, 3 strains of laboratory rodent were examined for their susceptibility to the virus. No virus replication was detected in BALB/c or SCID (severe combined immunodeficiency) mice after intraperitoneal inoculation. Moderate replication of PRRSV was detected in primary cotton rat lung cell cultures, but no viral replication was detected following intranasal or intraperitoneal inoculation. Following intratracheal inoculation, viral transcripts were detected in the lungs of cotton rats, but only for 1 day. This study indicates that PRRSV replication in common laboratory rodent species is inefficient, and suggests that a rodent model for this virus is not appropriate. PMID:20046635

  19. Unusual roles of host metabolic enzymes and housekeeping proteins in plant virus replication.

    PubMed

    Huang, Ying-Wen; Hu, Chung-Chi; Lin, Na-Sheng; Hsu, Yau-Heiu

    2012-12-01

    Viruses have developed the ability to improvise their own replication machineries with host proteins, adapt to different environments, and overcome difficulties encountered during various stages of their infection cycles. The modular nature of protein functional motifs allows for the novel use of ordinary host factors. Recent studies have revealed that positive-sense RNA [(+)RNA] viruses may adapt regular metabolic enzymes and housekeeping proteins of host plants by exploiting unusual functions to accommodate their need for replication, mainly for recruitment and subcellular localization of RNA templates or components of replicase complexes and for controlling switches in different stages of replication. This review compares the newly discovered roles of selected metabolic enzymes and housekeeping proteins in plant (+)RNA virus replication with their original cellular functions and the different consequences when utilized by different viruses. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Fowlpox virus host range restriction: gene expression, DNA replication, and morphogenesis in nonpermissive mammalian cells.

    PubMed

    Somogyi, P; Frazier, J; Skinner, M A

    1993-11-01

    Fowlpox virus (FPV), type species of the Avipoxvirus genus, causes a slow-spreading pox disease of chickens. Following infection of mammalian cells there is no evidence of productive replication of FPV although cytopathic effects are induced and FPV recombinants have been shown to express foreign genes from vaccinia virus early/late promoters. Here we report results of a study to investigate the expression of FPV genes, the replication of FPV genomic DNA, and any ultrastructural changes in mammalian cells infected by wild-type virus, undertaken as a first step in elucidating the nature of the block (or blocks) to productive replication of FPV in mammalian cells. Early and late gene expression as well as genomic DNA replication was observed in fibroblast-like cell lines of monkey and human origin. Furthermore, viral morphogenesis was observed in monkey cells, with the production mainly of immature particles though smaller numbers of apparently mature virus particles were observed.

  1. Studies on the replication of Mayaro virus grown in interferon treated cells.

    PubMed

    Rebello, M C; Fonseca, M E; Marinho, J O; Rebello, M A

    1994-01-01

    Mayaro virus grown in interferon treated infected cells has been characterized with regard to its ability to replicate in vertebrate (TC7) and invertebrate (Aedes albopictus) cells. Virus purified from interferon treated TC7 cells adsorbs and penetrates to the same extent as the control virus. During infection, these virus particles caused inhibition of host protein synthesis and synthesized the same spectrum of viral proteins as normal virus. This population however, was apparently more sensitive to interferon treatment. Electron microscopy of TC7 cells showed the presence of numerous aberrant virus particles budding from the plasma membrane.

  2. Hemagglutinin Stalk Immunity Reduces Influenza Virus Replication and Transmission in Ferrets

    PubMed Central

    Nachbagauer, Raffael; Miller, Matthew S.; Hai, Rong; Ryder, Alex B.; Rose, John K.; Palese, Peter; García-Sastre, Adolfo

    2015-01-01

    We assessed whether influenza virus hemagglutinin stalk-based immunity protects ferrets against aerosol-transmitted H1N1 influenza virus infection. Immunization of ferrets by a universal influenza virus vaccine strategy based on viral vectors expressing chimeric hemagglutinin constructs induced stalk-specific antibody responses. Stalk-immunized ferrets were cohoused with H1N1-infected ferrets under conditions that permitted virus transmission. Hemagglutinin stalk-immunized ferrets had lower viral titers and delayed or no virus replication at all following natural exposure to influenza virus. PMID:26719251

  3. Bluetongue Virus Nonstructural Protein NS3/NS3a Is Not Essential for Virus Replication

    PubMed Central

    van Gennip, René G. P.; van de Water, Sandra G. P.; van Rijn, Piet A.

