Science.gov

Sample records for active volcanic areas

  1. Volcanic hazard management in dispersed volcanism areas

    NASA Astrophysics Data System (ADS)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  2. Evidence for Subglacial Volcanic Activity Beneath the area of the Divide of the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2013-12-01

    There is an increasing body of aeromagnetic, radar ice-sounding, heat flow, subglacial volcanic earthquakes, several exposed active and subglacial volcanoes and other lines of evidence for volcanic activity associated with the West Antarctic Rift System (WR) since the origin (~25 Ma) of the West Antarctic Ice Sheet (WAIS), which flows through it. Exposed late Cenozoic, alkaline volcanic rocks, 34 Ma to present concentrated in Marie Byrd Land (LeMasurier and Thomson, 1990), but also exposed along the rift shoulder on the Transantarctic Mountains flank of the WR, and >1 million cubic kilometers, of mostly subglacially erupted 'volcanic centers' beneath the WAIS inferred from aeromagnetic data, have been interpreted as evidence of a magmatic plume. About 18 high relief, (~600-2000 m) 'volcanic centers' presently beneath the WAIS surface, probably were erupted subaerially when the WAIS was absent, based on the 5-km orthogonally line spaced Central West Antarctica aerogeophysical survey. All would be above sea level after ice removal and isostatic adjustment. Nine of these high relief peaks are in the general area beneath the divide of the WAIS. This high bed relief topography was first interpreted in the 1980s as the volcanic 'Sinuous Ridge ' based on a widely spaced aeromagnetic -radar ice sounding survey (Jankowski et al,. 1983). A 70-km wide, circular ring of interpreted subglacial volcanic rocks was cited as evidence of a volcanic caldera underlying the ice sheet divide based on the CWA survey (Behrendt et al., 1998). A broad magnetic 'low' surrounding the caldera area possibly is evidence of a shallow Curie isotherm. High heat flow reported from temperature logging (Clow et al., 2012) in the WAISCORE and a thick volcanic ash layer in the core (Dunbar et al., 2012) are consistent with this interpretation. A 2 km-high subaerially erupted volcano (subglacial Mt Thiel, ~78.5 degrees S, 111 degrees W) ~ 100 km north from the WAISCORE could be the source of the ash

  3. Monitoring of low-energy seismic activity in Elbrus volcanic area with the use of underground seismic array

    NASA Astrophysics Data System (ADS)

    Kovalevsky, V.; Sobisevitch, A.

    2012-04-01

    Results of experiment with underground seismic array for studying low-energy seismic activity in the Elbrus volcanic area are presented. Linear seismic array of 2.5 km aperture is created in the tunnel of Baksan neutrino observatory. Horizontal tunnel of 4.3 km length is drilled in the mount Andyrchi at a distance of 20 km from Elbrus volcano. Array includes 6 three-component seismic sensors with 24-byte recorders installed with 500 m interval one from another along the tunnel. Underground seismic array is the new instrument of geophysical observatory organized for studies of geophysical processes in the Elbrus volcanic area. The observatory equipped with modern geophysical instruments including broadband tri-axial seismometers, quartz tilt-meters, magnetic variometers, geo-acoustic sensors, hi-precision distributed thermal sensors and gravimeters. The initial analysis of seismic signals recorded by seismic array allows us to detect low-energy seismic activity in the Elbrus volcanic area beginning from the distance of 3-5 km (the faults in a vicinity of mount Andyrchi) up to 15-25 km (area of Elbrus volcano). The regional micro-earthquakes with magnitude 1-2 at the distances 50-100 km was also recorded. 2.5 km aperture of the underground linear seismic array make it possible to determine with high accuracy hypocenters of local seismic events associated with geodynamic of volcanic magmatic structures and to realize seismo-emission tomography of the active zones of Elbrus volcano.

  4. Middle Miocene hiatus in volcanic activity in the Great Basin area of the Western United States

    USGS Publications Warehouse

    McKee, E.H.; Noble, D.C.; Silberman, M.L.

    1970-01-01

    A summary of potassium-argon dates shows that a high level of igneous activity in the Great Basin and adjacent regions during middle Tertiary time (40 to 20 my ago) was followed by a period of relative quiescence in middle Miocene time that lasted for several million years (from 20 to 17 my ago). Volcanism resumed 16 my ago mainly at the margins of the region and has continued to the present. ?? 1970.

  5. The role of volcanic activity and climate in alluvial fan growth at volcanic areas: an example from southern Campania (Italy)

    NASA Astrophysics Data System (ADS)

    Zanchetta, G.; Sulpizio, R.; Di Vito, M. A.

    2004-06-01

    Volcaniclastic-rich alluvial fans developed in the southern Campanian Plain (Italy) during the late Pleistocene and Holocene in an area eastward of the Somma-Vesuvius and Campi Flegrei volcanoes. Meanwhile, bedrock-rich alluvial fans developed in areas unaffected by pyroclastic deposition. Late Pleistocene and Holocene volcaniclastic-rich alluvial fans show some important differences: (i) late Pleistocene alluvial fans were dominated by hyperconcentrated flow deposits, whereas the Holocene ones were dominated by debris flows deposits; and (ii) late Pleistocene fans consist of several superimposed sedimentary bodies, characterized by homogeneous volcaniclastic material, whereas Holecene fans show either volcaniclastic bodies with homogenous lithology or mixed lithology (i.e., juvenile fractions eroded from different tephra layers). These differences are not related to the amount of volcaniclastic supply in time, but seem to be linked to changes in climatic condition between late Pleistocene and Holocene. Rapid remobilization of the pyroclastic material was favored by climatic and vegetation conditions of the study area during the late Pleistocene, when a semiarid setting dominated by steppe-like vegetation prevailed. During Holocene, the general increase in temperature and humidity favored vegetation and soil development and stabilization of the loose volcaniclastic materials. Thus, part of volcaniclastic material was stored in the catchments and was available for erosion a long time after an eruption. Shallow soil slips, active also today, generated volcaniclastic debris flows characterized by mixed lithology of pumice and scoria.

  6. The geophysical contribution to the safeguard of historical sites in active volcanic areas.. The Vesuvius case-history

    NASA Astrophysics Data System (ADS)

    Patella, Domenico; Mauriello, Paolo

    1999-03-01

    The Earth's surface is characterized by the presence of many active volcanoes, most of which are surrounded by ancient villages. High-valued historical sites are often so exposed that it becomes imperative to perform volcanic risk assessment including cultural heritage. For the safeguard of the historical property in volcanic areas, two major problems are definition of (a) criteria for diagnosis and evaluation of hazard and vulnerability, and (b) methods for risk prevention and mitigation. In this paper, we first review the state-of-the-art and most outstanding geophysical prospecting and modeling methods currently on the use, which contribute to the solution of the problems mentioned above. We then show the results of an application on the most alarming volcano in Italy, Mount Vesuvius in the Neapolitan area. The imaged configuration of the feeding and plumbing systems induces to consider Vesuvius a high-risk volcano with a high probability of pyroclastic flow in case of reactivation. Finally, we show the results from a modeling approach of a pyroclastic flow simulating the eruptive scenario of Vesuvius compatible with its internal structure and dynamics. The simulation shows that the emplacement of artificial barriers close to the eruptive vent is a practical solution to reduce the local radial momentum of the pyroclastic flow and to transfer the related energy to the vertical buoyant cloud. The Vesuvius case history allows us to conclude that the integrated geophysical surveying and modeling approach can notably contribute to make decisions and also for the protection of the historical heritage in active volcanic areas.

  7. Investigation of active volcanic areas through oceanographic data collected by the NEMO-SN1 multiparametric seafloor observatory

    NASA Astrophysics Data System (ADS)

    Lo Bue, Nadia; Sgroi, Tiziana; Giovanetti, Gabriele; Marinaro, Giuditta; Embriaco, Davide; Beranzoli, Laura; Favali, Paolo

    2015-04-01

    In the framework of the European Research Infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org), the cabled multidisciplinary seafloor observatory node NEMO-SN1 was deployed in the Western Ionian Sea (Southern Italy) at a depth of 2100 m, about 25 km off-shore Eastern Sicily, close to the Mt. Etna volcano system. The oceanographic payload mounted on this observatory was originally designed to monitor possible variations of the local hydrodynamic playing a crucial role on the redistribution of deep water in the Eastern Mediterranean Sea. In particular the Acoustic Doppler Current Profiler (ADCP RDI WorkHorse 600 kHz) was configured with the main aim to record the bottom dynamics, watching few meters of water column above the station (about 30 m). Surprisingly, this sensor offered a spectacular recording of the Mt.Etna pyroclastic activity occurred on 2013 which affected the ESE sector of the volcano. Although the ADCP sensor is commonly used to measure speed and direction of sea currents, it is more often used to monitor concentration suspended matter of controlled areas, such as rivers or coastal marine environments, by the analysis of the acoustic backscatter intensity. This standard condition entails some a-priori knowledge (i.e. suspended sediment concentration, particle size, echo intensity calibration) useful to well configure the sensors before starting its acquisition. However, in the case of Mt. Etna pyroclastic activity, due to the unexpected recording, these information were not available and it was necessary to work in a post-processing mode considering all acquired data. In fact, several different parameters contribute to complete the comprehension of the observed phenomenon: the ADCP acoustic wavelength able to indirectly provide information on the detectable particle size, the intensity of the explosive activity useful to define the starting energy of the volcanic system, the oceanographic local

  8. Planning the improvement of a seismic network for monitoring active volcanic areas: the experience on Mt. Etna

    NASA Astrophysics Data System (ADS)

    D'Alessandro, A.; Scarfì, L.; Scaltrito, A.; Di Prima, S.; Rapisarda, S.

    2013-10-01

    Seismology and geodesy are generally seen as the most reliable diagnostic tools for monitoring highly active or erupting volcanoes, like Mt. Etna. From the early 1980's, seismic activity was monitored at Mt. Etna by a permanent seismic network, progressively improved in the following years. This network has been considerably enhanced since 2005 by 24-bit digital stations equipped with broad-band (40 s) sensors. Today, thanks to a configuration of 33 broad-band and 12 short-period stations, we have a good coverage of the volcanic area as well as a high quality of the collected data. In the framework of the VULCAMED project a workgroup of Istituto Nazionale di Geofisica e Vulcanologia has taken on the task of developing the seismic monitoring system, through the installation of other seismic stations. The choice of optimal sites must be clearly made through a careful analysis of the geometry of the existing seismic network. In this paper, we applied the Seismic Network Evaluation through Simulation in order to evaluate the performance of the Etna Seismic Network before and after the addition of the stations in the candidate sites. The main advantage of the adopted method is that we can evaluate the improvement of the network before the actual installation of the stations. Our analysis has permitted to identify some critical issues of the current permanent seismic network related to the lack of stations in the southern sector of the volcano, which is nevertheless affected by a number of seismogenic structures. We have showed that the addition of stations at the candidate sites would greatly extend the coverage of the network to the south by significantly reducing the errors in the hypocenter parameters estimation.

  9. High-resolution remote sensing data to monitor active volcanic areas: an application to the 2011-2015 eruptive activity of Mount Etna (Italy) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Marsella, Maria

    2016-10-01

    In volcanic areas, where it could be difficult to gain access to the most critical zones for carrying out direct surveys, remote sensing proved to have remarkable potentialities to follow the evolution of lava flow, as well as to detect slope instability processes induced by volcanic activity. By exploiting SAR and optical data a methodology for observing and quantifying eruptive processes was developed. The approach integrates HR optical images and SAR interferometric products and can optimize the observational capability of standard surveillance activities based on in-situ video camera network. A dedicated tool for mapping the evolution of the lava field, using both ground-based and satellite data, was developed and tested to map lava flows during the 2011-2015 eruptive activities. Ground based data were collected using the permanent ground NEtwork of Thermal and VIsible Sensors located on Mt. Etna (Etna_NETVIS) and allowed to downscale the information derived from satellite data and to integrate the satellite datasets in case of incomplete coverage or missing acquisitions. This work was developed in the framework of the EU-FP7 project "MED-SUV" (MEDiterranean SUpersite Volcanoes).

  10. Ambient noise tomography in the Naruko/Onikobe volcanic area, NE Japan: implications for geofluids and seismic activity

    NASA Astrophysics Data System (ADS)

    Tamura, Jun; Okada, Tomomi

    2016-01-01

    To understand the earthquake generation in volcanic areas, it is important to investigate the presence of geofluids in the uppermost crust. We applied ambient noise tomography to the Naruko/Onikobe volcanic area and constructed a detailed 3-D S-wave velocity ( V s) model using continuous records from a dense seismic network and surrounding stations. The low-velocity zones were found beneath Naruko Volcano, Onikobe Caldera, and Mt. Kurikoma. The low-velocity zone beneath Onikobe Caldera may correspond to a magma reservoir, which is also characterized by surrounding S-wave reflectors. The molten magma originates from the upwelling flows in the mantle wedge. We also conducted the relocation of aftershocks of the 2008 Iwate-Miyagi Nairiku earthquake by double-difference tomography based on the obtained velocity model. Beneath Mt. Kurikoma, aftershock distribution delineates one of the unfavorably oriented fault planes of the main shock, which implies that the low-velocity zone around the fault plane is related to the presence of overpressurized fluid.

  11. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013.

    PubMed

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto

    2016-08-01

    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania-Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries.

  12. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013

    PubMed Central

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto

    2016-01-01

    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania—Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries. PMID:27479914

  13. Global positioning system survey data for active seismic and volcanic areas of eastern Sicily, 1994 to 2013

    NASA Astrophysics Data System (ADS)

    Bonforte, Alessandro; Fagone, Sonia; Giardina, Carmelo; Genovese, Simone; Aiesi, Gianpiero; Calvagna, Francesco; Cantarero, Massimo; Consoli, Orazio; Consoli, Salvatore; Guglielmino, Francesco; Puglisi, Biagio; Puglisi, Giuseppe; Saraceno, Benedetto

    2016-08-01

    This work presents and describes a 20-year long database of GPS data collected by geodetic surveys over the seismically and volcanically active eastern Sicily, for a total of more than 6300 measurements. Raw data were initially collected from the various archives at the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania—Osservatorio Etneo and organized in a single repository. Here, quality and completeness checks were performed, while all necessary supplementary information were searched, collected, validated and organized together with the relevant data. Once all data and information collections were completed, raw binary data were converted into the universal ASCII RINEX format; all data are provided in this format with the necessary information for precise processing. In order to make the data archive readily consultable, we developed software allowing the user to easily search and obtain the needed data by simple alphanumeric and geographic queries.

  14. Early volcanic history of the Rabaul area

    NASA Astrophysics Data System (ADS)

    McKee, Chris O.; Duncan, Robert A.

    2016-04-01

    We conducted an extensive program of 40Ar-39Ar age determinations on a suite of 27 volcanic rock samples from key stratigraphic units at Rabaul, Papua New Guinea in order to improve understanding of the early eruption history of the multiple volcanic systems present in the area. Analyses of whole rock, plagioclase and groundmass separates yielded statistically significant ages for 24 samples. Replicate analyses (groundmass, plagioclase) for 17 of the samples provided concordant ages. The oldest systems in the Rabaul area (>1 Ma to ≈300 ka) are in the south, associated with the caldera-like Varzin Depression, and in the north, at the stratovolcanoes Watom and Tovanumbatir. The earliest known activity of the Rabaul system occurred between about 330 and 200 ka and involved emplacement of lava flows and scoria deposits. Major explosive activity at the Rabaul system commenced at about 200 ka and produced a sequence of dacitic ignimbrites that culminated with the emplacement of the large-volume Malaguna Pyroclastics at about 160 ka. Calderas may have been formed as a consequence of the large volumes of tephra produced during some of these eruptions. Products of the early activity are found in the northern and northeastern walls of Rabaul Caldera and on the northeastern flank of Tovanumbatir. This leads to the conclusion that the source of the early activity at Rabaul probably was located in the northern part of the present caldera complex. A shift in the focus of activity at the Rabaul system took place between about 160 and 125 ka. All of the younger (<125 ka) major pyroclastic formations, including the Karavia Welded Tuff, the Barge Tunnel Ignimbrite and the Latlat Pyroclastics, which make up the bulk of the exposure in the southern and western walls of Rabaul Caldera, were erupted from a source or sources in the south-central part of the complex. The stratovolcanoes Palangiangia and Kabiu, which flank the northeastern part of the complex, had commenced activity by

  15. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    SciTech Connect

    Hackett, W.R.; Smith, R.P.

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 {times} 10{sup {minus}5} per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 {times} 10{sup {minus}5} per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis.

  16. Geodetic Monitoring System Operating On Neapolitan Volcanic Area (southern Italy)

    NASA Astrophysics Data System (ADS)

    Pingue, F.; Ov-Geodesy Team

    The Neapolitan volcanic area is located in the southern sector of the Campanian Plain Graben including three volcanic active structures (Somma-Vesuvius, Campi Flegrei and Ischia). The Somma-Vesuvius complex, placed East of Naples, is a strato-volcano composed by a more ancient apparatus (Mt. Somma) and a younger cone (Mt. Vesu- vius) developed inside Somma caldera. Since last eruption (1944) it is in a quiescent state characterised by a low level seismicity and deformation activity. The Campi Fle- grei, located West of Naples, are a volcanic field inside an older caldera rim. The last eruption, occurred in the 1538, built up the Mt. Nuovo cone. The Campi Flegrei are subject to a slow vertical deformation, called bradyseism. In the 1970-1972 and 1982-1984 they have been affected by two intense episodes of ground upheaval (ac- companied by an intense seismic activity)0, followed by a subsidence phase, slower than uplift and still active. Though such phenomenon has not been followed by erup- tive events, it caused serious damages, emphasizing the high volcanic risk of the phle- grean caldera. The Ischia island, located SW of Naples, has been characterised by a volcanic activity both explosive and effusive, occurred mainly in the last 50,000 years. These events modelled the topography producing fault systems and structures delim- iting the Mt. Epomeo resurgent block. The last eruption has occurred on 1302. After, the dynamics of the island has been characterised by seismic activity (the strongest earthquake occurred on 1883) and by a meaningful subsidence, on the S and NW sec- tors of the island. The concentration of such many active volcanoes in an area with a dense urbanization (about 1,500,000 inhabitants live) needs systematic and contin- uous monitoring of the dynamics. These information are necessary in order to char- acterise eruptive precursors useful for modelling the volcanoes behaviour. Insofar, the entire volcanic Neapolitan area, characterised by a

  17. The evaluation of volcanic risk in the Vesuvian area

    NASA Astrophysics Data System (ADS)

    Scandone, Roberto; Arganese, Giovanni; Galdi, Flavio

    1993-11-01

    Volcanic Risk has been defined as the product: R = Value × Vulnerability × Hazard, where value is the total amount of lives or properties at risk for a volcani eruption, the vulnerability is the percentage of value at risk for a given volcanic event, and the hazard is the probability that a given area may be affected by a certain volcanic phenomenon. We used this definition to evaluate the Risk of loss of human lives for volcanic eruptions of Vesuvius. Value has been determined based on the total number of inhabitants living in areas that could be affected by an eruption. Vulnerability is based on the relative probability of deaths as a result of different volcanic phenomena (tephra fall, pyroclastic flows, etc.). Hazard is evaluated based on the absolute probability of a given phenomenon in a certain area. This last parameter is the most difficult to evaluate. We subdivided the activity of Vesuvius, that produces risk of loss of human lives, into three classes of eruptions, based on the Volcanic Explosivity Index. We assume that the events of each class are distributed according to a poissonian distribution (this is demonstrated for VEI = 3, and inferred for the other classes), so that we can evaluate the absolute probability of an eruption for each class within a given time span. We use a time window of 10 years and evaluate the probabilities of occurrence of at least one eruption for VEI = 3, 4, 5; the probability is respectively: P3 = 0.09896, P4 = 0.01748, P5 = 0.00298 We have made a hazard evaluation for the entire Vesuvian area as well as an evaluation of Volcanic Risk. The obtained map shows that the areas with higher risk are on the southern side of Vesuvius, in the coastal region where each town is characterized by an average Risk of ˜ 1000 inhabitants/10 years. The risk regularly decreases with increasing distance from the volcano. The risk is mostly due to the events with VEI = 3 and 4, as the most destructive effects of VEI = 5 are counterbalanced

  18. Active Volcanism on Io: Global Distribution and Variations in Activity

    USGS Publications Warehouse

    Lopes-Gautier, R.; McEwen, A.S.; Smythe, W.B.; Geissler, P.E.; Kamp, L.; Davies, A.G.; Spencer, J.R.; Keszthelyi, L.; Carlson, R.; Leader, F.E.; Mehlman, R.; Soderblom, L.

    1999-01-01

    Io's volcanic activity has been monitored by instruments aboard the Galileo spacecraft since June 28, 1996. We present results from observations by the near-infrared mapping spectrometer (NIMS) for the first 10 orbits of Galileo, correlate them with results from the Solid State Imaging System (SSI) and from groundbased observations, and compare them to what was known about Io's volcanic activity from observations made during the two Voyager flybys in 1979. A total of 61 active volcanic centers have been identified from Voyager, groundbased, and Galileo observations. Of these, 41 are hot spots detected by NIMS and/or SSI. Another 25 locations were identified as possible active volcanic centers, mostly on the basis of observed surface changes. Hot spots are correlated with surface colors, particularly dark and red deposits, and generally anti-correlated with white, SO2-rich areas. Surface features corresponding to the hot spots, mostly calderas or flows, were identified from Galileo and Voyager images. Hot spot temperatures obtained from both NIMS and SSI are consistent with silicate volcanism, which appears to be widespread on Io. Two types of hot spot activity are present: persistent-type activity, lasting from months to years, and sporadic events, which may represent either short-lived activity or low-level activity that occasionally flares up. Sporadic events are not often detected, but may make an important contribution to Io's heat flow and resurfacing. The distribution of active volcanic centers on the surface does not show any clear correlation with latitude, longitude, Voyager-derived global topography, or heat flow patterns predicted by the asthenosphere and deep mantle tidal dissipation models. However, persistent hot spots and active plumes are concentrated toward lower latitudes, and this distribution favors the asthenosphere rather than the deep mantle tidal dissipation model. ?? 1999 Academic Press.

  19. Active Volcanic Plumes on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles).

    The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images.

    North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page

  20. Modeled Aeromagnetic Anomalies, Controlled By Radar Ice Sounding, As Evidence for Subglacial Volcanic Activity in the West Antarctic Rift System (WR) Beneath the Area of the Divide of the West Antarctic Ice Sheet (WAIS)

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2014-12-01

    The Thwaites and Pine Island ice shelves, buttressing the WAIS, have passed the turning point as they are eaten away by warmer ocean waters (Joghin et al., 2014; Rignot et al., 2014). There is an increasing evidence (aeromagnetic, radar ice-sounding, high heat flow, subglacial volcanic seismicity, and several exposed and subglacial active volcanoes), for volcanic activity in the WR beneath the WAIS, which flows through it. The 5-km, orthogonally line spaced, central West Antarctica (CWA) aerogeophysical survey defined >400 high amplitude volcanic magnetic anomalies correlated with glacial bed topography. Modeled anomalies defined magnetic properties; interpreted volcanic edifices were mostly removed by the moving ice into which they were erupted. Very high apparent susceptibility contrasts (.001->.3 SI) are typical of measured properties from volcanic exposures in the WAIS area. About 90% of the magnetic sources have normal magnetization in the present field direction. Two explanations as to why the anomalies are not approximately 50% negative: (1) Volcanic activity resulting in these anomalies occurred in a predominantly normal field (unlikely). (2) Sources are a combination of induced and remanent magnetization resulting in anomalies of low amplitude (induced cancels remanent) and are not recognized because they are <100 nT (most probable). About 18 high relief, (~600-2000 m) "volcanic centers" beneath the WAIS surface, probably were erupted subaerially when the WAIS was absent; nine of these are in the general area beneath the divide of the WAIS. A 70-km wide, ring of interpreted subglacial volcanic rocks may define a volcanic caldera underlying thedivide (Behrendt et al., 1998). A 2 km-high subaerially erupted volcano (subglacial Mt Thiel, ~78o30'S, 111oW) ~ 100 km north of the WAISCORE, could be the source an ash layer observed in the core. Models by Tulaczyk and Hossainzadeh (2011) indicate >4mm/yr basal melting beneath the WAIS, supportive of high heat flow

  1. Volcanic eruptions and solar activity

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  2. Volcanic risk perception in the Campi Flegrei area

    NASA Astrophysics Data System (ADS)

    Ricci, T.; Barberi, F.; Davis, M. S.; Isaia, R.; Nave, R.

    2013-03-01

    The Campi Flegrei which includes part of the city of Naples, is an active volcanic system; its last eruption occurred in 1538 AD. More recently two significant crises occurred between 1969 and 72 and 1982-84 and were accompanied by ground movements (bradyseism) and seismic activity, forcing people of the town of Pozzuoli to be evacuated. Since 1984 development of a volcanic emergency plan has been underway. In 2000 Civil Protection published a risk map which defined the Red Zone, an area highly at risk from pyroclastic flows, which would need to be evacuated before an eruption. The first study to evaluate the volcanic risk perceptions of the people living within the Campi Flegrei area was completed in spring 2006, resulting in the largest sample ever studied on this topic except for one on Vesuvio area residents by Barberi et al. (2008). A 46 item questionnaire was distributed to 2000 of the approximately 300,000 residents of the Campi Flegrei Red Zone, which includes three towns and four neighborhoods within the city of Naples. A total of 1161 questionnaires were returned, for an overall response rate of 58%. Surveys were distributed to junior high and high school students, as well as to adult members of the general population. Results indicated that unlike issues such as crime, traffic, trash, and unemployment, volcanic hazards are not spontaneously mentioned as a major problem facing their community. However, when asked specific questions about volcanic risks, respondents believe that an eruption is likely and could have serious consequences for themselves and their communities and they are quite worried about the threat. Considering the events of 1969-72 and 1982-84, it was not surprising that respondents indicated earthquakes and ground deformations as more serious threats than eruptive phenomena. Of significant importance is that only 17% of the sample knows about the existence of the Emergency Plan, announced in 2001, and 65% said that they have not received

  3. Active Volcanic Eruptions on Io

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.

    The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the

  4. Mount St. Helens' volcanic ash: hemolytic activity.

    PubMed

    Vallyathan, V; Mentnech, M S; Stettler, L E; Dollberg, D D; Green, F H

    1983-04-01

    Volcanic ash samples from four Mount St. Helens' volcanic eruptions were subjected to mineralogical, analytical, and hemolytic studies in order to evaluate their potential for cytotoxicity and fibrogenicity. Plagioclase minerals constituted the major component of the ash with free crystalline silica concentrations ranging from 1.5 to 7.2%. The in vitro hemolytic activity of the volcanic ash was compared to similar concentrations of cytotoxic and inert minerals. The ash was markedly hemolytic, exhibiting an activity similar to chrysotile asbestos, a known fibrogenic agent. The hemolysis of the different ash samples varied with particle size but not with crystalline silica concentration. The results of these studies taken in conjunction with the results of our animal studies indicate a fibrogenic potential of volcanic ash in heavily exposed humans.

  5. 3D image of Brittle/Ductile transition in active volcanic area and its implication on seismicity: The Campi Flegrei caldera case study

    NASA Astrophysics Data System (ADS)

    Castaldo, Raffaele; Luca, D'auria; Susi, Pepe; Giuseppe, Solaro; Pietro, Tizzani

    2015-04-01

    The thermo-rheology of the rocks is a crucial aspect to understand the mechanical behavior of the crust in young and tectonically active area. As a consequence, several studies have been performed since last decades in order to understand the role of thermic state in the evolution of volcanic environments. In this context, we analyze the upper crust rheology of the Campi Flegrei active caldera (Southern Italy). Our target is the evaluation of the 3D geometry of the Brittle-Ductile transition beneath the resurgent caldera, by integrating the available geological, geochemical, and geophysical data. We first performed a numerical thermal model by using the a priori geological and geophysical information; than we employ the retrieved isothermal distribution to image the rheological stratification of the shallow crust beneath caldera. In particular, considering both the thermal proprieties and the mechanical heterogeneities of the upper crust, we performed, in a Finite Element environment, a 3D conductive time dependent thermal model through an numerical of solution of the Fourier equation. The dataset consist in temperature measurements recorded in several deep wells. More specifically, the geothermal gradients were measured in seven deep geothermal boreholes, located in three main distinct areas: Mofete, Licola, and San Vito. In addition, we take into account also the heat flow density map at the caldera surface calculated by considering the thermal measurements carried out in 30 shallow water wells. We estimate the isothermal distribution of the crust calibrating two model parameters: the heat production [W], associated to the magma injection episodes in the last 60 kyears within the magma chamber and the heat flow coefficient [W/m2*K] at the external surface. In particular, the optimization procedure has been performed using an exhaustive grid search, to minimize the differences between model and experimental measurements. The achieved results allowed us to

  6. Morphostructure analysis of Sapaya ancient volcanic area based lineament data

    NASA Astrophysics Data System (ADS)

    Massinai, Muhammad Altin; Kadir, Fitrah H.; Ismullah, Muh. Fawzy; Aswad, Sabrianto

    2016-05-01

    Morphostructure of Sapaya ancient volcanic have been analysis by using lineament models. In this models, two methods of retrieval data have been used. First, the field survey of the area, second, the satellite images analysis. The morphostructure of Sapaya ancient volcanic contribute to the crater, caldera, and shown an eroded cone morphology. The directions of eruption from Sapaya ancient volcanic have identified in region of Jeneponto and Takalar, which is had east - west and northeast - southwest structure. These eruptions also give contribution to the character of river in Jenelata watershed, by the presence of tuffs, pillow lava, basalt, andesite, diorite, granodiorite, granite, and gabbro, respectively.

  7. Volcanic activity: a review for health professionals.

    PubMed Central

    Newhall, C G; Fruchter, J S

    1986-01-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace elements composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); "mudflows" (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity. Images FIGURE 1 FIGURE 2 FIGURE 6a-6e FIGURE 6a-6e FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 PMID:3946726

  8. Volcanic activity: a review for health professionals.

    PubMed

    Newhall, C G; Fruchter, J S

    1986-03-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace elements composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); "mudflows" (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity.

  9. Crustal deformation and volcanic earthquakes associated with the recent volcanic activity of Iwojima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, H.; Fujita, E.; Tanada, T.

    2013-12-01

    Iwojima is an active volcanic island located within a 10 km wide submarine caldera about 1250 km to the south of Tokyo, Japan. The seismometer and GPS network of National Research Institute for Earth Science and Disaster Prevention (NIED) in Iwojima has observed a repeating island wide uplift more than 1 m associated with large number of volcanic earthquakes every several years. During 2006-2012, we observed more than 20000 volcanic earthquakes and an uplift of about 3 m, and precursory volcanic earthquakes and rapid crustal deformation just before the small submarine eruption near the northern coast of Iwojima in April 2012. In a restless volcano such as Iwojima, it is important issue to distinguish whether rapid crustal deformation and intense earthquake activity lead to an eruption or not. According to a long period geodetic observation by Ukawa et al. (2006), the crustal deformation of Iwojima can be classify into 2 phases. The first is an island wide large uplift centering on Motoyama area (the eastern part of the island, the center of the caldera), and the second is contraction and subsidence at local area centering on Motoyama and uplift around that area. They are interpreted by superposition of crustal deformations by a shallow contraction source and a deep seated inflation source beneath Motoyama. The earthquake activity of Iwojima highly correlates with the island wide large uplift, suggesting the earthquakes are almost controlled by a magma accumulation into a deep seated magma chamber. In contrast to the activity, the precursory activity of the eruption in 2012 is deviated from the correlation. The rapid crustal deformation just before and after the eruption in 2012 can be interpreted by rapid inflation and deflation of a shallow sill source about 1km deep, respectively, suggesting that it was caused by a shallow hydrothermal activity. The result shows that we can probably distinguish an abnormal activity related with a volcanic eruption when we observe

  10. Mantle Helium and Carbon Isotopes in Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon: Evidence for Renewed Volcanic Activity or a Long Term Steady State System?

    USGS Publications Warehouse

    Van Soest, M. C.; Kennedy, B.M.; Evans, William C.; Mariner, R.H.

    2002-01-01

    Here we present the helium and carbon isotope results from the initial study of a fluid chemistry-monitoring program started in the summer of 2001 near the South Sister volcano in central Oregon. The Separation Creek area which is several miles due west of the volcano is the locus of strong crustal uplift currently occurring at a rate of 4-5 cm/yr (Wicks, et. al., 2001).Helium [RC/RA = 7.44 and 8.61 RA (RC/R A = (3He/4He)sample-. air corrected/(3He/4He)air))] and carbon (??13C = -11.59 to -9.03??? vs PDB) isotope data and CO2/3He (5 and 9 ?? 109) show that bubbling cold springs in the Separation Creek area near South Sister volcano carry a strong mantle signal, indicating the presence of fresh basaltic magma in the volcanic plumbing system. There is no evidence though, to directly relate this signal to the crustal uplift that is currently taking place in the area, which started in 1998. The geothermal system in the area is apparently much longer lived and shows no significant changes in chemistry compared to data from the early 1990s. Hot springs in the area, which are relatively far removed from the volcanic edifice, do not carry a strong mantle signal in helium isotope ratios (2.79 to 5.08 RA), unlike the cold springs, and also do not show any significant changes in helium isotope ratios compared to literature data for the same springs of over two decades ago. The cold springs of the Separation Creek area form a very diffuse but significant low temperature geothermal system, that should, due to its close vicinity to the center of up uplift, be more sensitive to changes in the deeper volcanic plumbing system than the far removed hot springs and therefore require much more study and consideration when dealing with volcano monitoring in the Cascade range or possibly with geothermal exploration in general.

  11. Sulfide and silicate melt inclusions in the D. João de Castro Volcanic Seamount, a hydrothermally active area on the Terceira Rift, Azores

    NASA Astrophysics Data System (ADS)

    Marques, A. F. A.; Scott, S. D.; Madureira, P.; Rosa, C. J. P.; Lourenço, N.; Conceição, P.; TerRiftic Team

    2012-04-01

    The Azores plateau is a bathymetric high located in the North Atlantic encompassing a triple junction where the American, Eurasia and African plates meet. The Terceira Rift (TR), within the plateau, defines the Eurasia/African plate boundary and corresponds to a 550 Km long, ESE trending line of volcanic islands and seamounts (e.g. D. João de Castro - DJC) alternating with deep basins (e.g. Hirondelle - HIR) [1, 2]. Fresh basalts from the TR, in particular the DJC and HIR areas, were sampled from 2007 to 2009 [EMEPC 2007/2008/2009 cruises]. The team is now studying their melt inclusions [MI] in order to understand processes of magma evolution and mixing as well as the behavior of trace metals and volatiles in the pre-erupted magmas. Petrographic observations indicate that in DJC and HIR, basalts are porphyritic, vesicular, with a microcrystalline groundmass composed mostly of plagioclase laths ± olivine ± clinopyroxene ± skeletal Fe-Ti oxides ± glass. Phenocrysts are subhedral to euhedral with corroded rims. Clinopyroxene (aluminian diopside) is the main phenocryst phase, followed by olivine (Fo83 - DJC; Fo80 - HIR) and minor plagioclase (often as microphenocrysts). Incompatible trace elements in groundmass, glass, and exposed MI in clinopyroxene depict enriched patterns above the OIB field. REE patterns are similar in the groundmass and glass from DJC and HIR. Exposed MI from HIR depicts less enriched REE patterns than the groundmass, whilst DJC MI show similar REE patterns to the groundmass. MI were found in most mineral phases studied. They are distributed randomly (azonal) and appear glassy, partially devitrified or completely opaque with one or more vapor bubbles. Glassy to devitrified MI may show interpenetrating arrays of mineral phases, skeletal Fe-Ti oxides, and included euhedral Cr-spinel. Sulfide globules are common in clinopyroxene-hosted MI and are dispersed within the groundmass. Globules are small, less than 10 μm, and contain distinct mineral

  12. Geophysical imaging of subsurface structures in volcanic area by seismic attenuation profiling

    NASA Astrophysics Data System (ADS)

    Tsuru, Tetsuro; No, Tetsuo; Fujie, Gou

    2017-01-01

    Geophysical imaging by using attenuation property of multichannel seismic reflection data was tested to map spatial variation of physical properties of rocks in a volcanic area. The study area is located around Miyakejima volcanic island, where an intensive earthquake swarm was observed associated with 2000 Miyakejima eruption. Seismic reflection survey was conducted five months after the swarm initiation in order to clarify crustal structure around the hypocenters of the swarm activity. However, the resulting seismic reflection profiles were unable to provide significant information of deep structures around the hypocenters. The authors newly applied a seismic attribute method that focused seismic attenuation instead of reflectivity to the volcanic area, and designed this paper to assess the applicability of this method to subsurface structural studies in poorly reflective volcanic areas. Resulting seismic attenuation profiles successfully figured out attenuation structures around the Miyakejima volcanic island. Interestingly, a remarkable high-attenuation zone was detected between Miyakejima and Kozushima islands, being well correlated with the hypocenter distribution of the earthquake swarm in 2000. The high-attenuation zone is interpreted as a fractured area that was developed by magma activity responsible for the earthquake swarms that have been repeatedly occurring there. The present study can be one example showing the applicability of seismic attenuation profiling in a volcanic area. [Figure not available: see fulltext. Caption: .

  13. Tephra layers from Holocene lake sediments of the Sulmona Basin, central Italy: implications for volcanic activity in Peninsular Italy and tephrostratigraphy in the central Mediterranean area

    NASA Astrophysics Data System (ADS)

    Giaccio, B.; Messina, P.; Sposato, A.; Voltaggio, M.; Zanchetta, G.; Galadini, F.; Gori, S.; Santacroce, R.

    2009-12-01

    We present a new tephrostratigraphic record from the Holocene lake sediments of the Sulmona basin, central Italy. The Holocene succession is represented by whitish calcareous mud that is divided into two units, SUL2 (ca 32 m thick) and SUL1 (ca 8 m thick), for a total thickness of ca 40 m. These units correspond to the youngest two out of six sedimentary cycles recognised in the Sulmona basin that are related to the lake sedimentation since the Middle Pleistocene. Height concordant U series age determinations and additional chronological data constrain the whole Holocene succession to between ca 8000 and 1000 yrs BP. This includes a sedimentary hiatus that separates the SUL2 and SUL1 units, which is roughly dated between <2800 and ca 2000 yrs BP. A total of 31 and 6 tephra layers were identified within the SUL2 and SUL1 units, respectively. However, only 28 tephra layers yielded fresh micro-pumices or glass shards suitable for chemical analyses using a microprobe wavelength dispersive spectrometer. Chronological and compositional constraints suggest that 27 ash layers probably derive from the Mt. Somma-Vesuvius Holocene volcanic activity, and one to the Ischia Island eruption of the Cannavale tephra (2920 ± 450 cal yrs BP). The 27 ash layers compatible with Mt. Somma-Vesuvius activity are clustered in three different time intervals: from ca 2000 to >1000; from 3600 to 3100; and from 7600 to 4700 yrs BP. The first, youngest cluster, comprises six layers and correlates with the intense explosive activity of Mt. Somma-Vesuvius that occurred after the prominent AD 79 Pompeii eruption, but only the near-Plinian event of AD 472 has been tentatively recognised. The intermediate cluster (3600-3100 yrs BP) starts with tephra that chemically and chronologically matches the products from the "Pomici di Avellino" eruption (ca 3800 ± 200 yrs BP). This is followed by eight further layers, where the glasses exhibit chemical features that are similar in composition to the

  14. Tellurium in active volcanic environments: Preliminary results

    NASA Astrophysics Data System (ADS)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco

    2014-05-01

    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  15. Mantle helium and carbon isotopes in Separation Creek Geothermal Springs, Three Sisters area, Central Oregon: Evidence for renewed volcanic activity or a long term steady state system?

    SciTech Connect

    van Soest, M.C.; Kennedy, B.M.; Evans, W.C.; Mariner, R.H.

    2002-04-30

    Cold bubbling springs in the Separation Creek area, the locus of current uplift at South Sister volcano show strong mantle signatures in helium and carbon isotopes and CO{sub 2}/{sup 3}He. This suggests the presence of fresh basaltic magma in the volcanic plumbing system. Currently there is no evidence to link this system directly to the uplift, which started in 1998. To the contrary, all geochemical evidence suggests that there is a long-lived geothermal system in the Separation Creek area, which has not significantly changed since the early 1990s. There was no archived helium and carbon data, so a definite conclusion regarding the strong mantle signature observed in these tracers cannot yet be drawn. There is a distinct discrepancy between the yearly magma supply required to explain the current uplift (0.006 km{sup 3}/yr) and that required to explain the discharge of CO{sub 2} from the system (0.0005 km{sup 3}/yr). This discrepancy may imply that the chemical signal associated with the increase in magma supply has not reached the surface yet. With respect to this the small changes observed at upper Mesa Creek require further attention, due to the recent volcanic vent in that area it may be the location were the chemical signal related to the uplift can most quickly reach the surface. Occurrence of such strong mantle signals in cold/diffuse geothermal systems suggests that these systems should not be ignored during volcano monitoring or geothermal evaluation studies. Although the surface-expression of these springs in terms of heat is minimal, the chemistry carries important information concerning the size and nature of the underlying high-temperature system and any changes taking place in it.

  16. Impact of Volcanic Activity on AMC Channel Operations

    DTIC Science & Technology

    2014-06-13

    IMPACT OF VOLCANIC ACTIVITY ON AMC CHANNEL OPERATIONS GRADUATE RESEARCH PROJECT Matthew D... VOLCANIC ACTIVITY ON AMC CHANNEL OPERATIONS GRADUATE RESEARCH PROJECT Presented to the Faculty Department of Operational Sciences...AFIT-ENS-GRP-14-J-11 IMPACT OF VOLCANIC ACTIVITY ON AMC CHANNEL OPERATIONS Matthew D. Meshanko, BS, MA Major, USAF

  17. Volcanic fire and glacial ice: Mount Rogers National Recreation Area

    USGS Publications Warehouse

    ,; ,

    2007-01-01

    In addition to containing the highest point in Virginia (Mount Rogers, elevation 5,729 feet), the Mount Rogers National Recreation Area (NRA) of the Jefferson National Forest is a window on the history of ancient volcanic eruptions and glacial movement.

  18. Volcanic risk perception of young people in the urban areas of Vesuvius: Comparisons with other volcanic areas and implications for emergency management

    USGS Publications Warehouse

    Carlino, S.; Somma, R.; Mayberry, G.C.

    2008-01-01

    More than 600 000 people are exposed to volcanic risk in the urban areas near the volcano, Vesuvius, and may need to be evacuated if there is renewed volcanic activity. The success of a future evacuation will strongly depend on the level of risk perception and preparedness of the at-risk communities during the current period of quiescence. The volcanic risk perception and preparedness of young people is of particular importance because hazard education programs in schools have been shown to increase the clarity of risk perception and students often share their knowledge with their parents. In order to evaluate young people's risk perception and preparedness for a volcanic crisis, a multiple choice questionnaire was distributed to 400 high-school students in three municipalities located close to the volcano. The overall results suggest that despite a 60-year period of quiescence at Vesuvius, the interviewed students have an accurate perception of the level of volcanic risk. On the other hand, the respondents demonstrate a clear lack of understanding of volcanic processes and their related hazards. Also, the interviewed students show high levels of fear, poor perceived ability to protect themselves from the effects of a future eruption, and insufficient knowledge of the National Emergency Plan for Vesuvian Area (NEPVA). The latter result suggests that in comparison with volcanic crises in other regions, during a future eruption of Vesuvius, there may not be enough time to educate the large number of people living near the volcano about how to appropriately respond. The inadequate risk education and preparedness of respondents implies that a strong effort is needed to improve communication strategies in order to facilitate successful evacuations. Therefore, it is important to take advantage of the present period of quiescence at Vesuvius to improve the accuracy of risk perception of youth in local communities. ?? 2008.

  19. Frequency Based Volcanic Activity Detection through Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Worden, A. K.; Dehn, J.; Webley, P. W.

    2015-12-01

    Satellite remote sensing has proved to offer a useful and relatively inexpensive method for monitoring large areas where field work is logistically unrealistic, and potentially dangerous. Current sensors are able to detect the majority of explosive volcanic activity; those that tend to effect and represent larger scale changes in the volcanic systems, eventually relating to ash producing periods of extended eruptive activity, and effusive activity. As new spaceborne sensors are developed, the ability to detect activity improves so that a system to gauge the frequency of volcanic activity can be used as a useful monitoring tool. Four volcanoes were chosen for development and testing of a method to monitor explosive activity: Stromboli (Italy); Shishaldin and Cleveland (Alaska, USA); and Karymsky (Kamchatka, Russia). Each volcano studied had similar but unique signatures of pre-cursory and eruptive activity. This study has shown that this monitoring tool could be applied to a wide range of volcanoes and still produce useful and robust data. Our method deals specifically with the detection of small scale explosive activity. The method described here could be useful in an operational setting, especially at remote volcanoes that have the potential to impact populations, infrastructure, and the aviation community. A number of important factors will affect the validity of application of this method. They are: (1) the availability of a continuous and continually populated dataset; (2) appropriate and reasonable sensor resolutions; (3) a recorded history of the volcano's previous activity; and, if available, (4) some ground-based monitoring system. We aim to develop the method further to be able to capture and evaluate the frequency of other volcanic processes such as lava flows, phreatomagmatic eruptions and dome growth and collapse. The work shown here has served to illustrate the capability of this method and monitoring tool for use at remote, un-instrumented volcanoes.

  20. Volcanism Assocciated Bentonite Formation (KURŞUNLU Area) in the Southern Margin of Galatean Volcanic Province , NW of Central Anatolia Turkey

    NASA Astrophysics Data System (ADS)

    Sözeri, Koray; Karakas, Zehra; Varol, Baki

    2010-05-01

    The studied area is located in the southern margin of Galatean Volcanic Province which was developed on the Upper Cretaceous accretionary complex and bounded on the north by an intercontinental shear zone - North Anatolian Fault Zone. The volcanic province shows post-collisional tectonic setting from a previously subduction-modified mantle sources , in which main volcanic activity took place through the Miocene period ( between 25-10 Ma) and the latest cycle was completed between 11-8.5 Ma represented by local alkali basaltic flows resting. on the older volcanic units that directly related rift volcanism induced by regional extensional tectonic. The volcanics assocciated with bentonite beds (Kurşunlu -Çankırı) dated as late Miocene, consist of basaltic and andesitic lavas and their pyroclastic rocks such as agglomera , volcanic breccia and tuffs which are capped by volcanic sandstones with conglomeratic interlayers. Bentonites make the outcrops in the shape of lens and heads exposed in the Kurşunlu and Şabanozu volcanics. XRD analyses have revealed that smectite is dominant clay mineral of the bentonite beds in the volcanic realms. The smectite generally is rich in Na. So it has been determined as Na-Ca smectite responding to end member. SEM study indicates that smectite was originated from alteration of feldspars, supported by revers relationship between feldspars and smectites which are gradually increased with the loose of feldispars. On the other hand some smectites were precipitated as void- or fracture fills. All findings suggest that smectites studied were formed very closed the volcanic rocks, in which feldspar alterations or dissolution under humid conditions of shallow lake or local swamps created the suitable conditions leading to formation of the bentonite beds.

  1. The Boring Volcanic Field of the Portland-Vancouver area, Oregon and Washington: tectonically anomalous forearc volcanism in an urban setting

    USGS Publications Warehouse

    Evarts, Russell C.; Conrey, Richard M.; Fleck, Robert J.; Hagstrum, Jonathan T.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian P.

    2009-01-01

    More than 80 small volcanoes are scattered throughout the Portland-Vancouver metropolitan area of northwestern Oregon and southwestern Washington. These volcanoes constitute the Boring Volcanic Field, which is centered in the Neogene Portland Basin and merges to the east with coeval volcanic centers of the High Cascade volcanic arc. Although the character of volcanic activity is typical of many monogenetic volcanic fields, its tectonic setting is not, being located in the forearc of the Cascadia subduction system well trenchward of the volcanic-arc axis. The history and petrology of this anomalous volcanic field have been elucidated by a comprehensive program of geologic mapping, geochemistry, 40Ar/39Ar geochronology, and paleomag-netic studies. Volcanism began at 2.6 Ma with eruption of low-K tholeiite and related lavas in the southern part of the Portland Basin. At 1.6 Ma, following a hiatus of ~0.8 m.y., similar lavas erupted a few kilometers to the north, after which volcanism became widely dispersed, compositionally variable, and more or less continuous, with an average recurrence interval of 15,000 yr. The youngest centers, 50–130 ka, are found in the northern part of the field. Boring centers are generally monogenetic and mafic but a few larger edifices, ranging from basalt to low-SiO2 andesite, were also constructed. Low-K to high-K calc-alkaline compositions similar to those of the nearby volcanic arc dominate the field, but many centers erupted magmas that exhibit little influence of fluids derived from the subducting slab. The timing and compositional characteristics of Boring volcanism suggest a genetic relationship with late Neogene intra-arc rifting.

  2. A preliminary evaluation of ERTS-1 images on the volcanic areas of Southern Italy

    NASA Technical Reports Server (NTRS)

    Cassinis, R.; Lechi, G. M.

    1973-01-01

    The test site selected for the investigation covers nearly all the regions of active and quiescent volcanism in southern Italy, i.e. the eastern part of the island of Sicily, the Aeolian Islands and the area of Naples. The three active European volcanoes (Etna, Stromboli and Vesuvius) are included. The investigation is in the frame of a program for the surveillance of active volcanoes by geophysical (including remote sensing thermal methods) and geochemical methods. By the multispectral analysis of ERTS-1 data it is intended to study the spectral behavior of the volcanic materials as well as the major geological lineaments with special reference to those associated with the volcanic region. Secondary objectives are also the determination of the hydrographic network seasonal behavior and the relationship between the vegetation cover and the different type of soils and rocks.

  3. Volcanic Activity at Tvashtar Catena, Io

    NASA Technical Reports Server (NTRS)

    Milazzo, M. P.; Keszthelyi, L. P.; Radebaugh, J.; Davies, A. G.; McEwen, A. S.

    2004-01-01

    Tvashtar Catena (63 N, 120 W) is one of the most interesting features on Io. This chain of large paterae (caldera-like depressions) has exhibited highly variable volcanic activity in a series of observations. Tvashtar is the type example of a style of volcanism seen only at high latitudes, with short-lived Pele-type plumes and short-lived by intense thermal events. Evidence for a hot spot at Tvashtar was first detected in an eclipse observation in April 1997 (orbit G7) by the Solid State Imager (SSI) on the Galileo Spacecraft. Tvashtar was originally targeted for observation at higher resolution in the close flyby in November 1999 (I25) because of its interesting large-scale topography. There are relatively few but generally larger paterae at high latitudes on Io. I25 images revealed a 25 km long, 1-2 km high lava curtain via a pattern of saturation and bleeding in the CCD image, which requires very high temperatures.

  4. Petrology of Eocene volcanic rocks of Moalleman Damghan area

    NASA Astrophysics Data System (ADS)

    Zolfaghari, Seddigheh; Kohansal, Reza; Hashem Emami, Mohammad

    2010-05-01

    The Moalleman area is situated to the south of Damghan City, in the central of Torud sheet (scale 1:250000). The area is part of central Iran structural zone. The oldest and the youngest rocks units of the area include schists and limestone ascribed to Silurian and Devonian periods, and the fluvial terraces of Quaternary periods. Most of the volcanic rocks of the area are respectively related to Lutetion stage till upper Eocene, and are exposed between the Torud Angilu faults. Following to the eruption of these rocks, during upper Eocene to Oligocene, subvolcanic cryptodomes, hypoabyssal plutons and several dikes have intruded into this volcanic sequence. Igneous rocks of the study area may be classified into three main groups: Lavas, Pyroclastics and subvolcanic. Lavas include basalts, andesite, dacitic andesites and quartztrachyandesite, Trachyandesites form the major volume of these volcanic rocks with in the study. Pyroclastic rocks mainly consist of cryptallic tuff (with an andesitic to trachyandesitic composition) and crystal tuff. (With an andesitic to dacitic composition). The Major volume of volcanic rocks of study area have suffered alterations which gave rise to the formation of secondary minerals such as calcite, chlorite, sericite, epidote, serpentine, and iddingsite. It appears that the faults and fractures with in these rocks have facilitated the transition of hydrothermal solutions and the subsequent alteration. Microscopic evidences of magmatic contamination in lavas include phenomena such as resorption, formations of sieve texture, and osciliatory zoning in plagioclases, corrosion of pyroxenes and plagioclases, and two types of altered and unaltered plagioclases concurrence. According to the geochemical diagrams, the rocks of the study area of the alkaline and calc-alkaline types and have a tendency to potassium enrichment (probably related to contamination of their magma). Geochemical evidences such as great scatter in the diagrams and showing no

  5. Some geochemical features of Caledonian volcanism recorded in sedimentary rocks of the East Baltic area

    NASA Astrophysics Data System (ADS)

    Soesoo, Alvar; Kiipli, Tarmo; Kallaste, Toivo

    2013-04-01

    The Caledonian rocks have formed as a result of a multitude of magmatic and tectonic processes. All these major processes have generated a set of volcanic and magmatic products. While products of intrusive magmatism can still be well recognised in Caledonian mountains, some of the volcanic products can be found in a wide area of the Baltica paleocontinent. The best record of the ancient explosive volcanism can be traced in sedimentary sections adjacent to tectonically active areas. The aim of this study is to describe geochemical evolution of the volcanism near the Baltica plate using bulk geochemistry and phenocryst compositions of the Caledonian volcanic ashes stored in the Lower Palaeozoic sections of the Eastern Baltica. The bentonite samples were collected from several drill cores from Estonia, Latvia and Lithuania. Thickness of the ash beds varies mostly between 0.1 and 10 cm, rarely reaching 20-70 cm. Constructed isopach schemes indicate increase of thickness of ash beds towards the northwest and west. Original sanidine composition in ca 400 samples and biotite from 13 ash beds were analysed from grain fraction of bentonites using X-ray diffractometry. Stratigraphical distribution of volcanic ash beds in the East Baltic area can be subdivided into four major intervals separated by intervals with less frequent signs of volcanism. The above intervals show characteristic geochemical signatures. Over 175 thin altered volcanic ash beds have been recognised by authors in the East Baltic sedimentary sections from the Upper Ordovician (ca. 458 Ma) to the Upper Silurian (ca. 421 Ma). There separate ash units may correspond to distinct volcanic eruptions in Caledonides. Volcanic ashes which reached the East Baltic area fall into four time periods (time intervals distinguished by micro-paleontological methods): (1) Sandbian with main sources at the margins of the Avalonian microcontinent; (2) Katian with sources at the margin of the Baltica in Iapetus Palaeo

  6. Radiocarbon ages of lacustrine deposits in volcanic sequences of the Lomas Coloradas area, Socorro Island, Mexico

    NASA Technical Reports Server (NTRS)

    Farmer, J. D.; Farmer, M. C.; Berger, R.

    1993-01-01

    Extensive eruptions of alkalic basalt from low-elevation fissures and vents on the southern flank of the dormant volcano, Cerro Evermann, accompanied the most recent phase of volcanic activity on Socorro Island, and created the Lomas Coloradas, a broad, gently sloping terrain comprising the southern part of the island. We obtained 14C ages of 4690 +/- 270 BP (5000-5700 cal BP) and 5040 +/- 460 BP (5300-6300 cal BP) from lacustrine deposits that occur within volcanic sequences of the lower Lomas Coloradas. Apparently, the sediments accumulated within a topographic depression between two scoria cones shortly after they formed. The lacrustine environment was destroyed when the cones were breached by headward erosion of adjacent stream drainages. This was followed by the eruption of a thin basaltic flow from fissures near the base of the northernmost cone. The flow moved downslope for a short distance and into the drainages that presently bound the study area on the east and west. The flow postdates development of the present drainage system and may be very recent. Our 14C data, along with historical accounts of volcanic activity over the last century, including submarine eruptions that occurred a few km west of Socorro in early 1993, underscore the high risk for explosive volcanism in this region and the need for a detailed volcanic hazards plan and seismic monitoring.

  7. Radiocarbon ages of lacustrine deposits in volcanic sequences of the Lomas Coloradas area, Socorro Island, Mexico

    SciTech Connect

    Farmer, J.D. ); Farmer, M.C. . Dept. of Geography and Anthropology); Berger, R. . Depts. of Geography and Anthropology and Institute of Geophysics and Planetary Sciences)

    1993-01-01

    Extensive eruptions of alkalic basalt from low-elevation fissures and vents on the southern flank of the dormant volcano, Cerro Evermann, accompanied the most recent phase of volcanic activity on Socorro Island, and created the Lomas Coloradas, a broad, gently sloping terrain comprising the southern part of the island. The authors obtained [sup 14]C ages of 4690 [plus minus] 270 Bp (5000-5700 cal Bp) and 5040 [plus minus] 460 Bp (53090-6300 cal Bp) from lacustrine deposits that occur within volcanic sequences of the lower Lonas Coloradas. Apparently, the sediments accumulated within a topographic depression between two scoria cones shortly after they formed. The lacustrine environment was destroyed when the cones were breached by headward erosion of adjacent stream drainages. This was followed by the eruption of a thin basaltic flow from fissures near the base of the northernmost cone. The flow moved downslope for a short distance and into the drainages that presently bound the study area on the east and west. The flow postdates development of the present drainage system and may be very recent. These [sup 14]C data, along with historical accounts of volcanic activity over the last century, including submarine eruptions that occurred a few km west of Socorro in early 1993, underscore the high risk for explosive volcanism in the region and the need for a detailed volcanic hazards plan and seismic monitoring.

  8. Jovian dust streams: A monitor of Io's volcanic plume activity

    USGS Publications Warehouse

    Kruger, H.; Geissler, P.; Horanyi, M.; Graps, A.L.; Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Moissl, R.; Johnson, T.V.; Grun, E.

    2003-01-01

    Streams of high speed dust particles originate from Jupiter's moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200 km s-1. The Galileo spacecraft has continuously monitored the dust streams during 34 revolutions about Jupiter between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between 10-3 and 10 kg s-1, and is typically in the range of 0.1 to 1 kg s-1. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes. Copyright 2003 by the American Geophysical Union.

  9. Integrating Multiple Space Ground Sensors to Track Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Davies, Ashley; Doubleday, Joshua; Tran, Daniel; Jones, Samuel; Kjartansson, Einar; Thorsteinsson, Hrobjartur; Vogfjord, Kristin; Guomundsson, Magnus; Thordarson, Thor; Mandl, Daniel

    2011-01-01

    Volcanic activity can occur with little or no warning. Increasing numbers of space borne assets can enable coordinated measurements of volcanic events to enhance both scientific study and hazard response. We describe the use of space and ground measurements to target further measurements as part of a worldwide volcano monitoring system. We utilize a number of alert systems including the MODVOLC, GOESVOLC, US Air Force Weather Advisory, and Volcanic Ash Advisory Center (VAAC) alert systems. Additionally we use in-situ data from ground instrumentation at a number of volcanic sites, including Iceland.

  10. High Resolution Aircraft Scanner Mapping of Geothermal and Volcanic Areas

    SciTech Connect

    Mongillo, M.A.; Cochrane, G.R.; Wood, C.P.; Shibata, Y.

    1995-01-01

    High spectral resolution GEOSCAN Mkll multispectral aircraft scanner imagery has been acquired, at 3-6 m spatial resolutions, over much of the Taupo Volcanic Zone as part of continuing investigations aimed at developing remote sensing techniques for exploring and mapping geothermal and volcanic areas. This study examined the 24-band: visible, near-IR (NIR), mid-IR (MIR) and thermal-IR (TIR) imagery acquired over Waiotapu geothermal area (3 m spatial resolution) and White Island volcano (6 m resolution). Results show that color composite images composed of visible and NIR wavelengths that correspond to color infrared (CIR) photographic wavelengths can be useful for distinguishing among bare ground, water and vegetation features and, in certain cases, for mapping various vegetation types. However, combinations which include an MIR band ({approx} 2.2 {micro}m) with either visible and NIR bands, or two NIR bands, are the most powerful for mapping vegetation types, water bodies, and bare and hydrothermally altered ground. Combinations incorporating a daytime TIR band with NIR and MIR bands are also valuable for locating anomalously hot features and distinguishing among different types of surface hydrothermal alteration.

  11. Airborne magnetic mapping of volcanic areas - state-of-the-art and future perspectives

    NASA Astrophysics Data System (ADS)

    Supper, Robert; Paoletti, Valeria; Okuma, Shigeo

    2015-04-01

    Traditionally airborne magnetics surveys in volcanology are used for mapping regional geological features, fault zones and to develop a magnetic model of the volcanic subsurface. Within an Austrian-Italian-Japanese cooperation, several volcanic areas including Mt. Vesuvius, Ischia, Campi Flegreii and Aeolian Islands in Italy and Socorro Island in Mexico were mapped by high-resolution magnetic mapping during the last 15 years. In this paper, general conclusions from this long-term cooperation project on airborne magnetics in volcanic areas will be summarised. Basically the results showed the results from airborne magnetics could be used for three major purposes: 1. Developing a rough model for the magnetisation below the volcano down to several kilometres by applying advanced magnetic inversion algorithms helped to define the possible depth of the current or past magma chamber. Due to the complexity of the subsurface of volcanic areas, inversion of data was much dependent on constraints coming from other geoscientific disciplines. 2. After applying certain steps of reduction (topographic correction, field transformation) and a combination of source selective filtering, important regional structural trends could be derived from the alignment of the residual magnetic anomalies. 3. On the other hand during recent years, research has also focused on repeated measurements of the magnetic field of volcanic areas (differential in respect of time = differential magnetic measurements - DMM) using airborne sensors. Long-term temporal magnetic field variations in active volcanic areas can be caused by a changing size of the magma chamber or a general rise in temperature. This is caused by the fact that magnetization disappears, when a magnetic material is warmed up over a certain temperature (Curie- temperature). In consequence the resulting total magnetic field changes. Therefore, determining areas showing changes in the magnetic field could help to select areas where a

  12. Increased thyroid cancer incidence in a basaltic volcanic area is associated with non-anthropogenic pollution and biocontamination.

    PubMed

    Malandrino, Pasqualino; Russo, Marco; Ronchi, Anna; Minoia, Claudio; Cataldo, Daniela; Regalbuto, Concetto; Giordano, Carla; Attard, Marco; Squatrito, Sebastiano; Trimarchi, Francesco; Vigneri, Riccardo

    2016-08-01

    The increased thyroid cancer incidence in volcanic areas suggests an environmental effect of volcanic-originated carcinogens. To address this problem, we evaluated environmental pollution and biocontamination in a volcanic area of Sicily with increased thyroid cancer incidence. Thyroid cancer epidemiology was obtained from the Sicilian Regional Registry for Thyroid Cancer. Twenty-seven trace elements were measured by quadrupole mass spectrometry in the drinking water and lichens (to characterize environmental pollution) and in the urine of residents (to identify biocontamination) in the Mt. Etna volcanic area and in adjacent control areas. Thyroid cancer incidence was 18.5 and 9.6/10(5) inhabitants in the volcanic and the control areas, respectively. The increase was exclusively due to the papillary histotype. Compared with control areas, in the volcanic area many trace elements were increased in both drinking water and lichens, indicating both water and atmospheric pollution. Differences were greater for water. Additionally, in the urine of the residents of the volcanic area, the average levels of many trace elements were significantly increased, with values higher two-fold or more than in residents of the control area: cadmium (×2.1), mercury (×2.6), manganese (×3.0), palladium (×9.0), thallium (×2.0), uranium (×2.0), vanadium (×8.0), and tungsten (×2.4). Urine concentrations were significantly correlated with values in water but not in lichens. Our findings reveal a complex non-anthropogenic biocontamination with many trace elements in residents of an active volcanic area where thyroid cancer incidence is increased. The possible carcinogenic effect of these chemicals on the thyroid and other tissues cannot be excluded and should be investigated.

  13. Volcanic activity at Tvashtar Catena, Io

    USGS Publications Warehouse

    Milazzo, M.P.; Keszthelyi, L.P.; Radebaugh, J.; Davies, A.G.; Turtle, E.P.; Geissler, P.; Klaasen, K.P.; Rathbun, J.A.; McEwen, A.S.

    2005-01-01

    Galileo's Solid State Imager (SSI) observed Tvashtar Catena four times between November 1999 and October 2001, providing a unique look at a distinctive high latitude volcanic complex on Io. The first observation (orbit I25, November 1999) resolved, for the first time, an active extraterrestrial fissure eruption; the brightness temperature was at least 1300 K. The second observation (orbit I27, February 2000) showed a large (??? 500 km 2) region with many, small, hot, regions of active lava. The third observation was taken in conjunction with Cassini imaging in December 2000 and showed a Pele-like, annular plume deposit. The Cassini images revealed an ???400 km high Pele-type plume above Tvashtar Catena. The final Galileo SSI observation of Tvashtar (orbit I32, October 2001), revealed that obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. In this paper, we primarily analyze the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of simple advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping eruptions. The highest reliable color temperature is ???1300 K. Although higher temperatures cannot be ruled out, they do not need to be invoked to fit the observed data. The total power output from the active lavas in February 2000 was at least 1011 W. ?? 2005 Elsevier Inc. All rights reserved.

  14. Search of CH4 around the mud volcanism areas on Mars

    NASA Astrophysics Data System (ADS)

    Aoki, Shohei

    2012-06-01

    We propose the first measurement of CH4 specialized in the mud volcanism areas on Mars. Although the small amount of CH4 in the Martian atmosphere is remarkable because its source is potentially geological (or biological) activity, it is still open question. The high spectral and spatial resolution with high sensitivity and wide spectral coverage of IRCS/Subaru enable us the first mapping of CH4 on the localized mud volcanism areas. In the terrestrial case, mud volcanism vents about 25% of CH4 released from geological sources to the atmosphere. In such locations, CH4 can potentially combine with the infiltrated H2O and generate CH4-hydrate. While in the Martian case, the mud volcanism is expected the mounds in Acidalia Planitia and the Utopia/Isidis pitted cones. However, the releases of CH4 on these locations have not been discovered yet. Since the CH4-hydrate suggests the correlation of CH4 and H2O, high spatial resolution with simultaneous measurements of CH4 and H2O lines are essential. IRCS/Subaru can provide this opportunity. In addition, our observation will override the past one with CSHELL/IRTF in the following aspects, (1) less uncertainty by simultaneous measurement of multiple CH4 lines with wider spectral coverage, and (2) better spatial resolution.

  15. SURFACE AREA AND MICRO-ROUGHNESS OF VOLCANIC ASH PARTICLES: A case study, Acigol Volcanic Complex, Cappadocia, Central Turkiye

    NASA Astrophysics Data System (ADS)

    Ersoy, O.; Aydar, E.; Sen, E.; Atici, G.

    2009-04-01

    Every single ash particle may convey information about its own formation environment and conditions. Certain features on particles may give a hint about the fragmentation regime, the intensity of fragmentation and quantity of water that partakes in the fragmentation process, etc. On this account, this study majored in the analysis on finer pyroclastic material, namely volcanic ash particles. Here, we used volcanic ash particles from Quaternary Acigol Volcanic complex (West of Nevsehir, Cappadocia, Central Turkiye). Quaternary Acigol Volcanic complex lies between the towns of Nevsehir and Acigol. It consists of a shallow caldera, a thick pyroclastic apron, seven obsidian dome clusters, and scattered cinder cones and associated lavas (Druitt et al., 1995). The products of explosive volcanism of the region were distinguished as two main Quaternary tuffs by a recent study (Druitt et al., 1995). Samples are from ashfall beds in a sequence of intercalated pumice fall, ashfall, and ignimbrite beds. In this study in order to achieve surface properties of volcanic ash particles, surface areas and micro-roughness of ash particles were measured on digital elevation models (DEM) reconstructed from stereoscopic images acquired on Scanning Electron Microscope (SEM) at varying specimen tilt angles. Correlation between surface texture of volcanic ash particles and eruption characteristics was determined.