    2014-01-01

    Orbiviruses form the largest genus of the family Reoviridae consisting of at least 23 different virus species. One of these is the bluetongue virus (BTV) and causes severe hemorrhagic disease in ruminants, and is transmitted by bites of Culicoides midges. BTV is a non-enveloped virus which is released from infected cells by cell lysis and/or a unique budding process induced by nonstructural protein NS3/NS3a encoded by genome segment 10 (Seg-10). Presence of both NS3 and NS3a is highly conserved in Culicoides borne orbiviruses which is suggesting an essential role in virus replication. We used reverse genetics to generate BTV mutants to study the function of NS3/NS3a in virus replication. Initially, BTV with small insertions in Seg-10 showed no CPE but after several passages these BTV mutants reverted to CPE phenotype comparable to wtBTV, and NS3/NS3a expression returned by repair of the ORF. These results show that there is a strong selection for functional NS3/NS3a. To abolish NS3 and/or NS3a expression, Seg-10 with one or two mutated start codons (mutAUG1, mutAUG2 and mutAUG1+2) were used to generate BTV mutants. Surprisingly, all three BTV mutants were generated and the respective AUGMet→GCCAla mutations were maintained. The lack of expression of NS3, NS3a, or both proteins was confirmed by westernblot analysis and immunostaining of infected cells with NS3/NS3a Mabs. Growth of mutAUG1 and mutAUG1+2 virus in BSR cells was retarded in both insect and mammalian cells, and particularly virus release from insect cells was strongly reduced. Our findings now enable research on the role of RNA sequences of Seg-10 independent of known gene products, and on the function of NS3/NS3a proteins in both types of cells as well as in the host and insect vector. PMID:24465709

  4. Replication of HIV-1 deleted Nef mutants in chronically immune activated human T cells.

    PubMed

    Shapira-Nahor, Orit; Maayan, Shlomo; Peden, Keith W C; Rabinowitz, Ruth; Schlesinger, Michael; Alian, Akram; Panet, Amos

    2002-11-10

    Lymphocytes (PBMC) obtained from blood of HIV-sera negative Ethiopian immigrants (ETH) were highly susceptible to HIV-1 infection in vitro with no need for stimulation by mitogens. As the HIV nef gene product has been shown to enhance viral replication in stimulated primary lymphocytes, we investigated in this work the role of Nef in viral replication in the ETH cells. Lymphocytes obtained from ETH individuals supported high replication of wild-type HIV-1 and low but significant replication level of the two deleted Nef mutants (encode truncated Nef proteins consisting only of either the first 35 or the first 86 amino acids of Nef). In contrast, no replication was observed in nonactivated cells obtained from non-ETH individuals. After activation of the PBMC from ETH individuals with PHA, replication of both wild-type strains and the two deleted Nef mutant viruses further increased. The CD4(+) T cells of ETH individuals exhibited elevated levels of the surface activation markers CD45RO and HLA-DR, compared with T cells derived from non-ETH group. Likewise, expression of the chemokine receptors CCR5 and CXCR4 on these cells was higher in the ETH group than in the non-ETH group. Replication of HIV-1 wild-type and the isogenic-deleted Nef mutants was significantly correlated with the proportion of ETH cells expressing CD45RO and the chemokine receptors. This study suggests that HIV-1 may respond differently to several activation states characteristic of T cells. One activation state, defined by chronically activated lymphocytes from ETH individuals, is permissive to the wild-type HIV-1 and, to a lesser degree, to the Nef mutants. Further activation of these cells by exogenous stimuli enhances replication of the virus. Our results support the notion that Nef enhances the basal level of T cell activation and consequently, viral replication.