  16. Utilizing NASA Earth Observations to Model Volcanic Hazard Risk Levels in Areas Surrounding the Copahue Volcano in the Andes Mountains

    NASA Astrophysics Data System (ADS)

    Keith, A. M.; Weigel, A. M.; Rivas, J.

    2014-12-01

    Copahue is a stratovolcano located along the rim of the Caviahue Caldera near the Chile-Argentina border in the Andes Mountain Range. There are several small towns located in proximity of the volcano with the two largest being Banos Copahue and Caviahue. During its eruptive history, it has produced numerous lava flows, pyroclastic flows, ash deposits, and lahars. This isolated region has steep topography and little vegetation, rendering it poorly monitored. The need to model volcanic hazard risk has been reinforced by recent volcanic activity that intermittently released several ash plumes from December 2012 through May 2013. Exposure to volcanic ash is currently the main threat for the surrounding populations as the volcano becomes more active. The goal of this project was to study Copahue and determine areas that have the highest potential of being affected in the event of an eruption. Remote sensing techniques were used to examine and identify volcanic activity and areas vulnerable to experiencing volcanic hazards including volcanic ash, SO2 gas, lava flow, pyroclastic density currents and lahars. Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Landsat 8 Operational Land Imager (OLI), EO-1 Advanced Land Imager (ALI), Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Shuttle Radar Topography Mission (SRTM), ISS ISERV Pathfinder, and Aura Ozone Monitoring Instrument (OMI) products were used to analyze volcanic hazards. These datasets were used to create a historic lava flow map of the Copahue volcano by identifying historic lava flows, tephra, and lahars both visually and spectrally. Additionally, a volcanic risk and hazard map for the surrounding area was created by modeling the possible extent of ash fallout, lahars, lava flow, and pyroclastic density currents (PDC) for future eruptions. These model results were then used to identify areas that should be prioritized for disaster relief and evacuation orders.

  17. G-EVER Activities and the Next-generation Volcanic Hazard Assessment System

    NASA Astrophysics Data System (ADS)

    Takarada, S.

    2013-12-01

    The Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) is a consortium of Asia-Pacific geohazard research institutes that was established in 2012. G-EVER aims to formulate strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis and volcanic eruptions. G-EVER is working on enhancing collaboration, sharing of resources, and making information on the risks of earthquakes and volcanic eruptions freely available and understandable. The 1st G-EVER International Symposium was held in Tsukuba, Japan in March 11, 2013. The 2nd Symposium is scheduled in Sendai, Tohoku Japan, in Oct. 19-20, 2013. Currently, 4 working groups were proposed in the G-EVER Consortium. The next-generation volcano hazard assessment WG is developing a useful system for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is based on volcanic eruption history datasets, volcanic eruption database, and numerical simulations. Volcanic eruption histories including precursor phenomena leading to major eruptions of active volcanoes are very important for future prediction of volcanic eruptions. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and types, is important for the next-generation volcano hazard assessment system. Proposing international standards on how to estimate the volume of volcanic products is important to make a high quality volcanic eruption database. Spatial distribution database of volcanic products (e.g. tephra and pyroclastic flow distributions), encoded into a GIS based database is necessary for more precise area and volume estimation and risk assessments. The volcanic eruption database is developed based on past eruption results, which only represents a subset of possible future scenarios. Therefore, numerical simulations with controlled parameters are needed for more precise volcanic eruption

  18. Using Volcanic Lightning Measurements to Discern Variations in Explosive Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.

    2013-12-01

    VHF observations of volcanic lightning have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical activity occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The high rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic activity. The fact that vent discharges are observed concurrent with explosive volcanic activity indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed lightning observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic lightning observations in general, are a valuable tool for volcano monitoring, providing a

  19. Seismic signature of crustal magma and fluid from deep seismic sounding data across Tengchong volcanic area

    NASA Astrophysics Data System (ADS)

    Bai, Z. M.; Zhang, Z. Z.; Wang, C. Y.; Klemperer, S. L.

    2012-04-01

    The weakened lithosphere around eastern syntax of Tibet plateau has been revealed by the Average Pn and Sn velocities, the 3D upper mantle velocity variations of P wave and S wave, and the iimaging results of magnetotelluric data. Tengchong volcanic area is neighboring to core of eastern syntax and famous for its springs, volcanic-geothermal activities and remarkable seismicity in mainland China. To probe the deep environment for the Tengchong volcanic-geothermal activity a deep seismic sounding (DSS) project was carried out across the this area in 1999. In this paper the seismic signature of crustal magma and fluid is explored from the DSS data with the seismic attribute fusion (SAF) technique, hence four possible positions for magma generation together with some locations for porous and fractured fluid beneath the Tengchong volcanic area were disclosed from the final fusion image of multi seismic attributes. The adopted attributes include the Vp, Vs and Vp/Vs results derived from a new inversion method based on the No-Ray-Tomography technique, and the migrated instantaneous attributes of central frequency, bandwidth and high frequency energy of pressure wave. Moreover, the back-projected ones which are mainly consisted by the attenuation factor Qp , the delay-time of shear wave splitting, and the amplitude ratio between S wave and P wave + S wave were also considered in this fusion process. Our fusion image indicates such a mechanism for the surface springs: a large amount of heat and the fluid released by the crystallization of magma were transmitted upward into the fluid-filled rock, and the fluid upwells along some pipeline since the high pressure in deep, thus the widespread springs of Tengchong volcanic area were developed. Moreover, the fusion image, regional volcanic and geothermal activities, and the seismicity suggest that the main risk of volcanic eruption was concentrated to the south of Tengchong city, especially around the shot point (SP) Tuantian

  20. Recent volcanic activity on Venus - Evidence from radiothermal emissivity measurements

    NASA Astrophysics Data System (ADS)

    Robinson, C. A.; Wood, J. A.

    1993-03-01

    Radiothermal emissivity measurements are analyzed in order to study large volcanic constructs on Venus and to correlate details of the reflectivity/emissivity patterns with geological landforms and stratigraphy visible in corresponding SAR images. There appears to be a correlation between locations on Venus where high emissivity at high altitudes and low emissivity at low altitudes are observed. These phenomena are attributed here to relatively recent volcanic activity: the former to summit eruptions that have not had time to weather to the low-emissivity state, the latter to continuing emission of volcanic gases from neighboring small plains volcanoes. The pattern of reflectivity and emissivity on Maat Mons is examined in the light of these findings. It is concluded that Maat Mons has undergone the most recent episode of volcanic activity of all the volcanoes studied here.

  1. Recent volcanic activity on Venus - Evidence from radiothermal emissivity measurements

    NASA Technical Reports Server (NTRS)

    Robinson, Cordula A.; Wood, John A.

    1993-01-01

    Radiothermal emissivity measurements are analyzed in order to study large volcanic constructs on Venus and to correlate details of the reflectivity/emissivity patterns with geological landforms and stratigraphy visible in corresponding SAR images. There appears to be a correlation between locations on Venus where high emissivity at high altitudes and low emissivity at low altitudes are observed. These phenomena are attributed here to relatively recent volcanic activity: the former to summit eruptions that have not had time to weather to the low-emissivity state, the latter to continuing emission of volcanic gases from neighboring small plains volcanoes. The pattern of reflectivity and emissivity on Maat Mons is examined in the light of these findings. It is concluded that Maat Mons has undergone the most recent episode of volcanic activity of all the volcanoes studied here.

  2. An Experimental Study of Rock Dissolution Kinetics and Implications On Weathering Rates In An Active Volcanic Area: The Case Study of Mount Etna

    NASA Astrophysics Data System (ADS)

    Parisi, B.; Parello, F.; Valenza, M.

    Six dissolution experiments were performed on fresh and undisturbed basaltic rock samples (hawaiite), that were collected from two quarries in the Mount Etna area. They can be attributed to the well documented historical 1669 lava flow. Different operating conditions were selected to carry out the experiments, with the aim of quan- tifying the role of chemico-physical parameters on dissolution, such as temperature, partial pressure of CO2 and rock grain size. In order to calculate the molal fluxes, the amount of a chemical element released from the solid to the interacting solution was normalized to the specific surface area of grains and then to the reaction time. In longer reaction times, only Na and SiO2 appear to reach a pseudo-steady state, where concentration and molal flux change linearly with time. Na and silica dissolution rate constants were determined in this linear regime stage. Then, they were applied to nat- ural groundwaters from wells and springs of two distinct sectors of the volcano (E and NE) where chemical data is well-known. If no sources or sinks other than weathering process are involved, residence time can be considered to be the time elapsed from when water was separated from the atmosphere to when it emerged at the surface. Yet, this is also the time when water could react with the host rocks, acquiring its measur- able solute content because of the processes of alteration and dissolution. Therefore, residence time is calculated on a) a conservative element concentration in sampled water at a given time, b) on initial element concentration in local rainwaters and c) on the geometric parameters evaluating water-rock contact effective surface area or the wet area (like the mean open fracture width in the rocks). Experimental results indicate that higher constrained PCO2 values increase dissolution constants up to two orders of magnitudes, causing an apparent decrease in residence times. Nevertheless, calculations show that longer residence

  3. Automatic semi-continuous accumulation chamber for diffuse gas emissions monitoring in volcanic and non-volcanic areas

    NASA Astrophysics Data System (ADS)

    Lelli, Matteo; Raco, Brunella; Norelli, Francesco; Virgili, Giorgio; Continanza, Davide

    2016-04-01

    Since various decades the accumulation chamber method is intensively used in monitoring activities of diffuse gas emissions in volcanic areas. Although some improvements have been performed in terms of sensitivity and reproducibility of the detectors, the equipment used for measurement of gas emissions temporal variation usually requires expensive and bulky equipment. The unit described in this work is a low cost, easy to install-and-manage instrument that will make possible the creation of low-cost monitoring networks. The Non-Dispersive Infrared detector used has a concentration range of 0-5% CO2, but the substitution with other detector (range 0-5000 ppm) is possible and very easy. Power supply unit has a 12V, 7Ah battery, which is recharged by a 35W solar panel (equipped with charge regulator). The control unit contains a custom programmed CPU and the remote transmission is assured by a GPRS modem. The chamber is activated by DataLogger unit, using a linear actuator between the closed position (sampling) and closed position (idle). A probe for the measure of soil temperature, soil electrical conductivity, soil volumetric water content, air pressure and air temperature is assembled on the device, which is already arranged for the connection of others external sensors, including an automatic weather station. The automatic station has been tested on the field at Lipari island (Sicily, Italy) during a period of three months, performing CO2 flux measurement (and also weather parameters), each 1 hour. The possibility to measure in semi-continuous mode, and at the same time, the gas fluxes from soil and many external parameters, helps the time series analysis aimed to the identification of gas flux anomalies due to variations in deep system (e.g. onset of volcanic crises) from those triggered by external conditions.

  4. Volcanic Hazards Assessment at the Island of Ischia, Within the Neapolitan Area (Italy)

    NASA Astrophysics Data System (ADS)

    Orsi, G.; de Vita, S.; Marotta, E.; Sansivero, F.

    2006-12-01

    The island of Ischia is one of the three active volcanoes of the Neapolitan area. It hosts a permanent population of about 50,000 people, which increases up to 200,000 in summer time. The volcanic hazard of the island is extremely high also because of its explosive character. The intense population of both island and surrounding Neapolitan area, thriving farms and a complex trade-network with the near city of Naples, contribute to determine a high volcanic risk in the area. Volcanic hazards assessment, including possible eruption scenarios, is critically based on knowledge of the volcano past behavior and the definition of its present structural setting. Volcanism at Ischia began prior to 150 ka bp and continued until the 1302 A.D. last eruption. It is dominated by the Mt. Epomeo Green Tuff caldera-forming eruption (55 ka), followed by resurgence, which has caused a net uplift of the central part of the island of about 900 m over the past 33 ka. The most recent period of activity began at about 10 ka, with volcanism mainly concentrated around 5.5 ka and in the past 2.9 ka. During the past 5.5 ka, about 45 effusive and explosive eruptions took place, with almost all the vents located in the eastern portion of the island. The time-space vents distribution has been directly related to a simple-shearing block resurgence mechanism. Effusive eruptions emplaced lava domes and lava flows moving along the valleys of the north-eastern sector of the island. Explosive eruptions, both magmatic and phreatomagmatic, generated tuff cones, tuff rings and variably dispersed pyroclastic-fall and -current deposits in the eastern sector of the island. Areal distribution maps of these deposits do not permit to estimate the magnitude of the explosive eruptions, as a large amount of tephra was deposited into the sea. Maps of the frequency of deposition show the areas that more frequently have been covered by fallout deposits and invaded by pyroclastic currents. Three classes of frequency

  5. Late Archean mafic volcanism in the Rainy Lake area, Minnesota

    SciTech Connect

    Day, W.C.

    1985-01-01

    The Late Archean greenstone-granite terrane of the Rainy Lake area of Minnesota contains a bimodal suite of mafic and felsic volcanic and coeval intrusive rocks. New geochemical data show that the mafic rocks occur in three distinct suites: (1) low-Ti olivine- and quartz-tholeiite, (2) high-Ti quartz-tholeiite and basaltic andesite, and (3) calc-alkaline lamprophyric monzodiorite and quartz diorite. The low-Ti tholeiites have only slightly evolved Mg-numbers from 53-63, Ni=125-300 ppm, and MORB-like REE. In contrast, the high-Ti tholeiites are more evolved, with Mg*=26-48, Ni=43-135 ppm, and higher total REE. Compared to the tholeiitic suites, the monzodiorite suite has more primitive Mg-numbers, with Mg*=70-78, Ni<410 ppm, and anomalously high LREE. The two tholeiitic suites cannot be genetically related by simple fractionation from a single parent magma; however, lower degrees of partial melting (<8 percent) of a mantle source (spinel periodotite) with REE=2-4 times chondrites could have produced the high-Ti tholeiites, and higher degrees of melting (20-30 percent) of a similar source could have generated the low-Ti tholeiites. In contrast, the monzodiorite suite must have been generated from either a LREE-rich or (and) a garnet-bearing source (garnet periodotite). The authors conclude that shallow melting (<40-50 km) within the Archean mantle in the Rainy Lake area produced the tholeiitic rocks, and that deep melting (>40-50 km) generated the lamprophyric monzodiorites.

  6. The impact of a volcanic edifice on intrusive and eruptive activity

    NASA Astrophysics Data System (ADS)

    Roman, Alberto; Jaupart, Claude

    2014-12-01

    In a volcanic area, the orientation and composition of dikes record the development of the magmatic system that feeds intrusive and eruptive activity. At Spanish Peaks, Colorado, curved dike trajectories issuing from a single focal area have been attributed to horizontal propagation from a pressurized central reservoir in a deviatoric tectonic stress field. These dikes, however, are nowhere in contact with the central intrusion, are younger than it by about 1 My and are not filled with the same magma. They were emplaced at shallow depths (≈ 1 km), where the local stress field is very sensitive to surface loads. Here, we show that their trajectories can be set by the load of a volcanic edifice in a tectonic stress field. The orientation and distribution of the Spanish Peaks dikes have changed in the course of two million years as magmas were evolving chemically. Early dikes that were parallel to each another and filled with primitive melts document ascent in the regional tectonic stress field. They were replaced by curved dikes carrying evolved melts, which record the influence of a sizable volcanic edifice. Beneath this edifice, the induced compression prevented dense primitive magmas from erupting in the focal area and diverted intermediate magmas sideways. The growth of this large volcanic cone was probably responsible for the formation of a magma reservoir. The mechanisms that have shaped the Spanish Peaks dike swarm may control the spatial distribution and migration of eruptive centers in many active volcanic areas.

  7. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 2--morphological and mineralogical features.

    PubMed

    Calabrese, S; D'Alessandro, W

    2015-01-01

    Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques.

  8. The Physics of a Volcanic System: What is the Actual Role Played by Tectonic Setting in Controlling Volcanic Activity?

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.

    2005-12-01

    Modern text-books commonly explain volcanic activity as a direct consequence of plate tectonics, overlooking the different scales characteristic of both types of processes. By acknowledging such differences, however, it is possible to envisage a model of a volcanic system that is based in the same principles of hydrostatics established by Blaise Pascal over 300 yrs ago. Such principles allow us to estimate the local conditions required for the occurrence of volcanism at a given location highlighting the importance of the rock strength and the density difference between melt and its surroundings. This model shows that the minimum thickness of the zone of partial melting in the mantle (or seismically defined Low Velocity Zone) that is required to feed volcanic activity might range from 5 to over 100 km, but also that under certain circumstances a rock strength < 200 MPa may suffice to keep magma trapped at depth whereas in other cases a strength > 600 MPa will not suffice to stop magma ascent resulting in volcanic activity at the surface. Consequently, the model of volcanism developed here explains why is that a given LVZ may lead to volcanic activity in some places whereas a completely identical LVZ may not result in volcanic activity in a different location. Consequently, this model provides a general framework that allows us to better understand the actual role played by tectonic setting in controlling volcanism at a planetary scale.

  9. Geologic evolution of the Jemez Mountains and their potential for future volcanic activity

    SciTech Connect

    Burton, B.W.

    1982-01-01

    Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10/sup -9//km/sup 2//y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10/sup -7//y.

  10. The recent seismo-volcanic activity at Deception Island volcano

    NASA Astrophysics Data System (ADS)

    Ibáñez, Jesús M.; Almendros, Javier; Carmona, Enrique; Martínez-Arévalo, Carmen; Abril, Miguel

    2003-06-01

    This paper reviews the recent seismic studies carried out at Deception Island, South Shetland Islands, Antarctica, which was monitored by the Argentinean and Spanish Antarctic Programs since 1986. Several types of seismic network have been deployed temporarily during each Antarctic summer. These networks have consisted of a variety of instruments, including radio-telemetered stations, autonomous digital seismic stations, broadband seismometers, and seismic arrays. We have identified two main types of seismic signals generated by the volcano, namely pure seismo-volcanic signals, such as volcanic tremor and long-period (LP) events, and volcano-tectonic (VT) earthquakes. Their temporal distributions are far from homogeneous. Volcanic tremors and LP events usually occur in seismic swarms lasting from a few hours to some days. The number of LP events in these swarms is highly variable, from a background level of less than 30/day to a peak activity of about 100 events/h. The occurrence of VT earthquakes is even more irregular. Most VT earthquakes at Deception Island have been recorded during two intense seismic crises, in 1992 and 1999, respectively. Some of these VT earthquakes were large enough to be felt by researchers working on the island. Analyses of both types of seismic events have allowed us to derive source locations, establish seismic source models, analyze seismic attenuation, calculate the energy and stress drop of the seismic sources, and relate the occurrence of seismicity to the volcanic activity. Pure seismo-volcanic signals are modelled as the consequence of hydrothermal interactions between a shallow aquifer and deeper hot materials, resulting in the resonance of fluid-filled fractures. VT earthquakes constitute the brittle response to changes in the distribution of stress in the volcanic edifice. The two VT seismic series are probably related to uplift episodes due to deep injections of magma that did not reach the surface. This evidence, however

  11. The Extremes of Volcanic Activity: Earth and Jupiter's Moon Io

    NASA Astrophysics Data System (ADS)

    Lowes, L. L.; Lopes, R.

    2004-12-01

    Jupiter's moon Io is the solar system's most volcanically active body, and the only place that magmatic volcanic eruptions have been observed beyond Earth. One of the first images of Io obtained by NASA's Voyager 1 spacecraft in 1979 shows a plume above one of its volcanoes. The NASA Voyager and Galileo spacecraft imaged many explosive eruptions of plumes and deposits - which travel hundreds of kilometers (farther than on the Earth or the Moon). Very hot lavas that are erupting from volcanic vents on Io may be similar to lavas that erupted on Earth billions of years ago. Understanding the physical processes driving volcanic eruptions is important for the understanding of terrestrial volcanoes, not only because of their potential hazards, but also as geologic resources, biologic environments, and for their role in shaping the surface of Earth and other planets. Volcanic eruptions are perhaps the most dramatic events on Earth, and are of intrinsic interest to students, youth, and adults. Topics involving volcanoes are a part of the national science education benchmarks for understanding the Earth's composition and structure for grades 6-8 (the process of creating landforms) and grades 9-12 (the effects of movement of crustal plates). Natural events on Earth coupled with exciting discoveries in space can serve to heighten the awareness of these phenomena and provide learning opportunities for real world applications of science. Educational applications for youth to compare volcanic activity on Io and Earth have been done through NASA-sponsored field trip workshops to places such as Yellowstone National Park (allowing educators to experience environments similar to those on other worlds), targeted classroom and hands-on activities, special interest books, and other resources. A sampling of such activities will be presented, and discussion invited on other related developmentally appropriate resources and activities.

  12. GRID based Thermal Images Processing for volcanic activity monitoring

    NASA Astrophysics Data System (ADS)

    Mangiagli, S.; Coco, S.; Drago, L.; Laudani, A.,; Lodato, L.; Pollicino, G.; Torrisi, O.

    2009-04-01

    Since 2001, the Catania Section of the National Institute of Geophysics and Volcanology (INGV) has been running the video stations recording the volcanic activity of Mount Etna, Stromboli and the Fossa Crater of Vulcano island. The video signals of 11 video cameras (seven operating in the visible band and four in infrared) are sent in real time to INGV Control Centre where they are visualized on monitors and archived on a dedicated NAS storage. The video surveillance of the Sicilian volcanoes, situated near to densely populated areas, helps the volcanologists providing the Civil Protection authorities with updates in real time on the on-going volcanic activity. In particular, five video cameras are operating on Mt. Etna and they record the volcano from the south and east sides 24 hours a day. During emergencies, mobile video stations may also be used to better film the most important phases of the activity. Single shots are published on the Catania Section intranet and internet websites. On June 2006 a A 40 thermal camera was installed in Vulcano La Fossa Crater. The location was in the internal and opposite crater flank (S1), 400 m distant from the fumarole field. The first two-year of data on temperature distribution frequency were recorded with this new methodology of acquisition, and automatically elaborated by software at INGV Catania Section. In fact a dedicated software developed in IDL, denominated Volcano Thermo Analysis (VTA), was appositely developed in order to extract a set of important features, able to characterize with a good approssimation the volcanic activity. In particular the program first load and opportunely convert the thermal images, then according to the Region Of Interest (ROI) and the temperature ranges defined by the user provide to automatic spatial and statistic analysis. In addition the VTA is able to analysis all the temporal series of images available in order to achieve the time-event analysis and the dynamic of the volcanic

  13. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    NASA Astrophysics Data System (ADS)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  14. A method for multi-hazard mapping in poorly known volcanic areas: an example from Kanlaon (Philippines)

    NASA Astrophysics Data System (ADS)

    Neri, M.; Le Cozannet, G.; Thierry, P.; Bignami, C.; Ruch, J.

    2013-08-01

    Hazard mapping in poorly known volcanic areas is complex since much evidence of volcanic and non-volcanic hazards is often hidden by vegetation and alteration. In this paper, we propose a semi-quantitative method based on hazard event tree and multi-hazard map constructions developed in the frame of the FP7 MIAVITA project. We applied this method to the Kanlaon volcano (Philippines), which is characterized by poor geologic and historical records. We combine updated geological (long-term) and historical (short-term) data, building an event tree for the main types of hazardous events at Kanlaon and their potential frequencies. We then propose an updated multi-hazard map for Kanlaon, which may serve as a working base map in the case of future unrest. The obtained results extend the information already contained in previous volcanic hazard maps of Kanlaon, highlighting (i) an extensive, potentially active ~5 km long summit area striking north-south, (ii) new morphological features on the eastern flank of the volcano, prone to receiving volcanic products expanding from the summit, and (iii) important riverbeds that may potentially accumulate devastating mudflows. This preliminary study constitutes a basis that may help local civil defence authorities in making more informed land use planning decisions and in anticipating future risk/hazards at Kanlaon. This multi-hazard mapping method may also be applied to other poorly known active volcanoes.

  15. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial

  16. Comparison of airborne and spaceborne TIR data for studying volcanic geothermal areas

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Heasler, H.; Jaworowski, C.; Bergfeld, D.; Evans, W.

    2015-12-01

    Mapping and quantifying the surface expression of geothermal heat flux in volcanic geothermal areas is important for establishing baseline thermal activity to better detect and understand any future changes that may be related to hydrothermal or volcanic processes, or human activities. Volcanic geothermal areas are often too large and inaccessible for only field-based thermal monitoring, so thermal infrared (TIR) remote sensing tools are also used. High resolution (sub-meter) airborne TIR imagery can be used for detailed, quantitative analyses of small, subtle geothermal features. Airborne data acquisitions have the advantage of being able to be acquired under ideal conditions (e.g., predawn, cloud-free), but the disadvantage of high costs - thus precluding high-frequency monitoring. Satellite-based TIR data from the Landsat 8 platform are freely available and can be acquired regularly for change detection, but are acquired with coarser spatial resolution (e.g., 100-m pixels), and thus are not as sensitive to subtle thermal characteristics. Two geothermal areas with clear, nighttime TIR data from nearly concurrent (within days) airborne and spaceborne instruments were investigated: Norris Geyser Basin in Yellowstone National Park, WY; and the Casa Diablo geothermal field, near Mammoth Lakes, CA. At Norris Geyser Basin, the area covered by high-resolution airborne TIR imagery is almost entirely geothermally heated ground, with hundreds of fumaroles, hot springs, and thermal drainages - although some non-geothermal background is exposed. With the coarser resolution Landsat 8 data, there are thermal variations within the smaller area covered by the airborne data, but the entire area appears to be thermally anomalous with respect to the non-geothermal background outside the basin. In the geothermal field around the Casa Diablo geothermal site, there are numerous, small areas of geothermal heating that are clearly distinguishable above the background by the high

  17. The 2016 Kumamoto-Oita earthquake sequence: aftershock seismicity gap and dynamic triggering in volcanic areas

    NASA Astrophysics Data System (ADS)

    Uchide, Takahiko; Horikawa, Haruo; Nakai, Misato; Matsushita, Reiken; Shigematsu, Norio; Ando, Ryosuke; Imanishi, Kazutoshi

    2016-11-01

    The 2016 Kumamoto-Oita earthquake sequence involving three large events ( M w ≥ 6) in the central Kyushu Island, southwest Japan, activated seismicities in two volcanic areas with unusual and puzzling spatial gaps after the largest earthquake ( M w 7.0) of April 16, 2016. We attempt to reveal the seismic process during the sequence by following seismological data analyses. Our hypocenter relocation result implies that the large events ruptured different faults of a complex fault system. A slip inversion analysis of the largest event indicates a large slip in the seismicity gap (Aso gap) in the caldera of Mt. Aso, which probably released accumulated stress and resulted in little aftershock production. We identified that the largest event dynamically triggered a mid-M6 event at Yufuin (80 km northeast of the epicenter), which is consistent with existence of the 20-km long zone where seismicity was activated and surface offset was observed. These findings will help us study the contribution of the identified complexity in fault geometries and the geotherm in the volcanic areas to the revealed seismic process and consequently improve our understanding of the seismo-volcano tectonics.[Figure not available: see fulltext.

  18. Hazardous present emergency plans for volcanic eruptions in Neapolitan area: evidences from volcanic and magmatological history and modeling.

    NASA Astrophysics Data System (ADS)

    Mastrolorenzo, Giuseppe; Pappalardo, Lucia

    2010-05-01

    New evidences from volcanic and magmatological features, archaelogical findings, and modeling provide key constraints on the mechanisms and the effects of the explosive eruptions of Somma-Vesuvius and Campi Flegrei, from the prehistory to the modern times. For both volcanic areas, the probability of plinian events (VEI 5) with their complete range of variability is not negligible, differentiated highly explosive magmas are likely already available at depth, and the associated effects of the possible eruption may affect the whole heavily urbanized metropolitan area. Particularly, results of our numerical simulations consistently with field evidences indicate that tephra accumulation during fallout phase of eruption may preserve critical load for roof collapse up to a distance even exceeding 30 km from the vent, while physical proprieties of PDCs may exceed the threshold for human survival even at distance from the vent in the order of 20 km. These results indicate that the appropriate action for the mitigation of volcanic risk should be the complete evacuation of the whole potentially affected area. In contrast with the single intermediate event (1631 sub-plinian eruption) adopted as reference scenario in the present emergency plan for Vesuvius (at present an emergency plan is not available for Campi Flegrei), the adequate reference scenario should correspond to the worst case (VEI 5, for both volcanoes) that not simply reflects the worst eruption occurred in the past but the entire range of the possible events for that VEI. The adoption, during a volcanic crisis, of any minor scenario that accepts variable levels of risk for the people leaving around the volcano, even with the justification of the cost/benefit approach, always may introduce a false perception of safety that may increase the risk.

  19. Mapping Volcanic Gas Emissions in the Mammoth Mountain Area Using AVIRIS

    NASA Technical Reports Server (NTRS)

    deJong, Steven M.; Chrien, Thomas G.

    1996-01-01

    The Long Valley Caldera located in the eastern Sierra Nevada (California) shows new signs of volcanic activity. This renewed activity is expressed by gas emissions, hydrothermal activity and frequent earthquakes. Analysis of the gas composition regarding the percentage biogenic carbon and the He-3/He-4 ratio revealed that the gas source is the magma body approximately 7 km beneath the Long Valley Caldera. The gas from the magma body surfaces not only via the fumaroles but also emerges along geological faults. Some of the spots where gas surfaces are marked by dead or stressed trees. Other spots may not yet be identified. It is only recently known, from research at 'Vulcano Island' in southern Italy, that volcanoes release abundant carbon dioxide from their flanks as diffuse soil emanations. Mammoth Mountain seems to behave in a similar manner. The research described in this paper is designed to determine whether AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) can be used to identify areas of volcanic gas emissions.

  20. Geology and geochemistry characteristics of the Chiapanecan Volcanic Arc (Central Area), Chiapas Mexico

    NASA Astrophysics Data System (ADS)

    Mora, J. C.; Jaimes-Viera, M. C.; Garduño-Monroy, V. H.; Layer, P. W.; Pompa-Mera, V.; Godinez, M. L.

    2007-04-01

    The Chiapanecan Volcanic Arc (CVA), located in the central portion of the State of Chiapas, is a 150 km stretch of volcanoes irregularly aligned in the northwest direction between two great volcanic features: the Trans-Mexican Volcanic Belt to the northwest and the Central American Volcanic Arc to the southeast. The CVA is located in a complex zone marking the interaction of the North American, Caribbean and Cocos plates, near the Motagua-Polochic fault system, the boundary between North American and Caribbean plates. The central part of the CVA is composed of an irregular northwest alignment of at least 10 volcanic structures generally lying along NNW-SSE-trending faults splayed from the Motagua-Polochic system. Among the structures there are seven volcanic domes (Huitepec, Amahuitz, La Iglesia, Mispía, La Lanza, Venustiano Carranza and Santotón), one explosion crater (Navenchauc), one collapse structure (Apas), and one dome complex (Tzontehuitz). In the majority of the structures there is a clear resurgence with the formation of several domes in the same structure, with the destruction of previous domes (Navenchauc) or with the formation of new explosion craters or collapse structures (Apas). The volcanic activity in the CVA was mainly effusive accompanied by explosive and phreatomagmatic events and is characterized by volcanic domes accompanied by block-and-ash-flows, ash flows with accretionary lapilli, falls, and pumice flows. The volcanic structures and deposits are calcalkaline in composition with a medium to high content of potassium. CVA volcanic rocks vary from andesite to dacite with SiO 2 between 57 and 66 wt.%, show low concentrations of Ti, P, Nb and Ta, are enriched in Light Rare Earths, depleted in Heavy Rare Earths, and show a small Eu anomaly; all indicative of arc-related volcanism associated with subduction of the Cocos plate under the North American plate, but complicated by the geometry of the plate boundary fault system.

  1. Static chamber methane flux measurements in volcanic/geothermal areas: preliminary data from Sousaki and Nisyros (Greece)

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Walter; Fiebig, Jens; Konstantinos, Kyriakopoulos; Brusca, Lorenzo; Maneta, Victoria; Michas, Giorgios; Papadakis, Giorgios

    2010-05-01

    Methane plays an important role in the Earth's atmospheric chemistry and radiative balance being the second most important greenhouse gas after carbon dioxide. Methane is released to the atmosphere by a wide number of sources, both natural and anthropogenic, with the latter being twice as large as the former (IPCC, 2007). It has recently been established that significant amounts of geological methane, produced within the Earth's crust, are currently released naturally into the atmosphere (Etiope, 2004). Active or recent volcanic/geothermal areas represent one of these sources of geological methane. But due to the fact that methane flux measurements are laboratory intensive, very few data have been collected until now and the contribution of this source has been generally indirectly estimated (Etiope et al., 2007). The Greek territory is geodynamically very active and has many volcanic and geothermal areas. Here we report on methane flux measurements made at two volcanic/geothermal systems along the South Aegean volcanic arc: Sousaki and Nisyros. The former is an extinct volcanic area of Plio-Pleistocene age hosting nowadays a low enthalpy geothermal field. The latter is a currently quiescent active volcanic system with strong fumarolic activity due to the presence of a high enthalpy geothermal system. Both systems have gas manifestations that emit significant amounts of hydrothermal methane and display important diffuse carbon dioxide emissions from the soils. New data on methane isotopic composition and higher hydrocarbon contents point to an abiogenic origin of the hydrothermal methane in the studied systems. Measured methane flux values range from -48 to 29,000 (38 sites) and from -20 to 1100 mg/m^2/d (35 sites) at Sousaki and Nisyros respectively. At Sousaki measurement sites covered almost all the degassing area and the diffuse methane output can be estimated in about 20 t/a from a surface of about 10,000 m^2. At Nisyros measurements covered the Stephanos and

  2. Active Volcanism on Io as Seen by Galileo SSI

    USGS Publications Warehouse

    McEwen, A.S.; Keszthelyi, L.; Geissler, P.; Simonelli, D.P.; Carr, M.H.; Johnson, T.V.; Klaasen, K.P.; Breneman, H.H.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Senske, D.A.; Belton, M.J.S.; Schubert, G.

    1998-01-01

    Active volcanism on Io has been monitored during the nominal Galileo satellite tour from mid 1996 through late 1997. The Solid State Imaging (SSI) experiment was able to observe many manifestations of this active volcanism, including (1) changes in the color and albedo of the surface, (2) active airborne plumes, and (3) glowing vents seen in eclipse. About 30 large-scale (tens of kilometers) surface changes are obvious from comparison of the SSI images to those acquired by Voyager in 1979. These include new pyroclastic deposits of several colors, bright and dark flows, and caldera-floor materials. There have also been significant surface changes on Io during the Galileo mission itself, such as a new 400-km-diameter dark pyroclastic deposit around Pillan Patera. While these surface changes are impressive, the number of large-scale changes observed in the four months between the Voyager 1 and Voyager 2 flybys in 1979 suggested that over 17 years the cumulative changes would have been much more impressive. There are two reasons why this was not actually the case. First, it appears that the most widespread plume deposits are ephemeral and seem to disappear within a few years. Second, it appears that a large fraction of the volcanic activity is confined to repeated resurfacing of dark calderas and flow fields that cover only a few percent of Io's surface. The plume monitoring has revealed 10 active plumes, comparable to the 9 plumes observed by Voyager. One of these plumes was visible only in the first orbit and three became active in the later orbits. Only the Prometheus plume has been consistently active and easy to detect. Observations of the Pele plume have been particularly intriguing since it was detected only once by SSI, despite repeated attempts, but has been detected several times by the Hubble Space Telescope at 255 nm. Pele's plume is much taller (460 km) than during Voyager 1 (300 km) and much fainter at visible wavelengths. Prometheus-type plumes (50

  3. Volcanic Hazards Survey in the Trans Mexican Volcanic Belt

    NASA Technical Reports Server (NTRS)

    Abrams, Michael; Siebe, Claus; Macias, Jose Luis

    1996-01-01

    We have assembled a digital mosaic of 11 Landsat Thematic images to serve as a mapping base for reconnaissance activities within the Trans Mexican Volcanic Belt. This will aid us in interpretation and in the evaluation of potential activity of all the volcanic centers there. One result is a volcanic hazards map of the area.

  4. Remote sensing and GIS study of an eroded Miocene volcanic area (Hegau, SW Germany)

    NASA Astrophysics Data System (ADS)

    Strehlau, J.; Theilen-Willige, B.

    2009-04-01

    Remote sensing techniques offer useful tools that can aid in evaluating the geomorphologic and geologic evolution of eroded volcanic landforms. Erosion provides insight into subsurface structural levels of a volcanic edifice, but it is difficult to correctly interpret the field observations, particularly if the exposed landforms have been modified by tectonic and fluvioglacial processes. An illustrative example is the Hegau volcanic field, located NW of Lake Constance near the northern margin of the Molasse Basin in the Alpine foreland (e.g., Schreiner, Samml. Geol. Führer 62, 2008). This region, situated on the periphery of the Upper Cretaceous-Quaternary mafic alkaline magmatic province in central Europe (e.g., Blusztajn and Hegner, Chem. Geol. 2002), was episodically active during the Miocene; K-Ar age determinations (mostly obtained in the 1960/70s) indicate emplacement ages ranging from about 15-7 Ma. Several eroded plugs and necks of olivine melilites and phonolites form prominent landmarks rising above the present-day Hegau landscape. The area also contains remnants of dikes, maar crater lakes, basalt flows, travertine and pyroclastic deposits (both pipe-filling and eruptive tuff sheets). The volcanic constructs were largely buried by Molasse sediments, due to continued flexural subsidence of the foreland lithosphere during the Tertiary. Since the cessation of the Molasse phase, the region has undergone exhumation and erosion of up to several hundred meters (increasing towards the Alpine front) as indicated by reconstructions of missing stratigraphic sections based on borehole studies (references in Rahn and Selbekk, Swiss J. Geosci. 2007). Pleistocene ice sheets repeatedly covered parts of the area and deposited moraines, gravel plains, and lake deposits (e.g., Fiebig and Preusser, Geograph. Helv. 2008). Furthermore, deep fluvioglacial valleys were carved out that were sequentially re-filled and partly re-eroded, resulting in a system of narrow basins and

  5. The influence of volcanic activity on suspended sediment yield of rivers (Kamchatka, Russia)

    NASA Astrophysics Data System (ADS)

    Kuksina, Ludmila

    2014-05-01

    Kamchatka is specific region of suspended sediment yield formation. This fact is particularly connected with active volcanism in the territory. The influence of volcanism on suspended sediment yield characteristics was studied in various time scales - into-diurnal, seasonal and long-term ones. The study of spatial variability of these characteristics reveals the maximum values characterize river basins in zones of strong impact of volcanic eruptions, especially, rivers draining slopes and flanks of active volcanoes. Into-diurnal fluctuations were studied for rivers in volcanic areas. They are characterized by synchronous changes of water flow and turbidity. It's determined by weak erosion-preventive capacity of friable volcanic deposits and big slopes of channels (2.5 - 6.0 %). The maximum of water flow and turbidity is observed at the period between 12 and 6 pm. The air temperature reaches its maximum by that time, and consequently, the intensity of snow melting is also maximum one. The maximum of turbidity advances diurnal maximum of water flow a little, and it's connected with the features of flood wave moving and consecutive maximums of slopes, turbidity, velocity, water flow, and capacity of stream during flush. Into-diurnal fluctuations are determined by complicated and little-studied processes of mass transfer between stream and channel deposits. These processes are connected with into-diurnal changes of stream capacity and water transfer between channel and underflow. As the result water regime is pulsating. Rivers under the influence of volcanic eruptions transport the main amount of sediments during floods which usually occur in summer-autumn period (in the absence of extreme floods in winter-spring period during volcanic eruptions). Combination of maximum snow supply, significant precipitation in warm part of the year and weak erosion-preventive capacity of friable volcanic deposits on volcanoes slopes is the reason of the most intense erosion in this

  6. Using VHF Lightning Observations to Monitor Explosive Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Krehbiel, P. R.; Rison, W.; Edens, H. E.

    2011-12-01

    Lightning is an integral part of explosive volcanic eruptions and volcanic lightning measurements are a useful tool for volcano monitoring. VHF measurements of volcanic lightning can be made remotely, at distances of up to 100 km. A strategically placed network of 6 or more VHF ground stations could locate lightning in eruption columns from several regional volcanoes, and a minimum of two stations could be used to monitor a single volcano. Such a network would be particularly useful for detection or confirmation of explosive activity in situations where volcanoes are remotely located, and thus lack visual observations, or are not well instrumented with seismic networks. Furthermore, clouds are fully transparent to VHF signals, making lightning detection possible even when weather obscures visual observations. Recent VHF observations of volcanic lightning at Augustine Volcano (Alaska, USA, 2006), Redoubt Volcano (Alaska, USA, 2009) and Eyjafjallajökull (Iceland, 2010) have shown that two basic types of VHF signals are observed during volcanic eruptions, one of which is unique to volcanic activity. The unique signal, referred to as a 'continual RF' signal, was caused by very high rates of small 'vent discharges' occurring directly above the vent in the eruption column and was unlike any observations of lightning in meteorological thunderstorms. Vent discharges were observed to begin immediately following an explosive eruption. The second type of signal is from conventional lightning discharges, such as upward directed 'near-vent lightning' and isolated 'plume lightning.' Near-vent lightning was observed to begin 1-2 minutes following the onset of an explosive eruption while plume lightning began 4 or more minutes after the onset. At Redoubt the plume lightning occurred at such high rates that it rivaled lightning rates of supercell thunderstorms on the Great Plains of the United States. While both types of lightning signals can be used as indicators that explosive

  7. Sensor web enables rapid response to volcanic activity

    USGS Publications Warehouse

    Davies, Ashley G.; Chien, Steve; Wright, Robert; Miklius, Asta; Kyle, Philip R.; Welsh, Matt; Johnson, Jeffrey B.; Tran, Daniel; Schaffer, Steven R.; Sherwood, Robert

    2006-01-01

    Rapid response to the onset of volcanic activity allows for the early assessment of hazard and risk [Tilling, 1989]. Data from remote volcanoes and volcanoes in countries with poor communication infrastructure can only be obtained via remote sensing [Harris et al., 2000]. By linking notifications of activity from ground-based and spacebased systems, these volcanoes can be monitored when they erupt.Over the last 18 months, NASA's Jet Propulsion Laboratory (JPL) has implemented a Volcano Sensor Web (VSW) in which data from ground-based and space-based sensors that detect current volcanic activity are used to automatically trigger the NASA Earth Observing 1 (EO-1) spacecraft to make highspatial-resolution observations of these volcanoes.

  8. Self-sustained vibrations in volcanic areas extracted by Independent Component Analysis: a review and new results

    NASA Astrophysics Data System (ADS)

    de Lauro, E.; de Martino, S.; Falanga, M.; Palo, M.

    2011-12-01

    We investigate the physical processes associated with volcanic tremor and explosions. A volcano is a complex system where a fluid source interacts with the solid edifice so generating seismic waves in a regime of low turbulence. Although the complex behavior escapes a simple universal description, the phases of activity generate stable (self-sustained) oscillations that can be described as a non-linear dynamical system of low dimensionality. So, the system requires to be investigated with non-linear methods able to individuate, decompose, and extract the main characteristics of the phenomenon. Independent Component Analysis (ICA), an entropy-based technique is a good candidate for this purpose. Here, we review the results of ICA applied to seismic signals acquired in some volcanic areas. We emphasize analogies and differences among the self-oscillations individuated in three cases: Stromboli (Italy), Erebus (Antarctica) and Volcán de Colima (Mexico). The waveforms of the extracted independent components are specific for each volcano, whereas the similarity can be ascribed to a very general common source mechanism involving the interaction between gas/magma flow and solid structures (the volcanic edifice). Indeed, chocking phenomena or inhomogeneities in the volcanic cavity can play the same role in generating self-oscillations as the languid and the reed do in musical instruments. The understanding of these background oscillations is relevant not only for explaining the volcanic source process and to make a forecast into the future, but sheds light on the physics of complex systems developing low turbulence.

  9. High resolution DEM from Tandem-X interferometry: an accurate tool to characterize volcanic activity

    NASA Astrophysics Data System (ADS)

    Albino, Fabien; Kervyn, Francois

    2013-04-01

    Tandem-X mission was launched by the German agency (DLR) in June 2010. It is a new generation high resolution SAR sensor mainly dedicated to topographic applications. For the purpose of our researches focused on the study of the volcano-tectonic activity in the Kivu Rift area, a set of Tandem-X bistatic radar images were used to produce a high resolution InSAR DEM of the Virunga Volcanic Province (VVP). The VVP is part of the Western branch of the African rift, situated at the boundary between D.R. Congo, Rwanda and Uganda. It has two highly active volcanoes, Nyiragongo and Nyamulagira. A first task concerns the quantitative assessment of the vertical accuracy that can be achieved with these new data. The new DEMs are compared to other space borne datasets (SRTM, ASTER) but also to field measurements given by differential GPS. Multi-temporal radar acquisitions allow us to produce several DEM of the same area. This appeared to be very useful in the context of an active volcanic context where new geomorphological features (faults, fissures, volcanic cones and lava flows) appear continuously through time. For example, since the year 2000, time of the SRTM acquisition, we had one eruption at Nyiragongo (2002) and six eruptions at Nyamulagira (2001, 2002, 2004, 2006, 2010 and 2011) which all induce large changes in the landscape with the emplacement of new lava fields and scoria cones. From our repetitive Tandem-X DEM production, we have a tool to identify and also quantify in term of size and volume all the topographic changes relative to this past volcanic activity. These parameters are high value information to improve the understanding of the Virunga volcanoes; the accurate estimation of erupted volume and knowledge of structural features associated to past eruptions are key parameters to understand the volcanic system, to ameliorate the hazard assessment, and finally contribute to risk mitigation in a densely populated area.

  10. California's potential volcanic hazards

    SciTech Connect

    Jorgenson, P. )

    1989-01-01

    Although volcanic eruptions have occurred infrequently in California during the last few thousand years, the potential danger to life and property from volcanoes in the state is great enough to be of concern, according to a recent U.S. Geological Survey (USGS) publication. The 17-page bulletin, Potential Hazards from Future Volcanic Eruptions in California, gives a brief history of volcanic activity in California during the past 100,000 years, descriptions of the types of volcanoes in the state, the types of potentially hazardous volcanic events that could occur, and hazard-zonation maps and tables depicting six areas of the state where volcanic eruptions might occur. The six areas and brief descriptions of their past volcanic history and potential for future volcanic hazards are briefly summarized here.

  11. Groundwater flow in a relatively old oceanic volcanic island: the Betancuria area, Fuerteventura Island, Canary Islands, Spain.

    PubMed

    Herrera, Christian; Custodio, Emilio

    2014-10-15

    The island of Fuerteventura is the oldest of the Canary Islands' volcanic archipelago. It is constituted by volcanic submarine and subaerial activity and intrusive Miocene events, with some residual later volcanism and Quaternary volcanic deposits that have favored groundwater recharge. The climate is arid, with an average rainfall that barely attains 60 mm/year in the coast and up to 200 mm/year in the highlands. The aquifer recharge is small but significant; it is brackish due to large airborne atmospheric salinity, between 7 and 15 gm(-2)year(-1) of chloride deposition, and high evapo-concentration in the soil. The average recharge is estimated to be less than about 5 mm/year at low altitude and up to 10 mm/year in the highlands, and up to 20 mm/year associated to recent lava fields. Hydrochemical and water isotopic studies, supported by water table data and well and borehole descriptions, contribute a preliminary conceptual model of groundwater flow and water origin in the Betancuria area, the central area of the island. In general, water from springs and shallow wells tends to be naturally brackish and of recent origin. Deep saline groundwater is found and is explained as remnants of very old marine water trapped in isolated features in the very low permeability intrusive rocks. Preliminary radiocarbon dating indicates that this deep groundwater has an apparent age of less than 5000 years BP but it is the result of mixing recent water recharge with very old deep groundwater. Most of the groundwater flow occurs through the old raised volcanic shield of submarine and subaerial formations and later Miocene subaerial basalts. Groundwater transit time through the unsaturated zone is of a few decades, which allows the consideration of long-term quasi-steady state recharge. Transit times are up to a few centuries through the saturated old volcanics and up to several millennia in the intrusive formations, where isolated pockets of very old water may exist.

  12. Stratospheric ozone, solar activity and volcanism

    NASA Astrophysics Data System (ADS)

    Komitov, Boris; Stoychev, Konstantin

    The aim of this study is to investigate the long-term (multiannual) variations of the total ozone content (TOC) on the base of TOMS instrument measurements on the board of Nimbus-7 satellite for the period 1979 -- 1993 AD. The total effects of the solar activity influence over stratosphere ozone has been investigated by using multiple regression analysis. The monthly radio-index F10.7, the cosmic rays neutron flux, the geomagnetic index Ap and the number of GOES x-ray X-class flares have been used as solar or solar-modulated parameters as predictors in the model. The global mean-monthly TOC-parameter has been used as a predictant. It has been found that the coefficient of correlation of the model between TOC and above-mentioned solar and geomagnetic factors is about 0.544. Thus the corresponding factor variance is about 37%. The results calculated by the model have been removed from the original TOC data. It has been found out that during the first 12 years since 1979 the downward trend is predominantly caused by the solar and solar-modulated processes. However during the remaining 3 years after 1990 the slope of the negative trend has been essentially increased. This phenomenon could only be explained by some catastrophic event. Most probably such one is the Pinatubo volcano eruption in June, 1991. An evidence for the possibility that the last one is caused by trigger effect from the extremely high solar flare activity in May -- June 1991, is given.

  13. Petro-chemical features and source areas of volcanic aggregates used in ancient Roman maritime concretes

    NASA Astrophysics Data System (ADS)

    Marra, F.; Anzidei, M.; Benini, A.; D'Ambrosio, E.; Gaeta, M.; Ventura, G.; Cavallo, A.

    2016-12-01

    We present and discuss data from petrographic observation at the optical microscope, electron microprobe analyses on selected glass shards, and trace-element analyses on 14 mortar aggregates collected at the ancient harbors and other maritime structures of Latium and Campania, spanning the third century BCE through the second CE, aimed at identify the volcanic products employed in the concretes and their area of exploitation. According to Latin author Vitruvius assertion about the ubiquitous use of Campanian pozzolan in the ancient Roman sea-water concretes, results of this study show a very selective and homogeneous choice in the material employed to produce the concretes for the different investigated maritime structures, evidencing three main pumice compositions, all corresponding to those of the products of the post-Neapolitan Yellow Tuff activity of the Phlegraean Fields, and a systematic use of the local Neapolitan Yellow Tuff to produce the coarse aggregate of these concretes. However, mixing with local products of the Colli Albani volcanic district, located 20 km east of Rome, has been evidenced at two fishponds of Latium, in Punta della Vipera and Torre Astura. Based on these petrographic and geochemical data, we conclude that the selective use of pozzolan from Campania, rather than of unproved different chemical properties, was the consequence of a series of logistic, economic, industrial and historical reasons.

  14. {sup 40}Ar/{sup 39}Ar laser fusion and K-Ar ages from Lathrop Wells, Nevada, and Cima, California: The age of the latest volcanic activity in the Yucca Mountain area

    SciTech Connect

    Turrin, B.D. |; Champion, D.E.

    1991-05-01

    K-Ar and {sup 40}Ar/{sup 39}Ar ages from the Lathrop Wells volcanic center, Nevada, and from the Cima volcanic field, California, indicate that the recently reported 20-ka age estimate for the Lathrop Wells volcanic center is incorrect. Instead, an age of 119 {plus_minus} 11 to 141 {plus_minus} 10 ka is indicated for the Lathrop Wells volcanic center. This age corrected is concordant with the ages determined by two independent isotopic geochronometric techniques and with the stratigraphy of surficial deposits in the Yucca Mountain region. In addition, paleomagnetic data and radiometric age data indicate only two volcanic events at the Lathrop Wells volcanic center that are probably closely linked in time, not as many as five as recently reported. 32 refs., 2 figs., 2 tabs.

  15. 40Ar/39Ar laser fusion and K-Ar ages from Lathrop Wells, Nevada, and Cima, California. The age of the latest volcanic activity in the Yucca Mountain area

    USGS Publications Warehouse

    Turrin, Brent D.; Champion, Duane E.; ,

    1991-01-01

    K-Ar and 40Ar/39Ar ages from the Lathrop Wells volcanic center, Nevada, and from the Cima volcanic field, California, indicate that the recently reported 20-ka age estimate for the Lathrop Wells volcanic center is incorrect. Instead an age of 119??11 to 141??10 ka is indicated for the Lathrop Wells volcanic center. This age corrected is concordant with the ages determined by two independent isotopic geochronometric techniques and with the stratigraphy of surficial deposits in the Yucca Mountain region. In addition, paleomagnetic data and radiometric age data indicate only two volcanic events at the Lathrop Wells volcanic center that are probably closely linked in time, not as many as five as recently reported.

  16. Surface area and volume measurements of volcanic ash particles by SEM stereoscopic imaging

    NASA Astrophysics Data System (ADS)

    Ersoy, Orkun

    2010-05-01

    Surface area of volcanic ash particles is of great importance to research including plume dynamics, particle chemical and water reactions in the plume, modelling (i.e. plume shape, particle interactions , dispersion etc.), remote sensing of transport and SO2, HCl, H2O, CO2 levels, forecasting plume location, and transportation and deposition of ash particles. The implemented method presented in this study offer new insights for surface characterization of volcanic ash particles on macro-pore regions. Surface area and volumes of volcanic ash particles were measured using digital elevation models (DEM) reconstructed from stereoscopic images acquired from different angles by scanning electron microscope (SEM). The method was tested using glycidyl methacrylate (GMA) micro-spheres which exhibit low spherical imperfections. The differences between measured and geometrically calculated surface areas were introduced for both micro-spheres and volcanic ash particles in order to highlight the probable errors in modelling on volcanic ash behaviour. The specific surface areas of volcanic ash particles using this method are reduced by half (from mean values of 0.045 m2/g to 0.021 m2/g) for the size increment 63 μm to 125 μm. Ash particles mostly have higher specific surface area values than the geometric forms irrespective of particle size. The specific surface area trends of spheres and ash particles resemble for finer particles (63 μm). Approximation to sphere and ellipsoid have similar margin of error for coarser particles (125 μm) but both seem to be inadequate for representation of real ash surfaces.

  17. Surface area and volume measurements of volcanic ash particles by SEM stereoscopic imaging

    NASA Astrophysics Data System (ADS)

    Ersoy, Orkun

    2010-02-01

    Surface area of volcanic ash particles is of great importance to research including plume dynamics, particle chemical and water reactions in the plume, modelling (i.e. plume shape, particle interactions, dispersion etc.), remote sensing of transport and SO 2, HCl, H 2O, CO 2 levels, forecasting plume location, and transportation and deposition of ash particles. The implemented method presented in this study offers new insights for surface characterization of volcanic ash particles on macro-pore regions. Surface area and volumes of volcanic ash particles were measured using digital elevation models (DEM) reconstructed from stereoscopic images acquired from different angles by scanning electron microscope (SEM). The method was tested using glycidyl methacrylate (GMA) micro-spheres which exhibit low spherical imperfections. The differences between measured and geometrically calculated surface areas were introduced for both micro-spheres and volcanic ash particles in order to highlight the probable errors in modelling on volcanic ash behaviour. The specific surface areas of volcanic ash particles using this method are reduced by half (from mean values of 0.045 m 2/g to 0.021 m 2/g) for the size increment 63 µm to 125 µm. Ash particles mostly have higher specific surface area values than the geometric forms irrespective of particle size. The specific surface area trends of spheres and ash particles resemble for finer particles (63 µm). Approximation to sphere and ellipsoid have similar margin of error for coarser particles (125 µm) but both seem to be inadequate for representation of real ash surfaces.

  18. Silicic volcanism in Iceland: Composition and distribution within the active volcanic zones

    NASA Astrophysics Data System (ADS)

    Jónasson, Kristján

    2007-01-01

    Silicic volcanic rocks within the active volcanic zones of Iceland are mainly confined to central volcanoes. The volcanic zones of Iceland can be divided into rift zones and flank zones. Each of these zones contains several central volcanoes, most of which have produced minor amounts of silicic rocks. The silicic rocks occur as lavas and domes or as tephra layers, welded tuffs and ignimbrites, formed both in effusive and explosive eruptions. They tend to be glassy or very fine-grained, containing small amounts of phenocrysts. Plagioclase (andesine-oligoclase), anorthoclase or occasionally sanidine coexist with minerals such as augite, fayalite, pigeonite, orthopyroxene and magnetite. Quartz phenocrysts are exceedingly rare. Zoning of phenocrysts is limited and the pattern is variable. A set of 90 samples representing all active central volcanoes that have erupted silicic rocks was analysed for major- and trace-elements. The silicic rocks can be classified as dacites, trachytes, low-alkali rhyolites and alkalic rhyolites. Some of the trachytes and alkalic rhyolites are peralkaline (mostly comenditic). Trachytes and alkalic rhyolites are only found within the flank zones, while dacites and low-alkali rhyolites are mostly confined to the rift zones. The Icelandic rhyolites plot close to the thermal minimum in the "granite" system, while dacites and trachytes plot within the plagioclase field and towards the alkali feldspar temperature minimum. The silicic rocks are relatively Fe-rich and Ca-poor indicating low water pressure in the source. Trace element concentrations follow similar patterns in most central volcanoes. Exceptions are Torfajökull where silicic rocks display a negative correlation of Ba to Th and unusually high Th-contents, and the western flank zone where Ba-concentrations are highly variable. The ratios of different high field-strength elements are generally similar within each central volcano or region, which probably reflects different ratios in the

  19. Significance of an Active Volcanic Front in the Far Western Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Kelemen, P. B.; Hoernle, K.

    2015-12-01

    Discovery of a volcanic front west of Buldir Volcano, the western-most emergent Aleutian volcano, demonstrates that the surface expression of Aleutian volcanism falls below sea level just west of 175.9° E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. The newly discovered sites of western Aleutian seafloor volcanism are the Ingenstrem Depression, a 60 km-long structural depression just west of Buldir, and an unnamed area 300 km further west, referred to as the Western Cones. These locations fall along a volcanic front that stretches from Buldir to Piip Seamount near the Komandorsky Islands. Western Aleutian seafloor volcanic rocks include large quantities of high-silica andesite and dacite, which define a highly calc-alkaline igneous series and carry trace element signatures that are unmistakably subduction-related. This indicates that subducting oceanic lithosphere is present beneath the westernmost Aleutian arc. The rarity of earthquakes below depths of 200 km indicates that the subducting plate is unusually hot. Some seafloor volcanoes are 6-8 km wide at the base, and so are as large as many emergent Aleutian volcanoes. The seafloor volcanoes are submerged in water depths >3000 m because they sit on oceanic lithosphere of the Bering Sea. The volcanic front is thus displaced to the north of the ridge of arc crust that underlies the western Aleutian Islands. This displacement, which developed since approximately 6 Ma when volcanism was last active on the islands, must be a consequence of oblique convergence in a system where the subducting plate and large blocks of arc crust are both moving primarily in an arc-parallel sense. The result is a hot-slab system where low subduction rates probably limit advection of hot mantle to the subarc, and produce a relatively cool and perhaps stagnant mantle wedge. The oceanic setting and highly oblique subduction geometry also severely limit rates of sediment subduction, so the volcanic rocks, which

  20. High-resolution 900 year volcanic and climatic record from the Vostok area, East Antarctica

    NASA Astrophysics Data System (ADS)

    Osipov, E. Y.; Khodzher, T. V.; Golobokova, L. P.; Onischuk, N. A.; Lipenkov, V. Y.; Ekaykin, A. A.; Shibaev, Y. A.; Osipova, O. P.

    2014-05-01

    Ion chromatography measurements of 1730 snow and firn samples obtained from three short cores and one pit in the Vostok station area, East Antarctica, allowed for the production of the combined volcanic record of the last 900 years (AD 1093-2010). The resolution of the record is 2-3 samples per accumulation year. In total, 24 volcanic events have been identified, including seven well-known low-latitude eruptions (Pinatubo 1991, Agung 1963, Krakatoa 1883, Tambora 1815, Huanaputina 1600, Kuwae 1452, El Chichon 1259) found in most of the polar ice cores. In comparison with three other East Antarctic volcanic records (South Pole, Plateau Remote and Dome C), the Vostok record contains more events within the last 900 years. The differences between the records may be explained by local glaciological conditions, volcanic detection methodology, and, probably, differences in atmospheric circulation patterns. The strongest volcanic signal (both in sulfate concentration and flux) was attributed to the AD 1452 Kuwae eruption, similar to the Plateau Remote and Talos Dome records. The average snow accumulation rate calculated between volcanic stratigraphic horizons for the period AD 1260-2010 is 20.9 mm H2O. Positive (+13%) anomalies of snow accumulation were found for AD 1661-1815 and AD 1992-2010, and negative (-12%) for AD 1260-1601. We hypothesized that the changes in snow accumulation are associated with regional peculiarities in atmospheric transport.

  1. Bromo volcano area as human-environment system: interaction of volcanic eruption, local knowledge, risk perception and adaptation strategy

    NASA Astrophysics Data System (ADS)

    Bachri, Syamsul; Stötter, Johann; Sartohadi, Junun

    2013-04-01

    People in the Bromo area (located within Tengger Caldera) have learn to live with the threat of volcanic hazard since this volcano is categorized as an active volcano in Indonesia. During 2010, the eruption intensity increased yielding heavy ash fall and glowing rock fragments. A significant risk is also presented by mass movement which reaches areas up to 25 km from the crater. As a result of the 2010 eruption, 12 houses were destroyed, 25 houses collapsed and there were severe also effects on agriculture and the livestock sector. This paper focuses on understanding the interaction of Bromo volcanic eruption processes and their social responses. The specific aims are to 1) identify the 2010 eruption of Bromo 2) examine the human-volcano relationship within Bromo area in general, and 3) investigate the local knowledge related to hazard, risk perception and their adaptation strategies in specific. In-depth interviews with 33 informants from four districts nearest to the crater included local people and authorities were carried out. The survey focused on farmers, key persons (dukun), students and teachers in order to understand how people respond to Bromo eruption. The results show that the eruption in 2010 was unusual as it took continued for nine months, the longest period in Bromo history. The type of eruption was phreatomagmatic producing material dominated by ash to fine sand. This kind of sediment typically belongs to Tengger mountain eruptions which had produced vast explosions in the past. Furthermore, two years after the eruption, the interviewed people explained that local knowledge and their experiences with volcanic activity do not influence their risk perception. Dealing with this eruption, people in the Bromo area applied 'lumbung desa' (traditional saving systems) and mutual aid activity for surviving the volcanic eruption. Keywords: Human-environment system, local knowledge, risk perception, adaptation strategies, Bromo Volcano Indonesia

  2. Relationship between Jovian Hectometric Attenuation Lanes And Io Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Spencer, J. R.; Stansberry, J. A.

    2001-01-01

    Within the Galileo plasma wave instrument data a narrow (in frequency) attenuation band is seen in the hectometric (HOM) emission that varies in frequency with system III longitude. This attenuation lane is believed to be the result of near-grazing incidence or coherent scattering of radio emission near the outer edge of the Io torus, i.e., when the ray path is nearly tangent to an L shell containing the Io flux tube. Such a process should, therefore, be enhanced when the Io volcanic activity is increased and the Io flux tube has enhanced density. We have performed a systematic study of the existing Galileo radio emission data in an effort to determine the phenomenology and frequency of occurrence of the attenuation lanes and the association, if any, with published volcanic activity of Io. Our results indicate that the attenuation lanes are present almost all of the time but are enhanced on occasion. The best examples of attenuation lanes occur when Galileo is within approximately 65 R(sub J) of Jupiter and thus are probably more apparent because of the increased signal-to-noise ratio of the radio receivers. The lack of continuous monitoring of Io activity and the lack of known activity on the anti-Earthward side of Io are problematic and make detailed correlation with radio emission very difficult at this time. Nevertheless, if the data are displayed for periods when the spacecraft is within 65 R(sub J) (i.e., for each perijove pass), then the highest-contrast lanes occur on most passes when the Io volcanic activity is also high for that pass. These results support our current understanding of attenuation lane formation and suggest that future efforts can be made to better understand the interaction of HOM emission with the Io flux tube.

  3. Distribution of recent volcanism and the morphology of seamounts and ridges in the GLIMPSE study area: Implications for the lithospheric cracking hypothesis for the origin of intraplate, non-hot spot volcanic chains

    USGS Publications Warehouse

    Forsyth, D.W.; Harmon, N.; Scheirer, D.S.; Duncan, R.A.

    2006-01-01

    Lithospheric cracking by remotely applied stresses or thermoelastic stresses has been suggested to be the mechanism responsible for the formation of intraplate volcanic ridges in the Pacific that clearly do not form above fixed hot spots. As part of the Gravity Lineations Intraplate Melting Petrology and Seismic Expedition (GLIMPSE) project designed to investigate the origin of these features, we have mapped two volcanic chains that are actively forming to the west of the East Pacific Rise using multibeam echo sounding and side-scan sonar. Side-scan sonar reveals the distribution of rough seafloor corresponding to recent, unsedimented lava flows. In the Hotu Matua volcanic complex, recent flows and volcanic edifices are distributed over a region 450 km long and up to 65 km wide, with an apparent, irregular age progression from older flows in the west to younger in the east. The 550-km-long Southern Cross Seamount/Sojourn Ridge/Brown Ridge chain appears to have been recently active only at its eastern end near the East Pacific Rise. A third region of recent flows is found 120 km north of Southern Cross Seamount in seafloor approximately 9 Myr old. No indication of lithospheric extension in the form of faulting or graben formation paralleling the trend of the volcanic chains is found in the vicinity of recent flows or anywhere else in the study area. Thermoelastic cracking could be a factor in the formation of a few small, very narrow volcanic ridges, but most of the volcanic activity is broadly distributed in wide swaths with no indication of formation along narrow cracks. The Sojourn and Brown chains appear to begin as distributed zones of small seamounts that later develop into segmented ridges, perhaps under the influence of membrane stresses from self-loading. We suggest that the linear volcanic chains are created by moving melting anomalies in the asthenosphere and that lithospheric cracking plays at most a secondary role. Copyright 2006 by the American

  4. The search for active release of volcanic gases on Mars

    NASA Astrophysics Data System (ADS)

    Khayat, Alain; Villanueva, Geronimo; Mumma, Michael; Tokunaga, Alan

    2015-11-01

    The study of planetary atmospheres by means of spectroscopy is important for understanding their origin and evolution. The presence of short-lived trace gases in the martian atmosphere would imply recent production, for example, by ongoing geologic activity. On Earth, sulfur dioxide (SO2), sulfur monoxide (SO) and hydrogen sulfide (H2S) are the main sulfur-bearing gases released during volcanic outgassing. Carbonyl sulfide (OCS), also released from some volcanoes on Earth (e.g., Erebus and Nyiragongo), could be formed by reactions involving SO2 or H2S inside magma chambers. We carried out the first ground-based, semi-simultaneous, multi-band and multi-species search for such gases above the Tharsis and Syrtis volcanic regions on Mars. The submillimeter search extended between 23 November 2011 and 13 May 2012 which corresponded to Mars’ mid Northern Spring and early Northern Summer seasons (Ls = 34-110°). The strong submillimeter rotational transitions of SO2, SO and H2S were targeted using the high-resolution heterodyne receiver (aka Barney) on the Caltech Submillimeter Observatory. We reached sensitivities sufficient to detect a volcanic release on Mars that is 4% of the SO2 released continuously from Kilauea volcano in Hawaii, or 5% that of the Masaya volcano in Nicaragua. The infrared search covered OCS in its combination band (ν2+ν3) at 3.42 μm at two successive Mars years, during Mars’ late Northern Spring and mid Northern Summer seasons, spanning Ls= 43º and Ls= 147º. The targeted volcanic districts were observed during the two intervals, 14 Dec. 2011 to 6 Jan. 2012 in the first year, and 30 May 2014 to 16 June 2014 in the second year, using the high resolution infrared spectrometer (CSHELL) on NASA’s Infrared Telescope Facility (NASA/IRTF). We will present our results and discuss their implications for current volcanic outgassing activity on the red planet. We gratefully acknowledge support from the NASA Planetary Astronomy Program under NASA

  5. Observations on Multi-Slug Activity - Implications for Volcanic Processes

    NASA Astrophysics Data System (ADS)

    Pering, T. D.; McGonigle, A. J. S.; James, M. R.; Lane, S. J.; Capponi, A.; Tamburello, G.; Aiuppa, A.

    2014-12-01

    The study of single gas slugs in volcanic conduits has received a large amount of focus within the literature. However, the more complex behaviour associated with the rise and burst of multiple slugs has yet to be considered in detail in a volcanic context. Here we combine observations and analyses of such activity using a three-pronged approach consisting of existing gas mass data collected during rapid slug driven activity at Mt. Etna, scaled laboratory analogue experiments, and computer simulations using the Ansys Fluent® fluid dynamics software. Particular focus was applied to the process of coalescence and wake capture during slug expansion and rise. The results indicate a variety of potential features and relationships, including: promotion of coalescence at distances further than predicted wake lengths, approximate maximum gas volume fraction and minimum magma viscosity values for the occurrence of stable multi-slug activity, and in the laboratory regimes a series of linear trends are associated with overall gas volume fraction and burst volume. A previously observed phenomenon at Mt. Etna, whereby larger slug bursting events are subject to a longer repose period prior to the following event, than smaller events, is also evident in the lab setting. By combining all acquired and modelled data, we derive an approximate relation, using existing formulae for slug base rise speed (Viana et al. 2003) and wake length (Campos and Guedes de Carvalho, 1988), to describe a minimum repose period which is likely to follow the burst of a slug at the surface. The outlined work has significant fluid dynamic implications for possible magma and conduit properties which can allow multi-slug activity at volcanic targets.

  6. Trace elements in scalp hair of children chronically exposed to volcanic activity (Mt. Etna, Italy).

    PubMed

    Varrica, D; Tamburo, E; Dongarrà, G; Sposito, F

    2014-02-01

    The aim of this survey was to use scalp hair as a biomonitor to evaluate the environmental exposure to metals and metalloids of schoolchildren living around the Mt. Etna area, and to verify whether the degree of human exposure to trace elements is subject to changes in local environmental factors. Twenty trace elements were determined in 376 samples of scalp hair from schoolboys (11-13 years old) of both genders, living in ten towns located around the volcanic area of Mt. Etna (Sicily). The results were compared with those (215 samples) from children living in areas of Sicily characterized by a different geological setting (reference site). As, U and V showed much higher concentrations at the volcanic site whereas Sr was particularly more abundant at the reference site. Linear Discriminant Analysis (LDA) indicated an Etna factor, made up of V, U and Mn, and a second factor, concerning the reference site, characterized by Ni and Sr, and to a lesser extent by Mo and Cd. Significant differences in element concentrations were also observed among three different sectors of Mt. Etna area. Young people living in the Mt. Etna area are naturally exposed to enhanced intakes of some metals (V, U, Mn) and non-metals (e.g., As) than individuals of the same age residing in other areas of Sicily, characterized by different lithologies and not influenced by volcanic activity. The petrographic nature of local rocks and the dispersion of the volcanic plume explain the differences, with ingestion of water and local food as the most probable exposure pathways.

  7. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    SciTech Connect

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.

    1994-12-31

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  8. Numerical recognition of alignments in monogenetic volcanic areas: Examples from the Michoacán-Guanajuato Volcanic Field in Mexico and Calatrava in Spain

    NASA Astrophysics Data System (ADS)

    Cebriá, J. M.; Martín-Escorza, C.; López-Ruiz, J.; Morán-Zenteno, D. J.; Martiny, B. M.

    2011-04-01

    Identification of geological lineaments using numerical methods is a useful tool to reveal structures that may not be evident to the naked eye. In this sense, monogenetic volcanic fields represent an especially suitable case for the application of such techniques, since eruptive vents can be considered as point-like features. Application of a two-point azimuth method to the Michoacán-Guanajuato Volcanic Field (Mexico) and the Calatrava Volcanic Province (Spain) demonstrates that the main lineaments controlling the distributions of volcanic vents (~ 322° in Calatrava and ~ 30° in Michoacán) approach the respective main compressional axes that dominate in the area (i.e. the Cocos-North America plates convergence and the main Betics compressional direction, respectively). Considering the stress fields that are present in each volcanic area and their respective geodynamic history, it seems that although volcanism may be a consequence of contemporaneous extensional regimes, the distribution of the volcanic vents in these kinds of monogenetic fields is actually controlled by reactivation of older fractures which then become more favourable for producing space for magma ascent at near-surface levels.

  9. Thyroid cancer incidence in relation to volcanic activity

    SciTech Connect

    Arnbjoernsson, E.A.; Arnbjoernsson, A.O.; Olafsson, A.

    1986-01-01

    Environmental or genetic factors are sought to explain the high incidence of thyroid cancer in Iceland. At present, it is impossible to cite any environmental factor, particularly one related to the volcanic activity in the country, which could explain the high incidence of thyroid cancer in Iceland. However, the thyroid gland in Icelanders is very small due to the high intake of iodine from seafood. It is, therefore, easier for physicians to find thyroid tumors. Furthermore, genetic factors are very likely to be of great importance in the small, isolated island of Iceland.

  10. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    SciTech Connect

    Hackett, W.R.; Smith, R.P.

    1992-09-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  11. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    SciTech Connect

    Hackett, W.R.; Smith, R.P.

    1992-01-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  12. Nitrate contamination of groundwater in two areas of the Cameroon Volcanic Line (Banana Plain and Mount Cameroon area)

    NASA Astrophysics Data System (ADS)

    Ako, Andrew Ako; Eyong, Gloria Eneke Takem; Shimada, Jun; Koike, Katsuaki; Hosono, Takahiro; Ichiyanagi, Kimpei; Richard, Akoachere; Tandia, Beatrice Ketchemen; Nkeng, George Elambo; Roger, Ntankouo Njila

    2014-06-01

    Water containing high concentrations of nitrate is unfit for human consumption and, if discharging to freshwater or marine habitats, can contribute to algal blooms and eutrophication. The level of nitrate contamination in groundwater of two densely populated, agro-industrial areas of the Cameroon Volcanic Line (CVL) (Banana Plain and Mount Cameroon area) was evaluated. A total of 100 samples from boreholes, open wells and springs (67 from the Banana Plain; 33 from springs only, in the Mount Cameroon area) were collected in April 2009 and January 2010 and analyzed for chemical constituents, including nitrates. The average groundwater nitrate concentrations for the studied areas are: 17.28 mg/l for the Banana Plain and 2.90 mg/l for the Mount Cameroon area. Overall, groundwaters are relatively free from excessive nitrate contamination, with nitrate concentrations in only 6 % of groundwater resources in the Banana Plain exceeding the maximum admissible concentration for drinking water (50 mg/l). Sources of NO3 - in groundwater of this region may be mainly anthropogenic (N-fertilizers, sewerage, animal waste, organic manure, pit latrines, etc.). Multivariate statistical analyses of the hydrochemical data revealed that three factors were responsible for the groundwater chemistry (especially, degree of nitrate contamination): (1) a geogenic factor; (2) nitrate contamination factor; (3) ionic enrichment factor. The impact of anthropogenic activities, especially groundwater nitrate contamination, is more accentuated in the Banana Plain than in the Mount Cameroon area. This study also demonstrates the usefulness of multivariate statistical analysis in groundwater study as a supplementary tool for interpretation of complex hydrochemical data sets.

  13. Microgravity change as a precursor to volcanic activity

    NASA Astrophysics Data System (ADS)

    Rymer, Hazel

    1994-07-01

    In recent decades, systematic microgravity studies over some 20 active volcanoes in Central America, Iceland, Italy, Japan, Papua New Guinea and the USA have provided valuable data on sub-surface mass redistribution associated with volcanic activity. Concurrent data on ground deformation are essential to the unambiguous interpretation of gravity changes. In some instances, gravity and elevation vary along the free-air or Bouguer gradients, implying that there has been no sub-surface mass or density change, respectively. Where there are residual gravity changes after correction for elevation changes, magma movements in sub-surface chambers, feeder systems, vents and fissures (dykes) or water table variations are proposed. Although detailed interpretations depend on local circumstances and the calculations depend on source geometry, in general, the smallest residual gravity changes are associated with eruptions from volatile-poor basaltic vents and at extensional rift zones, whereas the highest residual values occur at explosive, subduction-related stratocones built from volatile-rich andesitic magma. The most intriguing, yet difficult, data to interpret derive from large-volume, infrequently erupting volcanic systems where caldera unrest is now becoming well documented and the ultimate hazards are most severe. Mass increases during inflation followed by limited mass loss during subsequent deflation typify these structures.

  14. Monitoring active volcanism using ASTER satellite remote sensing: Volcan de Colima, Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Silvertooth, Maggie Lin

    Scope and Method of Study. ASTER satellite data was collected and analyzed in order to quantify changes in temperature, vesicularity, and morphology of the dome and crater that support evidence of constructive and destructive phases of lava dome growth and destruction cycles. These cycles are characterized by sporadic growth of a lava dome that is subsequently destroyed by a Vulcanian or Pelean style eruption. Activity reports were compared with ASTER images and new deposits were mapped along the flanks of the volcano. There is no way to distinguish between pyroclastic material, rockfall deposits, lahar deposits or lava flows therefore all new flows were mapped. Findings and Conclusions. During a constructive phase, magma that is low in volatiles rises and forms a new dome. The low amount of volatiles leads to a decrease in vesicularity. Therefore during a destructive phase vesicularity is increased. Examining changes in temperature on the dome, it appears that temperatures are at a maximum before an eruptive event, such as incandescent material being extruded at the edge of the dome. Immediately after the lava dome is removed by an explosive event, a decrease in temperature is observed. Once activity resumes, increase in temperature is seen. Morphological changes on the dome can be due to explosive events, gravitational collapse, and factors affecting the endogenous and exogenous growth of the dome. Satellite data provides a synoptic view allowing for observation of new activity to be observed earlier than ground based data may allow. In the case of the Volcan de Colima, satellite remote sensing provided insight to the constructive and destructive phases of the lava dome and current activity.

  15. Galileo SSI Observations of Volcanic Activity at Tvashtar Catena, Io

    NASA Technical Reports Server (NTRS)

    Milazzo, M. P.; Keszthely, L. P.; Radebaugh, J.; Davies, A. G.; Turtle, E. P.; Geissler, P.; Klaasen, K. P.; McEwen, A. S.

    2005-01-01

    Introduction: We report on the analysis of the Galileo SSI's observations of the volcanic activity at Tvashtar Catena, Io as discussed by Milazzo et al. Galileo's Solid State Imager (SSI) observed Tvashtar Catena (63 deg N, 120 deg W) four times between November 1999 and October 2001, providing a unique look at the distinctive high latitude volcanism on Io. The November 1999 observation spatially resolved, for the first time, an active extraterrestrial fissure eruption. The brightness temperature of the lavas at the November 1999 fissure eruption was 1300 K. The second observation (orbit I27, February 2000) showed a large (approx. 500 sq km) region with many, small spots of hot, active lava. The third observation was taken in conjunction with a Cassini observation in December 2000 and showed a Pele-like plume deposition ring, while the Cassini images revealed a 400 km high Pele-type plume above the Catena. The final Galileo SSI observation of Tvashtar was acquired in October 2001, and all obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. We have concentrated on analyzing the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of "simple" advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping (in time and space) eruptions.

  16. Temporal relations of volcanism and hydrothermal systems in two areas of the Jemez volcanic field, New Mexico

    SciTech Connect

    WoldeGabriel, G.; Goff, F. )

    1989-11-01

    Two hydrothermal alteration events (8.07 Ma, one sample; 6.51-5.60 Ma, six samples) related to the waning stages of late Miocene volcanism ({ge} 13 to {le} 5.8 Ma) are recognized at the Cochiti district (southeast Jemez Mountains). Most of the K/Ar dates (0.83 {plus minus} 0.11-0.66 {plus minus} 0.21 Ma, four samples) in the hydrothermally altered, caldera-fill rocks of core hole VC-2A at Sulfur Springs, Valles caldera, indicate post-Valles caldera hydrothermal alteration. A sample from acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole was too young to be dated by the K/Ar method and is possibly associated with current hot-spring activity and the youngest pulses of volcanism. Oxygen-isotope data from illite/smectite clays in the Cochiti district are zonally distributed and range from {minus}2.15{per thousand} to {plus}7.97{per thousand} (SMOW), depending upon temperature, extent of rock-fluid interaction, and composition. The samples from VC-2A get lighter with depth ({minus}0.20{per thousand} to {plus}1.62{per thousand}). The K/Ar and oxygen-isotope data provide strong evidence that the epithermal quartz-vein-hosted gold-silver mineralization at Cochiti and the sub-ore grade molybdenite at VC-2A were deposited in the late Miocene (5.99-5.60 Ma) and mid-Quaternary ({approximately}0.66 Ma), respectively, by hydrothermal fluids composed primarily of meteoric water.

  17. Nondestructive neutron activation analysis of volcanic samples: Hawaii

    SciTech Connect

    Zoller, W.H.; Finnegan, D.L.; Crowe, B.

    1986-01-01

    Samples of volcanic emissions have been collected between and during eruptions of both Kilauea and Mauna Loa volcanoes during the last three years. Airborne particles have been collected on Teflon filters and acidic gases on base-impregnated cellulose filters. Chemically neutral gas-phase species are collected on charcoal-coated cellulose filters. The primary analytical technique used is nondestructive neutron activation analysis, which has been used to determine the quantities of up to 35 elements on the different filters. The use of neutron activation analysis makes it possible to analyze for a wide range of elements in the different matrices used for the collection and to learn about the distribution between particles and gas phases for each of the elements.

  18. Bimodal Silurian and Lower Devonian volcanic rock assemblages in the Machias-Eastport area, Maine

    USGS Publications Warehouse

    Gates, Olcott; Moench, R.H.

    1981-01-01

    Exposed in the Machias-Eastport area of southeastern Maine is the thickest (at least 8,000 m), best exposed, best dated, and most nearly complete succession of Silurian and Lower Devonian volcanic strata in the coastal volcanic belt, remnants of which crop out along the coasts of southern New Brunswick, Canada, and southeastern New England in the United States. The volcanics were erupted through the 600-700-million-year-old Avalonian sialic basement. To test the possibility that this volcanic belt was a magmatic arc above a subduction zone prior to presumed Acadian continental collision, samples representing the entire section in the Machias-Eastport area of Maine were chemically analyzed. Three strongly bimodal assemblages of volcanic rocks and associated intrusives are recognized, herein called the Silurian, older Devonian, and younger Devonian assemblages. The Silurian assemblage contains typically nonporphyritic high-alumina tholeiitic basalts, basaltic andesites, and diabase of continental characterand calc-alkalic rhyolites, silicic dacites, and one known dike of andesite. These rocks are associated with fossiliferous, predominantly marine strata of the Quoddy, Dennys, and Edmunds Formations, and the Leighton Formation of the Pembroke Group (the stratigraphic rank of both is revised herein for the Machias-Eastport area), all of Silurian age. The shallow marine Hersey Formation (stratigraphic rank also revised herein) of the Pembroke Group, of latest Silurian age (and possibly earliest Devonian, as suggested by an ostracode fauna), contains no known volcanics; and it evidently was deposited during a volcanic hiatus that immediately preceded emergence of the coastal volcanic belt and the eruption of the older Devonian assemblage. The older Devonian assemblage, in the lagoonal to subaerial Lower Devonian Eastport Formation, contains tholeiitic basalts and basaltic andesites, typically with abundant plagioclase phenocrysts and typically richer in iron and

  19. Crustal deformation induced by volcanic activity measured by InSAR time series analysis (Volcan de Colima-Mexico)

    NASA Astrophysics Data System (ADS)

    Brunori, Carlo Alberto; Norini, Gianluca; Stramondo, Salvatore; Capra, Lucia; Zucca, Francesco; Groppelli, Gianluca; Bignami, Christian; Chini, Marco; Manea, Marina; Manea, Vlad

    2010-05-01

    The Volcán de Colima (CV) is currently the most active Mexican volcano. After the 1913 plinian activity the volcano presented several eruptive phases that lasted few years, but since 1991 its activity became more persistent with vulcanian eruptions, lava and dome extrusions. During the last 15 years the volcano suffered several eruptive episodes as in 1991, 1994, 1998-1999, 2001-2003, 2004 and 2005 with the emplacement of pyroclastic flows. During rain seasons lahars are frequent affecting several infrastructures such as bridges and electric towers. This work is focused on the detection of surface deformation with centimetre or sub-centimeter accuracy of the Volcán de Colima and surrounding areas. We try to assess the amount and the spatial extension of surface movements of the CV and to get insights into the causes of the surface deformation by using Interferometric Synthetic Aperture Radar (InSAR), a powerful tool ensuring measurements at high-accuracy over large areas. The image dataset acquired by ESA ENVISAT ASAR (C band) sensor, has been processed using Advanced interferometric techniques (A-InSAR) to overcome the really challenging sources of decorrelation related to the setting context, mainly vegetation and atmosphere, in order to give us the opportunity to detect also very low rates of deformations. The main objectives of the interferometric analysis is the measurement of deformations in the CV in relation with active tectonics and gravity induced spreading, the identification of magma migration below the surface in the last decade, the detection of the incipient movements of volcanic landslides and large scale volcano instability, and the kinematics of the Colima rift. We present preliminary results of the A-InSAR processing, in the framework of the interdisciplinary Colima Deformation project (ColDef).

  20. Post-Subduction Pleistocene Volcanism in Tahoe City Area, Northern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Kortemeier, W. T.; Farmer, G.; Schweickert, R. A.

    2011-12-01

    Geochemical and isotopic analyses of Pleistocene volcanic rocks in the northwestern part of the Lake Tahoe basin are used to define sources and triggering mechanism(s) of post-subduction magmatism. From field and geochronologic data the volcanic rocks include an older (2.0 Ma to 2.3 Ma) set of trachybasalts and trachybasaltic andesites and a set of ~0.92 Ma trachyandesites. The 2.0-2.3 Ma set shows a range of wt% SiO2 from 48.7 to 55.5, high wt% K2O (1.3-2.3), and high Ni and Cr contents (31-207 ppm and 80-350 ppm respectively). The 0.92 Ma trachyandesites have 56.4-61.3 wt% SiO2; high Al2O3 (17.4-18.7 wt%), Na2O (4.2-4.7 wt%), Sr (907-1950 ppm), La (39.2-48.2 ppm) and other LREE; and low Y (10.6-16.9 ppm), and Yb (1.0-1.6 ppm). Both sets of volcanic rocks have high LILE/HFSE ratios, and higher (La/Yb)N and Sr/Y ratios than older, subduction related "calc-alkaline" volcanic rocks in this region. Chemical data preclude direct derivation of the 0.92 Ma trachyandesite from 2.0-2.3 Ma trachybasaltic andesites, and it is difficult to link the two sets of volcanic rocks to a common parental magma by fractional crystallization alone. Trace and rare earth element data for both sets of volcanic rocks indicate melting of the source in the presence of garnet and amphibole and in the absence of plagioclase. Compositionally similar volcanic rocks occur in other post-subduction continental margin settings, including Baja California, where "bajaites" overlap the compositions of older basaltic andesites and low-Si adakites. Bajaite is typically interpreted as the product of melting of asthenospheric mantle wedge metasomatized by high Sr/Y melts of underlying oceanic crust, prior to cessation of subduction. However, both sets of volcanic rocks discussed here have low ɛNd (+2 to -4.0), and samples with the highest Sr/Y have the lowest ɛNd(0) values. These data suggest that melt could not have been derived from recently subducted oceanic lithosphere. Instead, mafic and ultramafic

  1. Chronology of late Pleistocene and Holocene volcanics, Long Valley and Mono Basin geothermal areas, eastern California

    USGS Publications Warehouse

    Wood, S.H.

    1983-01-01

    mono magma chamber suggests that rhyolite magma may have been emplaced in the shallow crust as recently as 32,000 to 40,000 yrs ago. Calculations by Lachenbruch et al. (1976, Jour. Geophys. Research, v. 81, p. 769-784) that a thermal disturbance at this age would have propagated upward by solid conduction only 4 km and offer an explanation for the lack of a heat-flow anomaly and surface indications of hydrothermal activity over the Mono magma chamber and its associated ring-fracture system. This report also contains new information on the age and chemistry of volcanics on the Mono Lake island, the Inyo domes, and tephras within the Long Valley Caldera. A newly discovered rhyolite tuff ring of late Quaternary age in the Toowa volcanic field of the southern Sierra Nevada is briefly described for it represents a new area that should be examined for potential as a geothermal area.

  2. High resolution 900 yr volcanic and climatic record from the Vostok area, East Antarctica

    NASA Astrophysics Data System (ADS)

    Osipov, E. Yu.; Khodzher, T. V.; Golobokova, L. P.; Onischuk, N. A.; Lipenkov, V. Ya.; Ekaykin, A. A.; Osipova, O. P.

    2013-05-01

    Detailed volcanic record of the last 900 yr (1093-2010 AD) has been received using high resolution (2-3 samples per accumulation year) sulfate measurements in four snow/firn cores from the Vostok station area, East Antarctica. Totally, 33 volcanic events have been identified in the record, including well-known low latitude eruption signals found in many polar ice cores (e.g., Pinatubo 1991, Agung 1963, Krakatoa 1883, Tambora 1815, Huanaputina 1600, Kuwae 1452), however in comparison with other Antarctic sites the record has more events covering the last 900 yr. The strongest volcanic signals occurred during mid-13th, mid-15th and 18th centuries. The largest volcanic signal of Vostok (both in sulfate concentration and flux) is the 1452 AD Kuwae eruption. Average snow accumulation rate calculated for the period 1093-2010 AD is 21.3 ± 2.3 mm H2O. Accumulation record demonstrates a slight positive trend, however sharply increased accumulation rate during the periods from 1600 to 1815 AD (by 11% from long-term mean) and from 1963 to 2010 AD (by 15%) are typical features of the site. Na+ record shows strong decadal-scale variability probably connected with coupled changes in atmospheric transport patterns over Antarctica (meridional circulation change) and local glaciology. The obtained high resolution climatic records suggest a high sensitivity of the Vostok location to environmental changes in Southern Hemisphere.

  3. Volcanostratigraphy, petrography and petrochemistry of Late Cretaceous volcanic rocks from the Görele area (Giresun, NE Turkey)

    NASA Astrophysics Data System (ADS)

    Oguz, Simge; Aydin, Faruk; Baser, Rasim

    2015-04-01

    In this study, we have reported for lithological, petrographical and geochemical features of late Cretaceous volcanic rocks from the Çanakçı and the Karabörk areas in the south-eastern part of Görele (Giresun, NE Turkey) in order to investigate their origin and magmatic evolution. Based on the previous ages and recent volcano-stratigraphic studies, the late Cretaceous time in the study area is characterized by an intensive volcanic activity that occurred in two different periods. The first period of the late Cretaceous volcanism (Cenomanian-Santonian; 100-85 My), conformably overlain by Upper Jurassic-Lower Cretaceous massive carbonates (Berdiga Formation), is represented by bimodal units consisting of mainly mafic rock series (basaltic-andesitic lavas and hyaloclastites, dikes and sills) in the lower part (Çatak Formation), and felsic rock series (dacitic lavas and hyaloclastites, crystal- and pyrite-bearing tuffs) in the upper part (Kızılkaya Formation). The second period of the late Cretaceous volcanism (Santonian-Late Campanian; 85-75 Ma) is also represented by bimodal character and again begins with mafic rock suites (basaltic-basaltic andesitic lavas and hyaloclastites) in the lower part (Çağlayan Formation), and grades upward into felsic rock suites (biotite-bearing rhyolitic lavas, ignimbrites and hyaloclastites) through the upper part (Tirebolu Formation). These bimodal units are intercalated with volcanic conglomerates-sandstones, claystones, marl and red pelagic limestones throughout the volcanic sequence, and the felsic rock series have a special important due to hosting of volcanogenic massive sulfide deposits in the region. All volcano-sedimentary units are covered by Tonya Formation (Late Campanian-Paleocene) containing calciturbidites, biomicrites and clayey limestones. The mafic rocks in the two volcanic periods generally include basalt, basaltic andesite and minor andesite, whereas felsic volcanics of the first period mainly consists of

  4. The Cenozoic volcanism in the Kivu rift: Assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions

    NASA Astrophysics Data System (ADS)

    Pouclet, A.; Bellon, H.; Bram, K.

    2016-09-01

    The Kivu rift is part of the western branch of the East African Rift system. From Lake Tanganyika to Lake Albert, the Kivu rift is set in a succession of Precambrian zones of weakness trending NW-SE, NNE-SSW and NE-SW. At the NW to NNE turn of the rift direction in the Lake Kivu area, the inherited faults are crosscut by newly born N-S fractures which developed during the late Cenozoic rifting and controlled the volcanic activity. From Lake Kivu to Lake Edward, the N-S faults show a right-lateral en echelon pattern. Development of tension gashes in the Virunga area indicates a clockwise rotation of the constraint linked to dextral oblique motion of crustal blocks. The extensional direction was W-E in the Mio-Pliocene and ENE-WSW in the Pleistocene to present time. The volcanic rocks are assigned to three groups: (1) tholeiites and sodic alkali basalts in the South-Kivu, (2) sodic basalts and nephelinites in the northern Lake Kivu and western Virunga, and (3) potassic basanites and potassic nephelinites in the Virunga area. South-Kivu magmas were generated by melting of spinel + garnet lherzolite from two sources: an enriched lithospheric source and a less enriched mixed lithospheric and asthenospheric source. The latter source was implied in the genesis of the tholeiitic lavas at the beginning of the South-Kivu tectono-volcanic activity, in relationships with asthenosphere upwelling. The ensuing outpouring of alkaline basaltic lavas from the lithospheric source attests for the abortion of the asthenospheric contribution and a change of the rifting process. The sodic nephelinites of the northern Lake Kivu originated from low partial melting of garnet peridotite of the sub-continental mantle due to pressure release during swell initiation. The Virunga potassic magmas resulted from the melting of garnet peridotite with an increasing degree of melting from nephelinite to basanite. They originated from a lithospheric source enriched in both K and Rb, suggesting the

  5. The Geysers-Clear Lake area, California: thermal waters, mineralization, volcanism, and geothermal potential

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.; Burns, M.G.; Goff, F.E.; Peters, E.K.; Thompson, J.M.

    1993-01-01

    Manifestations of a major thermal anomaly in the Geysers-Clear Lake area of northern California include the late Pliocene to Holocene Clear Lake Volcanics, The Geysers geothermal field, abundant thermal springs, and epithermal mercury and gold mineralization. The epithermal mineralization and thermal springs typically occur along high-angle faults within the broad San Andreas transform fault system that forms the western boundary of the North American plate in this area. The young volcanic rocks overlie Mesozoic marine rocks of the Great Valley sequence which have been thrust above the coeval Franciscan Complex and penecontemporaneously dropped back down along low-angle detachment faults. Geothermal power production has peaked at The Geysers and pressure declines indicate significant depletion of the fluid resource. It is proposed that recently discovered, isotopically shifted steam in the northwest Geysers area indicates the presence not of deep connate water but rather of boiled-down, boron-rich Franciscan evolved meteoric water. This water is likely to be present in limited quantities and will not provide a significant hot water resource for geothermal power production at The Geysers field or from the main Clear Lake volcanic field. -from Authors

  6. Probabilistic constraints from existing and future radar imaging on volcanic activity on Venus

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2015-11-01

    We explore the quantitative limits that may be placed on Venus' present-day volcanic activity by radar imaging of surface landforms. The apparent nondetection of new lava flows in the areas observed twice by Magellan suggests that there is a ~60% chance that the eruption rate is ~1 km3/yr or less, using the eruption history and area/volume flow geometry of terrestrial volcanoes (Etna, Mauna Loa and Merapi) as a guide. However, if the detection probability of an individual flow is low (e.g. ~10%) due to poor resolution or quality and unmodeled viewing geometry effects, the constraint (<10 km3/yr) is not useful. Imaging at Magellan resolution or better of only ~10% of the surface area of Venus on a new mission (30 years after Magellan) would yield better than 99% chance of detecting a new lava flow, even if the volcanic activity is at the low end of predictions (~0.01 km3/yr) and is expressed through a single volcano with a stochastic eruption history. Closer re-examination of Magellan data may be worthwhile, both to search for new features, and to establish formal (location-dependent) limits on activity against which data from future missions can be tested. While Magellan-future and future-future comparisons should offer much lower detection thresholds for erupted volumes, a probabilistic approach will be required to properly understand the implications.

  7. Reflection seismic imaging in the volcanic area of the geothermal field Wayang Windu, Indonesia

    NASA Astrophysics Data System (ADS)

    Polom, Ulrich; Wiyono, Wiyono; Pramono, Bambang; Krawczyk, CharLotte M.

    2014-05-01

    Reflection seismic exploration in volcanic areas is still a scientific challenge and requires major efforts to develop imaging workflows capable of an economic utilization, e.g., for geothermal exploration. The SESaR (Seismic Exploration and Safety Risk study for decentral geothermal plants in Indonesia) project therefore tackles still not well resolved issues concerning wave propagation or energy absorption in areas covered by pyroclastic sediments using both active P-wave and S-wave seismics. Site-specific exploration procedures were tested in different tectonic and lithological regimes to compare imaging conditions. Based on the results of a small-scale, active seismic pre-site survey in the area of the Wayang Windu geothermal field in November 2012, an additional medium-scale active seismic experiment using P-waves was carried out in August 2013. The latter experiment was designed to investigate local changes of seismic subsurface response, to expand the knowledge about capabilities of the vibroseis method for seismic surveying in regions covered by pyroclastic material, and to achieve higher depth penetration. Thus, for the first time in the Wayang Windu geothermal area, a powerful, hydraulically driven seismic mini-vibrator device of 27 kN peak force (LIAG's mini-vibrator MHV2.7) was used as seismic source instead of the weaker hammer blow applied in former field surveys. Aiming at acquiring parameter test and production data southeast of the Wayang Windu geothermal power plant, a 48-channel GEODE recording instrument of the Badan Geologi was used in a high-resolution configuration, with receiver group intervals of 5 m and source intervals of 10 m. Thereby, the LIAG field crew, Star Energy, GFZ Potsdam, and ITB Bandung acquired a nearly 600 m long profile. In general, we observe the successful applicability of the vibroseis method for such a difficult seismic acquisition environment. Taking into account the local conditions at Wayang Windu, the method is

  8. Geology, geochronology, and paleogeography of the southern Sonoma volcanic field and adjacent areas, northern San Francisco Bay region, California

    USGS Publications Warehouse

    Wagner, D.L.; Saucedo, G.J.; Clahan, K.B.; Fleck, R.J.; Langenheim, V.E.; McLaughlin, R.J.; Sarna-Wojcicki, A. M.; Allen, J.R.; Deino, A.L.

    2011-01-01

    Recent geologic mapping in the northern San Francisco Bay region (California, USA) supported by radiometric dating and tephrochronologic correlations, provides insights into the framework geology, stratigraphy, tectonic evolution, and geologic history of this part of the San Andreas transform plate boundary. There are 25 new and existing radiometric dates that define three temporally distinct volcanic packages along the north margin of San Pablo Bay, i.e., the Burdell Mountain Volcanics (11.1 Ma), the Tolay Volcanics (ca. 10-8 Ma), and the Sonoma Volcanics (ca. 8-2.5 Ma). The Burdell Mountain and the Tolay Volcanics are allochthonous, having been displaced from the Quien Sabe Volcanics and the Berkeley Hills Volcanics, respectively. Two samples from a core of the Tolay Volcanics taken from the Murphy #1 well in the Petaluma oilfield yielded ages of 8.99 ?? 0.06 and 9.13 ?? 0.06 Ma, demonstrating that volcanic rocks exposed along Tolay Creek near Sears Point previously thought to be a separate unit, the Donnell Ranch volcanics, are part of the Tolay Volcanics. Other new dates reported herein show that volcanic rocks in the Meacham Hill area and extending southwest to the Burdell Mountain fault are also part of the Tolay Volcanics. In the Sonoma volcanic field, strongly bimodal volcanic sequences are intercalated with sediments. In the Mayacmas Mountains a belt of eruptive centers youngs to the north. The youngest of these volcanic centers at Sugarloaf Ridge, which lithologically, chemically, and temporally matches the Napa Valley eruptive center, was apparently displaced 30 km to the northwest by movement along the Carneros and West Napa faults. The older parts of the Sonoma Volcanics have been displaced at least 28 km along the RodgersCreek fault since ca. 7 Ma. The Petaluma Formation also youngs to the north along the Rodgers Creek-Hayward fault and the Bennett Valley fault. The Petaluma basin formed as part of the Contra Costa basin in the Late Miocene and was

  9. Interactions between active faulting, volcanism, and sedimentary processes at an island arc: Insights from Les Saintes channel, Lesser Antilles arc

    NASA Astrophysics Data System (ADS)

    Leclerc, F.; Feuillet, N.; Deplus, C.

    2016-07-01

    New high-resolution marine geophysical data allow to characterize a large normal fault system in the Lesser Antilles arc, and to investigate the interactions between active faulting, volcanism, sedimentary, and mass-wasting processes. Les Saintes fault system is composed of several normal faults that form a 30 km wide half-graben accommodating NE-SW extension. It is bounded by the Roseau fault, responsible for the destructive Mw 6.3 21 November 2004 earthquake. The Roseau fault has been identified from the island of Basse-Terre to Dominica. It is thus 40 km long, and it could generate Mw 7 earthquakes in the future. Several submarine volcanoes are also recognized. We show that the fault system initiated after the main volcanic construction and subsequently controls the emission of volcanic products. The system propagates southward through damage zones. At the tip of the damage zones, several volcanic cones were recently emplaced probably due to fissures opening in an area of stress increase. A two-way interaction is observed between active faulting and sedimentary processes. The faults control the development of the main turbiditic system made of kilometer-wide canyons, as well as the location of sediment ponding. In turn, erosion and sedimentation prevent scarp growth at the seafloor. Faulting also enhances mass-wasting processes. Since its initiation, the fault system has consequently modified the morphologic evolution of the arc through perturbation of the sedimentary processes and localization of the more recent volcanic activity.

  10. Crustal structure along the active Costa Rican volcanic arc

    NASA Astrophysics Data System (ADS)

    Lizarralde, D.; Holbrook, W. S.; van Avendonk, H. J.; Mora Fernandez, M.; Alvarado, G. E.; Harder, S. H.

    2010-12-01

    We present results from an explosion-source seismic refraction transect along the entire active Costa Rican volcanic arc. The seismic data were acquired in 2005 as part of the TICO-CAVA experiment with the goals of delineating the basic crustal architecture of this relatively young volcanic arc, understanding magmatic emplacement processes, and estimating the bulk composition and growth rates of arc crust. The seismic transect extends ~280 km along the axis of the arc and consists of 16 shots (200 - 1200 kg) recorded by 710 seismometers. The active Costa Rican arc consists of two segments with distinct morphologies, the Guanacaste Cordillera (GC) in the north and Central Cordillera (CC) in the south. This segmentation is linked to the subducting Cocos ridge, which occurs beneath the CC and has a northern boundary roughly coincident with the arc segment boundary. Volcanoes of the GC rise from a plateau of ~500 m elevation to maximum heights of ~1500 m, while the CC volcanoes rise from ~1500 m to heights of 3500 m. The crustal structure beneath these segments is distinctly different. The entire arc is covered by a ~5-km-thick carapace with velocities of 4.5-5.8 km/s that probably represent volcaniclastics, flows and small plutons. Beneath the GC, a 1- to 2-km-thick “grainitic” layer (6.0-6.1 km/s) lies beneath the carapace. Velocities below this granitic layer suggest a somewhat more mafic composition, but they increase slowly with depth from 6.2-6.3 km/s between 6-15 km depth. Total crustal thickness beneath the GC is ~40 km, but analysis of crustal thickness is ongoing. The crust beneath Guanacaste thus has a velocity structure very similar to average continental crust, though with slightly slower velocities, perhaps due to high temperatures beneath the arc. As the arc has only been active in this location for <5 m.y., this suggests that either the earlier Neogene arc to the west substantially modified the oceanic-plateau crustal foundation here or that the

  11. A new model for the development of the active Afar volcanic margin

    NASA Astrophysics Data System (ADS)

    Pik, Raphaël; Stab, Martin; Bellahsen, Nicolas; Leroy, Sylvie

    2016-04-01

    Volcanic passive margins, that represent more than the three quarters of continental margins worldwide, are privileged witnesses of the lithospheric extension processes thatform new oceanic basins. They are characterized by voluminous amounts of underplated, intruded and extruded magmas, under the form of massive lavas prisms (seaward-dipping reflectors, or SDR) during the course of thinning and stretching of the lithosphere, that eventually form the ocean-continent transition. The origin and mechanisms of formation of these objects are still largely debated today. We have focussed our attention in the last few years on the Afar volcanic province which represents an active analogue of such volcanic margins. We explored the structural and temporal relationships that exist between the development of the major thinning and stretching structures and the magmatic production in Central Afar. Conjugate precise fieldwork analysis along with lavas geochronology allowed us to revisit the timing and style of the rift formation, since the early syn-rift period of time in the W-Afar marginal area to present days. Extension is primarily accommodated over a wide area at the surface since the very initial periods of extension (~ 25 Ma) following the emplacement of Oligocene CFBs. We propose in our reconstruction of central Afar margin history that extension has been associated with important volumes of underplated mafic material that compensate crustal thinning. This has been facilitated by major crustal-scale detachments that help localize the thinning and underplating at depth. In line with this 'magmatic wide-rift' mode of extension, we demonstrate that episodic extension steps alternate with more protracted magmatic phases. The production of syn-rift massive flood basalts (~ 4 Ma) occurs after early thinning of both the crust and the lithosphere, which suggests that SDR formation, is controlled by previous tectonic event. We determined how the melting regime evolved in

  12. Seismicity and active tectonics at Coloumbo Reef (Aegean Sea, Greece): Monitoring an active volcano at Santorini Volcanic Center using a temporary seismic network

    NASA Astrophysics Data System (ADS)

    Dimitriadis, I.; Karagianni, E.; Panagiotopoulos, D.; Papazachos, C.; Hatzidimitriou, P.; Bohnhoff, M.; Rische, M.; Meier, T.

    2009-02-01

    The volcanic center of Santorini Island is the most active volcano of the southern Aegean volcanic arc. Α dense seismic array consisting of fourteen portable broadband seismological stations has been deployed in order to monitor and study the seismo-volcanic activity at the broader area of the Santorini volcanic center between March 2003 and September 2003. Additional recordings from a neighbouring larger scale temporary network (CYCNET) were also used for the relocation of more than 240 earthquakes recorded by both arrays. A double-difference relocation technique was used, in order to obtain optimal focal parameters for the best-constrained earthquakes. The results indicate that the seismic activity of the Santorini volcanic center is strongly associated with the tectonic regime of the broader Southern Aegean Sea area as well as with the volcanic processes. The main cluster of the epicenters is located at the Coloumbo Reef, a submarine volcano of the volcanic system of Santorini Islands. A smaller cluster of events is located near the Anydros Islet, aligned in a NE-SW direction, running almost along the main tectonic feature of the area under study, the Santorini-Amorgos Fault Zone. In contrast, the main Santorini Island caldera is characterized by the almost complete absence of seismicity. This contrast is in very good agreement with recent volcanological and marine studies, with the Coloumbo volcanic center showing an intense high-temperature hydrothermal activity, in comparison to the corresponding low-level activity of the Santorini caldera. The high-resolution hypocentral relocations present a clear view of the volcanic submarine structure at the Coloumbo Reef, showing that the main seismic activity is located within a very narrow vertical column, mainly at depths between 6 and 9 km. The focal mechanisms of the best-located events show that the cluster at the Coloumbo Reef is associated with the "Kameni-Coloumbo Fracture Zone", which corresponds to the

  13. Analysis of radar images of the active volcanic zone at Krafla, Iceland: The effects of look azimuth biasing

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Williams, R. S., Jr.

    1989-01-01

    The geomorphic expression of Mid-Ocean-Ridge (MOR) volcanism in a subaerial setting occurs uniquely on Earth in Iceland, and the most recent MOR eruptive activity has been concentrated in the Northeastern Volcanic Zone in an area known as Krafla. Within the Krafla region are many of the key morphologic elements of MOR-related basaltic volcanism, as well as volcanic explosion craters, subglacial lava shields, tectonic fissure swarms known as gjar, and basaltic-andesite flows with well developed ogives (pressure-ridges). The objective was to quantify the degree to which the basic volcanic and structural features can be mapped from directional SAR imagery as a function of the look azimuth. To accomplish this, the current expression of volcanic and tectonic constructs was independently mapped within the Krafla region on the E, W, and N-looking SAR images, as well as from SPOT Panchromatic imagery acquired in 1987. The initial observations of the E, W, and N images indicates that fresh a'a lava surfaces are extremely radar bright (rough at 3 cm to meter scales) independent of look direction; this suggests that these flows do not have strong flow direction related structures at meter and cm scales, which is consistent with typical Icelandic a'a lava surfaces in general. The basic impression from a preliminary analysis of the effects of look azimuth biasing on interpretation of the geology of an active MOR volcanic zone is that up to 30 percent of the diagnostic features can be missed at any given look direction, but that having two orthogonal look direction images is probably sufficient to prevent gross misinterpretation.

  14. Gish Bar Patera, Io: Geology and Volcanic Activity, 1996-2001

    NASA Technical Reports Server (NTRS)

    Perry, Jason; Radebaugh, Jani; Lopes, Rosaly; McEwen, Alfred; Keszthelyi, Laszlo

    2003-01-01

    Since the two Voyagers passed by Jupiter in 1979, it has been known that volcanic activity is ubiquitous on the surface of Io. With over 400 volcanic centers, Io is even more volcanically active than the earth with massive flood basalt-style eruptions and komatitite lavas a common occurrence. Additionally, some volcanoes appear to be giant lava lakes, with violent activity churning the crust of the lake for periods of 20 years or more. Finally, sulfur is believed to play a large role in Io's volcanism, be it as a primary lava or as a secondary product of large, high-temperature eruptions. By studying one volcano in particular, Gish Bar Patera, one can observe many of these characteristics in one volcanic center.

  15. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  16. Microbial life in volcanic/geothermal areas: how soil geochemistry shapes microbial communities

    NASA Astrophysics Data System (ADS)

    Gagliano, Antonina Lisa; D'Alessandro, Walter; Franzetti, Andrea; Parello, Francesco; Tagliavia, Marcello; Quatrini, Paola

    2015-04-01

    Extreme environments, such as volcanic/geothermal areas, are sites of complex interactions between geosphere and biosphere. Although biotic and abiotic components are strictly related, they were separately studied for long time. Nowadays, innovative and interdisciplinary approaches are available to explore microbial life thriving in these environments. Pantelleria island (Italy) hosts a high enthalpy geothermal system characterized by high CH4 and low H2S fluxes. Two selected sites, FAV1 and FAV2, located at Favara Grande, the main exhalative area of the island, show similar physical conditions with a surface temperature close to 60° C and a soil gas composition enriched in CH4, H2 and CO2. FAV1 soil is characterized by harsher conditions (pH 3.4 and 12% of H2O content); conversely, milder conditions were recorded at site FAV2 (pH 5.8 and 4% of H2O content). High methanotrophic activity (59.2 nmol g-1 h-1) and wide diversity of methanotrophic bacteria were preliminary detected at FAV2, while no activity was detected at FAV1(1). Our aim was to investigate how the soil microbial communities of these two close geothermal sites at Pantelleria island respond to different geochemical conditions. Bacterial and Archaeal communities of the sites were investigated by MiSeq Illumina sequencing of hypervariable regions of the 16S rRNA gene. More than 33,000 reads were obtained for Bacteria and Archaea from soil samples of the two sites. At FAV1 99% of the bacterial sequences were assigned to four main phyla (Proteobacteria, Firmicutes, Actinobacteria and Chloroflexi). FAV2 sequences were distributed in the same phyla with the exception of Chloroflexi that was represented below 1%. Results indicate a high abundance of thermo-acidophilic chemolithotrophs in site FAV1 dominated by Acidithiobacillus ferrooxidans (25%), Nitrosococcus halophilus (10%), Alicyclobacillus spp. (7%) and the rare species Ktedonobacter racemifer (11%). The bacterial community at FAV2 soil is dominated by

  17. Io's Diverse Styles of Volcanic Activity: Results from Galileo NIMS

    NASA Technical Reports Server (NTRS)

    Lopes, R. M. C.; Smythe, W. D.; Kamp, L. W.; Doute, S.; Carlson, R.; McEwen, A.; Geissler, P.

    2001-01-01

    Observations by Galileo's Near-Infrared Mapping Spectrometer were used to map the thermal structure of several of Io's hot spots, revealing different styles of volcanism Additional information is contained in the original extended abstract..

  18. Spatial Characteristics of Geothermal Spring Temperatures and Discharge Rates in the Tatun Volcanic Area, Taiwan

    NASA Astrophysics Data System (ADS)

    Jang, C. S.; Liu, C. W.

    2014-12-01

    The Tatun volcanic area is the only potential volcanic geothermal region in the Taiwan island, and abundant in hot spring resources owing to stream water mixing with fumarolic gases. According to the Meinzer's classification, spring temperatures and discharge rates are the most important properties for characterizing spring classifications. This study attempted to spatially characterize spring temperatures and discharge rates in the Tatun volcanic area, Taiwanusing indicator kriging (IK). First, data on spring temperatures and discharge rates, which were collected from surveyed data of the Taipei City Government, were divided into high, moderate and low categories according to spring classification criteria, and the various categories were regarded as estimation thresholds. Then, IK was adopted to model occurrence probabilities of specified temperatures and discharge rates in springs, and to determine their classifications based on estimated probabilities. Finally, nine combinations were obtained from the classifications of temperatures and discharge rates in springs. Moreover, the combinations and features of spring water were spatially quantified according to seven sub-zones of spring utilization. A suitable and sustainable development strategy of the spring area was proposed in each sub-zone based on probability-based combinations and features of spring water.The research results reveal that the probability-based classifications using IK provide an excellent insight in exploring the uncertainty of spatial features in springs, and can provide Taiwanese government administrators with detailed information on sustainable spring utilization and conservation in the overexploited spring tourism areas. The sub-zones BT (Beitou), RXY (Rd. Xingyi), ZSL (Zhongshanlou) and LSK (Lengshuikeng) with high or moderate discharge rates are suitable to supply spring water for tourism hotels.Local natural hot springs should be planned in the sub-zones DBT (Dingbeitou), ZSL, XYK

  19. Geochemistry and tectonic setting of the Central Loei volcanic rocks, Pak Chom area, Loei, northeastern Thailand

    NASA Astrophysics Data System (ADS)

    Panjasawatwong, Y.; Zaw, Khin; Chantaramee, S.; Limtrakun, P.; Pirarai, K.

    2006-01-01

    The Central Loei volcanic rocks, as evidenced by those in the Pak Chom area, were formed in the Late Devonian-Early Carboniferous and can be separated into three magmatic groups: transitional tholeiitic basalt, tholeiitic microgabbro and calc-alkalic basalt/andesite on the basis of immobile-element contents and ratios of least altered samples. All the tholeiitic microgabbro possibly occurred as dikes. Chemically, the transitional tholeittic basalt and tholeiitic microgabbro have higher abundances of TiO 2, Ni and Cr relative to the calc-alkalic basalt/andesite at similar values for FeO*/MgO; they also contain higher Ti/Zr but lower Zr/Nb. The transitional tholeiitic basalt has higher concentrations of P 2O 5 and Nb relative to the tholeiitic microgabbro at similar levels of FeO*/MgO, and also has higher ratios of Nb/Y and Ti/V, but lower values for Ti/Zr and Zr/Nb. In terms of chondrite normalized REE and N-MORB normalized patterns, the transitional tholeiitic basalt, tholeiitic basalt and calc-alkalic basalt/andesite are analogous to those from North Atlantic, Southwest Indian Ridge and New Britain Arc. On this basis, the Central Loei volcanic rocks are comprised of MORBs and oceanic island-arc lavas. These arc lavas may have erupted on an oceanic basement in the same ocean basin as those in the Chiang Rai-Chiang Mai volcanic belt.

  20. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands - II: Deception Island images

    NASA Astrophysics Data System (ADS)

    Prudencio, Janire; Ibáñez, Jesús M.; García-Yeguas, Araceli; Del Pezzo, Edoardo; Posadas, Antonio M.

    2013-12-01

    In this work, we present regional maps of the inverse intrinsic quality factor (Qi-1), the inverse scattering quality factor (Qs-1) and total inverse quality factor (Qt-1) for the volcanic environment of Deception Island (Antarctica). Our attenuation study is based on diffusion approximation, which permits us to obtain the attenuation coefficients for every single couple source-receiver separately. The data set used in this research is derived from an active seismic experiment using more than 5200 offshore shots (air guns) recorded at 32 onshore seismic stations and four ocean bottom seismometers. To arrive at a regional distribution of these values, we used a new mapping technique based on a Gaussian space probability function. This approach led us to create `2-D probabilistic maps' of values of intrinsic and scattering seismic attenuation. The 2-D tomographic images confirm the existence of a high attenuation body below an inner bay of Deception Island. This structure, previously observed in 2-D and 3-D velocity tomography of the region, is associated with a massive magma reservoir. Magnetotelluric studies reach a similar interpretation of this strong anomaly. Additionally, we observed areas with lower attenuation effects that bear correlation with consolidated structures described in other studies and associated with the crystalline basement of the area. Our calculations of the transport mean-free path and absorption length for intrinsic attenuation gave respective values of ≈ 950 m and 5 km, which are lower than the values obtained in tectonic regions or volcanic areas such as Tenerife Island. However, as observed in other volcanic regions, our results indicate that scattering effects dominate strongly over the intrinsic attenuation.

  1. Petrology and petrogenesis of the Eocene Volcanic rocks in Yildizeli area (Sivas), Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Doğa Topbay, C.; Karacık, Zekiye; Genç, S. Can; Göçmengil, Gönenç

    2015-04-01

    Yıldızeli region to the south of İzmir Ankara Erzincan suture zone is situated on the large Sivas Tertiary sedimentary basin. After the northern branch of the Neotethyan Ocean was northerly consumed beneath the Sakarya Continent, a continent - continent collision occurred between the Anatolide- Tauride platform and Pontides and followed a severe intermediate magmatism during the Late Cretaceous- Tertiary period. This created an east-west trending volcanic belt along the whole Pontide range. In the previous studies different models are suggested for the Eocene volcanic succession such as post-collisional, delamination and slab-breakoff models as well as the arc model for its westernmost parts. We will present our field and geochemical data obtained from the Yıldızeli and its surroundings for its petrogenesis, and will discuss the tectonic model(s) on the basis of their geochemical/petrological aspects. Cenozoic volcanic sequences of Yıldızeli region which is the main subject of this study, overlie Pre-Mesozoic crustal meta-sedimentary group of Kırşehir Massif, Ophiolitic mélange and Cretaceous- Paleocene? flysch-like sequences. In the northern part of Yıldızeli region, north vergent thrust fault trending E-W seperates the ophiolitic mélange complex from the Upper Cretaceous-Paleocene and Tertiary formations. Volcano-sedimentary units, Eocene in age, of the Yıldızeli (Sivas-Turkey) which are intercalated with sedimentary deposits related to the collision of Anatolide-Tauride and a simultaneous volcanic activity (i.e. the Yıldızeli volcanics), exposed throughout a wide zone along E-W orientation. Yıldızeli volcanics consist of basalts, basaltic-andesites and andesitic lavas intercalated flow breccias and epiclastic, pyroclastic deposits. Basaltic andesite lavas contain Ca-rich plagioclase + clinopyroxene ± olivine with minor amounts of opaque minerals in a matrix comprised of microlites and glass; andesitic lavas are generally contain Ca

  2. Stratigraphy, facies architecture, and palaeoenvironment of Neoproterozoic volcanics and volcaniclastic deposits in Fatira area, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalaf, Ezz El Din Abdel Hakim

    Fatira area in the Central Eastern Desert, Egypt, is a composite terrane consisting of Neoproterozoic volcanics and sediments laid down in submarine to subaerial environment, intruded by voluminous old to young granitic rocks. The various lithofacies of the study area can be grouped in three distinct lithostratigraphic sequences, which are described here in stratigraphic order, from base to top as the Fatira El Beida, Fatira El Zarqa and Gabal Fatira sequences. Each depositional sequence, is intimately related to volcanic activity separated by time intervals of volcanic inactivity, such as marked hiatuses, reworked volcaniclasts, and or turbidite sedimentation. Four submarine facies groups have been recognized within the oldest, folded eruption sequence of Fatira El Beida. The southern part of the study area is occupied by sheet lava (SL), pillow lavas (PL), pillow breccias (PB), and overlying Bouma turbiditic volcaniclastites (VC). The four facies groups of Fatira El Beida sequence occur in a predictable upward-deepening succession, essentially from base to top, an SL-PL-PB-VC stacking pattern. The coeval tholeiitic mafic and felsic volcaniclastic rocks of this sequence indicate an extensional back-arc tectonic setting. The El Beida depositional sequence appears to fit a submarine-fan and slope-apron environment in an intra-arc site. The Fatira El Zarqa sequence involves a large volume of subaerial calc-alkaline intermediate to felsic volcanics and an unconformably overlying siliciclastic succession comprising clast-supported conglomerates (Gm), massive sandstone sheet floods (Sm) and mudstones (FI), together with a lateritic argillite paleosol (P) top formed in an alluvial-fan system. The youngest rock of Gabal Fatira sequence comprises anorogenic trachydacites and rhyolites with locally emergent domes associated with autobrecciation and sill-dyke rock swarms that could be interpreted as feeders and subvolcanic intrusions. Unconformity and lithofacies assemblages

  3. Compilation of modal analyses of volcanic rocks from the Nevada Test Site area, Nye County, Nevada

    SciTech Connect

    Page, W.R.

    1990-10-01

    Volcanic rock samples collected from the Nevada Test Site, Nye County, Nevada, between 1960 and 1985 were analyzed by thin section to obtain petrographic mode data. In order to provide rapid accessibility to the entire database, all data from the cards were entered into a computerized database. This computer format will enable workers involved in stratigraphic studies in the Nevada Test Site area and other locations in southern Nevada to perform independent analyses of the data. The data were compiled from the mode cards into two separate computer files. The first file consists of data collected from core samples taken from drill holes in the Yucca Mountain area. The second group of samples were collected from measured sections and surface mapping traverses in the Nevada Test Site area. Each data file is composed of computer printouts of tables with mode data from thin section point counts, comments on additional data, and location data. Tremendous care was taken in transferring the data from the cards to computer, in order to preserve the original information and interpretations provided by the analyzer. In addition to the data files above, a file is included that consists of Nevada Test Site petrographic data published in other US Geological Survey and Los Alamos National Laboratory reports. These data are presented to supply the user with an essentially complete modal database of samples from the volcanic stratigraphic section in the Nevada Test Site area. 18 refs., 4 figs.

  4. Catastrophic volcanism

    NASA Technical Reports Server (NTRS)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  5. Volcanic activity recorded in deep-sea sediments and the geodynamic evolution of western Pacific island arcs

    NASA Astrophysics Data System (ADS)

    Cambray, Hervé; Pubellier, Manuel; Jolivet, Laurent; Pouclet, André

    A compilation of volcanic ashes interbedded in deep-sea sediments was carried out from DSDP-IPOD and ODP data collected along the western Pacific margin. Using a tephrochronological method, we attempted to reconstruct the Cenozoic and Quaternary volcanic activity of major western Pacific arcs. For every arc, established volcanic episodes and volcanic-tectonic evolution recorded on land were compared. This study reveals close connections between tectonic events and volcanic activity of arcs, as well a temporal relationship between the opening of marginal basins and arc volcanism. In the Tohoku (NE Japan) and Bonin arcs (SE Japan), arc volcanic activity clearly vanishes during backarc spreading. In contrast, intense volcanism occurs during both arc rifting and intervals of no spreading. Detailed comparisons show that the maximum volcanic output is closely connected with the stress field evolution recorded on land. The case of Seinan arc (SW Japan) shows a good fit between volcanic episodes and periods of release of the compressional stress field after major orogenic events. Furthermore, in the marine sediments off Japan, a systematic late Miocene volcanic hiatus interpreted as a quiescence of volcanic activity corresponds to a changing stress field on the Tohoku and Bonin arcs. These correlations between volcanic episodicity and tectonic evolution of island arcs allow us to discuss the influence of subduction process on arc volcanism. In the Philippines, the volcanic signal in marine sediments is compromised by rapid alteration and diagenesis of ashes. Nonetheless, only the main events of arc volcanic activity are preserved. A comparison with on land volcanism shows that this filtered volcanic signal in different places corresponds to incipient subduction (transition from passive to active margins) or to the final stages of basin closure.

  6. Late cenozoic vertical movements of non-volcanic islands in the Banda Arc area

    NASA Astrophysics Data System (ADS)

    De Smet, M. E. M.; Fortuin, A. R.; Tjokrosapoetro, S.; Van Hinte, J. E.

    During onshore campaigns of the Snellius-II Expedition late Cenozoic sections were recorded and systematically sampled on the non-volcanic outer Banda Arc Islands of Timor, Buton, Buru, Seram and Kai. Microfaunal studies provided age and palaeobathymetric data to construct geohistory diagrams. Geohistory analysis of field and laboratory data allows to calculate rates of vertical movements of the island basements. The vertical movements were intermittent and differed widely from place to place in the arc; short periods of uplift alternated with longer periods of tectonic rest or subsidence and lateral variations in timing and magnitude seem to be more the rule than the exception. Movements affected larger segments of the arc at about the same time, especially since the late Pliocene, when widespread vertical movements started, which led to the present configuration of the arc. Rates of uplift or subsidence differed within each segment. On an intermediate scale, deformation has the character of tilting or doming of whole islands or parts of islands. On a local scale, various types of deformation occur. Calculated duration of uplift pulses is in the order of a million years where less than 50 cm·ka -1 of vertical movements are involved. Sections, however, with a high time stratigraphic resolutions show pulses of uplift with a duration of only some hundreds of thousands of years and rates of more than 500 cm·ka -1. The duration of such pulses therefore is comparable to that of eustatic third order sea level changes. But because their amplitude is an order of magnitude larger, this implies that in tectonically active areas eustatic signals, preserved in the sedimentary record, will be overprinted by tectonics, i.e. will be difficult to disentangle from the tectonic signal.

  7. 1996 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.

    1997-01-01

    During 1996, the Alaska Volcano Observatory (AVO) responded to eruptive activity, anomalous seismicity, or suspected volcanic activity at 10 of the approximately 40 active volcanic centers in the state of Alaska. As part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also disseminated information about eruptions and other volcanic unrest at six volcanic centers on the Kamchatka Peninsula and in the Kurile Islands, Russia.

  8. [Micro-area characteristics of laminated chert in the volcanic rocks of Xionger Group of Ruyang area and its geological significances].

    PubMed

    Luo, An; Li, Hong-zhong; Zhao, Ming-zhen; Yang, Zhi-jun; Liang, Jin; He, Jun-guo

    2014-12-01

    sedimentation contributed to the bands (or lamellars) with minerals of much smaller grain size, which therefore resulted in diversities from the other bands (or lamellars). According to this, the repeated bands (or lamellars) denoted the volcanic activities were cyclic during the formation of the chert. What's more, the carbonate vein came from the precipitation of subsequent hydrothermal fluids in the fracture of the chert, which contributed to the changes (e. g. rising in crystallinity degree of silica and formation of micro-structure of new silicate) near the interface between chert and the carbonate vein. Although there were many impurity minerals with complex genesis, the relatively lower content of silica in the chert of Xionger Group was due to the volcanic mineral mainly. Since there were impurity minerals of volcanic genesis in relatively large amount, the content of silica in the chert of Xionger Group was hence relatively low. In this study, the Raman analysis was witnessed to be an effective way in the researches on the chert, and could open out the type of mineral, micro-structure and degrees of crystallinity (or order). These characteristics were well kept in the micro-area, and played significant roles to reflect and understand the formation mechanism and subsequent evolution of the chert.

  9. Sensitivity of two biomarkers for biomonitoring exposure to fluoride in children and women: A study in a volcanic area.

    PubMed

    Linhares, Diana Paula Silva; Garcia, Patrícia Ventura; Amaral, Leslie; Ferreira, Teresa; Cury, Jaime A; Vieira, Waldomiro; Rodrigues, Armindo Dos Santos

    2016-07-01

    The natural enrichment of water with fluoride is related to natural sources such as volcanic activity, with it being documented that fluorosis, an endemic and widespread disease in volcanic areas, is associated to the ingestion of high levels of fluoride through water. Thus, in this study, we aimed to define the fluoride concentration in drinking waters of volcanic origin and compare the sensitivity of urine and nail clippings as biomarkers for fluoride exposure in adults and children. Samples of drinking water from four villages in São Miguel Island (Azores) were used and the fluoride concentration was determined, as well the fluoride content in urine and toenails clippings from 66 children and 63 adults from these villages. A validated diet questionnaire, assessing sources of fluoride, was recorded for each participant. The fluoride determination in urine and nail clipping samples was made using a fluoride-specific electrode. A positive correlation was found between the fluoride daily intake and fluoride content in children urine (rs = 0.475; p < 0.001) and in their nail clippings (rs = 0.475; p < 0.001), while in adult women, the fluoride daily intake correlated positively with fluoride content nail clippings (rs = 0.495, p < 0.001). This reveals that nail clippings are more reliable as biomarkers of chronic exposure to fluoride than urine for populations of different ages (children vs. adults). Furthermore, nail clippings are more suitable than urine fluoride levels to assess long term exposure to fluoride in areas where the exposure to fluoride in drinking water is considered within, or slightly above, the recommended legal values.

  10. Mantle xenoliths from Marosticano area (Northern Italy): a comparison with Veneto Volcanic Province lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Brombin, Valentina; Bonadiman, Costanza; Coltorti, Massimo

    2016-04-01

    The Tertiary Magmatic Province of Veneto, known as Veneto Volcanic Province (VVP), in the North-East of Italy, represents the most important volcanic distric of Adria Plate. It is composed by five volcanic bodies: Val d'Adige, Marosticano, Mts. Lessini, Berici Hills and Euganean Hills. Most of the volcanic products are relatively undifferentiated lavas and range in composition from nephelinites to tholeiites. Often VVP nephelinites and basanites carry mantle xenoliths (mainly harzburgites and lherzolite). This study reports petrological comparison between Marosticano xenoliths (new outcrop) and xenoliths from the Lessinean and Val d'Adige areas already studied by many Authors (Siena & Coltorti 1989; Beccaluva et al., 2001, Gasperini et al., 2006). Mineral major elements analyses show that the Marosticano lherzolites and harzburgites reflect "more restitic" composition than the mantle domain beneath the other VVP districts (Lessini Mts. and Val d'Adige). In fact, olivine and pyroxene of Marosticano xenoliths have the highest mg# values of the entire district (Marosticano→90-93; literature→86-92). At comparable mg# (45-85 wt%) Marosticano spinels tend to be higher in Cr2O3 (23-44 wt%) contents with respect to the other VVP sp (7-25 wt%). It is worth noting that, Ni contents of Marosticano olivines in both harzburgites and lherzolites are higher (2650-3620 ppm) than those of the Lessinean xenoliths (1500- 3450 ppm), and similar to that of Val d'Adige lherzolites (3000-3500 ppm), approaching the contents of Archean cratonic mantle (Kelemen, 1998). In turn, Lessinean olivines properly fall in the Ni-mg# Phanerozoic field. At fixed pressure of 15 kbar, the equilibration temperature of Marosticano xenoliths are similar (Brey & Köhler: 920-1120°C) to those of Lessini (O'Neill & Wall: 990-1110°C; Beccaluva et al., 2007), but higher than those of Val d'Adige (Wells: 909-956°C; Gasperini et al., 2006). Finally, Marosticano mantle fragment show similar relatively high

  11. Rapid response of a hydrologic system to volcanic activity: Masaya volcano, Nicaragua

    USGS Publications Warehouse

    Pearson, S.C.P.; Connor, C.B.; Sanford, W.E.

    2008-01-01

    Hydrologic systems change in response to volcanic activity, and in turn may be sensitive indicators of volcanic activity. Here we investigate the coupled nature of magmatic and hydrologic systems using continuous multichannel time series of soil temperature collected on the flanks of Masaya volcano, Nicaragua, one of the most active volcanoes in Central America. The soil temperatures were measured in a low-temperature fumarole field located 3.5 km down the flanks of the volcano. Analysis of these time series reveals that they respond extremely rapidly, on a time scale of minutes, to changes in volcanic activity also manifested at the summit vent. These rapid temperature changes are caused by increased flow of water vapor through flank fumaroles during volcanism. The soil temperature response, ~5 °C, is repetitive and complex, with as many as 13 pulses during a single volcanic episode. Analysis of the frequency spectrum of these temperature time series shows that these anomalies are characterized by broad frequency content during volcanic activity. They are thus easily distinguished from seasonal trends, diurnal variations, or individual rainfall events, which triggered rapid transient increases in temperature during 5% of events. We suggest that the mechanism responsible for the distinctive temperature signals is rapid change in pore pressure in response to magmatism, a response that can be enhanced by meteoric water infiltration. Monitoring of distal fumaroles can therefore provide insight into coupled volcanic-hydrologic-meteorologic systems, and has potential as an inexpensive monitoring tool.

  12. The origin of muddy sand sediments associated with mud volcanism in the Horonobe area of northern Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Miyakawa, Kazuya; Tokiwa, Tetsuya; Murakami, Hiroaki

    2013-12-01

    The origin of muddy sand and gas in muddy sand sediments in the Horonobe area of northern Hokkaido, Japan, was investigated by analyzing the mineralogical and chemical compositions of the sediments and the chemical/isotopic compositions of the gas. X-ray fluorescence and X-ray diffraction analyses indicate that chemically, the muddy sand is derived from a mixing of components from the Hakobuchi and overlying formations, and that the characteristic mineral of the muddy sand is heulandite, which, in the study area, has been detected only in the Hakobuchi Formation. These results suggest that the sediments ascended from depths of at least 2200-2400 m. The δ13CCH4 values and the methane/(ethane + propane) ratios of the gas indicate that the primary origin of the methane is by thermogenic decomposition of coal-bearing beds in the Haboro or Hakobuchi formations, or further deep sources. This study provides new data on processes of onshore mud volcanism in Japan, and contributes to an understanding of processes of subsurface mass transport in regions of mud-volcanic activity.

  13. Evaluation of approximations in modeling the thermal history of a volcanic area

    NASA Astrophysics Data System (ADS)

    Giberti, G.; Sartoris, G.