  5. Genetic mapping of a mouse chromosomal locus required for mink cell focus-forming virus replication.

    PubMed Central

    Kozak, C A

    1983-01-01

    Mouse-hamster somatic cell hybrids were used to show that the recombinant mink cell focus-forming murine leukemia viruses and their ecotropic virus progenitors require different mouse chromosomes for replication. Mouse chromosome 1 was shown to carry the genetic information necessary for the replication of six different mink cell focus-forming isolates, and this gene, designated Rmc-1, was tentatively positioned at the distal end of the chromosome. PMID:6310150

  6. Host–Pathogen Interactions in Measles Virus Replication and Anti-Viral Immunity

    PubMed Central

    Jiang, Yanliang; Qin, Yali; Chen, Mingzhou

    2016-01-01

    The measles virus (MeV) is a contagious pathogenic RNA virus of the family Paramyxoviridae, genus Morbillivirus, that can cause serious symptoms and even fetal complications. Here, we summarize current molecular advances in MeV research, and emphasize the connection between host cells and MeV replication. Although measles has reemerged recently, the potential for its eradication is promising with significant progress in our understanding of the molecular mechanisms of its replication and host-pathogen interactions. PMID:27854326

  7. Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation.

    PubMed

    Sun, Yingjie; Dong, Luna; Yu, Shengqing; Wang, Xiaoxu; Zheng, Hang; Zhang, Pin; Meng, Chunchun; Zhan, Yuan; Tan, Lei; Song, Cuiping; Qiu, Xusheng; Wang, Guijun; Liao, Ying; Ding, Chan

    2017-04-01

    Mammalian cells respond to various environmental stressors to form stress granules (SGs) by arresting cytoplasmic mRNA, protein translation element, and RNA binding proteins. Virus-induced SGs function in different ways, depending on the species of virus; however, the mechanism of SG regulation of virus replication is not well understood. In this study, Newcastle disease virus (NDV) triggered stable formation of bona fide SGs on HeLa cells through activating the protein kinase R (PKR)/eIF2α pathway. NDV-induced SGs contained classic SG markers T-cell internal antigen (TIA)-1, Ras GTPase-activating protein-binding protein (G3BP)-1, eukaryotic initiation factors, and small ribosomal subunit, which could be disassembled in the presence of cycloheximide. Treatment with nocodazole, a microtubule disruption drug, led to the formation of relatively small and circular granules, indicating that NDV infection induces canonical SGs. Furthermore, the role of SGs on NDV replication was investigated by knockdown of TIA-1 and TIA-1-related (TIAR) protein, the 2 critical components involved in SG formation from the HeLa cells, followed by NDV infection. Results showed that depletion of TIA-1 or TIAR inhibited viral protein synthesis, reduced extracellular virus yields, but increased global protein translation. FISH revealed that NDV-induced SGs contained predominantly cellular mRNA rather than viral mRNA. Deletion of TIA-1 or TIAR reduced NP mRNA levels in polysomes. These results demonstrate that NDV triggers stable formation of bona fide SGs, which benefit viral protein translation and virus replication by arresting cellular mRNA.-Sun, Y., Dong, L., Yu, S., Wang, X., Zheng, H., Zhang, P., Meng, C., Zhan, Y., Tan, L., Song, C., Qiu, X., Wang, G., Liao, Y., Ding, C. Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation.