    1989-02-01

    The thermal history of a relatively young volcanic area, characterized by a shallow magmatic reservoir and the occurrence of a major eruption accompanied by caldera collapse, is simulated numerically. Geometry, geology and volcanic history of the system are chosen having in mind the Campi Flegrei volcanic area, Southern Italy. The 3D axially symmetric model adopted is nonhomogeneous, with variable geometry and thermal properties depending on temperature. Heat transfer is treated using the conduction equations. Convection in the magma - undoubtedly vigorous in the early stages of the cooling process - is taken into account by a temperature-averaging procedure. Moderate convection in the permeable rocks overlying the reservoir is simulated by using effective thermal parameters. The mathematical problem is solved by a finite-difference method. This model is then adopted as "reality" and its results are compared with those obtained with other models, referred to as "approximations" in which some features of the conventional reality have been neglected. It is found that the temperature field of a static model (in which the eruption of about 110 km 3 of magma, caldera collapse and the related physical changes are neglected) is in good agreement with "reality" 30,000 years after the eruption. The assumption of magma and surrounding rocks having the same constant thermal properties yields poor results (errors of 100-150°K at shallow depth on the axis of symmetry). If homogeneity is assumed only for the host rocks, while the magma is assigned "real" properties, the temperature field above the reservoir is affected by quite similar errors. The temperature field is quite well approximated by solving the "reality" in a vertical plane through the axis of symmetry (errors <20°K and 40°K in the central part of the caldera for t=120,000 years and t=250,000 years, respectively, after the emplacement of the magmatic body). The solution of "reality" in just one dimension yields

  14. GEOFIM: A WebGIS application for integrated geophysical modeling in active volcanic regions

    NASA Astrophysics Data System (ADS)

    Currenti, Gilda; Napoli, Rosalba; Sicali, Antonino; Greco, Filippo; Negro, Ciro Del

    2014-09-01

    We present GEOFIM (GEOphysical Forward/Inverse Modeling), a WebGIS application for integrated interpretation of multiparametric geophysical observations. It has been developed to jointly interpret scalar and vector magnetic data, gravity data, as well as geodetic data, from GPS, tiltmeter, strainmeter and InSAR observations, recorded in active volcanic areas. GEOFIM gathers a library of analytical solutions, which provides an estimate of the geophysical signals due to perturbations in the thermal and stress state of the volcano. The integrated geophysical modeling can be performed by a simple trial and errors forward modeling or by an inversion procedure based on NSGA-II algorithm. The software capability was tested on the multiparametric data set recorded during the 2008-2009 Etna flank eruption onset. The results encourage to exploit this approach to develop a near-real-time warning system for a quantitative model-based assessment of geophysical observations in areas where different parameters are routinely monitored.

  15. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  16. Igneous activity and related ore deposits in the western and southern Tushar Mountains, Marysvale volcanic field, west-central Utah

    USGS Publications Warehouse

    Steven, Thomas A.

    1984-01-01

    16 m.y. old may exist near Indian Creek just west of the Mount Belknap caldera. Geophysical evidence confirms the probability of a buried pluton near Indian Creek, and also indicates that another buried pluton probably exists beneath the 9-m.y.-old mineralized area at Sheep Rock. The mineral potential of the different hydrothermal systems, and the types of minerals deposited probably vary considerably from one period of mineralization to another and from one depth environment to another within a given system. PART B: The Big John caldera, on the western flank of the Tushar Mountains in the Marysvale volcanic field in west-central Utah, formed 23-22 m.y. ago in response to ash-flow eruptions of the Delano Peak Tuff Member of the Bullion Canyon Volcanics. These eruptions were near the end of the period of Oligocene-early Miocene calc-alkalic igneous activity that built a broad volcanic plateau in this part of Utah. About 22 m.y. ago, the composition of rocks erupted changed to a bimodal assemblage of mafic and silicic volcanics that was erupted episodically through the remainder of Cenozoic time. The alkali rhyolites are uranium rich in part, and are associated with all the known uranium deposits in the Marysvale volcanic field. The Big John caldera was a broad drained basin whose floor was covered by a layer of stream gravels when ash flows from the western source area of the Mount Belknap Volcanics filled the caldera with the Joe Lott Tuff Member about 19 m.y. ago. Devitrified and zeolitized rocks in the caldera fill have lost one-quarter to one-half of the uranium contained in the original magma. This mobilized uranium probably moved into the hydrologic regime, and some may have been redeposited in stream gravels underlying the Joe Lott within the caldera, or in gravels filling the original drainage channel that extended south from the caldera.

  17. A continuous 770-year record of volcanic activity from east Antarctica

    NASA Astrophysics Data System (ADS)

    Moore, John C.; Narita, Hideki; Maeno, Norikazu

    1991-09-01

    A 100-m ice core from east Antarctica has been analyzed for volcanic activity using dielectric profiling. Reasonably accurate dates are given for the eruptions of Tambora (1815), Agung (1963), Krakatoa (1883), and the well-known eruption of 1259.

  18. Potential and limitations of risk scenario tools in volcanic areas through an example at Mount Cameroon

    NASA Astrophysics Data System (ADS)

    Gehl, P.; Quinet, C.; Le Cozannet, G.; Kouokam, E.; Thierry, P.

    2013-10-01

    This paper presents an integrated approach to conduct a scenario-based volcanic risk assessment on a variety of exposed assets, such as residential buildings, cultivated areas, network infrastructures or individual strategic buildings. The focus is put on the simulation of scenarios, based on deterministic adverse event input, which are applied to the case study of an effusive eruption on the Mount Cameroon volcano, resulting in the damage estimation of the assets located in the area. The work is based on the recent advances in the field of seismic risk. A software for systemic risk scenario analysis developed within the FP7 project SYNER-G has been adapted to address the issue of volcanic risk. Most significant improvements include the addition of vulnerability models adapted to each kind of exposed element and the possibility to quantify the successive potential damages inflicted by a sequence of adverse events (e.g. lava flows, tephra fall, etc.). The use of an object-oriented architecture gives the opportunity to model and compute the physical damage of very disparate types of infrastructures under the same framework. Finally, while the risk scenario approach is limited to the assessment of the physical impact of adverse events, a specific focus on strategic infrastructures and a dialogue with stakeholders helps in evaluating the potential wider indirect consequences of an eruption.

  19. Potential and limitations of risk scenario tools in volcanic areas through an example in Mount Cameroon

    NASA Astrophysics Data System (ADS)

    Gehl, P.; Quinet, C.; Le Cozannet, G.; Kouokam, E.; Thierry, P.

    2013-04-01

    This paper presents an integrated approach to conduct a scenario-based volcanic risk assessment on a variety of exposed assets, such as residential buildings, cultivated areas, network infrastructures or individual strategic buildings. The focus is put on the simulation of scenarios, based on deterministic adverse events input, which are applied to the case-study of an effusive eruption on the Mount Cameroon volcano, resulting in the damage estimation of the assets located in the area. The work is based on the recent advances in the field of seismic risk. A software for systemic risk scenario analysis developed within the FP7 project SYNER-G has been adapted to address the issue of volcanic risk. Most significant improvements include the addition of vulnerability models adapted to each kind of exposed element and the possibility to quantify the successive potential damages inflicted by a sequence of adverse events (e.g. lava flows, tephra fall, etc.). The use of an object-oriented architecture gives the opportunity to model and compute the physical damage of very disparate types of infrastructures under the same framework. Finally, while the risk scenario approach is limited to the assessment of the physical impact of adverse events, a specific focus on strategic infrastructures and a dialogue with stakeholders helps in evaluating the potential wider indirect consequences of an eruption.

  20. Determination of ancient volcanic eruption center based on gravity methods (3D) in Gunungkidul area Yogyakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Santoso, Agus; Sismanto, Setiawan, Ary; Pramumijoyo, Subagyo

    2016-05-01

    Ancient eruption centers can be determined by detecting the position of the ancient volcanic material, it is important to understand the elements of ancient volcanic material by studying the area geologically and prove the existence of an ancient volcanic eruption centers using geophysics gravity method. The measuring instrument is Lacoste & Romberg gravimeter type 1115, the number of data are 900 points. The area 60×40 kilometers, the modeling 3D software is reaching depth of 15 km at the south of the island of Java subduction zone. It is suported by geological data in the field that are found as the following: 1. Pyroclastic Fall which is a product of volcanic eruptions, and lapilli tuff with felsic mineral. 2. Pyroclastic flow with Breccia, tuffaceous sandstone and tuff breccia. 3. Hot springs near Parangwedang Parangtritis. 4. Igneous rock with scoria structure in Parang Kusumo, structured amigdaloida which is the result of the eruption of lava/volcanic eruptions, and Pillow lava in the shows the flowing lava into the sea. Base on gravity anomaly shows that there are strong correlationship between those geological data to the gravity anomaly. The gravblox modeling (3D) shows the position of ancient of volcanic eruption in this area clearly.

  1. Active fault systems and tectono-topographic configuration of the central Trans-Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Szynkaruk, Ewa; Graduño-Monroy, Víctor Hugo; Bocco, Gerardo

    2004-07-01

    The central Trans-Mexican Volcanic Belt (TMVB) reflects the interplay between three regional fault systems: the NNW-SSE to NW-SE striking Taxco-Querétaro fault system, the NE-SW striking system, and the E-W striking Morelia-Acambay fault system. The latter is the youngest and consists of fault scarps up to 500 m high, whose formation caused structural and morphological reorganization of the region. In this paper, we investigate possible activity of the three systems within the central TMVB, and assess the role that they play in controlling the tectono-topographic configuration of the area. Our study is based on DEM-derived morphometric maps, longitudinal river profiles, geomorphologic mapping, and structural field data concerning recent faulting. We find that all three regional fault systems are active within the central TMVB, possibly with different displacement rates and/or type of motion; and that NNW-SSE and NE-SW striking faults control the major tectono-topographic elements that build up the region, which are being re-shaped by E-W striking faults. We also find that tectonic information can be deciphered from the topography of the youthful volcanic arc in question, regardless its complexity.

  2. Gravity monitoring of Tatun Volcanic Group activities and inference for underground fluid circulations

    NASA Astrophysics Data System (ADS)

    Mouyen, Maxime; Chao, Benjamin Fong; Hwang, Cheinway; Hsieh, Wen-Chi

    2016-12-01

    The Tatun Volcano Group (TVG), located on the northern coast of Taiwan adjacent to the city of Taipei, experiences active hydrothermalism but has no historical record of volcanic eruption. Yet recent studies suggest that TVG is dormant-active rather than extinct. To monitor mass transfers and to gain further understanding of this volcanic area, gravity variations have been recorded continuously since 2012 using a superconducting gravimeter, and once every few months since 2005 using absolute gravimeters. We analyze the continuous gravity time series and propose a model that best explains the gravity variations due to local groundwater redistribution. By correcting these variations, we identify gravity changes as large as 35 μGal that occurred concomitantly to fluid pressure-induced earthquakes and changes in the gas composition at Dayoukeng, one of TVG's fumaroles, over 2005-2007. We examine several fluid movements that can match the gravity observations, yet too few additional constraints exist to favor any of them. In particular, no significant ground displacements are observed when these gravity variations occurred. On the other hand, the model of gravity changes due to local groundwater redistribution can be routinely computed and removed from the ongoing time gravity measurements in order to quickly identify any unusual mass transfer occurring beneath TVG.

  3. Geochemistry of arsenic and other trace elements in a volcanic aquifer system of Kumamoto Area, Japan

    NASA Astrophysics Data System (ADS)

    Hossain, Shahadat; Hosono, Takahiro; Shimada, Jun

    2015-04-01

    Total arsenic (As), As(III) species, dissolved organic carbon (DOC), methane (CH4), sulfur isotope ratios of sulfate (δ34SSO4), major ions and trace elements were measured in groundwater collected from boreholes and wells along the flow lines of western margins of Kumamoto basin, at central part of Kyushu island in southern Japan. Kumamoto city is considered as the largest groundwater city in Japan. 100% people of this city depends on groundwater for their drinking purpose. In this study, we used trace elements data and δ34SSO4 values to better understand the processes that are likely controlling mobilization of As in this area. Arsenic concentrations ranges from 1 to 60.6 μg/L. High concentrations were found in both shallow and deep aquifers. The aquifers are composed of Quaternary volcanic (pyroclastic) flow deposits. In both aquifers, groundwaters evolve along the down flow gradient from oxidizing conditions of recharge area to the reducing conditions of stagnant area of Kumamoto plain. 40% samples from the Kumamoto plain area excced the maximum permissible limit of Japan drinking water quality standard (10 μg/L). In the reducing groundwater, As(III) constitutes typically more, however; 50% samples dominated with As(III) and 50% samples dominated with As(V) species. High As concentrations occur in anaerobic stagnant groundwaters from this plain area with high dissolved Fe, Mn, moderately dissolved HCO3, PO4, DOC and with very low concentrations of NO3 and SO4 suggesting the reducing condition of subsurface aquifer. Moderately positive correlation between As and dissolved Fe, Mn and strong negative correlation between As(III)/As(V) ratio and V, Cr and U reflect the dependence of As concentration on the reductive process. The wide range of δ34SSO4 values (6.8 to 36.1‰) indicate that sulfur is undergoing redox cycling. Highly enriched values suggesting the process was probably mediated by microbial activity. It also be noted from positive values of sulfur

  4. Disruptive event analysis: Volcanism and igneous intrusion

    NASA Astrophysics Data System (ADS)

    Crowe, B. M.

    1980-08-01

    An evaluation was made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions were considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity were the geometry of the magma repository intersection (partly controlled by depth of burial) and the nature of volcanism. Simplified probability calculations were attempted for areas of past volcanic activity.

  5. Hydrothermal Activity and Volcanism on the Southern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Haase, K. M.; Scientific Party, M.

    2005-12-01

    gives evidence for high-temperature venting in this area. The vent field occurs on a segment of the MAR with thickened crust and a morphology reminiscent of the fast-spreading East Pacific Rise (EPR). Similar to most EPR vents the Liliput field is also located on the volcanically active axis within a narrow cleft bounded by faults. South of the hydrothermal vents several young pillow and sheet flows were observed suggesting that the hydrothermal activity here is again directly linked to volcanic eruptions.

  6. Influence of explosive volcanic events on the activation versus de-activation of a modern turbidite system: the example of the Dohrn canyon-fan in the continental slope of the Campania volcanic district (Naples Bay, Italy - Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Roca, M.; Budillon, F.; Pappone, G.; Insinga, D.

    2015-12-01

    The interplay between volcanic activity, volcano-clastic yield and activation/deactivation of a turbidite system can be evaluated along the continental margin of Campania region (Tyrrhenian Sea - Italy), an active volcanic area, where three wide canyon-fans occur at short distances one to another. Actually, the Dohrn, Magnaghi and Cuma canyons cut the continental slope and shelf off Ischia and Procida volcanic islands and off the Campania Plain where Phlegraean Field and Mt. Vesuvius active vents are located. This research, partly supported by the Italian Flagship Project Ritmare, is based on single-channel, high-resolution seismic profiles (Sparker-One 16 kJ, 0.5 s twtt), swath-bathymetry and litho- and tephra-stratigraphy of gravity cores. We focused on the stratigraphic constraint of paleo-thalweg features and channel/levees deposits in seismics, debris flow, turbidites and hemipelagites in cores, to learn more on the activation/deactivation stages of the canyon Dohrn, in the frame of relative eustatic sea level variations over the Middle Pleistocene-Holocene time span.Preliminary outcomes suggest that even major volcanic events occurred in the last 300 ky, such as ignimbrite eruptions or large fallouts, have caused the infilling of the canyon head and the cover of pre-existing seabed morphology. As a consequence, the temporary deactivation of the turbidite system has occurred, despite the volcano-clastic overload in the coastal environment. Phases of renewed activities of the thalweg are observed to be in step with falling stages of sea level, which have driven the re-incision of canyon valleys through continuous volcano-clastic debris and turbidites down-flows. Since Holocene, the quiescence of the Dohrn Canyon has been documented, despite the intense volcano-tectonic activity in the area.

  7. Ten years of soil CO2 continuous monitoring on Mt. Etna: Exploring the relationship between processes of soil degassing and volcanic activity

    NASA Astrophysics Data System (ADS)

    Liuzzo, Marco; Gurrieri, Sergio; Giudice, Gaetano; Giuffrida, Giovanni

    2013-08-01

    The measurement of soil CO2 flux variations is a well-established practice in many volcanic areas around the world. Until recently, however, most of these were made using direct sampling methods. These days, a variety of automatic devices providing real-time data now make the continuous monitoring of volcanic areas possible. A network of automatic geochemical monitoring stations (EtnaGas network) was developed by INGV Palermo and installed at various sites on the flanks of Mt. Etna. Here, we present a large set of soil CO2 flux data recorded by the network, dating back 10 years, a period in which several noteworthy eruptive phenomena occurred. Our statistical analysis strongly suggests that anomalous measurements of soil CO2 flux are attributable to volcanic origin and in almost all cases precede volcanic activity. Here, we present the actual data series recorded by EtnaGAS and an interpretative model of the expected behavior of soil CO2 flux (in terms of increase-decrease cycles), which corresponded well with the volcanic activity during this period. Through the use of a comparative approach, incorporating both volcanological and geochemical data, the global soil CO2 flux trends are put into a coherent framework, highlighting close links between the time flux variations and volcanic activities. These insights, made possible from 10 years of uninterrupted data, confirm the importance of continuous monitoring of volcanic soil degassing, and may contribute in the forecasting of imminent eruptive activity or the temporal evolution of an in-progress eruption, therefore facilitating Civil Defense planning in volcanic areas under high-hazard conditions.

  8. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    NASA Astrophysics Data System (ADS)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  9. The impact of volcanic gases from Miyake island on the chemical constituents in precipitation in the Tokyo metropolitan area.

    PubMed

    Okuda, Tomoaki; Iwase, Tamami; Ueda, Hideko; Suda, Yusuke; Tanaka, Shigeru; Dokiya, Yukiko; Fushimi, Katsuhiko; Hosoe, Morikazu

    2005-04-01

    The volcano on Miyake Island first erupted in July 2000 and continuous emission of volcanic gas from the collapsed caldera has been observed from the middle of August 2000. The large volcanic emission of SO2 had a strong influence on Tokyo metropolitan area, which is located approximately 150 km north of Miyake Island. We measured major ions in precipitation and dry deposition samples which had been collected at five sampling sites (Yokohama, Kashiwa, Fujisawa, Yokosuka, and Hachioji) in the Tokyo metropolitan area for 12 years since 1990. We have evaluated quantitatively the impact of the volcanic SO2 gas emitted from Miyake Island on the Tokyo metropolitan area by comparing depositional ionic constituents in the volcanic degassing period (from September 2000 to August 2001) with those in the normal period of the past 10 years (September 1990 to August 2000). nss-SO4(2-) concentrations in precipitation at the sampling sites in the Tokyo metropolitan area were 59.5-77.0 microeq/L during the degassing period, and 33.3-44.1 microeq/L during the normal period, respectively. The difference of nss-SO4(2-) concentrations between the two periods was statistically significant. In contrast, no significant differences were observed in the concentrations of the other major ions (NH4+, nss-Ca2+, Cl-, and NO3-) between the two periods. The impact of volcanic degassing from Miyake Island on the ionic concentrations in the precipitation of the Tokyo metropolitan area was seen only in the H+ and nss-SO4(2-) concentrations. The annual wet deposition amount of volcanic nss-SO4(2-) into the Tokyo metropolitan area has been quantitatively estimated. The annual wet deposition amounts were calculated as 701+/-277 Meq/year (22.4+/-8.9 kt SO2/year) on the total area of the Tokyo metropolitan area (14,000 km2). The wet deposition amount of nss-SO4(2-) corresponds to only 0.15% of the total annual amount of volcanic SO2 (15 Mt/year) emitted from Miyake Island from September 2000 to August

  10. Acute health effects associated with exposure to volcanic air pollution (vog) from increased activity at Kilauea Volcano in 2008.

    PubMed

    Longo, Bernadette M; Yang, Wei; Green, Joshua B; Crosby, Frederick L; Crosby, Vickie L

    2010-01-01

    In 2008, the Kilauea Volcano on the island of Hawai'i increased eruption activity and emissions of sulfurous volcanic air pollution called vog. The purpose of this study was to promptly assess for a relative increase in cases of medically diagnosed acute illnesses in an exposed Hawaiian community. Using a within-clinic retrospective cohort design, comparisons were made for visits of acute illnesses during the 14 wk prior to the increased volcanic emissions (low exposure) to 14 wk of high vog exposure when ambient sulfur dioxide was threefold higher and averaged 75 parts per billion volume per day. Logistic regression analysis estimated effect measures between the low- and high-exposure cohorts for age, gender, race, and smoking status. There were statistically significant positive associations between high vog exposure and visits for medically diagnosed cough, headache, acute pharyngitis, and acute airway problems. More than a sixfold increase in odds was estimated for visits with acute airway problems, primarily experienced by young Pacific Islanders. These findings suggest that the elevated volcanic emissions in 2008 were associated with increased morbidity of acute illnesses in age and racial subgroups of the general Hawaiian population. Continued investigation is crucial to fully assess the health impact of this natural source of sulfurous air pollution. Culturally appropriate primary- and secondary-level health prevention initiatives are recommended for populations in Hawai'i and volcanically active areas worldwide.

  11. Explosively activated egress area

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Bailey, J. W. (Inventor)

    1983-01-01

    A lightweight, add on structure which employs linear shaped pyrotechnic charges to smoothly cut an airframe along an egress area periphery is provided. It compromises reaction surfaces attached to the exterior surface of the airframe's skin and is designed to restrict the skin deflection. That portion of the airframe within the egress area periphery is jettisoned. Retention surfaces and sealing walls are attached to the interior surface of the airframe's skin and are designed to shield the interior of the aircraft during detonation of the pyrotechnic charges.

  12. Groundwater geochemistry and microbial community structure in the aquifer transition from volcanic to alluvial areas.

    PubMed

    Amalfitano, S; Del Bon, A; Zoppini, A; Ghergo, S; Fazi, S; Parrone, D; Casella, P; Stano, F; Preziosi, E

    2014-11-15

    Groundwaters may act as sinks or sources of organic and inorganic solutes, depending on the relative magnitude of biochemical mobilizing processes and groundwater-surface water exchanges. The objective of this study was to link the lithological and hydrogeological gradients to the aquatic microbial community structure in the transition from aquifer recharge (volcanic formations) to discharge areas (alluvial deposits). A field-scale analysis was performed along a water table aquifer in which volcanic products decreased in thickness and areal extension, while alluvial deposits became increasingly important. We measured the main groundwater physical parameters and the concentrations of major and trace elements. In addition, the microbial community structure was assessed by estimating the occurrence of total coliforms and Escherichia coli, the prokaryotic abundance, the cytometric and phylogenetic community composition. The overall biogeochemical asset differed along the aquifer flow path. The concentration of total and live prokaryotic cells significantly increased in alluvial waters, together with the percentages of Beta- and Delta-Proteobacteria. The microbial propagation over a theoretical groundwater travel time allowed for the identification of microbial groups shifting significantly in the transition between the two different hydrogeochemical facies. The microbial community structure was intimately associated with geochemical changes, thus it should be further considered in view of a better understanding of groundwater ecology and sustainable management strategies.

  13. Characterization of volcanic activity using observations of infrasound, volcanic emissions, and thermal imagery at Karymsky Volcano, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Lopez, T.; Fee, D.; Prata, F.

    2012-04-01

    Karymsky Volcano is one of the most active and dynamic volcanoes in Kamchatka, with activity ranging from vigorous degassing, frequent ash emissions, and apparent vent sealing, all punctuated by daily to weekly explosive magmatic eruptions. Recent studies have highlighted the strengths in using complementary infrasound measurements and remote volcanic emission measurements to characterize volcanic activity, with the potential to discriminate emission-type, approximate ash-cloud height, and estimate SO2 emission mass. Here we use coincident measurements of infrasound, SO2, ash, and thermal radiation collected over a ten day period at Karymsky Volcano in August 2011 to characterize the observed activity and elucidate vent processes. The ultimate goal of this project is to enable different types of volcanic activity to be identified using only infrasound data, which would significantly improve our ability to continuously monitor remote volcanoes. Four types of activity were observed. Type 1 activity is characterized by discrete ash emissions occurring every 1 - 5 minutes that either jet or roil out of the vent, by plumes from 500 - 1500 m (above vent) altitudes, and by impulsive infrasonic onsets. Type 2 activity is characterized by periodic pulses of gas emission, little or no ash, low altitude (100 - 200 m) plumes, and strong audible jetting or roaring. Type 3 activity is characterized by sustained emissions of ash and gas, with multiple pulses lasting from ~1 - 3 minutes, and by plumes from 300 - 1500 m. Type 4 activity is characterized by periods of relatively long duration (~30 minutes to >1 hour) quiescence, no visible plume and weak SO2 emissions at or near the detection limit, followed by an explosive, magmatic eruption, producing ash-rich plumes to >2000 m, and centimeter to meter (or greater) sized pyroclastic bombs that roll down the flanks of the edifice. Eruption onset is accompanied by high-amplitude infrasound and occasionally visible shock

  14. Short-term spasmodic switching of volcanic tremor source activation in a conduit of the 2011 Kirishima eruption

    NASA Astrophysics Data System (ADS)

    Matsumoto, S.; Shimizu, H.; Matsushima, T.; Uehira, K.; Yamashita, Y.; Nakamoto, M.; Miyazaki, M.; Chikura, H.

    2012-04-01

    Volcanic tremors are seismic indicators providing clues for magma behavior, which is related to volcanic eruptions and activity. Detection of spatial and temporal variations of volcanic tremors is important for understanding the mechanism of volcanic eruptions. However, temporal variations of tremor activity in short-term than a minute have not been previously detected by seismological observations around volcanoes. Here, we show that volcanic tremor sources were activated at the top of the conduit (i.e. the crater) and at its lower end by analyzing seismograms from a dense seismic array during the 2011 Kirishima eruption. We observed spasmodic switching in the seismic ray direction during a volcanic tremor sequence. Such fine volcanic tremor structure suggests an interaction between tremor sources located in both deep and shallow depths. Our result suggests that seismic array observations can monitor the magma behavior and contribute to the evaluation of the activity's transition.

  15. Volcanic features of Io

    USGS Publications Warehouse

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    Volcanic activity is apparently higher on Io than on any other body in the Solar System. Its volcanic landforms can be compared with features on Earth to indicate the type of volcanism present on Io. ?? 1979 Nature Publishing Group.

  16. Seafloor doming driven by degassing processes unveils sprouting volcanism in coastal areas

    PubMed Central

    Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Chiodini, Giovanni; Caliro, Stefano; Sacchi, Marco; Rizzo, Andrea Luca; Ventura, Guido

    2016-01-01

    We report evidences of active seabed doming and gas discharge few kilometers offshore from the Naples harbor (Italy). Pockmarks, mounds, and craters characterize the seabed. These morphologies represent the top of shallow crustal structures including pagodas, faults and folds affecting the present-day seabed. They record upraise, pressurization, and release of He and CO2 from mantle melts and decarbonation reactions of crustal rocks. These gases are likely similar to those that feed the hydrothermal systems of the Ischia, Campi Flegrei and Somma-Vesuvius active volcanoes, suggesting the occurrence of a mantle source variously mixed to crustal fluids beneath the Gulf of Naples. The seafloor swelling and breaching by gas upraising and pressurization processes require overpressures in the order of 2–3 MPa. Seabed doming, faulting, and gas discharge are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions. PMID:26925957

  17. Seafloor doming driven by degassing processes unveils sprouting volcanism in coastal areas

    NASA Astrophysics Data System (ADS)

    Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Chiodini, Giovanni; Caliro, Stefano; Sacchi, Marco; Rizzo, Andrea Luca; Ventura, Guido

    2016-03-01

    We report evidences of active seabed doming and gas discharge few kilometers offshore from the Naples harbor (Italy). Pockmarks, mounds, and craters characterize the seabed. These morphologies represent the top of shallow crustal structures including pagodas, faults and folds affecting the present-day seabed. They record upraise, pressurization, and release of He and CO2 from mantle melts and decarbonation reactions of crustal rocks. These gases are likely similar to those that feed the hydrothermal systems of the Ischia, Campi Flegrei and Somma-Vesuvius active volcanoes, suggesting the occurrence of a mantle source variously mixed to crustal fluids beneath the Gulf of Naples. The seafloor swelling and breaching by gas upraising and pressurization processes require overpressures in the order of 2–3 MPa. Seabed doming, faulting, and gas discharge are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions.

  18. Seafloor doming driven by degassing processes unveils sprouting volcanism in coastal areas.

    PubMed

    Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Chiodini, Giovanni; Caliro, Stefano; Sacchi, Marco; Rizzo, Andrea Luca; Ventura, Guido

    2016-03-01

    We report evidences of active seabed doming and gas discharge few kilometers offshore from the Naples harbor (Italy). Pockmarks, mounds, and craters characterize the seabed. These morphologies represent the top of shallow crustal structures including pagodas, faults and folds affecting the present-day seabed. They record upraise, pressurization, and release of He and CO2 from mantle melts and decarbonation reactions of crustal rocks. These gases are likely similar to those that feed the hydrothermal systems of the Ischia, Campi Flegrei and Somma-Vesuvius active volcanoes, suggesting the occurrence of a mantle source variously mixed to crustal fluids beneath the Gulf of Naples. The seafloor swelling and breaching by gas upraising and pressurization processes require overpressures in the order of 2-3 MPa. Seabed doming, faulting, and gas discharge are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions.

  19. Soil radon measurements as potential tracer of seismic and volcanic activity at Etna

    NASA Astrophysics Data System (ADS)

    Neri, Marco; Giammanco, Salvatore; Galli, Gianfranco; Ferrera, Elisabetta

    2014-05-01

    Radon is a radioactive noble gas present in all rocks of the Earth. It's used by the scientific community as a tracer of natural phenomena related to outgassing from the soil along faults, fractures and crustal discontinuity. Recently, radon has also been used on active volcanoes such as Etna, both as a precursor of volcanic phenomena as well as in the study of the dynamics of faults. The Istituto Nazionale di Geofisica e Vulcanologia (INGV) performs discrete and continuous measurements of radon from soil at Etna since 2002. First studies concerned measurements of radon and thoron emissions from soil carried out on the E and SW flanks of Etna, in zones characterized by the presence of numerous seismogenic and aseismic faults. The statistical treatment of the geochemical data allowed recognizing anomaly thresholds, producing distribution maps that highlighted a significant spatial correlation between soil gas anomalies and tectonic lineaments. These studies confirmed that mapping the distribution of radon and thoron in soil gas can reveal hidden faults buried by recent soil cover. INGV permanent radon monitoring network was installed in July 2005. First results were obtained during the July 2006 eruption. The radon signal recorded at Torre del Filosofo (TdF, ~2950 m asl) was compared with volcanic tremor and thermal radiance data. The onset of explosive activity and a lava fountaining episode were preceded by some hours with increases in radon activity and more gradual increases in volcanic tremor. After 2006, Etna produced dozens of paroxysmal episodes from a new vent opened on the eastern flank of the Southeast Crater (summit area), that have built up a new, huge pyroclastic cone. In many cases we observed increase in radon activity some hours before the eruptive events. These observations suggest that radon emissions from the TdF zone are sensitive to the local geodynamic pressure induced by magma dynamics in the conduit systems. Other promising results were

  20. Volcanic eruption source parameters from active and passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly

  1. Geochemical modeling of groundwater evolution in a volcanic aquifer system of Kumamoto area, Japan

    NASA Astrophysics Data System (ADS)

    Hossain, S.; Hosono, T.; Ide, K.; Shimada, J.

    2013-12-01

    Inverse geochemical modeling (PHREEQC) was used to identify the evolution of groundwater in a volcanic aquifer system of Kumamoto area (103 Km2) in southern Japan. The modeling was based on flow paths proposed by different researcher using different techniques, and detailed chemical analysis of groundwater along the flow paths. Potential phases were constrained using general trends in hydrochemical data of groundwater, mineralogical data, and saturation indices data of minerals in groundwater. Hydrochemical data from a total of 180 spring, river and well water samples were used to evaluate water quality and to determine processes that control groundwater chemistry. The samples from the area were classified as recharge zone water (Ca-HCO3 and Ca-SO4 type), lateral flow to discharge zone water (Ca-HCO3 and Na-HCO3 type) and stagnant zone water (Na-Cl type). The inverse geochemical modeling demonstrated that relatively few phases are required to derive water chemistry in the area. The downstream changes in groundwater chemistry could be largely explained by the weathering of plagioclase to kaolinite, with possible contributions from weathering of biotite and pyroxene. In a broad sense, the reactions responsible for the hydrochemical evolution in the area fall into three categories (1) silicate weathering reactions (2) precipitation of amorphous silica and clay minerals and (3) Cation exchange reactions of Ca2+ to Na+.

  2. Exploring for Volcanic and Hydrothermal Activity Above Off-axis Melt Lenses near the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    White, S. M.; Lee, A. J.; Rubin, K. H.

    2015-12-01

    Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active

  3. Exploring for Volcanic and Hydrothermal Activity Above Off-axis Melt Lenses near the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    West, A. J.; Torres, M. A.; Nealson, K. H.

    2014-12-01

    Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active

  4. Mid-Miocene Silicic Volcanism of the Three Fingers - Mahogany Mountain Area, SE Oregon - Revisited

    NASA Astrophysics Data System (ADS)

    Marcy, P.; Streck, M. J.; Ferns, M.

    2013-12-01

    Earlier work identified two adjacent caldera systems, the Mahogany Mountain and Three Fingers calderas as the centerpiece of voluminous rhyolitic volcanism on the eastern margin of the Oregon-Idaho graben during the mid-Miocene. Silicic volcanism of Three Fingers-Mahogany Mtn. area is part of the Lake Owyhee volcanic field, Oregon and belongs to widespread rhyolites associated with the Columbia River Basalt province. Here we revisit field evidence and establish relationships between intra-caldera units of Three Fingers and Mahogany Mtn. calderas, and their outflow facies, the tuffs of Spring Creek and Leslie Gulch. In addition, we assess the distribution of entrained mafic clasts and their often anomalously high, nearly ore-grade concentrations of rare earth elements (REE). Previous mapping identified two groups of intra-caldera rhyolite units: 1) intra-caldera tuffs of Spring Creek and Leslie Gulch and 2) younger rhyolite lavas (Trp) within Three Fingers Caldera and cross-cutting rhyolite dikes within the core of Mahogany Mtn. Caldera. Our mapping determines that devitrified Trp of Three Fingers area is equivalent to surrounding often glassy, pumiceous to dense or brecciated rhyolite flows mapped before as intra-caldera tuff of Spring Creek, and all are compositionally indistinguishable from cross-cutting dikes within Mahogany Mtn. Reinterpreted rhyolites of Three Fingers Caldera lack vitroclastic textures and are geochemically distinct from outflow tuff of Spring Creek which in turn can be distinguished from the tuff of Leslie Gulch. Outflow tuff of Spring Creek is Fe-rich, low silica rhyolite (~74 wt.% SiO2, 3 wt.% FeO, ~1600 ppm Ba) as compared to less Fe rich, high-silica rhyolite (~77 wt.% SiO2, 2 wt.% FeO, ~200 ppm Ba) of intra-caldera units. Outflow tuff of Leslie Gulch is also high-silica rhyolite but Ba rich (~1500 ppm). We interpret the investigated Three Fingers area as a rhyolite dome field, erupting subsequent to caldera collapse. There, abundant post

  5. Autonomous Sensorweb Operations for Integrated Space, In-Situ Monitoring of Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Doubleday, Joshua; Kedar, Sharon; Davies, Ashley G.; Lahusen, Richard; Song, Wenzhan; Shirazi, Behrooz; Mandl, Daniel; Frye, Stuart

    2010-01-01

    We have deployed and demonstrated operations of an integrated space in-situ sensorweb for monitoring volcanic activity. This sensorweb includes a network of ground sensors deployed to the Mount Saint Helens volcano as well as the Earth Observing One spacecraft. The ground operations and space operations are interlinked in that ground-based intelligent event detections can cause the space segment to acquire additional data via observation requests and space-based data acquisitions (thermal imagery) can trigger reconfigurations of the ground network to allocate increased bandwidth to areas of the network best situated to observe the activity. The space-based operations are enabled by an automated mission planning and tasking capability which utilizes several Opengeospatial Consortium (OGC) Sensorweb Enablement (SWE) standards which enable acquiring data, alerts, and tasking using web services. The ground-based segment also supports similar protocols to enable seamless tasking and data delivery. The space-based segment also supports onboard development of data products (thermal summary images indicating areas of activity, quicklook context images, and thermal activity alerts). These onboard developed products have reduced data volume (compared to the complete images) which enables them to be transmitted to the ground more rapidly in engineering channels.

  6. Galapagos rift at 86 /sup 0/W 5. Variations in volcanism, structure, and hydrothermal activity along a 30-kilometer segment of the rift valley

    SciTech Connect

    Ballard, R.D.; van Andel, T.H.; Holcomb, R.T.

    1982-02-10

    A 30-km segment of the Galapagos Rift near 86 /sup 0/W has been mapped in detail using the Angus towed camera system, the submersible Alvin, and multi-narrowbeam sonar data. Recent volcanic activity and active hydrothermal circulation are evident along the entire length of the segment mapped. There are, however, clear along-strike variations in these processes which render previous two-dimensional models obsolete. Although alternate explanations are possible, eruptive sequences appear to begin with the outpouring of surface-fed sheet flows and end with more channelized pillow flows. In the western portion of the rift studied, sheet flows dominate with the entire valley floor covered by recent flows associated with a broad shield volcano. The eastern portion, on the other hand, is narrower; consisting primarily of less voluminous pillow flows of apparently the same youthful age. Three possible models for the volcanic evolution of this rift segment are presented. According to the first model, the extrusive portion of the crust is formed by a distinct volcanic episode, followed by a long period of volcanic quiescence. The volcanic phase begins with voluminous sheet flows emerging from numerous eruptive fissures, which in time evolve into a narrow pillow ridge. Farther along-strike, where the flows are smaller and the extrusive zone narrow, the marginal portions undergo continued fissuring and subsequent uplift to form marginal highs and lows. This deformational activity also affects the extrusive zone once volcanic activity ends, converting the distinctly lobate topography of the active period into highly lineated fault-controlled terrain. According to the second model, extension and volcanism can be viewed as a continuous process without major periods of volcanic quiescence. The initial lava flows of a new eruptive sequence fill low areas, frequently spilling over local sills and flooding much of the rift valley.

  7. Disruptive event analysis: volcanism and igneous intrusion

    SciTech Connect

    Crowe, B.M.

    1980-08-01

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity.

  8. Seismic Activity at tres Virgenes Volcanic and Geothermal Field

    NASA Astrophysics Data System (ADS)

    Antayhua, Y. T.; Lermo, J.; Quintanar, L.; Campos-Enriquez, J. O.

    2013-05-01

    The volcanic and geothermal field Tres Virgenes is in the NE portion of Baja California Sur State, Mexico, between -112°20'and -112°40' longitudes, and 27°25' to 27°36' latitudes. Since 2003 Power Federal Commission and the Engineering Institute of the National Autonomous University of Mexico (UNAM) initiated a seismic monitoring program. The seismograph network installed inside and around the geothermal field consisted, at the beginning, of Kinemetrics K2 accelerometers; since 2009 the network is composed by Guralp CMG-6TD broadband seismometers. The seismic data used in this study covered the period from September 2003 - November 2011. We relocated 118 earthquakes with epicenter in the zone of study recorded in most of the seismic stations. The events analysed have shallow depths (≤10 km), coda Magnitude Mc≤2.4, with epicentral and hypocentral location errors <2 km. These events concentrated mainly below Tres Virgenes volcanoes, and the geothermal explotation zone where there is a system NW-SE, N-S and W-E of extensional faults. Also we obtained focal mechanisms for 38 events using the Focmec, Hash, and FPFIT methods. The results show normal mechanisms which correlate with La Virgen, El Azufre, El Cimarron and Bonfil fault systems, whereas inverse and strike-slip solutions correlate with Las Viboras fault. Additionally, the Qc value was obtained for 118 events. This value was calculated using the Single Back Scattering model, taking the coda-waves train with window lengths of 5 sec. Seismograms were filtered at 4 frequency bands centered at 2, 4, 8 and 16 Hz respectively. The estimates of Qc vary from 62 at 2 Hz, up to 220 at 16 Hz. The frequency-Qc relationship obtained is Qc=40±2f(0.62±0.02), representing the average attenuation characteristics of seismic waves at Tres Virgenes volcanic and geothermal field. This value correlated with those observed at other geothermal and volcanic fields.

  9. Assessing the volcanic hazard for Rome: 40Ar/39Ar and In-SAR constraints on the most recent eruptive activity and present-day uplift at Colli Albani Volcanic District

    NASA Astrophysics Data System (ADS)

    Marra, F.; Gaeta, M.; Giaccio, B.; Jicha, B. R.; Palladino, D. M.; Polcari, M.; Sottili, G.; Taddeucci, J.; Florindo, F.; Stramondo, S.

    2016-07-01

    We present new 40Ar/39Ar data which allow us to refine the recurrence time for the most recent eruptive activity occurred at Colli Albani Volcanic District (CAVD) and constrain its geographic area. Time elapsed since the last eruption (36 kyr) overruns the recurrence time (31 kyr) in the last 100 kyr. New interferometric synthetic aperture radar data, covering the years 1993-2010, reveal ongoing inflation with maximum uplift rates (>2 mm/yr) in the area hosting the most recent (<200 ka) vents, suggesting that the observed uplift might be caused by magma injection within the youngest plumbing system. Finally, we frame the present deformation within the structural pattern of the area of Rome, characterized by 50 m of regional uplift since 200 ka and by geologic evidence for a recent (<2000 years) switch of the local stress-field, highlighting that the precursors of a new phase of volcanic activity are likely occurring at the CAVD.

  10. Volcanic and Tectonic Setting of Hydrothermal Activity on the Southern Mid-Atlantic Ridge, 4° - 11°S

    NASA Astrophysics Data System (ADS)

    Melchert, B.; Devey, C. W.; German, C. R.; Haase, K. M.; Koschinsky, A.; Lackschewitz, K.; Yoerger, D. R.

    2006-12-01

    The recurrence rate of volcanism at mid-ocean ridges should drop with spreading rate. Although the southern Mid-Atlantic Ridge, with a spreading full rate of ~3.6 cm/yr, might therefore be expected to show only sporadic magmatic activity, we present information on recently-discovered volcanically, tectonically and hydrothermally active areas south of the equator (at 4°48'S and 9°33'S, see also German et al. 2005; Haase et al. 2005 EOS Trans. AGU 86 (52) Fall Meet. Suppl. Abstr. OS21C-04 & -05). Around the 4°48'S area the median valley floor forms a ~10 km wide, hour-glass shaped, plateau with water depths of around 3000 m. Four closely-spaced vent fields (the high-temperature sites Turtle Pits, Red Lion and Comfortless Cove and the diffuse low-temperature Wideawake site) occur along a flat (total relief 50 m), volcanically and tectonically active 2 km section of this plateau (see German et al. 2005, Haase et al. 2005 op. cit. also Koschinsky et al. this meeting). The Turtle Pits site lies within a small depression associated with a fracture marked by aligned collapse pits. This central depression is surrounded by laminated sheet flows to the north and northwest, whereas jumbled flows are more prevalent to the east. Comfortless Cove is also associated with young volcanics and shows strong tectonic influence on vent location. Red Lion in contrast shows no clear tectonic control - it is characterised by four active chimneys which sit directly on a pillow lava floor. The 9°33'S area is situated on 11 km-thick crust (Bruguier et al. 2003 JGR 108 2093) at 1490 m water depth and is marked by fresh pillow lavas, sheet flows, lava lakes and collapse structures. Low- temperature, diffuse hydrothermal activity is abundant in the area (Haase et al. 2005; Koschinsky et al. 2006 op. cit.) as are larger extinct hydrothermal mounds suggesting more vigourous hydrothermalism in the past. All sites are located east of a large NNW trending escarpment flanking horst and graben

  11. InSAR imaging of volcanic deformation over cloud-prone areas - Aleutian islands

    USGS Publications Warehouse

    Lu, Zhong

    2007-01-01

    Interferometric synthetic aperture radar (INSAR) is capable of measuring ground-surface deformation with centimeter-tosubcentimeter precision and spatial resolution of tens-of meters over a relatively large region. With its global coverage and all-weather imaging capability, INSAR is an important technique for measuring ground-surface deformation of volcanoes over cloud-prone and rainy regions such as the Aleutian Islands, where only less than 5 percent of optical imagery is usable due to inclement weather conditions. The spatial distribution of surface deformation data, derived from INSAR images, enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper reviews the basics of INSAR for volcanic deformation mapping and the INSAR studies of ten Aleutian volcanoes associated with both eruptive and noneruptive activity. These studies demonstrate that all-weather INSAR imaging can improve our understanding of how the Aleutian volcanoes work and enhance our capability to predict future eruptions and associated hazards.

  12. Surface area, porosity and water adsorption properties of fine volcanic ash particles

    NASA Astrophysics Data System (ADS)

    Delmelle, Pierre; Villiéras, Frédéric; Pelletier, Manuel

    2005-02-01

    Our understanding on how ash particles in volcanic plumes react with coexisting gases and aerosols is still rudimentary, despite the importance of these reactions in influencing the chemistry and dynamics of a plume. In this study, six samples of fine ash (<100 μm) from different volcanoes were measured for their specific surface area, as, porosity and water adsorption properties with the aim to provide insights into the capacity of silicate ash particles to react with gases, including water vapour. To do so, we performed high-resolution nitrogen and water vapour adsorption/desorption experiments at 77 K and 303 K, respectively. The nitrogen data indicated as values in the range 1.1 2.1 m2/g, except in one case where a as of 10 m2/g was measured. This high value is attributed to incorporation of hydrothermal phases, such as clay minerals, in the ash surface composition. The data also revealed that the ash samples are essentially non-porous, or have a porosity dominated by macropores with widths >500 Å. All the specimens had similar pore size distributions, with a small peak centered around 50 Å. These findings suggest that fine ash particles have relatively undifferentiated surface textures, irrespective of the chemical composition and eruption type. Adsorption isotherms for water vapour revealed that the capacity of the ash samples for water adsorption is systematically larger than predicted from the nitrogen adsorption as values. Enhanced reactivity of the ash surface towards water may result from (i) hydration of bulk ash constituents; (ii) hydration of surface compounds; and/or (iii) hydroxylation of the surface of the ash. The later mechanism may lead to irreversible retention of water. Based on these experiments, we predict that volcanic ash is covered by a complete monolayer of water under ambient atmospheric conditions. In addition, capillary condensation within ash pores should allow for deposition of condensed water on to ash particles before water

  13. Magma injection beneath the urban area of Naples: a new mechanism for the 2012-2013 volcanic unrest at Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    D'Auria, Luca; Pepe, Susi; Castaldo, Raffaele; Giudicepietro, Flora; Macedonio, Giovanni; Ricciolino, Patrizia; Tizzani, Pietro; Casu, Francesco; Lanari, Riccardo; Manzo, Mariarosaria; Martini, Marcello; Sansosti, Eugenio; Zinno, Ivana

    2015-08-01

    We found the first evidence, in the last 30 years, of a renewed magmatic activity at Campi Flegrei caldera from January 2012 to June 2013. The ground deformation, observed through satellite interferometry and GPS measurements, have been interpreted as the effect of the intrusion at shallow depth (3090 ± 138 m) of 0.0042 ± 0.0002 km3 of magma within a sill. This interrupts about 28 years of dominant hydrothermal activity and occurs in the context of an unrest phase which began in 2005 and within a more general ground uplift that goes on since 1950. This discovery has implications on the evaluation of the volcanic risk and in the volcanic surveillance of this densely populated area.

  14. Magma injection beneath the urban area of Naples: a new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera

    PubMed Central

    D’Auria, Luca; Pepe, Susi; Castaldo, Raffaele; Giudicepietro, Flora; Macedonio, Giovanni; Ricciolino, Patrizia; Tizzani, Pietro; Casu, Francesco; Lanari, Riccardo; Manzo, Mariarosaria; Martini, Marcello; Sansosti, Eugenio; Zinno, Ivana

    2015-01-01

    We found the first evidence, in the last 30 years, of a renewed magmatic activity at Campi Flegrei caldera from January 2012 to June 2013. The ground deformation, observed through satellite interferometry and GPS measurements, have been interpreted as the effect of the intrusion at shallow depth (3090 ± 138 m) of 0.0042 ± 0.0002 km3 of magma within a sill. This interrupts about 28 years of dominant hydrothermal activity and occurs in the context of an unrest phase which began in 2005 and within a more general ground uplift that goes on since 1950. This discovery has implications on the evaluation of the volcanic risk and in the volcanic surveillance of this densely populated area. PMID:26279090

  15. Magma injection beneath the urban area of Naples: a new mechanism for the 2012-2013 volcanic unrest at Campi Flegrei caldera.

    PubMed

    D'Auria, Luca; Pepe, Susi; Castaldo, Raffaele; Giudicepietro, Flora; Macedonio, Giovanni; Ricciolino, Patrizia; Tizzani, Pietro; Casu, Francesco; Lanari, Riccardo; Manzo, Mariarosaria; Martini, Marcello; Sansosti, Eugenio; Zinno, Ivana

    2015-08-17

    We found the first evidence, in the last 30 years, of a renewed magmatic activity at Campi Flegrei caldera from January 2012 to June 2013. The ground deformation, observed through satellite interferometry and GPS measurements, have been interpreted as the effect of the intrusion at shallow depth (3090 ± 138 m) of 0.0042 ± 0.0002 km(3) of magma within a sill. This interrupts about 28 years of dominant hydrothermal activity and occurs in the context of an unrest phase which began in 2005 and within a more general ground uplift that goes on since 1950. This discovery has implications on the evaluation of the volcanic risk and in the volcanic surveillance of this densely populated area.

  16. Sulfur dioxide - Episodic injection shows evidence for active Venus volcanism

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.

    1984-03-01

    Pioneer Venus ultraviolet spectra from the first 5 years of operation show a decline (by more than a factor of 10) in sulfur dioxide abundance at the cloud tops and in the amount of submicron haze above the clouds. At the time of the Pioneer Venus encounter, the values for both parameters greatly exceeded earlier upper limits. However, Venus had a similar appearance in the late 1950's, implying the episodic injection of sulfur dioxide possibly caused by episodic volcanism. The amount of haze in the Venus middle atmosphere is about ten times that found in earth's stratosphere after the most recent major volcanic eruptions, and the thermal energy required for this injection on Venus is greater by about an order of magnitude than the largest of these recent earth eruptions and about as large as the Krakatoa eruption of 1883. The episodic behavior of sulfur dioxide implies that steady-state models of the chemistry and dynamics of cloud-top regions may be of limited use.

  17. Sulfur dioxide - Episodic injection shows evidence for active Venus volcanism

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.

    1984-01-01

    Pioneer Venus ultraviolet spectra from the first 5 years of operation show a decline (by more than a factor of 10) in sulfur dioxide abundance at the cloud tops and in the amount of submicron haze above the clouds. At the time of the Pioneer Venus encounter, the values for both parameters greatly exceeded earlier upper limits. However, Venus had a similar appearance in the late 1950's, implying the episodic injection of sulfur dioxide possibly caused by episodic volcanism. The amount of haze in the Venus middle atmosphere is about ten times that found in earth's stratosphere after the most recent major volcanic eruptions, and the thermal energy required for this injection on Venus is greater by about an order of magnitude than the largest of these recent earth eruptions and about as large as the Krakatoa eruption of 1883. The episodic behavior of sulfur dioxide implies that steady-state models of the chemistry and dynamics of cloud-top regions may be of limited use.

  18. U.S. Geological Survey's Alert Notification System for Volcanic Activity

    USGS Publications Warehouse

    Gardner, Cynthia A.; Guffanti, Marianne C.

    2006-01-01

    The United States and its territories have about 170 volcanoes that have been active during the past 10,000 years, and most could erupt again in the future. In the past 500 years, 80 U.S. volcanoes have erupted one or more times. About 50 of these recently active volcanoes are monitored, although not all to the same degree. Through its five volcano observatories, the U.S. Geological Survey (USGS) issues information and warnings to the public about volcanic activity. For clarity of warnings during volcanic crises, the USGS has now standardized the alert-notification system used at its observatories.

  19. Recent glacier variations on active ice capped volcanoes in the Southern Volcanic Zone (37°-46°S), Chilean Andes

    NASA Astrophysics Data System (ADS)

    Rivera, Andrés; Bown, Francisca

    2013-08-01

    Glaciers in the southern province of the Southern Volcanic Zone (SVZ) of Chile (37-46°S) have experienced significant frontal retreats and area losses in recent decades which have been primarily triggered by tropospheric warming and precipitation decrease. The resulting altitudinal increase of the Equilibrium Line Altitude or ELA of glaciers has lead to varied responses to climate, although the predominant volcanic stratocone morphologies prevent drastic changes in their Accumulation Area Ratios or AAR. Superimposed on climate changes however, glacier variations have been influenced by frequent eruptive activity. Explosive eruptions of ice capped volcanoes have the strongest potential to destroy glaciers, with the most intense activity in historical times being recorded at Nevados de Chillán, Villarrica and Hudson. The total glacier area located on top of the 26 active volcanoes in the study area is ca. 500 km2. Glacier areal reductions ranged from a minimum of -0.07 km2 a -1 at Mentolat, a volcano with one of the smallest ice caps, up to a maximum of -1.16 km2 a -1 at Volcán Hudson. Extreme and contrasting glacier-volcano interactions are summarised with the cases ranging from the abnormal ice frontal advances at Michinmahuida, following the Chaitén eruption in 2008, to the rapid melting of the Hudson intracaldera ice following its plinian eruption of 1991. The net effect of climate changes and volcanic activity are negative mass balances, ice thinning and glacier area shrinkage. This paper summarizes the glacier changes on selected volcanoes within the region, and discusses climatic versus volcanic induced changes. This is crucial in a volcanic country like Chile due to the hazards imposed by lahars and other volcanic processes.

  20. Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera.

    PubMed

    Neukum, G; Jaumann, R; Hoffmann, H; Hauber, E; Head, J W; Basilevsky, A T; Ivanov, B A; Werner, S C; van Gasselt, S; Murray, J B; McCord, T

    2004-12-23

    The large-area coverage at a resolution of 10-20 metres per pixel in colour and three dimensions with the High Resolution Stereo Camera Experiment on the European Space Agency Mars Express Mission has made it possible to study the time-stratigraphic relationships of volcanic and glacial structures in unprecedented detail and give insight into the geological evolution of Mars. Here we show that calderas on five major volcanoes on Mars have undergone repeated activation and resurfacing during the last 20 per cent of martian history, with phases of activity as young as two million years, suggesting that the volcanoes are potentially still active today. Glacial deposits at the base of the Olympus Mons escarpment show evidence for repeated phases of activity as recently as about four million years ago. Morphological evidence is found that snow and ice deposition on the Olympus construct at elevations of more than 7,000 metres led to episodes of glacial activity at this height. Even now, water ice protected by an insulating layer of dust may be present at high altitudes on Olympus Mons.

  1. Tornillos and Other Volcanic Tremors in Tatun Volcanoes, Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, C.; Konstantinou, K.; Pu, S.; Huang, Y.; Lin, Y.; You, S.

    2004-12-01

    This is the first time to report several types of volcanic signals such as Tornillos (screws), harmonic signals (drops) and continuously short-period volcanic tremors at the Tatun volcanic group (Taiwan), which was usually considered as extinct because there was no any historical eruption. These volcanic signals are often reported in the active volcanoes in the earth. In particular, the tornillos have been considered as the potential precursor for volcanic eruption at Galeras volcano, Colombia. Combining all of these volcanic signals with the presviously geochemical analyses from the Helium isotop ratio, we strongly suggest that volcanic activities in the Tatun volcanic area might not be totally extinct yet and further investigations have to been done for evaluation of potential volcanic activities because the Tatun volcano group is not only just nearby two nuclear power plants but also about 15 km north to Taipei, the capital of Taiwan, in which more than seven million people live on.

  2. Neogene to Quaternary basalts of the Jabal Eghei (Nuqay) area (south Libya): Two distinct volcanic events or continuous volcanism with gradual shift in magma composition?

    NASA Astrophysics Data System (ADS)

    Radivojević, Maša; Toljić, Marinko; Turki, Salah M.; Bojić, Zoran; Šarić, Kristina; Cvetković, Vladica

    2015-02-01

    This study reports and discusses a set of new K/Ar age and new petrochemical data on basalts of the Jabal Eghei (Nuqay) area (south Libya). This area is part of a > 1000 km long NNW-SSE Libyan volcanic field that stretches from the Mediterranean coastal near Tripoli to the Tibesti massif in Chad. Whole rock K/Ar ages, stratigraphy, volcanology and rock petrochemistry indicate that the Jabal Eghei developed during two volcanic events. The first occurred from the Middle Miocene to the Pliocene (K/Ar ages from ~ 16 to ~ 5 Ma) when large volumes of low aspect ratio lava flows of transitional basalts formed. The second event happened in Pliocene-mid-Pleistocene time (4-≤ 1 Ma) and it gave rise to basanite spatter to scoria pyroclastic cones and subordinate lava flow facies. The transitional basalts are less primitive and less enriched in incompatible trace elements than the basanites. Petrochemical characteristics reveal that the transitional basalts underwent weak to moderate olivine-dominated fractionation and that crustal assimilation had negligible effects. REE geochemical modeling shows that primary magmas of both transitional basalts and basanites formed by melting of a similar garnet-bearing, primitive mantle-like source with degree of melting of 3-5% and ≤ 1%, respectively. It is also demonstrated that the transitional basalts show systematic compositional changes in time because progressively younger rocks are petrochemically more similar to basanites. We argue that our data definitely prove that the age pattern along the entire Libyan volcanic field is much more complex than it was thought before.

  3. Volcanism in Eastern Africa

    NASA Technical Reports Server (NTRS)

    Cauthen, Clay; Coombs, Cassandra R.

    1996-01-01

    In 1891, the Virunga Mountains of Eastern Zaire were first acknowledged as volcanoes, and since then, the Virunga Mountain chain has demonstrated its potentially violent volcanic nature. The Virunga Mountains lie across the Eastern African Rift in an E-W direction located north of Lake Kivu. Mt. Nyamuragira and Mt. Nyiragongo present the most hazard of the eight mountains making up Virunga volcanic field, with the most recent activity during the 1970-90's. In 1977, after almost eighty years of moderate activity and periods of quiescence, Mt. Nyamuragira became highly active with lava flows that extruded from fissures on flanks circumscribing the volcano. The flows destroyed vast areas of vegetation and Zairian National Park areas, but no casualties were reported. Mt. Nyiragongo exhibited the same type volcanic activity, in association with regional tectonics that effected Mt. Nyamuragira, with variations of lava lake levels, lava fountains, and lava flows that resided in Lake Kivu. Mt. Nyiragongo, recently named a Decade volcano, presents both a direct and an indirect hazard to the inhabitants and properties located near the volcano. The Virunga volcanoes pose four major threats: volcanic eruptions, lava flows, toxic gas emission (CH4 and CO2), and earthquakes. Thus, the volcanoes of the Eastern African volcanic field emanate harm to the surrounding area by the forecast of volcanic eruptions. During the JSC Summer Fellowship program, we will acquire and collate remote sensing, photographic (Space Shuttle images), topographic and field data. In addition, maps of the extent and morphology(ies) of the features will be constructed using digital image information. The database generated will serve to create a Geographic Information System for easy access of information of the Eastem African volcanic field. The analysis of volcanism in Eastern Africa will permit a comparison for those areas from which we have field data. Results from this summer's work will permit

  4. Geology and stratigraphy of the Challis Volcanic Group and related rocks, Little Wood River area, south-central Idaho

    USGS Publications Warehouse

    Sandford, Richard F.; Snee, Lawrence W.

    2005-01-01

    The southwestern part of the Challis volcanic field occupies the valley of the Little Wood River and its tributaries in the Hailey and Idaho Falls 1??2? quadrangles of south-central Idaho. The Little Wood River area is a structurally controlled topographic basin that is partly filled by Eocene Challis Volcanic Group and younger rocks. Rock types in the Challis Volcanic Group of the Little Wood River area include, in order of decreasing abundance, andesite lava flows and tuff breccia, dacite lava flows and flow breccia, volcaniclastic sedimentary rocks, lithic tuff, nonvolcanic conglomerate, and rhyolite dikes. A basal nonvolcanic conglomerate, that locally rests on upper Paleozoic sedimentary rocks at a regional unconformity, was deposited prior to eruption of volcanic rocks. Andesite was the first volcanic rock erupted and is a voluminous sequence as thick as 3,000 ft (1,000 m). Locally thick volcaniclastic sedimentary rocks accumulated in topographic lows. A sharp transition marks the beginning of dacite eruption from fissures and flow-dome complexes. Dacite flows and breccias are as thick as 2,000 ft (600 m). An upper volcaniclastic unit was deposited in paleotopographic lows following emplacement of the main dacite unit. Next, a widespread, distinctive, lithic rich ash flow tuff, correlated with the tuff of Stoddard Gulch, was deposited over much of the area. Deposition of the tuff was followed by eruption of thin andesite and dacite lava flows and deposition of conglomeratic sedimentary rocks. The entire sequence was then intruded by a dacite flow-dome complex composed of at least three separate intrusions. The Challis Volcanic Group in the study area is calcalkaline. Andesitic rocks are typically high potassium basaltic andesite, high potassium andesite, shoshonite, and banakite (latite). Dacitic rocks are high potassium dacite and trachyte. Tuffs and vitrophyres range in composition from basaltic andesite to trachyte. The paleotopographic basin in which the

  5. Characterization of Io's Volcanic Activity by Infrared Polarimetry.

    PubMed

    Goguen, J D; Sinton, W M

    1985-10-04

    The thermal emission from Io's volcanic hot spots is linearly polarized. Infrared measurements at 4.76 micrometers show disk-integrated polarization as large as 1.6 percent. The degree and position angle of linear polarization vary with Io's rotation in a manner characteristic of emission from a small number of hot spots. A model incorporating three hot spots best fits the data. The largest of these hot spots lies to the northeast of Loki Patera, as mapped from Voyager, and the other spot on the trailing hemisphere is near Ra Patera. The hot spot on the leading hemisphere corresponds to no named feature on the Voyager maps. The value determined for the index of refraction of the emitting surface is a lower bound; it is similar to that of terrestrial basalts and is somewhat less than that of sulfur.

  6. Characterization of Io's volcanic activity by infrared polarimetry

    SciTech Connect

    Goguen, J.D.; Sinton, W.M.

    1985-10-01

    The thermal emission from Io's volcanic hot spots is linearly polarized.Infrared measurements at 4.76 micrometers show disk-integrated polarization as large as 1.6 percent. The degree and position angle of linear polarization vary with Io's rotation in a manner characteristic of emission from a small number of hot spots. A model incorporating three hot spots best fits the data. The largest of these hot spots lies to the northeast of Loki Patera, as mapped from Voyager, and the other spot on the trailing hemisphere is near Ra Patera. The hot spot on the leading hemisphere corresponds to no named feature on the Voyager maps. The value determined for the index of refraction of the emitting surface is a lower bound; it is similar to that of terrestrial basalts and is somewhat less than that of sulfur. 25 references.

  7. Water-quality effects on Baker Lake of recent volcanic activity at Mount Baker, Washington

    USGS Publications Warehouse

    Bortleson, Gilbert Carl; Wilson, Reed T.; Foxworthy, B.L.

    1976-01-01

    Increased volcanic activity on Mount Baker, which began in March 1975, represents the greatest known activity of a Cascade Range volcano since eruptions at Lassen Peak, Calif. during 1914-17. Emissions of dust and increased emanations of steam, other gases, and heat from the Sherman Crater area of the mountain focused attention on the possibility of hazardous events, including lava flows, pyroclastic eruptions, avalanches, and mudflows. However, the greatest undesirable natural results that have been observed after one year of the increased activity are an increase in local atmospheric pollution and a decrease in the quality of some local water resources, including Baker Lake. Baker Lake, a hydropower reservoir behind Upper Baker Dam, supports a valuable fishery resource and also is used for recreation. The lake's feedwater is from Baker River and many smaller streams, some of which, like Boulder Creek, drain parts of Mount Baker. Boulder Creek receives water from Sherman Crater, and its channel is a likely route for avalanches or mudflows that might originate in the crater area. Boulder Creek drains only about 5 percent of the total drainage area of Baker Lake, but during 1975 carried sizeable but variable loads of acid and dissolved minerals into the lake. Sulfurous gases and the fumarole dust from Sherman Crater are the main sources for these materials, which are brought into upper Boulder Creek by meltwater from the crater. In September 1973, before the increased volcanic activity, Boulder Creek near the lake had a pH of 6.0-6.6; after the increase the pH ranged as low as about 3.5. Most nearby streams had pH values near 7. On April 29, in Boulder Creek the dissolved sulfate concentration was 6 to 29 times greater than in nearby creeks or in Baker River; total iron was 18-53 times greater than in nearby creeks; and other major dissolved constituents generally 2 to 7 times greater than in the other streams. The short-term effects on Baker Lake of the acidic

  8. Geologic Investigations Spurred by Analog Testing at the 7504 Cone-SP Mountain Area of the San Francisco Volcanic Field

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2015-01-01

    The SP Mountain area of the San Francisco Volcanic Field, AZ, has been used as an analog mission development site for NASA since 1998. This area consists of basaltic cinder cones, lava flows and maar craters that have been active since mid-Miocene, with the youngest events occurring within the last 10,000 years. The area has been used because its geologic and topographic resemblance to lunar and Martian terrains provides an ideal venue for testing hardware and science operations practices that might be employed on planetary surfaces, as well as training astronauts in field geology. Analog operations have often led to insights that spurred new scientific investigations. Most recently, an investigation of the 7504 cone was initiated due to perceptions that Apollo-style traverse plans executed during the Desert RATS 2010 mission had characterized the area incorrectly, leading to concerns that the Apollo traverse planning process was scientifically flawed. This investigation revealed a complex history of fissure eruptions of lava and cinders, cinder cone development, a cone-fill-and-spill episode, extensive rheomorphic lava flow initiation and emplacement, and cone sector collapse that led to a final lava flow. This history was not discernible on pre-RATS mission photogeology, although independent analysis of RATS 2010 data and samples develped a "75% complete solution" that validated the pre-RATS mission planning and Apollo traverse planning and execution. The study also pointed out that the development of scientific knowledge with time in a given field area is not linear, but may follow a functional form that rises steeply in the early period of an investigation but flattens out in the later period, asymptotically approaching a theoretical "complete knowledge" point that probably cannot be achieved. This implies that future human missions must be prepared to shift geographic areas of investigation regularly if significant science returns are to be forthcoming.

  9. Geologic Investigations Spurred by Analog Testing at the 7504 Cone-Sp Mountain Area of the San Francisco Volcanic Field

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Eppler, D. B.; Needham, D. H.; Evans, C. A.; Skinner, J. A.; Feng, W.

    2015-12-01

    The SP Mountain area of the San Francisco Volcanic Field, AZ, has been used as an analog mission development site for NASA since 1998. This area consists of basaltic cinder cones, lava flows and maar craters that have been active since mid-Miocene, with the youngest events occurring within the last 10,000 years. The area has been used because its geologic and topographic resemblance to lunar and Martian terrains provides an ideal venue for testing hardware and science operations practices that might be employed on planetary surfaces, as well as training astronauts in field geology. Analog operations have often led to insights that spurred new scientific investigations. Most recently, an investigation of the 7504 cone was initiated due to perceptions that Apollo-style traverse plans executed during the Desert RATS 2010 mission had characterized the area incorrectly, leading to concerns that the Apollo traverse planning process was scientifically flawed. This investigation revealed a complex history of fissure eruptions of lava and cinders, cinder cone development, a cone-fill-and-spill episode, extensive rheomorphic lava flow initiation and emplacement, and cone sector collapse that led to a final lava flow. This history was not discernible on pre-RATS mission photogeology, although independent analysis of RATS 2010 data and samples develped a "75% complete solution" that validated the pre-RATS mission planning and Apollo traverse planning and execution. The study also pointed out that the development of scientific knowledge with time in a given field area is not linear, but may follow a functional form that rises steeply in the early period of an investigation but flattens out in the later period, asymptotically approaching a theoretical "complete knowledge" point that probably cannot be achieved. This implies that future human missions must be prepared to shift geographic areas of investigation regularly if significant science returns are to be forthcoming.

  10. Petrography and geochemistry of volcanic rocks from the Niemodlin area (SW Poland)

    NASA Astrophysics Data System (ADS)

    Jakubiak, Artur; Pietranik, Anna; Łyczewska, Ewelina

    2010-05-01

    The Tertiary volcanic rocks of the Opole Silesia (SW Poland) belong to the easternmost part of the Central European Volcanic Province (CEVP). Various volcanic rocks occur in the Opole region including melanephelinites, melabasanites, nephelinites and nephelinite basalts. Radiometric ages (K - Ar method) of these rocks range from 21,2 to 30,5Ma [1]. Here, we characterize volcanic rocks from two active quarries 'Gracze' and 'Rutki - Ligota'. According to the TAS diagram, the rocks from 'Gracze' classify as nephelinites and those from 'Rutki-Ligota' as basanites. Mineral composition is very similar in both groups of rocks. Nephelinite consists of olivine, clinopyroxene, nepheline, Ti-Fe oxide and apatite. Basanite consists of olivine, clinopyroxene, nepheline, plagioclase, Ti-Fe oxide and apatite. Phenocrysts in both groups are olivine and clinopyroxene. The nephelinites from 'Gracze' contain more MgO (12,7 - 13,8 wt%) than the basanites from 'Rutki-Ligota' (MgO 10,8 - 12,0 wt%). However, chemical composition of minerals in the basanites and nephelinites is similar, though minerals in the nephelinites are more homogenous. Olivine phenocrysts in the nephelinites show compositional variations from Fo73to Fo87(?Fo = 14), Ca = 100-4600 ppm and Ni = 500-4700 ppm. In contrast, olivine phenocrysts in the basanites span a wider compositional range from Fo63- Fo88 (?Fo = 25), Ca = 1000-6350 ppm and Ni = 400-3150 ppm. In both groups of rocks the forsterite and Ni content is higher in the cores (Fo78 -Fo88,Ni = 500 - 3800ppm in nephelinites, Fo75 - Fo88, Ni = 500 - 3200ppm in basanites) and lower in the rims (Fo73 -Fo81,Ni = 550 - 4750ppm in nephelinites, Fo66 - Fo84, Ni = 300 - 2350ppm in basanites) while Ca content is lower in the cores (Ca = 100 - 3700ppmin nephelinites, Ca = 1000 - 3150ppm in basanites) and higher in the rims (Ca = 1850 - 4600ppm in nephelinites, Ca = 1400 - 5450ppm in basanites). However, the lowest contents of Ca (100 - 1000 ppm) were observed only in a

  11. Morpho-structural evolution of a volcanic island developed inside an active oceanic rift: S. Miguel Island (Terceira Rift, Azores)

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Hildenbrand, A.; Marques, F. O.; Weiss, B.; Boulesteix, T.; Hübscher, C.; Lüdmann, T.; Costa, A. C. G.; Catalão, J. C.

    2015-08-01

    The evolution of volcanic islands is generally marked by fast construction phases alternating with destruction by a variety of mass-wasting processes. More specifically, volcanic islands located in areas of intense regional deformation can be particularly prone to gravitational destabilisation. The island of S. Miguel (Azores) has developed during the last 1 Myr inside the active Terceira Rift, a major tectonic structure materializing the present boundary between the Eurasian and Nubian lithospheric plates. In this work, we depict the evolution of the island, based on high-resolution DEM data, stratigraphic and structural analyses, high-precision K-Ar dating on separated mineral phases, and offshore data (bathymetry and seismic profiles). The new results indicate that: (1) the oldest volcanic complex (Nordeste), composing the easternmost part of the island, was dominantly active between ca. 850 and 750 ka, and was subsequently affected by a major south-directed flank collapse. (2) Between at least 500 ka and 250 ka, the landslide depression was massively filled by a thick lava succession erupted from volcanic cones and domes distributed along the main E-W collapse scar. (3) Since 250 kyr, the western part of this succession (Furnas area) was affected by multiple vertical collapses; associated plinian eruptions produced large pyroclastic deposits, here dated at ca. 60 ka and less than 25 ka. (4) During the same period, the eastern part of the landslide scar was enlarged by retrogressive erosion, producing the large Povoação valley, which was gradually filled by sediments and young volcanic products. (5) The Fogo volcano, in the middle of S. Miguel, is here dated between ca. 270 and 17 ka, and was affected by, at least, one southwards flank collapse. (6) The Sete Cidades volcano, in the western end of the island, is here dated between ca. 91 and 13 ka, and experienced mutliple caldera collapses; a landslide to the North is also suspected from the presence of a

  12. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 1--major and trace element composition.

    PubMed

    Calabrese, S; D'Alessandro, W; Bellomo, S; Brusca, L; Martin, R S; Saiano, F; Parello, F

    2015-01-01

    Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions.

  13. Short Term Forecasts of Volcanic Activity Using An Event Tree Analysis System and Logistic Regression

    NASA Astrophysics Data System (ADS)

    Junek, W. N.; Jones, W. L.; Woods, M. T.

    2011-12-01

    An automated event tree analysis system for estimating the probability of short term volcanic activity is presented. The algorithm is driven by a suite of empirical statistical models that are derived through logistic regression. Each model is constructed from a multidisciplinary dataset that was assembled from a collection of historic volcanic unrest episodes. The dataset consists of monitoring measurements (e.g. InSAR, seismic), source modeling results, and historic eruption activity. This provides a simple mechanism for simultaneously accounting for the geophysical changes occurring within the volcano and the historic behavior of analog volcanoes. The algorithm is extensible and can be easily recalibrated to include new or additional monitoring, modeling, or historic information. Standard cross validation techniques are employed to optimize its forecasting capabilities. Analysis results from several recent volcanic unrest episodes are presented.

  14. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-08-14

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  15. Quantifying Heat Flow from a Restless Caldera: Shallow Measurement from a Vapor Dominated Area of the Yellowstone Plateau Volcanic Field

    NASA Astrophysics Data System (ADS)

    Rosenberg, R.; Harris, R. N.; Hurwitz, S.; Fulton, P. M.; Davis, M. G.; Werner, C. A.

    2009-12-01

    Any attempt to characterize the vigor of magmatic activity and forecast future volcanism in Yellowstone caldera requires knowledge regarding the thermal state of its magmatic system, one of the largest and most focused heat sources on Earth. Current knowledge of heat transport between magma and the ground surface is limited. Advective heat transport from the caldera has been quantified by measuring chloride flux from the major rivers draining the caldera, based on the assumptions of the chloride inventory method (Fournier, JVGR1979). We have quantified the total (conductive, advective, and evaporative) heat flux from one of the most active thermal areas in Yellowstone caldera, the Obsidian Pool thermal area (OPTA) which includes 0.1 km2 of thermal ground within the Mud Volcano thermal area. The OPTA is characterized by vapor dominated conditions. Rising steam and other gases (mainly CO2) fill open fractures beneath a low-permeability cap consisting of clay minerals (Bargar and Muffler, 1982). Conduction-dominated heat transfer through the clay cap is associated with a high temperature gradient. We made at least 4 soil-temperature measurements at 0-1 m depth at 251 locations in the OPTA and measured soil thermal conductivity in the laboratory. Evaporative heat from several thermal pools was quantified based on pool temperatures and meteorological data. Our preliminary analysis indicates that surface heat loss from OPTA is dominantly conductive. Extrapolation of the OPTA results to approximately 35 km2 of vapor-dominated area in Yellowstone caldera and surroundings would yield a total heat flow that constitutes a major fraction of the total heat power from Yellowstone’s magmatic system.

  16. Fluxes of deep CO 2 in the volcanic areas of central-southern Italy

    NASA Astrophysics Data System (ADS)

    Gambardella, Barbara; Cardellini, Carlo; Chiodini, Giovanni; Frondini, Francesco; Marini, Luigi; Ottonello, Giulio; Vetuschi Zuccolini, Marino

    2004-08-01

    Both the shallow (organic-derived) and deep (mantellic-magmatic-metamorphic) fluxes of CO 2 [ ΦCO 2, mass time -1] and specific fluxes of CO 2 [ ϕCO 2 mass time -1 surface -1] dissolving in the shallow groundwaters of the volcanic areas of Amiata, Vulsini-Vico-Sabatini, Albani, Roccamonfina, Vesuvio, Vulture, and Etna were evaluated by partitioning the composed population of total dissolved inorganic carbon in two individual populations and subsequent subtraction of local background population. The flux of deep CO 2 released from the geothermal fields of Piancastagnaio (Amiata), Torre Alfina, Latera, Marta, Bracciano south, Cesano, and Mofete and from the Overall Northern Latium Hydrothermal Reservoir were also evaluated by means of the total surface heat flux and the enthalpy and CO 2 molality of the single liquid phase circulating in each geothermal reservoir. These data suggest that the ϕCO 2 released to the atmosphere varies from 9.5×10 6 to 3.0×10 6 mol year -1 km -2, over the geothermal fields of Bracciano south and Cesano, respectively, and that a total ΦCO 2 of 3.8×10 8 mol year -1 is cumulatively released from the geothermal fields of Torre Alfina, Latera and Cesano extending over an area of only 66 km 2. In addition, a flux of ˜2.2×10 11 to 3.8×10 11 mol year -1 of gaseous CO 2 entering the atmosphere is obtained for the entire anomalous area of central Italy, extending from the Tyrrhenian coastline to the Apennine chain (45,000 km 2). Thus terrestrial CO 2 emission in central-southern Italy appears to be a significant carbon source.

  17. Numerical evidence enabling reconciliation gravity and height changes in volcanic areas

    NASA Astrophysics Data System (ADS)

    Currenti, Gilda

    2014-04-01

    Gravity and height changes, reflecting magma accumulation in subsurface chambers, are evaluated using finite element models in order to resolve controversial relationships observed in some volcanic areas. When significant gravity changes occur without any significant deformation, or vice versa, it is often difficult, if not impossible, to explain the observations using the popular Mogi model. Here, we explore whether these discrepancies can be explained by magma compressibility and source geometry effects. Compression of resident magma and expansion of the chamber wall act concurrently to accommodate newly added magma. Gravity-height ratios are found to mainly depend on: (i) geometry of the sources, which control the volume expansion of the chamber, (ii) magma compressibility, which affects the contraction of the magma resident in the chamber, and (iii) depth of the sources. Our numerical results show that, when magma compressibility and non-spherical sources are taken into account, significant gravity variations can, indeed, be successfully reconciled with negligible height changes. This may be the case at Etna volcano, where gravity changes (about 40 μGal) without any significant deformation (below 5 cm) were observed during the 1994-1995 inflation period. The numerical results point to the accumulation of a 1.4 × 1010 kg mass into an elongated source simulating a shallow storage region supplying the summit craters.

  18. New 40Ar/39Ar isotopic dates from Miocene volcanic rocks in the Lake Mead area and southern Las Vegas Range, Nevada

    USGS Publications Warehouse

    Harlan, S.S.; Duebendorfer, E.M.; Deibert, J.E.

    1998-01-01

    New 40Ar/39Ar dates on volcanic rocks interlayered with synextensional Miocene sedimentary rocks in the western Lake Mead area and southern end of the Las Vegas Range provide tight constraints on magmatism, basin formation, and extensional deformation in the Basin and Range province of southern Nevada. Vertical axis rotations associated with movement along the Las Vegas Valley shear zone occurred after 15.67??0.10 Ma (2??), based on a 40Ar/39Ar date from a tuff in the Gass Peak formation in the southern Las Vegas Range. Basaltic magmatism in the western Lake Mead area began as early as 13.28??0.09 Ma, based on a date from a basalt flow in the Lovell Wash Member of the Horse Spring Formation. Isotopic dating of a basalt from the volcanic rocks of Callville Mesa indicates that these rocks are as old as 11.41??0.14 Ma, suggesting that volcanic activity began shortly after formation of the Boulder basin, the extensional basin in which the informally named red sandstone unit was deposited. The red sandstone unit is at least as old as 11.70??0.08 Ma and contains megabreccia deposits younger than 12.93??0.10 Ma. This results shows that formation of the Boulder basin was associated with development of topographic relief that was probably generated by movement along the Saddle Island low-angle normal fault. Stratal tilting associated with extension occurred both prior to and after 11.5 Ma.

  19. Deconvolving the process-origin of sediments on volcanic mountains and implications for paleoclimatic reconstruction: Mt Ruapehu area, New Zealand

    NASA Astrophysics Data System (ADS)

    Brook, Martin; Winkler, Stefan

    2016-04-01

    Glaciation on the central North Island of New Zealand is limited to the volcanoes of Tongariro National Park, including Mt Ruapehu, the largest and most active andesitic stratovolcano on the North Island. At 2797 m asl, Mt Ruapehu represents the only peak in the North Island to currently intercept the permanent snowline, with small cirque glaciers descending to an altitude of ~2300 m. During the last glacial maximum (LGM), small ice-caps existed on Mt Ruapehu and the Tongariro Massif (15 km to the NNE of Ruapehu), with a series of small (<10 km-long) valley glaciers radiating out from domes centered on the summit areas to altitudes of ~1200 m. Holocene glacier advances have left smaller deposits inboard of some of the LGM moraines. However, understanding of moraine deposition and reconstructing former glacier extent is limited by: (1) the fragmentary nature of glacier moraines in this high precipitation environment; and (2) the broad range of possible process-origins for unconsolidated debris ridges on active volcanoes. Here, we describe the clast roundness, clast shape and textural characteristics associated with active and former glaciers on Mt Ruaephu and the Tongariro Massif, in order to assist in classifying the process-origin of sediments on glaciated volcanic mountains. Supraglacial inputs include rockfall, tephra, and avalanche material delivered to the surface of glaciers. Basal debris, where observed at the terminus of active cirque glaciers, consists mainly of incorporated fluvial material. Following deposition, reworking is mainly by proglacial streams, debris flows and lahars. Within the vicinity of glaciers, the dominant facies appear to be: (i) bouldery gravel with angular clasts on steep slopes surrounding glaciers, (ii) silty-sandy boulder gravel, with mainly subangular clasts, forming lateral moraines, (iii) boulder/cobble gravel with mainly subrounded clasts and associated laminated sediments representing fluvially-reworked material; and (iv

  20. GeoNetGIS: a Geodetic Network Geographical Information System to manage GPS networks in seismic and volcanic areas

    NASA Astrophysics Data System (ADS)

    Cristofoletti, P.; Esposito, A.; Anzidei, M.

    2003-04-01

    This paper presents the methodologies and issues involved in the use of GIS techniques to manage geodetic information derived from networks in seismic and volcanic areas. Organization and manipulation of different geodetical, geological and seismic database, give us a new challenge in interpretation of information that has several dimensions, including spatial and temporal variations, also the flexibility and brand range of tools available in GeoNetGIS, make it an attractive platform for earthquake risk assessment. During the last decade the use of geodetic networks based on the Global Positioning System, devoted to geophysical applications, especially for crustal deformation monitoring in seismic and volcanic areas, increased dramatically. The large amount of data provided by these networks, combined with different and independent observations, such as epicentre distribution of recent and historical earthquakes, geological and structural data, photo interpretation of aerial and satellite images, can aid for the detection and parameterization of seismogenic sources. In particular we applied our geodetic oriented GIS to a new GPS network recently set up and surveyed in the Central Apennine region: the CA-GeoNet. GeoNetGIS is designed to analyze in three and four dimensions GPS sources and to improve crustal deformation analysis and interpretation related with tectonic structures and seismicity. It manages many database (DBMS) consisting of different classes, such as Geodesy, Topography, Seismicity, Geology, Geography and Raster Images, administrated according to Thematic Layers. GeoNetGIS represents a powerful research tool allowing to join the analysis of all data layers to integrate the different data base which aid for the identification of the activity of known faults or structures and suggesting the new evidences of active tectonics. A new approach to data integration given by GeoNetGIS capabilities, allow us to create and deliver a wide range of maps, digital

  1. Thermography of volcanic areas on Piton de la Fournaise, Reunion Island : Mapping surface properties and possible detection of convective air flow within volcanic debris

    NASA Astrophysics Data System (ADS)

    Antoine, R.; Baratoux, D.; Rabinowicz, M.; Saracco, G.; Bachelery, P.; Staudacher, T.; Fontaine, F.

    2007-12-01

    We report on the detection of air convection in a couple of quasi circular cavities forming the 300 years old volcanically inactive cone of Formica Leo (Piton de la Fournaise, Reunion Island) [1]. Infrared thermal images of the cone have been acquired in 2006 from a hand held camera at regular time interval during a complete diurnal cycle. During night and dawn, the data display hot rims and cold centers. Both the conductivity contrasts of the highly porous soils filling the cavities and their 30° slopes are unable to explain the systematic rim to center temperature drop. Accordingly, this signal could be attributed to an air convection dipping inside the highly porous material at the center of each cavity, then flowing upslope along the base of the soil layer, before exiting it along the rims. Anemometrical and electrical data acquired in 2007 allow for the first time the direct detection of this air flow on the field: dipping gas velocities are measured at the center of the cone and self-potentials anomalies [2] generated by the humid air flow in the porous medium are detected. To quantify this process, we present 2D/3D numerical models of air convection in a sloped volcanic soil with a surface temperature evolving between day and night and taking into account electrical phenomena created by the air flow. At this present stage, this work constitutes a first step to investigate the deep structure of the active caldera of Bory-Dolomieu. The detection of the air flow at the surface could be of paramount importance for the understanding of volcanic hazards of the Reunion volcano. [1] Antoine et. al, submitted to G-Cubed [2] Darnet, PhD, Université Louis Pasteur (2003)

  2. Paterae on Io: Volcanic Activity Observed by Galileo's NIMS and SSI

    NASA Technical Reports Server (NTRS)

    Lopes, Rosaly; Kamp, Lucas; Smythe, W. D.; Carlson, R.; Radebaugh, Jani; Gregg, Tracy K.

    2003-01-01

    Paterae are the most ubiquitous volcanic construct on Io s surface. Paterae are irregular craters, or complex craters with scalloped edges, interpreted as calderas or pit craters. Data from Galileo has shown that the activity of Ionian paterae is often confined to its interior and that generally lava flows are not seen spilling out over the edges. We use observations from Galileo s Near-Infrared Mapping Spectrometer (NIMS) to study the thermal emission from several Ionian paterae and compare them with images in visible wavelengths obtained by Galileo s Solid State Imaging System (SSI). Galileo s close fly-bys of Io from 1999 to 2001 have allowed NIMS to image the paterae at high spatial resolution (1-30 km pixel). At these scales, several of these features reveal greater thermal emission around the edges, which can be explained as the crust of a lava lake breaking up against the paterae walls. Comparisons with imaging data show that lower albedo areas (which are indicative of young lavas) coincide with higher thermal emission areas on NIMS data. Other paterae, however, show thermal emission and features in the visible that are more consistent with lava flows over a solid patera floor. Identifying eruption styles on Io is important for constraining eruption and interior models on Io.

  3. Late Cenozoic volcanism in the Lassen area, southernmost Cascade Range, California

    SciTech Connect

    Clynne, M.A.; Muffler, L.J.P.; Dalrymple, G.B. )

    1993-04-01

    Volcanism in the southernmost Cascade Range can be characterized on two scales. Regional volcanism is predominantly basaltic to andesitic, and hundreds of coalescing volcanoes of small volume (10[sup [minus]3] to 10[sup 1] km[sup 3]) with short lifetimes have built a broad platform. Superimposed on the regional volcanism are a few long-lived ([approximately]10[sup 6] years) much larger (>10 [sup 2] km[sup 3]) volcanic centers. Each of these larger centers consists of a basaltic-andesite to andesite composite cone and flanking silicic domes and flows. The evolution of these volcanic centers conforms to a generalized three-stage model during which a conspicuous edifice is constructed. Stages 1 and 2 comprise a dominantly andesitic composite cone; Stage 3 marks a change to dominantly silicic volcanism and is accompanied by development of a hydrothermal system in the permeable core of the andesitic composite cone. Subsequent fluvial and glacial erosion produces a caldera-like depression with a topographically high resistant rim of Stage 2 lavas surrounding the deeply eroded, hydrothermally altered core of the composite cone. Two types of basalt are recognized in the southernmost Cascades; medium-K calc-alkaline (CAB) and low-K olivine tholeiite (LKOT). CAB exhibits considerable geochemical diversity and is the parent magma for the volcanic-center lavas and the majority of the evolved regional lavas. LKOT is chemically homogeneous, and outcrops sporadically in association with extensional tectonics of the Basin and Range Province, and is related to Pleistocene encroachment of Basin-and-Range tectonics on the subduction-related volcanism of the Cascade Range.

  4. Search for possible relationship between volcanic ash particles and thunderstorm lightning activity

    NASA Astrophysics Data System (ADS)

    Várai, A.; Vincze, M.; Lichtenberger, J.; Jánosi, I. M.

    2011-12-01

    Explosive volcanic eruptions that eject columns of ash from the crater often generate lightning discharges strong enough to be remotely located by very low frequency radio waves. A fraction of volcanic ash particles can stay and disperse long enough to have an effect on weather phenomena days later such as thunderstorms and lightnings. In this work we report on lightning activity analysis over Europe following two recent series of volcanic eruptions in order to identify possible correlations between ash release and subsequent thunderstorm flash frequency. Our attempts gave negative results which can be related to the fact that we have limited information on local atmospheric variables of high enough resolution, however lightning frequency is apparently determined by very local circumstances.

  5. Prediction of ground motion parameters for the volcanic area of Mount Etna

    NASA Astrophysics Data System (ADS)

    Tusa, Giuseppina; Langer, Horst

    2016-01-01

    Ground motion prediction equations (GMPEs) have been derived for peak ground acceleration (PGA), velocity (PGV), and 5 % damped spectral acceleration (PSA) at frequencies between 0.1 and 10 Hz for the volcanic area of Mt. Etna. The dataset consists of 91 earthquakes with epicentral distances between 0.5 and 100 km. Given the specific characteristics of the area, we divided our data set into two groups: shallow events (SE, focal depth <5 km), and deep events (DE, focal depth >5 km). The range of magnitude covered by the SE and the DE is 3.0 ≤ M L ≤ 4.3 and 3.0 ≤ M L ≤ 4.8, respectively. Signals of DE typically have more high frequencies than those of SE. These differences are clearly reflected in the empirical GMPEs of the two event groups. Empirical GMPEs were estimated considering several functional forms: Sabetta and Pugliese (Bull Seism Soc Am 77:1491-1513, 1987) (SP87), Ambraseys et al. (Earth Eng Struct Dyn 25:371-400, 1996) (AMB96), and Boore and Atkinson (Earth Spectra 24:99-138, 2008) (BA2008). From ANOVA, we learn that most of the errors in our GMPEs can be attributed to unmodeled site effects, whereas errors related to event parameters are limited. For DE, BA2008 outperforms the simpler models SP87 or AMB96. For SE, the simple SP87 is preferable considering the Bayesian Information Criterion since it proves more stable with respect to confidence and gives very similar or even lower prediction errors during cross-validation than the BA2008 model. We compared our results to relationships derived for Italy (ITA10, Bindi et al. Bull Earth Eng 99:2471-2488, 2011). For SE, the main differences are observed for distances greater than about 5 km for both horizontal and vertical PGAs. Conversely, for DE the ITA10 heavily overestimates the peak ground parameters for short distances.

  6. Soil radon measurements as a potential tracer of tectonic and volcanic activity.

    PubMed

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-15

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  7. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    PubMed Central

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  8. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    NASA Astrophysics Data System (ADS)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  9. Long-term risk in a recently active volcanic system: Evaluation of doses and indoor radiological risk in the quaternary Vulsini Volcanic District (Central Italy)

    NASA Astrophysics Data System (ADS)

    Capaccioni, B.; Cinelli, G.; Mostacci, D.; Tositti, L.

    2012-12-01

    Volcanic rocks in the Vulsini Volcanic District (Central Italy) contain high concentrations of 238U, 232Th and 40K due to subduction-related metasomatic enrichment of incompatible elements in the mantle source coupled with magma differentiation within the upper crust. Due to their favorable mechanical properties they have been extensively used for construction since the Etruscan age. In the old buildings of the Bolsena village, one of the most populated ancient village in the area, the major source of indoor radioactivity is 222Rn, a radioactive noble gas descendant of 238U. Direct 222Rn indoor measurements have detected extremely high values in the old center due to the combined effect of building materials, radon fluxes from the volcanic basement and low air exchange rates. In these cases the evaluated risk of developing lung cancer within a 75 year lifetime reaches up to 40% for ever smokers. Simulations of "standard rooms" built with different tuffs and lavas collected from the Vulsini Volcanic District have also provided estimations of the effective doses and lifetime risk for radiogenic cancer. Other than by the method adopted for calculation, the total evaluated risk for each volcanic rock depends on different parameters, such as: radionuclide content, radon emanation power, occupancy factor and air exchange rate. Occupancy factor and air exchange rate appear as the only controlling parameters able to mitigate the indoor radiological risk.

  10. Exploratory Data Analysis Using a Dedicated Visualization App: Looking for Patterns in Volcanic Activity

    NASA Astrophysics Data System (ADS)

    van Manen, S. M.; Chen, S.

    2015-12-01

    Here we present an App designed to visualize and identify patterns in volcanic activity during the last ten years. It visualizes VEI (volcanic explosivity index) levels, population size, frequency of activity, and geographic region, and is designed to address the issue of oversampling of data. Often times, it is difficult to access a large set of data that can be scattered at first glance and hard to digest without visual aid. This App serves as a model that solves this issue and can be applied to other data. To enable users to quickly assess the large data set it breaks down the apparently chaotic abundance of information into categories and graphic indicators: color is used to indicate the VEI level, size for population size within 5 km of a volcano, line thickness for frequency of activity, and a grid to pinpoint a volcano's latitude. The categories and layers within them can be turned on and off by the user, enabling them to scroll through and compare different layers of data. By visualising the data this way, patterns began to emerge. For example, certain geographic regions had more explosive eruptions than others. Another good example was that low frequency larger impact volcanic eruptions occurred more irregularly than smaller impact volcanic eruptions, which had a more stable frequencies. Although these findings are not unexpected, the easy to navigate App does showcase the potential of data visualization for the rapid appraisal of complex and abundant multi-dimensional geoscience data.

  11. Planetary Volcanism

    NASA Technical Reports Server (NTRS)

    Antonenko, I.; Head, J. W.; Pieters, C. W.

    1998-01-01

    The final report consists of 10 journal articles concerning Planetary Volcanism. The articles discuss the following topics: (1) lunar stratigraphy; (2) cryptomare thickness measurements; (3) spherical harmonic spectra; (4) late stage activity of volcanoes on Venus; (5) stresses and calderas on Mars; (6) magma reservoir failure; (7) lunar mare basalt volcanism; (8) impact and volcanic glasses in the 79001/2 Core; (9) geology of the lunar regional dark mantle deposits; and (10) factors controlling the depths and sizes of magma reservoirs in Martian volcanoes.

  12. The STRATegy COLUMN for Precollege Science Teachers: Volcanic Activity.

    ERIC Educational Resources Information Center

    Metzger, Ellen Pletcher

    1995-01-01

    Describes resources for information and activities involving volcanoes. Includes an activity that helps students become familiar with the principal types of volcanoes and explores how the viscosity of magma affects the way a volcano erupts. (MKR)

  13. Monitoring and behavior of unsaturated volcanic pyroclastic in the Metropolitan Area of San Salvador, El Salvador.

    PubMed

    Chávez, José Alexander; Landaverde, José; Landaverde, Reynaldo López; Tejnecký, Václav

    2016-01-01

    Field monitoring and laboratory results are presented for an unsaturated volcanic pyroclastic. The pyroclastic belongs to the latest plinian eruption of the Ilopango Caldera in the Metropolitan Area of San Salvador, and is constantly affected by intense erosion, collapse, slab failure, sand/silt/debris flowslide and debris avalanche during the rainy season or earthquakes. Being the flowslides more common but with smaller volume. During the research, preliminary results of rain threshold were obtained of flowslides, this was recorded with the TMS3 (a moisture sensor device using time domain transmission) installed in some slopes. TMS3 has been used before in biology, ecology and soil sciences, and for the first time was used for engineering geology in this research. This device uses electromagnetic waves to obtain moisture content of the soil and a calibration curve is necessary. With the behavior observed during this project is possible to conclude that not only climatic factors as rain quantity, temperature and evaporation are important into landslide susceptibility but also information of suction-moisture content, seepage, topography, weathering, ground deformation, vibrations, cracks, vegetation/roots and the presence of crust covering the surface are necessary to research in each site. Results of the field monitoring indicates that the presence of biological soil crusts a complex mosaic of soil, green algae, lichens, mosses, micro-fungi, cyanobacteria and other bacteria covering the slopes surface can protect somehow the steep slopes reducing the runoff process and mass wasting processes. The results obtained during the assessment will help explaining the mass wasting problems occurring in some pyroclastic soils and its possible use in mitigation works and early warning system.

  14. Io volcanism

    SciTech Connect

    Carr, M.H.

    1985-01-01

    Io is the most volcanically active body in the Solar System. The Voyage spacecraft observed nine active eruption plumes in 1979, and detected numerous thermal anomalies. Loki the most active volcanic region has been emitting 1.5 x 10/sup 13/ W over the last few years. Many of the volcanic features have been interpreted as the result of sulfur volcanism because 1) the spectral reflectance of the surface resembles sulfur, 2) SO/sub 2/ has been positively identified, 3) the satellite leaves a trail of sulfur atoms in its wake; and 4) many of the hot spots have surfaces temperatures less than 400/sup 0/K, compatible with low-temperature melts. The evidence for sulfur has led to suggestions of sulfur lava flows hundreds of kilometers long, and sulfur lava lakes as large as Lake Erie. The observations are, however, equally compatible with basaltic volcanism. Modeling of the cooling of basaltic lava flows indicates that regions of basaltic volcanism on Io should have temperatures similar to those detected by the Voyager spacecraft. High eruption rates are required. High rates of fumarolic activity accompanying the eruptions and expulsion of volatiles by the plumes give the surface its sulfur-like spectral reflectance.

  15. Geochemistry and geochronology of granitoids in the Kibi-Asamankese area of the Kibi-Winneba volcanic belt, southern Ghana

    NASA Astrophysics Data System (ADS)

    Anum, Solomon; Sakyi, Patrick Asamoah; Su, Ben-Xun; Nude, Prosper M.; Nyame, Frank; Asiedu, Daniel; Kwayisi, Daniel

    2015-02-01

    In Ghana the West African Craton is represented by Birimian and Tarkwaian rocks with extensive granitoid bodies. Granitoids from Asamankese area of the Kibi-Winneba volcanic belt, southern Ghana were analysed for major and trace element contents and found to be characterised by highly-fractionated REE, enrichments, in LILE, and depletion in Nb, Ta and Sr. The LILE enrichment relative to strong Nb-Ta depression, indicates that these granitoids were emplaced in an active margin. Based on field relations, geochemical composition and geochronological data, the granitoids from the Kibi-Asamankese area can be divided into three types, namely; the Eburnean biotite granodiorite (2133-2127 Ma) and hornblende granodiorite (2147 Ma), and the Pre-Eburnean gneissic biotite granite (2193 Ma). The geochemical data of the studied rocks plot in the tholeiitic field, whereas on the A/CNK-A/NK diagram, they generally fall within the metaluminous field, with A/CNK values between 0.69 and 0.88. U-Pb dating of zircons in the granitoids yielded ages ranging from 2193 to 2127 Ma, which are among the oldest ages obtained from the granitoid plutons in Ghana. Such high-precision geochronological data indicate that magmatism occurred over a time-span of about 70 Ma. This provides further evidence that the period 2.1-2.2 Ga was one of the important stages of Birimian magmatism that led to the generation of the granitoids. From the above-mentioned ages, it is possible to link the geological activities to crustal processes and establish the cyclic geotectonic evolution in the West African Craton over time as part of an arc-back-arc basin system.

  16. Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes

    NASA Astrophysics Data System (ADS)

    Londono, John Makario

    2016-09-01

    In the last nine years (2007-2015), the Cerro Bravo-Cerro Machín volcanic complex (CBCMVC), located in central Colombia, has experienced many changes in volcanic activity. In particular at Nevado del Ruiz volcano (NRV), Cerro Machin volcano (CMV) and Cerro Bravo (CBV) volcano. The recent activity of NRV, as well as increasing seismic activity at other volcanic centers of the CBCMVC, were preceded by notable changes in various geophysical and geochemical parameters, that suggests renewed magmatic activity is occurring at the volcanic complex. The onset of this activity started with seismicity located west of the volcanic complex, followed by seismicity at CBV and CMV. Later in 2010, strong seismicity was observed at NRV, with two small eruptions in 2012. After that, seismicity has been observed intermittently at other volcanic centers such as Santa Isabel, Cerro España, Paramillo de Santa Rosa, Quindío and Tolima volcanoes, which persists until today. Local deformation was observed from 2007 at NRV, followed by possible regional deformation at various volcanic centers between 2011 and 2013. In 2008, an increase in CO2 and Radon in soil was observed at CBV, followed by a change in helium isotopes at CMV between 2009 and 2011. Moreover, SO2 showed an increase from 2010 at NRV, with values remaining high until the present. These observations suggest that renewed magmatic activity is currently occurring at CBCMVC. NRV shows changes in its activity that may be related to this new magmatic activity. NRV is currently exhibiting the most activity of any volcano in the CBCMVC, which may be due to it being the only open volcanic system at this time. This suggests that over the coming years, there is a high probability of new unrest or an increase in volcanic activity of other volcanoes of the CBCMVC.

  17. The discovery of late Quaternary basalt on Mount Bambouto: Implications for recent widespread volcanic activity in the southern Cameroon Line

    NASA Astrophysics Data System (ADS)

    Kagou Dongmo, Armand; Nkouathio, David; Pouclet, André; Bardintzeff, Jacques-Marie; Wandji, Pierre; Nono, Alexandre; Guillou, Hervé

    2010-04-01

    At the north-eastern flank of Mount Bambouto, a lateral cone, the Totap volcano, is dated at 0.480 ± 0.014 Ma, which corresponds to the most recent activity of this area. The lava is a basanite similar to the older basanites of Mount Bambouto. Two new datations of the lavas of the substratum are 11.75 ± 0.25 Ma, and 21.12 ± 0.45 Ma. A synthetic revision of the volcanic story of Mount Bambouto is proposed as follows. The first stage, ca. 21 Ma, corresponds to the building of the initial basaltic shield volcano. The second stage, from 18.5 to 15.3 Ma, is marked by the collapse of the caldera linked to the pouring out of ignimbritic rhyolites and trachytes. The third stage, from 15 to 4.5 Ma, renews with basaltic effusive activity, together with post-caldera extrusions of trachytes and phonolites. The 0.5 Ma Totap activity could be a fourth stage. In the recent Quaternary, a number of basaltic activities, similar to that of the Totap volcano, are encountered elsewhere in the Cameroon Line, from Mount Oku to Mount Cameroon. The very long-live activity at Mount Bambouto and the volcanic time-space distribution in the southern Cameroon Line are linked to the working of a hotline.

  18. International Collaboration on Building Local Technical Capacities for Monitoring Volcanic Activity at Pacaya Volcano, Guatemala.

    NASA Astrophysics Data System (ADS)

    Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.

    2015-12-01

    Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.

  19. Volcanic activity before and after large tectonic earthquakes: Observations and statistical significance

    NASA Astrophysics Data System (ADS)

    Eggert, S.; Walter, T. R.

    2009-04-01

    The study of volcanic triggering and coupling to the tectonic surroundings has received special attention in recent years, using both direct field observations and historical descriptions of eruptions and earthquake activity. Repeated reports of volcano-earthquake interactions in, e.g., Europe and Japan, may imply that clustered occurrence is important in some regions. However, the regions likely to suffer clustered eruption-earthquake activity have not been systematically identified, and the processes responsible for the observed interaction are debated. We first review previous works about the correlation of volcanic eruptions and earthquakes, and describe selected local clustered events. Following an overview of previous statistical studies, we further elaborate the databases of correlated eruptions and earthquakes from a global perspective. Since we can confirm a relationship between volcanic eruptions and earthquakes on the global scale, we then perform a statistical study on the regional level, showing that time and distance between events follow a linear relationship. In the time before an earthquake, a period of volcanic silence often occurs, whereas in the time after, an increase in volcanic activity is evident. Our statistical tests imply that certain regions are especially predisposed to concurrent eruption-earthquake pairs, e.g., Japan, whereas such pairing is statistically less significant in other regions, such as Europe. Based on this study, we argue that individual and selected observations may bias the perceptible weight of coupling. Volcanoes located in the predisposed regions (e.g., Japan, Indonesia, Melanesia), however, indeed often have unexpectedly changed in association with either an imminent or a past earthquake.

  20. Geochemistry, petrogenesis and tectonic setting of late Neoproterozoic Dokhan-type volcanic rocks in the Fatira area, eastern Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, F. H.; Moghazi, A. M.; Hassanen, M. A.

    The Neoproterozoic Dokhan volcanics of the Fatira area in eastern Egypt comprise two main rock suites: (a) an intermediate volcanic suite, consisting of basaltic andesite, andesite, dacite, and their associated pyroclastic rocks; and (b) a felsic volcanic suite composed of rhyolite and rhyolitic tuffs. The two suites display well-defined major and trace element trends and a continuum in composition with wide ranges in SiO2 (54-76%), CaO (8.19-0.14%), MgO (6.96-0.04%), Sr (983-7ppm), Zr (328-95ppm), Cr (297-1ppm), and Ni (72-1ppm). They are enriched in LILEs (Rb, Ba, K, Th, Ce) relative to high field strength elements (Nb, Zr, P, Ti) and show strong affinity to calc-alkaline subduction-related rocks. However, their undeformed character, their emplacement temporally and spatially with post-orogenic A-type granite, and their high Zr/Y values suggest that their emplacement follow the cessation of subduction in eastern Egypt in an extensional-related within-plate setting. Major and trace element variations in the intermediate volcanics are consistent with their formation via partial melting of an enriched subcontinental lithospheric mantle source followed by a limited low-pressure fractional crystallization of olivine and pyroxene before emplacement. The LILE enrichment relative to HFSE is attributed to the inheritance of a subduction component from mantle material which constituted the mantle wedge during previous subduction events in eastern Egypt. The evolution of the whole volcanic spectrum was governed mainly by crystal/melt fractionation of amphibole, plagioclase, titanomagnetite, and apatite in the intermediate varieties and plagioclase, amphibole, biotite, Fe-Ti oxides, apatite, and zircon in the felsic varieties. At each stage of evolution, crystal fractionation was accompanied by variable degrees of crustal contamination.

  1. Volcanic Catastrophes

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2003-12-01

    volcanism on humankind in the North Pacific, where Holocene time saw many caldera-forming eruptions in an area of comparatively intense human activity.

  2. Volcanic ash layers in blue ice fields (Beardmore Glacier Area, Antarctica): Iridium enrichments

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1988-01-01

    Dust bands on blue ice fields in Antarctica have been studied and have been identified to originate from two main sources: bedrock debris scraped up from the ground by the glacial movement (these bands are found predominantly at fractures and shear zones in the ice near moraines), and volcanic debris deposited on and incorporated in the ice by large-scale eruptions of Antarctic (or sub-Antractic) volcanoes. Ice core studies have revealed that most of the dust layers in the ice cores are volcanic (tephra) deposits which may be related to some specific volcanic eruptions. These eruptions have to be related to some specific volcanic eruptions. These eruptions have to be relatively recent (a few thousand years old) since ice cores usually incorporate younger ice. In contrast, dust bands on bare blue ice fields are much older, up to a few hundred thousand years, which may be inferred from the rather high terrestrial age of meteorites found on the ice and from dating the ice using the uranium series method. Also for the volcanic ash layers found on blue ice fields correlations between some specific volcanoes (late Cenozoic) and the volcanic debris have been inferred, mainly using chemical arguments. During a recent field expedition samples of several dust bands found on blue ice fields at the Lewis Cliff Ice Tongue were taken. These dust band samples were divided for age determination using the uranium series method, and chemical investigations to determine the source and origin of the dust bands. The investigations have shown that most of the dust bands found at the Ice Tongue are of volcanic origin and, for chemical and petrological reasons, may be correlated with Cenozoic volcanoes in the Melbourne volcanic province, Northern Victoria Land, which is at least 1500 km away. Major and trace element data have been obtained and have been used for identification and correlation purposes. Recently, some additional trace elements were determined in some of the dust band

  3. Cordon Caulle: an active volcanic-geothermal extensional system of Southern Andes of Chile

    NASA Astrophysics Data System (ADS)

    Sepulveda, F.

    2013-05-01

    Cordon Caulle (CC; 40.5° S) is an active volcanic-geothermal system of the Southern Volcanic Zone (SVZ; 37°-44°S). Morphologically, the CC system is a 6 km x 13 km volcanic plateau bordered by NW-trending structures, limited by Puyehue Volcano to the SE and by Caldera Nevada Caldera to the NW. While the SVZ is dominantly basaltic, CC is unique in that it has produced a wide compositional spectrum from basalt to rhyolite. The most recent volcanic activity of Puyehue-CC (last 70 ky) is dominantly silicic, including two historic fissure eruptions (1921-1922; 1960) and a recent central eruption from Puyehue Volcano (2011). Abnormally silicic volcanism was formerly attributed to a localized compression and long-term magma residence and differentiation, resulting from the NW orientation of underlying CC structures with respect to a NE-oriented σ1 (linked to regional strike-slip stress state). However, later studies, including examination of morpho-tectonic features; detailed structural analysis of the 1960 eruption (triggered by Mw 9.5 1960 Chilean Earthquake); InSAR deformation and gravity surveys, point to both historic and long-term extension at CC with σhmax oriented NNW to NW. The pre-2011 (i.e. Puyehue Volcano eruption) geothermal features of CC included boiling hot springs and geysers (Caldera Nevada) and fumaroles (CC and Puyehue Volcano). Both water and gas chemistry surveys were undertaken to assess the source fluid composition and equilibrium temperature. The combination of water and gas geothermometers led to a conceptual model of a stratified geothermal reservoir, with shallow, low-chloride, steam-heated aquifers equilibrated at temperatures between 150°-180°C, overlying a deeper, possibly dominated reservoir with temperatures in excess of 280°C. Gas chemistry also produced the highest He ratios of the SVZ, in agreement with a relatively pure, undiluted magmatic signature and heat source fueling the geothermal system. Other indicators such as N2/Ar

  4. Factors limiting microbial activity in volcanic tuff at Yucca Mountain

    SciTech Connect

    Kieft, T.L.; Kovacik, W.P.; Taylor, J.

    1996-09-01

    Samples of tuff aseptically collected from 10 locations in the Exploratory Shaft Facility at the site of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada Test Site were analyzed for microbiological populations, activities, and factors limiting microbial activity. Radiotracer assays ({sup 14}C-labeled organic substrate mineralization), direct microscopic counts, and plate counts were used. Radiolabeled substrates were glucose, acetate, and glutamate. Radiotracer experiments were carried out with and without moisture and inorganic nutrient amendments to determine factors limiting to microbial activities. Nearly all samples showed the presence of microorganisms with the potential to mineralize organic substrates. Addition of inorganic nutrients stimulated activities in a small number of samples. The presence of viable microbial communities within the tuff has implications for transport of contaminants.

  5. Analysis of volcanic activity patterns using MODIS thermal alerts

    NASA Astrophysics Data System (ADS)

    Rothery, Dave A.; Coppola, Diego; Saunders, Charlotte

    2005-07-01

    We investigate eruptive activity by analysis of thermal-alert data from the MODIS (moderate resolution imaging spectrometer) thermal infrared satellite instrument, detected by the MODVOLC (MODIS Volcano alert) algorithm. These data are openly available on the Internet, and easy to use. We show how such data can plug major gaps in the conventional monitoring record of volcanoes in an otherwise generally poorly documented region (Melanesia), including: characterising the mechanism of lava effusion at Pago; demonstrating an earlier-than-realised onset of lava effusion at Lopevi; extending the known period of lava lake activity at Ambrym; and confirming ongoing activity at Bagana, Langila and Tinakula. We also add to the record of activity even at some generally better-monitored volcanoes in Indonesia, but point out that care must be taken to recognise and exclude fires.

  6. Geological and 40Ar/39Ar age constraints on late-stage Deccan rhyolitic volcanism, inter-volcanic sedimentation, and the Panvel flexure from the Dongri area, Mumbai

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu C.; Pande, Kanchan

    2014-04-01

    Post-K-Pg Boundary Deccan magmatism is well known from the Mumbai area in the Panvel flexure zone. Represented by the Salsette Subgroup, it shows characters atypical of much of the Deccan Traps, including rhyolite lavas and tuffs, mafic tuffs and breccias, spilitic pillow basalts, and "intertrappean" sedimentary or volcanosedimentary deposits, with mafic intrusions as well as trachyte intrusions containing basaltic enclaves. The intertrappean deposits have been interpreted as formed in shallow marine or lagoonal environments in small fault-bounded basins due to syn-volcanic subsidence. We report a previously unknown sedimentary deposit underlying the Dongri rhyolite flow from the upper part of the Salsette Subgroup, with a westerly tectonic dip due to the Panvel flexure. We have obtained concordant 40Ar/39Ar ages of 62.6 ± 0.6 Ma (2σ) and 62.9 ± 0.2 Ma (2σ) for samples taken from two separate outcrops of this rhyolite. The results are significant in showing that (i) Danian inter-volcanic sedimentary deposits formed throughout Mumbai, (ii) the rock units are consistent with the stratigraphy postulated earlier for Mumbai, (iii) shale fragments known in some Dongri tuffs were likely derived from the sedimentary deposit under the Dongri rhyolite, (iv) the total duration of extrusive and intrusive Deccan magmatism was at least 8-9 million years, and (v) Panvel flexure formed, or continued to form, after 63 Ma, possibly even 62 Ma, and could not have formed by 65-64 Ma as concluded in a recent study.

  7. Eighteen years of geochemical monitoring at the oceanic active volcanic island of El Hierro (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Asensio-Ramos, María; Alonso, Mar; Sharp, Emerson; Woods, Hannah; Barrancos, José; Pérez, Nemesio M.

    2016-04-01

    We report herein the latest results of a diffuse CO2 efflux survey at El Hierro volcanic system carried out during the summer period of 2015 to constrain the total CO2 output from the studied area a during post-eruptive period. El Hierro Island (278 km2) is the youngest and the SW-most of the Canary Islands. On July 16, 2011, a seismic-volcanic crisis started with the occurrence of more than 11,900 seismic events and significant deformation along the island. On October 10, 2011, the dominant character of seismicity changed dramatically from discrete earthquakes to continuous tremor, a clear indication that magma was rapidly approaching the surface immediately before the onset of the eruption, October 12. Eruption was declared over on 5 March, 2012. In order to monitor the volcanic activity of El Hierro Island, from 1998 to 2015 diffuse CO2 emission studies have been performed at El Hierro volcanic system in a yearly basis (˜600 observation sites) according to the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. To quantify the total CO2 emission from the studied area, 100 simulations for each survey have been performed. During the eruption period, soil CO2 efflux values range from non-detectable (˜0.5 g m-2 d-1) up to 457 g m-2 d-1, reaching in November 27, 2011, the maximum CO2 output estimated value of all time series, 2,398 t d-1, just before the episodes of maximum degassing observed as vigorous bubbling at the sea surface and an increment in the amplitude of the tremor signal. During the 2015 survey, soil CO2 efflux values ranged from non-detectable up to 41 g m-2 d-1. The spatial distribution of diffuse CO2 emission values seemed to be controlled by the main volcano structural features of the island. The total diffuse CO2 output released to atmosphere was estimated at 575 ± 24 t d-1, value slightly higher that the background CO2 emission estimated at 422 t d-1 (Melián et

  8. Coulomb stress analysis of West Halmahera earthquake mw=7.2 to mount Soputan and Gamalama volcanic activities

    NASA Astrophysics Data System (ADS)

    Sinaga, G. H. D.; Zarlis, M.; Sitepu, M.; Prasetyo, R. A.; Simanullang, A.

    2017-02-01

    West Halmahera is the convergency of three plates, namely the Philippines plate, the Eurasian plate, and the Pasific plate. The location of the West Halmahera is located in the thress plates, so the Western Halmahera potentially earthquake-prone areas. Some events increased activity of Mount Soputan and Mount Gamalama preceded by a massive earthquake. This research was conducted in the BMKG Region I Medan. This research uses Coulomb Stress Model. Coulomb Stress Model was used to show increasing and decreasing stress consequence from earthquake in the area of West Halmahera. Data such as the earthquake magnitude, earthquake depth, and Focal Mechanism required as input models. The data obtained from BMKG, Global CMT, and PVMBG. The result of data analyzed show an increase in the coulomb stress distribution at Mount Soputan 0.023 bar and 0.007 bar in mountain Gamalama. This stress followed by increased volcanic activity of the mount Soputan and mount Gamalama with freatic eruption type.

  9. Compilation of Disruptions to Airports by Volcanic Activity (Version 1.0, 1944-2006)

    USGS Publications Warehouse

    Guffanti, Marianne; Mayberry, Gari C.; Casadevall, Thomas J.; Wunderman, Richard

    2008-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. To more fully characterize the nature and scope of volcanic hazards to airports, we collected data on incidents of airports throughout the world that have been affected by volcanic activity, beginning in 1944 with the first documented instance of damage to modern aircraft and facilities in Naples, Italy, and extending through 2006. Information was gleaned from various sources, including news outlets, volcanological reports (particularly the Smithsonian Institution's Bulletin of the Global Volcanism Network), and previous publications on the topic. This report presents the full compilation of the data collected. For each incident, information about the affected airport and the volcanic source has been compiled as a record in a Microsoft Access database. The database is incomplete in so far as incidents may not have not been reported or documented, but it does present a good sample from diverse parts of the world. Not included are en-route diversions to avoid airborne ash clouds at cruise altitudes. The database has been converted to a Microsoft Excel spreadsheet. To make the PDF version of table 1 in this open-file report resemble the spreadsheet, order the PDF pages as 12, 17, 22; 13, 18, 23; 14, 19, 24; 15, 20, 25; and 16, 21, 26. Analysis of the database reveals that, at a minimum, 101 airports in 28 countries were impacted on 171 occasions from 1944 through 2006 by eruptions at 46 volcanoes. The number of affected airports (101) probably is better constrained than the number of incidents (171) because recurring disruptions at a given airport may have been lumped together or not reported by news agencies, whereas the initial disruption likely is noticed and reported and thus the airport correctly counted.

  10. Paleogene volcanic rocks of the Matanuska Valley area and the displacement history of the Castle Mountain fault

    NASA Astrophysics Data System (ADS)

    Silberman, M. L.; Grantz, A.

    Primitive strontium-isotopic composition and overall bimodal distribution of silica in upper Paleocene and Eocene subalkalic tholeiitic to calc-alkaline basalt and low-potassium rhyolite of the Matanuska Valley and southern Talkeetna Mountains suggest that these rocks were derived from the mantle with little contamination by continental crust. The volcanic rocks consist of rhyolite tuff and ash flows, as well as basalt flows and dikes, in the nonmarine Arkose Ridge Formation of the southwestern Talkeetna Mountains; of subaerial basalt and andesite flows, tuff, and mafic intrusions in the southeastern Talkeetna Mountains; and of felsic and mafic dikes, sills, and small plutons in the Matanuska Valley. The generalized geology of the area in which the volcanic rocks occur and the localities sampled for potassium-argon-age determinations and for chemical and strontinum-isotopic analysis are shown. The analytical results are listed.

  11. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions

    USGS Publications Warehouse

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.

    2007-01-01

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.

  12. Complex explosive volcanic activity on the Moon within Oppenheimer crater, Icarus

    USGS Publications Warehouse

    Bennett, Kristen A; Horgan, Briony H N; Gaddis, Lisa R.; Greenhagen, Benjamin T; Allen, Carlton C.; Hayne, Paul O; Bell, James F III; Paige, David A.

    2016-01-01

    Oppenheimer Crater is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining inferred to form larger regional deposits. We use Lunar Reconnaissance Orbiter Camera images and Diviner Radiometer mid-infrared data, Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra, and Clementine orbiter Ultraviolet/Visible camera images to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. Mineralogically, we find that the deposits are variable mixtures of orthopyroxene and minor clinopyroxene sourced from the crater floor, juvenile clinopyroxene, and juvenile iron-rich glass, and that the mineralogy of the pyroclastics varies both across the Oppenheimer deposits as a whole and within individual deposits. We observe similar variability in the inferred iron content of pyroclastic glasses, and note in particular that the northwest deposit, associated with Oppenheimer U crater, contains the most iron-rich volcanic glass thus far identified on the Moon, which could be a useful future resource. We propose that this variability in mineralogy indicates variability in eruption style, and that it cannot be explained by a simple Vulcanian eruption. A Vulcanian eruption should cause significant country rock to be incorporated into the pyroclastic deposit; however, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases and very little floor material. Thus, we propose that at least the most recent portion of these deposits must have erupted via a Strombolian or more continuous fire

  13. Explosive activity associated with the growth of volcanic domes

    USGS Publications Warehouse

    Newhall, C.G.; Melson, W.G.

    1983-01-01

    Domes offer unique opportunities to measure or infer the characteristics of magmas that, at domes and elsewhere, control explosive activity. A review of explosive activity associated with historical dome growth shows that: 1. (1) explosive activity has occurred in close association with nearly all historical dome growth; 2. (2) whole-rock SiO2 content, a crude but widely reported indicator of magma viscosity, shows no systematic relationship to the timing and character of explosions; 3. (3) the average rate of dome growth, a crude indicator of the rate of supply of magma and volatiles to the near-surface enviornment, shows no systematic relationship to the timing or character of explosions; and 4. (4) new studies at Arenal and Mount St. Helens suggest that water content is the dominant control on explosions from water-rich magmas, whereas the crystal content and composition of the interstitial melt (and hence magma viscosity) are equally or more important controls on explosions from water-poor magmas. New efforts should be made to improve current, rather limited techniques for monitoring pre-eruption volatile content and magma viscosity, and thus the explosive potential of magmas. ?? 1983.

  14. Long-term global temperature variations under total solar irradiance, cosmic rays, and volcanic activity.

    PubMed

    Biktash, Lilia

    2017-07-01

    The effects of total solar irradiance (TSI) and volcanic activity on long-term global temperature variations during solar cycles 19-23 were studied. It was shown that a large proportion of climate variations can be explained by the mechanism of action of TSI and cosmic rays (CRs) on the state of the lower atmosphere and other meteorological parameters. The role of volcanic signals in the 11-year variations of the Earth's climate can be expressed as several years of global temperature drop. Conversely, it was shown that the effects of solar, geophysical, and human activity on climate change interact. It was concluded that more detailed investigations of these very complicated relationships are required, in order to be able to understand issues that affect ecosystems on a global scale.

  15. Hawaiian oral tradition describes 400 years of volcanic activity at Kīlauea

    USGS Publications Warehouse

    Swanson, Donald A.

    2008-01-01

    Culturally significant oral tradition involving Pele, the Hawaiian volcano deity, and her youngest sister Hi'iaka may involve the two largest volcanic events to have taken place in Hawai'i since human settlement: the roughly 60-year-long ‘Ailā’au eruption during the 15th century and the following development of Kīlauea's caldera. In 1823, Rev. William Ellis and three others became the first Europeans to visit Kīlauea's summit and were told stories about Kīlauea's activity that are consistent with the Pele–Hi'iaka account and extend the oral tradition through the 18th century. Recent geologic studies confirm the essence of the oral traditions and illustrate the potential value of examining other Hawaiian chants and stories for more information about past volcanic activity in Hawai‘i.

  16. Quantifying unsteadiness and dynamics of pulsatory volcanic activity

    NASA Astrophysics Data System (ADS)

    Dominguez, L.; Pioli, L.; Bonadonna, C.; Connor, C. B.; Andronico, D.; Harris, A. J. L.; Ripepe, M.

    2016-06-01

    Pulsatory eruptions are marked by a sequence of explosions which can be separated by time intervals ranging from a few seconds to several hours. The quantification of the periodicities associated with these eruptions is essential not only for the comprehension of the mechanisms controlling explosivity, but also for classification purposes. We focus on the dynamics of pulsatory activity and quantify unsteadiness based on the distribution of the repose time intervals between single explosive events in relation to magma properties and eruptive styles. A broad range of pulsatory eruption styles are considered, including Strombolian, violent Strombolian and Vulcanian explosions. We find a general relationship between the median of the observed repose times in eruptive sequences and the viscosity of magma given by η ≈ 100 ṡtmedian. This relationship applies to the complete range of magma viscosities considered in our study (102 to 109 Pa s) regardless of the eruption length, eruptive style and associated plume heights, suggesting that viscosity is the main magma property controlling eruption periodicity. Furthermore, the analysis of the explosive sequences in terms of failure time through statistical survival analysis provides further information: dynamics of pulsatory activity can be successfully described in terms of frequency and regularity of the explosions, quantified based on the log-logistic distribution. A linear relationship is identified between the log-logistic parameters, μ and s. This relationship is useful for quantifying differences among eruptive styles from very frequent and regular mafic events (Strombolian activity) to more sporadic and irregular Vulcanian explosions in silicic systems. The time scale controlled by the parameter μ, as a function of the median of the distribution, can be therefore correlated with the viscosity of magmas; while the complexity of the erupting system, including magma rise rate, degassing and fragmentation efficiency

  17. Evidence of volcanic and glacial activity in Chryse and Acidalia Planitiae, Mars

    NASA Astrophysics Data System (ADS)

    Martínez-Alonso, Sara; Mellon, Michael T.; Banks, Maria E.; Keszthelyi, Laszlo P.; McEwen, Alfred S.; HiRISE Team

    2011-04-01

    Chryse and Acidalia Planitiae show numerous examples of enigmatic landforms previously interpreted to have been influenced by a water/ice-rich geologic history. These landforms include giant polygons bounded by kilometer-scale arcuate troughs, bright pitted mounds, and mesa-like features. To investigate the significance of the last we have analyzed in detail the region between 60°N, 290°E and 10°N, 360°E utilizing HiRISE (High Resolution Imaging Science Experiment) images as well as regional-scale data for context. The mesas may be analogous to terrestrial tuyas (emergent sub-ice volcanoes), although definitive proof has not been identified. We also report on a blocky unit and associated landforms (drumlins, eskers, inverted valleys, kettle holes) consistent with ice-emplaced volcanic or volcano-sedimentary flows. The spatial association between tuya-like mesas, ice-emplaced flows, and further possible evidence of volcanism (deflated flow fronts, volcanic vents, columnar jointing, rootless cones), and an extensive fluid-rich substratum (giant polygons, bright mounds, rampart craters), allows for the possibility of glaciovolcanic activity in the region. Landforms indicative of glacial activity on Chryse/Acidalia suggest a paleoclimatic environment remarkably different from today's. Climate changes on Mars (driven by orbital/obliquity changes) or giant outflow channel activity could have resulted in ice-sheet-related landforms far from the current polar caps.

  18. Evidence of volcanic and glacial activity in Chryse and Acidalia Planitiae, Mars

    USGS Publications Warehouse

    Martinez-Alonso, Sara; Mellon, Michael T.; Banks, Maria E.; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2011-01-01

    Chryse and Acidalia Planitiae show numerous examples of enigmatic landforms previously interpreted to have been influenced by a water/ice-rich geologic history. These landforms include giant polygons bounded by kilometer-scale arcuate troughs, bright pitted mounds, and mesa-like features. To investigate the significance of the last we have analyzed in detail the region between 60°N, 290°E and 10°N, 360°E utilizing HiRISE (High Resolution Imaging Science Experiment) images as well as regional-scale data for context. The mesas may be analogous to terrestrial tuyas (emergent sub-ice volcanoes), although definitive proof has not been identified. We also report on a blocky unit and associated landforms (drumlins, eskers, inverted valleys, kettle holes) consistent with ice-emplaced volcanic or volcano-sedimentary flows. The spatial association between tuya-like mesas, ice-emplaced flows, and further possible evidence of volcanism (deflated flow fronts, volcanic vents, columnar jointing, rootless cones), and an extensive fluid-rich substratum (giant polygons, bright mounds, rampart craters), allows for the possibility of glaciovolcanic activity in the region.Landforms indicative of glacial activity on Chryse/Acidalia suggest a paleoclimatic environment remarkably different from today's. Climate changes on Mars (driven by orbital/obliquity changes) or giant outflow channel activity could have resulted in ice-sheet-related landforms far from the current polar caps.

  19. Volcanic activity before and after large tectonic earthquakes: Observations and statistical significance

    NASA Astrophysics Data System (ADS)

    Eggert, Silke; Walter, Thomas R.

    2009-06-01

    The study of volcanic triggering and interaction with the tectonic surroundings has received special attention in recent years, using both direct field observations and historical descriptions of eruptions and earthquake activity. Repeated reports of clustered eruptions and earthquakes may imply that interaction is important in some subregions. However, the subregions likely to suffer such clusters have not been systematically identified, and the processes responsible for the observed interaction remain unclear. We first review previous works about the clustered occurrence of eruptions and earthquakes, and describe selected events. We further elaborate available databases and confirm a statistically significant relationship between volcanic eruptions and earthquakes on the global scale. Moreover, our study implies that closed volcanic systems in particular tend to be activated in association with a tectonic earthquake trigger. We then perform a statistical study at the subregional level, showing that certain subregions are especially predisposed to concurrent eruption-earthquake sequences, whereas such clustering is statistically less significant in other subregions. Based on this study, we argue that individual and selected observations may bias the perceptible weight of coupling. The activity at volcanoes located in the predisposed subregions (e.g., Japan, Indonesia, Melanesia), however, often unexpectedly changes in association with either an imminent or a past earthquake.

  20. Complex Explosive Volcanic Activity on the Moon in Oppenheimer Crater

    NASA Astrophysics Data System (ADS)

    Horgan, B. H. N.; Bennett, K. A.; Gaddis, L. R.; Greenhagen, B. T.; Allen, C.; Hayne, P. O.; Bell, J. F., III; Paige, D. A.

    2015-12-01

    Oppenheimer is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic deposits on the Moon are thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rates and Hawaiian-style fire fountaining inferred to form larger regional deposits. However, using new methods to derive iron mineralogy from Chandrayaan-1 Moon Mineralogy Mapper near-infrared spectra, we find that the mineralogy of the Oppenheimer pyroclastics is not consistent with a simple Vulcanian eruption mechanism. The Oppenheimer pyroclastic deposits are mixtures of pyroxene sourced from the crater floor, juvenile clinopyroxene (CPX), and juvenile iron-rich glass. A Vulcanian (plugged conduit) eruption should cause significant country rock to be incorporated into the pyroclastic deposit. However, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases (glass or CPX mixed with glass) and very little floor material. Thus, we propose that at least some portion of these deposits must have erupted via a Strombolian or more continuous fire fountaining eruption at higher effusion rates. Significant along-fracture mineralogical variations within many of the deposits suggest multiple eruptions and that eruption styles may have been variable in time and space. Diviner mid-infrared spectra also indicate that these local deposits may be much more iron-rich than regional pyroclastic deposits, and thus are valuable resource targets. These results suggest that local lunar pyroclastic deposits may have a more complex origin and mode of emplacement than previously thought.

  1. Geology, geochronology, and potential volcanic hazards in the Lava Ridge-Hells Half Acre area, eastern Snake River Plain, Idaho

    USGS Publications Warehouse

    Kuntz, Mel A.; Dalrymple, G. Brent

    1979-01-01

    The evaluation of volcanic hazards for the proposed Safety Test Reactor Facility (STF) at the Argonne National Laboratory-West (ANLW) site, Idaho National Engineering Laboratory (INEL), Idaho, involves an analysis of the geology of the Lava Ridge-Hells Half Acre area and of K-At age determinations on lava flows in cored drill holes. The ANLW site at INEL lies in a shallow topographic depression bounded on the east and south by volcanic rift zones that are the locus of past shield-type basalt volcanism and by rhyolite domes erupted along the ring fracture of an inferred rhyolite caldera. The K-At age data indicate that the ANLW site has been flooded by basalt lava flows at irregular intervals from perhaps a few thousand years to as much as 300,000-400,000 years, with an average recurrence interval between flows of approximately 80,000-100,000 years. At least five major lava flows have covered the ANLW site within the past 500,000 years.

  2. Depth to Curie temperature or magnetic sources bottom in the Lesser Antilles Arc volcanic area

    NASA Astrophysics Data System (ADS)

    Gailler, Lydie-Sarah; Martelet, Guillaume; Thinon, Isabelle; Münch, Philippe; Arcay, Diane

    2015-04-01

    In the continuation of the innovative study carried out at the scale of La Réunion Island to generalize Curie Point Depth (CPD) determinations at the scale of oceanic volcanic islands, we present here a similar work at the scale of the Lesser Antilles Arc. Assuming that magnetic anomalies are concentrated within the oceanic crust and using the growing assumption of a magnetized upper mantle, the Curie depth should become deeper as the oceanic lithosphere becomes older (i.e. thicker). We use the magnetic anomaly map computed by Gailler et al. (2013), completed and extended with the global Earth Magnetic Anomaly Grid (EMAG2) (Maus et al., 2007). The calculated magnetic sources bottom lies at depths between 18 and 32 km and exhibits a complex topography, presumably caused by the combination of various magmatic and tectonic crustal structures in this complex subduction context. The correlations between our depth to magnetic sources bottom and the large scale bathymetric and geophysical studies provide an interesting overview of the Lesser Antilles Arc structuring. The Inner Arc is mainly associated with a deepening of the depth to magnetic sources bottom. On the contrary, a huge doming appears along the central Lesser Antilles Arc, consistent with the seismic imaging (Kopp et al., 2011). This uprise of our calculated magnetic surface extents southeastern to the Guadeloupe Island in the direction of the Tiburon Ridge following the abnormal transverse component of the subduction in the N130°E direction defined by Gailler et al. (2013). A strong lateral narrowing of this doming is evidenced southern of Dominique Island where the two arcs converge. In this central area, the averaged depth of the magnetic sources bottom is also larger than expected in the case of classical oceanic crust. This is in agreement with previous interpretation of an original oceanic crust thickened by deep magmatic processes and underplating prior to the evolution of the Lesser Antilles Arc

  3. Relationship between the latest activity of mare volcanism and topographic features of the Moon

    NASA Astrophysics Data System (ADS)

    Kato, Shinsuke; Morota, Tomokatsu; Yamaguchi, Yasushi; Watanabe, Sei-ichiro; Otake, Hisashi; Ohtake, Makiko

    2016-04-01

    Lunar mare basalts provide insights into compositions and thermal history of lunar mantle. According to crater counting analysis with remote sensing data, the model ages of mare basalt units indicate a second peak of magma activity at the end of mare volcanism (~2 Ga), and the latest eruptions were limited in the Procellarum KREEP Terrane (PKT), which has high abundances of heat-producing elements. In order to understand the mechanism for causing the second peak and its magma source, we examined the correlation between the titanium contents and eruption ages of mare basalt units using compositional and chronological data updated by SELENE/Kaguya. Although no systematic relationship is observed globally, a rapid increase in mean titanium (Ti) content occurred at 2.3 Ga in the PKT, suggesting that the magma source of mare basalts changed at that time. The high-Ti basaltic eruption, which occurred at the late stage of mare volcanism, can be correlated with the second peak of volcanic activity at ~2 Ga. The latest volcanic activity can be explained by a high-Ti hot plume originated from the core-mantle boundary. If the hot plume was occurred, the topographic features formed by the hot plume may be remained. We calculated the difference between topography and selenoid and found the circular feature like a plateau in the center of the PKT, which scale is ~1000 km horizontal and ~500 m vertical. We investigated the timing of ridge formation in the PKT by using stratigraphic relationship between mare basalts and ridges. The ridges were formed before and after the high-Ti basaltic eruptions and seem to be along with the plateau. These results suggest that the plateau formation is connected with the high-Ti basaltic eruptions.