  8. Ultrastructure of the replication sites of positive-strand RNA viruses

    SciTech Connect

    Harak, Christian; Lohmann, Volker

    2015-05-15

    Positive strand RNA viruses replicate in the cytoplasm of infected cells and induce intracellular membranous compartments harboring the sites of viral RNA synthesis. These replication factories are supposed to concentrate the components of the replicase and to shield replication intermediates from the host cell innate immune defense. Virus induced membrane alterations are often generated in coordination with host factors and can be grouped into different morphotypes. Recent advances in conventional and electron microscopy have contributed greatly to our understanding of their biogenesis, but still many questions remain how viral proteins capture membranes and subvert host factors for their need. In this review, we will discuss different representatives of positive strand RNA viruses and their ways of hijacking cellular membranes to establish replication complexes. We will further focus on host cell factors that are critically involved in formation of these membranes and how they contribute to viral replication. - Highlights: • Positive strand RNA viruses induce massive membrane alterations. • Despite the great diversity, replication complexes share many similarities. • Host factors play a pivotal role in replication complex biogenesis. • Use of the same host factors by several viruses hints to similar functions.

  9. How viruses use the endoplasmic reticulum for entry, replication, and assembly.

    PubMed

    Inoue, Takamasa; Tsai, Billy

    2013-01-01

    To cause infection, a virus enters a host cell, replicates, and assembles, with the resulting new viral progeny typically released into the extracellular environment to initiate a new infection round. Virus entry, replication, and assembly are dynamic and coordinated processes that require precise interactions with host components, often within and surrounding a defined subcellular compartment. Accumulating evidence pinpoints the endoplasmic reticulum (ER) as a crucial organelle supporting viral entry, replication, and assembly. This review focuses on the molecular mechanism by which different viruses co-opt the ER to accomplish these crucial infection steps. Certain bacterial toxins also hijack the ER for entry. An interdisciplinary approach, using rigorous biochemical and cell biological assays coupled with advanced microscopy strategies, will push to the next level our understanding of the virus-ER interaction during infection.

  10. Enhanced replication of UV-damaged Simian virus 40 DNA in carcinogen-treated mammalian cells

    SciTech Connect

    Maga, J.A.

    1983-01-01

    The replication of UV-damaged Simian virus 40 (SV40) in carcinogen-treated monkey cells has been studied to elucidate the mechanism of carcinogen-enhanced reactivation. Carcinogen enhanced reactivation is the observed increase in UV-irradiated virus survival in host cells treated with low doses of carcinogen compared to UV-irradiated virus survival in untreated hosts. Carcinogen treatment of monkey kidney cells with either N-acetoxy-2-acetylaminofluorene (AAAF) or UV radiation leads to an enhanced capacity to replicate UV-damaged virus during the first round of infection. To further define the mechanism leading to enhanced replication, a detailed biochemical analysis of replication intermediates in carcinogen-treated cells was performed. Several conclusions can be drawn. First enhanced replication can be observed in the first four rounds of replication after UV irradiation of viral templates. The second major finding is that the relaxed circular intermediate model proposed for the replication of UV-damaged templates in untreated cells appears valid for replication of UV-damaged templates in carcinogen-treated cells. Possible mechanisms and the supporting evidence are discussed and future experiments outlined.

  11. Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question.

    PubMed

    Koonin, Eugene V; Starokadomskyy, Petro

    2016-10-01

    The question whether or not "viruses are alive" has caused considerable debate over many years. Yet, the question is effectively without substance because the answer depends entirely on the definition of life or the state of "being alive" that is bound to be arbitrary. In contrast, the status of viruses among biological entities is readily defined within the replicator paradigm. All biological replicators form a continuum along the selfishness-cooperativity axis, from the completely selfish to fully cooperative forms. Within this range, typical, lytic viruses represent the selfish extreme whereas temperate viruses and various mobile elements occupy positions closer to the middle of the range. Selfish replicators not only belong to the biological realm but are intrinsic to any evolving system of replicators. No such system can evolve without the emergence of parasites, and moreover, parasites drive the evolution of biological complexity at multiple levels. The history of life is a story of parasite-host coevolution that includes both the incessant arms race and various forms of cooperation. All organisms are communities of interacting, coevolving replicators of different classes. A complete theory of replicator coevolution remains to be developed, but it appears likely that not only the differentiation between selfish and cooperative replicators but the emergence of the entire range of replication strategies, from selfish to cooperative, is intrinsic to biological evolution. Published by Elsevier Ltd.