  4. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  5. 1995 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.

    1996-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity (SVA) at 6 volcanic centers in 1995: Mount Martin (Katmai Group), Mount Veniaminof, Shishaldin, Makushin, Kliuchef/Korovin, and Kanaga. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) on the 1995 eruptions of 2 Russian volcanoes: Bezymianny and Karymsky. This report summarizes volcanic activity in Alaska during 1995 and the AVO response, as well as information on the 2 Kamchatkan eruptions. Only those reports or inquiries that resulted in a "significant" investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of phone calls throughout the year reporting steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1995 response record.

  6. Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Davies, Ashley G.; Doubleday, Joshua R.; Tran, Daniel Q.

    2014-01-01

    The study of volcanoes is important for both purely scientific and human survival reasons. From a scientific standpoint, volcanic gas and ash emissions contribute significantly to the terrestrial atmosphere. Ash depositions and lava flows can also greatly affect local environments. From a human survival standpoint, many people live within the reach of active volcanoes, and therefore can be endangered by both atmospheric (ash, debris) toxicity and lava flow. There are many potential information sources that can be used to determine how to best monitor volcanic activity worldwide. These are of varying temporal frequency, spatial regard, method of access, and reliability. The problem is how to incorporate all of these inputs in a general framework to assign/task/reconfigure assets to monitor events in a timely fashion. In situ sensing can provide a valuable range of complementary information such as seismographic, discharge, acoustic, and other data. However, many volcanoes are not instrumented with in situ sensors, and those that have sensor networks are restricted to a relatively small numbers of point sensors. Consequently, ideal volcanic study synergistically combines space and in situ measurements. This work demonstrates an effort to integrate spaceborne sensing from MODIS (Terra and Aqua), ALI (EO-1), Worldview-2, and in situ sensing in an automated scheme to improve global volcano monitoring. Specifically, it is a "sensor web" concept in which a number of volcano monitoring systems are linked together to monitor volcanic activity more accurately, and this activity measurement automatically tasks space assets to acquire further satellite imagery of ongoing volcanic activity. A general framework was developed for evidence combination that accounts for multiple information sources in a scientist-directed fashion to weigh inputs and allocate observations based on the confidence of an events occurrence, rarity of the event at that location, and other scientists

  7. The roar of Yasur: Handheld audio recorder monitoring of Vanuatu volcanic vent activity

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Turtle, Elizabeth P.; Howell, Robert; Radebaugh, Jani; Lopes, Rosaly M. C.

    2016-08-01

    We describe how near-field audio recording using a pocket digital sound recorder can usefully document volcanic activity, demonstrating the approach at Yasur, Vanuatu in May 2014. Prominent emissions peak at 263 Hz, interpreted as an organ-pipe mode. High-pass filtering was found to usefully discriminate volcano vent noise from wind noise, and autocorrelation of the high pass acoustic power reveals a prominent peak in exhalation intervals of 2.5, 4 and 8 s, with a number of larger explosive events at 200 s intervals. We suggest that this compact and inexpensive audio instrumentation can usefully supplement other field monitoring such as seismic or infrasound. A simple estimate of acoustic power interpreted with a dipole jet noise model yielded vent velocities too low to be compatible with pyroclast emission, suggesting difficulties with this approach at audio frequencies (perhaps due to acoustic absorption by volcanic gases).

  8. Acoustic waves in the atmosphere and ground generated by volcanic activity

    SciTech Connect

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  9. Acoustic waves in the atmosphere and ground generated by volcanic activity

    NASA Astrophysics Data System (ADS)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-09-01

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  10. Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.

    1996-01-01

    During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).

  11. Hydrothermal systems in two areas of the Jemez volcanic field: Sulphur Springs and the Cochiti mining district

    SciTech Connect

    WoldeGabriel, G.

    1989-03-01

    K/Ar dates and oxygen isotope data were obtained on 13 clay separates (<2 ..mu..m) of thermally altered mafic and silicic rocks from the Cochiti mining district (SE Jemez Mountains) and Continental Scientific Drilling Project (CSDP) core hole VC-2A (Sulphur Springs, Valles caldera). Illite with K/sub 2/O contents of 6.68%--10.04% is the dominant clay in the silicic rocks, whereas interstratified illite/smectites containing 1.4%--5.74% K/sub 2/O constitute the altered andesites. Two hydrothermal alteration events are recognized at the Cochiti area (8.07 m.y., n = 1, and 6.5--5.6 m.y., n = 6). The older event correlates with the waning stages of Paliza Canyon Formation andesite volcanism (greater than or equal to13 to less than or equal to8.5 m.y.), whereas the younger event correlates with intrusions and gold- and silver-bearing quartz veins associated with the Bearhead Rhyolite (7.54--5.8 m.y.). The majority of K/Ar dates in the hydrothermally altered, caldera-fill rocks of core hole VC-2A (0.83--0.66 m.y., n = 4) indicate that hydrothermal alteration developed contemporaneously with resurgence and ring fracture Valles Rhyolite domes (0.89--0.54 m.y.). One date of 0 +- 0.10 m.y. in acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole probably correlates with Holocene hydrothermal activity possibly associated with the final phases of the Valles Rhyolite (0.13 m.y.).

  12. Devices and methods to measure H2 and CO2 concentrations in gases released from soils and low temperature fumaroles in volcanic areas

    NASA Astrophysics Data System (ADS)

    di Martino, R. M. R.; Camarda, M.; Gurrieri, S.; Valenza, M.

    2009-04-01

    Hydrogen solubility and diffusion have a great relevance to change the redox state of magmas, usually expressed by oxygen fugacity. This influences many chemical and physical properties, such as oxidation state of multivalent elements, kind and abundance of minerals and gas species. These processes change the phase ratios into the volcanic system and so the magma movement capability toward the earth surface and the eruptive dynamics. In past studies several authors (Carapezza et al., 1980; Sato et al., 1982; Sato and McGee, 1985; Wakita et al., 1980) proposed the application of the fuel cells in order to measure reducing capacity of volcanic gases. Their found some clear correlations between variation peaks and volcanic activity but a few reducing capacity changes showed no correlation with it. In this study we characterize a fuel cell device designed to measure hydrogen concentration in a gas mixture. We present test results obtained in laboratory and in field trip, carried out to verify the major interferences of others reducing gas species, commonly present in volcanic emissions, in the measurement carried out with a hydrogen fuel cell sensor. Tests were performed at controlled temperature ad pressure conditions and at air saturated pressure vapour in the cell cathode. A new device to measure simultaneously hydrogen (H2) and carbon dioxide (CO2) concentrations in soil and in low temperature fumaroles in volcanic areas was proposed. The H2-detector is a hydrogen fuel cell, whereas CO2 is measured using an I.R. spectrometer. To build a continuous monitoring station of volcanic activity both sensors were put in a case together with a data logger. Our device has 0.2 mV ppm-1 sensitivity, accuracy of ± 5 ppm and about 10 ppm resolution whit respect to the hydrogen concentration. These instrumental characteristics were obtained applying a 500 ohm resistor to the external circuit that represents the best compromise between sensitivity, resolution, instrumental

  13. Estimation of age of Dali-Ganis rifting and associated volcanic activity, Venus

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. T.

    1993-01-01

    This paper deals with the estimation of age for the Dali and Ganis Chasma rift zones and their associated volcanism based on photogeologic analysis of stratigraphic relations of rift-associated features with impact craters which have associated features indicative of their age. The features are radar-dark and parabolic, and they are believed to be mantles of debris derived from fallout of the craters' ejecta. They are thought to be among the youngest features on the Venusian surface, so their 'parent' craters must also be very young, evidently among the youngest 10 percent of Venus' crater population. Dali Chasma and Ganis Chasma are a part of a system of rift zones contained within eastern Aphrodite and Atla Regio which is a significant component of Venus tectonics. The rifts of this system are fracture belts which dissect typical Venusian plains with rare islands of tessera terrain. The rift zone system consists of several segments following each other (Diane, Dali, Ganis) and forming the major rift zone line, about 10,000 km long, which has junctions with several other rift zones, including Parga Chasma Rift. The junctions are usually locations of rift-associated volcanism in the form of volcanic edifices (Maat and Ozza Montes) or plain-forming flows flooding some areas within the rift zones and the adjacent plains.

  14. Eruptions in space and time: durations, intervals, and comparison of world's active volcanic belts

    SciTech Connect

    Simkin, T.; McClelland, L.

    1986-07-01

    A computerized data bank, compiled over the last 12 years at the Smithsonian Institution, allows summaries to be made of Holocene volcanism. The Scientific Event Alert Network tracks current volcanic activity. However, the record of most volcanoes is poor before the last 100 years, and some eruptions still pass unreported. The time interval since the previous eruption can be calculated for 4835 of the 5564 compiled eruptions. The median interval is 5.0 years, but much longer intervals commonly precede unusually violent eruptions. For the 25 most violent eruptions in the file (with known preceding interval), the medium interval is 865 years. Of the historic eruptions in this group, 50% resulted in fatalities. The interval between an eruption's start and its most violent paroxysm may be measured in months or years, but it is usually short. Of the 205 larger eruptions for which data are available, 92 had the paroxysmal event within the first day of the eruption, allowing little time for emergency preparations after the eruption's opening phase. To compare the recent vigor of different volcanic belts, they calculated the number of years in which each volcano was active in the last 100 years, summed these for each belt, and divided by belt length. Another index of recent vigor is the number of recognized Holocene volcanoes divided by belt length. A third index is the number of large explosive eruptions (volcanic explosive index greater than or equal to 3) of the last 100 years, again normalized by belt length. These three measures correlate reasonably well, serving to contrast vigorous belts such as Kamchatka, Central America, and Java with relatively quiet belts such as the Cascades, South Sandwich Islands, Greece, and southern Chile.

  15. Chemical and Physical Characteristics of Groundwater in the Western Coastal Area in Jeju Volcanic Island, Korea

    NASA Astrophysics Data System (ADS)

    Lee, S.; Hamm, S.; Lee, J.; Koh, G.; Hwang, S.

    2008-12-01

    Residents in Jeju volcanic island use most part of water resources from groundwater. Actually, in the island, there exist no perennial streams or rivers due to extremely high infiltration rate of water into surface soils and rocks (basalt and trachyte). In the western part of Jeju Island, high pumping rate of wells caused great drawdown especially during drought period. By this current trend, great decline of groundwater level as well as seawater intrusion is predictable. According to drill data from 13 wells for monitoring seawater intrusion installed in the western part of the island by the authority of Jeju Special Governed Island, the geology of the western area is composed of five units: lava sequence (hyaloclastic breccia, acicular feldspar basalt, olivine basalt, aphanitic feldspar basalt, augite feldspar basalt, and porphyritic feldspar basalt), sedimentary layer (containing gravel and sand) intercalated in lava sequences, Seoguipo Formation (gravels, unconsolidated sands, shell fossils, and sandy mudstone), trachyandesite and tuff occurring in Seoguipo Formation, and U Formation. Geophysical well logging on the five monitoring wells (Panpo (PP), Kosan (KS), Shindo (SD), Ilgwa (IG), and Hamo (HM)), resulted in approximately 20~40 cps (counts per second) of natural gamma intensity in lava sequence. High gamma intensity of approximately 60 cps is noticeble in the sedimentary layer intercalated in lava sequence, and in Seoguipo Formation, especially clay minerals. Electric conductivity (EC) on PP, KS and IG wells showed 100~400 μS/cm with fresh water range. However, EC on SD and HM wells increased up to around 20,000~10,000 μS/cm with depth, which indicates variation from freshwater to salt water. Pumping tests were performed on nine monitoring wells in the range of 900~2,300m3/d and with an average discharge rate of 1,371m3/d. Among them, data from only five monitoring wells were used for pumping test analysis, since the other four wells were highly

  16. Dissolution of trace metals from lava ash: influence on the composition of rainwater in the Mount Etna volcanic area.

    PubMed

    Cimino, G; Toscano, G

    1998-01-01

    Dissolution of trace metals from lava ash of the Mount Etna volcano in aqueous suspensions is studied as a function of solution pH and aerosol mass loading. The rate of dissolution and the final concentration increase with decreasing pH. Leaching experiments are found to be consistent with the observations of these metals in rainwater of the volcanic area. Elements such as Fe and Mn are important in the aqueous oxidation of SO(2) which increases the acidity of the rainwater. Leaching of Na, Ca, K, Fe and Mg may have a buffering effect in reacting with cloud and aerosol droplets.

  17. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    NASA Astrophysics Data System (ADS)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    other active volcanic systems on Earth.

  18. Temporal and geochemical constraints on active volcanism in southeastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Catalano, J. P.; Baldwin, S.; Fitzgerald, P. G.; Webb, L. E.; Hollocher, K.

    2010-12-01

    Active volcanism in southeastern Papua New Guinea occurs on the Papuan Peninsula (Mt. Lamington and Mt. Victory), in the Woodlark Rift (Dobu Island, SE Goodenough Island, and Western Fergusson Island), and in the Woodlark Basin. In the Woodlark Basin seafloor spreading is active and decompression melting of the mantle produces basalts. However, the cause of volcanism on the Papuan Peninsula and immediately west of active seafloor spreading rift tip in the Woodlark Basin is controversial. Previous studies have suggested active volcanism there results from 1) southward subduction of Solomon Sea lithosphere at the Trobriand Trough or 2) decompression melting as the lithosphere is extended and eventually ruptures. To evaluate these possibilities 20 samples were collected from a bimodal basalt-rhyolite suite in the D’Entrecasteaux Islands approximately 80 km west of the sea floor spreading rift tip. Siliceous ash flow tuffs on Dobu Island, Sanaroa Island, and Eastern Fergusson Island consist of sanidine/anorthoclase + Fe/Ti oxides (illmenite/ magnetite) ± quartz ± nepheline ± clinopyroxene ± xenocrystic olivine. Sanidine and K-feldspar from these ash flow tuffs yielded flat age spectra with 40Ar/39Ar isochron ages of 0.008 ± 0.002 Ma and 0.553 ± 0.001 Ma. ICP-MS trace and REE geochemistry on felsic rocks from Dobu Island and Eastern Fergusson Island yielded multi-element diagrams with enriched incompatible elements, and corresponding negative Nb, Sr, Eu, and Ti anomalies. In contrast, mafic volcanics from SE Goodenough Island are comprised of plagioclase + olivine + Fe/Ti oxides ± orthopyroxene ± clinopyroxene ± hornblende ± biotite. Biotite yielded a 40Ar/39Ar isochron age of 0.376 ± 0.05 Ma. MORB-normalized multi-element diagrams of mafic rocks from SE Goodenough Island are LREE-enriched patterns with negative Nb and positive Sr anomalies. In comparison, multi-element diagrams from previous work on mafic rocks from the New Britain arc to the north also

  19. Reconstruction of the volcanic history of the Tacámbaro-Puruarán area (Michoacán, México) reveals high frequency of Holocene monogenetic eruptions

    NASA Astrophysics Data System (ADS)

    Guilbaud, Marie-Noëlle; Siebe, Claus; Layer, Paul; Salinas, Sergio

    2012-07-01

    The 690 km2 Tacámbaro-Puruarán area located at the arc-front part of the Michoácan-Guanajuato volcanic field in the Trans-Mexican Volcanic Belt (TMVB) records a protracted history of volcanism that culminated with intense monogenetic activity in the Holocene. Geologic mapping, 40Ar/39Ar and 14C radiometric dating, and whole-rock chemical analyses of volcanic products provide insights to that history. Eocene volcanics (55-40 Ma) exposed at uplifted blocks are related to a magmatic arc that preceded the TMVB. Early TMVB products are represented by poorly exposed Pliocene silicic domes (5-2 Ma). Quaternary (<2 Ma) volcanoes (114 mapped) are mainly scoria cones with lavas (49 vol.%), viscous lava flows (22 vol.%), and lava shields (22 vol.%). Erupted products are dominantly either basaltic andesites (37 vol. %), or andesites (17 vol.%), or span across both compositions (28 vol.%). Basalts (9 vol.%), dacites (4 vol.%), shoshonites (2 vol.%), and other alkali-rich rocks (<3 vol.%) occur subordinately. Early-Pleistocene volcanism was bimodal (dacites and basalts) and voluminous while since 1 Ma small-volume eruptions of intermediate magmas have dominated. Higher rates of lithospheric extension in the Quaternary may have allowed a larger number of small, poorly evolved dikes to reach the surface during this period. Eruptive centers as old as 1.7 Ma are aligned in a NE direction parallel to both, basement faults and the direction of regional compressive stress, implying structural control on volcanic activity. Data suggest that volcanism was strongly pulsatory and fed by localized low-degree partial melting of mantle sources. In the Holocene, at least 13 eruptions occurred (average recurrence interval of 800 years). These produced ~3.8 km3 of basaltic andesitic to andesitic magma and included four eruptions dated at ~1,000; 4,000; 8,000; and 11,000 years bc (calibrated 14C ages). To date, this is one of the highest monogenetic eruption frequencies detected within such a

  20. Infrasound Monitoring of the Volcanic Activities of Japanese Volcanoes in Korea

    NASA Astrophysics Data System (ADS)

    Lee, H. I.; Che, I. Y.; Shin, J. S.

    2015-12-01

    Since 1999 when our first infrasound array station(CHNAR) has been installed at Cheolwon, Korea Institute of Geoscience and Mineral Resources(KIGAM) is continuously observing infrasound signals with an infrasound array network, named KIN(Korean Infrasound Network). This network is comprised of eight seismo-acoustic array stations(BRDAR, YPDAR, KMPAR, CHNAR, YAGAR, KSGAR, ULDAR, TJIAR). The aperture size of the smallest array is 300m and the largest is about 1.4km. The number of infrasound sensors are between 4(TJIAR) and 18(YAGAR), and 1~5 seismometers are collocated with infrasound sensors. Many interesting infrasound signals associated with different type of sources, such as blasting, large earthquake, bolide, volcanic explosion are detected by KIN in the past 15 years. We have analyzed the infrasound signals possibly associated with the japanese volcanic explosions with reference to volcanic activity report published by Japanese Meteorological Agency. Analysis results of many events, for example, Asama volcano explosion in 2004 and Shinmoe volcano in 2011, are well matched with the official report. In some cases, however, corresponding infrasound signals are not identified. By comparison of the infrasound signals from different volcanoes, we also found that the characteristics of signals are distinguishing. It may imply that the specific volcano has its own unique fingerprint in terms of infrasound signal. It might be investigated by long-term infrasound monitoring for a specific volcano as a ground truth generating repetitive infrasound signal.

  1. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, R.G.; Neal, C.A.; Dixon, J.P.; Ushakov, Sergey

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity at or near 16 volcanoes in Alaska during 2005, including the high profile precursory activity associated with the 2005?06 eruption of Augustine Volcano. AVO continues to participate in distributing information about eruptive activity on the Kamchatka Peninsula, Russia, and in the Kurile Islands of the Russian Far East, in conjunction with the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Volcanic Eruption Response Team (SVERT), respectively. In 2005, AVO helped broadcast alerts about activity at 8 Russian volcanoes. The most serious hazard posed from volcanic eruptions in Alaska, Kamchatka, or the Kurile Islands is the placement of ash into the atmosphere at altitudes traversed by jet aircraft along the North Pacific and Russian Trans East air routes. AVO, KVERT, and SVERT work collaboratively with the National Weather Service, Federal Aviation Administration, and the Volcanic Ash Advisory Centers to provide timely warnings of volcanic eruptions and the production and movement of ash clouds.

  2. Assessing microbial activities in metal contaminated agricultural volcanic soils--An integrative approach.

    PubMed

    Parelho, C; Rodrigues, A S; Barreto, M C; Ferreira, N G C; Garcia, P

    2016-07-01

    Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals. Trace metal contaminated soils have significant effects on soil microbial activities and hence on soil quality. The aim of this study is to determine the soil microbial responses to metal contamination in volcanic soils under different agricultural land use practices (conventional, traditional and organic), based on a three-tier approach: Tier 1 - assess soil microbial activities, Tier 2 - link the microbial activity to soil trace metal contamination and, Tier 3 - integrate the microbial activity in an effect-based soil index (Integrative Biological Response) to score soil health status in metal contaminated agricultural soils. Our results showed that microbial biomass C levels and soil enzymes activities were decreased in all agricultural soils. Dehydrogenase and β-glucosidase activities, soil basal respiration and microbial biomass C were the most sensitive responses to trace metal soil contamination. The Integrative Biological Response value indicated that soil health was ranked as: organic>traditional>conventional, highlighting the importance of integrative biomarker-based strategies for the development of the trace metal "footprint" in Andosols.

  3. Preliminary assessment of the geothermal system of the Tiris volcanic area, East Java, Indonesia.

    NASA Astrophysics Data System (ADS)

    Deon, F.; Moeck, I.; Sheytt, T.; Jaya, M. S.

    2012-04-01

    Indonesia, with 15 % of the world's active volcanoes, hosts a total estimated geothermal potential of 27000 MW of which 1197 MWe in 2011 have been installed. Exploration of magmatic remote areas is therefore important. Our investigation area is located at the volcano Lamongan, Tiris East Java, Indonesia, which is part of the modern Sunda Arc Region, characterized by extensional regime. The average ground water temperature in the area ranges between 27 and 29 ° C and the warm springs between 35 - 45 ° C, evidencing a geothermal potential of the area. Numerous maars and cindered cones have been located and studied here, some of them with a NW - SE lineament similar to the Tiris fault (only observed in satellite images). In this first exploration stage we characterized the geochemistry of the springs and investigated the petrology of the rocks. They were analyzed in terms of mineral composition (optical microscopy and electron microprobe) and major element composition (X-ray fluorescence). The samples have a typical basaltic - basaltic andesite composition, with abundant plagioclase with An65 up to An90, as well as olivine and pyroxene. The plagioclase crystals are several mm large, twinned and show no hydrothermal alteration. The fluid chemistry was determined in term of cation and anion concentration with Inductively Coupled Plasma Mass Spectrometry. The chemistry of geothermal waters provides specific information about the deep of the fluids in geothermal system and the discharge location. The concentrations of Na+, Ca2+, Li+, B3+ and Cl- suggest that the water of the Lamongan area derive from sea water intrusions. The high permeable pyroclastites, overlain by lower permeable basalt - andesitic basalt, observed in the field, may have channeled the sea water from the coast to the Tiris area. A structural lineament, NW - SE, may control the water intrusion, as the lineament of the springs confirms. The high HCO3-concentration in the fluid samples, as no carbonate

  4. Groundwater flow in a volcanic-sedimentary coastal aquifer: Telde area, Gran Canaria, Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Cabrera, M. C.; Custodio, E.

    Groundwater conditions in a 75- km2 coastal area around the town of Telde in eastern Gran Canaria island have been studied. Pliocene to Recent volcanic materials are found, with an intercalated detrital formation (LPDF), which is a characteristic of the area. Groundwater development has become intensive since the 1950s, mostly for intensive agricultural irrigation and municipal water supply. The LPDF is one order of magnitude more transmissive and permeable than the underlying Phonolitic Formation when median values are compared (150 and 15 m2 day-1 5 and 0.5 m day-1, respectively). These two formations are highly heterogeneous and the ranges of expected well productivities partly overlap. The overlying recent basalts constituted a good aquifer several decades ago but now are mostly drained, except in the southern areas. Average values of drainable porosity (specific yield) seem to be about 0.03 to 0.04, or higher. Groundwater development has produced a conspicuous strip where the watertable has been drawn down as much as 40 m in 20 years, although the inland watertable elevation is much less affected. Groundwater reserve depletion contributes only about 5% of ed water, and more than 60% of this is transmitted from inland areas. Groundwater discharge into the sea may still be significant, perhaps 30% of total inflow to the area is discharged to the sea although this value is very uncertain. Les conditions de gisement de l'eau souterraine d'une région de 75 km2 de la côte Est de l'île de la Grande Canarie (archipel des Canaries), dans le secteur de Telde, ont été étudiées, en utilisant seulement les données fournies par les puits d'exploitation existants. Les matériaux volcaniques, d'âge Pliocène à sub-actuel, sont séparés par une formation détritique (FDLP), qui constitue la principale singularité de cette région. L'exploitation de l'eau souterraine est devenue intensive à partir de 1950, principalement pour des besoins d'irrigation (agriculture

  5. Scaling and extended scaling in sediment registers of a paleolake perturbed by volcanic activity

    NASA Astrophysics Data System (ADS)

    Ugalde, Edgardo; Martínez-Mekler, Gustavo; Vilaclara, Gloria

    2006-07-01

    We analyze a sequence of density variations of sedimentary material from an extinct paleolake of the state of Tlaxcala, Mexico, which we previously obtained by means of computer-aided tomography [J. Miranda, A. Oliver, G. Vilaclara, R. Rico-Montiel, V.M. Macias, J.L. Ruvalcava, M.A. Zenteno, Nucl. Instrum. Methods Phys. Res. B 85 (1994) 886]. In the stratified blocks chiselled out of mines at the lake bed, low-density sediments have a high concentration of diatomite, while high-density strata show a considerable amount of material external to the lake, mostly of volcanic origin. Two regions can be distinguished by visual inspection: a darker and older one which we attribute to a strongly externally perturbed regime, and a whiter more recent one which appears to have been subjected to less frequent volcanic perturbations. By means of a scaling analysis of the distribution function of density fluctuations, we show that for the most recent region there is a range of scales where these fluctuations present a self-similar behavior. We attribute this observation to a rare event response, namely, the onset of correlations in the lake relaxation processes to steady-state conditions following intense volcanic disturbances. Based on scaling properties of the structure function, we also show that the complete data series presents extended self-similarity as encountered in turbulence studies [R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massoli, S. Succi, Phys. Rev. E 48 (1993) R29]. Our characterization of the statistical behavior of the density fluctuations contributes to our knowledge of the volcanic activity over a period of thousands of years, as well as aspects of ecological interest of the lake's response to these disturbances [G. Vilaclara, E. Ugalde, E. Cuna, G. Martinez-Mekler, Complex dynamics of the evolution of a Paleolake subjected to volcanic activity: geology meets ecology, submitted for publication]. Our approach can be implemented in general to other

  6. Neural forecasting of seismicity and ground displacements in different volcanic areas

    NASA Astrophysics Data System (ADS)

    Luongo, G.; Marandola, C.; Mazzarella, A.

    2004-02-01

    Volcanic events have been, up to now, traditionally predicted through deterministic or probabilistic linear methods. Here a new non-linear approach is carried out, based on artificial neural networks (ANN), a non-linear physical mathematical model to interconnect data emulating animal brain behaviour. Being an artificial intelligence system, this model is able, once both the observed data records and starting values of the network's parameters have been entered, to self-guide itself and supply the best outputs with respect to the input parameters. On varying the starting values, the exit values change too, the degree of improvement being measurable quantitatively. This model has been applied to four different volcanoes (Vesuvius, Phlegraean Fields, Etna, Hawaii) with different volcanic characteristics, in order to measure the effectiveness of the method as a general one. For this purpose, data regarding seismicity or ground displacements (vertical, radial, tangential components) were processed and predicted by means of ANN. The results are encouraging and, in many cases, in very fair agreement with the observed data.

  7. Volcano-tectonic structures, gravity and helium in geothermal areas of Tuscany and Latium (Vulsini volcanic district), Italy

    USGS Publications Warehouse

    Di, Filippo M.; Lombardi, S.; Nappi, G.; Reimer, G.M.; Renzulli, A.; Toro, B.

    1999-01-01

    Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.Since the early 1980s, geological and structural mapping, gravity, and helium soil-gas studies have been performed in the eastern sector of the Vulsini Volcanic District (Roman Magmatic Province) in an attempt to locate potential geothermal reservoirs. This area is characterised by an anomalous geothermal gradient of > 100??C/km, and by widespread hydrothermal mineralization, thermal springs, high gas fluxes, and fossil and current travertine deposits. The results of these surveys indicate the existence of a number of fault systems, with N-S and E-W structures that appear to be superimposed on older NW-SE and NE-SW features. Comparison of the results of the various studies also reveals differences in permeability and potential reservoir structures at depth.

  8. Fluid escape structures in the Graham Bank region (Sicily Channel, Central Mediterranean) revealing volcanic and neotectonic activity.

    NASA Astrophysics Data System (ADS)

    Spatola, Daniele; Pennino, Valentina; Basilone, Luca; Interbartolo, Francesco; Micallef, Aaron; Sulli, Attilio; Basilone, Walter

    2016-04-01

    In the Sicily Channel, (Central Mediterranean), two geodynamic processes overlap each other, the Maghrebides-Apennines accretionary prism and the Sicily Channel rift. Moreover, the northwestern sector (Banks sector) is characterised by an irregular seafloor morphology linked to the recent volcanic and tectonic activity.In order to discriminate the role exerted by both the processes in the morphostructural setting of the area we used a dataset of both high and very high resolution single-channel and multi-channel profiles, acquired in the frame of the RITMARE project respectively with CHIRP and sparker, and airgun sources, and high resolution (5 m cell) morpho-bathymetric data. The data allowed us to identify and characterise two areas where different geological features (sedimentary and volcanic) are prevailing. They present fluid escaping evidence, which often appears to be active and generating different types of morphologies (both positive and negative). In the western sector we recognised pockmarks at water depths of 195 to 317 m, with diameters from 25 to 580 m, depths from 1.3 to 15 m, and slope up to 23°. They show sub-circular shape in plan-view and reflectors with upward concavity in cross section, and are oriented along a NW-SE trend.The CHIRP and multichannel profiles highlight fluids that affect the Plio-Quaternary succession, especially in areas where the top surface of the Messinian succession is shallower. Conversely, wipe-out acoustic facies were recognised in proximity of: i) extensional faults of Mesozoic age with NW-SE trend; ii) dip/strike slip faults of Cenozoic age with NW-SE, N-S and about NNE-SSW trends, and iii) extensional neo-tectonic faults with NW-SE and NNW-SSE trends. We cannot exclude that they could feed the shallower reservoir producing a mixing between the two. In the eastern sector we recognised a cluster of volcanoes composed of seven cone-shaped structures (SCV1-7), pertaining to a wide area known as Graham Bank. A detailed

  9. Venus - Volcanism and rift formation in Beta Regio

    NASA Technical Reports Server (NTRS)

    Campbell, D. B.; Harmon, J. K.; Hine, A. A.; Head, J. W.

    1984-01-01

    A new high-resolution radar image of Beta Regio, a Venus highland area, confirms the presence of a major tectonic rift system and associated volcanic activity. The lack of identifiable impact craters, together with the apparent superposition of the Theia Mons volcanic structure on the rift system, suggest that at least some of the volcanic activity occurred in relatively recent geologic time. The presence of topographically similar highland areas elsewhere on Venus (Aphrodite Terra, Dali Chasma, and Diana Chasma) suggests that rifting and volcanism are significant processes on Venus.

  10. Assessment of planetary geologic mapping techniques for Mars using terrestrial analogs: The SP Mountain area of the San Francisco Volcanic Field, Arizona

    USGS Publications Warehouse

    Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.

    2009-01-01

    understand that surficial materials (such as alluvium and volcanic ash deposits) are likely to be under-mapped yet are important because they obscure underlying units and contacts; (4) where possible, mapping multiple contact and structure types based on their varying certainty and exposure that reflect the perceived accuracy of the linework; (5) reviewing the regional context and searching for evidence of geologic activity that may have affected the map area yet for which evidence within the map area may be absent; and (6) for multi-authored maps, collectively analyzing the mapping relations, approaches, and methods throughout the duration of the mapping project with the objective of achieving a solid, harmonious product.

  11. Monogenetic volcanic hazards and assessment

    NASA Astrophysics Data System (ADS)

    Connor, C.; Connor, L. J.; Richardson, J. A.

    2012-12-01

    Many of the Earth's major cities are build on the products of monogenetic volcanic eruptions and within geologically active basaltic volcanic fields. These cities include Mexico City (Mexico), Auckland (New Zealand), Melbourne (Australia), and Portland (USA) to name a few. Volcanic hazards in these areas are complex, and involve the potential formation of new volcanic vents and associated hazards, such as lava flows, tephra fallout, and ballistic hazards. Hazard assessment is complicated by the low recurrence rate of volcanism in most volcanic fields. We have developed a two-stage process for probabilistic modeling monogenetic volcanic hazards. The first step is an estimation of the possible locations of future eruptive vents based on kernel density estimation and recurrence rate of volcanism using Monte Carlo simulation and accounting for uncertainties in age determinations. The second step is convolution of this spatial density / recurrence rate model with hazard codes for modeling lava inundation, tephra fallout, and ballistic impacts. A methodology is presented using this two-stage approach to estimate lava flow hazard in several monogenetic volcanic fields, including at a nuclear power plant site near the Shamiram Plateau, a Quaternary volcanic field in Armenia. The location of possible future vents is determined by estimating spatial density from a distribution of 18 mapped vents using a 2-D elliptical Gaussian kernel function. The SAMSE method, a modified asymptotic mean squared error approach, uses the distribution of known eruptive vents to optimally determine a smoothing bandwidth for the Gaussian kernel function. The result is a probability map of vent density. A large random sample (N=10000) of vent locations is drawn from this probability map. For each randomly sampled vent location, a lava flow inundation model is executed. Lava flow input parameters (volume and average thickness) are determined from distributions fit to field observations of the low

  12. Seafloor slow vertical displacement inferred by sea bottom pressure measurements in shallow water: an application to the Campi Flegrei volcanic area

    NASA Astrophysics Data System (ADS)

    Chierici, Francesco; Pignagnoli, Luca; Iannaccone, Giovanni; Guardato, Sergio; Locritani, Marina; Embriaco, Davide; Donnarumma, Gian Paolo; La Rocca, Adriano; Pinto, Salvatore; Beranzoli, Laura

    2016-04-01

    The vertical component of sea floor displacement in tectonic or volcanically active areas can be observed using sea bottom pressure recorders. These measurements are usually acquired in areas affected by strong dynamics with large vertical displacement and in deep water, where the noise induced by the sea state is low. Under these conditions the contribution of the variation of sea water density and the contribution of the instrumental drift - a typical feature of the bottom pressure recorders - can be negligible. We have developed a new methodology to monitor vertical sea floor displacement both in areas with small and slow deformation, and in shallow water. We take advantage of bottom pressure recorder data, augmented with ancillary sea level, barometric and water physical parameters measurements. We have applied this method to the data collected by a bottom pressure recorder deployed at 100 m w.d. in the Campi Flegrei Caldera as part of CUMAS multiparameter monitoring system. During several months of 2011 we have observed a small uplift episode related to the bradiseismic activity of the area. These observations are compatible with other geodetic data recorded in the region and provide unprecedented measurements of the vertical deformation in the marine area.

  13. A spaceborne inventory of volcanic activity in Antarctica and southern oceans, 2000-10

    USGS Publications Warehouse

    Patrick, Matthew R.; Smellie, John L.

    2015-01-01

    Of the more than twenty historically active volcanoes in Antarctica and the sub-Antarctic region only two, to our knowledge, host any ground-based monitoring instruments. Moreover, because of their remoteness, most of the volcanoes are seldom visited, thus relegating the monitoring of volcanism in this region almost entirely to satellites. In this study, high temporal resolution satellite data from the Hawaii Institute of Geophysics and Planetology's MODVOLC system using MODIS (Moderate Resolution Imaging Spectroradiometer) are complemented with high spatial resolution data (ASTER, or Advanced Spaceborne Thermal Emission and Reflection Radiometer, and similar sensors) to document volcanic activity throughout the region during the period 2000–10. Five volcanoes were observed in eruption (Mount Erebus, Mount Belinda, Mount Michael, Heard Island and McDonald Island), which were predominantly low-level and effusive in nature. Mount Belinda produced tephra, building a cinder cone in addition to an extensive lava field. Five volcanoes exhibited detectable thermal, and presumed fumarolic, activity (Deception, Zavodovski, Candlemas, Bristol, and Bellingshausen islands). A minor eruption reported at Marion Island was not detected in our survey due to its small size. This study also discovered a new active vent on Mount Michael, tracked dramatic vent enlargement on Heard Island, and provides an improved picture of the morphology of some of the volcanoes.

  14. Evidence of lightning and volcanic activity on Venus - Pro and con

    NASA Technical Reports Server (NTRS)

    Scarf, Frederick L.; Russell, Christopher T.

    1988-01-01

    It is argued that the impulsive 100-Hz noise bursts detected with the use of the electric field antenna on the Pioneer Venus Orbiter (PVO) have plasma wave charcteristics that can only be explained if they are whistler mode signals of a type that can be produced by atmospheric discharges. It is further argued that these data are evidence for lightning and volcanic activity on Venus. A reply contends that the PVO electric field measurements are unrelated to either the lower atmosphere or the surface of Venus.

  15. Volcanic materials superconductivity in desert areas of the states of Sonora and Baja California

    NASA Astrophysics Data System (ADS)

    Holguín, Aldo

    2017-01-01

    Research was conducted to find materials in their natural state at room temperature and exhibit the effects of superconductivity in the volcanic region of deserts Altar in Sonora and Baja California Norte. 100 were collected at random samples of materials from different parts of the region and underwent tests to determine their electromagnetic parameters of electrical resistance, magnetism, temperature and conductivity. Only it has been found that the effects of superconductivity in them is only present at very low temperatures corroborating what has been done in other investigations, however no indication that there is a material or combination of materials that can produce the effects of superconductivity other temperatures so it is suggested to continue the search for such materials and / or develop a technique at room temperature to allow mimic the behavior of atoms when superconductivity occurs at.

  16. (abstract) Survey of Volcanic Hazards in the Trans Mexican Volcanic Belt

    NASA Technical Reports Server (NTRS)

    Abrams, M.; Siebe, C.; Macias, J.

    1997-01-01

    A substantial percentage of the world's population lives in areas vulnerable to the negative effects of future volcanic activity. This is especially true in Mexico, where within the Trans Mexican Volcanic Belt (TMVB) one half of the country's 90 million inhabitants live. The TMVB is a 1 000 by 200 km area, dotted with hundreds of volcanoes and volcanic centers. Most of the area has been poorly studied, and the volcanic history is largely unknown. Our approach is to combine interpretations of satellite images, field work and mapping, laboratory analysis, and age dating to elucidate the volcanic history and evaluate the potential eruptive hazards. Hazards evaluations are done in the form of risk maps.

  17. 2008 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  18. 2007 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Dixon, James P.; Malik, Nataliya; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2007. The year was highlighted by the eruption of Pavlof, one of Alaska's most frequently active volcanoes. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the autumn of 2006 and continued to emit copious amounts of steam and volcanic gas into 2007. Redoubt Volcano showed the first signs of the unrest that would unfold in 2008-09. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  19. Volcanic deposits in Antarctic snow and ice

    NASA Astrophysics Data System (ADS)

    Delmas, Robert J.; Legrand, Michel; Aristarain, Alberto J.; Zanolini, FrançOise

    1985-12-01

    Major volcanic eruptions are able to spread large amounts of sulfuric acid all over the world. Acid layers of volcanic origin were detected for the first time a few years ago by Hammer in Greenland ice. The present paper deals with volcanic deposits in the Antarctic. The different methods that can be used to find volcanic acid deposits in snow and ice cores are compared: electrical conductivity, sulfate, and acidity measurements. Numerous snow and ice samples collected at several Antarctic locations were analyzed. The results reveal that the two major volcanic events recorded by H2SO4, fallout in Antarctic ice over the last century are the eruptions of Krakatoa (1883) and Agung (1963), both located at equatorial latitudes in the southern hemisphere. The volcanic signals are found to be particularly well defined at central Antarctic locations apparently in relation to the low snow accumulation rates in these areas. It is demonstrated that volcanic sulfuric acid in snow is not even partially neutralized by ammonia. The possible influence of Antarctic volcanic activity on snow chemistry is also discussed, using the three recent eruptions of the Deception Island volcano as examples. Only one of them seems to have had a significant effect on the chemistry of snow at a location 200 km from this volcano. It is concluded that Antarctic volcanic ice records are less complicated than Greenland records because of the limited number of volcanos in the southern hemisphere and the apparently higher signal to background ratio for acidity in Antarctica than in Greenland.

  20. Volcanic activity and its link to glaciation cycles: Single-grain age and geochemistry of Early to Middle Miocene volcanic glass from ANDRILL AND-2A core, Antarctica

    NASA Astrophysics Data System (ADS)

    Nyland, R. E.; Panter, K. S.; Rocchi, S.; Di Vincenzo, G.; Del Carlo, P.; Tiepolo, M.; Field, B.; Gorsevski, P.

    2013-01-01

    In the frame of the ANtarctic DRILLing Program, volcanic glass fragments were collected from the AND-2A core between ~ 354 and 765 m below sea floor (mbsf) as accumulations (5-70 vol.%) within sediments. Here, we present the physical characteristics, age and geochemistry of the glass, which enable us to reconstruct Early to Middle Miocene volcanic activity in southern McMurdo Sound and, for the first time, document the response of volcanism to climate change in Antarctica. Glass-rich sediments include muddy-to-fine sandstone and stratified diamictite. Glass varies in color, size, vesicularity, crystal content, angularity, and degree of alteration. The mostly fresh glass exhibits delicate cuspate forms indicating deposition as primary ash fall. 40Ar-39Ar age determinations on individual glass grains are in good agreement with the depositional age model of the sediments (ca. 15.6 to 18.6 Ma), supporting for most of them a primary origin, however, some samples do contain older fragments that indicate glass recycling during times of enhanced glacial erosion. Most glasses are mafic (MgO = 3 to 9 wt.%) and vary from hypersthene to nepheline normative with a restricted range in SiO2 (45.2 ± 0.8 wt.%, 1σ) and trace element concentrations typical of the rift-related alkaline rocks in the Erebus Volcanic Province. The glass extends known composition of early phase Mount Morning activity (ca. 11-19 Ma), the only known Early to Middle Miocene source, to a more mafic end, revealing a previously unknown explosive, strongly alkaline, basaltic phase and the most primitive forms of both strongly alkaline (basanite to phonolite) and moderately alkaline (alkali basalt to trachyte) magma associations. The glass-rich sediments occur in glacimarine sequences that record 56 cycles of glacial advance and retreat. Volcanic response to glacial cyclicity is observed both physically and geochemically in AND-2A glass. Higher glass volumes in sediments correlate with ice minimum conditions

  1. 1997 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Wallace, Kristi L.

    1999-01-01

    The Alaska Volcano Observatory (AVO) monitors over 40 historically active volcanoes along the Aleutian Arc. Twenty are seismically monitored and for the rest, the AVO monitoring program relies mainly on pilot reports, observations of local residents and ship crews, and daily analysis of satellite images. In 1997, AVO responded to eruptive activity or suspect volcanic activity at 11 volcanic centers: Wrangell, Sanford, Shrub mud volcano, Iliamna, the Katmai group (Martin, Mageik, Snowy, and Kukak volcanoes), Chiginagak, Pavlof, Shishaldin, Okmok, Cleveland, and Amukta. Of these, AVO has real-time, continuously recording seismic networks at Iliamna, the Katmai group, and Pavlof. The phrase “suspect volcanic activity” (SVA), used to characterize several responses, is an eruption report or report of unusual activity that is subsequently determined to be normal or enhanced fumarolic activity, weather-related phenomena, or a non-volcanic event. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) about the 1997 activity of 5 Russian volcanoes--Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Alaid (SVA). This report summarizes volcanic activity and SVA in Alaska during 1997 and the AVO response, as well as information on the reported activity at the Russian volcanoes. Only those reports or inquiries that resulted in a “significant” investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of reports throughout the year of steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1997 response record.

  2. Ultra-long-range hydroacoustic observations of submarine volcanic activity at Monowai, Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Metz, D.; Watts, A. B.; Grevemeyer, I.; Rodgers, M.; Paulatto, M.

    2016-02-01

    Monowai is an active submarine volcanic center in the Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of 5 days, with explosive activity directly linked to the generation of seismoacoustic T phases. We show, using cross-correlation and time-difference-of-arrival techniques, that the eruption is detected as far as Ascension Island, equatorial South Atlantic Ocean, where a bottom moored hydrophone array is operated as part of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization. Hydroacoustic phases from the volcanic center must therefore have propagated through the Sound Fixing and Ranging channel in the South Pacific and South Atlantic Oceans, a source-receiver distance of ~15,800 km. We believe this to be the furthest documented range of a naturally occurring underwater signal above 1 Hz. Our findings, which are consistent with observations at regional broadband stations and long-range, acoustic parabolic equation modeling, have implications for submarine volcano monitoring.

  3. Autonomous Volcanic Activity Detection with ASE on EO-1 Hyperion: Applications for Planetary Missions

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Baker, V.; Castano, R.; Chien, S.; Cichy, B.; Doggett, T.; Dohm, J.; Greeley, R.; Rabideau, G.; Sherwood, R.; Williams, K.; ASE Project Team

    2003-05-01

    The New Millennium Program (NMP) Space Technology 6 (ST-6) Autonomous Sciencecraft Experiment (ASE) will fly two scene classifiers on the Earth Orbiting 1 (EO-1) spacecraft in the fall of 2003, and will demonstrate autonomous, onboard processing of Hyperion imager 0.4-2.4 micron hyperspectral data, and autonomous, science-driven planning and acquisition of subsequent observations. ASE is an experiment to meet NASA's call for systems with reduced downlink and onboard data processing to enable autonomous missions. ASE software is divided into three classes: (1) spacecraft command and control; (2) an onboard planner (CASPER); and (3) modular science algorithms, which are used to process raw data to search out specific features and spectral signatures. The ASE Science Team has developed scene classifiers to detect thermal emission in both day and nighttime Hyperion data, and are continuing to develop other scene classifiers for ice, snow, water and land for future release and flight on EO-1. Once uploaded, the thermal scene classifier effectively turns the EO-1 spacecraft into an autonomously operating and reacting volcanic activity detector. It is possible to envision such a capability on spacecraft observing volcanism on Io and Triton, autonomously identifying and classifying activity, identifying sites deserving of closer scrutiny, and retasking the spacecraft to observe them, thus fulfilling NASA's goal of fully-autonomous, science-driven spacecraft. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA.

  4. Hummock alignment in Japanese volcanic debris avalanches controlled by pre-avalanche slope of depositional area

    NASA Astrophysics Data System (ADS)

    Yoshida, Hidetsugu

    2014-10-01

    This paper investigates the relationship of hummock orientation to the flow dynamics of volcanic debris avalanches. There are opposing views on whether hummocks are systematically aligned along debris avalanche paths, or not. To investigate this geomorphologically fundamental question, I investigated hummock orientation for six Japanese debris avalanches of two simple styles: four "freely spreading" debris avalanches, and two "valley-filling" debris avalanches. Quantitative GIS-based data analysis revealed that hummock orientation along the avalanche flow path alternated between dominantly parallel to and dominantly perpendicular to the flow direction. These changes of alignment reflect dynamic changes of the local stress field within the avalanche, alternating between extensional and compressional in response to changes of the slope of the pre-avalanche ground surface. Changes of hummock alignment from perpendicular to parallel indicate that the local stress regime has changed from compressional to extensional. Conversely, changes of hummock alignment from parallel to perpendicular indicate that the local stress regime has changed from extensional to compressional. Thus, this research demonstrated a clear relationship between hummock orientation and dynamic changes of stress regime within avalanches that are related to changes of the slope of the pre-avalanche ground surface.

  5. Connecting Io's volcanic activity to the Io plasma torus: comparison of Galileo/NIMS volcanic and ground-based torus observations

    NASA Astrophysics Data System (ADS)

    Magalhaes, F. P.; Lopes, R. M. C.; Rathbun, J. A.; Gonzalez, W. D.; Morgenthaler, J. P.; Echer, E.; Echer, M. P. D. S.

    2015-12-01

    Io, the innermost of the Jupiter's four Galilean moons, is a remarkable object in the Solar System, due to its intense and energetic volcanic activity. The volcanic sulfur and oxygen in Io's tenuous atmosphere escapes forming an extended neutral cloud around Io and Jupiter. Subsequently, by ionization and pickup ions, a ring of charged particles encircling Jupiter is created, forming the Io plasma torus. Considering this scenario, it is reasonable to expect that the Io plasma torus should be affected by changes in Io's volcanism. Interactions between Io and the Jovian environment is unique and yet not very well understood. Here we present two sets of observations. One from the Galileo Near-Infrared Imaging Spectrograph (NIMS) instrument, which obtained spectral image cubes between 0.7 and 5.2 microns. The other dataset is from ground-based observations of the [SII] 6731 Å emission lines from the Io plasma torus, obtained at McMath-Pierce Solar Telescope, at Kitt Peak. Our dataset from the [SII] 6731 Å emission lines cover more years than the one from the NIMS data. The years presented in this work for a comparative study are from 1998 through 2001. Using the NIMS instrument we were able to identify which volcanoes were active and measure their level of activity. From the [SII] 6731 Å emission lines we were able to trace the densest part of the torus and also the brightness of both ansa. By comparing the results from the Galileo instrument and the ground-based observations, we are exploring how the Io plasma torus responds to large eruptions from Io. We aim with this study to help improve our understanding of this complex coupled system, Jupiter-Io.

  6. Paleoenvironmental Changes linked to Deccan Volcanism and the K-T Mass Extinction across India and their Correlations with more distant Areas

    NASA Astrophysics Data System (ADS)

    Adatte, T.; Keller, G.; Gerstch, B.; Gardin, S.; Bartolini, A.; Bajpai, S.

    2009-04-01

    Recent studies indicate that the bulk (80%) of the Deccan Trap eruptions occurred over a relatively short time period coinciding with the KT mass extinction. Here we present results based on multiproxy data from intertrappean sediments located at Anjar, Kutch, western India, Jhilmili, Madhya Pradesh, central India, and Rajahmundry, SE India. We compare these results with a KT sequence in Meghalya, NE India, about 800 km from the Deccan volcanic province and more distant areas (e.g. South Atlantic, Tunisia, Kazakhstan) . Intertrappean sediments at Anjar consist mainly of lacustrine sediments and paleosoils, which exhibit at least three PGE anomalies with high Pd contents but only one with a significant Ir enrichment. The presence of dinosaur eggshells and bone fragments above the Ir anomaly implies an upper Maastrichtian age for these sediments. Thus, the PGE anomalies do not coincide with the KT boundary, nor are they of cosmic origin because normalized PGE values suggest a flood basalt origin. Clay minerals consist mainly of smectite and palygorskite and reflect arid conditions, probably linked to higher surface temperatures on a young volcanic landscape subjected to effusive volcanic activity. In the Rajhamundry area, two Deccan basalt flows, known as the Rajahmundry traps, mark the most extensive lava flows extending 1000 km across the Indian continent. The sediments directly overlying the lower trap contain the earliest Danian planktic foraminifera of zones P0-P1a and mark the initial evolution in the aftermath of the KT mass extinction. The upper trap was deposited during zone P1b corresponding to the lower part of magnetic polarity C29n. Sedimentological, mineralogical data reveal that deposition occurred in a shallow estuarine to inner neritic environment with periods of subaerial deposition marked by paleosoils. Clay minerals consist exclusively of smectite, typical of vertisol developed under semi-arid conditions. Outcrop correlation reveals an incised

  7. Spatial distribution and temporal variation of 3He/ 4He in hot spring gas released from Unzen volcanic area, Japan

    NASA Astrophysics Data System (ADS)

    Notsu, K.; Nakai, S.; Igarashi, G.; Ishibashi, J.; Mori, T.; Suzuki, M.; Wakita, H.

    2001-11-01

    Following the first phreatic explosion on 17 November 1990, hot spring gases were collected periodically over the next 10 years for 3He/ 4He isotopic ratio and chemical analyses from three hot springs (Obanma, Unzen and Shimabara) located around Unzen volcano, Japan. The 3He/ 4He ratios, although showing some scatter at each site, show an increase from west to east (Obamavolcanic activity. The 3He/ 4He ratio at Shimabara hot spring increased slightly after November 1990, reaching a maximum value in July 1992, and decreasing later. This suggests that magmatic helium with relatively high 3He/ 4He ratios took about one year to travel 5 km from beneath Fugendake volcanic cone to Shimabara hot spring site, because the magma effusion rate (and magma degassing rate) reached a maximum in June 1991.

  8. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    USGS Publications Warehouse

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  9. Influence of seismic processes and volcanic activity on the formation of disastrous floods

    NASA Astrophysics Data System (ADS)

    Trifonov, Dmitriy

    2014-05-01

    models of hydraulic systems, but ultimately due to difference of pressures in their respective segments and areas of the transport network. At the exit of the groundwater on the surface such change in pressure is connected both with the state of the actual water flow in underground cavities, or violations of the structure (topology) of 3D-network. As one of the major and sudden reasons of change of pressure in the underground system can serve seismic processes, including volcanic eruptions (as magmatic and ash). During these processes enormous underground space can be freed from the dense rock. This leads to rapid changes in pressure and that, in principle, a new topology of 3D network and water flows in it. It is important that such dynamic processes occur over huge distances in underground basins of thousands of kilometers [3], of course, with a certain time delay. In the result of the analysis of large-scale flooding in Russia in 2001-2002, as well as the catastrophic floods in Western Europe, in the Amur region of Russia and in the state of Colorado USA in 2013, a correlation between seismic and volcanic activities and floods, expressed by specific numerical correlation coefficients, has been revealed. For example, knowing the date, location and magnitude of an earthquake, we can identify potentially dangerous territories in the aspect of the probability of occurrence of floods, because the stresses in the crust, spreading from the hypocenter of earthquakes, and their subsequent relaxation are one of the most important factors of floods. Mechanisms of distribution of these stresses are well-studied today [2] unlike their influence on the groundwater. The defined boundaries of potentially dangerous sites are broad enough; with regard to the direction of distribution of stress, it is about the sectors in 40 degrees (from the line of the movement of the crustal plate) in the direction from the boundaries of lithospheric plates. Distribution of this impact occurs, as a

  10. Use of precipitation and groundwater isotopes to interpret regional hydrology on a tropical volcanic island: Kilauea volcano area, Hawaii

    USGS Publications Warehouse

    Scholl, M.A.; Ingebritsen, S.E.; Janik, C.J.; Kauahikaua, J.P.

    1996-01-01

    Isotope tracer methods were used to determine flow paths, recharge areas, and relative age for groundwater in the Kilauea volcano area of the Island of Hawaii. A network of up to 66 precipitation collectors was emplaced in the study area and sampled twice yearly for a 3-year period. Stable isotopes in rainfall show three distinct isotopic gradients with elevation, which are correlated with trade wind, rain shadow, and high- elevation climatological patterns. Temporal variations in precipitation isotopes are controlled more by the frequency of storms than by seasonal temperature fluctuations. Results from this study suggest that (1) sampling network design must take into account areal variations in rainfall patterns on islands and in continental coastal areas and (2) isotope/elevation gradients on other tropical islands may be predictable on the basis of similar climatology. Groundwater was sampled yearly in coastal springs, wells, and a few high-elevation springs. Areal contrasts in groundwater stable isotopes and tritium indicate that the volcanic rift zones compartmentalize the regional groundwater system, isolating the groundwater south of Kilauea's summit and rift zones. Part of the Southwest Rift gone appears to act as a conduit for water from higher elevation, but there is no evidence for downrift flow in the springs and shallow wells sampled in the lower East Rift Zone.

  11. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands - I: model and the case of Tenerife Island

    NASA Astrophysics Data System (ADS)

    Prudencio, Janire; Del Pezzo, Edoardo; García-Yeguas, Araceli; Ibáñez, Jesús M.

    2013-12-01

    The complex volcanic system of Tenerife Island is known to have a highly heterogeneous character, as recently confirmed by velocity tomography. We present new information derived from intrinsic quality factor inverse maps (Qi-1), scattering quality factor inverse maps (Qs-1) and total quality factor inverse maps (Qt-1) obtained for the same region. The data set used in this work is the result of the analysis of an active seismic experiment carried out, using offshore shots (air guns) recorded at over 85 onshore seismic stations. The estimates of the attenuation parameters are based on the assumption that the seismogram energy envelopes are determined by seismic energy diffusion processes occurring inside the island. Diffusion model parameters, proportional to Qi-1 and to Qs-1, are estimated from the inversion of the energy envelopes for any source-receiver couple. They are then weighted with a new graphical approach based on a Gaussian space probability function, which allowed us to create `2-D probabilistic maps' representing the space distribution of the attenuation parameters. The 2-D images obtained reveal the existence of a zone in the centre of the island characterized by the lowest attenuation effects. This effect is interpreted as highly rigid and cooled rocks. This low-attenuation region is bordered by zones of high attenuation, associated with the recent historical volcanic activity. We calculate the transport mean free path obtaining a value of around 4 km for the frequency range 6-12 Hz. This result is two orders of magnitude smaller than values calculated for the crust of the Earth. An absorption length between 10 and 14 km is associated with the average intrinsic attenuation parameter. These values, while small in the context of tectonic regions, are greater than those obtained in volcanic regions such as Vesuvius or Merapi. Such differences may be explained by the magnitude of the region of study, over three times larger than the aforementioned study

  12. Shrimp Populations on Northwest Rota, an Active Volcano of the Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Tunnicliffe, V.; Juniper, S. K.; Limén, H.; Jones, W. J.; Vrijenhoek, R.; Webber, R.; Eerkes-Medrano, D.

    2004-12-01

    NW Rota-1 is a submarine volcano that manifested active volcanic and hydrothermal activity during submersible surveys in March 2004 (see Embley et al.). Substratum on the volcano summit (520 m depth) was entirely basalt outcrop or variously-sized ejecta lying near the angle of repose. While no fauna inhabited the rim of the volcanic pit, patches of shrimp were located within 25 m and on the nearby summit. Two species are present. Opaepele cf. loihi shows few morphological differences from either a nearby population on Eifuku Volcano (see Chadwick et al.) at 1700 m depth or from the type locality in Hawaii. A molecular comparison of COI sequences of 13 specimens found little difference from two Hawaiian sequences. Video observations detail frequent feeding activity using spatulate chelipeds to trim microbial filaments as the cephalothorax sways across the substratum. The second species is an undescribed Alvinocaris. Juveniles of this species appear to form clusters distinct from Opaepele where they also graze on filaments. Sparse adults of Alvinocaris range up to 5.5 cm long and display aggressive behaviour moving through patches of smaller shrimp. Densities of Opaepele were highest on sloping rock walls (over 500 per sq.m.) whereas adult Alvinocaris were more abundant on rubble. This division may reflect food preference: microbial filaments versus polychaetes and meiofauna. Characterization of particulates from these substrata was conducted using visual sorting and stable isotope composition. As Alvinocaris matures, the chelipeds enlarge, enabling a greater predatory capacity. Measurements of Opaepele from digital in situ images reveal a population structure suggesting a recent recruitment. Average size is significantly smaller than the Eifuku population and no egg-bearing females were collected. The disjunct range of this species where it occurs on active volcanoes 6000 km apart is puzzling. Further work on intermediate sites and into the reproductive strategy of

  13. Volcanism and aseismic slip in subduction zones

    SciTech Connect

    Acharya, H.

    1981-01-10

    The spatial and temporal relationship of volcanism to the occurrence of large earthquakes and convergent plate motion is examined. The number of volcanic eruptions per year in a convergent zone is found to be linearly related to the aseismic slip component of plate motion. If the aseismic slip rate is low (coupling between converging plates is strong), then the primary manifestation of tectonic activity is the occurrence of large earthquakes with only infrequent volcanic activity. If, however, the aseismic slip rate is high (coupling is weak), then there are few large earthquakes, and volcanism is the principal manifestation of tectonic activity. This model is consistent with the spatial distribution of large earthquakes and active volcanoes in the circum-Pacific area. It is tested by examining the extent of volcanic activity in the rupture zones of the 1952--1973 sequence of earthquakes in the Japan--Kurile Islands area. The number of volcanic euptions along these zones during the interval between large earthquakes is used to compute the aseismic slip rates for these segments, based on the relationship developed in this study. The aseismic slip rates so computed agree with those determined from the earthquake history of the area and rates of plate motion. The agreement suggests that in the interval between large earthquakes, the aseismic plate motion is manifested in a specific number of volcanic eruptions. Therefore in areas with adequate historial data it should be possible to use the model developed in this study to monitor volcanic eruptions for long-term prediction of large earthquakes.

  14. Volcanic Gas

    MedlinePlus

    ... Hazards Tephra/Ash Lava Flows Lahars Volcanic Gas Climate Change Pyroclastic Flows Volcanic Landslides Preparedness Volcano Hazard Zones ... Please see our discussion of volcanic gases and climate change for additional information. Hydrogen sulfide (H 2 S) is ...

  15. Sex-biased dispersal and volcanic activities shaped phylogeographic patterns of extant Orangutans (genus: Pongo).

    PubMed

    Nater, Alexander; Nietlisbach, Pirmin; Arora, Natasha; van Schaik, Carel P; van Noordwijk, Maria A; Willems, Erik P; Singleton, Ian; Wich, Serge A; Goossens, Benoit; Warren, Kristin S; Verschoor, Ernst J; Perwitasari-Farajallah, Dyah; Pamungkas, Joko; Krützen, Michael

    2011-08-01

    The Southeast Asian Sunda archipelago harbors a rich biodiversity with a substantial proportion of endemic species. The evolutionary history of these species has been drastically influenced by environmental forces, such as fluctuating sea levels, climatic changes, and severe volcanic activities. Orangutans (genus: Pongo), the only Asian great apes, are well suited to study the relative impact of these forces due to their well-documented behavioral ecology, strict habitat requirements, and exceptionally slow life history. We investigated the phylogeographic patterns and evolutionary history of orangutans in the light of the complex geological and climatic history of the Sunda archipelago. Our study is based on the most extensive genetic sampling to date, covering the entire range of extant orangutan populations. Using data from three mitochondrial DNA (mtDNA) genes from 112 wild orangutans, we show that Sumatran orangutans, Pongo abelii, are paraphyletic with respect to Bornean orangutans (P. pygmaeus), the only other currently recognized species within this genus. The deepest split in the mtDNA phylogeny of orangutans occurs across the Toba caldera in northern Sumatra and, not as expected, between both islands. Until the recent past, the Toba region has experienced extensive volcanic activity, which has shaped the current phylogeographic patterns. Like their Bornean counterparts, Sumatran orangutans exhibit a strong, yet previously undocumented structuring into four geographical clusters. However, with 3.50 Ma, the Sumatran haplotypes have a much older coalescence than their Bornean counterparts (178 kya). In sharp contrast to the mtDNA data, 18 Y-chromosomal polymorphisms show a much more recent coalescence within Sumatra compared with Borneo. Moreover, the deep geographic structure evident in mtDNA is not reflected in the male population history, strongly suggesting male-biased dispersal. We conclude that volcanic activities have played an important role in the

  16. International Studies of Hazardous Groundwater/Surface Water Exchange in the Volcanic Eruption and Tsunami Affected Areas of Kamchatka

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Gusiakov, V. K.; Izbekov, P. E.; Gordeev, E.; Titov, V. V.; Verstraeten, I. M.; Pinegina, T. K.; Tsadikovsky, E. I.; Heilweil, V. M.; Gingerich, S. B.

    2012-12-01

    During the US-Russia Geohazards Workshop held July 17-19, 2012 in Moscow, Russia the international research effort was asked to identify cooperative actions for disaster risk reduction, focusing on extreme geophysical events. As a part of this recommendation the PIRE project was developed to understand, quantify, forecast and protect the coastal zone aquifers and inland water resources of Kamchatka (Russia) and its ecosystems affected by the November 4, 1952 Kamchatka tsunami (Khalatyrka Beach near Petropavlovsk-Kamchatskiy) and the January 2, 1996 Karymskiy volcano eruption and the lake tsunami. This project brings together teams from U.S. universities and research institutions located in Russia. The research consortium was briefed on recent technical developments and will utilize samples secured via major international volcanic and tsunami programs for the purpose of advancing the study of submarine groundwater discharge (SGD) in the volcanic eruption and tsunami affected coastal areas and inland lakes of Kamchatka. We plan to accomplish this project by developing and applying the next generation of field sampling, remote sensing, laboratory techniques and mathematical tools to study groundwater-surface water interaction processes and SGD. We will develop a field and modeling approach to define SGD environment, key controls, and influence of volcano eruption and tsunami, which will provide a framework for making recommendations to combat contamination. This is valuable for politicians, water resource managers and decision-makers and for the volcano eruption and tsunami affected region water supply and water quality of Kamchatka. Data mining and results of our field work will be compiled for spatial modeling by Geo-Information System (GIS) using 3-D Earth Systems Visualization Lab. The field and model results will be communicated to interested stakeholders via an interactive web site. This will allow computation of SGD spatial patterns. In addition, thanks to the

  17. Mineral chemical compositions of late Cretaceous volcanic rocks in the Giresun area, NE Turkey: Implications for the crystallization conditions

    NASA Astrophysics Data System (ADS)

    Oǧuz, Simge; Aydin, Faruk; Uysal, İbrahim; Şen, Cüneyt

    2016-04-01

    This contribution contains phenocryst assemblages and mineral chemical data of late Cretaceous volcanic (LCV) rocks from the south of Görele and Tirebolu areas (Giresun, NE Turkey) in order to investigate their crystallization conditions. The LCV rocks in the study area occur in two different periods (Coniasiyen-Early Santonian and Early-Middle Campanian), which generally consist of alternation of mafic-intermediate (basaltic to andesitic) and felsic rock series (dacitic and rhyolitic) within each period. The basaltic and andesitic rocks in both periods generally exhibit porphyritic to hyalo-microlitic porphyritic texture, and contain phenocrysts of plagioclase and pyroxene, whereas the dacitic and rhyolitic rocks of the volcanic sequence usually show a vitrophyric texture with predominant plagioclase, K-feldspar, quartz and lesser amphibole-biotite phenocrysts. Zoned plagioclase crystals of the mafic and felsic rocks in different volcanic periods are basically different in composition. The compositions of plagioclase in the first-stage mafic rocks range from An52 to An78 whereas those of plagioclase from the first-stage felsic rocks have lower An content varying from An38 to An50. Rim to core profile for the zoned plagioclase of the first-stage mafic rocks show quite abrupt and notable compositional variations whereas that of the first-stage felsic rocks show slight compositional variation, although some of the grains may display reverse zoning. On the other hand, although no zoned plagioclase phenocryst observed in the second-stage mafic rocks, the compositions of microlitic plagioclase show wide range of compositional variation (An45-80). The compositions of zoned plagioclase in the second-stage felsic rocks are more calcic (An65-81) than those of the first-stage felsic rocks, and their rim to core profile display considerable oscillatory zoning. The compositions of pyroxenes in the first- and second-stage mafic-intermediate rocks vary over a wide range from

  18. Discovery of Active Hydrothermal Sites Along the Mariana Volcanic Arc, Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Embley, R. W.; Resing, J. A.; Lupton, J. E.; Massoth, G. J.; de Ronde, C. E.; Nakamura, K.; Walker, S. L.