  12. Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question

    PubMed Central

    Koonin, Eugene V.; Starokadomskyy, Petro

    2016-01-01

    The question whether or not “viruses are alive” has caused considerable debate over many years. Yet, the question is effectively without substance because the answer depends entirely on the definition of life or the state of “being alive” that is bound to be arbitrary. In contrast, the status of viruses among biological entities is readily defined within the replicator paradigm. All biological replicators form a continuum along the selfishness-cooperativity axis, from the completely selfish to fully cooperative forms. Within this range, typical, lytic viruses represent the selfish extreme whereas temperate viruses and various mobile elements occupy positions closer to the middle of the range. Selfish replicators not only belong to the biological realm but are intrinsic to any evolving system of replicators. No such system can evolve without the emergence of parasites, and moreover, parasites drive the evolution of biological complexity at multiple levels. The history of life is a story of parasite-host coevolution that includes both the incessant arms race and various forms of cooperation. All organisms are communities of interacting, coevolving replicators of different classes. A complete theory of replicator coevolution remains to be developed, but it appears likely that not only the differentiation between selfish and cooperative replicators but the emergence of the entire range of replication strategies, from selfish to cooperative, is intrinsic to biological evolution. PMID:26965225

  13. Mitochondrial Bioenergetic Alterations in Mouse Neuroblastoma Cells Infected with Sindbis Virus: Implications to Viral Replication and Neuronal Death

    PubMed Central

    Silva da Costa, Leandro; Pereira da Silva, Ana Paula; Da Poian, Andrea T.; El-Bacha, Tatiana

    2012-01-01

    The metabolic resources crucial for viral replication are provided by the host. Details of the mechanisms by which viruses interact with host metabolism, altering and recruiting high free-energy molecules for their own replication, remain unknown. Sindbis virus, the prototype of and most widespread alphavirus, causes outbreaks of arthritis in humans and serves as a model for the study of the pathogenesis of neurological diseases induced by alphaviruses in mice. In this work, respirometric analysis was used to evaluate the effects of Sindbis virus infection on mitochondrial bioenergetics of a mouse neuroblastoma cell lineage, Neuro 2a. The modulation of mitochondrial functions affected cellular ATP content and this was synchronous with Sindbis virus replication cycle and cell death. At 15 h, irrespective of effects on cell viability, viral replication induced a decrease in oxygen consumption uncoupled to ATP synthesis and a 36% decrease in maximum uncoupled respiration, which led to an increase of 30% in the fraction of oxygen consumption used for ATP synthesis. Decreased proton leak associated to complex I respiration contributed to the apparent improvement of mitochondrial function. Cellular ATP content was not affected by infection. After 24 h, mitochondria dysfunction was clearly observed as maximum uncoupled respiration reduced 65%, along with a decrease in the fraction of oxygen consumption used for ATP synthesis. Suppressed respiration driven by complexes I- and II-related substrates seemed to play a role in mitochondrial dysfunction. Despite the increase in glucose uptake and glycolytic flux, these changes were followed by a 30% decrease in ATP content and neuronal death. Taken together, mitochondrial bioenergetics is modulated during Sindbis virus infection in such a way as to favor ATP synthesis required to support active viral replication. These early changes in metabolism of Neuro 2a cells may form the molecular basis of neuronal dysfunction and Sindbis

  14. Recognition of Computer Viruses by Detecting Their Gene of Self Replication

    DTIC Science & Technology

    2006-03-01

    addresses that are shared with write access. It uses entry-point obscuring ( EPO ) and an encryption method that is both very simple to implement and very...and code-optimized at a lower level. "* Replication includes a split-inject- regenerate mechanism for the virus body "* Replication includes a correct...sections and a file alignment: ghost° = Sheader + Sseci + Ssec2 + +. SseN Fa Viral code regeneration mechanism is indicative of cavity replication. Unless

  15. DNA tumor viruses: Control of gene expression and replication

    SciTech Connect

    Botchan, M.; Grodzicker, T.; Sharp, P.A.

    1986-01-01

    This book contains eight sections, each consisting of several papers. The sections are: Introduction, Transcription; Regulation of Transcription; RNA Processing and Translation; Transformation; Transforming Proteins; Replication; and Papillomaviruses.

  16. Transient fasting enhances replication of oncolytic herpes simplex virus in glioblastoma.

    PubMed

    Esaki, Shinichi; Rabkin, Samuel D; Martuza, Robert L; Wakimoto, Hiroaki

    2016-01-01

    Short-term nutritional restriction (fasting) has been shown to enhance the efficacy of chemotherapy by sensitizing cancer cells and protecting normal cells in a variety of cancer models, including glioblastoma (GBM). Cancer cells, unlike normal cells, respond to fasting by promoting oncogenic signaling and protein synthesis. We hypothesized that fasting would increase the replication of oncolytic herpes simplex virus (oHSV) in GBM. Patient-derived GBM cell lines were fasted by growth in glucose and fetal calf serum restricted culture medium. "Transient fasting", 24-hour fasting followed by 24-hour recovery in complete medium, increased late virus gene expression and G47Δ yields about 2-fold in GBM cells, but not in human astrocytes, and enhanced G47Δ killing of GBM cells. Mechanistically, "transient fasting" suppressed phosphorylation of the subunit of eukaryotic initiation factor 2α (eIF2α) and c-Jun N-terminal kinases (JNK) in GBM cells, but not in astrocytes. Pharmacological inhibition of JNK also increased G47Δ yield. In vivo, transient fasting (48-hour food restriction and 24-hour recovery) doubled luciferase activity after intratumoral G47Δ-US11fluc injection into orthotopic GBM xenografts. Thus, "transient fasting" increases G47Δ replication and oncolytic activity in human GBM cells. These results suggest that "transient fasting" may be effectively combined to enhance oncolytic HSV therapy of GBM.

  17. The hemagglutinin protein of highly pathogenic H5N1 influenza viruses overcomes an early block in the replication cycle to promote productive replication in macrophages.

    PubMed

    Cline, Troy D; Karlsson, Erik A; Seufzer, Bradley J; Schultz-Cherry, Stacey

    2013-02-01

    Macrophages are known to be one of the first lines of defense against influenza virus infection. However, they may also contribute to severe disease caused by the highly pathogenic avian (HPAI) H5N1 influenza viruses. One reason for this may be the ability of certain influenza virus strains to productively replicate in macrophages. However, studies investigating the productive replication of influenza viruses in macrophages have been contradictory, and the results may depend on both the type of macrophages used and the specific viral strain. In this work, we investigated the ability of H1 to H16 viruses to productively replicate in primary murine alveolar macrophages and RAW264.7 macrophages. We show that only a subset of HPAI H5N1 viruses, those that cause high morbidity and mortality in mammals, can productively replicate in macrophages, as measured by the release of newly synthesized virus particles into the cell supernatant. Mechanistically, we found that these H5 strains can overcome a block early in the viral life cycle leading to efficient nuclear entry, viral transcription, translation, and ultimately replication. Studies with reassortant viruses demonstrated that expression of the hemagglutinin gene from an H5N1 virus rescued replication of H1N1 influenza virus in macrophages. This study is the first to characterize H5N1 influenza viruses as the only subtype of influenza virus capable of productive replication in macrophages and establishes the viral gene that is required for this characteristic. The ability to productively replicate in macrophages is unique to H5N1 influenza viruses and may contribute to their increased pathogenesis.

  18. In Vivo Replication and Pathogenesis of Vesicular Stomatitis Virus Recombinant M40 Containing Ebola Virus L-Domain Sequences.

    PubMed

    Irie, Takashi; Carnero, Elena; García-Sastre, Adolfo; Harty, Ronald N

    2012-11-19<