    2003-12-01

    Some 20,000 km of volcanic arcs, roughly one-third the total length of the global midocean ridge (MOR) system, rim the western Pacific Ocean. But compared to 25 years of hydrothermal investigations along MORs, exploration of similar activity on the estimated 600 submarine arc volcanoes is only beginning. In February 2003, as part of the Submarine Ring of Fire project funded by NOAA's Ocean Exploration Program, we made the first systematic survey of hydrothermal activity along the 1270-km-long Mariana intraoceanic volcanic arc, which lies almost entirely within the US EEZ. Prior fieldwork had documented active (but low-temperature) hydrothermal discharge on only three volcanoes: Kasuga 2, Kasuga 3, and Esmeralda Bank. During the cruise, we conducted 70 CTD operations over more than 50 individual volcanoes from 13° N to 23° N, plus a continuous CTD survey along 75 km of the back-arc spreading center (13° 15'N to 13° 41'N) adjacent to the southern end of the arc. We found evidence for active hydrothermal venting at 11 submarine volcanoes with summit (or caldera floor) depths ranging from 50 to 1550 m. Two additional sites were identified on the back-arc spreading center. Ongoing analyses of collected water samples could increase these totals. Our results confirmed continuing hydrothermal activity at Kasuga 2 (but not Kasuga 3) and Esmeralda Bank, in addition to newly discovered sites on nine other volcanoes. Many of these sites produce intense and widely dispersed plumes indicative of vigorous, high-temperature discharge. The volcanoes with active hydrothermal systems are about equally divided between those with and without summit calderas. The addition of the Marianas data greatly improves our view of hydrothermal sources along arcs. The 20,000 km of Pacific arcs can be divided between 6380 km of intraoceanic (i.e., mostly submarine) arcs and 13,880 km of island (i.e., mostly subaerial) arcs. At present, ˜15% of the total length of Pacific arcs has been surveyed

  19. Possible Effects on the Stability of the West Antarctic Ice Sheet (WAIS) and Associated Sea-level Rise From Active-Recent Subglacial Volcanism Interpreted from Aeromagnetic and Radar Ice-sounding Observations

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2009-12-01

    Aeromagnetic profiles (>10,000 km) acquired in the early 1960s over the West Antarctic Ice Sheet (WAIS) combined with coincident aeromagnetic and radar ice sounding in 1978-79 indicated numerous high-amplitude, shallow-source, magnetic anomalies over a very extensive area of the volcanically active West Antarctic rift system interpreted as caused by subglacial volcanic rocks. These early aerogeophysical surveys defined this area as >500,000 km2. Five-kilometer spaced coincident aeromagnetic and radar ice sounding surveys since 1990 provide three dimensional characterization of the magnetic field and bed topography beneath the ice sheet. These 5-50-km width, semicircular magnetic anomalies range from 100->1000 nT as observed ~1 km over the 2-3 km thick ice. Behrendt et al, (2005, 2008) interpreted these anomalies as indicating >1000 "volcanic centers". requiring high remanent normal (and at least 10% reversed) magnetizations in the present field direction. These data have shown that >80% of the anomaly sources at the bed of the WAIS, have been modified by the moving ice into which they were injected, requiring a younger age than the WAIS (about 25 Ma). Behrendt et al., (1994; 2007) conservatively estimated >1 x 106 km3 volume of volcanic sources to account for the area of the "volcanic center" anomalies. Although exposed volcanoes surrounding the WAIS extend in age to ~34 m.y., Mt Erebus, (<1 Ma) Mt. Melbourne, (<0.26 Ma), and Mt. Takahae (<0.1 Ma) are examples of exposed active volcanoes in the WAIS area. However, the great volume of volcanic centers is buried beneath the WAIS. If only a very small percentage of these >1000 volcanic, magnetic-anomaly sources are active today, or in the recent past, in the drainage area of the WAIS, subglacial volcanism may still have a significant effect on the dynamics of the WAIS. Interpreted active subglacial volcanism is revealed by aerogeophysical data reported by Blankenship et al., (1993, Mt. Casertz), and Corr and Vaughan

  20. Volcanic activities in the Southern part of East African rift initiation: Melilitites and nephelinites from the Manyara Basin (North Tanzania rift axis)

    NASA Astrophysics Data System (ADS)

    Baudouin, Celine; Parat, Fleurice; Tiberi, Christel; Gautier, Stéphanie; Peyrat, Sophie

    2016-04-01

    The East African Rift exposes different stages of plate boundary extension, from the initiation of the rift (North (N) Tanzania) to oceanic accretion (Afar). The N Tanzania rift-axis (north-south (S) trend) is divided into 2 different volcanic and seismic activities: (1) the Natron basin (N) with shallow seismicity and intense volcanism and (2) the Manyara basin (S) with deep crustal earthquakes and sparse volcanism. The Natron basin is characterized by extinct volcanoes (2 Ma-0.75 Ma) and active volcano (Oldoinyo Lengai) and a link between seismicity and volcanism has been observed during the Oldoinyo Lengai crisis in 2007. In the S part of the N Tanzanian rift, volcanoes erupted in the Manyara basin between 0.4 and 0.9 Ma. In this study, we used geochemical signature of magmas and deep fluids that percolate into the lithosphere beneath Manyara basin, to define the compositions of magmas and fluids at depth beneath the S part of the N Tanzania rift, compare to the Natron basin and place constrain on the volcanic and seismic activities. The Manyara basin has distinct volcanic activities with mafic magmas as melilitites (Labait) and Mg-nephelinites (carbonatite, Kwaraha), and more differentiated magmas as Mg-poor nephelinites (Hanang). Melilitites and Mg-nephelinites are primary magmas with olivine, clinopyroxene (cpx), and phlogopite recording high-pressure crystallization environment, (melilitites >4 GPa and Mg-nephelinites>1 GPa) with high volatile contents (whole rock: 0.7-4.6 wt% CO2, 0.1-0.3 wt% F and 0.1 wt% Cl). FTIR analyses of olivine constrained the water content of Labait and Kwaraha magmas at 0.1 and 0.4 wt% H2O, respectively. Geochemical modelling suggests that mafic magmas result from a low degree of partial melting (1-2%) of a peridotitic source with garnet and phlogopite (high Tb/Yb (>0.6) and Rb/Sr (0.03-0.12) ratio). Mg-poor nephelinites from Hanang volcano crystallized cpx, Ti-garnet, and nepheline as phenocrysts. Magmas result from fractional

  1. Draft Genome Sequence of the Novel Thermoacidophilic Archaeon Acidianus copahuensis Strain ALE1, Isolated from the Copahue Volcanic Area in Neuquén, Argentina

    PubMed Central

    Rascovan, Nicolás; Castro, Camila; Revale, Santiago; Giaveno, M. Alejandra; Vazquez, Martín; Donati, Edgardo R.

    2014-01-01

    Acidianus copahuensis is a recently characterized thermoacidophilic archaeon isolated from the Copahue volcanic area in Argentina. Here, we present its draft genome sequence, in which we found genes involved in key metabolic pathways for developing under Copahue’s extreme environmental conditions, such as sulfur and iron oxidation, carbon fixation, and metal tolerance. PMID:24812211

  2. Volcanic history of the Colorado River extensional corridor: Active or passive rifting

    SciTech Connect

    Howard, K.A. )

    1993-04-01

    Magmatism and extension began nearly simultaneously in the Colorado River extensional corridor (CREC) between 34 and 35[degree] N. Initial eruptions of basanite at 23--19.5 Ma were low-volume but spanned a region now twice as wide as the 100-km-wide corridor. Extensional tilting of this age was local. A large flux of calc-alkaline basalt, andesite, dacite, and rhyolite was erupted at 22--18.5 Ma. They accumulated to average thicknesses of [approximately]1 km in the early CREC basin, and were accompanied by extensional tilting. Dike swarms, necks, and plutons represent intrusive equivalents. Plutons concentrate in the central belt of metamorphic core complexes, the most highly extended areas. Massive eruption at 18.5 Ma of the rhyolitic Peach Springs Tuff marked an ensuing lowered rate of volcanic output, a change to bimodal volcanism, much tilting and extension, and deposition of thick (to [approximately]2 km) synextensional clastic sediments 18--14 Ms. By 14--12 Ma, extensional tilting had largely ceased, and eruptions were sparse and basaltic only, as they have been since. Basalt compositions reveal changing patterns of trace-element composition that bear on sources. The early basanites have OIB-like compositions on spidergram plots, suggesting origin from the asthenosphere as would be expected from initiation of rifting driven by hot mantle upwelling. Basalts 20--12 Ma show low concentrations of Nb and Ta as in subduction-related arc magmas. Post-extensional basalts erupted 15--10 Ma exhibit a transition back toward primitive compositions seen in Quaternary alkalic basalts.

  3. Mapping fumarolic fields in volcanic areas: A methodological approach based on the case study of La Fossa cone, Vulcano island (Italy)

    NASA Astrophysics Data System (ADS)

    Madonia, Paolo; Cangemi, Marianna; Costa, Michela; Madonia, Ivan

    2016-09-01

    Changes in the activity state of a volcano can be inferred by monitoring the steam flux from fumarolic fields, in terms of 4D (x, y, z, time) variations in temperature and extension of the zone. During the last decades, several studies in this field have been conducted worldwide, and at Vulcano island (Italy) in particular. Both direct and remotely sensed measurements have been used for identifying thermally anomalous areas, but the possible role of the hydrothermal alteration of volcanic products, producing a sealing effect that obscures the surface thermal evidence of fumarolic activity, have never been explored. The novelty of the present study, carried out at La Fossa cone (Vulcano Island), was the integration of direct and remotely sensed temperature measurements with the evaluation of soil permeability, for the precise mapping of areas where shallow hydrothermal circulation could occur even in the absence of surface evidence. The main results of this study concern the role of a coating found on rock surfaces and regolith in introducing mapping errors, especially during diachronic temperature surveys based on remotely sensed measurements.

  4. Chemical evolution at the coasts of active volcanic islands in a primordial salty ocean

    NASA Astrophysics Data System (ADS)

    Strasdeit, H.; Fox, S.

    2008-09-01

    The Prebiotic Hot-Volcanic-Coast Scenario It has been suggested that in the Hadean eon (4.5-3.8 Ga before present) no permanent continents but volcanic islands and short-lived protocontinents protruded from the first ocean [1, 2]. As the geothermal heat production was considerably higher than today, it is reasonable to assume that hot volcanic coasts were much more abundant. The salinity of the ocean was probably up to two times higher than the modern value [3]. Under these conditions, the evaporation of seawater at active volcanic coasts must have produced sea salt crusts - a process that can still be observed today [4]. On the hot lava rock, the salt crusts can subsequently experience temperatures up to some hundred degrees Celsius. The seawater probably contained abiotically formed organic molecules such as amino acids, which were inevitably embedded into the sea salt crusts. Different prebiotic sources of amino acids have been discussed: (i) comets and meteorites [5], electrical discharges in the atmosphere [6, 7], and deep-sea hydrothermal vents [8]. We undertook a systematic study of solid salt-amino acid mixtures, especially of their formation and thermal behavior under simulated conditions of the hotvolcanic- coast scenario. Laboratory Experiments Amino acids@salts Artificial Hadean seawater was prepared by dissolving NaCl (705 mmol), MgCl2 (80 mmol), KCl (15 mmol), CaCl2 (15 mmol), and an α-amino acid (5-10 mmol) or a mixture of α-amino acids. In order to model the first step of the hot-volcanic-coast scenario, the solutions were evaporated to dryness. Vibrational spectroscopy (IR, Raman) and X-ray powder diffraction showed that the resulting solid residues were not heterogeneous mixtures of salt and amino acid crystals. Instead the amino acid molecules were coordinated in calcium or magnesium complexes. We have studied the rac-alanine ( + H3NCH(CH3)COO -, Hala) system in more detail and found that the complex that is present in the mixture has the

  5. Quantitative analysis of the hydrothermal system in Lassen Volcanic National Park and Lassen Known Geothermal Resource Area

    USGS Publications Warehouse

    Sorey, M.L.; Ingebritsen, S.E.

    1984-01-01

    The conceptual model of the Lassen system is termed a liquid-dominated hydrothermal system with a parasitic vapor-dominated zone. The essential feature of this model is that steam and steam-heated discharge at relatively high elevations in Lassen Volcanic National Park (LVNP) and liquid discharge with high chloride concentrations at relatively low elevations outside LVNP are both fed by an upflow of high-enthalpy two-phase fluid within the Park. Liquid flows laterally away from the upflow area towards the areas of high-chloride discharge, and steam rises through a vapor-dominated zone to feed the steam and steam-heated features. Numerical simulations show that several conditions are necessary for the development of this type of system, including (1) large-scale topographic relief, (2) an initial period of convective heating within an upflow zone followed by some change in hydrologic or geologic conditions that initiates drainage of liquid from portions of the upflow zone, and (3) low permeability barriers that inhibit the movement of cold water into the vapor zone. Simulations of thermal fluid withdrawal south of LVNP, carried out in order to determine the effects of such withdrawal on portions of the hydrothermal system within the Park, showed decreases in pressure and liquid saturation beneath the vapor zone which result in a temporary increase and subsequent decrease in the rate of upflow of steam. (USGS)

  6. Gas Geochemistry of Volcanic and Geothermal Areas in the Kenya Rift: Implications for the Role of Fluids in Continental Rifting

    NASA Astrophysics Data System (ADS)

    Lee, H.; Fischer, T. P.; Ranka, L. S.; Onguso, B.; Kanda, I.; Opiyo-Akech, N.; Sharp, Z. D.; Hilton, D. R.; Kattenhorn, S. A.; Muirhead, J.

    2013-12-01

    The East African Rift (EAR) is an active continental rift and ideal to investigate the processes of rift initiation and the breaking apart of continental lithosphere. Mantle and crust-derived fluids may play a pivotal role in both magmatism and faulting in the EAR. For instance, large quantities of mantle-derived volatiles are emitted at Oldoinyo Lengai volcano [1, 2]. Throughout the EAR, CO2-dominated volatile fluxes are prevalent [3, 4] and often associated with faults (i.e. Rungwe area, Tanzania, [5, 6]). The purpose of this study is to examine the relationship between volcanism, faulting and the volatile compositions, focusing on the central and southern Kenyan and northern Tanzanian section of the EAR. We report our analysis results for samples obtained during a 2013 field season in Kenya. Gases were sampled at fumaroles and geothermal plants in caldera volcanoes (T=83.1-120.2°C) and springs (T=40-79.6°C and pH 8.5-10) located near volcanoes, intra-rift faults, and a transverse fault (the Kordjya fault, a key fluid source in the Magadi rift) by 4N-NaOH solution-filled and empty Giggenbach bottles. Headspace gases were analyzed by a Gas Chromatograph and a Quadrupole Mass Spectrometer at the University of New Mexico. Both N2/Ar and N2/He ratios of all gases (35.38-205.31 and 142.92-564,272, respectively) range between air saturated water (ASW, 40 and ≥150,000) and MORB (100-200 and 40-50). In addition, an N2-Ar-He ternary diagram supports that the gases are produced by two component (mantle and air) mixing. Gases in the empty bottles from volcanoes and springs have N2 (90.88-895.99 mmom/mol), CO2 (2.47-681.21 mmom/mol), CH4 (0-214.78 mmom/mol), O2 (4.47-131.12 mmom/mol), H2 (0-35.78 mmom/mol), Ar (0.15-10.65 mmom/mol), He (0-2.21 mmom/mol), and CO (0-0.08 mmom/mol). Although some of the samples show an atmospheric component, CO2 is a major component in most samples, indicating both volcanoes and springs are emitting CO2. Gases from volcanoes are enriched in

  7. Episodic Volcanism and Geochemistry in Western Nicaragua

    NASA Astrophysics Data System (ADS)

    Saginor, I.; Carr, M. J.; Gazel, E.; Swisher, C.; Turrin, B.

    2007-12-01

    The active volcanic arc in western Nicaragua is separated from the Miocene arc by a temporal gap in the volcanic record, during which little volcanic material was erupted. Previous work suggested that this gap lasted from 7 to 1.6 Ma, during which volcanic production in Nicaragua was limited or nonexistent. Because the precise timing and duration of this gap has been poorly constrained, recent fieldwork has focused on locating samples that may have erupted close to or even during this apparent hiatus in activity. Recent 40Ar/39Ar dates reveal pulses of low- level episodic volcanism at 7 Ma and 1 Ma between the active and Miocene arcs with current volcanism beginning ~350 ka. In addition, sampling from an inactive area between Coseguina and San Cristobal yielded two distinct groupings of ages; one of Tamarindo age (13 Ma) and the other around 3.5 Ma-the only samples of that age collected on-strike with the active arc. This raises the possibility the bases of the other active volcanoes contain lavas that are older than expected, but have been covered by subsequent eruptions. The Miocene arc differs from the active arc in Central America in several ways, with the latter having higher Ba/La and U/Th values due to increased slab input and changes in subducted sediment composition. Analysis of sample C-51 and others taken from the same area may shed light on the timing of this shift from high to low Ba/La and U/Th values. More importantly, it may help explain why the arc experienced such a dramatic downturn in volcanic production during this time. We also report 25 new major and trace element analyses that shed some light on the origins of these minor episodes of Nicaraguan volcanism. These samples are currently awaiting Sr and Nd isotopic analyses.

  8. Patterns of late Cenozoic volcanic and tectonic activity in the West Antarctic rift system revealed by aeromagnetic surveys

    USGS Publications Warehouse

    Behrendt, John C.; Saltus, R.; Damaske, D.; McCafferty, A.; Finn, C.A.; Blankenship, D.; Bell, R.E.

    1996-01-01

    Aeromagnetic surveys, spaced ???5 km, over widely separated areas of the largely ice- and sea-covered West Antarctic rift system, reveal similar patterns of 100- to 1700-nT, shallow-source magnetic anomalies interpreted as evidence of extensive late Cenozoic volcanism. We use the aeromagnetic data to extend the volcanic rift interpretation over West Antarctica starting with anomalies over (1) exposures of highly magnetic, late Cenozoic volcanic rocks several kilometers thick in the McMurdo-Ross Island area and elsewhere; continuing through (2) volcanoes and subvolcanic intrusions directly beneath the Ross Sea continental shelf defined by marine magnetic and seismic reflection data and aeromagnetic data and (3) volcanic structures interpreted beneath the Ross Ice Shelf partly controlled by seismic reflection determinations of seafloor depth to (4) an area of similar magnetic pattern over the West Antarctic Ice Sheet (400 km from the nearest exposed volcanic rock), where interpretations of late Cenozoic volcanic rocks at the base of the ice are controlled in part by radar ice sounding. North trending magnetic rift fabric in the Ross Sea-Ross Ice Shelf and Corridor Aerogeophysics of the Southeast Ross Transect Zone (CASERTZ) areas, revealed by the aeromagnetic surveys, is probably a reactivation of older rift trends (late Mesozoic?) and is superimposed on still older crosscutting structural trends revealed by magnetic terrace maps calculated from horizontal gradient of pseudogravity. Longwavelength (???100-km wide) magnetic terraces from sources within the subvolcanic basement cross the detailed survey areas. One of these extends across the Ross Sea survey from the front of the Transantarctic Mountains with an east-southeast trend crossing the north trending rift fabric. The Ross Sea-Ross Ice Shelf survey area is characterized by highly magnetic northern and southern zones which are separated by magnetically defined faults from a more moderately magnetic central zone

  9. Exploring a long-lasting volcanic eruption by means of in-soil radon measurements and seismic activity

    NASA Astrophysics Data System (ADS)

    Falsaperla, Susanna; Neri, Marco; Di Grazia, Giuseppe; Langer, Horst; Spampinato, Salvatore

    2016-04-01

    We analyze in-soil radon (Rn) emission and ambient parameters (barometric pressure and air temperature measurements) along with seismic activity during the longest flank eruption of this century at Mt. Etna, Italy. This eruption occurred between 14 May 2008 and 6 July 2009, from a N120-140°E eruptive fissure extending between 3050 and 2620 m above sea level. It was heralded by a short-lived (~5 hours) episode of lava fountaining three days before a dike-forming intrusion fed a lava emission, which affected the summit area of the volcano over ~15 months. The peculiar position of the station for the Rn measurement, which was at an altitude of 2950 m above sea level and near (~1 km) the summit active craters, offered us the uncommon chance: i) to explore the temporal development of the gas emission close (<2 km) to the 2008-2009 eruptive vents in the long term, and ii) to analyze the relationship between in-soil Rn fluxes and seismic signals (in particular, local earthquakes and volcanic tremor) during the uninterrupted lava emission. This approach reveals important details about the recharging phases characterizing the 2008-2009 eruption, which are not visible with other methods of investigation. Our study benefitted from the application of methods of pattern classification developed in the framework of the European MEDiterrranean Supersite Volcanoes (MED­SUV) project.

  10. Chronic exposure to volcanic environments and chronic bronchitis incidence in the Azores, Portugal.

    PubMed

    Amaral, André Filipe Santos; Rodrigues, Armindo Santos

    2007-03-01

    The village of Furnas, like other active volcanic areas in the world, exhibits high levels of hazardous gases. We aimed to investigate the existence of a possible association between chronic exposure to volcanic sulfur gases and chronic bronchitis. To investigate this, we used two populations, one exposed to active manifestations of volcanism (Furnas) and another from an area where no volcanic activity took place for over three million years (Santa Maria), both in the Azores. We used data on the incidence of chronic bronchitis among both populations (1991-2001), obtained from the records of each local health center, and population denominators from censuses carried out in 1991 and 2001, using five age-groups. We also estimated relative risks and mean annual age-standardized rates of chronic bronchitis incidence. Incidence rates were extremely higher in the volcanically active area for both sexes, and especially in the youngest groups. Accordingly, the risk of chronic bronchitis for the people living in the volcanically active area was extremely higher (males RR=3.99; females RR=10.74) when compared to those living in the volcanically inactive area. Comparison of chronic bronchitis incidence rates between both populations suggests an association between this disease and the chronic exposure to the volcanically active environment, with all its hazardous gases like hydrogen sulfide and sulfur dioxide. These findings may help health officials to better advice people inhabiting volcanic areas, or others with high levels of sulfur gases, on how to prevent and minimize the risks of chronic bronchitis.

  11. Volcanic gas

    USGS Publications Warehouse

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  12. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    NASA Astrophysics Data System (ADS)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  13. Influence of volcanic activity and anthropic impact in the trace element contents of fishes from the North Patagonia in a global context.

    PubMed

    Bubach, D F; Macchi, P J; Pérez Catán, S

    2015-11-01

    The elemental contents in salmonid muscle and liver tissues from different lakes around the world were investigated. Fish from pristine areas were compared with those fishes from impacted environments, both by volcanic and anthropogenic activities. Within the data, special attention was given to fishes from the Andean Patagonian lakes in two contexts: local and global. The local evaluation includes geological and limnological parameters and diet composition which were obtained through a data search from published works. The volcanic influence in Andean Patagonian lakes was mainly observed by an increase of cesium (Cs) and rubidium (Rb) concentrations in fishes, influenced by calcium (Ca) and potassium (K) water contents. Zinc (Zn), selenium (Se), iron (Fe), silver (Ag), and mercury (Hg) contents in fishes showed the effect of the geological substratum, and some limnological parameters. The diet composition was another factor which affects the elemental concentration in fishes. The analyzed data showed that the fishes from Andean Patagonian lakes had elemental content patterns corresponding to those of pristine regions with volcanic influence. Selenium and Ag contents from Andean Patagonian fishes were the highest reported.

  14. InSAR techniques for reliable deformation estimation in volcanic areas and a first glance of Tandem-DEM accuracy - test site El Hierro Island

    NASA Astrophysics Data System (ADS)

    Cong, X.; Eineder, M.; Fritz, T.

    2013-12-01

    The accuracy and availability of deformation measurements using InSAR techniques is limited due to decorrelation effects, atmospheric disturbances and the SAR side-looking geometry (layover and shadowing). In this talk, we present our recent research and achievements on advanced InSAR techniques in order to retrieve reliable deformation signals from active volcanoes using high resolution TerraSAR-X (TSX) images. Another highlight of this talk is the evaluation of an experimental TanDEM-X (TDX) RawDEM with a resolution of approximately 6 m in order to compensate the topographic phase. A volcanic test site which is currently highly active -El Hierro- has been selected to demonstrate the developed techniques: 1) PSI processing in volcanic areas using high resolution TSX images; 2) Mitigation of atmospheric delay distortions; 3) Fusion of multi-geometrical PSI clouds. In order to measure the deformation from 2011 to 2013 at El Hierro [1], two stacks of stripmap TSX Mission data have been acquired, one in ascending orbit and one in descending. Each stack has more than 25 scenes. More than 1.5 million PSs have been detected (SCR>3.0 dB). The stratified atmospheric delay for each acquisition has been integrated for the PSI reference network and, afterwards, interpolated and compensated for all PSs. A linear deformation model has been assumed for PSI processing. For the descending orbit stack, a relative deformation from -21.7 to 131.8 mm/y from Sep. 2011 to Jan. 2013 with respect to a reference point located on the northeast coast has been measured. On the one hand, the spatial variation of the deformation has a good agreement with the seismicity distribution [1]. On the other hand, the deformation magnitude agrees with in-situ GPS measurements [2]. In ascending orbit, the linear deformation rate varies from -22.8 to 90.9 mm/y. This different range of value is due to a scene acquired on Feb. 2010, which has been included in order to obtain the pre-seismic deformation

  15. Geology of the Arco-Big Southern Butte area, eastern Snake River Plain, and volcanic hazards to the radioactive waste management complex, and other waste storage and reactor facilities at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Kuntz, Mel A.; Kork, John O.

    1978-01-01

    The Arco-Big Southern Butte area of the eastern Snake River Plain, Idaho, includes a volcanic rift zone and more than 70 Holocene and late Quaternary basalt volcanoes. The Arco volcanic rift zone extends southeast for 50 km from Arco to about 10 km southeast of Big Southern Butte. The rift zone is the locus of extensional faults, graben, fissure basaltic volcanic vents, several rhyolite domes at Big Southern Butte, and a ferrolatite volcano at Cedar Butte. Limited radiometric age data and geological field criteria suggest that all volcanism in the area is younger than 700,000 years; at least 67 separate basaltic eruptions are estimated to have occurred within the last 200,000 years. The average volcanic recurrence interval for the Arco-Big Southern Butte area is approximately one eruption per 3,000 years. Radioactive waste storage and reactor facilities at the Idaho National Engineering Laboratory may be subject to potential volcanic hazards. The geologic history and inferred past volcanic events in the Arco-Big Southern Butte area provide a basis for assessing the volcanic hazard. It is recommended that a radiometric age-dating study be performed on rocks in cored drill holes to provide a more precise estimate of the eruption recurrence interval for the region surrounding and including the Radioactive Waste Management Complex. It is also recommended that several geophysical monitoring systems (dry tilt and seismic) be installed to provide adequate warning of future volcanic eruptions.

  16. Searching for ``Home Plates'' Near Gusev Crater, Mars: Spirit's Regional Context in an Area of Explosive Volcanism

    NASA Astrophysics Data System (ADS)

    Rice, M. S.; Batista, A. E.; Bell, J. F.; Watters, W. A.

    2010-12-01

    The Mars Exploration Rover (MER) Spirit has spent the last 4.5 years of its mission exploring the vicinity of a feature called Home Plate in the Columbia Hills of Gusev Crater, Mars. Home Plate is an 80m-wide plateau of layered, light-toned rocks interpreted to be a pyroclastic deposit based on its composition of altered alakali basaltic clastics, its enrichment in volatiles, and the presence of a bomb-sag. Discoveries of sulfate- and silica-rich soils and outcrops near Home Plate, as well as a geochemical gradient across Home Plate, suggest that alteration by hydrothermal fluids occurred at this site. However, probable source vents have not been found along Spirit’s traverse, and the spatial and temporal extents of pyroclastic activity in Gusev Crater are currently unknown. In this work, we test the hypothesis that explosive volcanism was widespread in the Gusev Crater region. We have performed a comprehensive photomorphologic survey of a 300km square region that includes Gusev Crater and the southern flank of Apollinaris Patera. Using images from the High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) onboard Mars Reconnaissance Orbiter (MRO), and from the Mars Orbital Camera (MOC) onboard Mars Global Surveyor (MGS), we have searched for “Home Plates,” possible vents, and other morphologic indicators of hydrovolcanic activity. We have identified 80+ quasi-circular, light-toned, layered features similar to Home Plate in hill structures above the Gusev lava plains, in the hummocky terrain SE of Thira Crater, and NW of Gusev in Zephyria Mensae. In some locations, these “Home Plates” are paired with conical structures (similar to the “von Braun” or “Goddard” features in the Columbia Hills). We have also performed a visible to near-infrared hyperspectral survey of the same region using data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on MRO. Seven high-resolution (18 m/pix) CRISM

  17. Methanotrophic activity and diversity of methanotrophs in volcanic geothermal soils at Pantelleria (Italy)

    NASA Astrophysics Data System (ADS)

    Gagliano, A. L.; D'Alessandro, W.; Tagliavia, M.; Parello, F.; Quatrini, P.

    2014-10-01

    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic or geothermal soils are not only a source of methane, but are also sites of methanotrophic activity. Methanotrophs are able to consume 10-40 Tg of CH4 a-1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria (Italy), Favara Grande, whose total methane emission was previously estimated at about 2.5 Mg a-1 (t a-1). Laboratory incubation experiments with three top-soil samples from Favara Grande indicated methane consumption values of up to 59.2 nmol g-1 soil d.w. h-1. One of the three sites, FAV2, where the highest oxidation rate was detected, was further analysed on a vertical soil profile, the maximum methane consumption was measured in the top-soil layer, and values greater than 6.23 nmol g-1 h-1 were still detected up to a depth of 13 cm. The highest consumption rate was measured at 37 °C, but a still detectable consumption at 80 °C (> 1.25 nmol g-1 h-1) was recorded. The soil total DNA extracted from the three samples was probed by Polymerase Chain Reaction (PCR) using standard proteobacterial primers and newly designed verrucomicrobial primers, targeting the unique methane monooxygenase gene pmoA; the presence of methanotrophs was detected at sites FAV2 and FAV3, but not at FAV1, where harsher chemical-physical conditions and negligible methane oxidation were detected. The pmoA gene libraries from the most active site (FAV2) pointed to a high diversity of gammaproteobacterial methanotrophs, distantly related to Methylocaldum-Metylococcus genera, and the presence of the newly discovered acido-thermophilic Verrucomicrobia methanotrophs. Alphaproteobacteria of the genus Methylocystis were isolated from enrichment cultures under a methane

  18. Methanotrophic activity and bacterial diversity in volcanic-geothermal soils at Pantelleria island (Italy)

    NASA Astrophysics Data System (ADS)

    Gagliano, A. L.; D'Alessandro, W.; Tagliavia, M.; Parello, F.; Quatrini, P.

    2014-04-01

    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic/geothermal soils are source of methane, but also sites of methanotrophic activity. Methanotrophs are able to consume 10-40 Tg of CH4 a-1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria island (Italy), Favara Grande, whose total methane emission was previously estimated in about 2.5 t a-1. Laboratory incubation experiments with three top-soil samples from Favara Grande indicated methane consumption values up to 950 ng g-1 dry soil h-1. One of the three sites, FAV2, where the highest oxidation rate was detected, was further analysed on a vertical soil profile and the maximum methane consumption was measured in the top-soil layer but values > 100 ng g-1 h-1 were maintained up to a depth of 15 cm. The highest consumption rate was measured at 37 °C, but a still recognizable consumption at 80 °C (> 20 ng g-1 h-1) was recorded. In order to estimate the bacterial diversity, total soil DNA was extracted from Favara Grande and analysed using a Temporal Temperature Gradient gel Electrophoresis (TTGE) analysis of the amplified bacterial 16S rRNA gene. The three soil samples were probed by PCR using standard proteobacterial primers and newly designed verrucomicrobial primers targeting the unique methane monooxygenase gene pmoA; the presence of methanotrophs was detected in sites FAV2 and FAV3, but not in FAV1, where harsher chemical-physical conditions and negligible methane oxidation were detected. The pmoA gene libraries from the most active site FAV2 pointed out a high diversity of gammaproteobacterial methanotrophs distantly related to Methylococcus/Methylothermus genera and the presence of the newly discovered acido-thermophilic methanotrophs

  19. Volcanic Ash on Slopes of Karymsky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  20. Integrated Geoscience Studies in the Greater Yellowstone Area - Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem

    USGS Publications Warehouse

    Morgan, Lisa A.

    2007-01-01

    Yellowstone National Park, rimmed by a crescent of older mountainous terrain, has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of volcanism, tectonism, and later glaciation. Its spectacular hydrothermal systems cap this landscape. From 1997 through 2003, the United States Geological Survey Mineral Resources Program conducted a multidisciplinary project of Yellowstone National Park entitled Integrated Geoscience Studies of the Greater Yellowstone Area, building on a 130-year foundation of extensive field studies (including the Hayden survey of 1871, the Hague surveys of the 1880s through 1896, the studies of Iddings, Allen, and Day during the 1920s, and NASA-supported studies starting in the 1970s - now summarized in USGS Professional Paper 729 A through G) in this geologically dynamic terrain. The project applied a broad range of scientific disciplines and state-of-the-art technologies targeted to improve stewardship of the unique natural resources of Yellowstone and enable the National Park Service to effectively manage resources, protect park visitors from geologic hazards, and better educate the public on geologic processes and resources. This project combined a variety of data sets in characterizing the surficial and subsurface chemistry, mineralogy, geology, geophysics, and hydrothermal systems in various parts of the park. The sixteen chapters presented herein in USGS Professional Paper 1717, Integrated Geoscience Studies in the Greater Yellowstone Area - Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem, can be divided into four major topical areas: (1) geologic studies, (2) Yellowstone Lake studies, (3) geochemical studies, and (4) geophysical studies. The geologic studies include a paper by Ken Pierce and others on the influence of the Yellowstone hotspot on landscape formation, the ecological effects of the hotspot, and the human experience and human geography of the greater

  1. Development of an automatic volcanic ash sampling apparatus for active volcanoes

    NASA Astrophysics Data System (ADS)

    Shimano, Taketo; Nishimura, Takeshi; Chiga, Nobuyuki; Shibasaki, Yoshinobu; Iguchi, Masato; Miki, Daisuke; Yokoo, Akihiko

    2013-12-01

    We develop an automatic system for the sampling of ash fall particles, to be used for continuous monitoring of magma ascent and eruptive dynamics at active volcanoes. The system consists of a sampling apparatus and cameras to monitor surface phenomena during eruptions. The Sampling Apparatus for Time Series Unmanned Monitoring of Ash (SATSUMA-I and SATSUMA-II) is less than 10 kg in weight and works automatically for more than a month with a 10-kg lead battery to obtain a total of 30 to 36 samples in one cycle of operation. The time range covered in one cycle varies from less than an hour to several months, depending on the aims of observation, allowing researchers to target minute-scale fluctuations in a single eruptive event, as well as daily to weekly trends in persistent volcanic activity. The latest version, SATSUMA-II, also enables control of sampling parameters remotely by e-mail commands. Durability of the apparatus is high: our prototypes worked for several months, in rainy and typhoon seasons, at windy and humid locations, and under strong sunlight. We have been successful in collecting ash samples emitted from Showa crater almost everyday for more than 4 years (2008-2012) at Sakurajima volcano in southwest Japan.

  2. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  3. Aerogeophysical evidence for active volcanism beneath the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Blankenship, Donald D.; Bell, Robin E.; Hodge, Steven M.; Brozena, John M.; Behrendt, John C.

    1993-01-01

    Although it is widely understood that the collapse of the West Antarctic Ice Sheet (WAIS) would cause a global sea-level rise of 6 m, there continues to be considerable debate about the response of this ice sheet to climate change. The stability of the WAIS, which is characterized by a bed grounded well below sea level, may depend on geologically controlled conditions at the base, which are independent of climate. Ice streams moving up to 750 m/yr disperse material from the interior through to the oceans. As these ice streams tend to buffer the reservoir of slow-moving inland ice from exposure to oceanic degradation, understanding the ice-streaming process is important for evaluating WAIS stability. There is strong evidence that ice streams slide on a lubricating layer of water-saturated till. Development of this basal layer requires both water and easily eroded sediments. Active lithospheric extension may elevate regional heat flux, increase basal melting, and trigger ice streaming. If a geologically defined boundary with a sharp contrast in geothermal flux exists beneath the WAIS, ice streams may only be capable of operating as a buffer over a restricted region. Should ocean waters penetrate beyond this boundary, the ice-stream buffer would disappear, possibly triggering a collapse of the inland ice reservoir. Aerogeophysical evidence for active volcanism and elevated heat flux beneath the WAIS near the critical region where ice streaming begins is presented.

  4. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    SciTech Connect

    Jackson, M.R. Jr.

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  5. 2012 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Herrick, Julie A.; Neal, Christina A.; Cameron, Cheryl E.; Dixon, James P.; McGimsey, Robert G.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, or suspected unrest at 11 volcanic centers in Alaska during 2012. Of the two verified eruptions, one (Cleveland) was clearly magmatic and the other (Kanaga) was most likely a single phreatic explosion. Two other volcanoes had notable seismic swarms that probably were caused by magmatic intrusions (Iliamna and Little Sitkin). For each period of clear volcanic unrest, AVO staff increased monitoring vigilance as needed, reviewed eruptive histories of the volcanoes in question to help evaluate likely outcomes, and shared observations and interpretations with the public. 2012 also was the 100th anniversary of Alaska’s Katmai-Novarupta eruption of 1912, the largest eruption on Earth in the 20th century and one of the most important volcanic eruptions in modern times. AVO marked this occasion with several public events.

  6. Recent and Hazardous Volcanic Activity Along the NW Rift Zone of Piton De La Fournaise Volcano, La Réunion Island

    NASA Astrophysics Data System (ADS)

    Walther, G.; Frese, I.; Di Muro, A.; Kueppers, U.; Michon, L.; Metrich, N.

    2014-12-01

    Shield volcanoes are a common feature of basaltic volcanism. Their volcanic activity is often confined to a summit crater area and rift systems, both characterized by constructive (scoria and cinder cones; lava flows) and destructive (pit craters; caldera collapse) phenomena. Piton de la Fournaise (PdF) shield volcano (La Réunion Island, Indian Ocean) is an ideal place to study these differences in eruptive behaviour. Besides the frequent eruptions in the central Enclos Fouqué caldera, hundreds of eruptive vents opened along three main rift zones cutting the edifice during the last 50 kyrs. Two short rift zones are characterized by weak seismicity and lateral magma transport at shallow depth (above sea level). Here we focus on the third and largest rift zone (15km wide, 20 km long), which extends in a north-westerly direction between PdF and nearby Piton des Neiges volcanic complex. It is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, testifying of high fluid pressures (up to 5 kbar) and large-volume eruptions. We present new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruption products) on one of the youngest (~6kyrs) and largest lava field (Trous Blancs eruption). It extends for 24km from a height of 1800 m asl, passing Le Tampon and Saint Pierre cities, until reaching the coast. The source area of this huge lava flow has been identified in an alignment of four previously unidentified pit craters. The eruption initiated with intense fountaining activity, producing a m-thick bed of loose black scoria, which becomes densely welded in its upper part; followed by an alternation of volume rich lava effusions and strombolian activity, resulting in the emplacement of meter-thick, massive units of olivine-basalt alternating with coarse scoria beds in the proximal area. Activity ended with the emplacement of a dm-thick bed of glassy, dense scoria and a stratified lithic

  7. Fluorine in the rocks and sediments of volcanic areas in central Italy: total content, enrichment and leaching processes and a hypothesis on the vulnerability of the related aquifers.

    PubMed

    De Rita, Donatella; Cremisini, Carlo; Cinnirella, Alessandro; Spaziani, Fabio

    2012-09-01

    Rock, sediment and water samples from areas characterised by hydrothermal alterations in the Sabatini and Vico Volcanic Districts, near Rome and the large city of Viterbo, respectively, were collected and analysed to determine the total fluorine (F) content and to understand the F geochemical background level in the volcanic districts of central Italy. Leaching and alteration processes controlling the high concentration of F in water were also investigated. Fluorine concentrations were directly determined (potentiometrically) by an F selective electrode in water samples, while the procedure for rock samples included preliminary F dissolution through alkaline fusion. F concentrations higher than 800 mg kg(-1) were commonly found in the analysed rocks and sediments; the concentration depended on the lithology and on the distance from the alteration areas. A specific successive sampling campaign was conducted in three areas where the F content in sediments was particularly high; in the same areas, measurements of CO(2) flux were also performed to investigate the possible deep origin of F. To verify the relationships among the high F contents in rocks and sediments, the leaching processes involved and the presence of F in the aquifer, we also collected water samples in the western sector of the Sabatini Volcanic District, where hydrothermal manifestations and mineral springs are common. The data were processed using a GIS system in which the F distribution was combined with morphological and geological observations. The main results of our study are that (1) F concentrations are higher in volcanic and recently formed travertine (especially in hydrothermally altered sediments) than in sedimentary rocks and decrease with distance from hydrothermal alteration areas, (2) F is more easily leached from hydrothermally altered rocks and from travertine and (3) sediments enriched with F may indicate the presence of deep regional fractures that represent direct pathways of

  8. Integrating science and education during an international, multi-parametric investigation of volcanic activity at Santiaguito volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Johnson, Jeffrey; Andrews, Benjamin; Wolf, Rudiger; Rose, William; Chigna, Gustavo; Pineda, Armand

    2016-04-01

    In January 2016, we held the first scientific/educational Workshops on Volcanoes (WoV). The workshop took place at Santiaguito volcano - the most active volcano in Guatemala. 69 international scientists of all ages participated in this intensive, multi-parametric investigation of the volcanic activity, which included the deployment of seismometers, tiltmeters, infrasound microphones and mini-DOAS as well as optical, thermographic, UV and FTIR cameras around the active vent. These instruments recorded volcanic activity in concert over a period of 3 to 9 days. Here we review the research activities and present some of the spectacular observations made through this interdisciplinary efforts. Observations range from high-resolution drone and IR footage of explosions, monitoring of rock falls and quantification of the erupted mass of different gases and ash, as well as morphological changes in the dome caused by recurring explosions (amongst many other volcanic processes). We will discuss the success of such integrative ventures in furthering science frontiers and developing the next generation of geoscientists.

  9. Intumescence and pore structure of alkali-activated volcanic glasses upon exposure to high temperatures

    NASA Astrophysics Data System (ADS)

    Erdogan, S. T.

    2015-12-01

    Structures formed with ground perlite, a natural volcanic glass, activated with NaOH solutions, are shown to possess the ability to expand up to ~225 % of their original volumes upon exposure to temperatures in the 200-600 °C range. Porous solid with 3-7 MPa compressive strength and ˜450 kg/m3 or higher density are obtained. The observed expansion is believed to occur due to a loss of silanol condensation water, as vapor and is accompanied by an up to ~20 % loss in mass. A drop in pH to near-neutral values supports this idea. The size and total amount of pores in the final solid are controlled by concentration of the NaOH solution and thermal processing conditions. The pores formed are observed to be ~1-10 μm to mm-sized. The ability of perlite-based solids to intumesce over specific temperature ranges could be beneficial in applications where absorption of thermal energy is necessary, such as passive fire protection.

  10. Lung clearance of neutron-activated Mount St. Helens volcanic ash in the rat.

    PubMed

    Wehner, A P; Wilerson, C L; Stevens, D L

    1984-10-01

    To determine pulmonary deposition and clearance of inhaled volcanic ash, rats received a single 60-min, nose-only exposure to neutron-activated ash. Over a period of 128 days after exposure, the rats were sacrificed in groups of five animals. Lungs were analyzed for the radionuclide tracers 46Sc, 59Fe, and 60Co by gamma-ray spectrometry. The alveolar ash burdens, determined by the radionuclides 46Sc and 59Fe, are in good agreement for the majority of samples analyzed, indicating ash particulate levels in the lungs, rather than leached radionuclides. The ash deposition estimates based on 60Co were appreciably lower for the lungs, indicating that 60Co leached from the ash. Approximately 110 micrograms ash, or 6% of the inhaled ash, was initially retained in the deep lung. The biological half-time of the alveolar ash burden was 39 days. After 90 days, the mean lung burden had decreased to about 20% of its initial value; 128 days after exposure, about 10% remained.

  11. Volcanic activity observed from continuous seismic records in the region of the Klyuchevskoy group of volcanoes

    NASA Astrophysics Data System (ADS)

    Shapiro, N.; Droznin, D.; Droznina, S.; Senyukov, S.; Chebrov, V.; Gordeev, E.; Frank, W.

    2014-12-01

    We analyze continuous seismic records from 18 permanent stations operated in vicinity of the Klyuchevskoy group of volcanos (Kamchatka, Russia) during the period between 2009 and 2014. We explore the stability of the inter-station cross-correlation to detect different periods of sustained emission from seismic energy. The main idea of this approach is that cross-correlation waveforms computed from a wavefield emitted by a seismic source from a fixed position remain stable during the period when this source is acting. The detected periods of seismic emission correspond to different episodes of activity of volcanoes: Klyuchevskoy, Tolbachik, Shiveluch, and Kizimen. For Klyuchevskoy and Tolbachik whose recent eruptions are mostly effusive, the detected seismic signals correspond to typical volcanic tremor, likely caused by degassing processes. For Shiveluch and Kizimen producing more silicic lavas, the observed seismic emission often consists of many repetitive long period (LP) seismic events that might be related to the extrusion of viscous magmas. We develop an approach for automatic detection of these individual LP events in order to characterize variations of their size and recurrence in time.

  12. Volcanic activity observed from continuous seismic records in the region of the Klyuchevskoy group of volcanoes

    NASA Astrophysics Data System (ADS)

    Shapiro, N.; Droznin, D.; Droznina, S.; Senyukov, S.; Chebrov, V.; Gordeev, E.; Frank, W.

    2015-12-01

    We analyze continuous seismic records from 18 permanent stations operated in vicinity of the Klyuchevskoy group of volcanos (Kamchatka, Russia) during the period between 2009 and 2014. We explore the stability of the inter-station cross-correlation to detect different periods of sustained emission from seismic energy. The main idea of this approach is that cross-correlation waveforms computed from a wavefield emitted by a seismic source from a fixed position remain stable during the period when this source is acting. The detected periods of seismic emission correspond to different episodes of activity of volcanoes: Klyuchevskoy, Tolbachik, Shiveluch, and Kizimen. For Klyuchevskoy and Tolbachik whose recent eruptions are mostly effusive, the detected seismic signals correspond to typical volcanic tremor, likely caused by degassing processes. For Shiveluch and Kizimen producing more silicic lavas, the observed seismic emission often consists of many repetitive long period (LP) seismic events that might be related to the extrusion of viscous magmas. We develop an approach for automatic detection of these individual LP events in order to characterize variations of their size and recurrence in time.

  13. The nature of the volcanic activity at Loki: Insights from Galileo NIMS and PPR data

    NASA Astrophysics Data System (ADS)

    Howell, Robert R.; Lopes, Rosaly M. C.

    2007-02-01

    Loki is the largest patera and the most energetic hotspot on Jupiter's moon Io, in turn the most volcanically active body in the Solar System, but the nature of the activity remains enigmatic. We present detailed analysis of Galileo Near-Infrared Mapping Spectrometer (NIMS) and PhotoPolarimeter/Radiometer (PPR) observations covering the 1.5-100 μm wavelength range during the I24, I27, and I32 flybys. The general pattern of activity during these flybys is consistent with previously proposed models of a resurfacing wave periodically crossing a silicate lava lake. In particular our analysis of the I32 NIMS observations shows, over much of the observed patera, surface temperatures and implied ages closely matching those expected for a wave advancing counterclockwise at 0.94-1.38 km/day. The age pattern is different than other published analyses which do not show as clearly this azimuthal pattern. Our analysis also shows two additional distinctly different patera surfaces. The first is located along the inner and outer margins where components with a 3.00-4.70-μm color temperature of 425 K exist. The second is located at the southwestern margin where components with a 550-K color temperature exist. Although the high temperatures could be caused by disruption of a lava lake crust, some additional mechanism is required to explain why the southwest margin is different from the inner or outer ones. Finally, analysis of the temperature profiles across the patera reveal a smoothness that is difficult to explain by simple lava cooling models. Paradoxically, at a subpixel level, wide temperature distributions exist which may be difficult to explain by just the presence of hot cracks in the lava crust. The resurfacing wave and lava cooling models explain well the overall characteristics of the observations. However, additional physical processes, perhaps involving heat transport by volatiles, are needed to explain the more subtle features.

  14. Local influences of geothermal anomalies on permafrost distribution in an active volcanic island (Deception Island, Antarctica)

    NASA Astrophysics Data System (ADS)

    Goyanes, G.; Vieira, G.; Caselli, A.; Cardoso, M.; Marmy, A.; Santos, F.; Bernardo, I.; Hauck, C.

    2014-11-01

    This study aims at understanding the spatial distribution and characteristics of the frozen and unfrozen terrain in an alluvial fan on Deception Island, which is an active strato-volcano located in the Bransfield Strait (South Shetland Islands) with recent eruptions in 1967, 1969 and 1970. The alluvial fan is dominated by debris-flow, run-off and rock fall processes and permafrost occurs in several parts in the vicinity of anomalous geothermal heat flux. The aim is to assess the ways volcanic activity controls permafrost development and associated geomorphic dynamics using shallow subsurface, surface and air temperature measurements as well as thaw depth and electrical resistivity tomography (ERT) surveys. Results show a temperature increase with depth in the lower part of the fan reaching 13 °C at 0.80 m depth, without the presence of permafrost. The shallow borehole located at this site showed a stable thermal stratification all year-round, with only the upper 0.20 m reacting to meteorological forcing. In the upper part of the alluvial fan and debris cones, c. 100 m from the coast, frozen ground is present at c. 0.70 m depth. There, the shallow borehole shows a good coupling with air temperatures and the thermal regime favours the presence of permafrost. ERT shows the lowest resistivity values in the lower part of the alluvial fan and a highly resistivity zone in the upper sector of the fan and in the debris cones. These large variations in resistivity mark the presence of a saline water wedge from the sea into the fan, reaching frozen ground conditions about 100 m inland. It can be shown that the volcano-hydrothermal activity only inhibits frost development very locally, with frozen ground conditions occurring about 100 m away.

  15. Volcanic hazards in Central America

    USGS Publications Warehouse

    Rose, William I.; Bluth, Gregg J.S.; Carr, Michael J.; Ewert, John W.; Patino, Lina C.; Vallance, James W.

    2006-01-01

    This volume is a sampling of current scientific work about volcanoes in Central America with specific application to hazards. The papers reflect a variety of international and interdisciplinary collaborations and employ new methods. The book will be of interest to a broad cross section of scientists, especially volcanologists. The volume also will interest students who aspire to work in the field of volcano hazards mitigation or who may want to work in one of Earth’s most volcanically active areas.

  16. Lava accretion system around mid-ocean ridges: Volcanic stratigraphy in the Wadi Fizh area, northern Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Kusano, Yuki; Adachi, Yoshiko; Miyashita, Sumio; Umino, Susumu

    2012-05-01

    Detailed lithological study combined with geochemical variations of lavas reveals the across-axis accretionary process at Wadi Fizh in the northern Oman ophiolite. The >900 m thick V1 sequence is divided into the lower V1 (LV1), middle V1 (MV1) and upper V1 (UV1) sequence by 0.4 m and 0.8 m thick umbers at 410 mab (meters above the base of the extrusive rocks) and 670 mab, respectively. The lowest part of the LV1 (LV1a) consists of lobate sheet and pillow lava flows extruded on the relatively flat ridge crest. Elongate pillows at 230 mab are flows draping downslope from the ridge crest and characterize the lithofacies on the ridge flank. Just above a jasper layer at 270 mab, 130 m thick evolved lavas were transported from the crest and emplaced on the ridge flank (LV1b). Off-axial accretionary processes recorded in the MV1 resulted in alternating flows of less evolved, depleted lava and evolved lava, suggesting that the MV1 off-axial lava sequence comprises flows emanated from both on- and off-axis source vents. The less evolved and depleted UV1 flows suggest independent sources distinct from the axial lavas. The Lasail Unit is regarded as a subunit of the V1 because it is comparable to the UV1 in the geological, petrological, and geochemical characteristics. The broad compositional range of the V1 sequence endorses a view that the Wadi Fizh area corresponds to a segment end of the Oman paleospreading system accompanied by off-axis volcanism as in segment boundaries of the present East Pacific Rise.

  17. Can we detect, monitor, and characterize volcanic activity using 'off the shelf' webcams and low-light cameras?

    NASA Astrophysics Data System (ADS)

    Harrild, M.; Webley, P. W.; Dehn, J.

    2015-12-01

    The ability to detect and monitor precursory events, thermal signatures, and ongoing volcanic activity in near-realtime is an invaluable tool. Volcanic hazards often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash to aircraft cruise altitudes. Using ground based remote sensing to detect and monitor this activity is essential, but the required equipment is often expensive and difficult to maintain, which increases the risk to public safety and the likelihood of financial impact. Our investigation explores the use of 'off the shelf' cameras, ranging from computer webcams to low-light security cameras, to monitor volcanic incandescent activity in near-realtime. These cameras are ideal as they operate in the visible and near-infrared (NIR) portions of the electromagnetic spectrum, are relatively cheap to purchase, consume little power, are easily replaced, and can provide telemetered, near-realtime data. We focus on the early detection of volcanic activity, using automated scripts that capture streaming online webcam imagery and evaluate each image according to pixel brightness, in order to automatically detect and identify increases in potentially hazardous activity. The cameras used here range in price from 0 to 1,000 and the script is written in Python, an open source programming language, to reduce the overall cost to potential users and increase the accessibility of these tools, particularly in developing nations. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures to be correlated to pixel brightness. Data collected from several volcanoes; (1) Stromboli, Italy (2) Shiveluch, Russia (3) Fuego, Guatemala (4) Popcatépetl, México, along with campaign data from Stromboli (June, 2013), and laboratory tests are presented here.

  18. Geochronology and geochemistry of Eocene-aged volcanic rocks around the Bafra (Samsun, N Turkey) area: Constraints for the interaction of lithospheric mantle and crustal melts

    NASA Astrophysics Data System (ADS)

    Temizel, İrfan; Arslan, Mehmet; Yücel, Cem; Abdioğlu, Emel; Ruffet, Gilles

    2016-08-01

    40Ar-39Ar age, whole-rock chemical, and Sr-Nd isotope data are presented for the post-collisional, Eocene (51.3-44.1 Ma)-aged volcanic rocks from the Bafra (Samsun) area in the western part of the Eastern Pontides (N Turkey) aiming to unravel their sources and evolutionary history. The studied Eocene volcanic rocks can be divided into two groups: analcime-bearing (tephritic lava flows and dykes) and analcime-free (basaltic to trachytic lava flows and basaltic dykes). The analcime-bearing volcanic rocks have a fine-grained porphyritic texture with clinopyroxene phenocrysts, whereas analcime-free volcanic rocks show a variety of textures including hyalo-microlitic microgranular porphyritic, intersertal, trachytic, fluidal, and glomeroporphyritic. The volcanic rocks also show evidence of mineral-melt disequilibrium textures such as sieved, rounded, and corroded plagioclases, partially melted and dissolved clinopyroxenes and poikilitic texture. Petrochemically, the parental magmas of the volcanic rocks evolved from alkaline to calc-alkaline lava suites and include high-K and shoshonitic compositions. They display enrichments in light rare earth and large ion lithophile elements such as Sr, K, and Rb, as well as depletions in high field strength elements such as Nb, Ta, Zr, and Ti, resembling subduction-related magmas. The analcime-bearing and -free volcanic rocks share similar incompatible element ratios and chondrite-normalised rare rearth element patterns, indicating that they originated from similar sources. They also have relatively low to moderate initial 87Sr/86Sr (0.7042-0.7051), high positive εNd(t) values (+ 0.20 to + 3.32), and depleted mantle Nd model ages (TDM1 = 0.63-0.93 Ga, TDM2 = 0.58-0.84 Ga). The bulk-rock chemical and Sr-Nd isotope features as well as the high Rb/Y and Th/Zr, but low Nb/Zr and Nb/Y ratios, indicate that the volcanic rocks were derived from a lithospheric mantle source that had been metasomatised by slab-derived fluids. Trace element

  19. Volcanism on Io

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard

    2014-03-01

    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-95; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  20. Volcanism on Io

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard

    2007-08-01

    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-1995; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  1. Intracaldera volcanic activity, Toledo caldera and embayment, Jemez Mountains, New Mexico

    SciTech Connect

    Heiken, G.; Goff, F.; Stix, J.; Shafiqullah, M.; Garcia, S.; Hagan, R.

    1986-02-10

    The Toledo caldera was formed at 1.47 +- 0.06 Ma during the catastrophic eruption of the lower member, Bandelier Tuff. The caldera was obscured at 1.12 +- 0.03 Ma during eruption of the equally voluminous upper member of the Bandelier Tuff that led to formation of the Valles caldera. Earlier workers interpreted a 9-km-diameter embayment, located NE of the Valles caldera (Toledo embayment), to be a remnant of the Toledo caldera. Drill hole data and new K-Ar dates of Toledo intracaldera domes redefine the position of Toledo caldera, nearly coincident with and of the same dimensions as the younger Valles caldera. the Toledo embayment may be of tectonic origin or a small Tschicoma volcanic center caldera. This interpretation is consistent with distribution of the lower member of the Bandelier Tuff and with several other field and drilling-related observations. Explosive activity associated with Cerro Toledo Rhyolite domes is recorded in tuff deposits located between the lower and upper members of the Bandelier Tuff on the northeast flank of the Jemez Mountains. Recorded in the tuff deposits are seven cycles of explosive activity. Most cycles consists of phreatomagmatic tuffs that grade upward into Plinian pumice beds. A separate deposit, of the same age and consisting of pyroclastic surges and flows, is associated with Rabbit Mountain, located on the southeast rim of the Valles-Toledo caldera complex. These are the surface expression of what may be a thicker, more voluminous intracaldera tuff sequence. The combined deposits of the lower and upper members of the Bandelier Tuff, Toledo and Valles intracaldera sediments, tuffs, and dome lavas form what we interpret to be a wedge-shaped caldera fill. This sequence is confirmed by deep drill holes and gravity surveys.

  2. Active submarine volcanism on the Society hotspot swell (west Pacific): A geochemical study

    SciTech Connect

    Devey, C.W.; Albarede, F.; Michard, A. ); Cheminee, J.L. ); Muehe, R.; Stoffers, P. )

    1990-04-10

    The present work deals with the petrography and geochemistry of lavas dredged from five active submarine volcanoes (named Mehetia, Moua Pihaa, Rocard, Teahitia, and Cyana) from the southeast end of the Society Islands hotspot trace. Most samples are basic and alkaline. Fractionation modelling based on major and minor compatible element variations suggests that olivine and minor clinopyroxene were the major fractionating phases. Rocard and Cyana have yielded more evolved, trachy-phonolitic, glassy samples. Both basaltic and phonolitic samples are incompatible-element enriched. The trachy-phonolite patterns show middle (REE) depletion and negative Eu anomalies. The Moua Pihaa basalts have flatter patterns than the other basalts. All smaples, with the exception of a sample from Moua Pihaa which has elevated {sup 206}Pb/{sup 204}Pb, fall on linear Sr-Nd-Pb isotopic arrays, suggesting two end-member mixing. The Sr isotopic variations in the samples excluding Moua Pihaa correlate positively with Rb/Nb, Pb/Ce, and SiO{sub 2} variations, idicating a component of mantle enriched by injection of material from a subducted oceanic slab. Correlation of {sup 207}Pb/{sup 204}Pb with {sup 87}Sr/{sup 86}Sr suggests that the subducted material is geochemically old. The absence of a MORB component in the Society magmatism, the small volumes of the Polynesian hotspot volcanoes, and the lack of more intense volcanic activity near the center of the Pacific Superswell, all lead to the conclusion that the latter is unlikely to be caused by a large convective plume.

  3. Identification of a volcaniclastic tsunami deposit at a volcanically active region in southeastern Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Nakamura, Y.; Moriwaki, H.; Chiba, T.; Fujino, S.

    2014-12-01

    A total of two pumiceous layers bounded by sharp upper and lower contacts with surrounding mud were evident in almost all of the 19 sediment cores in southeastern Kyushu, Japan. The upper orange-tinged pumiceous layer A with approx. 5 cm thickness was present at around 2.0-3.5 m deep, while the lower white-tinged pumiceous layer B with a few millimeters to 1.5 cm thickness was found beneath the layer A. The major element composition and refraction index of volcanic glass shards in layers A and B were consistent with those of standard sample of Kr-M and Sz-7, respectively. The Kr-M tephra, sourced from the Mt. Kirishima in southern part of Kyushu, was deposited approx. 4600 years ago, while the Sz-7 tephra, sourced from the Sakurajima in southern part of Kyushu, was deposited approx. 5000 years ago. Selected seeds, leaves, and plant debris obtained from mud samples immediately beneath the layers A and B provided their limiting-maximum ages of approx. 4500 cal. yr BP and 4500-4600 cal. yr BP. The results of the tephra analyses and radiocarbon age indicate that the layer A is the Kr-M fall tephra. However, the limiting-maximum age of the layer B is 400 years younger than the fall age of Sz-7. Given the higher percentage of marine and brackish diatoms than the background mud, deposition of the layer B is thought to be due to a seawater inundation event such as tsunami. It is quite likely that volcaniclastic tsunami deposits exist not only in Kyushu, but also at any site in the subduction zones all over the world. The same approach as this study contributes to the discovery of overlooked tsunami deposits in other areas.

  4. Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum

    NASA Astrophysics Data System (ADS)

    Anet, J. G.; Muthers, S.; Rozanov, E. V.; Raible, C. C.; Stenke, A.; Shapiro, A. I.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Beer, J.; Steinhilber, F.; Schmutz, W.; Peter, T.

    2014-05-01

    The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles versus volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, AD 1780-1840). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ < 250 nm, (ii) irradiance at wavelengths λ > 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere-ocean chemistry-climate model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decreased global mean temperature by up to 0.5 K for 2-3 years after the eruption. However, while the volcanic effect is clearly discernible in the Southern Hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ < 250 nm and in energetic particle spectra have only an insignificant impact on the climate during the Dalton Minimum. This downscales the importance of top-down processes (stemming from changes at λ < 250 nm) relative to bottom-up processes (from λ > 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease in the ocean heat content (OHC) between 0 and 300 m in depth, whereas the changes in irradiance at λ < 250 nm or in energetic particles have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing

  5. Impact of solar vs. volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum

    NASA Astrophysics Data System (ADS)

    Anet, J. G.; Muthers, S.; Rozanov, E. V.; Raible, C. C.; Stenke, A.; Shapiro, A. I.; Brönnimann, S.; Arfeuille, F.; Brugnara, Y.; Beer, J.; Steinhilber, F.; Schmutz, W.; Peter, T.

    2013-11-01

    The aim of this work is to elucidate the impact of changes in solar irradiance and energetic particles vs. volcanic eruptions on tropospheric global climate during the Dalton Minimum (DM, 1780-1840 AD). Separate variations in the (i) solar irradiance in the UV-C with wavelengths λ < 250 nm, (ii) irradiance at wavelengths λ > 250 nm, (iii) in energetic particle spectrum, and (iv) volcanic aerosol forcing were analyzed separately, and (v) in combination, by means of small ensemble calculations using a coupled atmosphere-ocean chemistry-climate-model. Global and hemispheric mean surface temperatures show a significant dependence on solar irradiance at λ > 250 nm. Also, powerful volcanic eruptions in 1809, 1815, 1831 and 1835 significantly decrease global mean temperature by up to 0.5 K for 2-3 yr after the eruption. However, while the volcanic effect is clearly discernible in the southern hemispheric mean temperature, it is less significant in the Northern Hemisphere, partly because the two largest volcanic eruptions occurred in the SH tropics and during seasons when the aerosols were mainly transported southward, partly because of the higher northern internal variability. In the simulation including all forcings, temperatures are in reasonable agreement with the tree-ring-based temperature anomalies of the Northern Hemisphere. Interestingly, the model suggests that solar irradiance changes at λ < 250 nm and in energetic particle spectra have only insignificant impact on the climate during the Dalton Minimum. This downscales the importance of top-down processes (stemming from changes at λ < 250 nm) relative to bottom-up processes (from λ > 250 nm). Reduction of irradiance at λ > 250 nm leads to a significant (up to 2%) decrease of the ocean heat content (OHC) between the 0 and 300 m of depth, whereas the changes in irradiance at λ < 250 nm or in energetic particle have virtually no effect. Also, volcanic aerosol yields a very strong response, reducing the OHC

  6. California’s potential volcanic hazards

    USGS Publications Warehouse

    Jorgenson, P.

    1989-01-01

    Although volcanic eruptions have occurred infrequently in California during the last few thousand years, the potential danger to life and property from volcanoes in the state is great enough to be of concern, according to a recent U.S Geological Survey (USGS) publication. the 17-page bulletin, "Potential Hazards from Future Volcanic Eruptions in California," gives a brief history of volcanic activity in California during the past 100,000 years, descriptions of the types of volcanoes in the state, the types of potentially hazardous volcanic events that could occur, and hazard-zonation maps and tables depicting six areas of the state where volcanic eruptions might occur. Although no quantitative probabilities are attached to any of the potential volcanic hazards, the USGS bulletin warns that "sooner or later a volcano in California will erupt again and the ever-expanding use of area near volcnoes increases the potential impact of an eruption on the state's economy and on the health and safety of its citizens. 

  7. New inferences from spectral seismic energy measurement of a link between regional seismicity and volcanic activity at Mt. Etna, Italy

    NASA Astrophysics Data System (ADS)

    Ortiz, R.; Falsaperla, S.; Marrero, J. M.; Messina, A.

    2009-04-01

    The existence of a relationship between regional seismicity and changes in volcanic activity has been the subject of several studies in the last years. Generally, activity in basaltic volcanoes such as Villarica (Chile) and Tungurahua (Ecuador) shows very little changes after the occurrence of regional earthquakes. In a few cases volcanic activity has changed before the occurrence of regional earthquakes, such as observed at Teide, Tenerife, in 2004 and 2005 (Tárraga et al., 2006). In this paper we explore the possible link between regional seismicity and changes in volcanic activity at Mt. Etna in 2006 and 2007. On 24 November, 2006 at 4:37:40 GMT an earthquake of magnitude 4.7 stroke the eastern coast of Sicily. The epicenter was localized 50 km SE of the south coast of the island, and at about 160 km from the summit craters of Mt. Etna. The SSEM (Spectral Seismic Energy Measurement) of the seismic signal at stations at 1 km and 6 km from the craters highlights that four hours before this earthquake the energy associated with volcanic tremor increased, reached a maximum, and finally became steady when the earthquake occurred. Conversely, neither before nor after the earthquake, the SSEM of stations located between 80 km and 120 km from the epicentre and outside the volcano edifice showed changes. On 5 September, 2007 at 21:24:13 GMT an earthquake of magnitude 3.2 and 7.9 km depth stroke the Lipari Island, at the north of Sicily. About 38 hours before the earthquake occurrence, there was an episode of lava fountain lasting 20 hours at Etna volcano. The SSEM of the seismic signal recorded during the lava fountain at a station located at 6 km from the craters highlights changes heralding this earthquake ten hours before its occurrence using the FFM method (e.g., Voight, 1988; Ortiz et al., 2003). A change in volcanic activity - with the onset of ash emission and Strombolian explosions - was observed a couple of hours before the occurrence of the regional

  8. Magmatic Trigger for Extensional Collapse? Character and Significance of Pre-Extensional Volcanic Activity in the Whipple Mountains Region, Lower Colorado River Extensional Corridor

    NASA Astrophysics Data System (ADS)

    Fidler, M. K.; Gans, P. B.

    2014-12-01

    The character and timing of voluminous Miocene volcanic activity associated with regional crustal extension in the lower Colorado River Extensional Corridor (CREC) shed light on the interplay between tectonic and magmatic processes in the area. New 40Ar/39Ar ages from holocrystaline groundmass separates of mafic lava flows and phenocrystic plagioclase, biotite, hornblende, and sanidine from silicic extrusive rocks, combined with LA-ICPMS U-Pb ages of zircon from the more altered intermediate to silicic rocks provide important new constraints on the ages of pre-, syn-, and post-extensional volcanic sequences in the vicinity of the Whipple Mountains metamorphic core complex. Local eruptive activity began ~20.5 Ma and persisted for 1.5 million years prior to the inception of major extensional faulting and tilting at ~19 Ma, as recorded by upper plate tilt blocks. The pre-extensional sequences are homoclinal, steeply tilted, and disconformably overlie older arkosic sedimentary rocks. There is no compelling evidence for angular unconformities or growth faulting during this earliest pre-extensional volcanic activity. These early erupted units are dominantly mafic, forming ≥1 km thick sections of olivine-basalt and olv-cpx-plag basaltic andesite lava flows punctuated by rare aphyric to crystal poor dacite ignimbrites. Plag±pyx±bio±hbl dacite lava flows and domes with associated pyroclastic deposits appear late in the pre-extensional sequence, immediately prior to and during the onset of major extensional faulting. These crystal-poor to aphyric silicic rocks show abundant evidence of magma mingling and may represent hybridized partial melts generated by the influx of basaltic magma into the crust. The pre-extensional sequence is locally overlain by ~18.5 to 18.8 Ma syn- and post-extensional volcanic and sedimentary rocks along a pronounced 30-60° angular unconformity, indicating very rapid extension during the early stages of the CREC's development. This overall

  9. Using IMS hydrophone data for detecting submarine volcanic activity: Insights from Monowai, 26°S Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Metz, Dirk; Watts, Anthony B.; Grevemeyer, Ingo; Rodgers, Mel; Paulatto, Michele

    2016-04-01

    Only little is known on active volcanism in the ocean. As eruptions are attenuated by seawater and fallout does not regularly reach the sea surface, eruption rates and mechanisms are poorly understood. Estimations on the number of active volcanoes across the modern seas range from hundreds to thousands, but only very few active sites are known. Monowai is a submarine volcanic centre in the northern Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of five days, with explosive activity directly linked to the generation of seismoacoustic tertiary waves ('T-phases'), recorded at three broadband seismic stations in the region. We show, using windowed cross-correlation and time-difference-of-arrival techniques, that T-phases associated with this eruption are detected as far as Ascension Island, South Atlantic Ocean, where two bottom-moored hydrophone arrays are operated as part of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). We observe a high incidence of T-phase arrivals during the time of the eruption, with the angle of arrival stabilizing at the geodesic azimuth between the IMS arrays and Monowai. T-phases from the volcanic centre must therefore have propagated through the Sound Fixing And Ranging (SOFAR) channel in the South Pacific and South Atlantic Oceans and over a total geodesic range of approximately 15,800 km, one of the longest source-receiver distances of any naturally occurring underwater signal ever observed. Our findings, which are consistent with observations at regional broadband stations and two dimensional, long-range, parabolic equation modelling, highlight the exceptional capabilities of the hydroacoustic waveform component of the IMS for remotely detecting episodes of submarine volcanic activity. Using Monowai and the hydrophone arrays at Ascension Island as a natural laboratory, we investigate the long-term eruptive record of a submarine volcano from

  10. Time variability of Io's volcanic activity from near-IR adaptive optics observations on 100 nights in 2013-2015

    NASA Astrophysics Data System (ADS)

    de Kleer, Katherine; de Pater, Imke

    2016-12-01

    Jupiter's moon Io is a dynamic target, exhibiting extreme and time-variable volcanic activity powered by tidal forcing from Jupiter. We have conducted a campaign of high-cadence observations of Io with the goal of characterizing its volcanic activity. Between Aug 2013 and the end of 2015, we imaged Io on 100 nights in the near-infrared with adaptive optics on the Keck and Gemini N telescopes, which resolve emission from individual volcanic hot spots. During our program, we made over 400 detections of 48 distinct hot spots, some of which were detected 30+ times. We use these observations to derive a timeline of global volcanic activity on Io, which exhibits wide variability from month to month. The timelines of thermal activity at individual volcanic centers have geophysical implications, and will permit future characterization by others. We evaluate hot spot detection limits and give a simple parameterization of the minimum detectable intensity as a function of emission angle, which can be applied to other analyses. We detected three outburst eruptions in August 2013, but no other outburst-scale events were observed in the subsequent ∼90 observations. Either the cluster of events in August 2013 was a rare occurrence, or there is a mechanism causing large events to occur closely-spaced in time. We also detected large eruptions (though not of outburst scale) within days of one another at Kurdalagon Patera and Sethlaus/Gabija Paterae in 2015. As was also seen in the Galileo dataset, the hot spots we detected can be separated into two categories based on their thermal emission: those that are persistently active for 1 year or more at moderate intensity, and those that are only briefly active, are time-variable, and often reach large intensities. A small number of hot spots in the latter category appear and subside in a matter of days, reaching particularly high intensities; although these are not bright enough to qualify as outbursts, their thermal signatures follow

  11. Methane production and consumption in an active volcanic environment of Southern Italy.

    PubMed

    Castaldi, Simona; Tedesco, Dario

    2005-01-01

    Methane fluxes were measured, using closed chambers, in the Crater of Solfatara volcano, Campi Flegrei (Southern Italy), along eight transects covering areas of the crater presenting different landscape physiognomies. These included open bare areas, presenting high geothermal fluxes, and areas covered by vegetation, which developed along a gradient from the central open area outwards, in the form of maquis, grassland and woodland. Methane fluxes decreased logarithmically (from 150 to -4.5 mg CH4 m(-2)day(-1)) going from the central part of the crater (fangaia) to the forested edges, similarly to the CO2 fluxes (from 1500 g CO2 m(-2)day(-1) in the centre of the crater to almost zero flux in the woodlands). In areas characterized by high emissions, soil presented elevated temperature (up to 70 degrees C at 0-10 cm depth) and extremely low pH (down to 1.8). Conversely, in woodland areas pH was higher (between 3.7 and 5.1) and soil temperature close to air values. Soil (0-10 cm) was sampled, in two different occasions, along the eight transects, and was tested for methane oxidation capacity in laboratory. Areas covered by vegetation mostly consumed CH4 in the following order woodland>macchia>grassland. Methanotrophic activity was also measured in soil from the open bare area. Oxidation rates were comparable to those measured in the plant covered areas and were significantly correlated with field CH4 emissions. The biological mechanism of uptake was demonstrated by the absence of activity in autoclaved replicates. Thus results suggest the existence of a population of micro-organisms adapted to this extreme environment, which are able to oxidize CH4 and whose activity could be stimulated and supported by elevated concentrations of CH4.

  12. Hazard area and recurrence rate time series for determining the probability of volcanic disruption of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Ho, Chih-Hsiang

    2010-03-01

    The post-12-Ma volcanism at Yucca Mountain (YM), Nevada, a potential site for an underground geologic repository of high-level radioactive waste in the USA, is assumed to follow a Poisson process and is characterized by a sequence of empirical recurrence rate time series. The last ten time series are used as a prediction set to check the predictive ability of the candidate model produced by a training sample using autoregressive integrated moving average modeling techniques. The model is used to forecast future recurrence rates that, in turn, are used to develop a continuous mean function of the volcanic process, which is not only required to evaluate the probability of site disruption by volcanic activity but accommodates a long period of compliance. At the model validation stage, our candidate model forecasts a mean number of 6.196 eruptions for the prediction set which accounts for seven volcanic events of the 33 post-12-Ma eruptions at the YM site. For a full-scaled forecasting, our fitted model predicts a waning volcanism producing only 3.296 new eruptions in the next million years. We then present the site disruption probability as the chance that a new eruption will occur in the “hazard area” based on a model developed for licensing commercial space launch and reentry operations in the space transportation industry. The results of the site disruption probability and sensitivity analysis are summarized with a numerical table generated from a simple equation sufficient for practical use. We also produce three-dimensional plots to visualize the nonlinearity of the intensity function associated with the underlying model of a nonhomogeneous Poisson process and emphasize that the interpretation of site disruption probability should always be accompanied by a compliance period.

  13. Review of magnetic field monitoring near active faults and volcanic calderas in California: 1974-1995

    USGS Publications Warehouse

    Mueller, R.J.; Johnston, M.J.S.

    1998-01-01

    Differential magnetic fields have been monitored along the San Andreas fault and the Long Valley caldera since 1974. At each monitoring location, proton precession magnetometers sample total magnetic field intensity at a resolution of 0.1 nT or 0.25 nT. Every 10 min, data samples are transmitted via satellite telemetry to Menlo Park, CA for processing and analysis. The number of active magnetometer sites has varied during the past 21 years from 6 to 25, with 12 sites currently operational. We use this network to identify magnetic field changes generated by earthquake and volcanic processes. During the two decades of monitoring, five moderate earthquakes (M5.9 to M7.3) have occurred within 20 km of magnetometer sites located along the San Andreas fault and only one preseismic signal of 1.5 nT has been observed. During moderate earthquakes, coseismic magnetic signals, with amplitudes from 0.7 nT to 1.3 nT, have been identified for 3 of the 5 events. These observations are generally consistent with those calculated from simple seismomagnetic models of these earthquakes and near-fault coseismic magnetic field disturbances rarely exceed one nanotesla. These data are consistent with the concept of low shear stress and relatively uniform displacement of the San Andreas fault system as expected due to high pore fluid pressure on the fault. A systematic decrease of 0.8-1 nT/year in magnetic field has occurred in the Long Valley caldera since 1989. These magnetic field data are similar in form to observed geodetically measured displacements from inflation of the resurgent dome. A simple volcanomagnetic model involving pressure increase of 50 MPa/a at a depth of 7 km under the resurgent dome can replicate these magnetic field observations. This model is derived from the intrusion model that best fits the surface deformation data. ?? 1998 Elsevier Science B.V.

  14. 10 Ma of Igneous Activity in the Transmexican Volcanic Belt: Tectonic and Geomagnetic Implications.

    NASA Astrophysics Data System (ADS)

    Ruiz-Martinez, V. C.; Osete, M. L.; Urrutia-Fucugauchi, J.

    2007-05-01

    A total of 51 sites with geochronological control were sampled in the central and western segments of the Transmexican Volcanic Belt (TMVB). Together with other previously published 69 sites from the eastern segment, they span the spatial and temporal activity of the TMVB. Using now the same reference directions and methodologies, they are analyzed in order (i) to determine the possible occurrence and significance (spatially and temporally) of vertical axis crustal block rotations that have been reported in this region; and (ii) to study the geomagnetic Paleo Secular Variation during the last 10 Ma; to check the previously suggested existence of a "Pacific Dipole Window" extending to Mexico. Paleomagnetic results, backed by statistical tests performed according to their geographical distribution (3 structural segments) or according to their ages (Late Miocene, Pliocene or Quaternary), do not support the notion that large vertical axis block rotations (paleomagnetically detectable) occurred in this arc after Late Miocene times. They suggest that the TMVB could be considered paleomagnetically as an unique tectonic domain under a transtensional regime, where its extension component prevails over its left-lateral component. The mean paleomagnetic directions, obtained in the age ranges 10-5 Ma and 5-0 Ma, do not differ from their respective reference directions. In both datasets, VGPs have been selected using quality Fisher's precision parameters and optimum cutoff angles. This results in a circularly symmetrical data distribution with statistically indistinguishable antipodal normal and reverse polarities. VGP dispersions are consistent with those from globally distributed observations at Mexican latitudes for the Miocene and the Plio- Quaternary. An analysis of all the published paleomagnetic data from the TMVB, when combined all together and selected in the same terms, do not support neither the existence of large crustal block rotations nor the persistence of a

  15. Volcanic Activity on lo at the Time of the Ulysses Encounter.

    PubMed

    Spencer, J R; Howell, R R; Clark, B E; Klassen, D R; O'connor, D

    1992-09-11

    The population of heavy ions in lo's torus is ultimately derived from lo volcanism. Groundbased infrared observations of lo between October 1991 and March 1992, contemporaneous with the 8 February 1992 Ulysses observations of the lo torus, show that volcanic thermal emission was at the low end of the normal range at all lo longitudes during this period. In particular, the dominant hot spot Loki was quiescent. Resolved images show that there were at least four hot spots on lo's Jupiter-facing hemisphere, including Loki and a long-lived spot on the leading hemisphere (Kanehekili), of comparable 3.5-micrometer brightness but higher temperature.

  16. Volcanic activity on Io at the time of the Ulysses encounter

    NASA Technical Reports Server (NTRS)

    Spencer, John R.; Howell, Robert R.; Clark, Beth E.; Klassen, David R.; O'Connor, Daniel

    1992-01-01

    The population of heavy ions in Io's torus is ultimately derived from Io volcanism. Ground-based infrared observations of Io between October 1991 and March 1992, contemporaneous with the 8 February 1992 Ulysses observations of the Io torus, show that volcanic thermal emission was at the low end of the normal range at all Io longitudes during this period. In particular, the dominant hot spot Loki was quiescent. Resolved images show that there were at least four hot spots on Io's Jupiter-facing hemisphere, including Loki and a long-lived spot on the leading hemisphere (Kanehekili), of comparable 3.5-micrometer brightness but higher temperature.

  17. Recurrence models of volcanic events: Applications to volcanic risk assessment

    SciTech Connect

    Crowe, B.M.; Picard, R.; Valentine, G.; Perry, F.V.

    1992-03-01

    An assessment of the risk of future volcanism has been conducted for isolation of high-level radioactive waste at the potential Yucca Mountain site in southern Nevada. Risk used in this context refers to a combined assessment of the probability and consequences of future volcanic activity. Past studies established bounds on the probability of magmatic disruption of a repository. These bounds were revised as additional data were gathered from site characterization studies. The probability of direct intersection of a potential repository located in an eight km{sup 2} area of Yucca Mountain by ascending basalt magma was bounded by the range of 10{sup {minus}8} to 10{sup {minus}10} yr{sup {minus}1 2}. The consequences of magmatic disruption of a repository were estimated in previous studies to be limited. The exact releases from such an event are dependent on the strike of an intruding basalt dike relative to the repository geometry, the timing of the basaltic event relative to the age of the radioactive waste and the mechanisms of release and dispersal of the waste radionuclides in the accessible environment. The combined low probability of repository disruption and the limited releases associated with this event established the basis for the judgement that the risk of future volcanism was relatively low. It was reasoned that that risk of future volcanism was not likely to result in disqualification of the potential Yucca Mountain site.

  18. Metal Concentrations in Two Commercial Tuna Species from an Active Volcanic Region in the Mid-Atlantic Ocean.

    PubMed

    Torres, Paulo; Rodrigues, Armindo; Soares, Lília; Garcia, Patrícia

    2016-02-01

    Concentrations of cadmium (Cd), mercury (Hg), and lead [Pb (µg g(-1) wet weight)] were determined in liver and muscle samples of 15 bigeye (Thunnus obesus) and 15 skipjack tunas (Katsuwonus pelamis) caught over an active volcanic region in the Mid-Atlantic Ocean (Azores, Portugal) and evaluated regarding consumption safety. None of the muscle samples (edible part) exceeded the European Union (EU) maximum limits (MLs) for Hg and Pb. Cd concentrations in muscle were much greater than EU MLs with 53 and 26 % of the bigeye tuna and skipjack tuna, respectively, in exceedance of the limits. Results obtained in this work, together with other studies in the same region, support the existence of an important volcanic source of Cd in waters of the Mid-Atlantic region, which should be carefully monitored given the importance of many commercial marine species for human consumption, mainly in Europe.

  19. On the statistics of El Nino occurrences and the relationship of El Nino to volcanic and solar/geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1989-01-01

    El Nino is conventionally defined as an anomalous and persistent warming of the waters off the coasts of Ecuador and Peru in the eastern equatorial Pacific, having onset usually in Southern Hemispheric summer/fall. Some of the statistical aspects of El Nino occurrences are examined, especially as they relate to the normal distribution and to possible associations with volcanic, solar, and geomagnetic activity. With regard to the very strong El Nino of 1982 to 1983, it is noted that, although it may very well be related to the 1982 eruptions of El Chichon, the event occurred essentially on time (with respect to the past behavior of elapsed times between successive El Nino events; a moderate-to-stronger El Nino was expected during the interval 1978 to 1982, assuming that El Nino occurrences are normally distributed, having a mean elapsed time between successive onsets of 4 years and a standard deviation of 2 years and a last known occurrence in 1976). Also, although not widely recognized, the whole of 1982 was a record year for geomagnetic activity (based on the aa geomagnetic index, with the aa index registering an all time high in February 1982), perhaps, important for determining a possible trigger for this and other El Nino events. A major feature is an extensive bibliography (325 entries) on El Nino and volcanic-solar-geomagnetic effects on climate. Also, included is a tabular listing of the 94 major volcanic eruptions of 1835 to 1986.

  20. The geothermal potential of the Campania volcanic district and new heat exchanger technologies for exploitation of highly urbanised areas.

    NASA Astrophysics Data System (ADS)

    Carlino, S.; Somma, R.; Troiano, A.; Di Giuseppe, M. G.; Troise, C.; De Natale, G.

    2012-04-01

    The geothermal research in Campania region (Italy), started since the 1930, and continued until the '80 by the SAFEN, ENEL and AGIP companies. Such exploration activity highlighted that most of the volcanic districts of the Campania Region have a very high geothermal gradient and heat flow. In particular, inside the Campi Flegrei caldera and at Ischia island the geothermal gradient measured inside the deep wells reaches temperatures above 100° C between few tens and few hundreds of metres of depth, while the heat flow varies between 120-160 mWm-2 at Agnano and Mofete (Campi Flegrei main drill sites) to more than 500 mWm-2 at Ischia island (south-western sector). A general review of the available literature data (temperature at depth, stratigraphic sections, logs etc.) of the deep wells (down to 3 km b.s.l.) allowed us to quantify the geothermal potential (thermal and electric) of such district. The geothermal potential is about 6 GWy for the Campi Flegrei (Mofete and S. Vito sectors) and 11 GWy for the Ischia island (south-western sector) showing a geothermal reservoir with water and vapour dominant respectively. This results in strong potential interest for economic exploitation of the geothermal resource, both in the range of low-medium enthalpy at few hundreds of meters depth and of high enthalpy at depths of 1-2 km. In this study we try to model the effectiveness of new technologies of boreholes heat exchangers, which would allow to avoid fluid withdrawal, then strongly decreasing the environmental impact. The proposed technology consists of a double-pipe placed in a borehole heat exchange that can work coupled with an ORC. The two pipes, one inside the other, are located in the well in order to transfer the thermal energy to the working fluid during the descent in the external pipe and then go back through the internal pipe properly isolated. We propose a complete design of the borehole heat exchangers. The design activity is performed on a theoretical basis

  1. Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements

    USGS Publications Warehouse

    Vita, Fabio; Kern, Christoph; Inguaggiato, Salvatore

    2014-01-01

    Active long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and power-inefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, portable, low-power LP-DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. The LP-DOAS was used to measure sulfur dioxide (SO2) emissions from La Fossa crater, Vulcano, Italy, where column densities of up to 1.2 × 1018 molec cm−2 (~ 500 ppmm) were detected along open paths of up to 400 m in total length. The instrument's SO2 detection limit was determined to be 2 × 1016 molec cm−2 (~ 8 ppmm), thereby making quantitative detection of even trace amounts of SO2 possible. The instrument is capable of measuring other volcanic volatile species as well. Though the spectral evaluation of the recorded data showed that chlorine monoxide (ClO) and carbon disulfide (CS2) were both below the instrument's detection limits during the experiment, the upper limits for the X / SO2 ratio (X = ClO, CS2) could be derived, and yielded 2 × 10−3 and 0.1, respectively. The robust design and versatility of the instrument make it a promising tool for monitoring of volcanic degassing and understanding processes in a range of volcanic systems.

  2. The Variation of Volcanic Tremor During Active Stage in the 1986 Izu-Oshima Eruption

    NASA Astrophysics Data System (ADS)

    Kurokawa, Aika; Kurita, Kei

    2014-05-01

    Izu-Oshima is one of the most active volcanoes in Japan. The latest eruption of Nov. 1986 exhibited a curious eruption sequence; the strombolian type eruption started on 15 Nov. at the central vent and it had continued for 4 days. Then after it ceased, subplinian type fissure eruptions occurred inside and outside the caldera where several hundreds meters to few kilometers away from the central vent. Lava flows were associated with these two eruption episodes. Petrologically compositions of these two kinds of lava are completely dissimilar; magma from the central vent is basaltic with narrow range of chemical composition, which is almost same as that of the previous stages while magma from the fissures is evolved one with wider variations of composition [Aramaki and Fujii, 1988]. This means that two distinct magma sources, which were chemically separated but mechanically coupled, should have existed prior to the eruption. The most important issue concerning this eruption is how the mechanical interaction between two magma sources took place and evolved. Throughout the eruption sequence, remarkable activities of seismic tremor have been observed. In this presentation we report evolution of tremor sources to characterize the interaction based on the recently recovered seismic records and we propose a reinterpretation of the eruption sequence. We analyzed volcanic tremor in Nov. 1986 on digitized seismic records of 7 stations in the Island. The aim of this analysis is to estimate the movement of two kinds of magma associated with the change of the eruption styles. Firstly root mean square amplitudes of the filtered seismic signals and their spectrum were calculated. The tremor style changed from continuous mode to intermittent, sporadic mode at the period between the summit eruption and the fissure eruptions. The dominant frequency also changed around the same time. Secondly to derive the location of tremor source, Amplitude Inversion Method [Battaglia and Aki, 2003

  3. Volcanic Ash Monitoring and FOrecaSting between Sicilia and Malta arEa and sharinG of the resUlts foR aviatiOn safety: the VAMOS SEGURO project

    NASA Astrophysics Data System (ADS)

    Scollo, Simona; Azzopardi, Francelle; Boselli, Antonella; Coltelli, Mauro; Ellul, Raymond; Leto, Giuseppe; Pisani, Gianluca; Prestifilippo, Michele; Saliba, Martin; Schiavone, Joseph; Spata, Gaetano; Spinelli, Nicola; Wang, Xuan; Zanmar Sanchez, Ricardo

    2013-04-01

    Mt. Etna, in Italy, is one of the most active volcanoes in the world and during its frequent explosive episodes, eruption columns rise to several kilometers and fine ash is dispersed hundreds kilometers away from the vent reaching the neighboring countries. The Maltese Islands, for example, are situated at the center of the Mediterranean, only 100 km south of Sicily and, due to the close proximity, have been already affected by the past Etna volcanic activity. A reliable monitoring and forecasting system of Etna volcanic ash has to include all areas that could be reached by volcanic ash. For this reason, a new research project named VAMOS SEGURO, has been recently funded by Programma di Cooperazione Transfrontaliera Italia-Malta 2007-2013, with the aim to reduce the impact that Etna's explosive activity has in the area between Sicily and Malta. This project is developed within a cooperation between the Istituto Nazionale di Geofisica, Osservatorio Etneo, the Istituto Nazionale di Astrofisica (INAF), Comune of Montedoro, in Caltanissetta, the University of Malta, and Consorzio Interuniversitario per le Scienze Fisiche della Materia (CNISM). In this project, several instruments (e.g. aerosol optical depth analyzer, microbalance, laser cascade instrument, meteorological stations, aethelometer) have been installed at Giordan lighthouse at Xewkija, in Gozo, managed by the University of Malta. Furthermore, an innovative Lidar system with scanning capability, has been designed and realized by CNISM and is able to indentify the area affected by volcanic ash in Sicily and quantify the ash concentration in atmosphere. The Lidar may be transported and installed in the INAF astronomical observatories of Noto and Serra La Nave, only 7 km away from the Etna summits, and in Montedoro. Finally, an automatic forecasting system produces dispersal maps for the region between Sicily and Malta and for a typical Etna scenario. Results of simulations are daily visible at www

  4. Active seismic sources as a proxy for seismic surface processes: An example from the 2012 Tongariro volcanic eruptions, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Lokmer, I.; Kennedy, B.; Keys, H. J. R.; Proctor, J.; Lyons, J. J.; Jolly, G. E.

    2014-10-01

    The 6 August 2012 eruption from Tongariro volcano's Te Maari vent comprised a complex sequence of events including at least 4 eruption pulses, a large chasm collapse, and a debris avalanche (volume of ~ 7 × 105 m3) that propagated ~ 2 km beyond the eruptive vent. The eruption was poorly observed, being obscured by night time darkness, and the eruption timing must be unravelled instead from a complex seismic record that includes discrete volcanic earthquakes, a sequence of low to moderate level spasmodic tremor and an intense burst of seismic and infrasound activity that marked the eruption onset. We have discriminated the evolution of the complex surface activity by comparing active seismic source data to the seismic sequence in a new cross correlation source location approach. We dropped 11 high impact masses from helicopter to generate a range of active seismic sources in the vicinity of the eruption vent, chasm, and debris avalanche areas. We obtained 8 successful drops having an impact energy ranging from 3 to 9 × 106 Nm producing observable seismic signals to a distance of 5 to 10 km and having good signal to noise characteristics in the 3-12 Hz range. For the 8 drops, we picked first-P arrival times and calculated amplitude spectra for a uniform set of four stations. We then compared these proxy source excitations to the natural eruption and pre-eruption data using a moving window cross correlation approach. From the correlation processing, we obtain a best matched source position in the near vent region for the eruption period and significant down channel excitations during both the pre and post eruption periods. The total seismic energy release calculated from the new method is ~ 8 × 1011 Nm, similar to an independently estimated calculation based on the radiated seismic energy. The new energy estimate may be more robust than those calculated from standard seismic radiation equations, which may include uncertainties about the path and site effects. The

  5. A comparison of active seismic source data to seismic excitations from the 2012 Tongariro volcanic eruptions, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, Arthur; Kennedy, Ben; Keys, Harry; Lokmer, Ivan; Proctor, Jon; Lyons, John; Jolly, Gillian

    2014-05-01

    The 6 August 2012 eruption from Tongariro volcano's Te Maari vent comprised a complex sequence of events including at least 4 eruption jets, a large chasm collapse, and a debris avalanche (volume of ~7x105 m3) that propagated ~2 km beyond the eruptive vent. The eruption was poorly observed, being obscured by night time darkness, and the eruption chronology must be unravelled instead from a complex seismic record that includes discrete volcanic earthquakes, a sequence of low to moderate level spasmodic tremor and an intense burst of seismic and infrasound activity starting at 11:52:18 UTC that marked the eruption onset. We have discriminated the timing of the complex surface activity by comparing active seismic source data to the eruptive sequence. We dropped 11 high impact masses from helicopter to generate a range of active seismic sources in the vicinity of the eruption vent, chasm, and debris avalanche areas. We obtained 8 successful drops having an impact energy ranging from 3 to 9x106 joules producing seismic signals to a distance of 5 to 10 km and having good signal to noise characteristics in the 3-12 Hz range. For the 8 drops, we picked first-P arrival times and calculated amplitude spectra for a uniform set of four 3-component stations. From these, we obtained a distribution of amplitudes across the network for each drop position which varied systematically from the eruption vent and avalanche scar to the debris avalanche toe. We then compared these proxy source excitations to the natural eruption and pre-eruption data using a moving window cross-correlation approach. From the correlation processing, we found evidence for the debris avalanche a few minutes prior to the eruption in both the broad spectrum and narrow frequency (5-10 Hz) analysis. The total seismic energy release calculated from the new method is ~8x1011 joules, similar to an independently estimated calculation based on the radiated seismic energy. The inferred seismic energy release for the

  6. VEPP Exercise: Volcanic Activity and Monitoring of Pu`u `O`o, Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. A.

    2010-12-01

    A 10-week project will be tested during the Fall semester 2010, for a Volcanic Hazards elective course, for undergraduate Geology students of the University of Puerto Rico at Mayaguez. This exercise was developed during the Volcanoes Exploration Project: Pu`u `O`o (VEPP) Workshop, held on the Big Island of Hawaii in July 2010. For the exercise the students will form groups (of 2-4 students), and each group will be assigned a monitoring technique or method, among the following: seismic (RSAM data), deformation (GPS and tilt data), observations (webcam and lava flow maps), gas and thermal monitoring. The project is designed for Geology undergraduates who have a background in introductory geology, types of volcanoes and eruptions, magmatic processes, characteristics of lava flows, and other related topics. It is divided in seven tasks, starting with an introduction and demonstration of the VEPP website and the VALVE3 software, which is used to access monitoring data from the current eruption of Pu`u `O`o, Kilauea volcano, Hawaii. The students will also familiarize themselves with the history of Kilauea volcano and its current eruption. At least weekly the groups will acquire data (mostly near-real-time) from the different monitoring techniques, in the form of time series, maps, videos, and images, in order to identify trends in the data. The groups will meet biweekly in the computer laboratory to work together in the analysis and interpretation of the data, with the support of the instructor. They will give reports on the progress of the exercise, and will get feedback from the instructor and from the other expert groups. All groups of experts will relate their findings to the recent and current activity of Kilauea volcano, and the importance of their specific type of monitoring. The activity will culminate with a written report and an oral presentation. The last task of the project consists of a wrap-up volcano monitoring exercise, in which the students will

  7. Chemical evolution of thermal springs at Arenal Volcano, Costa Rica: Effect of volcanic activity, precipitation, seismic activity, and Earth tides

    NASA Astrophysics Data System (ADS)

    López, D. L.; Bundschuh, J.; Soto, G. J.; Fernández, J. F.; Alvarado, G. E.

    2006-09-01

    Arenal Volcano in NW Costa Rica, Central America has been active during the last 37 years. However, only relatively low temperature springs have been identified on its slopes with temperatures less than around 60 °C. The springs are clustered on the NE and NW slopes of the volcano, close to contacts between the recent and older volcanic products or at faults that intercept the volcano. This volcano is located in a rain forest region with annual rainfall averaging around 5 m. During the last 15 years, the temperature and chemical composition of 4 hot springs and 2 cold springs have been monitored approximately every 3 months. In addition, two more thermal sites were identified recently and sampled, as well as two boreholes located on a fault NE of the volcano. Scatter plots of chemical species such as Cl and B suggest that the waters in these discharges belong to the same aquifer with a saline end member similar to Río Tabacón at the beginning of the study period (1990) and the deeper borehole (B-2) in 2004. The waters of Quebrada Bambú and Quebrada Fría represent a more dilute end member. Both long-term (over the 15 years) and short-term or seasonal decreases in concentration and steady or decreasing temperature are noted in NW springs. Springs located at the NE show increasing temperatures and ion concentrations, except for bicarbonate that has decreased in concentration for all the springs. This behavior is likely associated with a shallow source for the solutes and heat for this aquifer. To the NW the early lavas and pyroclastic flows have been cooling down, decreasing the contribution of leaching products to the infiltrating waters. To the NE, pyroclastic flows to the N during the last decade are contributing increasing concentrations of solutes and heat throughout water infiltration and circulation within the faults and the surficial drainage that has a NE regional trend. For the short-term or seasonal variations, concentrations of chemical constituents

  8. Volcanic rocks

    USGS Publications Warehouse

    1986-01-01

    Volcanoes have contributed significantly to the formation of the surface of our planet. Volcanism produced the crust we live on and most of the air we breathe. Often the remnants of an eruption are as revealing as the eruption itself, for they tell us many things about the eruption. Included here are examples of several volcanic products and other magmatic features, with descriptions of how they were formed and what they tell us about volcanism.

  9. Volcanic gas composition changes during the gradual decrease of the gigantic degassing activity of Miyakejima volcano, Japan, 2000-2015

    NASA Astrophysics Data System (ADS)

    Shinohara, Hiroshi; Geshi, Nobuo; Matsushima, Nobuo; Saito, Genji; Kazahaya, Ryunosuke

    2017-02-01

    The composition of volcanic gases discharged from Miyakejima volcano has been monitored during the intensive degassing activity that began after the eruption in 2000. During the 15 years from 2000 to 2015, Miyakejima volcano discharged 25.5 Mt of SO2, which required degassing of 3 km3 of basaltic magma. The SO2 emission rate peaked at 50 kt/day at the end of 2000 and quickly decreased to 5 kt/day by 2003. During the early degassing period, the volcanic gas composition was constant with the CO2/SO2 = 0.8 (mol ratio), H2O/SO2 = 35, HCl/SO2 = 0.08, and SO2/H2S = 15. The SO2 emission rate decreased gradually to 0.5 kt/day by 2012, and the gas composition also changed gradually to CO2/SO2 = 1.5, H2O/SO2 = 150, HCl/SO2 = 0.15, and SO2/H2S = 6. The compositional changes are not likely caused by changes in degassing pressure or volatile heterogeneity of a magma chamber but are likely attributed to an increase of hydrothermal scrubbing caused by large decrease of the volcanic gas emission rate, suggesting a supply of gases with constant composition during the 15 years. The intensive degassing was modeled based on degassing of a convecting magma conduit. The gradual SO2 emission rate that decrease without changes in volcanic gas composition is attributed to a reduction of diameter of the convecting magma conduit.

  10. Crustal structure beneath two seismic broadband stations revealed from teleseismic P-wave receiver function analysis in the Virunga volcanic area, Western Rift Valley of Africa

    NASA Astrophysics Data System (ADS)

    Tuluka, Georges Mavonga

    2010-12-01

    The shear velocity structure beneath the Virunga volcanic area was estimated by using an average solution in the time domain inversion of stacked teleseismic receiver functions provided by two seismic broadband stations KUNENE (KNN) and KIBUMBA (KBB). These two stations are 29 km apart and located at the eastern and western escarpment of the Western Rift Valley of Africa in the Virunga area, respectively. The velocity model was presented as P-wave velocity models. From these models, the crust mantle transition zone beneath the area sampled by KNN and KBB in the Virunga area was determined at depth from about 36 to 39 km and 30 to 41 km, respectively. A low velocity zone was observed below stations KNN and KBB at depths between 20-30 km and 18-28 km, respectively, and with average velocity 5.9 km/s and 6.0 km/s. This low velocity zone may probably related to a magma chamber or a melt-rich sill. The models show also high velocity material (6.8-7.4 km/s) lying beneath stations KNN and KBB at depths 3-20 km and 3-10 km, respectively, which is indicative of magma cumulates within the volcanic edifice. The result obtained in this study was applied to the determination of epicentres during the period prior to the 27 November 2006 Nyamuragira eruption. This eruption was preceded by a swarm of hybrid volcanic earthquakes with clear P-waves onset. Using the receiver function model was found to improve the location of events. The located events correlate well with the location of the eruptive site and data provided by the INSAR observations of surface deformation associated with eruption.

  11. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Connor, Charles

    2014-05-01

    Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a

  12. Tectonic evolution and volcanism of Okinawa Trough

    SciTech Connect

    Sibuet, J.C.; Letouzey, J.; Marsset, B.; Davagnier, M.; Foucher, J.P.; Bougault, H.; Dosso, L.; Maury, R.; Joron, J.L.

    1986-07-01

    The Okinawa Trough is a back-arc basin formed by extension of the east China continental lithosphere behind the Ryukyu Trench system. The age of marine deposits drilled in the northern Okinawa Trough indicates a Miocene age for the splitting of the volcanic arc and the first tensional movements. The POP 1 cruise of the R/V Jean-Charcot (September-October 1984) provided new evidence concerning the two main periods of extension as recognized by Kimura (Marine and Petroleum Geology, 1985). Tilted fault blocks in the northern Okinawa Trough trend north 40/sup 0/-60/sup 0/ and belong to the early Pleistocene phase (2-0.5 Ma). The present-day phase is characterized over the entire basin by normal faults oriented 80/sup 0/N in the north and 90/sup 0/N in the south. In the southern Okinawa Trough, most of the deformation occurs along linear, subparallel, en echelon depressions intruded by volcanic ridges associated with positive magnetic anomalies. The system of volcanic ridges ends northeast of Okinawa Island in a series of parallel volcanic ridges named the VAMP (Volcanic arc-rift migration processes) area, which merges into an active volcanic chain extending north to Japan. Chemical analyses of the vesicular basalts dredged on the back-arc basin display flat to enriched rare-earth patterns. The niobium-tantalum negative anomalies reflect a subduction signature. A good positive correlation between strontium isotopic compositions and concentrations suggests a contamination effect.

  13. Cenozoic volcanic rocks of Saudi Arabia

    USGS Publications Warehouse

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The historical record of volcanic activity in Saudi Arabia suggests that volcanism is dormant. The harrats should be evaluated for their potential as volcanic hazards and as sources of geothermal energy. The volcanic rocks are natural traps for groundwater; thus water resources for agriculture may be significant and should be investigated.

  14. Distinguishing Phenocrysts From Xenocrysts; Dating the Onset of Volcanic Activity on the Isle of Rum, Scotland.

    NASA Astrophysics Data System (ADS)

    Troll, V. R.; Nicoll, G. R.; Emeleus, H. C.; Donaldson, C. H.

    2005-12-01

    Major volcanic activity on the Isle of Rum started with eruption of rhyodacite, now preserved as intrusive and extrusive parts of the intra-caldera succession. A thick sequence of intra-caldera ignimbrites and sedimentary breccias are preserved in the north and south of the island. Twenty feldspar crystals of the rhyodacite were dated using Ar/Ar and yielded a mean apparent age of 60.83 ± 0.27Ma (MSWD = 3.4), consistent with previously published dates for the crosscutting (i.e. younger) ultrabasic-layered intrusion of 60.53 ± 0.08Ma, Hamilton et al., (1998, Nature). On an age versus probability plot the feldspars do not, however, show a simple Gaussian distribution, but a major peak at 60.33Ma and two smaller shoulders at approx 61.4Ma and 63Ma. Our preliminary interpretation of the older ages is that they include a) xenocrysts derived from earlier Tertiary plutonics (61.4Ma peak) and b) older feldspars that have largely re-equilibrated within the rhyodacite magma chamber, possibly derived from Lewisian gneiss (63Ma peak). This may imply a residence time of these xenocrysts in the magma chamber of up to several years; cf. Gansecki et al., (1996, Earth Planet Sci. Lett.). The youngest and strongest age peak at 60.33Ma is suggested to represent the rhyodacite event. The oxygen isotope composition of the rhyodacite feldspars (6.88 ‰) is in the range of magmatic phenocrysts (6-7.5 ‰) and Lewisian gneisses (5-8 ‰) and well above the very low oxygen isotope values usually associated with high-T alteration. Hydrothermal overprint due to the layered ultrabasic intrusion was therefore probably minimal. We suggest the 60.33 ± 0.21Ma crystal age represents the rhyodacite eruption/intrusion event, implying that the ultrabasic-layered suite was already forming at depth and emplaced at shallow structural levels quickly thereafter. These new age dates tie in very well with recent work by Chambers et al., (2005, Lithos), highlighting a very quick succession of events

  15. Volcanic and Hydrothermal Activity of the North Su Volcano: New Insights from Repeated Bathymetric Surveys and ROV Observations

    NASA Astrophysics Data System (ADS)

    Thal, J.; Bach, W.; Tivey, M.; Yoerger, D.

    2013-12-01

    Bathymetric data from cruises in 2002, 2006, and 2011 were combined and compared to determine the evolution of volcanic activity, seafloor structures, erosional features and to identify and document the distribution of hydrothermal vents on North Su volcano, SuSu Knolls, eastern Manus Basin (Papua New Guinea). Geologic mapping based on ROV observations from 2006 (WHOI Jason-2) and 2011 (MARUM Quest-4000) combined with repeated bathymetric surveys from 2002 and 2011 are used to identify morphologic features on the slopes of North Su and to track temporal changes. ROV MARUM Quest-4000 bathymetry was used to develop a 10 m grid of the top of North Su to precisely depict recent changes. In 2006, the south slope of North Su was steeply sloped and featured numerous white smoker vents discharging acid sulfate waters. These vents were covered by several tens of meters of sand- to gravel-sized volcanic material in 2011. The growth of this new cone changed the bathymetry of the south flank of North Su up to ~50 m and emplaced ~0.014 km3 of clastic volcanic material. This material is primarily comprised of fractured altered dacite and massive fresh dacite as well as crystals of opx, cpx, olivine and plagioclase. There is no evidence for pyroclastic fragmentation, so we hypothesize that the fragmentation is likely related to hydrothermal explosions. Hydrothermal activity varies over a short (~50 m) lateral distance from 'flashing' black smokers to acidic white smoker vents. Within 2 weeks of observation time in 2011, the white smoker vents varied markedly in activity suggesting a highly episodic hydrothermal system. Based on ROV video recordings, we identified steeply sloping (up to 30°) slopes exposing pillars and walls of hydrothermal cemented volcaniclastic material representing former fluid upflow zones. These features show that hydrothermal activity has increased slope stability as hydrothermal cementation has prevented slope collapse. Additionally, in some places

  16. Postcaldera volcanism and hydrothermal activity revealed by autonomous underwater vehicle surveys in Myojin Knoll caldera, Izu-Ogasawara arc

    NASA Astrophysics Data System (ADS)

    Honsho, Chie; Ura, Tamaki; Kim, Kangsoo; Asada, Akira

    2016-06-01

    Myojin Knoll caldera, one of the submarine silicic calderas lying on the volcanic front of the northern Izu-Ogasawara arc, has attracted increasing attention since the discovery of a large hydrothermal field called the Sunrise deposit. Although numerous submersible surveys have been conducted in Myojin Knoll caldera, they have not sufficiently explored areas to produce a complete picture of the caldera and understand the origin of the Sunrise deposit. We conducted comprehensive deep-sea surveys using an autonomous underwater vehicle and obtained high-resolution bathymetric and magnetic data and sonar images from ~70% of the caldera. The detailed bathymetric map revealed that faulting and magma eruptions, possibly associated with an inflation-deflation cycle of the magma reservoir during postcaldera volcanism, had generally occurred in the caldera wall. The main dome of the central cone was covered with lava flows and exhibits exogenous growth, which is unusual for rhyolitic domes. The magnetization distribution in the central cone indicates preferential magma intrusion along a NW-SE direction. It is presumed that magma migrated along this direction and formed a rhyolite dome at the foot of the southeastern caldera wall, where the Sunrise deposit occurs. The Sunrise deposit is composed mainly of three ridges extending in slope directions and covers ~400 × ~400 m. Magnetization reduction in the deposit area is small, indicating that the alteration zone beneath the Sunrise deposit is slanting rather than vertical. It is presumed that several slanting and near-vertical volcanic vents serve as pathways of hydrothermal fluid in Myojin Knoll caldera.

  17. Localization of Volcanic Activity: Topographic Effects on Dike Propagation, Eruption and COnduit Formation

    SciTech Connect

    E.S. Gaffney; B. Damjanac

    2006-05-12

    Magma flow in a dike rising in a crack whose strike runs from a highland or a ridge to an adjacent lowland has been modeled to determine the effect of topography on the flow. It is found that there is a distinct tendency for the flow to be diverted away from the highland end of the strike toward the lowland. Separation of the geometric effect of the topography from its effect on lateral confining stresses on the crack indicates that both contribute to the effect but that the effect of stress is less important. Although this analysis explains a tendency for volcanic eruptions to occur in low lands, it does not preclude eruptions on highlands. The particular configuration modeled mimics topography around the proposed nuclear waste repository at Yucca Mountain, Nevada, so that the results may indicate some reduction in the volcanic hazard to the site.

  18. The climatic effect of explosive volcanic activity: Analysis of the historical data

    NASA Technical Reports Server (NTRS)

    Bryson, R. A.; Goodman, B. M.

    1982-01-01

    By using the most complete available records of direct beam radiation and volcanic eruptions, an historical analysis of the role of the latter in modulating the former was made. A very simple fallout and dispersion model was applied to the historical chronology of explosive eruptions. The resulting time series explains about 77 percent of the radiation variance, as well as suggests that tropical and subpolar eruptions are more important than mid-latitude eruptions in their impact on the stratospheric aerosol optical depth. The simpler climatic models indicate that past hemispheric temperature can be stimulated very well with volcanic and CO2 inputs and suggest that climate forecasting will also require volcano forecasting. There is some evidence that this is possible some years in advance.

  19. Analysis of the variation of the compressibility index (Cc) of volcanic clays and its application to estimate subsidence in lacustrine areas

    NASA Astrophysics Data System (ADS)

    Carreón-Freyre, D.; González-Hernández, M.; Martinez-Alfaro, D.; Solís-Valdéz, S.; Cerca, M.; Millán-Malo, B.; Gutiérrez-Calderón, R.; Centeno-Salas, F.

    2015-11-01

    An analysis of the deformation conditions of lacustrine materials deposited at three sites in the volcanic valley of the Mexico City is presented. Currently geotechnical studies assume that compressibility of granular materials decreases in depth due to the lithostatic load. That means that the deeper the sample the more rigid is supposed to be, this assumption should be demonstrated by a decreased Compression Index (Cc) in depth. Studies indicate that Mexico City clays exhibit brittle behaviour, and have high water content, low shear strength and variable Cc values. Furthermore, groundwater withdrawal below the city causes a differential decrease in pore pressure, which is related to the physical properties of granular materials (hydraulic conductivity, grain size distribution) and conditions of formation. Our results show that Cc for fine grain materials (lacustrine) can be vertically variable, particularly when soils and sediments are the product of different volcanic materials. Lateral and vertical variations in the distribution of the fluvio-lacustrine materials, especially in basins with recent volcanic activity, may be assessed by Cc index variations. These variations can also be related to differential deformation, nucleation and propagation of fractures and need to be considered when modelling land subsidence.

  20. Evidence of recent volcanic activity on the ultraslow-spreading Gakkel ridge.

    PubMed

    Edwards, M H; Kurras, G J; Tolstoy, M; Bohnenstiehl, D R; Coakley, B J; Cochran, J R

    2001-02-15

    Seafloor spreading is accommodated by volcanic and tectonic processes along the global mid-ocean ridge system. As spreading rate decreases the influence of volcanism also decreases, and it is unknown whether significant volcanism occurs at all at ultraslow spreading rates (<1.5 cm yr(-1)). Here we present three-dimensional sonar maps of the Gakkel ridge, Earth's slowest-spreading mid-ocean ridge, located in the Arctic basin under the Arctic Ocean ice canopy. We acquired this data using hull-mounted sonars attached to a nuclear-powered submarine, the USS Hawkbill. Sidescan data for the ultraslow-spreading (approximately 1.0 cm yr(-1)) eastern Gakkel ridge depict two young volcanoes covering approximately 720 km2 of an otherwise heavily sedimented axial valley. The western volcano coincides with the average location of epicentres for more than 250 teleseismic events detected in 1999, suggesting that an axial eruption was imaged shortly after its occurrence. These findings demonstrate that eruptions along the ultraslow-spreading Gakkel ridge are focused at discrete locations and appear to be more voluminous and occur more frequently than was previously thought.

  1. Geochemistry and petrogenesis of lava flows around Linga, Chhindwara area in the Eastern Deccan Volcanic Province (EDVP), India

    NASA Astrophysics Data System (ADS)

    Ganguly, Sohini; Ray, Jyotisankar; Koeberl, Christian; Saha, Abhishek; Thöni, Martin; Balaram, V.

    2014-09-01

    Based on systematic three-tier arrangement of vesicles, entablature and columnar joints, three distinct quartz normative tholeiitic lava flows (I, II and III) were recognized in the area around Linga, in the Eastern Deccan Volcanic Province (EDVP). Each of the flows exhibits intraflow chemical variations marked by high Mg#-low Ti, and low Mg#-high Ti contents. The MgO (4.27-7.74 wt.%), Mg# (23.45-41.89) and Zr (161.5-246.3 ppm) of Linga flows suggest an evolved chemistry marked by fractional crystallization and crustal contamination processes. Positive Rb and Th anomalies, negative Nb anomalies, relative enrichment of LILE-LREE with respect to Nb, Nb/Th:3.71-6.77 indicate crustal contamination of magma by continental materials through magma-crust interaction during melt migration and contributions from sub-continental lithospheric mantle (SCLM). Negative K, Sr and Ti anomalies corroborate an intracontinental, rift-controlled tectonic setting for the genesis and evolution of Linga basalts. Chondrite-normalized REE patterns reflect low HREE abundances and prominent LREE/HREE, MREE/HREE fractionation thereby pointing towards partial melting of garnet peridotite mantle source. Nb, Zr, Y variations suggest 10-15% partial melting of mantle source for the derivation of parent tholeiitic melt that suffered crystal fractionation of phenocrystal phases and subsequent liquid immiscibility. Critical evaluation of Srinitial and Ndinitial (65 Ma) isotopic compositions (87Sr/86Srinitial between 0.705656 and 0.706980 and 143Nd/144Ndinitial between 0.512523 and 0.512598) suggests that these basalts were derived from an enriched mantle (∼EM I-EM II) source. The εSr (21.84-41.27) and εNd (-0.28 to 1.10) isotopic signatures defined by higher εSr and lower εNd fingerprint a plume-related source. Positive and negative values of εNd indicate an isotopically heterogeneous mantle source marked by mixing of depleted (DM) and enriched mantle (EM I-EM II) components at the source

  2. Sentinel-1 automatic processing chain for volcanic and seismic areas monitoring within the Geohazards Exploitation Platform (GEP)

    NASA Astrophysics Data System (ADS)

    De Luca, Claudio; Zinno, Ivana; Manunta, Michele; Lanari, Riccardo; Casu, Francesco

    2016-04-01

    The microwave remote sensing scenario is rapidly evolving through development of new sensor technology for Earth Observation (EO). In particular, Sentinel-1A (S1A) is the first of a sensors' constellation designed to provide a satellite data stream for the Copernicus European program. Sentinel-1A has been specifically designed to provide, over land, Differential Interferometric Synthetic Aperture Radar (DInSAR) products to analyze and investigate Earth's surface displacements. S1A peculiarities include wide ground coverage (250 km of swath), C-band operational frequency and short revisit time (that will reduce from 12 to 6 days when the twin system Sentinel-1B will be placed in orbit during 2016). Such characteristics, together with the global coverage acquisition policy, make the Sentinel-1 constellation to be extremely suitable for volcanic and seismic areas studying and monitoring worldwide, thus allowing the generation of both ground displacement information with increasing rapidity and new geological understanding. The main acquisition mode over land is the so called Interferometric Wide Swath (IWS) that is based on the Terrain Observation by Progressive Scans (TOPS) technique and that guarantees the mentioned S1A large coverage characteristics at expense of a not trivial interferometric processing. Moreover, the satellite spatial coverage and the reduced revisit time will lead to an exponential increase of the data archives that, after the launch of Sentine-1B, will reach about 3TB per day. Therefore, the EO scientific community needs from the one hand automated and effective DInSAR tools able to address the S1A processing complexity, and from the other hand the computing and storage capacities to face out the expected large amount of data. Then, it is becoming more crucial to move processors and tools close to the satellite archives, being not efficient anymore the approach of downloading and processing data with in-house computing facilities. To address

  3. Will present day glacier retreat increase volcanic activity? Stress induced by recent glacier retreat and its effect on magmatism at the Vatnajökull ice cap, Iceland

    NASA Astrophysics Data System (ADS)

    Pagli, Carolina; Sigmundsson, Freysteinn

    2008-05-01

    Global warming causes retreat of ice caps and ice sheets. Can melting glaciers trigger increased volcanic activity? Since 1890 the largest ice cap of Iceland, Vatnajökull, with an area of ~8000 km2, has been continuously retreating losing about 10% of its mass during last century. Present-day uplift around the ice cap is as high as 25 mm/yr. We evaluate interactions between ongoing glacio-isostasy and current changes to mantle melting and crustal stresses at volcanoes underneath Vatnajökull. The modeling indicates that a substantial volume of new magma, ~0.014 km3/yr, is produced under Vatnajökull in response to current ice thinning. Ice retreat also induces significant stress changes in the elastic crust that may contribute to high seismicity, unusual focal mechanisms, and unusual magma movements in NW-Vatnajökull.

  4. Modeling volcanic ash dispersal

    SciTech Connect

    2010-10-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  5. Modeling volcanic ash dispersal

    ScienceCinema

    None

    2016-07-12

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  6. A detailed study of the site effects in the volcanic area of Campi Flegrei using empirical approaches

    NASA Astrophysics Data System (ADS)

    Tramelli, Anna; Galluzzo, Danilo; Del Pezzo, Edoardo; Di Vito, Mauro A.

    2010-08-01

    Campi Flegrei is a highly populated active caldera in the south of Italy. Several hundred thousand people live within this area, which is characterized by seismicity and ground deformation episodes, known as `bradyseism'. For this reason, this area falls into a high-risk category and thus the Italian Civil Defence requires a detailed site-effect estimation. To determine the local amplification of the seismic waves for a high number of sites, we have analysed the seismic recordings of three seismic networks that have been deployed in the Campi Flegrei area over different time periods. The first network was deployed during the bradyseismic crisis of 1982-1984. We selected 22 of the highest magnitude earthquakes that were recorded during this crisis. An additional 22 seismic events were selected from those recorded by the mobile seismic network that has been in operation in the Campi Flegrei area since 2006. The third data set comprises noise recorded by 34 seismic stations that were deployed during the active SERAPIS experiment in 2001 September. The generalized inversion technique and the H/V spectral ratio method were applied to the S waves and coda waves of the earthquakes recorded by the first two seismic networks, to determine the site-transfer functions of the recording stations. The seismic noise recorded by the third network was analysed using the Nakamura's technique. The results show that the high topographical and geological heterogeneity of the sites located inside the caldera has an important influence on the seismic-wave amplification. Consequently, the site-transfer functions can be different even at sites close to each other. The transfer functions of the sites located outside the caldera are much more regular, apparently due to the more regular topography and geology.

  7. Investigation of the deep crustal structure and magmatic activity at the NW Hellenic Volcanic Arc with 3-D aeromagnetic inversion and seimotectonic analysis.

    NASA Astrophysics Data System (ADS)

    Efstathiou, Angeliki; Tzanis, Andreas; Chailas, Stylianos; Stamatakis, Michael

    2013-04-01

    We report the results of a joint analysis of geophysical (aeromagnetic) and seismotectonic data, applied to the investigation of the deep structure, magmatic activity and geothermal potential of the north-western stretches of the Hellenic Volcanic Arc (HVA). The HVA is usually considered to be a single arcuate entity stretching from Sousaki (near Corinth) at the NW, to Nisyros Island at the SE. However, different types of and their ages indicate the presence of two different volcanic groups. Our study focuses on the northern part of the west (older) volcanic group and includes the Crommyonian (Sousaki) volcanic field at the west end of Megaris peninsula (east margin on the contemporary Corinth Rift), the Aegina and Methana volcanic complex at the Saronic Gulf, where typical Quaternary calc-alkaline volcanics predominate, and the Argolid peninsula to the south and south-west. In addition to the rocks associated with Quaternary volcanism, the study area includes a series of Mesozoic ultramafic (ophiolitic) outcrops at the Megaris peninsula, to the north and north-east of the Crommyonian volcanic field, as well as throughout the Argolid. A major deep structural and tectonic feature of the study area, and one with profound influence on crustal deformation and the evolution of rapidly deforming extensional structures like the Corinth Rift and the Saronic Gulf, is the local geometry and dynamics of the African oceanic crust subducting beneath the Aegean plate. Locally, the subducting slab has a NNW strike and ENE plunge, with the dip angle changing rapidly (steepening) approx. beneath the Argolid. The aeromagnetic data was extracted from the recently (re)compiled aeromagnetic map of Greece (Chailas et al, 2010) and was inverted with the UBC-GIF magnetic inversion suite (Li and Oldenburg, 1996). The inversion included rigorous geological constraints introduced by means of numerous in-situ magnetic susceptibility measurements. The inversion has imaged several isolated

  8. Preliminary results of systematic sampling of gas manifestations in geodynamically active areas of Greece

    NASA Astrophysics Data System (ADS)

    Daskalopoulou, Kyriaki; D'Alessandro, Walter; Calabrese, Sergio; Kyriakopoulos, Konstantinos

    2016-04-01

    Greece is located on a convergent plate boundary comprising the subduction of the African Plate beneath the Eurasian, while the Arabian plate approaches the Eurasian in a northwestward motion. It is considered to be one of the most tectonically active regions of Earth with a complex geodynamic setting, deriving from a long and complicated geological history. Due to this specific geological background, conditions for the formation of many thermal springs are favoured. In the past years, almost all the already known sites of degassing (fumaroles, soil gases, mofettes, gas bubbling in cold and thermal waters) located in the Hellenic area were sampled at least one time. Collected samples were analysed for their chemical (He, Ne, Ar, O2, N2, H2, H2S, CO, CH4 and CO2) and isotopic composition (He, C and N). Some of these sites have been selected for systematic sampling. Four of them have records longer than 10 years with tens of samplings also considering some literature data. Two of the sites are located in active volcanic areas (Santorini and Nisyros) while the other two are close to actively spreading graben structures with intense seismic activity (Gulf of Korinth and Sperchios basin). Results allowed to define long term background values and also some interesting variation related to seismic or volcanic activity.

  9. Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, Argentina.

    PubMed

    Wendt-Potthoff, Katrin; Koschorreck, M

    2002-01-01

    Acidic volcanic waters are naturally occurring extreme habitats that are subject of worldwide geochemical research but have been little investigated with respect to their biology. To fill this gap, the microbial ecology of a volcanic acidic river (pH approximately equal to 0-1.6), Rio Agrio, and the recipient lake Caviahue in Patagonia, Argentina, was studied. Water and sediment samples were investigated for Fe(II), Fe(III), methane, bacterial abundances, biomass, and activities (oxygen consumption, iron oxidation and reduction). The extremely acidic river showed a strong gradient of microbial life with increasing values downstream and few signs of life near the source. Only sulfide-oxidizing and fermentative bacteria could be cultured from the upper part of Rio Agrio. However, in the lower part of the system, microbial biomass and oxygen penetration and consumption in the sediment were comparable to non-extreme aquatic habitats. To characterize similarities and differences of chemically similar natural and man-made acidic waters, our findings were compared to those from acidic mining lakes in Germany. In the lower part of the river and the lake, numbers of iron and sulfur bacteria and total biomass in sediments were comparable to those known from acidic mining lakes. Bacterial abundance in water samples was also very similar for both types of acidic water (around 10(5) mL(-1)). In contrast, Fe(II) oxidation and Fe(III) reduction potentials appeared to be lower despite higher biogenic oxygen consumption and higher photosynthetic activity at the sediment-water interface. Surprisingly, methanogenesis was detected in the presence of high sulfate concentrations in the profundal sediment of Lake Caviahue. In addition to supplementing microbiological knowledge on acidic volcanic waters, our study provides a new view of these extreme sites in the general context of aquatic habitats.

  10. Comparing the Hazards From Large Volcanic Eruptions and Impacting Asteroids

    NASA Astrophysics Data System (ADS)

    Mason, B. G.; Pyle, D. M.

    2003-12-01

    Explosive volcanic eruptions and asteroid impacts leave craters that allow direct comparison of the scale and frequency of these severe events. We have compiled data on large volcanic eruptions over the past 45 million years, and used this to develop an improved quantitative assessment of the frequency of large volcanic eruptions, and to make a comparative assessment of the relative likelihood of the Earth being affected by severe volcanic eruptions, and impact events of equal severity. In terms of volcanic activity, the expected frequency of explosive eruptions involving > 1015 kg of rock lies between 1.3 and 22 events per million years. For the events that form terrestrial craters with diameters of order 10 - 25 km, the thermal energy release (during a volcanic eruption) is of the same order of magnitude as the kinetic energy release (from an asteroid impact), and ca. 1021 - 1022 J (2 x 105 - 2 x 106 Mt equivalent of TNT). Over the past 5 Ma, volcanic activity dominates the production rate of craters < 45 km diameter. This suggests that over short timescales (< 1 Ma), destructive volcanic eruptions are more frequent than impact events of a similar energy. A better comparison of the primary effects of both phenomena may be realised by considering the area destroyed by shock waves (impactors) or hot pyroclastic deposits (volcanoes). Using simple scalings, we show that the primary area destroyed by an impactor is about ten times that for an eruption. Using this area as a measure of severity, we can show that for events with a return period of 100,000 years or less, there are considerably more eruptions of a given severity than there are impact events. Impactor events only dominate for return periods of > 200,000 - 500,000 years. We conclude that smaller (< 1012 kg, < 1 km diameter) near-earth orbiters pose a significantly smaller hazard to humans than the regional effects of large (1014 - 1015 kg) volcanic eruptions.

  11. Magma-tectonic interactions in an area of active extension; a review of recent observations, models and interpretations from Iceland

    NASA Astrophysics Data System (ADS)

    Pedersen, Rikke; Sigmundsson, Freysteinn; Drouin, Vincent; Rafn Heimisson, Elías; Parks, Michelle; Dumont, Stéphanie; Árnadóttir, Þóra; Masterlark, Timothy; Ófeigsson, Benedíkt G.; Jónsdóttir, Kristín; Hooper, Andrew

    2016-04-01

    The geological setting of Iceland provides rich opportunities of studying magma-tectonic interactions, as it constitutes Earth's largest part of the mid-oceanic ridge system exposed above sea level. A series of volcanic and seismic zones accommodate the ~2 cm/year spreading between the North-American and Eurasian plates, and the Icelandic hot-spot conveniently provides the means of exposing this oceanic crust-forming setting above sea-level. Both extinct and active plumbing system structures can be studied in Iceland, as the deeply eroded tertiary areas provide views into the structures of extinct volcanic systems, and active processes can be inferred on in the many active volcanic systems. A variety of volcanic and tectonic processes cause the Icelandic crust to deform continuously, and the availability of contemporaneous measurements of crustal deformation and seismicity provide a powerful data set, when trying to obtain insight into the processes working at depth, such as magma migration through the uppermost lithosphere, magma induced host rock deformation and volcanic eruption locations and styles. The inferences geodetic and seismic datasets allow on the active plate spreading processes and subsurface magma movements in Iceland will be reviewed, in particular in relation to the Northern Volcanic Zone (NVZ). There the three phases of a rifting cycle (rifting, post-rifting, inter-rifting) have been observed. The NVZ is an extensional rift segment, bounded to the south by the Icelandic mantle plume, and to the north by the Tjörnes transform zone. The NVZ has typically been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. Most recently, additional insight into controlling factors during active rifting has been provided by the Bárðarbunga activity in 2014-2015 that included a major rifting event, the largest effusive eruption in Iceland since 1783, and a gradual caldera collapse. It is evident

  12. Volcanic mesocyclones.

    PubMed

    Chakraborty, Pinaki; Gioia, Gustavo; Kieffer, Susan W

    2009-03-26

    A strong volcanic plume consists of a vertical column of hot gases and dust topped with a horizontal 'umbrella'. The column rises, buoyed by entrained and heated ambient air, reaches the neutral-buoyancy level, then spreads radially to form the umbrella. In classical models of strong volcanic plumes, the plume is assumed to remain always axisymmetric and non-rotating. Here we show that the updraught of the rising column induces a hydrodynamic effect not addressed to date-a 'volcanic mesocyclone'. This volcanic mesocyclone sets the entire plume rotating about its axis, as confirmed by an unprecedented analysis of satellite images from the 1991 eruption of Mount Pinatubo. Destabilized by the rotation, the umbrella loses axial symmetry and becomes lobate in plan view, in accord with satellite records of recent eruptions on Mounts Pinatubo, Manam, Reventador, Okmok, Chaiten and Ruang. The volcanic mesocyclone spawns waterspouts or dust devils, as seen in numerous eruptions, and groups the electric charges about the plume to form the 'lightning sheath' that was so prominent in the recent eruption of Mount Chaiten. The concept of a volcanic mesocyclone provides a unified explanation for a disparate set of poorly understood phenomena in strong volcanic plumes.

  13. Episodic Cenozoic volcanism and tectonism in the Andes of Peru

    USGS Publications Warehouse

    Noble, D.C.; McKee, E.H.; Farrar, E.; Petersen, U.

    1974-01-01

    Radiometric and geologic information indicate a complex history of Cenozoic volcanism and tectonism in the central Andes. K-Ar ages on silicic pyroclastic rocks demonstrate major volcanic activity in central and southern Peru, northern Chile, and adjacent areas during the Early and Middle Miocene, and provide additional evidence for volcanism during the Late Eocene. A provisional outline of tectonic and volcanic events in the Peruvian Andes during the Cenozoic includes: one or more pulses of igneous activity and intense deformation during the Paleocene and Eocene; a period of quiescence, lasting most of Oligocene time; reinception of tectonism and volcanism at the beginning of the Miocene; and a major pulse of deformation in the Middle Miocene accompanied and followed through the Pliocene by intense volcanism and plutonism. Reinception of igneous activity and tectonism at about the Oligocene-Miocene boundary, a feature recognized in other circum-Pacific regions, may reflect an increase in the rate of rotation of the Pacific plate relative to fixed or quasifixed mantle coordinates. Middle Miocene tectonism and latest Tertiary volcanism correlates with and probably is genetically related to the beginning of very rapid spreading at the East Pacific Rise. ?? 1974.

  14. Geosphere-biosphere interactions in bio-activity volcanic lakes: evidences from Hule and Rìo Cuarto (Costa Rica).

    PubMed

    Cabassi, Jacopo; Tassi, Franco; Mapelli, Francesca; Borin, Sara; Calabrese, Sergio; Rouwet, Dmitri; Chiodini, Giovanni; Marasco, Ramona; Chouaia, Bessem; Avino, Rosario; Vaselli, Orlando; Pecoraino, Giovannella; Capecchiacci, Francesco; Bicocchi, Gabriele; Caliro, Stefano; Ramirez, Carlos; Mora-Amador, Raul

    2014-01-01

    Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon).

  15. A statistical method linking geological and historical eruption time series for volcanic hazard estimations: Applications to active polygenetic volcanoes

    NASA Astrophysics Data System (ADS)

    Mendoza-Rosas, Ana Teresa; De la Cruz-Reyna, Servando

    2008-09-01

    The probabilistic analysis of volcanic eruption time series is an essential step for the assessment of volcanic hazard and risk. Such series describe complex processes involving different types of eruptions over different time scales. A statistical method linking geological and historical eruption time series is proposed for calculating the probabilities of future eruptions. The first step of the analysis is to characterize the eruptions by their magnitudes. As is the case in most natural phenomena, lower magnitude events are more frequent, and the behavior of the eruption series may be biased by such events. On the other hand, eruptive series are commonly studied using conventional statistics and treated as homogeneous Poisson processes. However, time-dependent series, or sequences including rare or extreme events, represented by very few data of large eruptions require special methods of analysis, such as the extreme-value theory applied to non-homogeneous Poisson processes. Here we propose a general methodology for analyzing such processes attempting to obtain better estimates of the volcanic hazard. This is done in three steps: Firstly, the historical eruptive series is complemented with the available geological eruption data. The linking of these series is done assuming an inverse relationship between the eruption magnitudes and the occurrence rate of each magnitude class. Secondly, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Thirdly, the linked eruption series are analyzed as a non-homogeneous Poisson process with a generalized Pareto distribution as intensity function. As an application, the method is tested on the eruption series of five active polygenetic Mexican volcanoes: Colima, Citlaltépetl, Nevado de Toluca, Popocatépetl and El Chichón, to obtain hazard estimates.

  16. Geosphere-Biosphere Interactions in Bio-Activity Volcanic Lakes: Evidences from Hule and Rìo Cuarto (Costa Rica)

    PubMed Central

    Cabassi, Jacopo; Tassi, Franco; Mapelli, Francesca; Borin, Sara; Calabrese, Sergio; Rouwet, Dmitri; Chiodini, Giovanni; Marasco, Ramona; Chouaia, Bessem; Avino, Rosario; Vaselli, Orlando; Pecoraino, Giovannella; Capecchiacci, Francesco; Bicocchi, Gabriele; Caliro, Stefano; Ramirez, Carlos; Mora-Amador, Raul

    2014-01-01

    Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic