Science.gov

Sample records for active volcanic island

  1. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands - II: Deception Island images

    NASA Astrophysics Data System (ADS)

    Prudencio, Janire; Ibáñez, Jesús M.; García-Yeguas, Araceli; Del Pezzo, Edoardo; Posadas, Antonio M.

    2013-12-01

    In this work, we present regional maps of the inverse intrinsic quality factor (Qi-1), the inverse scattering quality factor (Qs-1) and total inverse quality factor (Qt-1) for the volcanic environment of Deception Island (Antarctica). Our attenuation study is based on diffusion approximation, which permits us to obtain the attenuation coefficients for every single couple source-receiver separately. The data set used in this research is derived from an active seismic experiment using more than 5200 offshore shots (air guns) recorded at 32 onshore seismic stations and four ocean bottom seismometers. To arrive at a regional distribution of these values, we used a new mapping technique based on a Gaussian space probability function. This approach led us to create `2-D probabilistic maps' of values of intrinsic and scattering seismic attenuation. The 2-D tomographic images confirm the existence of a high attenuation body below an inner bay of Deception Island. This structure, previously observed in 2-D and 3-D velocity tomography of the region, is associated with a massive magma reservoir. Magnetotelluric studies reach a similar interpretation of this strong anomaly. Additionally, we observed areas with lower attenuation effects that bear correlation with consolidated structures described in other studies and associated with the crystalline basement of the area. Our calculations of the transport mean-free path and absorption length for intrinsic attenuation gave respective values of ≈ 950 m and 5 km, which are lower than the values obtained in tectonic regions or volcanic areas such as Tenerife Island. However, as observed in other volcanic regions, our results indicate that scattering effects dominate strongly over the intrinsic attenuation.

  2. Mesozooplankton distribution near an active volcanic island in the Andaman Sea (Barren Island).

    PubMed

    Pillai, Honey U K; Jayaraj, K A; Rafeeq, M; Jayalakshmi, K J; Revichandran, C

    2011-05-01

    The study addresses the distribution and diversity of mesozooplankton near the active volcano-Barren Island (Andaman Sea) in the context of persistent volcanic signature and warm air pool existing for the last few months. Sampling was done from the stations along the west and east side of the volcano up to a depth of 1,000 m during the inter monsoon (April) of 2006. Existence of feeble warm air pool was noticed around the Island (Atm. Temp. 29°C). Sea surface temperature recorded as 29.9°C on the west and 29.6°C on the east side stations. High mesozooplankton biomass was observed in the study area than the earlier reports. High density and biomass observed in the surface layer decreased significantly to the deeper depths. Lack of correlation was observed between mesozooplankton biomass and density with chl. a. Twenty-three mesozooplankton taxa were observed with copepoda as the dominant taxa followed by chaetognatha. The relative abundance of chaetognatha considerably affected the copepod population density in the surface layer. A noticeable feature was the presence of cumaceans, a hyperbenthic fauna in the surface, mixed layer and thermocline layer on the western side station where the volcano discharges in to the sea. The dominant order of copepoda, the calanoida was represented by 52 species belonging to 17 families. The order poecilostomatoida also had a significant contribution. Copepods exhibited a clear difference in their distribution pattern in different depth layers. The families Calanidae and Pontellidae showed a clear dominance in the surface whereas small-sized copepods belonging to the families Clausocalanidae and Paracalanidae were observed as the predominant community in the mixed layer and thermocline layer depth. Families Metridinidae, Augaptilidae and Aetideidae were observed as dominant in deeper layers. PMID:20717718

  3. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  4. Morpho-structural evolution of a volcanic island developed inside an active oceanic rift: S. Miguel Island (Terceira Rift, Azores)

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Hildenbrand, A.; Marques, F. O.; Weiss, B.; Boulesteix, T.; Hübscher, C.; Lüdmann, T.; Costa, A. C. G.; Catalão, J. C.

    2015-08-01

    The evolution of volcanic islands is generally marked by fast construction phases alternating with destruction by a variety of mass-wasting processes. More specifically, volcanic islands located in areas of intense regional deformation can be particularly prone to gravitational destabilisation. The island of S. Miguel (Azores) has developed during the last 1 Myr inside the active Terceira Rift, a major tectonic structure materializing the present boundary between the Eurasian and Nubian lithospheric plates. In this work, we depict the evolution of the island, based on high-resolution DEM data, stratigraphic and structural analyses, high-precision K-Ar dating on separated mineral phases, and offshore data (bathymetry and seismic profiles). The new results indicate that: (1) the oldest volcanic complex (Nordeste), composing the easternmost part of the island, was dominantly active between ca. 850 and 750 ka, and was subsequently affected by a major south-directed flank collapse. (2) Between at least 500 ka and 250 ka, the landslide depression was massively filled by a thick lava succession erupted from volcanic cones and domes distributed along the main E-W collapse scar. (3) Since 250 kyr, the western part of this succession (Furnas area) was affected by multiple vertical collapses; associated plinian eruptions produced large pyroclastic deposits, here dated at ca. 60 ka and less than 25 ka. (4) During the same period, the eastern part of the landslide scar was enlarged by retrogressive erosion, producing the large Povoação valley, which was gradually filled by sediments and young volcanic products. (5) The Fogo volcano, in the middle of S. Miguel, is here dated between ca. 270 and 17 ka, and was affected by, at least, one southwards flank collapse. (6) The Sete Cidades volcano, in the western end of the island, is here dated between ca. 91 and 13 ka, and experienced mutliple caldera collapses; a landslide to the North is also suspected from the presence of a

  5. Underground Temperature Measurements as a Tool for Volcanic Activity Monitoring in the Island of Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Eff-Darwich, A.; Coello, J.; Viñas, R.; Soler, V.; Martin-Luis, M. C.; Farrujia, I.; Quesada, M. L.; de La Nuez, J.

    2008-01-01

    The spatial distribution of groundwater temperatures in the volcanic island of Tenerife, Canary Islands, has been inferred through measurements of water temperatures collected in the vast network of wells and subhorizontal tunnels, locally called “galleries,” which constitutes the main water supply of the island. The spatial coverage of the network of galleries allows us to reach from depth almost any geological feature of the island. The complex spatial distribution of temperatures in the interior of Tenerife is the result of the complex geological evolution of the island. Groundwater temperatures are greatly affected by groundwater flow and are considerably warmer in those galleries located in areas where water circulation is reduced due to the low permeability of materials and/or to the low infiltration rate of cooling meteoric water. In this sense, groundwater temperature should be characterized in quiescent conditions (background level), in order to facilitate monitoring changes in heat flow, such as those induced by ascending gases expected with an increase in volcanic activity.

  6. Eighteen years of geochemical monitoring at the oceanic active volcanic island of El Hierro (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Asensio-Ramos, María; Alonso, Mar; Sharp, Emerson; Woods, Hannah; Barrancos, José; Pérez, Nemesio M.

    2016-04-01

    We report herein the latest results of a diffuse CO2 efflux survey at El Hierro volcanic system carried out during the summer period of 2015 to constrain the total CO2 output from the studied area a during post-eruptive period. El Hierro Island (278 km2) is the youngest and the SW-most of the Canary Islands. On July 16, 2011, a seismic-volcanic crisis started with the occurrence of more than 11,900 seismic events and significant deformation along the island. On October 10, 2011, the dominant character of seismicity changed dramatically from discrete earthquakes to continuous tremor, a clear indication that magma was rapidly approaching the surface immediately before the onset of the eruption, October 12. Eruption was declared over on 5 March, 2012. In order to monitor the volcanic activity of El Hierro Island, from 1998 to 2015 diffuse CO2 emission studies have been performed at El Hierro volcanic system in a yearly basis (˜600 observation sites) according to the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. To quantify the total CO2 emission from the studied area, 100 simulations for each survey have been performed. During the eruption period, soil CO2 efflux values range from non-detectable (˜0.5 g m‑2 d‑1) up to 457 g m‑2 d‑1, reaching in November 27, 2011, the maximum CO2 output estimated value of all time series, 2,398 t d‑1, just before the episodes of maximum degassing observed as vigorous bubbling at the sea surface and an increment in the amplitude of the tremor signal. During the 2015 survey, soil CO2 efflux values ranged from non-detectable up to 41 g m‑2 d‑1. The spatial distribution of diffuse CO2 emission values seemed to be controlled by the main volcano structural features of the island. The total diffuse CO2 output released to atmosphere was estimated at 575 ± 24 t d‑1, value slightly higher that the background CO2 emission estimated at 422 t

  7. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands - I: model and the case of Tenerife Island

    NASA Astrophysics Data System (ADS)

    Prudencio, Janire; Del Pezzo, Edoardo; García-Yeguas, Araceli; Ibáñez, Jesús M.

    2013-12-01

    The complex volcanic system of Tenerife Island is known to have a highly heterogeneous character, as recently confirmed by velocity tomography. We present new information derived from intrinsic quality factor inverse maps (Qi-1), scattering quality factor inverse maps (Qs-1) and total quality factor inverse maps (Qt-1) obtained for the same region. The data set used in this work is the result of the analysis of an active seismic experiment carried out, using offshore shots (air guns) recorded at over 85 onshore seismic stations. The estimates of the attenuation parameters are based on the assumption that the seismogram energy envelopes are determined by seismic energy diffusion processes occurring inside the island. Diffusion model parameters, proportional to Qi-1 and to Qs-1, are estimated from the inversion of the energy envelopes for any source-receiver couple. They are then weighted with a new graphical approach based on a Gaussian space probability function, which allowed us to create `2-D probabilistic maps' representing the space distribution of the attenuation parameters. The 2-D images obtained reveal the existence of a zone in the centre of the island characterized by the lowest attenuation effects. This effect is interpreted as highly rigid and cooled rocks. This low-attenuation region is bordered by zones of high attenuation, associated with the recent historical volcanic activity. We calculate the transport mean free path obtaining a value of around 4 km for the frequency range 6-12 Hz. This result is two orders of magnitude smaller than values calculated for the crust of the Earth. An absorption length between 10 and 14 km is associated with the average intrinsic attenuation parameter. These values, while small in the context of tectonic regions, are greater than those obtained in volcanic regions such as Vesuvius or Merapi. Such differences may be explained by the magnitude of the region of study, over three times larger than the aforementioned study

  8. Volcanic Island Appears Near Tonga

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-11-01

    A volcano known as Home Reef is now believed to be the source of a small island that appeared recently in Tonga, accordingto scientists from the Smithsonian Institution's Global Volcanism Program who had initially placed the location of the eruption and resulting island at nearby Metis Shoal. Mariners onboard the yacht Maiken

  9. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, R.G.; Neal, C.A.; Dixon, J.P.; Ushakov, Sergey

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity at or near 16 volcanoes in Alaska during 2005, including the high profile precursory activity associated with the 2005?06 eruption of Augustine Volcano. AVO continues to participate in distributing information about eruptive activity on the Kamchatka Peninsula, Russia, and in the Kurile Islands of the Russian Far East, in conjunction with the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Volcanic Eruption Response Team (SVERT), respectively. In 2005, AVO helped broadcast alerts about activity at 8 Russian volcanoes. The most serious hazard posed from volcanic eruptions in Alaska, Kamchatka, or the Kurile Islands is the placement of ash into the atmosphere at altitudes traversed by jet aircraft along the North Pacific and Russian Trans East air routes. AVO, KVERT, and SVERT work collaboratively with the National Weather Service, Federal Aviation Administration, and the Volcanic Ash Advisory Centers to provide timely warnings of volcanic eruptions and the production and movement of ash clouds.

  10. Soil gas radon and volcanic activity at El Hierro (Canary Islands) before and after the 2011-2012 submarine eruption

    NASA Astrophysics Data System (ADS)

    Barrancos, J.; Padilla, G.; Hernandez Perez, P. A.; Padron, E.; Perez, N.; Melian Rodriguez, G.; Nolasco, D.; Dionis, S.; Rodriguez, F.; Calvo, D.; Hernandez, I.

    2012-12-01

    El Hierro is the youngest and southernmost island of the Canarian archipelago and represents the summit of a volcanic shield elevating from the surrounding seafloor at depth of 4000 m to up to 1501 m above sea level. The island is believed to be near the present hotspot location in the Canaries with the oldest subaerial rocks dated at 1.12 Ma. The subaerial parts of the El Hierro rift zones (NE, NW and S Ridges) are characterized by tightly aligned dyke complexes with clusters of cinder cones as their surface expressions. Since July 16, 2011, an anomalous seismicity at El Hierro Island was recorded by IGN seismic network. Volcanic tremor started at 05:15 hours on October 10, followed on the afternoon of October 12 by a green discolouration of seawater, strong bubbling and degassing indicating the initial stage of submarine volcanic eruption at approximately 2 km off the coast of La Restinga, El Hierro. Soil gas 222Rn and 220Rn activities were continuously measured during the period of the recent volcanic unrest occurred at El Hierro, at two different geochemical stations, HIE02 and HIE03. Significant increases in soil 222Rn activity and 222Rn/220Rn ratio from the soil were observed at both stations prior the submarine eruption off the coast of El Hierro, showing the highest increases before the eruption onset and the occurrence of the strongest seismic event (M=4.6). A statistical analysis showed that the long-term trend of the filtered data corresponded closely to the seismic energy released during the volcanic unrest. The observed increases of 222Rn are related to the rock fracturing processes (seismic activity) and the magmatic CO2 outflow increase, as observed in HIE03 station. Under these results, we find that continuous soil radon studies are important for evaluating the volcanic activity of El Hierro and they demonstrate the potential of applying continuous monitoring of soil radon to improve and optimize the detection of early warning signals of future

  11. Methanotrophic activity and bacterial diversity in volcanic-geothermal soils at Pantelleria island (Italy)

    NASA Astrophysics Data System (ADS)

    Gagliano, A. L.; D'Alessandro, W.; Tagliavia, M.; Parello, F.; Quatrini, P.

    2014-04-01

    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic/geothermal soils are source of methane, but also sites of methanotrophic activity. Methanotrophs are able to consume 10-40 Tg of CH4 a-1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria island (Italy), Favara Grande, whose total methane emission was previously estimated in about 2.5 t a-1. Laboratory incubation experiments with three top-soil samples from Favara Grande indicated methane consumption values up to 950 ng g-1 dry soil h-1. One of the three sites, FAV2, where the highest oxidation rate was detected, was further analysed on a vertical soil profile and the maximum methane consumption was measured in the top-soil layer but values > 100 ng g-1 h-1 were maintained up to a depth of 15 cm. The highest consumption rate was measured at 37 °C, but a still recognizable consumption at 80 °C (> 20 ng g-1 h-1) was recorded. In order to estimate the bacterial diversity, total soil DNA was extracted from Favara Grande and analysed using a Temporal Temperature Gradient gel Electrophoresis (TTGE) analysis of the amplified bacterial 16S rRNA gene. The three soil samples were probed by PCR using standard proteobacterial primers and newly designed verrucomicrobial primers targeting the unique methane monooxygenase gene pmoA; the presence of methanotrophs was detected in sites FAV2 and FAV3, but not in FAV1, where harsher chemical-physical conditions and negligible methane oxidation were detected. The pmoA gene libraries from the most active site FAV2 pointed out a high diversity of gammaproteobacterial methanotrophs distantly related to Methylococcus/Methylothermus genera and the presence of the newly discovered acido-thermophilic methanotrophs

  12. Chemical evolution at the coasts of active volcanic islands in a primordial salty ocean

    NASA Astrophysics Data System (ADS)

    Strasdeit, H.; Fox, S.

    2008-09-01

    The Prebiotic Hot-Volcanic-Coast Scenario It has been suggested that in the Hadean eon (4.5-3.8 Ga before present) no permanent continents but volcanic islands and short-lived protocontinents protruded from the first ocean [1, 2]. As the geothermal heat production was considerably higher than today, it is reasonable to assume that hot volcanic coasts were much more abundant. The salinity of the ocean was probably up to two times higher than the modern value [3]. Under these conditions, the evaporation of seawater at active volcanic coasts must have produced sea salt crusts - a process that can still be observed today [4]. On the hot lava rock, the salt crusts can subsequently experience temperatures up to some hundred degrees Celsius. The seawater probably contained abiotically formed organic molecules such as amino acids, which were inevitably embedded into the sea salt crusts. Different prebiotic sources of amino acids have been discussed: (i) comets and meteorites [5], electrical discharges in the atmosphere [6, 7], and deep-sea hydrothermal vents [8]. We undertook a systematic study of solid salt-amino acid mixtures, especially of their formation and thermal behavior under simulated conditions of the hotvolcanic- coast scenario. Laboratory Experiments Amino acids@salts Artificial Hadean seawater was prepared by dissolving NaCl (705 mmol), MgCl2 (80 mmol), KCl (15 mmol), CaCl2 (15 mmol), and an α-amino acid (5-10 mmol) or a mixture of α-amino acids. In order to model the first step of the hot-volcanic-coast scenario, the solutions were evaporated to dryness. Vibrational spectroscopy (IR, Raman) and X-ray powder diffraction showed that the resulting solid residues were not heterogeneous mixtures of salt and amino acid crystals. Instead the amino acid molecules were coordinated in calcium or magnesium complexes. We have studied the rac-alanine ( + H3NCH(CH3)COO -, Hala) system in more detail and found that the complex that is present in the mixture has the

  13. Evidence from acoustic imaging for submarine volcanic activity in 2012 off the west coast of El Hierro (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Somoza, Luis; Hernández, Pedro A.; de Vallejo, Luis González; León, Ricardo; Sagiya, Takeshi; Biain, Ander; González, Francisco J.; Medialdea, Teresa; Barrancos, José; Ibáñez, Jesús; Sumino, Hirochika; Nogami, Kenji; Romero, Carmen

    2014-12-01

    We report precursory geophysical, geodetic, and geochemical signatures of a new submarine volcanic activity observed off the western coast of El Hierro, Canary Islands. Submarine manifestation of this activity has been revealed through acoustic imaging of submarine plumes detected on the 20-kHz chirp parasound subbottom profiler (TOPAS PS18) mounted aboard the Spanish RV Hespérides on June 28, 2012. Five distinct "filament-shaped" acoustic plumes emanating from the flanks of mounds have been recognized at water depth between 64 and 88 m on a submarine platform located NW El Hierro. These plumes were well imaged on TOPAS profiles as "flares" of high acoustic contrast of impedance within the water column. Moreover, visible plumes composed of white rafts floating on the sea surface and sourcing from the location of the submarine plumes were reported by aerial photographs on July 3, 2012, 5 days after acoustic plumes were recorded. In addition, several geophysical and geochemical data support the fact that these submarine vents were preceded by several precursory signatures: (i) a sharp increase of the seismic energy release and the number of daily earthquakes of magnitude ≥2.5 on June 25, 2012, (ii) significant vertical and horizontal displacements observed at the Canary Islands GPS network (Nagoya University-ITER-GRAFCAN) with uplifts up to 3 cm from June 25 to 26, 2012, (iii) an anomalous increase of the soil gas radon activity, from the end of April until the beginning of June reaching peak values of 2.7 kBq/m3 on June 3, 2012, and (iv) observed positive peak in the air-corrected value of 3He/4He ratio monitored in ground waters (8.5 atmospheric 3He/4He ratio ( R A)) at the northwestern El Hierro on June 16, 2012. Combining these submarine and subaerial information, we suggest these plumes are the consequence of submarine vents exhaling volcanic gas mixed with fine ash as consequence of an event of rapid rise of volatile-rich magma beneath the NW submarine ridge

  14. Automatic landslides detection on Stromboli volcanic Island

    NASA Astrophysics Data System (ADS)

    Silengo, Maria Cristina; Delle Donne, Dario; Ulivieri, Giacomo; Cigolini, Corrado; Ripepe, Maurizio

    2016-04-01

    Landslides occurring in active volcanic islands play a key role in triggering tsunami and other related risks. Therefore, it becomes vital for a correct and prompt risk assessment to monitor landslides activity and to have an automatic system for a robust early-warning. We then developed a system based on a multi-frequency analysis of seismic signals for automatic landslides detection occurring at Stromboli volcano. We used a network of 4 seismic 3 components stations located along the unstable flank of the Sciara del Fuoco. Our method is able to recognize and separate the different sources of seismic signals related to volcanic and tectonic activity (e.g. tremor, explosions, earthquake) from landslides. This is done using a multi-frequency analysis combined with a waveform patter recognition. We applied the method to one year of seismic activity of Stromboli volcano centered during the last 2007 effusive eruption. This eruption was characterized by a pre-eruptive landslide activity reflecting the slow deformation of the volcano edifice. The algorithm is at the moment running off-line but has proved to be robust and efficient in picking automatically landslide. The method provides also real-time statistics on the landslide occurrence, which could be used as a proxy for the volcano deformation during the pre-eruptive phases. This method is very promising since the number of false detections is quite small (<5%) and is reducing when the size of the landslide increases. The final aim will be to apply this method on-line and for a real-time automatic detection as an improving tool for early warnings of tsunami-genic landslide activity. We suggest that a similar approach could be also applied to other unstable non-volcanic also slopes.

  15. Birth of two volcanic islands in the southern Red Sea.

    PubMed

    Xu, Wenbin; Ruch, Joël; Jónsson, Sigurjón

    2015-01-01

    Submarine eruptions that lead to the formation of new volcanic islands are rare and far from being fully understood; only a few such eruptions have been witnessed since Surtsey Island emerged to the south of Iceland in the 1960s. Here we report on two new volcanic islands that were formed in the Zubair archipelago of the southern Red Sea in 2011-2013. Using high-resolution optical satellite images, we find that the new islands grew rapidly during their initial eruptive phases and that coastal erosion significantly modified their shapes within months. Satellite radar data indicate that two north-south-oriented dykes, much longer than the small islands might suggest, fed the eruptions. These events occurred contemporaneously with several local earthquake swarms of the type that typically accompany magma intrusions. Earthquake activity has been affecting the southern Red Sea for decades, suggesting the presence of a magmatically active zone that has previously escaped notice. PMID:26010945

  16. Birth of two volcanic islands in the southern Red Sea

    PubMed Central

    Xu, Wenbin; Ruch, Joël; Jónsson, Sigurjón

    2015-01-01

    Submarine eruptions that lead to the formation of new volcanic islands are rare and far from being fully understood; only a few such eruptions have been witnessed since Surtsey Island emerged to the south of Iceland in the 1960s. Here we report on two new volcanic islands that were formed in the Zubair archipelago of the southern Red Sea in 2011–2013. Using high-resolution optical satellite images, we find that the new islands grew rapidly during their initial eruptive phases and that coastal erosion significantly modified their shapes within months. Satellite radar data indicate that two north–south-oriented dykes, much longer than the small islands might suggest, fed the eruptions. These events occurred contemporaneously with several local earthquake swarms of the type that typically accompany magma intrusions. Earthquake activity has been affecting the southern Red Sea for decades, suggesting the presence of a magmatically active zone that has previously escaped notice. PMID:26010945

  17. 1980 volcanic eruption reported on Marion Island

    NASA Astrophysics Data System (ADS)

    Verwoerd, Wilhelm J.; Russell, Shaun; Berruti, Aldo

    1981-06-01

    The first volcanic eruption in the recorded history of Marion Island (46°54'S, 37°45'E) occurred between February and October 1980 at a locality on the west coast. It was a minor event that passed unnoticed at the meteorological station 20 km distant. The discovery was made on November 4, by five expedition members who walked around the island. When examined in more detail on November 25, the lava was still warm in places and numerous fumaroles existed. Three blocky flows emanated from two adjacent cinder cones built-up on a pre-existing phreatomagmatic tuff cone known as Kaalkoppie. The largest flow covers an area of about seven hectares and a further two hectares have been inundated by ash. Another flow poured seawards to form a new beach front, blocking access to what was previously the largest elephant seal wallowing ground on the island. No earth tremors were felt and the activity seems to have ended for the time being.

  18. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  19. 2008 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  20. 2007 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Dixon, James P.; Malik, Nataliya; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2007. The year was highlighted by the eruption of Pavlof, one of Alaska's most frequently active volcanoes. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the autumn of 2006 and continued to emit copious amounts of steam and volcanic gas into 2007. Redoubt Volcano showed the first signs of the unrest that would unfold in 2008-09. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  1. Holocene explosive volcanism of the Jan Mayen (island) volcanic province, North-Atlantic

    NASA Astrophysics Data System (ADS)

    Gjerløw, Eirik; Haflidason, H.; Pedersen, R. B.

    2016-07-01

    The volcanic island Jan Mayen, located in the Norwegian-Greenland Sea, hosts the active stratovolcano of Beerenberg, the northernmost active subaerial volcano in the world. At least five eruptions are known from the island following its discovery in the 17th century, but its eruptive history prior to this is basically unknown. In this paper two sediment cores retrieved close to Jan Mayen have been studied in detail to shed light on the Holocene history of explosive volcanism from the Jan Mayen volcanic province. Horizons with elevated tephra concentrations were identified and tephra from these was analysed to determine major element chemistry of the tephra. The tephra chemistry was used to provide a link between the two cores and the land based tephra records from Jan Mayen Island. We managed to link two well-developed tephra peaks in the cores by their geochemical composition and age to Jan Mayen. One of these peaks represents the 1732 AD eruption of Eggøya while the other peak represents a previously undescribed eruption dated to around 10.3 ka BP. Two less prominent tephra peaks, one in each core, dated to approximately 2.3 and 3.0 ka BP, also have a distinct geochemical character linking them to Jan Mayen volcanism. However, the most prominent tephra layer in the cores located close to Jan Mayen and numerous other cores along the Jan Mayen ridge is the 12.1 ka BP Vedde Ash originating from the Iceland volcanic province. We find that the Holocene volcanism on Jan Mayen is much less explosive than volcanism in Iceland, and propose that either low amounts of explosive volcanic activity from the summit region of Beerenberg or small to absent glacier cover on Beerenberg is responsible for this.

  2. The Evolution of Volcanic Ocean Islands and Biota

    NASA Astrophysics Data System (ADS)

    Dietrich, W. E.; Power, M. E.; Perron, T.

    2011-12-01

    Species or taxon abundances on ocean island archipelagoes consistently show a power law dependency on island area. Nearly 50 years ago, MacArthur and Wilson proposed a theory to explain this dependency, focusing on the equilibrium species number that arises from the balance of immigration and extinction. Subsequent studies have strongly supported this revolutionary theory, applying it to ecological islands ranging in scale from cobbles to sub-continents. The MacArthur and Wilson theory assumes speciation on islands was unimportant, yet studies of remote ocean islands, where endemics dominate many taxa, suggest that simultaneous evolution of organisms and their islands is a first order process influencing species richness. Molecular clock studies now allow tracking of species radiation events across islands, in many cases showing evidence of progression from older to younger islands. Recently efforts have been made to add speciation to the MacArthur and Wilson model (most notably by Whittaker et al., 2008, J.Biogeogr), specifically tying it to the time and physical evolution of ocean islands. This challenges evolutionary scientists, ecologists, and geoscientists to develop mutually useful understanding of how island evolution drives speciation. Volcanic ocean islands over mantle plumes (e.g. Hawaii, Society, Galapagos, Marquesas, and Samoa island chains) present the possibility of a well-defined age succession, observable physical changes, and abundant endemics. These island chains present some appealing constraints: active island construction typically is about 1 million years and in most cases the oldest island is about 5 million years. Once the islands are sufficiently tall and wide they can increase precipitation by over 3 times relative to the open ocean. But this precipitation is commonly non uniform, with windward sides much wetter, and, if islands attain sufficient height, maximum precipitation occurring below the island peak. Coarsely, islands build

  3. Basaltic volcanism in the Bering Sea: geochronology and volcanic evolution of St. Paul Island, Pribilof Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Winer, G. S.; Feeley, T. C.; Cosca, M. A.

    2004-07-01

    The evolution of a Pleistocene to Holocene basaltic volcanic field in the back-arc region of the Aleutian subduction system is investigated at St. Paul Island, Alaska, one of the youngest eruptive centers in the Bering Sea basalt province. New 40Ar/ 39Ar and 14C age determinations indicate that subaerial volcanic activity forming the island began as early as 540 ka and has continued nearly to the present; the youngest eruption occurred approximately 3230 years BP. Magmas erupted on St. Paul are basaltic with MgO contents ranging from 14 to 4 wt.% and phenocryst assemblages of olivine+clinopyroxene±plagioclase; all are alkalic. The surface of St. Paul is composed mainly of numerous tephra cones surrounded by coalescing, low-viscosity pahoehoe lava flows. A central highland spans the island from east to west and is constructed of relatively young eruptive centers where rocks show a minimum of weathering and little deformation by faulting. In contrast, older lava flows forming the wave-eroded base of the island are gently to moderately tilted and faulted. Geochronologic, stratigraphic, and geochemical data indicate that eruptive styles on St. Paul evolved from early, mostly effusive eruptions of chemically little evolved lavas that form the base of the island, to more explosive monogenetic scoria cones, to polygenetic centers forming shields by repeated effusive eruptions of evolved low-viscosity lavas. Localization of the monogenetic and polygenetic centers appears to be related to east-west and northeast-southwest trending fault and fissure systems, with polygenetic centers located at intersections of major structures. The combined volcanic and compositional changes on St. Paul Island suggest that the magmatic system as a whole may be trending toward eruption of more evolved magmas related to the progressive development of crustal magma chambers in which crystal fractionation and magmatic differentiation are occurring.

  4. Coastal evolution on volcanic oceanic islands: A complex interplay between volcanism, erosion, sedimentation, sea-level change and biogenic production

    NASA Astrophysics Data System (ADS)

    Ramalho, Ricardo S.; Quartau, Rui; Trenhaile, Alan S.; Mitchell, Neil C.; Woodroffe, Colin D.; Ávila, Sérgio P.

    2013-12-01

    The growth and decay of oceanic hotspot volcanoes are intrinsically related to a competition between volcanic construction and erosive destruction, and coastlines are at the forefront of such confrontation. In this paper, we review the several mechanisms that interact and contribute to the development of coastlines on oceanic island volcanoes, and how these processes evolve throughout the islands' lifetime. Volcanic constructional processes dominate during the emergent island and subaerial shield-building stages. During the emergent island stage, surtseyan activity prevails and hydroclastic and pyroclastic structures form; these structures are generally ephemeral because they can be rapidly obliterated by marine erosion. With the onset of the subaerial shield-building stage, coastal evolution is essentially characterized by rapid but intermittent lateral growth through the formation of lava deltas, largely expanding the coastlines until they, typically, reach their maximum extension. With the post-shield quiescence in volcanic activity, destructive processes gradually take over and coastlines retreat, adopting a more prominent profile; mass wasting and marine and fluvial erosion reshape the landscape and, if conditions are favorable, biogenic processes assume a prominent role. Post-erosional volcanic activity may temporarily reverse the balance by renewing coastline expansion, but islands inexorably enter in a long battle for survival above sea level. Reef growth and/or uplift may also prolong the island's lifetime above the waves. The ultimate fate of most islands, however, is to be drowned through subsidence and/or truncation by marine erosion.

  5. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    NASA Astrophysics Data System (ADS)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  6. Improvement forecasting of volcanic activity by applying a Kalman filter to the SSEM signal. The case of the El Hierro Island eruption (October 2011)

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Berrocoso, M.; Marrero, J. M.; Ortiz, R.

    2012-04-01

    The FFM (Failure Forecast Method) is developed from the eruption of St. Helens, being repeatedly applied to forecast eruptions and recently to the prediction of seismic activity in active volcanic areas. The underwater eruption of El Hierro Island has been monitored from three months before starting (October 10, 2011). This allowed a large catalogue of seismic events (over 11000) and continuous recording seismic signals that cover the entire period. Since the beginning of the seismic-volcanic crisis (July 2011), the FFM was applied to the SSEM signal of seismic records. Mainly because El Hierro is a very small island, the SSEM has a high noise (traffic and oceanic noise). To improve the signal / noise ratio has been used a Kalman filter. The Kalman filter coefficients are adjusted using an inversion process based on forecasting errors occurred in the twenty days preceding. The application of this filter has been a significant improvement in the reliability of forecasts. The analysis of the results shows, before the start of the eruption, that 90% of the forecasts are obtained with errors less than 10 minutes with more than 24 hours in advance. It is noteworthy that the method predicts the events of greater magnitude and especially the beginning of each swarm of seismic events. At the time the eruption starts reducing the efficiency of the forecast 50% with a dispersion of more than one hour. This fact is probably due to decreased detectability by saturation of some of the seismic stations and decreased the average magnitude. However, the events of magnitude greater than 4 were predicted with an error less than 20 minutes.

  7. The dynamics of genetic and morphological variation on volcanic islands

    PubMed Central

    Gübitz, Thomas; Thorpe, Roger S; Malhotra, Anita

    2005-01-01

    Oceanic archipelagos of volcanic origin have been important in the study of evolution because they provide repeated natural experiments allowing rigorous tests of evolutionary hypotheses. Ongoing volcanism on these islands may, however, affect the evolutionary diversification of species. Analysis of population structure and phylogeographic patterns in island populations can provide insight into evolutionary dynamics on volcanic islands. We analysed genetic and morphological variation in the gecko Tarentola boettgeri on the island of Gran Canaria and compared it with Tarentola delalandii on Tenerife, a neighbouring volcanic island of similar age but distinctly different geological past. Intraspecific divergence of mitochondrial haplotypes indicates long-term persistence of Tarentola on each island, with a phylogeographic signal left by older volcanic events. More recent volcanic eruptions (approximately 0.2 million years ago on Tenerife, approximately 2.2 million years ago on Gran Canaria) have left a signature of population expansion in the population genetic structure, the strength of which depends on the time since the last major volcanic eruption on each island. While these stochastic events have left traces in morphological variation in Tenerife, in Gran Canaria geographical variation was solely associated with environmental variables. This suggests that historically caused patterns in morphology may be overwritten by natural selection within 2 million years. PMID:15870037

  8. Magnetostratigraphy of Cape Verde Islands Volcanics

    NASA Astrophysics Data System (ADS)

    Knudsen, M. F.; Abrahamsen, N.

    2003-12-01

    During three field campaigns on the Cape Verde Islands (15N, 24W) in 1998, 2000, and 2003 paleomagnetic collections of several volcanic profiles from 5 of the 9 populated islands of the Cape Verde Archipelago were made. A summary of the paleomagnetic results obtained for some of the islands will be given in the presentation. On the island of Santo Antao paleomagnetic and magnetostratigraphic results from four lava sequences have been obtained: The Tarrafal, Agua Nova, Cha de Morte and Escabecada profiles. From the Tarrafal and Agua Nova profiles, 63 and 43 lava flows were investigated, respectively. Absolute Ar/Ar-ages indicate that the two profiles mainly correlate to the Brunhes Chron, which is in accordance with the normal polarity displayed by the majority of the flows. Some individual lava flows as well as flow sequences with virtual geomagnetic poles deviating more than 45 degrees from the geographic pole are interpreted as geomagnetic excursions, the number of which seem to be increasing these years. The most noticeable observations are the indications of Brunhes-aged reverse-polarity flows found within the Tarrafal and Agua Nova profiles. From the Cha de Morte and Escabecada lava sequences 21 and 24 lava flows were sampled, respectively. The uppermost flow in the Cha de Morte profile is constrained to the lower part of the Matuyama Chron by an Ar/Ar-age. Except for one flow of intermediate direction (ChM-I), the whole Cha de Morte sequence consists of reverse-polarity flows. The lowermost flow in the Escabecada profile is constrained to the upper part of the Gauss Chron by an Ar/Ar-age. Flows of both reverse and normal polarity are found in the Escabecada profile, corresponding to the lower part of Matuyama and upper part of Gauss, respectively. Two flows with anomalous behaviour, ESC-I and ESC-II, are found in the directional data of this sequence. The uppermost event (ESC-II) most likely recorded the Gauss-Matuyama transition, while the lowermost event

  9. Volcanic alert system (VAS) developed during the 2011-2014 El Hierro (Canary Islands) volcanic process

    NASA Astrophysics Data System (ADS)

    García, Alicia; Berrocoso, Manuel; Marrero, José M.; Fernández-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramón

    2014-06-01

    The 2011 volcanic unrest at El Hierro Island illustrated the need for a Volcanic Alert System (VAS) specifically designed for the management of volcanic crises developing after long repose periods. The VAS comprises the monitoring network, the software tools for analysis of the monitoring parameters, the Volcanic Activity Level (VAL) management, and the assessment of hazard. The VAS presented here focuses on phenomena related to moderate eruptions, and on potentially destructive volcano-tectonic earthquakes and landslides. We introduce a set of new data analysis tools, aimed to detect data trend changes, as well as spurious signals related to instrumental failure. When data-trend changes and/or malfunctions are detected, a watchdog is triggered, issuing a watch-out warning (WOW) to the Monitoring Scientific Team (MST). The changes in data patterns are then translated by the MST into a VAL that is easy to use and understand by scientists, technicians, and decision-makers. Although the VAS was designed specifically for the unrest episodes at El Hierro, the methodologies may prove useful at other volcanic systems.

  10. 2006 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Manevich, Alexander; Rybin, Alexander

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2006. A significant explosive eruption at Augustine Volcano in Cook Inlet marked the first eruption within several hundred kilometers of principal population centers in Alaska since 1992. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the fall of 2006 and continued to emit copious amounts of volcanic gas into 2007. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  11. Unusual Volcanic Tremor Observations in Fogo Island, Cape Verde

    NASA Astrophysics Data System (ADS)

    Custodio, S. I.; Heleno, S. I.

    2004-12-01

    Volcanic tremor is a ground motion characterized by well-defined frequencies, and has traditionally been explained by the movement of fluids, namely magma, in conduits or cracks (Chouet, 1996). Thus tremor has the potential to reveal key aspects of volcanic structure and dynamics. Two types of previously unreported seismic signals have been observed in Fogo volcano: a) tide-modulated seismic noise and volcanic tremor, and b) high-frequency low-attenuation harmonic tremor. Amplitude modulation of seismic noise can be detected by simple eye-inspection of raw data in some stations of the VIGIL Network, Fogo Volcano. A more detailed analysis shows that certain frequency bands which we interpret as volcanic tremor, mainly in the range 2.0-3.0Hz, are preferentially modulated. The main frequency of modulation is 1.93 c.p.d., which corresponds to M2, the semi-diurnal lunar harmonic. Air pressure and temperature, which are continuously monitored in Fogo Island, have been analyzed and cannot explain the observed periodicity. Thus we conclude that seismic noise and tremor amplitudes are controlled by tides (Custodio et al., 2003). A relation between the tidal modulation and hydrothermal systems activity is suspected and under investigation. High-frequency (HF) tremor (5-20 Hz) has been recorded simultaneously in several stations in Fogo Island and even in different islands of the Cape Verde archipelago (up to distances of 120 km). In volcanic environments high-frequency motions are normally recorded in a small area close to the source, due to the strong attenuation of seismic waves. Non-volcanic origins for HF tremor were examined: cultural noise, whale vocalizations, ship noise, electronic/processing artifacts and path and/or site effects were all considered and dismissed. Emergent arrivals and strong site effects render source location a difficult task, but the analysis of wave polarizations and amplitude distributions seems to point to an offshore source. Two alternative

  12. Improving communication during volcanic crises on small, vulnerable islands

    NASA Astrophysics Data System (ADS)

    McGuire, W. J.; Solana, M. C.; Kilburn, C. R. J.; Sanderson, D.

    2009-05-01

    Increased exposure to volcanic hazard, particularly at vulnerable small islands, is driving an urgent and growing need for improved communication between monitoring scientists, emergency managers and the media, in advance of and during volcanic crises. Information gathering exercises undertaken on volcanic islands (Guadeloupe, St. Vincent and Montserrat) in the Lesser Antilles (eastern Caribbean), which have recently experienced - or are currently experiencing - volcanic action, have provided the basis for the compilation and publication of a handbook on Communication During Volcanic Emergencies, aimed at the principal stakeholder groups. The findings of the on-island surveys point up the critical importance of (1) bringing together monitoring scientists, emergency managers, and representatives of the media, well in advance of a volcanic crisis, and (2), ensuring that procedures and protocols are in place that will allow, as far as possible, effective and seamless cooperation and coordination when and if a crisis situation develops. Communication During Volcanic Emergencies is designed to promote and encourage both of these priorities through providing the first source-book addressing working relationships and inter-linkages between the stakeholder groups, and providing examples of good and bad practice. While targeting the volcanic islands of the eastern Caribbean, the source-book and its content are largely generic, and the advice and guidelines contained therein have equal validity in respect of improving communication before and during crises at any volcano, and have application to the communication issue in respect of a range of other geophysical hazards.

  13. Recent and Hazardous Volcanic Activity Along the NW Rift Zone of Piton De La Fournaise Volcano, La Réunion Island

    NASA Astrophysics Data System (ADS)

    Walther, G.; Frese, I.; Di Muro, A.; Kueppers, U.; Michon, L.; Metrich, N.

    2014-12-01

    Shield volcanoes are a common feature of basaltic volcanism. Their volcanic activity is often confined to a summit crater area and rift systems, both characterized by constructive (scoria and cinder cones; lava flows) and destructive (pit craters; caldera collapse) phenomena. Piton de la Fournaise (PdF) shield volcano (La Réunion Island, Indian Ocean) is an ideal place to study these differences in eruptive behaviour. Besides the frequent eruptions in the central Enclos Fouqué caldera, hundreds of eruptive vents opened along three main rift zones cutting the edifice during the last 50 kyrs. Two short rift zones are characterized by weak seismicity and lateral magma transport at shallow depth (above sea level). Here we focus on the third and largest rift zone (15km wide, 20 km long), which extends in a north-westerly direction between PdF and nearby Piton des Neiges volcanic complex. It is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, testifying of high fluid pressures (up to 5 kbar) and large-volume eruptions. We present new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruption products) on one of the youngest (~6kyrs) and largest lava field (Trous Blancs eruption). It extends for 24km from a height of 1800 m asl, passing Le Tampon and Saint Pierre cities, until reaching the coast. The source area of this huge lava flow has been identified in an alignment of four previously unidentified pit craters. The eruption initiated with intense fountaining activity, producing a m-thick bed of loose black scoria, which becomes densely welded in its upper part; followed by an alternation of volume rich lava effusions and strombolian activity, resulting in the emplacement of meter-thick, massive units of olivine-basalt alternating with coarse scoria beds in the proximal area. Activity ended with the emplacement of a dm-thick bed of glassy, dense scoria and a stratified lithic

  14. Groundwater flow in a relatively old oceanic volcanic island: the Betancuria area, Fuerteventura Island, Canary Islands, Spain.

    PubMed

    Herrera, Christian; Custodio, Emilio

    2014-10-15

    The island of Fuerteventura is the oldest of the Canary Islands' volcanic archipelago. It is constituted by volcanic submarine and subaerial activity and intrusive Miocene events, with some residual later volcanism and Quaternary volcanic deposits that have favored groundwater recharge. The climate is arid, with an average rainfall that barely attains 60 mm/year in the coast and up to 200 mm/year in the highlands. The aquifer recharge is small but significant; it is brackish due to large airborne atmospheric salinity, between 7 and 15 gm(-2)year(-1) of chloride deposition, and high evapo-concentration in the soil. The average recharge is estimated to be less than about 5 mm/year at low altitude and up to 10 mm/year in the highlands, and up to 20 mm/year associated to recent lava fields. Hydrochemical and water isotopic studies, supported by water table data and well and borehole descriptions, contribute a preliminary conceptual model of groundwater flow and water origin in the Betancuria area, the central area of the island. In general, water from springs and shallow wells tends to be naturally brackish and of recent origin. Deep saline groundwater is found and is explained as remnants of very old marine water trapped in isolated features in the very low permeability intrusive rocks. Preliminary radiocarbon dating indicates that this deep groundwater has an apparent age of less than 5000 years BP but it is the result of mixing recent water recharge with very old deep groundwater. Most of the groundwater flow occurs through the old raised volcanic shield of submarine and subaerial formations and later Miocene subaerial basalts. Groundwater transit time through the unsaturated zone is of a few decades, which allows the consideration of long-term quasi-steady state recharge. Transit times are up to a few centuries through the saturated old volcanics and up to several millennia in the intrusive formations, where isolated pockets of very old water may exist. PMID

  15. Long term volcanic hazard analysis in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Becerril, L.; Galindo, I.; Laín, L.; Llorente, M.; Mancebo, M. J.

    2009-04-01

    Historic volcanism in Spain is restricted to the Canary Islands, a volcanic archipelago formed by seven volcanic islands. Several historic eruptions have been registered in the last five hundred years. However, and despite the huge amount of citizens and tourist in the archipelago, only a few volcanic hazard studies have been carried out. These studies are mainly focused in the developing of hazard maps in Lanzarote and Tenerife islands, especially for land use planning. The main handicap for these studies in the Canary Islands is the lack of well reported historical eruptions, but also the lack of data such as geochronological, geochemical or structural. In recent years, the use of Geographical Information Systems (GIS) and the improvement in the volcanic processes modelling has provided an important tool for volcanic hazard assessment. Although this sophisticated programs are really useful they need to be fed by a huge amount of data that sometimes, such in the case of the Canary Islands, are not available. For this reason, the Spanish Geological Survey (IGME) is developing a complete geo-referenced database for long term volcanic analysis in the Canary Islands. The Canarian Volcanic Hazard Database (HADA) is based on a GIS helping to organize and manage volcanic information efficiently. HADA includes the following groups of information: (1) 1:25.000 scale geologic maps, (2) 1:25.000 topographic maps, (3) geochronologic data, (4) geochemical data, (5) structural information, (6) climatic data. Data must pass a quality control before they are included in the database. New data are easily integrated in the database. With the HADA database the IGME has started a systematic organization of the existing data. In the near future, the IGME will generate new information to be included in HADA, such as volcanological maps of the islands, structural information, geochronological data and other information to assess long term volcanic hazard analysis. HADA will permit

  16. Monitoring groundwater temperature in the volcanic island of Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Eff-Darwich, A.; Coello, J.; Soler, V.; Martin-Luis, M. C.; Castro-Almazan, J.; Vinas, R.; Farrujia, I.; Navarro, J. M.; Quesada, M. L.; de La Nuez, J.

    2003-04-01

    The geology and geo-chemistry of the emerged portion of the volcanic edifice of Tenerife may be studied in detail using the vast network of horizontal and vertical drillings located all over the island and that constitutes its main water supply. In this work, we studied the groundwater temperature distribution in the central part of the island. Warm mineralized waters were found in low permeable areas, where dissolution of volcanic CO_2 takes place. Carbone dioxide may be part of a large scale upflow of hot endogenous gases that is brought up through preferential paths, such as the dike swarms and fractures. In more permeable areas, colder and fast flowing renewable water does not interact so efficiently with the upflowing gases, yielding to colder and low-mineralized waters. Monitoring of high temperature groundwater could therefore give valuable information on the degassing that may be occurring in the central area of the island and also it could serve as an early indicator of volcanic activity.

  17. Volcanic-ash hazard to aviation during the 2003-2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    USGS Publications Warehouse

    Guffanti, M.; Ewert, J.W.; Gallina, G.M.; Bluth, G.J.S.; Swanson, G.L.

    2005-01-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  18. Volcanic-ash hazard to aviation during the 2003 2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Guffanti, Marianne; Ewert, John W.; Gallina, Gregory M.; Bluth, Gregg J. S.; Swanson, Grace L.

    2005-08-01

    Within the Commonwealth of the Northern Mariana Islands (CNMI), Anatahan is one of nine active subaerial volcanoes that pose hazards to major air-traffic routes from airborne volcanic ash. The 2003-2004 eruptive activity of Anatahan volcano affected the region's aviation operations for 3 days in May 2003. On the first day of the eruption (10 May 2003), two international flights from Saipan to Japan were cancelled, and several flights implemented ash-avoidance procedures. On 13 May 2003, a high-altitude flight through volcanic gas was reported, with no perceptible damage to the aircraft. TOMS and MODIS analysis of satellite data strongly suggests that no significant ash and only minor amounts of SO 2 were involved in the incident, consistent with crew observations. On 23 May 2003, airport operations were disrupted when tropical-cyclone winds dispersed ash to the south, dusting Saipan with light ashfall and causing flight cancellations there and at Guam 320 km south of the volcano. Operational (near-real-time) monitoring of ash clouds produced by Anatahan has been conducted since the first day of the eruption on 10 May 2003 by the Washington Volcanic Ash Advisory Center (VAAC). The VAAC was among the first groups outside of the immediate area of the volcano to detect and report on the unexpected eruption of Anatahan. After being contacted about an unusual cloud by National Weather Service forecasters in Guam at 1235 UTC on 10 May 2003, the VAAC analyzed GOES 9 images, confirming Anatahan as the likely source of an ash cloud and estimating that the eruption began at about 0730 UTC. The VAAC issued its first Volcanic Ash Advisory for Anatahan at 1300 UTC on 10 May 2003 more than 5 h after the start of the eruption, the delay reflecting the difficulty of detecting and confirming a surprise eruption at a remote volcano with no in situ real-time geophysical monitoring. The initial eruption plume reached 10.7-13.4 km (35,000-44,000 ft), well into jet cruise altitudes

  19. An integrated remote sensing approach for landslide susceptibly mapping at the volcanic islands of Vulcano and Lipari (Eolian Island, Italy)

    NASA Astrophysics Data System (ADS)

    Scifoni, Silvia; Palenzuela Baena, José A.; Marsella, Maria; Pepe, Susi; Sansosti, Eugenio; Solaro, Giuseppe; Tizzani, Piero

    2015-10-01

    Volcanic Island can be affected by instability phenomena such as landslide and partial collapse events, even in quiescent period. Starting from data collected by an aerial laser scanning survey at cm-level accuracy), a GIS based approach was implemented in order to perform a landslide-susceptibility analysis. The results of this analysis were compared and integrated with data derived from Differential Synthetic Aperture Radar Interferometry (DinSAR) analysis able to identify the most active areas and quantify the on-going deformation processes. The analysis is focused on the on the active volcanic edifice of Vulcano Island and in some areas of Lipari island, both include in the Eaolian Islands in Sicily (Italy). The developed approach represent a step-forward for the compilation of hazard maps furnishing in an overall contest, updated and georeferenced quantitative data, describing the morphology and the present behaviour of the slopes in the area of investigation.

  20. Monitoring Fogo Island, Cape Verde Archipelago, for Volcanic Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Faria, B. V.; Heleno, S. I.; Barros, I. J.; d'Oreye, N.; Bandomo, Z.; Fonseca, J. F.

    2001-12-01

    Fogo Island, in the Cape Verde Archipelago (North Atlantic), with a total area of 476 km2 and a population of about 40000, is an active ocean island volcano raising from an average sea-bottom depth of the order of -3000m to a maximum altitude of 2820m. All of the 28 historically recorded eruptions (Ribeiro, 1960) since the arrival of the first settlers in the 15th Century took place in Cha das Caldeiras, a 9 km-wide flat zone 1700 meters above sea level that resulted from the infill of a large lateral collapse caldera (Day et al., 2000). The last eruptions occurred in 1951 and 1995, through secondary cones at the basis of Pico do Fogo, the main volcanic edifice. A tall scarp surrounds Cha das Calderas on its western side only, and the eastern limit leads to a very steep sub-aerial slope down to the coastline. With this morphology, the volcanic hazard is significant inside Cha das Caldeiras - with a resident population of the order of 800 - and particularly in the villages of the eastern coast. Because the magma has low viscosity, eruptions in Fogo have scarce precursory activity, and its forecast is therefore challenging. The VIGIL monitoring network was installed between 1997 and 2001, and is currently in full operation. It consists of seven seismographic stations - two of which broadband - four tilt stations, a CO2 monitoring station and a meteo station. The data is telemetred in real time to the central laboratory in the neighbor island of Santiago, and analyzed on a daily basis. The continuous data acquisition is complemented by periodic GPS, gravity and leveling surveys (Lima et al., this conference). In this paper we present the methodology adopted to monitor the level of volcanic activity of Fogo Volcano, and show examples of the data being collected. Anomalous data recorded at the end of September 2000, which led to the only occurrence of an alert warning so far, are also presented and discussed.

  1. Active Submarine Hotspot Volcanism on the Kerguelen Plateau

    NASA Astrophysics Data System (ADS)

    Coffin, M. F.; Leser, T. E.

    2012-12-01

    Heard and McDonald Islands on the Kerguelen Plateau, southern Indian Ocean, are active intraplate hotspot volcanoes. Heard Island is approximately 43 km long, and encompasses an area of approximately 368 square km. It is dominated by Big Ben, a roughly circular volcano with a base diameter of 18-20 km, and a maximum elevation of 2745 m. The McDonald Islands have an area of approximately 2.5 square km. Due to a lack of human habitation and no geoscientific monitoring, and cloud cover precluding satellite remote sensing for geoscientific purposes, the level of volcanic activity of the islands is unknown, but observers on passing ships frequently report eruptions, including molten lava, volcanic plumes, and tephra, and active fumaroles. Bathymetric, seismic reflection, magnetic, and gravity data acquired around Heard and McDonald Islands suggest that submarine magmatism affects a broad region of surrounding Kerguelen Plateau seafloor. In this region, we have identified six distinct fields of sea knolls that we interpret to be volcanic in origin. Individual fields contain from approximately 14 to approximately 140 sea knolls, and are not uniformly distributed around Heard and McDonald Islands. Given that Heard and McDonald Islands are volcanically active, it is likely that at least some of the interpreted submarine volcanoes are active and drive hydrothermal circulation.

  2. Io. [theories concerning volcanic activity

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Soderblom, L. A.

    1983-01-01

    A report on the continuing investigation of Io is presented. Gravitational resonance is discussed as the cause of Io's volcanism, and the volcanic activity is explained in terms of sulfur chemistry. Theories concerning the reasons for the two main types of volcanic eruptions on Io are advanced and correlated with geographical features of the satellite. The sulfur and silicate models of the calderas are presented, citing the strengths and weaknesses of each. Problems of the gravitational resonance theory of Io's heat source are then described. Finally, observations of Io planned for the Galileo mission are summarized.

  3. Volcanic and seismic hazards on the Island of Hawaii

    USGS Publications Warehouse

    U.S. Geological Survey

    1990-01-01

    The eruptions of volcanoes often have direct, dramatic effects on the lives of people and on their property. People who live on or near active volcanoes can benefit greatly from clear, scientific information about the volcanic and seismic hazards of the area. This booklet provides such information for the residents of Hawaii so they may effectively deal with the special geologic hazards of the island. Identifying and evaluating possible geologic hazards is one of the principal roles of the U.S. Geological Survey (USGS) and its Hawaiian Volcano Observatory. When USGS scientists recognize a potential hazard, such as an impending eruption, they notify the appropriate government officials, who in turn are responsible for advising the public to evacuate certain areas or to take other actions to insure their safety. This booklet was prepared in cooperation with the Hawaii County Civil Defense Agency.

  4. Kawah Ijen volcanic activity: a review

    NASA Astrophysics Data System (ADS)

    Caudron, Corentin; Syahbana, Devy Kamil; Lecocq, Thomas; Van Hinsberg, Vincent; McCausland, Wendy; Triantafyllou, Antoine; Camelbeeck, Thierry; Bernard, Alain; Surono

    2015-03-01

    Kawah Ijen is a composite volcano located at the easternmost part of Java island in Indonesia and hosts the largest natural acidic lake in the world. We have gathered all available historical reports on Kawah Ijen's activity since 1770 with the purpose of reviewing the temporal evolution of its activity. Most of these observations and studies have been conducted from a geochemical perspective and in punctuated scientific campaigns. Starting in 1991, the seismic activity and a set of volcanic lake parameters began to be weekly available. We present a database of those measurements that, combined with historical reports, allow us to review each eruption/unrest that occurred during the last two centuries. As of 2010, the volcanic activity is monitored by a new multi-disciplinary network, including digital seismic stations, and lake level and temperature measurements. This detailed monitoring provides an opportunity for better classifying seismic events and forecasting volcanic unrest at Kawah Ijen, but only with the understanding of the characteristics of this volcanic system gained from the historical review presented here.

  5. The effect of Etna volcanic ash clouds on the Maltese Islands

    NASA Astrophysics Data System (ADS)

    Azzopardi, Francelle; Ellul, Raymond; Prestifilippo, Michele; Scollo, Simona; Coltelli, Mauro

    2013-06-01

    In this paper, we have studied in depth the effect of Etna volcanic ash clouds on the Maltese Islands. Research was carried out to gather information about Etna's eruptions that impacted the Maltese Islands, starting with historical eruptions dating back to the 14th century continuing to present day. A statistical approach was utilized to provide tephra deposit load and ash concentration using PUFF - a model which simulates the transport, dispersion and sedimentation of volcanic ash. Three different eruptive scenarios that characterize Etna's recent activity were considered; the first scenario representing the 2001 eruption (Sc1), the second scenario representing the July 1998 eruption (Sc2) whilst the third scenario represents the recent activity in 2011-2012 (Sc3). We found that the time taken for the volcanic ash cloud to reach the Maltese Islands, when the wind direction is toward the south-west ranges from 4 to 6 h. The probability that an Etna volcanic cloud reaches Malta during an eruption is about 15% per annum. The now calibrated model may be now used to produce deposit load and cumulative columnar load (i.e. summation from maximum height of volcanic cloud to ground) of volcanic ash in atmosphere for the Maltese area and help the aviation authorities and Malta airport to make decisions during Etna eruptions. This will be of direct use to local communities and aviation.

  6. Origin of seamount volcanism in northeast Indian Ocean with emphasis on Christmas Island

    NASA Astrophysics Data System (ADS)

    Taneja, R.; O'Neill, C.; Rushmer, T. A.; Jourdan, F.; Blichert-Toft, J.; Turner, S.; Lackie, M. A.

    2012-12-01

    The Northeast Indian Ocean has been a central point of research in the recent past due to its intraplate geophysical and geochemical characteristics. It is dominated by sub-aerial volcanic islands and submerged guyots and two islands, namely, Cocos (Keeling) Island and Christmas Island. Christmas Island, the focus of this study, consists of limestone and mafic intraplate volcanics. The origin of most of the features in northeast Indian Ocean is not fully understood. Christmas Island has experienced multiple stages of intraplate volcanic activity as previously established by 40Ar/39Ar radioisotopic analyses of basalts from the island (Hoernl et al., 2011). Here, we present new 40Ar/39Ar ages where the rock samples from Waterfall Spring (WS), Ethel Beach (EB) & Dolly Beach (DB) on the east coast of the island yielded plateau and mini-plateau ages of 37.75±0.77 Ma, 37.10±0.66 Ma and 43.37±0.45 Ma respectively, whereas a sample from Flying Fish Cove (FFC) in the north of the island yielded a minimum age of 38.6±0.5 Ma. All these units are part of the Lower Volcanics Series. The samples from the west coast (Winifred Beach, WB) are younger with an age of 4.32 ± 0.17 Ma, and are part of the Upper Volcanic Series. This confirms two stages of volcanism at the island with a gap of around 38 Ma. The 40Ar/39Ar radioisotopic ages were overlayed on Gplates and seismic tomography models to determine its paleo motion. The present position of the island is 10.5°S, 105.5°E. During Eocene its reconstructed position was 30°S latitude. Seismic tomography models have highlighted a low velocity zone beneath the island during Eocene. Geochemically, the two volcanic suites (Upper & Lower) are mostly similar in their major and trace element composition. The majority of localities (WS, EB, and WB) are basanites; where as that from Dolly Beach is basaltic. The Dale's (west coast), are trachyte and appear evolved with high SiO2. They also have low Ba and Sr ~25ppm, whereas those from

  7. Long-term volcanic hazard assessment on El Hierro (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Becerril, L.; Bartolini, S.; Sobradelo, R.; Martí, J.; Morales, J. M.; Galindo, I.

    2014-02-01

    Long-term hazard assessment, one of the bastions of risk-mitigation programs, is required for territorial planning and for developing emergency plans. To ensure qualitative and representative results, long-term volcanic hazard assessment requires several sequential steps to be completed, which include the compilation of geological and volcanological information, the characterization of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios. Despite being a densely populated active volcanic region that receives millions of visitors per year, no systematic hazard assessment has ever been conducted in the Canary Islands. In this paper we focus our attention on El Hierro, the youngest of the Canary Islands and the most recently affected by an eruption. We analyze the past eruptive activity (how), the spatial probability (where) and the temporal probability (when) of an eruption on the island. By studying the past eruptive behavior of the island and assuming that future eruptive patterns will be similar, we aim to identify the most likely volcanic scenarios and corresponding hazards, which include lava flows, pyroclastic fallout and pyroclastic density currents (PDCs). Finally, we estimate their probability of occurrence. The end result is the first total qualitative volcanic hazard map of the island.

  8. Long-term volcanic hazard assessment on El Hierro (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Becerril, L.; Bartolini, S.; Sobradelo, R.; Martí, J.; Morales, J. M.; Galindo, I.

    2014-07-01

    Long-term hazard assessment, one of the bastions of risk-mitigation programs, is required for land-use planning and for developing emergency plans. To ensure quality and representative results, long-term volcanic hazard assessment requires several sequential steps to be completed, which include the compilation of geological and volcanological information, the characterisation of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios. Despite being a densely populated active volcanic region that receives millions of visitors per year, no systematic hazard assessment has ever been conducted on the Canary Islands. In this paper we focus our attention on El Hierro, the youngest of the Canary Islands and the most recently affected by an eruption. We analyse the past eruptive activity to determine the spatial and temporal probability, and likely style of a future eruption on the island, i.e. the where, when and how. By studying the past eruptive behaviour of the island and assuming that future eruptive patterns will be similar, we aim to identify the most likely volcanic scenarios and corresponding hazards, which include lava flows, pyroclastic fallout and pyroclastic density currents (PDCs). Finally, we estimate their probability of occurrence. The end result, through the combination of the most probable scenarios (lava flows, pyroclastic density currents and ashfall), is the first qualitative integrated volcanic hazard map of the island.

  9. Turbidity current activity along the flanks of a volcanic edifice: The Mafate volcaniclastic complex, La Réunion Island, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Mazuel, Aude; Sisavath, Emmanuelle; Babonneau, Nathalie; Jorry, Stephan J.; Bachèlery, Patrick; Delacourt, Christophe

    2016-04-01

    Recent marine geophysical surveys reveal the existence of well-developed volcaniclastic deep-sea fans around La Réunion Island, Indian Ocean. The Mafate turbidite complex, located in the northwestern part of the island, is a large sedimentary system formed by two coalescent-like volcaniclastic deep-sea fans: the Mafate fan and the Saint-Denis fan. They are both connected to terrestrial rivers supplying sediment produced by erosion on the island, particularly during austral summer cyclonic floods. Through the integration of marine geophysical data (including bathymetry, backscatter multibeam sounder images, TOBI side-scan sonar images and seismic reflection profiles) and piston cores, a submarine morpho-sedimentary map of the surface architecture of the Mafate and Saint-Denis turbidite systems has been established. The systems are divided in three main domains: deep canyons in the proximal area, a channel network in the medial area, and distal depositional lobes on the abyssal sea floor. Two large sediment wave fields also formed as a result of the volcaniclastic turbidity currents. Three piston cores collected along the Mafate complex provide information on the sedimentary processes in this area over the last 25 ka. The record of turbidite events in these cores is interpreted in terms of volcanic and climatic changes that could have controlled the sediment transfer to the deep ocean.

  10. Investigating volcanic hazard in Cape Verde Islands through geophysical monitoring: network description and first results

    NASA Astrophysics Data System (ADS)

    Faria, B.; Fonseca, J. F. B. D.

    2014-02-01

    We describe a new geophysical network deployed in the Cape Verde Archipelago for the assessment and monitoring of volcanic hazards as well as the first results from the network. Across the archipelago, the ages of volcanic activity range from ca. 20 Ma to present. In general, older islands are in the east and younger ones are in the west, but there is no clear age progression of eruptive activity as widely separated islands have erupted contemporaneously on geological timescales. The overall magmatic rate is low, and there are indications that eruptive activity is episodic, with intervals between episodes of intense activity ranging from 1 to 4 Ma. Although only Fogo Island has experienced eruptions (mainly effusive) in the historic period (last 550 yr), Brava and Santo Antão have experienced numerous geologically recent eruptions, including violent explosive eruptions, and show felt seismic activity and geothermal activity. Evidence for recent volcanism in the other islands is more limited and the emphasis has therefore been on monitoring of the three critical islands of Fogo, Brava and Santo Antão, where volcanic hazard levels are highest. Geophysical monitoring of all three islands is now in operation. The first results show that on Fogo, the seismic activity is dominated by hydrothermal events and volcano-tectonic events that may be related to settling of the edifice after the 1995 eruption; in Brava by volcano-tectonic events (mostly offshore), and in Santo Antão by volcano-tectonic events, medium-frequency events and harmonic tremor. Both in Brava and in Santo Antão, the recorded seismicity indicates that relatively shallow magmatic systems are present and causing deformation of the edifices that may include episodes of dike intrusion.

  11. Investigating volcanic hazard in Cape Verde Islands through geophysical monitoring: network description and first results

    NASA Astrophysics Data System (ADS)

    Faria, B.; Fonseca, J. F. B. D.

    2013-09-01

    We describe a new geophysical network deployed in the Cape Verde archipelago for the assessment and monitoring of volcanic hazards, and the first results from the network. Across the archipelago, the ages of volcanic activity range from ca. 20 Ma to present. In general, older islands are in the east and younger ones are in the west, but there is no clear age progression and widely-separated islands have erupted contemporaneously on geological time scales. The overall magmatic rate is low, and there are indications that eruptive activity is episodic, with intervals between episodes of intense activity ranging from 1 to 4 Ma. Although only Fogo island has experienced eruptions (mainly effusive) in the historic period (last 550 yr), Brava and Santo Antão have experienced numerous geologically recent eruptions including violent explosive eruptions, and show felt seismic activity and geothermal activity. Evidence for recent volcanism in the other islands is more limited and the emphasis has therefore been on monitoring of the three critical islands of Fogo, Brava and Santo Antão, where volcanic hazard levels are highest. Geophysical monitoring of all three islands is now in operation. The first results show that in Fogo the seismic activity is dominated by hydrothermal events and volcano-tectonic events that may be related to settling of the edifice after the 1995 eruption; in Brava by volcano-tectonic events (mostly offshore), and in Santo Antão by volcano-tectonic events, medium frequency events and harmonic tremor. Both in Brava and in Santo Antão, the recorded seismicity indicates that relatively shallow magmatic systems are present and causing deformation of the edifices that may include episodes of dike intrusion.

  12. Hydrothermal Solute Flux from Ebeko Volcanic Center, Paramushir, Kuril Islands

    NASA Astrophysics Data System (ADS)

    Taran, Y.; Kalacheva, E.; Kotenko, T.; Chaplygin, I.

    2014-12-01

    Ebeko volcano on the northern part of Paramushir Island, Northern Kurils, is characterized by frequent phreatic eruptions, a strong low-temperature fumarolic activity at the summit and was the object of comprehensive volcanological and geochemical studies during the last half a century. The volcanic center is composed of several Pleistocene volcanic structures aadjacent to Ebeko and hosts a hydrothermal system with a high outflow rate of hot SO4-Cl acidic water (Upper Yurieva springs) with the current maximum temperature of ~85oC, pH 1.3 and TDS ~ 10 g/L. All discharging thermal waters are drained by the Yurieva River to the Sea of Okhotsk. The hot springs have been changing in time, generally decreasing their activity from near boiling in 1960s, with TDS ~ 20 g/L and the presence of a small steaming field at the upper part of the ~ 700 m long discharging area, to a much lower discharge rate of main vents, lower temperature and the absence of the steaming ground. The spring chemistry did not react to the Ebeko volcanic activity (14 strong phreato-magmatic events during the last 60 years).The total measured outputs of chloride and sulfur from the system last time (2006-2010) were estimated on average as 730 g/s and 980 g/s, respectively, which corresponds to the equivalent fluxes of 64 t/d of HCl and 169 t/d of SO2. These values are higher than the fumarolic volatile output from Ebeko. The estimated discharge rate of hot (85oC) water from the system with ~ 3500 ppm of chloride is about 0.3 m3/s which is much higher than the thermal water discharge from El Chichon or Copahue volcano-hydrothermal systems and among the highest hot water natural outputs ever measured for a volcano-hydrothermal system. We also report the chemical composition (major and ~ 60 trace elements including REE) of water from the main hot spring vents and the Yurieva river mouth.

  13. Recent seismicity detection increase in the Santorini volcanic island complex

    NASA Astrophysics Data System (ADS)

    Chouliaras, G.; Drakatos, G.; Makropoulos, K.; Melis, N. S.

    2012-04-01

    Santorini is the most active volcanic complex in the South Aegean Volcanic Arc. To improve the seismological network detectability of the seismicity in this region, the Institute of Geodynamics of the National Observatory of Athens (NOA) recently installed 4 portable seismological stations supplementary to the 3 permanent stations operating in the region. The addition of these stations has significantly improved the detectability and reporting of the local seismic activity in the NOA instrumental seismicity catalogue. In this study we analyze quantitatively the seismicity of the Santorini volcanic complex. The results indicate a recent significant reporting increase mainly for events of small magnitude and an increase in the seismicity rate by more than 100%. The mapping of the statistical significance of the rate change with the z-value method reveals that the rate increase exists primarily in the active fault zone perpendicular to the extensional tectonic stress regime that characterizes this region. The spatial distribution of the b-value around the volcanic complex indicates a low b-value distribution parallel to the extensional stress field, while the b-value cross section of the volcanic complex indicates relatively high b-values under the caldera and a significant b-value decrease with depth. These results are found to be in general agreement with the results from other volcanic regions and they encourage further investigations concerning the seismic and volcanic hazard and risk estimates for the Santorini volcanic complex using the NOA earthquake catalogue.

  14. Satellite Observations of New Volcanic Island in Tonga

    NASA Astrophysics Data System (ADS)

    Vaughan, R. Greg; Abrams, Michael J.; Hook, Simon J.; Pieri, David C.

    2007-01-01

    A rising volcanic plume from an unknown source was observed on 9-11 August 2006 in the Vava'u Island group in the northernmost islands of Tonga [Matangi News Online, 2006]. On 12 August, the crew on board the yacht Maiken, sailing west from Vava'u to Fiji, encountered ``a vast, many miles wide, belt of densely packed pumice'' floating on the water (F. Fransson personal communication, 2006). Later, the crew sailed south and discovered that the source of the pumice was a newly erupting submarine volcano near Home Reef (18.991°S, 174.767°W) (Figure 1a).

  15. Satellite Observations of New Volcanic Island in Tonga

    NASA Technical Reports Server (NTRS)

    Vaughan, R. Greg; Abrams, Michael J.; Hook, Simon J.; Pieri, David C.

    2007-01-01

    A rising volcanic plume from an unknown source was observed on 9-11 August 2006 in the Vava'u Island group in the northernmost islands of Tonga [Matangi News Online, 2006]. On 12 August, the crew on board the yacht Maiken, sailing west from Vava'u to Fiji, encountered 'a vast, many miles wide, belt of densely packed pumice' floating on the water (F. Fransson personal communication, 2006). Later, the crew sailed south and discovered that the source of the pumice was a newly erupting submarine volcano near Home Reef (18.991 deg S, 174.767 deg W).

  16. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    NASA Astrophysics Data System (ADS)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  17. Aeromagnetic data provide new insights on the volcanism and tectonics of Vulcano Island and offshore areas (southern Tyrrhenian Sea, Italy)

    NASA Astrophysics Data System (ADS)

    De Ritis, Riccardo; Blanco-Montenegro, Isabel; Ventura, Guido; Chiappini, Massimo

    2005-08-01

    The active Vulcano Island (Southern Tyrrhenian Sea) represents the southernmost portion of a NW-SE elongated volcanic ridge that includes also Lipari and Salina islands. The ridge is affected by a regional, NW-SE to N-S striking fault system. The elaboration and analysis of data from three high-resolution aeromagnetic surveys carried out between 1999 and 2004 on Vulcano and offshore allow us to recognize high intensity magnetic anomalies related to volcanic centers/conduits or shallow intrusions. Previously unreported offshore submarine vents have been also recognized. Some of them may correspond with source areas of outcropping exotic pyroclastics on Vulcano. The spatial analysis of the recognized magnetic anomalies and volcanic structures shows that they are preferably aligned along the strikes of the main regional faults that affect the volcanic ridge. Submarine volcanic conduits revealed by the aeromagnetic survey might represent potential sources for future submarine, effusive or explosive activity.

  18. Radiocarbon ages of lacustrine deposits in volcanic sequences of the Lomas Coloradas area, Socorro Island, Mexico

    NASA Technical Reports Server (NTRS)

    Farmer, J. D.; Farmer, M. C.; Berger, R.

    1993-01-01

    Extensive eruptions of alkalic basalt from low-elevation fissures and vents on the southern flank of the dormant volcano, Cerro Evermann, accompanied the most recent phase of volcanic activity on Socorro Island, and created the Lomas Coloradas, a broad, gently sloping terrain comprising the southern part of the island. We obtained 14C ages of 4690 +/- 270 BP (5000-5700 cal BP) and 5040 +/- 460 BP (5300-6300 cal BP) from lacustrine deposits that occur within volcanic sequences of the lower Lomas Coloradas. Apparently, the sediments accumulated within a topographic depression between two scoria cones shortly after they formed. The lacrustine environment was destroyed when the cones were breached by headward erosion of adjacent stream drainages. This was followed by the eruption of a thin basaltic flow from fissures near the base of the northernmost cone. The flow moved downslope for a short distance and into the drainages that presently bound the study area on the east and west. The flow postdates development of the present drainage system and may be very recent. Our 14C data, along with historical accounts of volcanic activity over the last century, including submarine eruptions that occurred a few km west of Socorro in early 1993, underscore the high risk for explosive volcanism in this region and the need for a detailed volcanic hazards plan and seismic monitoring.

  19. Radiocarbon ages of lacustrine deposits in volcanic sequences of the Lomas Coloradas area, Socorro Island, Mexico

    SciTech Connect

    Farmer, J.D. ); Farmer, M.C. . Dept. of Geography and Anthropology); Berger, R. . Depts. of Geography and Anthropology and Institute of Geophysics and Planetary Sciences)

    1993-01-01

    Extensive eruptions of alkalic basalt from low-elevation fissures and vents on the southern flank of the dormant volcano, Cerro Evermann, accompanied the most recent phase of volcanic activity on Socorro Island, and created the Lomas Coloradas, a broad, gently sloping terrain comprising the southern part of the island. The authors obtained [sup 14]C ages of 4690 [plus minus] 270 Bp (5000-5700 cal Bp) and 5040 [plus minus] 460 Bp (53090-6300 cal Bp) from lacustrine deposits that occur within volcanic sequences of the lower Lonas Coloradas. Apparently, the sediments accumulated within a topographic depression between two scoria cones shortly after they formed. The lacustrine environment was destroyed when the cones were breached by headward erosion of adjacent stream drainages. This was followed by the eruption of a thin basaltic flow from fissures near the base of the northernmost cone. The flow moved downslope for a short distance and into the drainages that presently bound the study area on the east and west. The flow postdates development of the present drainage system and may be very recent. These [sup 14]C data, along with historical accounts of volcanic activity over the last century, including submarine eruptions that occurred a few km west of Socorro in early 1993, underscore the high risk for explosive volcanism in the region and the need for a detailed volcanic hazards plan and seismic monitoring.

  20. Radiocarbon ages of lacustrine deposits in volcanic sequences of the Lomas Coloradas area, Socorro Island, Mexico.

    PubMed

    Farmer, J D; Farmer, M C; Berger, R

    1993-01-01

    Extensive eruptions of alkalic basalt from low-elevation fissures and vents on the southern flank of the dormant volcano, Cerro Evermann, accompanied the most recent phase of volcanic activity on Socorro Island, and created the Lomas Coloradas, a broad, gently sloping terrain comprising the southern part of the island. We obtained 14C ages of 4690 +/- 270 BP (5000-5700 cal BP) and 5040 +/- 460 BP (5300-6300 cal BP) from lacustrine deposits that occur within volcanic sequences of the lower Lomas Coloradas. Apparently, the sediments accumulated within a topographic depression between two scoria cones shortly after they formed. The lacrustine environment was destroyed when the cones were breached by headward erosion of adjacent stream drainages. This was followed by the eruption of a thin basaltic flow from fissures near the base of the northernmost cone. The flow moved downslope for a short distance and into the drainages that presently bound the study area on the east and west. The flow postdates development of the present drainage system and may be very recent. Our 14C data, along with historical accounts of volcanic activity over the last century, including submarine eruptions that occurred a few km west of Socorro in early 1993, underscore the high risk for explosive volcanism in this region and the need for a detailed volcanic hazards plan and seismic monitoring. PMID:11539414

  1. Preliminary Volcano-Hazard Assessment for the Tanaga Volcanic Cluster, Tanaga Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2007-01-01

    Summary of Volcano Hazards at Tanaga Volcanic Cluster The Tanaga volcanic cluster lies on the northwest part of Tanaga Island, about 100 kilometers west of Adak, Alaska, and 2,025 kilometers southwest of Anchorage, Alaska. The cluster consists of three volcanoes-from west to east, they are Sajaka, Tanaga, and Takawangha. All three volcanoes have erupted in the last 1,000 years, producing lava flows and tephra (ash) deposits. A much less frequent, but potentially more hazardous phenomenon, is volcanic edifice collapse into the sea, which likely happens only on a timescale of every few thousands of years, at most. Parts of the volcanic bedrock near Takawangha have been altered by hydrothermal activity and are prone to slope failure, but such events only present a local hazard. Given the volcanic cluster's remote location, the primary hazard from the Tanaga volcanoes is airborne ash that could affect aircraft. In this report, we summarize the major volcanic hazards associated with the Tanaga volcanic cluster.

  2. Dominant influence of volcanic loading on vertical motions of the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Huppert, Kimberly L.; Royden, Leigh H.; Perron, J. Taylor

    2015-05-01

    Rates of island vertical motion above intra-plate hotspots record the processes that arise from interactions between lithospheric plates and mantle plumes. To assess the contribution of mantle and lithospheric processes to surface motion above the Hawaiian hotspot, we compare simple models of lithospheric deformation to vertical motion rates measured from dated paleoshorelines and tide gauge records in the Hawaiian Islands. Our analysis shows that observed uplift and subsidence rates mainly record the flexural response of the lithosphere to volcanic loads. The effective elastic plate thickness that best fits the spatial distribution of subsidence and uplift rates is ∼40 km, consistent with previous estimates based on total vertical deflection. Because volcanic loading dominates the vertical motion signal, Hawaiian Islands appear to follow a predictable trajectory of vertical motion when they reside within one flexural half-wavelength of the active volcanic center. Islands initially subside at rapid and decreasing rates in the first ∼1 Myr following their construction, uplift relatively slowly ∼1-2.5 Myr following their construction, and eventually subside again, but at slow rates, within ∼5 Myr of their construction. This observed pattern of uplift and subsidence is consistent with the pattern of vertical motion predicted to result from volcanic loading at the Hawaiian hotspot. Lithospheric migration over the long-wavelength topographic swell associated with the Hawaiian hotspot has a comparatively minor influence on island uplift and subsidence. Its contribution to island vertical motion is not readily observed in our data, with the possible exception of some uplift observed in the past ∼500 kyr on O'ahu that might correspond to non-steady state behavior of the Hawaiian plume.

  3. Island Watershed Activity.

    ERIC Educational Resources Information Center

    Benson, Rod

    2003-01-01

    Describes a 90-minute "Island Watershed" activity to help earth science students understand the concept of the water cycle. Introduces a surface waters unit appropriate for students in grades 7-10. Includes watershed project guidelines. (Author/KHR)

  4. The 2011 submarine volcanic eruption of El Hierro Island (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    López, C.; Blanco, M. J.

    2012-04-01

    On 10 October 2011 a submarine volcanic eruption began 2 km SW of La Restinga village in the South coast of El Hierro Island (Spain). It became the first submarine eruption reported in 500 years of historical record in the Canary Islands. The eruption took place after three months of intensive seismic activity and ground deformation. The first signal evidencing the eruption was a harmonic tremor signal, located somewhere in the South sector of El Hierro Island and registered in every seismic station on the island. On the following day, the tremoŕs amplitude increased up enough to be felt by the residents of La Restinga. The first visual evidence of the eruption was observed during the afternoon of 12 October, a large light-green coloured area on the sea surface, 2 km to the SW of La Restinga. Three days later, steaming lava fragments were observed floating on the sea, in the area where the vent was supposed to be located. These fragments had a bomb-like shape and their sizes ranged between 10 and 40 cm long. They were bicoloured, a black outer part with a basaltic composition, and a white inner part, highly vesiculated and rich in silica content (>60%). This type of fragments was only observed during the first days of the eruption. Within the next two months further emission episodes have been observed with turbulent water, foam rings and large bubbles on the sea surface. On the 27th of November new lava fragments were observed while floating and degassing on the sea surface. Most of them were "lava balloons" or hollow fragments of lavas, with sizes between 30 and 200 cm, and highly vesiculated outer crust of basaltic-basanitic and sideromelane composition. The emission of these products continues intermitently up to date (January 2012) During the eruption, the GPS monitoring network detected episodes of inflation-deflation and a maximum vertical deformation of 4 cm. The horizontal deformation, which had reached up to 5 cm before the eruption, remains stable. The

  5. Planetary volcanism - A study of volcanic activity in the solar system

    NASA Technical Reports Server (NTRS)

    Cattermole, Peter

    1989-01-01

    The nature of volcanic activity, theoretical models of its role in planetary evolution, and the evidence for volcanism on the planets and planetary satellites are examined in an introductory overview for advanced undergraduate and graduate students. Chapters are devoted to volcanism as a planetary process, the generation and evolution of magmas, magma ascent and eruption, the properties and behavior of volcanic flows, volcanic landforms, the distribution of volcanic rocks in the solar system, and volcanic plains and their development. Consideration is given to lunar volcanism, shield volcanoes and paterae, volcanism on Io, volcanism on icy satellites, and the rheological analysis of volcanic flows.

  6. Revealing magma degassing below closed-conduit active volcanoes: Geochemical features of volcanic rocks versus fumarolic fluids at Vulcano (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Mandarano, Michela; Paonita, Antonio; Martelli, Mauro; Viccaro, Marco; Nicotra, Eugenio; Millar, Ian L.

    2016-04-01

    The elemental and isotopic compositions of noble gases (He, Ne, and Ar) in olivine- and clinopyroxene-hosted fluid inclusions have been measured for rocks at various degrees of evolution and belonging to high-K calcalkaline-shoshonitic and shoshonitic-potassic series in order to cover the entire volcanological history of Vulcano Island (Italy). The major- and trace-element concentrations and the Sr- and Pb-isotope compositions for whole rocks were integrated with data obtained from the fluid inclusions. 3He/4He in fluid inclusions is within the range of 3.30 and 5.94 R/Ra, being lower than the theoretical value for the deep magmatic source expected for Vulcano Island (6.0-6.2 R/Ra). 3He/4He of the magmatic source is almost constant throughout the volcanic history of Vulcano. Integration of the He- and Sr-isotope systematics leads to the conclusion that a decrease in the He-isotope ratio of the rocks is mainly due to the assimilation of 10-25% of a crustal component similar to the Calabrian basement. 3He/4He shows a negative correlation with Sr isotopes except for the last-erupted Vulcanello latites (Punta del Roveto), which have anomalously high He isotope ratios. This anomaly has been attributed to a flushing process by fluids coming from the deepest reservoirs, since an input of deep magmatic volatiles with high 3He/4He values increases the He-isotope ratio without changing 87Sr/86Sr. A comparison of the He-isotope ratios between fluid inclusions and fumarolic gases shows that only the basalts of La Sommata and the latites of Vulcanello have comparable values. Taking into account that the latites of Vulcanello relate to one of the most-recent eruptions at Vulcano (in the 17th century), we infer that the most probable magma which actually feeds the fumarolic emissions is a latitic body that ponded at about 3-3.5 km of depth and is flushed by fluids coming from a deeper and basic magma.

  7. Construction and destruction of a volcanic island developed inside an oceanic rift: Graciosa Island, Terceira Rift, Azores

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Marques, F. O.; Hildenbrand, A.

    2014-09-01

    There is a great lack of knowledge regarding the evolution of islands inside active oceanic rifts, in particular the meaning of the different evolutionary steps. Therefore, we conducted an investigation in Graciosa Island, which lies at the northwestern end of the Terceira Rift in the Azores Triple Junction, with the objective of constraining the evolution of the island in terms of volcanic growth and mass wasting, in particular the meaning and age of the destruction events. From digital elevation model (DEM) analysis, stratigraphic and tectonic observations, K/Ar dating on key samples, and available bathymetry and gravity data, we propose that Graciosa comprises five main volcanic complexes separated by major unconformities related to large scale mass wasting: (1) The older volcanic edifice (Serra das Fontes Complex) grew until ca. 700 ka, and was affected by a major flank collapse towards the southwest, which removed the whole SW flank, the summit and a part of the NE flank. (2) The Baía do Filipe Complex developed between at least 472 ka and 433 ka in two different ways: in the SW (presently offshore) as a main volcano, and in the NE unconformably over the sub-aerial remnants of the Serra das Fontes Complex, as secondary volcanic edifices. (3) The Baía do Filipe Complex was affected by a major flank collapse towards the SW, again removing most of the edifice. (4) The remnants of the Baía do Filipe Complex were covered in unconformity by the Serra Dormida Complex between ca. 330 and 300 ka, which in turn was unconformably covered by the younger Basaltic Cover Complex between ca. 300 ka and 214 ka. These two units were affected by a third major sector collapse that removed the whole western flank, the summit and part of the eastern flank of the Serra Dormida and Basaltic Cover complexes. (5) Despite the relatively young age of Graciosa, the collapse scars are not well preserved, and not active anymore. (6) A central-type volcano has been growing since at least

  8. Crustal structure of Deception Island volcano from P wave seismic tomography: Tectonic and volcanic implications

    NASA Astrophysics Data System (ADS)

    Zandomeneghi, Daria; Barclay, Andrew; Almendros, Javier; IbañEz Godoy, Jesús M.; Wilcock, William S. D.; Ben-Zvi, Tami

    2009-06-01

    Deception Island (62°59'S, 60°41'W) is an active volcano located in the Bransfield Strait between the Antarctic Peninsula and the South Shetland Islands. The island is composed of rocks that date from <0.75 Ma to historical eruptions (1842, 1967, 1969, and 1970), and nowadays most of its activity is represented by vigorous hydrothermal circulation, slight resurgence of the inner bay floor, and intense seismicity, with frequent volcano-tectonic and long-period events. In January 2005 an extensive seismic survey took place in and around the island to collect high-quality data for a high-resolution P wave velocity tomography study. A total of 95 land and 14 ocean bottom seismometers were deployed, and more than 6600 air gun shots were fired. As a result of this experiment, more than 70,000 travel time data were used to obtain the velocity model, which resolves strong P wave velocity contrasts down to 5 km depth. The joint interpretation of the Vp distribution together with the results of geological, geochemical, and other geophysical (magnetic and gravimetric) measurements allows us to map and interpret several volcanic features of the island and surroundings. The most striking feature is the low P wave velocity beneath the caldera floor which represents the seismic image of an extensive region of magma beneath a sediment-filled basin. Another low-velocity zone to the east of Deception Island corresponds to seafloor sedimentary deposits, while high velocities to the northwest are interpreted as the crystalline basement of the South Shetland Islands platform. In general, in the tomographic image we observe NE-SW and NW-SE distributions of velocity contrasts that are compatible with the regional tectonic directions and suggest that the volcanic evolution of Deception Island is strongly conditioned by the Bransfield Basin geodynamics.

  9. Non-volcanic tremor in the Aleutian Islands captured by a mini-seismic array

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Prejean, S. G.

    2013-12-01

    The Aleutian Islands are an interesting place to study because of the presence of abundant seismicity, both subduction and volcano related. In addition to regular earthquakes, the Islands host both volcanic and non-volcanic tremor. To capture this rich variety of seismicity, we designed and installed a mini-seismic array on Akutan Island in 2012. Akutan is located in the eastern Aleutians just off the tip of the Alaska Peninsula, near the eastern edge of the 1957 Mw8.6 earthquake rupture zone. A mini-seismic array is particularly useful in this logistically challenging environment where land cover is limited. We recorded and analyzed about 2 months of data, and found both volcanic and non-volcanic events. Here we focus on non-volcanic tremor and its characteristics as captured by the Akutan array. Akutan Island and the surrounding area turn out to be prolific producers of tremor. An automatic beam-backprojection algorithm [Ghosh et al., 2009] detects almost daily tremor activity with durations ranging from several minutes to more than 3.5 hours. On average, beam-backprojection detects 1.3 hours of tremor activity per day and in total, it detects about 5 times more duration of tremor activity compared to a visual check for tremor signal using the existing seismic network. We observe tremor sources both west and east of the Akutan array. Western sources are the most active ones and their slowness parameters are consistent with the locations of low-frequency earthquakes detected by Brown et al., 2013. The eastern source area has not been identified previously and appears to be active for only a few times during this study, but shows continuous activity for several hours. In addition, we observe temporal evolution of slowness parameters consistent with steady tremor migration. Moreover, low frequency earthquakes with impulsive body wave phases are identified within the tremor signal. They show S-minus-P times consistent with their being located at the model plate

  10. Volcanically Active Regions on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Shown here is a portion of one of the highest-resolution images of Io (Latitude: +10 to +60 degrees, Longitude: 180 to 225 degrees) acquired by the Galileo spacecraft, revealing immense lava flows and other volcanic landforms. Several high-temperature volcanic hot spots have been detected in this region by both the Near Infrared Mapping Spectrometer and the imaging system of Galileo. The temperatures are consistent with active silicate volcanism in lava flows or lava lakes (which reside inside irregular depressions called calderas). The large dark lava flow in the upper left region of the image is more than 400 km long, similar to ancient flood basalts on Earth and mare lavas on the Moon.

    North is to the top of the picture and the sun illuminates the surface from the left. The image covers an area 1230 kilometers wide and the smallest features that can be discerned are 2.5 kilometers in size. This image was taken on November 6th, 1996, at a range of 245,719 kilometers by the Solid State Imaging (CCD) system on the Galileo Spacecraft.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  11. Volcanic and Structural History of the NE Rift Zone of Tenerife, Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Carracedo, J.; Guillou, H.; Badiola, E. R.; Torrado, F. P.; Troll, V.; Delcamp, A.; Paris, R.; Gonzalez, A. R.

    2008-12-01

    The NE Rift of Tenerife is an excellent example of a persistent, recurrent rift, providing important evidence on the origin and dynamics of these major volcanic features. The rift developed in three successive, intense and relatively short eruptive stages (a few hundred ka), separated by longer periods of quiescence or reduced activity: A Miocene stage (7203+/-155ka), apparently extending the central Miocene shield of Tenerife towards the Anaga massif; an Upper Pliocene stage (2710+/-58ka) and the latest stage, with the main eruptive phase, in the Pleistocene. Detailed geological (GIS) mapping, geomagnetic reversal mapping and stratigraphic correlation, and radioisotopic (K/Ar) dating of volcanic formations allowed the reconstruction of the latest period of rift activity. In the early phases of this stage the majority of the eruptions grouped tightly along the axis of the rift and show reverse polarity (corresponding to the Matuyama). Dykes are of normal and reverse polarities. In the final phase of activity, eruptions are more disperse and lavas and dykes are consistently of normal polarity (Brunhes). Volcanic units of normal polarity crossed by dykes of normal and reverse polarities yield ages apparently compatible with normal events (M-B Precursor and Jaramillo) in the Upper Matuyama epoch. Three lateral collapses successively mass-wasted the rift: The Micheque collapse, completely concealed by subsequent nested volcanism, and the Güímar and La Orotava collapses, that are only partially filled. Pre- collapse and nested volcanism is predominantly basaltic, except in the Micheque collapse, where magmas evolved towards intermediate and felsic (trachytic) compositions. Rifts in the Canary Islands are long-lasting, recurrent features, probably related to primordial, plume-related fractures acting throughout the entire growth of the islands. Basaltic volcanism forms the bulk of the islands and rift zones. However, collapses of the flanks of the rifts disrupt their

  12. The effect of Etna volcanic ash plumes on the Maltese Islands

    NASA Astrophysics Data System (ADS)

    Azzopardi, Francelle; Ellul, Raymond; Prestifilippo, Michele; Scollo, Simona; Coltelli, Mauro

    2013-04-01

    Research was carried out to gather information about Etna's eruptions which involved the Maltese Islands, starting with historical eruptions dating back to the 14th century to more recent ones. A statistical approach was utilized to provide tephra deposit load and ash concentration using PUFF - a model which simulates the transport, dispersion and sedimentation of volcanic ash. Three different eruptive scenarios that characterize Etna's recent activity were considered; the first scenario representing the 2001 eruption (S1), the second scenario representing the July 1998 eruption (S2) whilst the third scenario represents the recent activity in 2011-2012 (S3). We found that the time taken for the volcanic ash plume to reach the Maltese Islands when the wind direction is toward the south-west ranges from 4 to 8 hours. The effect of wind speed and direction was also studied and it emerged that the probability that an Etna volcanic plume reaches Malta during an eruption is around 13% per annum. The now calibrated model, which will daily produce deposit load and cumulative area of volcanic ash dispersal, will thus allow provision of adequate alerts to civil aviation authorities and Malta airport. This will be of direct use to local communities and aviation.

  13. Array analyses of volcanic earthquakes and tremor recorded at Las Cañadas caldera (Tenerife Island, Spain) during the 2004 seismic activation of Teide volcano

    NASA Astrophysics Data System (ADS)

    Almendros, Javier; Ibáñez, Jesús M.; Carmona, Enrique; Zandomeneghi, Daria

    2007-02-01

    We analyze data from three seismic antennas deployed in Las Cañadas caldera (Tenerife) during May-July 2004. The period selected for the analysis (May 12-31, 2004) constitutes one of the most active seismic episodes reported in the area, except for the precursory seismicity accompanying historical eruptions. Most seismic signals recorded by the antennas were volcano-tectonic (VT) earthquakes. They usually exhibited low magnitudes, although some of them were large enough to be felt at nearby villages. A few long-period (LP) events, generally associated with the presence of volcanic fluids in the medium, were also detected. Furthermore, we detected the appearance of a continuous tremor that started on May 18 and lasted for several weeks, at least until the end of the recording period. It is the first time that volcanic tremor has been reported at Teide volcano. This tremor was a small-amplitude, narrow-band signal with central frequency in the range 1-6 Hz. It was detected at the three antennas located in Las Cañadas caldera. We applied the zero-lag cross-correlation (ZLCC) method to estimate the propagation parameters (back-azimuth and apparent slowness) of the recorded signals. For VT earthquakes, we also determined the S-P times and source locations. Our results indicate that at the beginning of the analyzed period most earthquakes clustered in a deep volume below the northwest flank of Teide volcano. The similarity of the propagation parameters obtained for LP events and these early VT earthquakes suggests that LP events might also originate within the source volume of the VT cluster. During the last two weeks of May, VT earthquakes were generally shallower, and spread all over Las Cañadas caldera. Finally, the analysis of the tremor wavefield points to the presence of multiple, low-energy sources acting simultaneously. We propose a model to explain the pattern of seismicity observed at Teide volcano. The process started in early April with a deep magma

  14. Spatio-temporal occurrence of eruptions in El Hierro (Canary Islands). Sequential steps for long-term volcanic hazard assessment.

    NASA Astrophysics Data System (ADS)

    Becerril, Laura; Bartolini, Stefania; Sobradelo, Rosa; Martí, Joan; María Morales, José; Galindo, Inés; Geyer, Adelina

    2014-05-01

    Long term volcanic hazard assessment requires the attainment of several sequential steps, including the compilation of geological and volcanological information, the characterization of past eruptions, spatial and temporal probabilistic studies, and the simulation of different eruptive scenarios to get qualitative and representative results. Volcanic hazard assessment has not been yet systematically conducted in the Canary Islands, in spite of being a densely populated active volcanic region that receives millions of visitors per year. In this paper we focus our attention on El Hierro, the youngest and latest island affected by an eruption in the Canary Islands. We analyze the past eruptive activity (how), the spatial probability (where), and the temporal probability (when) on the island. Looking at the past eruptive behavior of the island, and assuming future eruptive patterns will be similar, we try to identify the most likely set of volcanic scenarios and corresponding hazards that could occur in the future (eg. lava flows, pyroclastic fallout, and pyroclastic density currents) and estimate their probability of occurrence. The final result shows the first volcanic hazard map of the island. This study represents a step forward in the evaluation of long term volcanic hazard at El Hierro Island with regard to previous studies. The obtained results should represent the main pillars on which to build risk mitigation programs as it is required for territorial planning and to develop emergency plans. This research was partially funded by IGME, CSIC and the European Commission (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO"), and MINECO grant GL2011-16144-E.

  15. Late Cretaceous and Eocene volcanism in the southern Line Islands and implications for hotspot theory

    NASA Astrophysics Data System (ADS)

    Haggerty, Janet A.; Schlanger, Seymour O.; Premoli Silva, Isabella

    1982-08-01

    Rocks dredged from a seamount 100 km northwest of Caroline Island, at the southern end of the Line Islands chain, contain Late Cretaceous fossils associated with volcanic debris. This association is evidence for the existence of a reef-bearing volcanic edifice with a minimum age of Late Cretaceous, 70 to 75 m.y., near Caroline Island. With the discovery of this seamount, the known occurrences of Late Cretaceous, reef-capped, volcanic edifices now extend a distance of 2,500 km, from Deep Sea Drilling Project Site 165 to 100 km northwest of Caroline Island. The apparent synchroneity of Late Cretaceous volcanism over this distance argues against the proposition that a single hotspot of the Hawaiian-Emperor type produced the Line Islands chain. Biochronologic data from the Line Islands indicate that the chain is not the temporal equivalent of the Emperor chain. Volcanic edifices of Cretaceous age are now known to extend from the Line Islands through the Mid-Pacific Mountains to the Marshall Islands and the western margin of the Pacific plate from Japan to the Marianas. A volcanic event occurred in the southern Line Islands during middle Eocene time; Eocene sediments were engulfed and altered by a volcanic eruption. The occurrence of both Cretaceous and Eocene volcanism in the southern Line Islands indicates that the history of the Line Islands is similar to that of the Marshall Islands. *Present addresses: (Haggerty) Department of Geosciences, University of Tulsa, Tulsa, Oklahoma 74104; (Schlanger) Department of Geological Sciences, Northwestern University, Evanston, Illinois 60201

  16. Mantle sources of quaternary volcanism on Zhokhov Island (De Long Islands, East Arctic): Isotope-geochemical features of the basalts and spinel lherzolite xenoliths

    NASA Astrophysics Data System (ADS)

    Sakhno, V. G.; Krymsky, R. Sh.; Belyatsky, B. V.; Shevchenko, S. S.; Sergeev, S. A.

    2015-02-01

    This paper reports the results of isotope-geochemical studies and distribution patterns for trace elements and rare earth elements in a collection of specimens of Cenozoic alkaline olivine basalts and spinel lherzolite xenoliths sampled at Zhokhov Island, De Long Archipelago (New Siberian Islands), East Arctic. In spite of various contributions of xenogenic minerals of mantle lherzolite xenoliths (olivine, pyroxene and spinel), the bulk-rock isotope composition of the studied specimens deviates within insignificant limits. This evidences the isotopic and geochemical homogeneity of the mantle source and the absence of a significant effect of processes of contamination by crustal host rocks, which frequently occur within the basalts as xenoliths. On the other hand this reflects the short lifetime of existence and evolution of the mantle melt source. The studied basalts by their isotope and geochemical characteristics resemble volcanics of oceanic islands, intraplate continental volcanics, and those of ocean rises, relate to the activity of mantle plumes. The lack of elevated U/Pb in the studied specimens permits us to correlate the occurrence of the Cenozoic volcanism at De Long Islands of East Arctic with intraplate continental plume volcanism of the rifting stage (analogous to plume magmatism of the East African Rift, Mesozoic alkaline ultramafic volcanism of Eastern India, and others).

  17. Bryophyte colonization history of the virgin volcanic island Surtsey, Iceland

    NASA Astrophysics Data System (ADS)

    Ingimundardóttir, G. V.; Weibull, H.; Cronberg, N.

    2014-08-01

    The island Surtsey was formed in a volcanic eruption south of Iceland in 1963-1967 and has since then been protected and monitored by scientists. The first two moss species were found on Surtsey as early as 1967 and several new bryophyte species were discovered every year until 1973 when regular sampling ended. Systematic bryophyte inventories in a grid of 100 m × 100 m quadrats were made in 1971 and 1972: the number of observed species doubled, with 36 species found in 1971 and 72 species in 1972. Here we report results from an inventory in 2008, when every other of the grid's quadrats were searched for bryophytes. Despite lower sampling intensity than in 1972, distributional expansion and contraction of earlier colonists was revealed as well as the presence of new colonists. A total of 38 species were discovered, 15 of those were not encountered in 1972 and eight had never been reported from Surtsey before (Bryum elegans, Ceratodon heterophyllus, Didymodon rigidulus, Eurhynchium praelongum, Schistidium confertum, S. papillosum, Tortula hoppeana and T. muralis). Habitat loss due to erosion and reduced thermal activity in combination with successional vegetation changes are likely to have played a significant role in the decline of some bryophyte species which were abundant in 1972 (Leptobryum pyriforme, Schistidium apocarpum coll., Funaria hygrometrica, Philonotis spp., Pohlia spp, Schistidium strictum, Sanionia uncinata) while others have continued to thrive and expand (e.g. Schistidium maritimum, Racomitrium lanuginosum, R. ericoides, R. fasciculare and Bryum argenteum). Some species (especially Bryum spp.) benefit from the formation of new habitats, such as grassland within a gull colony, which was established in 1984. Several newcomers are rarely producing sporophytes on Iceland and are unlikely to have been dispersed by airborne spores. They are more likely to have been introduced to Surtsey by seagulls in the form of vegetative fragments or dispersal agents

  18. Bryophyte colonization history of the virgin volcanic island Surtsey, Iceland

    NASA Astrophysics Data System (ADS)

    Ingimundardóttir, G. V.; Weibull, H.; Cronberg, N.

    2014-03-01

    The island Surtsey was formed in a volcanic eruption south of Iceland in 1963-1967 and has since then been protected and monitored by scientists. The first two moss species were found on Surtsey as early as 1967 and several new bryophyte species were discovered every year until 1973 when regular sampling ended. Systematic bryophyte inventories in a grid of 100 m × 100 m quadrats were made in 1971 and 1972. The number of observed species almost doubled between years with 36 species found in 1971 and 72 species in 1972. Here we report results from an inventory in 2008, when every other of the grid's quadrats were searched for bryophytes. Despite lower sampling intensity than in 1972, distributional expansion and contraction of earlier colonists was revealed as well as presence of new colonists. A total of 38 species were discovered, 15 of those were not encountered in 1972 and eight had never been reported from Surtsey before (Bryum elegans, Ceratodon heterophyllus, Didymodon rigidulus, Eurhynchium praelongum, Schistidium confertum, S. papillosum, Tortula hoppeana and T. muralis). Habitat loss due to erosion and reduced thermal activity in combination with successional vegetation changes are likely to have played a significant role in the decline of some bryophyte species which were abundant in 1972 (Leptobryum pyriforme, Schistidium apocarpum coll., Funaria hygrometrica, Philonotis spp., Pohlia spp, Schistidium strictum, Sanionia uncinata) while others have continued to thrive and expand (e.g. Schistidium maritimum, Racomitrium lanuginosum, R. ericoides, R. fasciculare and Bryum argenteum). Some species (especially Bryum spp.) benefit from the formation of new habitats, such as grassland within a gull colony, which was established in 1984. Several newcomers are rarely producing sporophytes on Iceland and unlikely to have dispersed by airborne spores. They are more likely to have been introduced to Surtsey by seagulls in the form of vegetative fragments or dispersal

  19. 1996 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.

    1997-01-01

    During 1996, the Alaska Volcano Observatory (AVO) responded to eruptive activity, anomalous seismicity, or suspected volcanic activity at 10 of the approximately 40 active volcanic centers in the state of Alaska. As part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also disseminated information about eruptions and other volcanic unrest at six volcanic centers on the Kamchatka Peninsula and in the Kurile Islands, Russia.

  20. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  1. Volcanic Geology of Negit Island, Mono Lake, CA

    NASA Astrophysics Data System (ADS)

    Bursik, M.; Kobs, S.; Jayko, A.

    2008-12-01

    Negit Island, located in Mono Lake, eastern California, is a dacitic cumulodome with seven distinct lava flows emanating from at least four separate vent areas. Vent areas are dominated by en echelon northeast-trending fissures, indicating strong tectonic control. Neptunian(?) pyroclastic deposits on the north end of the island indicate an explosive subaqueous eruption early in island history. Northwestern shorelands, as well as a former landbridge to the island, retain a localized cap of rotated Pleistocene lake bottom sediment blocks, suggesting that proto-Negit was similar to modern Paoha Island, a nearby young structural dome draped with rotated lake bed blocks and explosive ejecta. In analogy with Paoha, the pyroclastic ejecta and blocks may thus indicate sublacustrine block landsliding with attendant eruption as an initial magmatic-structural dome grew, on which later lava domes and flows were superposed. What may be the oldest lava flow, in the center-west, is overlain by a deep orange-red soil, and three Mono Craters tephras. The well-developed soil indicates an extended period of chemical weathering before overlying tephra deposition. The southwestern end of the island is dominated by young lava flows and a prominent dome, which are not overlain by the most recent North Mono Craters tephra of 1350 A.D., consistent with earlier work indicating that parts of the island are younger than any eruption of the Mono Craters. The history of early structural doming with little or minimal eruptive activity at both Negit and Paoha Islands may have important implications for the current episode of noneruptive unrest and doming at nearby Long Valley caldera.

  2. Intraplate volcanism influenced by distal subduction tectonics at Jeju Island, Republic of Korea

    NASA Astrophysics Data System (ADS)

    Brenna, Marco; Cronin, Shane J.; Kereszturi, Gábor; Sohn, Young Kwan; Smith, Ian E. M.; Wijbrans, Jan

    2015-01-01

    The drivers behind the inception of, and the variable, pulsatory eruption rates at distributed intraplate volcanic fields are not well understood. Such broad areas of monogenetic volcanism cover vast areas of the world and are often heavily populated. Reliable models to unravel their behaviour require robust spatio-temporal frameworks within the fields, but an analysis of the potential proximal and distal regional volcano-tectonic processes is also needed. Jeju Island (Republic of Korea) is a volcanic field that has been extensively drilled and dated. It is also located near one of the world's best-studied tectonic plate boundaries: the subduction zone in southwestern Japan, which generates the Ryukyu and SW Japan arcs. A new set of 40Ar/39Ar ages collected from cores penetrating the entire Jeju eruptive pile, along with geochemical information, is used to construct a temporal and volumetric model for the volcano's growth. The overall pattern indicates inception of volcanism at ~1.7 Ma, with an initial 1.2 Myr of low-rate activity, followed by over an order of magnitude rise over the last 0.5 Myr. The magma flux at Jeju correlates well with increased extension rates in the arc/backarc region. In particular, we infer that the increased trenchward mantle flow, caused by the greater rollback of the Philippine Sea Plate, activated pre-existing shear weaknesses in the mantle beneath Jeju, resulting in mantle upwelling and decompression melting that caused a change in compositions and an increase in eruption rates at Jeju. Thus, the volcanic activity of an intraplate field system can be modulated by regional subduction processes occurring more than 650 km away. This model may explain the frequent observation of pulsatory behaviour seen in many monogenetic volcanic fields worldwide that lie within 1,000 km of subduction zones.

  3. Geoid model of Tahiti-Moorea oceanic volcanic islands

    NASA Astrophysics Data System (ADS)

    Shih, H.; Mouyen, M.; Barriot, J.; Hwang, C.; Lequeux, D.; Sichoix, L.

    2013-12-01

    We present the results of an airborne gravity survey that has been conducted over Tahiti-Moorea, two oceanic volcanic islands in French Polynesia, during July and August 2013. The aim of this survey is two-folds. First, these gravity data can be inverted to unravel the subsurface structure of these islands, in particular the geometry of the magma chambers. Second, such data can be used to determine a geoid over Tahiti-Moorea. In this paper, we focus on the geoid modeling. The gravimeter used is the LaCoste & Romberg Air-Sea gravity System II. The aircraft is equipped with a GPS antenna and a receiver, which data are sampled at 1 Hz. A permanent GPS station in the University of French Polynesia is used together with the aircraft GPS to determine precise positions, velocities and accelerations of the plane. These parameters are necessary to get reliable gravity data at mgal accuracy. In addition to the airborne data, land measurements, done from May to August 2013, and shipborne data (1997) are also used for the Tahiti-Moorea geoid. A band-limited least-squares collocation in a classic remove-compute-restore technique is carried out to combine these data into the geoid computation. This geoid will be of primary interest for the analysis of two tide gauges set in Papeete harbor and Tahiti-Iti, altimetric surveys of the oceanic currents as well as for real-time GPS positioning for surveyors in Tahiti.

  4. Morphological and statistical characterisation of recent mafic volcanism on Tenerife (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Dóniz, J.; Romero, C.; Coello, E.; Guillén, C.; Sánchez, N.; García-Cacho, L.; García, A.

    2008-06-01

    Tenerife is the largest island of the Canarian Archipelago and presents a complex volcanic history. The construction of a mafic shield and a phonolitic composite volcano represent the main features of the volcanic evolution of the island. Both volcanic complexes are still active, the first through two main rift zones and the second through the Teide-Pico Viejo central complex. Up to 297 mafic monogenetic volcanoes can be recognised on Tenerife, most of them corresponding to scoria cones that can been grouped into five geographical volcanic fields characterised by similar volcanological features. The large number of these edifices, compared to the other existing morphological volcano-types, indicates that they represent the most common eruptive events occurring during Tenerife's recent geological past and, therefore, the type with the shortest recurrence period and the most likely to occur in the near future. In this paper, the most frequent mafic monogenetic volcano is defined by means of the statistical analysis of its main volcano-morphological features (cone height, cone width ratio, crater width, crater depth, etc.). We have applied a simple methodology of our own design, based on statistical correlations and modal intervals of the morphological and morphometric parameters best defining the volcanoes' morphology. The most frequently identified mafic monogenetic volcano corresponds to a scoria cone with Strombolian to violent Strombolian dynamics, ≤ 100 high, and < 0.01 km 3 in volume, covering an area of < 0.2 km 2. By defining this most common mafic volcano or volcano-type we may provide key information on the nature of a potential volcanic event on Tenerife in the future.

  5. Active Volcanic Plumes on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles).

    The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images.

    North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page

  6. New insights from high resolution bathymetric surveys in the Panarea volcanic complex (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Anzidei, M.; Esposito, A.

    2003-04-01

    During November 2002 the portion of the Panarea volcanic complex (Aeolian Islands, Italy), which includes the islets of Dattilo, Panarelli, Lisca Bianca, Bottaro and Lisca Nera, experienced an intense submarine gaseous exhalation that produced a spectacular submarine fumarolic field. The submarine volcanic activity of the Aeolian area was already known during historical times by Tito Livio, Strabone and Plinio (SGA, 1996), that reported exhalation episodes and submarine eruptions. During the last decade geological, structural, geochemical and volcanological studies performed on the Panarea volcanic complex, evidenced a positive gravimetric anomaly, tectonic discontinuities and several centres of geothermal fluid emission (Barberi et al., 1974; Lanzafame and Rossi, 1984; Bellia et al., 1986; Gabianelli et al., 1990; Italiano and Nuccio, 1991; Calanchi et al., 1995,1999). With the aim to estimate the crustal deformation of the submarine area of the archipelago, connected with the exhalation activity, we produced a detailed Marine Digital Terrain Model (MDTM) of the seafloor by means of a high resolution bathymetric survey. We used the multi beam technique coupled with GPS positioning in RTK mode. We obtained a MDTM with an average pixel of 0.5 m. Our MDTM allowed to estimate the location, deep, shape and size of the exhalation centres and seafloor morphological-structural features, opening new questions for the evaluation of the volcanic hazard of Panarea area which date is still debated.

  7. Seismic hydraulic fracture migration originated by successive deep magma pulses: The 2011-2013 seismic series associated to the volcanic activity of El Hierro Island

    NASA Astrophysics Data System (ADS)

    Díaz-Moreno, A.; Ibáñez, J. M.; De Angelis, S.; García-Yeguas, A.; Prudencio, J.; Morales, J.; Tuvè, T.; García, L.

    2015-11-01

    In this manuscript we present a new interpretation of the seismic series that accompanied eruptive activity off the coast of El Hierro, Canary Islands, during 2011-2013. We estimated temporal variations of the Gutenberg-Richter b value throughout the period of analysis, and performed high-precision relocations of the preeruptive and syneruptive seismicity using a realistic 3-D velocity model. Our results suggest that eruptive activity and the accompanying seismicity were caused by repeated injections of magma from the mantle into the lower crust. These magma pulses occurred within a small and well-defined volume resulting in the emplacement of fresh magma along the crust-mantle boundary underneath El Hierro. We analyzed the distribution of earthquake hypocenters in time and space in order to assess seismic diffusivity in the lower crust. Our results suggest that very high earthquake rates underneath El Hierro represent the response of a stable lower crust to stress perturbations with pulsatory character, linked to the injection of magma from the mantle. Magma input from depth caused large stress perturbations to propagate into the lower crust generating energetic seismic swarms. The absence of any preferential alignment in the spatial pattern of seismicity reinforces our hypothesis that stress perturbation and related seismicity, had diffusive character. We conclude that the temporal and spatial evolution of seismicity was neither tracking the path of magma migration nor it defines the boundaries of magma storage volumes such as a midcrustal sill. Our conceptual model considers pulsatory magma injection from the upper mantle and its propagation along the Moho. We suggest, within this framework, that the spatial and temporal distributions of earthquake hypocenters reflect hydraulic fracturing processes associated with stress propagation due to magma movement.

  8. Volcanic hazard assessment for the Canary Islands (Spain) using extreme value theory

    NASA Astrophysics Data System (ADS)

    Sobradelo, R.; Martí, J.; Mendoza-Rosas, A. T.; Gómez, G.

    2011-10-01

    The Canary Islands are an active volcanic region densely populated and visited by several millions of tourists every year. Nearly twenty eruptions have been reported through written chronicles in the last 600 yr, suggesting that the probability of a new eruption in the near future is far from zero. This shows the importance of assessing and monitoring the volcanic hazard of the region in order to reduce and manage its potential volcanic risk, and ultimately contribute to the design of appropriate preparedness plans. Hence, the probabilistic analysis of the volcanic eruption time series for the Canary Islands is an essential step for the assessment of volcanic hazard and risk in the area. Such a series describes complex processes involving different types of eruptions over different time scales. Here we propose a statistical method for calculating the probabilities of future eruptions which is most appropriate given the nature of the documented historical eruptive data. We first characterize the eruptions by their magnitudes, and then carry out a preliminary analysis of the data to establish the requirements for the statistical method. Past studies in eruptive time series used conventional statistics and treated the series as an homogeneous process. In this paper, we will use a method that accounts for the time-dependence of the series and includes rare or extreme events, in the form of few data of large eruptions, since these data require special methods of analysis. Hence, we will use a statistical method from extreme value theory. In particular, we will apply a non-homogeneous Poisson process to the historical eruptive data of the Canary Islands to estimate the probability of having at least one volcanic event of a magnitude greater than one in the upcoming years. This is done in three steps: First, we analyze the historical eruptive series to assess independence and homogeneity of the process. Second, we perform a Weibull analysis of the distribution of repose

  9. Volcanic eruptions and solar activity

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  10. Prediction and monitoring of volcanic activities

    SciTech Connect

    Sudradjat, A.

    1986-07-01

    This paper summarizes the state of the art for predicting and monitoring volcanic activities, and it emphasizes the experience obtained by the Volcanological Survey Indonesia for active volcanoes. The limited available funds, the large number of active volcanoes to monitor, and the high population density of the volcanic area are the main problems encountered. Seven methods of volcano monitoring are applied to the active volcanoes of Indonesia: seismicity, ground deformation, gravity and magnetic studies, self-potential studies, petrochemistry, gas monitoring, and visual observation. Seismic monitoring augmented by gas monitoring has proven to be effective, particularly for predicting individual eruptions at the after-initial phase. However, the success of the prediction depends on the characteristics of each volcano. In general, the initial eruption phase is the most difficult phenomenon to predict. The preparation of hazard maps and the continuous awareness of the volcanic eruption are the most practical ways to mitigate volcanic danger.

  11. Participatory methods of incorporating scientific with traditional knowledge for volcanic hazard management on Ambae Island, Vanuatu

    NASA Astrophysics Data System (ADS)

    Cronin, Shane J.; Gaylord, David R.; Charley, Douglas; Alloway, Brent V.; Wallez, Sandrine; Esau, Job W.

    2004-10-01

    Ambae Island is the largest of Vanuatu’s active volcanoes. It is also one of the nation’s potentially most dangerous, with 60 million m3 of lake-water perched at over 1340 m in the summit caldera and over the active vent. In 1995, small phreatic explosions, earthquake swarms and heightened gas release led to calls for evacuation preparation and community volcanic hazard awareness programs for the ~9500 inhabitants. Differences in perspective or world-view between the island dwellers adhering to traditional beliefs (Kastom) and external scientists and emergency managers led to a climate of distrust following this crisis. In an attempt to address these issues, rebuild dialogue and respect between communities, outside scientists and administrators, and move forward in volcanic hazard education and planning for Ambae, we adapted and applied Participatory Rural Appraisal (PRA) approaches. Initial gender-segregated PRA exercises from two representative communities provided a mechanism for cataloguing local traditional viewpoints and hazard perceptions. Ultimately, by combining elements of these viewpoints and perceptions with science-based management structures, we derived volcanic hazard management guidelines, supported by an alert system and map that were more readily accepted by the test communities than the earlier “top-down” plans imposed by outside governmental and scientific agencies. The strength of PRA approaches is that they permit scientists to understand important local perspective issues, including visualisations of volcanic hazards, weaknesses in internal and external communication systems, and gender and hierarchy conflicts, all of which can hinder community emergency management. The approach we describe has much to offer both developing and industrialised communities that wish to improve their awareness programs and mitigative planning. This approach should also enhance communication and understanding between volcanologists and the communities

  12. Helium isotope systematics of volcanic gases and thermal waters of Guadeloupe Island, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Jean-Baptiste, P.; Allard, P.; Fourré, E.; Parello, F.; Aiuppa, A.

    2014-08-01

    The island of Guadeloupe is located in the middle of the 850 km long Lesser Antilles island arc. Present-day volcanic and geothermal activity is concentrated in two systems both located in the southwestern part of the island (Basse Terre): the La Soufrière volcanic complex and the Bouillante hydrothermal system, some 20 km to the northwest of the volcano. We report here the largest isotopic data set for helium isotopes in hydrothermal gases and waters from both systems, acquired between 1980 and 2012. 3He/4He ratios in the fumarolic gases of La Soufrière volcano have been quite homogeneous and stable over the last thirty years. The average ratio of 8.2 ± 0.2 Ra confirms that the volcano is tapping a MORB-like mantle source. In contrast, the nearby Bouillante geothermal system displays a much lower 3He/4He ratio (4.5 ± 0.1 Ra). He-C elemental and isotopic relationships show that both systems are actually fed by the same magmatic source, and that their marked difference in 3He/4He results from the 4He contamination of the Bouillante deep aquifer by the surrounding wallrock. This conclusion is strengthened by the spatial distribution of 3He/4He ratios which shows that La Soufrière fumaroles and the Bouillante geothermal system are the two end-members of a spatial trend of decreasing 3He/4He ratio with distance from La Soufrière summit dome, implying an increasing addition of radiogenic 4He from the host rocks away from the present-day active volcanic edifice.

  13. Active Volcanic Eruptions on Io

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.

    The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the

  14. Psychological aspects in a volcanic crisis: El Hierro Island eruption (October, 2011).

    NASA Astrophysics Data System (ADS)

    Lopez, P.; Llinares, A.; Garcia, A.; Marrero, J. M.; Ortiz, R.

    2012-04-01

    The recent eruption on the El Hierro Island (Canary Islands, Spain) has shown that Psychology plays an important role in the emergence management of a natural phenomenon. However, Psychology continues to have no social coverage it deserves in the mitigation of the effects before, during and after the occurrence of a natural phenomenon. Keep in mind that an unresolved psychological problem involves an individual and collective mismatch may become unrecoverable. The population of El Hierro has been under a state of alert since July 2011, when seismic activity begins, until the occurrence of submarine eruption in October 2011 that is held for more than three months. During this period the inhabitants of the small island have gone through different emotional states ranging from confusion to disappointment. A volcanic eruption occurs not unexpectedly, allowing to have a time of preparation / action before the disaster. From the psychological point of view people from El Hierro Island have responded to different stages of the same natural process. Although the island of El Hierro is of volcanic origin, the population has no historical memory since the last eruption occurred in 1793. Therefore, the educational system does not adequately address the formation in volcanic risk. As a result people feel embarrassment when the seismovolcanic crisis begins, although no earthquakes felt. As an intermediate stage, when the earthquakes are felt by the population, scientists and operational Emergency Plan care to inform and prepare actions in case of a possible eruption. The population feel safe despite the concerns expressed by not knowing where, how and when the eruption will occur. Once started the submarine eruption, taking into account that all the actions (evacuation, relocation, etc.) have worked well and that both their basic needs and security are covered there are new states of mind. These new emotional states ranging from disenchantment with the phenomenology of the

  15. Modeling the erosion of tropical volcanic ocean islands : The Tahiti island case (French Polynesia)

    NASA Astrophysics Data System (ADS)

    Ye, F.; Sichoix, L.; Barriot, J.; Dumas, P.

    2009-12-01

    In this study, we are interested in modeling the erosion of the Tahiti island, with two main objectives: risk assessment (erodibility of terrains with rainfall, catastrophic runoffs) and estimation of subsidence rate. The Tahiti island created around 1.4 Myears ago by an intraplate hotspot (aerial radiometric dating), is divided into two geological units: the main island Tahiti-Nui to northwest (end of volcanism 200,000 years ago) and the subsidiary Tahiti-Iti to the southeast (end of volcanism 380,000 years ago). It is now volcanically inactive and is deeply dissected by erosion. Tahiti Nui is around 30 km in diameter, and Tahiti Iti around 15 km. Both are linked through the isthmus of Taravao. The highest elevation is 2241 m. The two sub-islands are basaltic edifices, with an overwhelming presence of oxisols (down to tens of meters in some places). Slopes can be divided into three classes: 15° for the global slope of the shield volcanoes, 47° for the incision valleys and 2° for the seashore rim. Rainfalls range from 8,000 mm/year on the East side of Tahiti (trade winds) to 2,000 mm/year on the West side, the humid season of a year is summer. This study is conducted to validate the Unit Stream Power Erosion and Deposition (USPED) model, an enrichment to the Universal Soil Loss Equation (USLE) to calculate average annual soil loss per unit land area resulting from rill and sheet erosion. The USPED model differs from other USLE models on how it handles the influence of topography on the erosion process, because USLE consider erosion only along the flow line without the influence of flow convergence/divergence. As the result, the USPED model predicts both erosion and deposition, while most other USLE-based models are limited to predictions of erosion only. The USLE, USPED equation can be written as A=R*K*LS*C*P where A is the soil loss, R the rainfall-runoff erosivity factor, K a soil erodibility factor, L a slope-length factor, S a slope steepness factor, C a

  16. Amazonian volcanic activity at the Syrtis volcanic province, Mars

    NASA Astrophysics Data System (ADS)

    Platz, Thomas; Jodlowski, Piotr; Fawdon, Peter; Michael, Greg; Tanaka, Kenneth

    2014-05-01

    The Syrtis Major volcanic province, including the entire Syrtis Major Planum, is located near the Martian highland/lowland transitional zone west of Isidis Planitia. It covers ≡7.4×105 km2 and contains two low-shield volcanic edifices with N-S elongated calderas named Nili and Meroe Paterae. The estimated thickness of erupted material in the province ranges from approximately 0.5 km to 1.0 km with a total volume of about 1.6-3.2×105 km3 [1]. The timing of volcanic activity in the Syrtis Major volcanic province has been suggested to be restricted to the Hesperian Period [1-4]. In the geological map of Greeley and Guest [2], volcanic material of Syrtis Major was assigned an Hesperian age based on the density of observed craters larger than 5 km in diameter. Using the same crater density range, recent studies of Hiesinger et al. [1] and Tanaka et al. [3] and Tanaka et al. [4] assigned an Early Hesperian and Early to Late Hesperian age, respectively, for the entire province. In this study we mapped lava flows, lava channels, and major lava-flow margins and report model ages for lava-flow formation and caldera segments of Nili and Meroe Paterae. The objective of this ongoing survey is to better understand the eruption frequency of this volcanic province. In total, we mapped 67 lava flows, caldera segments, and intra-crater fillings of which 55 were dated. Crater size-frequency distributions (CSFD) were mapped on HRSC and CTX imagery using CraterTools [5]. CSFDs were analyzed and model ages determined in Craterstats [6] using the production and chronology functions of Ivanov [7] and Hartmann and Neukum [8], respectively. A detailed description of the utilization of the crater-counting technique and its limitations with respect to small-scale mapping is given in Platz et al. [9]. Model ages range between 838 Ma (Middle Amazonian) to 3.6 Ga (Late Hesperian). In our survey, a broad age peak occurs between 2 to 2.6 Ga, continuously declining thereafter. We note that

  17. Mount St. Helens' volcanic ash: hemolytic activity.

    PubMed

    Vallyathan, V; Mentnech, M S; Stettler, L E; Dollberg, D D; Green, F H

    1983-04-01

    Volcanic ash samples from four Mount St. Helens' volcanic eruptions were subjected to mineralogical, analytical, and hemolytic studies in order to evaluate their potential for cytotoxicity and fibrogenicity. Plagioclase minerals constituted the major component of the ash with free crystalline silica concentrations ranging from 1.5 to 7.2%. The in vitro hemolytic activity of the volcanic ash was compared to similar concentrations of cytotoxic and inert minerals. The ash was markedly hemolytic, exhibiting an activity similar to chrysotile asbestos, a known fibrogenic agent. The hemolysis of the different ash samples varied with particle size but not with crystalline silica concentration. The results of these studies taken in conjunction with the results of our animal studies indicate a fibrogenic potential of volcanic ash in heavily exposed humans. PMID:6832120

  18. First-order estimate of the Canary Islands plate-scale stress field: Implications for volcanic hazard assessment

    NASA Astrophysics Data System (ADS)

    Geyer, A.; Martí, J.; Villaseñor, A.

    2016-06-01

    In volcanic areas, the existing stress field is a key parameter controlling magma generation, location and geometry of the magmatic plumbing systems and the distribution of the resulting volcanism at surface. Therefore, knowing the stress configuration in the lithosphere at any scale (i.e. local, regional and plate-scale) is fundamental to understand the distribution of volcanism and, subsequently, to interpret volcanic unrest and potential tectonic controls of future eruptions. The objective of the present work is to provide a first-order estimate of the plate-scale tectonic stresses acting on the Canary Islands, one of the largest active intraplate volcanic regions of the World. In order to obtain the orientation of the minimum and maximum horizontal compressive stresses, we perform a series of 2D finite element models of plate scale kinematics assuming plane stress approximation. Results obtained are used to develop a regional model, which takes into account recognized archipelago-scale structural discontinuities. Maximum horizontal compressive stress directions obtained are compared with available stress, geological and geodynamic data. The methodology used may be easily applied to other active volcanic regions, where a first order approach of their plate/regional stresses can be essential information to be used as input data for volcanic hazard assessment models.

  19. An active seismic experiment at Tenerife Island (Canary Island, Spain): Imaging an active volcano edifice

    NASA Astrophysics Data System (ADS)

    Garcia-Yeguas, A.; Ibañez, J. M.; Rietbrock, A.; Tom-Teidevs, G.

    2008-12-01

    An active seismic experiment to study the internal structure of Teide Volcano was carried out on Tenerife, a volcanic island in Spain's Canary Islands. The main objective of the TOM-TEIDEVS experiment is to obtain a 3-dimensional structural image of Teide Volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models mainly based on sparse geophysical and geological data. This multinational experiment which involves institutes from Spain, Italy, the United Kingdom, Ireland, and Mexico will generate a unique high resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.

  20. Constraints on the diversity and distribution of coral-reef assemblages in the volcanic Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Houk, P.; Starmer, J.

    2010-03-01

    A central problem for jurisdictional scientists and managers is to reconcile how multiple environmental regimes, encompassing continuous, intermittent and human disturbances, influence pertinent ecological management targets. The presence of heterogeneous environments throughout the volcanic Northern Mariana Islands (NMI), coupled with the availability of descriptive physical data, form the basis examining environmental-ecological relationships. Since 2003, coral abundances and macrobiota (all visibly recognizable taxa greater than 2 cm) occurrences have been estimated at 42 reef slopes along the volcanic archipelago. Analyses showed that reef types acted as surrogates of coral growth capacity and the modern assemblages residing upon them, being highest and most favorable, respectively, where relatively high salinity levels, low-to-moderate wave exposure, and an absence of volcanic activity for ~90 years existed. However, island size was the greatest constraint on species richness overall, but relations with corals were dampened by volcanic activity and increased for sponges and algae where greater connection with the island aquifer existed (i.e., relatively low salinity levels). The number of years since volcanic activity has occurred was positively related to the residuals of species-area relationships and coral cover, with a ~90-year time frame predicted for recovery. Notably, no relationships with watershed characteristics or distance from CNMI’s main fishing port and coral-reef assemblages or species richness were found. Further examination of specific management concerns, such as fisheries and feral animal populations, should be designed to account for the inherent differences in driving environmental regimes. Management strategies focused upon conserving biodiversity and ecosystem function should be centered at the island level, matching the operational scale of dominant environmental-ecological relationships. Marine reserves represent a strategy pertinent

  1. Hydrogeochemical, multiple isotopic approaches to investigate seawater mixing of groundwater in volcanic Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Koh, E. H.; Kaown, D.; Lee, S. H.; Lee, K. K.

    2014-12-01

    Groundwater is a sole resource for water supply in Jeju Island which is composed of various formations of porous volcanic rocks. Therefore, preservation of the groundwater resource is an essential issue. Due to its geological features of the island, seawater has been intruded landward, mainly in the eastern region, which restricts groundwater use in the area. In the western region, severe nitrate contaminations of groundwater have been occurred by heavily performed agricultural activities, and moreover deterioration of groundwater quality by seawater intrusion has been observed in recent years. In this study, to delineate the mixing process related to seawater intrusion into groundwater from Gosan (western region) and Pyoseon (eastern region) of Jeju Island, hydrogeochemical and multiple isotopic approaches were applied. Also, fractionation ratios of each factors (fresh groundwater, nitrate contaminated groundwater, and seawater) which affect the groundwater quality from the study areas were estimated by using the MIX_PROGRAM. The effect of seawater was observed at the groundwater wells located inland up to 1.5 km from the coast and showed to be enlarged landward during a dry season. The fractionation ratios of seawater had the minor range (0.1~1.2%) for the Pyoseon area and 0.4~3.7% of seawater was mixed with fresh groundwater in the Gosan area. Differences in hydrogeological properties between Gosan and Pyoseon areas made dissimilar occurrences of seawater mixing into groundwater in the island.

  2. Multiple episodes of volcanism in the Southern Austral Islands: Flexural constraints from bathymetry, seismic reflection, and gravity data

    NASA Astrophysics Data System (ADS)

    Jordahl, Kelsey A.; McNutt, Marcia K.; Caress, David W.

    2004-06-01

    At the southeastern end of the Cook-Austral Island chain, in the vicinity of the currently active Macdonald Seamount, multiple episodes of volcanism have left a diverse population of seamounts. Multichannel seismic reflection and shipboard gravity data provide observational constraints on the magnitude and wavelength of flexure, and multibeam bathymetry obtained by R/V Ewing and F/S Sonne within the study area provides full spatial coverage of all volcanic loads. Three-dimensional flexural modeling of closely spaced loads emplaced at discrete times, performed both with analytical models of idealized loads and with fourier domain solutions of the observed volcanic loads partitioned into the younger and older seamounts, is compared with seismic and gravity data. This modeling provides a more complete view of the volcanic history than radiometric dating and geochemical analysis of sparse dredge samples alone. Wide-angle seismic refraction data from ocean bottom hydrophones (OBHs) and expendable sonobuoys are also consistent with the flexural modeling results. Volume estimates of the different volcanic episodes show that one-half to two-thirds of the material added to the abyssal seafloor by midplate volcanic processes is due to older volcanism that erupted on young lithosphere, while the younger, higher seamounts contributed the remainder.

  3. Volcanic history and 40Ar/39Ar and 14C geochronology of Terceira Island, Azores, Portugal

    USGS Publications Warehouse

    Calvert, A.T.; Moore, R.B.; McGeehin, J.P.; Rodrigues da Silva, A.M.

    2006-01-01

    Seven new 40Ar/39Ar and 23 new radiocarbon ages of eruptive units, in support of new geologic mapping, improve the known chronology of Middle to Late Pleistocene and Holocene volcanic activity on the island of Terceira, Azores and define an east-to-west progression in stratovolcano growth. The argon ages indicate that Cinco Picos Volcano, the oldest on Terceira, completed its main subaerial cone building activity by about 370-380??ka. Collapse of the upper part of the stratovolcanic edifice to form a 7 ?? 9??km caldera occurred some time after 370??ka. Postcaldera eruptions of basalt from cinder cones on and near the caldera floor and trachytic pyroclastic flow and pumice fall deposits from younger volcanoes west of Cinco Picos have refilled much of the caldera. The southern portion of Guilherme Moniz Volcano, in the central part of the island, began erupting prior to 270??ka and produced trachyte domes, flows, and minor pyroclastic deposits until at least 111??ka. The northern part of Guilherme Moniz Caldera is less well exposed than the southern part, but reflects a similar age range. The northwest portion of the caldera was formed sometime after 44??ka. Several well-studied ignimbrites that blanket much of the island likely erupted from Guilherme Moniz Volcano. The Pico Alto Volcanic Center, a tightly spaced cluster of trachyte domes and short flows, is a younger part of Guilherme Moniz Volcano. Stratigraphic studies and our new radiocarbon ages suggest that most of the Pico Alto eruptions occurred during the period from about 9000 to 1000??years BP. Santa Barbara Volcano is the youngest stratovolcano on Terceira, began erupting prior to 29??ka, and has been active historically. ?? 2006.

  4. Hydrothermal fluids vented at shallow depths at the Aeolian islands: relationships with volcanic and geothermal systems.

    NASA Astrophysics Data System (ADS)

    Italiano, Francesco; Caracausi, Antonio; Longo, Manfredi; Maugeri, Roberto; Paonita, Antonio

    2010-05-01

    Scuba diving investigations carried out over the last two decades at the Aeolian islands revealed the existence of submarine magmatic and late-magmatic hydrothermalism at all the islands, despite the absence of on-shore activity at some of the islands. The results gained by diving activities provided useful information to evaluate the volcanic and geothermal activity and to manage the volcanic crisis occurred on November 2002 off the island of Panarea. Scuba diving investigations carried out from middle 80's, had shown that despite the absence of on shore volcanic manifestations, submarine hydrothermal activity is recognizable at shallow depth around all the Aeolian islands related either to volcanic and geothermal activity. The sampled gases are CO2-dominated with low amounts of oxygen and reactive gases (H2, CO, CH4 and H2S) with concentrations ranging from a few ppm to some mole percent. Sometimes significant N2 amount are detectable together with high helium contents. Samples having low CO2 content, besides relevant N2 and He amounts, are the consequence of CO2 dissolution in sea-water due to gas-water interactions (GWI) occurred before the sample collection. The high CO2 solubility (878 ml/l, T=20°C, P=1bar) may, in fact, decrease the CO2 content in the venting gases thus increasing the concentrations of the less soluble species (e.g. He 8 ml/l, CO 23 ml/l and CH4 33.8 ml/l) in the gas mixture. Such a process might occur at any level, however, because of the slow water circulation in deep sediments, CO2 is able to saturate the circulating sea-water. The isotopic composition of carbon displays a small range of values while helium isotopes are in the range of 4.1active and extinct Volcanoes, their chemical composition is similar. Contrastingly the isotope composition of helium shows a large heterogeneity with the highest isotopic ratios surprisingly measured at the extinct volcanic islands in the western sector, and much

  5. Rationalising a volcanic crisis through literature: Montserratian verse and the descriptive reconstruction of an island

    NASA Astrophysics Data System (ADS)

    Donovan, Amy; Oppenheimer, Clive; Bravo, Michael

    2011-06-01

    This article discusses a selection of the literary output provoked and inspired by the eruption of Soufrière Hills Volcano on Montserrat — notably poetry and prose written by Montserratians affected by the disaster. It argues that literature can be a source of local knowledge, and a window into a culture that is seeking to deal with a tragedy. It can also be used to assess outreach efforts and to investigate the impact of volcanic events - and of volcanological information - on local populations. The texts describe the process by which Montserratians moved from bewilderment and denial to renewal and re-identification, and even pride in the volcanic activity and their own ability to live with it — and to help prepare other Caribbean islands for future volcanic events. Literature looks both backwards and forwards, communicating the acts of experiencing and changing. On Montserrat, that applies both to colonialism and the role of the UK in Montserrat's political, economic and social life, and also to the importance of learning volcanology, and welcoming volcanologists, as a means of survival.

  6. Volcanic Activities of Hakkoda Volcano after the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Miura, S.

    2014-12-01

    The 2011 Tohoku Earthquake of 11 March 2011 generated large deformation in and around the Japanese islands, and the large crustal deformation raises fear of further disasters including triggered volcanic activities. In this presentation, as an example of such potential triggered volcanic activities, we report the recent seismic activities of Hakkoda volcano, and discuss the relation to the movement of volcanic fluids. Hakkoda volcano is a group of stratovolcanoes at the northern end of Honshu Island, Japan. There are fumaroles and hot springs around the volcano, and phreatic eruptions from Jigoku-numa on the southwestern flank of Odake volcano, which is the highest peak of the volcanic group, were documented in its history. Since just after the occurrence of the Tohokui Earthquake, the seismicity around the volcano became higher, and the migration of hypocenters of volcano-tectonic (VT) earthquakes was observed.In addition to these VT earthquakes, long-period (LP) events started occurring beneath Odake at a depth of about 2-3 km since February, 2013, and subtle crustal deformation caused by deep inflation source was also detected by the GEONET GNSS network around the same time. The spectra of LP events are common between events irrespective of the magnitude of events, and they have several spectral peaks at 6-7 sec, 2-3 sec, 1 sec, and so on. These LP events sometimes occur like a swarm with an interval of several minutes. The characteristics of observed LP events at Hakkoda volcano are similar to those of LP events at other active volcanoes and hydrothermal area in the world, where abundant fluids exist. Our further analysis using far-field Rayleigh radiation pattern observed by NIED Hi-net stations reveals that the source of LP events is most likely to be a nearly vertical tensile crack whose strike is NE-SW direction. The strike is almost perpendicular to the direction of maximum extensional strain estimated from the geodetic analysis, and is almost parallel to

  7. Helium-3 emission related to volcanic activity

    SciTech Connect

    Sano, Y.; Nakamura, Y.; Wakita, H.; Urabe, A.; Tominaga, T.

    1984-04-13

    The helium-3/helium-4 ratio in bubbling gases from ten hot springs located around Mount Ontake, an active volcano in central Japan, ranges from 1.71 R/sub atm/ (1.71 times the atmospheric ratio of 1.40 x 10/sup -6/) to 6.15 R/sub atm/. The value of the ratio decreases with distance from the central cone of the volcano. Such a tendency may be a characteristic of helium-3 emission in volcanic areas and suggests more primitive helium-3 is carried with fluid flowing through a conduit during volcanic activity. 6 references, 1 figure, 1 table.

  8. Halocarbons and other trace heteroatomic organic compounds in volcanic gases from Vulcano (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Seward, Terry M.; Giże, Andrew P.; Hall, Keith; Dietrich, Volker J.

    2013-01-01

    Adsorbent-trapped volcanic gases, sublimates and condensates from active vents of the La Fossa crater on the island of Vulcano (Aeolian Islands, Italy) as well as ambient and industrial air were quantitatively analyzed by Short-Path Thermal Desorption-Solid Phase Microextraction-Cryotrapping-Gas Chromatography/Mass Spectrometry (SPTD-SPME-CF-GC-MS). Among the over 200 detected and quantified compounds are alkanes, alkenes, arenes, phenols, aldehydes, carboxylic acids, esters, ketones, nitriles, PAHs and their halogenated, methylated and sulfonated derivatives, as well as various heterocyclic compounds including thiophenes and furans. Most compounds are found at concentrations well above laboratory, ambient air, adsorbent and field blank levels. For some analytes (e.g., CFC-11, CH2Cl2, CH3Br), concentrations are up to several orders of magnitude greater than even mid-latitudinal industrial urban air maxima. Air or laboratory contamination is negligible or absent on the basis of noble gas measurements and their isotopic ratios. The organic compounds are interpreted as the product of abiogenic gas-phase radical reactions. On the basis of isomer abundances, n-alkane distributions and substitution patterns the compounds are thought to have formed by high-temperature (e.g., 900 °C) alkyl free radical reactions and halide electrophilic substitution on arenes, alkanes and alkenes. The apparent abiogenic organic chemistry of volcanic gases may give insights into metal transport processes during the formation and alteration of hydrothermal ore deposits, into the natural volcanic source strength of ozone-depleting atmospheric trace gases (i.e., halocarbons), into possibly sensitive trace gas redox pairs as potential early indicators of subsurface changes on volcanoes in the state of imminent unrest, and into the possible hydrothermal origin of early life on Earth, as indicated by the presence of simple amino acids, nitriles, and alkanoic acids.

  9. Thyroid cancer incidence in relation to volcanic activity

    SciTech Connect

    Arnbjoernsson, E.A.; Arnbjoernsson, A.O.; Olafsson, A.

    1986-01-01

    Environmental or genetic factors are sought to explain the high incidence of thyroid cancer in Iceland. At present, it is impossible to cite any environmental factor, particularly one related to the volcanic activity in the country, which could explain the high incidence of thyroid cancer in Iceland. However, the thyroid gland in Icelanders is very small due to the high intake of iodine from seafood. It is, therefore, easier for physicians to find thyroid tumors. Furthermore, genetic factors are very likely to be of great importance in the small, isolated island of Iceland.

  10. A new insight on magma generation environment beneath Jeju (Cheju) volcanic island

    NASA Astrophysics Data System (ADS)

    Shin, Y.; CHOI, K.; Koh, J.; Yun, S.; Nakamura, E.; Na, S.

    2011-12-01

    We present a Moho undulation model from gravity inversion that gives a new insight on the magma generation environment beneath Jeju (Cheju) volcanic island, Korea. The island is an intra-plate volcanic island located behind Ryukyu Trench, the collisional boundary between Eurasian plate and Philippine plate. Jeju island is a symmetrical shield volcano of oval shape (74 km by 32 km) whose peak is Hallasan (Mt. Halla: 1950m). The landform, which is closely related to the volcanism, can be divided topographically into the lava plateau, the shield-shaped Halla volcanic edifice and the monogenetic cinder cones, which numbers over 365. The basement rock mainly consists of Precambrian gneiss, Mesozoic granite and volcanic rocks. Unconsolidated sedimentary rock is found between basement rock and lava. The lava plateau is composed of voluminous basaltic lava flows, which extend to the coast region with a gentle slope. Based on volcanic stratigraphy, paleontology and geochronology, the Jeju basalts range from the early Pleistocene to Holocene in age. The mean density of the island is estimated to be very low, 2390 kg/cubic cm from gravity data analysis, which reflects the abundant unconsolidated pyroclastic sediments below the surface lava. The mean Moho depth is estimated to be 29.5 km from power spectral density of gravity anomaly, which means it has continental crust. It is noticeable that the gravity inversion indicates the island is developed above and along a swelled-up belt (ridge), several hundred meters higher than the surrounding area. The structure is also shows positive correlation with high magnetic anomaly distribution that could indicate existence of volcanic rocks. We interpret the Moho structure has a key to the magma generation: 1) the high gravity anomaly belt is formed by folding/buckling process under compressional environment, 2) it causes decrease of pressure beneath the lithosphere along the belt, and 3) it accelerates melting of basaltic magma in

  11. Volcanic activity: a review for health professionals

    SciTech Connect

    Newhall, C.G.; Fruchter, J.S.

    1986-03-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace element composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); mudflows (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity.

  12. Volcanic activity: a review for health professionals.

    PubMed Central

    Newhall, C G; Fruchter, J S

    1986-01-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace elements composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); "mudflows" (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity. Images FIGURE 1 FIGURE 2 FIGURE 6a-6e FIGURE 6a-6e FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 PMID:3946726

  13. Avian mortality associated with a volcanic gas seep at Kiska Island, Aleutian Islands, Alaska

    USGS Publications Warehouse

    Bond, Alexander L.; Evans, William C.; Jones, Ian L.

    2012-01-01

    We identified natural pits associated with avian mortality at the base of Kiska Volcano in the western Aleutian Islands, Alaska in 2007. Living, moribund, and dead birds were regularly found at low spots in a canyon between two lava flows during 2001–2006, but the phenomenon was attributed to natural trapping and starvation of fledgling seabirds (mostly Least Auklets, Aethia pusilla) at a colony site with >1 million birds present. However, 302 birds of eight species, including passerines, were found dead at the site during 2007–2010, suggesting additional factors were involved. Most carcasses showed no signs of injury and concentrations of dead birds had accumulated in a few distinctive low pits in the canyon. Gas samples from these locations showed elevated CO2 concentrations in late 2010. Analysis of carcasses indicated no evidence of blunt trauma or internal bleeding. Volcanic gases accumulating at these poorly ventilated sites may have caused the observed mortality, but are temporally variable. Most auklets breeding in the Aleutian Islands do so in recent lava flows that provide breeding habitat; our study documents a cost of this unusual habitat selection.

  14. The nearshore benthic community of Kasatochi Island, one year after the 2008 volcanic eruption

    USGS Publications Warehouse

    Jewett, S.C.; Bodkin, J.L.; Chenelot, H.; Esslinger, G.G.; Hoberg, M.K.

    2010-01-01

    A description is presented of the nearshore benthic community of Kasatochi Island 1012 months after a catastrophic volcanic eruption in 2008. The eruption extended the coastline of the island approximately 400 m offshore, mainly along the south, southeast, and southwest shores, to roughly the 20 m isobath. Existing canopy kelp of Eualaria (Alaria) fistulosa, as well as limited understory algal species and associated fauna (e.g., urchin barrens) on the hard substratum were apparently buried following the eruption. Samples and observations revealed the substrate around the island in 2009 was comprised almost entirely of medium and coarse sands with a depauperate benthic community, dominated by opportunistic pontogeneiid amphipods. Comparisons of habitat and biological communities with other nearby Aleutian Islands, as well as with the Icelandic volcanic island of Surtsey, confirm dramatic reductions in flora and fauna consistent with an early stage of recovery from a large-scale disturbance event. ?? 2010 Regents of the University of Colorado.

  15. Rare-earth elements enrichment of Pacific seafloor sediments: the view from volcanic islands of Polynesia

    NASA Astrophysics Data System (ADS)

    Melleton, Jérémie; Tuduri, Johann; Pourret, Olivier; Bailly, Laurent; Gisbert, Thierry

    2014-05-01

    Rare-earth elements (REEs) are key metals for «green» technologies such as energy saving lamps or permanent magnets used in, e.g., wind turbines, hard disk drives, portable phone or electric or hybrid vehicles. Since several years, world demand for these metals is therefore drastically increasing. The quasi-monopolistic position of China, which produces around 95 % of global REEs production, generates risks for the industries that depend on a secure supply of REEs. In response, countries are developing and diversifying their supply sources, with new mining projects located outside China and efforts in the area of REEs recycling. Most of these projects focus on deposits related to carbonatites and alkaline-peralkaline magmatism, which are generally enriched in light REEs (LREEs) compared to the heavy REEs (HREEs)-enriched deposits of the ion-adsorption types, located in southern China. However, a recent study revealed new valuable resources corresponding to seafloor sediments located in the south-eastern and north-central Pacific. The deep-sea mud described by these authors show a higher HREE/LREE ratio than ion-adsorption deposits, a feature which significantly increases their economic interest. The authors suggest mid-ocean ridge hydrothermal activity as an explanation to this anomalous enrichment. However, several contributions have documented considerable REEs enrichment in basalts and peridotitic xenoliths from French Polynesia. Several arguments have been exposed in favour of a supergene origin, with a short migration, suggesting that REEs were collected from weathered basalts. The Tahaa volcanic island (Sous-le-Vent Island, Society Archipelago, French Polynesia) is the first location where such enrichment has been described. New petrographic and mineralogical investigations confirm a supergene mobilization of this abnormal occurrence. REE-bearing minerals (mainly phosphates of the rhabdophane group) are primarily located within basalt vesicles but also in

  16. Controls on chemical weathering on a mountainous volcanic tropical island: Guadeloupe (French West Indies)

    NASA Astrophysics Data System (ADS)

    Dessert, C.; Lajeunesse, E.; Lloret, E.; Clergue, C.; Crispi, O.; Gorge, C.; Quidelleur, X.

    2015-12-01

    Guadeloupe Island is a natural laboratory, ideally suited to the study of biogeochemical processes in tropical and mountainous volcanic environments. The island's east-west rainfall gradient (1200-8000 mm/yr) is superimposed on a north-south age gradient (2.7 Ma to present), providing a unique opportunity to investigate the influence of rainfall and rock age on the chemical weathering of volcanic terrains. Taking advantage of this configuration, we present the first temporal survey (2007-2013) of the geochemical composition of the dissolved load of rain and river waters in Guadeloupe. Our data demonstrate that the chemical composition of river water is influenced by rainfall abundance, hydrothermal alteration (from active or fossilized volcanic systems) and interactions between water and minerals during chemical weathering processes. The contribution of rain to the overall chemical balance is especially significant in the older northern part of the island, where the ferralitic soils are base-cation-depleted. Between 15% and 65% of the Ca or Mg riverine budgets comes from atmospheric deposits, highlighting the major role of rainfall in the geochemical budgets of small tropical and mountainous watersheds. The river water dataset indicates that different chemical weathering processes dominate the budget depending on the age of the local bedrock. In the younger, southern part of the island, a pool of easily-weatherable andesitic minerals from the bedrock dominates. The contribution from this pool decreases significantly (to 5-15 wt.% of the bulk soil) towards the older terrains in the north. The northern rivers are characterized by low Ca/Mg ratios (0.5-1.0), intermediate between those of fresh rocks (1.7-3.3) and soil (0.1). Weathering in the northern part of the island is therefore dominated by the dissolution of depleted secondary minerals into soils. The Ca/Mg ratio of the river water increases from north to south, eventually reaching values similar to those of the

  17. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    NASA Astrophysics Data System (ADS)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  18. Lithospheric-folding-based understanding on the origin of the back-arc basaltic magmatism beneath Jeju volcanic island, Korea

    NASA Astrophysics Data System (ADS)

    Yun, S.; Shin, Y.; CHOI, K.; Koh, J.; Nakamura, E.; Na, S.

    2012-12-01

    Jeju Island is an intraplate volcanic island located at the eastern margin on the East Asia behind the Ryukyu Trench, the collisional/subduction boundary between the Eurasian plate and Philippine Sea plate. It is a symmetrical shield volcano, having numerous monogenetic cinder cones, over 365, on the Mt. Halla volcanic edifice. The basement rock mainly consists of Precambrian gneiss, Mesozoic granite and volcanic rocks. Unconsolidated sedimentary rock is found between basement rock and surface lava. The lava plateau is composed of voluminous basaltic lava flows, which extend to the coast region with a gentle slope. Based on the evidence obtained from volcanic stratigraphy, paleontology, and geochronology, the age of the Jeju basalts ranges from the early Pleistocene to Holocene(Historic). The alkaline and tholeiitic basalts exhibits OIB composition from intraplate volcanism which is not associated with plate subduction, while the basement xenolith contained in the volcanic rock indicates that there were volcanic activities associated with the Mesozoic plate subduction. The Geochemical characteristics have been explained with the plume model, lithospheric mantle origin, and melting of shallow asthenosphere by the rapid change of stress regimes between the collision of the India-Eurasia plates and subduction of the Pacific plate, while there has not been any geophysical investigation to disclose it. Compression near collisional plate boundaries causes lithospheric folding which results in the decrease of pressure beneath the ridge of the fold while the pressure increases beneath trough. The decompression beneath lithosphere is likely to accelerate basaltic magmatism along and below the ridge. We investigate the subsurface structure beneath Jeju volcanic island, South Korea and its vicinity and propose an alternative hypothesis that the basaltic magma beneath the island could be caused by episodic lithospheric folding. Unlike the prevailing hypothesis of the

  19. Seismicity in Andaman - Nicobar - Java - Sumatra Region and its Bearing on the Volcanism in the Region, With Special Reference to the Barren Island.

    NASA Astrophysics Data System (ADS)

    Alam, M.; Chandrasekharam, D.

    2005-12-01

    Barren Island volcano in the Andaman Sea (Indian Ocean) is the lone active volcano in the Indian Subcontinent. The island showed renewed activity (commenced from May 28, 2005) after the great earthquake of Sumatra (December 26, 2004) along with increased mud volcanism in Bartang (south of Barren Island) and first ever reported mud volcanism on Narcondum (north of Barren Island) in the Andaman-Nicobar Archipelago. These islands lie on a volcanic arc that extends from the extinct volcanoes like Mt. Popa, Mt. Wuntho of Myanmar in the north to the active volcanoes of Sumatra and Java in the south. Regional tectonism of this region is largely driven by the subduction of the Indo-Australian plate beneath the Asian (Burmese) plate. Regional seismicity pattern reflects different tectonic regimes, namely, thrust dominated subduction front, strike-slip faulting (west Andaman fault) and the extensional processes in the Andaman spreading center. Earthquakes of magnitude more than 4.5 on Richter Scale are quite frequent in the region and are related to the subduction-related processes. Continuous seismic activities in the Andaman-Nicobar-Java-Sumatra region cannot be dealt with separately as evident from the increased volcanic activities following the great earthquake of Sumatra. More recently increased seismic activity in the vicinity of the dormant volcano of Mt. Toba is very much likely to culminate in a catastrophic eruption of this volcano in near future.

  20. Tellurium in active volcanic environments: Preliminary results

    NASA Astrophysics Data System (ADS)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco

    2014-05-01

    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  1. InSAR imaging of volcanic deformation over cloud-prone areas - Aleutian islands

    USGS Publications Warehouse

    Lu, Zhong

    2007-01-01

    Interferometric synthetic aperture radar (INSAR) is capable of measuring ground-surface deformation with centimeter-tosubcentimeter precision and spatial resolution of tens-of meters over a relatively large region. With its global coverage and all-weather imaging capability, INSAR is an important technique for measuring ground-surface deformation of volcanoes over cloud-prone and rainy regions such as the Aleutian Islands, where only less than 5 percent of optical imagery is usable due to inclement weather conditions. The spatial distribution of surface deformation data, derived from INSAR images, enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper reviews the basics of INSAR for volcanic deformation mapping and the INSAR studies of ten Aleutian volcanoes associated with both eruptive and noneruptive activity. These studies demonstrate that all-weather INSAR imaging can improve our understanding of how the Aleutian volcanoes work and enhance our capability to predict future eruptions and associated hazards.

  2. A raining simulation model for the volcanic tropical island of Tahiti

    NASA Astrophysics Data System (ADS)

    Aureau, M.; Chretien, A.; Barriot, J.; Haverkamp, R.

    2012-12-01

    Tahiti island is the largest island of French Polynesia, located in the archipelago of the Society island in the southern Pacific Ocean (coordinates: 17°40'S ; 149°25'W). It is a volcanic island with high mountains marking of deep valleys and it has a total land area of 1,045 sq. km. There are four peaks on the island, the tallest of which is Mount Orohena that stands at 7,618 feet above sea level. It has a tropical climate characterized by eastern winds and strong localized rainfalls and two seasons: November to April is the wet season, May to September is the dry season. Rainfalls are often violent and unequally spread over the island. Circular geography of the island allows to know the location of the valleys towards the prevailing winds and to describe accurately the recurring meteorological events. A network of 28 rain measurement stations was set up in the 60s by the French Institute for Research and Development (IRD) and is currently monitored by the hydrologic service of French Polynesia. This data set gives the rainfalls on the entire island of Tahiti. Due to the volcanic topography, statistical methods commonly used to extrapolate rainfalls across an entire region or area, do not apply to this case. Our method is focused on this issue integrating the specific topographic and geographic conditions of a volcanic island. We have divided the island in 5 different areas from topographic data with highest crests being the boundaries. We developed a mathematic model in order to extrapolate data from rain measurement stations located inside each of these areas. Our mathematic model considers three specific criteria: for each unknown point, it considers its location within the area (distance to the closest measurement station), its altitude, and its angle to the dominant winds. Using this model, we were able to describe rainfalls at every point of the island. The time-scale of our model is one day. This model will describe the precipitation variations day after

  3. Preliminary geology of the Tanaga Island volcanic cluster, western Aleutians (Alaska)

    NASA Astrophysics Data System (ADS)

    Coombs, M. L.; Browne, B. L.; Larsen, J. F.

    2004-12-01

    During 2003, the northwestern portion of Tanaga Island (178° W) was mapped in detail for the first time during fieldwork by Alaska Volcano Observatory geologists in conjunction with the installation of a volcano monitoring seismic network. The northern half of the island is approximately 20 km across and comprises four discrete volcanic centers, from west to east: Sajaka (area = 22 km2), Tanaga (20 km2), East Tanaga (15 km2), and Takawangha (54 km2). The three western centers are steep-sided cones of Holocene age, and have grown in the scar formed by a catastrophic Pleistocene sector collapse directed to the northwest. To the east, a >300 m-thick sequence of volcanic and volcaniclastic rocks (Pre-Tanaga unit) underlies Takawangha, which has been active throughout the Pleistocene and Holocene. Holocene eruptive products from all four centers are predominantly lava flows, with minor explosive activity recorded in tephra sections. Additionally, Sajaka experienced a relatively young (mid-Holocene?) sector collapse of its west flank, accompanied by eruption of laterally-directed pyroclastic flows. A morphologically young cone of scoria and thin basalt flows has grown in the collapse scar. Whole-rock geochemical data on 130 samples of lava and scoria from the four centers and the Pre-Tanaga unit are basalts through low-SiO2 andesites. All but ten lavas have molar Mg# between 0.35 and 0.5 and the remainder are between 0.5 and 0.61; no primitive lavas were discovered on Tanaga Island. Lava flows of Holocene age from Tanaga and East Tanaga follow medium-K trends, all lavas from Takawangha are high-K, and Sajaka and Pre-Tanaga lavas fall along both trends. High-K lavas are enriched in other LILE (Rb, Ba, Pb) as well, and fall near or above the high end of published Aleutian lavas for these elements. The lavas exhibit petrographic as well as compositional diversity: mafic phases in Tanaga lavas are olivine, two pyroxenes, and amphibole, at East Tanaga lavas contain two

  4. A GIS-based methodology for the estimation of potential volcanic damage and its application to Tenerife Island, Spain

    NASA Astrophysics Data System (ADS)

    Scaini, C.; Felpeto, A.; Martí, J.; Carniel, R.

    2014-05-01

    This paper presents a GIS-based methodology to estimate damages produced by volcanic eruptions. The methodology is constituted by four parts: definition and simulation of eruptive scenarios, exposure analysis, vulnerability assessment and estimation of expected damages. Multi-hazard eruptive scenarios are defined for the Teide-Pico Viejo active volcanic complex, and simulated through the VORIS tool. The exposure analysis identifies the elements exposed to the hazard at stake and focuses on the relevant assets for the study area. The vulnerability analysis is based on previous studies on the built environment and complemented with the analysis of transportation and urban infrastructures. Damage assessment is performed associating a qualitative damage rating to each combination of hazard and vulnerability. This operation consists in a GIS-based overlap, performed for each hazardous phenomenon considered and for each element. The methodology is then automated into a GIS-based tool using an ArcGIS® program. Given the eruptive scenarios and the characteristics of the exposed elements, the tool produces expected damage maps. The tool is applied to the Icod Valley (North of Tenerife Island) which is likely to be affected by volcanic phenomena in case of eruption from both the Teide-Pico Viejo volcanic complex and North-West basaltic rift. Results are thematic maps of vulnerability and damage that can be displayed at different levels of detail, depending on the user preferences. The aim of the tool is to facilitate territorial planning and risk management in active volcanic areas.

  5. A unique opportunity to reconstruct the volcanic history of the island of Nevis, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Saginor, I.; Gazel, E.

    2012-12-01

    We report twelve new ICP-MS analyses and two 40Ar/39Ar ages for the Caribbean island of Nevis, located in the Lesser Antilles. These data show a very strong fractionation trend, suggesting that along strike variations may be primarily controlled by the interaction of rising magma with the upper plate. If this fractionation trend is shown to correlate with age, it may suggest that underplating of the crust is responsible for variations in the makeup of erupted lava over time, particularly with respect to silica content. We have recently been given permission to sample a series of cores being drilled by a geothermal company with the goal of reconstructing the volcanic history of the island. Drilling is often cost-prohibitive, making this a truly unique opportunity. Nevis has received little recent attention from researchers due to the fact that it has not been active for at least 100,000 years and also because of its proximity to the highly active Montserrat, which boasts its very own volcano observatory. However, there are a number of good reasons that make this region and Nevis in particular an ideal location for further analysis. First, and most importantly, is the access to thousands of meters of drill cores that is being provided by a local geothermal company. Second, a robust earthquake catalog exists (Bengoubou-Valerius et al., 2008), so the dip and depth to the subducting slab is well known. These are fundamental parameters that influence the mechanics of a subduction zone, therefore it would be difficult to proceed if they were poorly constrained. Third, prior sampling of Nevis has been limited since Hutton and Nockolds (1978) published the only extensive petrologic study ever performed on the island. This paper contained only 43 geochemical analyses and 6 K-Ar ages, which are less reliable than more modern Ar-Ar ages. Subsequent studies tended to focus on water geochemistry (GeothermEx, 2005), geothermal potential (Geotermica Italiana, 1992; Huttrer, 1998

  6. Using stable isotopes to characterize groundwater recharge sources in the volcanic island of Madeira, Portugal

    NASA Astrophysics Data System (ADS)

    Prada, Susana; Cruz, J. Virgílio; Figueira, Celso

    2016-05-01

    The hydrogeology of volcanic islands remains poorly understood, despite the fact that populations that live on them rely on groundwater as a primary water source. This situation is exacerbated by their complex structure, geological heterogeneity, and sometimes active volcanic processes that hamper easy analysis of their hydrogeological dynamics. Stable isotope analysis is a powerful tool that has been used to assess groundwater dynamics in complex terrains. In this work, stable isotopes are used to better understand the hydrogeology of Madeira Island and provide a case-study that can serve as a basis for groundwater studies in other similar settings. The stable isotopic composition (δ18O and δ2H) of rain at the main recharge areas of the island is determined, as well as the sources and altitudes of recharge of several springs, groundwater in tunnels and wells. The water in tunnels was found to be recharged almost exclusively by rain in the deforested high plateaus, whilst several springs associated with shallow perched aquifers are recharged from rain and cloud water interception by the vegetated slopes. Nevertheless some springs thought to be sourced from deep perched aquifers, recharge in the central plateaus, and their isotopic composition is similar to the water in the tunnels. Recharge occurs primarily during autumn and winter, as evidenced by the springs and tunnels Water Lines (WL). The groundwater in wells appears to originate from runoff from rain that falls along the slopes that infiltrates near the streams' mouths, where the wells are located. This is evident by the evaporation line along which the wells plot. Irrigation water is also a possible source of recharge. The data is compatible with the hydrogeological conceptual model of Madeira. This work also shows the importance of cloud water interception as a net contributor to groundwater recharge, at least in the perched aquifers that feed numerous springs. As the amount of rainfall is expected to

  7. The Neogene Alert Bay Volcanic Belt of northern Vancouver Island, Canada: Descending-plate-edge volcanism in the arc-trench gap

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Muller, J. E.; Harakal, J. E.; Muehlenbachs, K.

    1985-10-01

    The Alert Bay Volcanic Belt trends northeasterly across northern Vancouver Island, coincident with the trace of the subducted Juan de Fuca—Explorer plate edge. Volcanism began in the west, at Brooks Peninsula, about 8 Ma ago, but occurred in most centers 3.5 ± 1 Ma ago. There is a suggestion of eastward migration of activity and shift from basalt to dacite or rhyolite with time. Most of the volcanism was coincident with a time of rapid changes in the geometry of subduction, as inferred from offshore magnetic patterns, and with a hiatus in mainland, Cascade volcanic arc activity. Geometry and chronometry suggest this is a descending-plate-edge volcanic belt, where disruption of steady-state plate-consumption patterns triggered magma genesis. Chemically the rocks are quite variable, with divergent fractionation trends. One trend resembles that of Mull (Hebrides), with a plagiophyric basalt of transitional alkaline-subalkaline, mildly tholeiitic, and aluminous character which differentiated to clinopyroxene andesite, and eventually to tholeiitic rhyolite and mildly tholeiitic calc-alkaline dacite, both of K-poor magma type. The other trend is like the Cascades, with aluminous, aphyric, calc-alkaline basalt, hornblende and/or hypersthene andesite, and K-poor dacite. This divergent character is also evident in Ba, Rb, Nb, and Zr fractionation trends. Major- and trace-element discriminant diagrams generally identify the basalts as within-plate types. The 87Sr/ 86Sr isotope ratio is relatively low, averaging 0.70325, and shows no trend with rock type or differentiation series. Oxygen in the entire suite is relatively heavy, δ 18O averaging 7.1%. Even the basalts are 18O enriched. Oxygen shows no trend with degree of hydration, rock type, or series. These isotopic and chemical data are compatible with minor crustal contamination of mafic primary magmas, followed by fractional crystallization under different oxidation and hydration conditions.

  8. "Canary Islands, a volcanic window in the Atlantic Ocean": a 7 year effort of public awareness on volcano hazards and risk management

    NASA Astrophysics Data System (ADS)

    Rodríguez, Fátima; Calvo, David; Pérez, Nemesio M.; Padrón, Eleazar; Melián, Gladys; Padilla, Germán; Barrancos, José; Hernández, Pedro A.; Asensio-Ramos, María; Alonso, Mar

    2016-04-01

    "Canary Islands: A volcanic window in the Atlantic Ocean" is an educational program born from the need to inform and educate citizens residing in the Canary Islands on the various hazards associated to volcanic phenomena. The Canary Islands is the only territory of Spain that hosts active volcanism, as is shown by the 16 historical eruptions that have occurred throughout this territory, being the last one a submarine eruption taking place on October 12, 2011, offshore El Hierro Island. In the last 7 years, ITER as well as INVOLCAN have been performing an educative program focused on educating to the population about the benefits of a volcanic territory, volcanic hazards, how to reduce volcanic risk and the management of volcanic risk in the Canary Islands. "Canary Islands: A volcanic window in the Atlantic Ocean" consists of three units, the first two dedicated to the IAVCEI/UNESCO videos "Understanding Volcanic Hazards" and "Reducing Volcanic Risk" and the third one dedicated to the management of volcanic risk in the Canary Islands, as well as some other aspects of the volcanic phenomena. Generally the three units are shown consecutively on Tuesday, Wednesday and Thursday. This educative program has been roaming all around the 88 municipalities of the archipelago since this initiative started in 2008. The total number of attendees since then amounts to 18,911 people. The increase of assistance was constant until 2011, with annual percentages of 7.8, 17.1 and 20.9 respectively, regarding to ratio assistant/municipality. Despite the heterogeneity of the audience, the main audience is related to aged people of 45 years and older. This could be related to the memories of the recent eruptions occurred at La Palma Island in 1949 and 1971. It is important to point out that many of those people attending the educative program are representatives of local government (i.e. civil protection). Regarding the interest of the audience, the educational program attendees have

  9. Active Volcanism on IO: Global Distribution and Variations in Activity

    NASA Technical Reports Server (NTRS)

    Lopes-Gautier, R.; McEwen, A.; Smythe, W.; Geissler, P.; Kamp, L.; Davies, A.; Spencer, J.; Keszthelyi, L.; Carlson, R.; Leader, F.; Mehlman, R.; Soderblom, L.

    1999-01-01

    Io's volcanic activity has been monitored by instruments aboard the Galileo spacecraft since June 28, 1996. We present results from observations by the Near-Infrared Mapping Spectrometer (NIM) for the first ten orbits of Galileo, correlate them with results from the Solid State Imaging System (SSI)and from ground-based observations, and compare them to what was known about Io's volcanic activity from observations made during the two Voyager fly-bys in 1979.

  10. Copious, Long-lived Rejuvenated Volcanism in the Northern Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Weis, D.; Hanano, D. W.; Jicha, B. R.; Ito, G.

    2015-12-01

    New marine surveying and submersible sampling of Kaul'a Volcano, located 100 km off the axis of the Hawaiian Chain, have revealed widespread areas of young volcanism. New 40Ar/39Ar and geochemical analyses of the olivine-phyric submarine and subaerial volcanic rocks show that Kaul'a is shrouded with young alkalic basalts (1.9 to 0.5 Ma). The ages and chemistry of these rocks overlap with rejuvenated lavas from nearby shields Ni'ihau, Kaua'i and South Kaua'i Swell. Collectively, rejuvenated lavas cover a vast area (~7000 km2) in the northern Hawaiian Islands. Kaul'a rejuvenated lavas show a much larger (5x) variation of incompatible elements than those from adjacent Ni'ihau but comparable to Honolulu rejuvenated lavas. Unlike both suites, heavy REE elements in Kaul'a lavas are pinned at Ybn 10, indicating a strong garnet signature in the source. Rejuvenated lavas from the Kaua'i Ridge have slightly higher radiogenic Pb isotope ratios than those from the southern Hawaiian Islands (Maui to O'ahu) and partly straddle the LOA-KEA boundary. Rejuvenated volcanism was nearly coeval occurrence from ~0.3 to 0.6 Ma along a 450 km segment of the Hawaiian Islands (West Maui to north of Ni'ihau), which is inconsistent with most models for rejuvenated volcanism except the Ballmer et al.2 dynamic melting model. This model invokes increasing pyroxenite contributions and the interaction with scale-scale convection rolls in the lithosphere to enhance the volume and duration of rejuvenation volcanism. Thus, a pyroxenite-bearing, mixed Kea-Loa source component may have contributed to the prolonged and extensive rejuvenated volcanism in the northern Hawaiian Islands. 1Robinson & Eakins 2006, J. Vol. Geotherm. Res., 151, 309-317; 2Ballmer et al. 2011, Nat. Geosc. 4, 457-460.

  11. A decade's overview of Io's volcanic activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Veeder, G. J.; Johnson, T. V.; Blaney, D. L.; Goguen, J. D.

    1993-01-01

    Over the past decade some aspects of Io's volcanic activity have changed greatly, while others have essentially remained constant. This contrast has emerged from our study of multi-wavelength, infrared, observations of Io's thermal emission. From 1983 to 1992 we observed the disk integrated flux density of Io from the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. Our spectral coverage allows us to separate out the emission components due to volcanic thermal anomalies which are warmer than the background emission caused by solar heating. Our temporal coverage allows us to resolve individual eruptions and also to obtain the disk-integrated flux density as a function of longitude (or, equivalently, orbital phase angle). Characteristics that persisted over the decade involve Loki's location and intensity of emission, the leading hemisphere emission, and the average heat flow. The variable aspects of Io over the decade include Loki's hotter area(s) and the outbursts in the leading hemisphere.

  12. Magnetic Anomaly Modeling of Volcanic Structure and Stratigraphy - Socorro Island, Eastern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Urrutia-Fucugauchi, Jaime; Escorza-Reyes, Marisol; Pavon-Moreno, Julio; Perez-Cruz, Ligia; Sanchez-Zamora, Osvaldo

    2013-04-01

    Results of a magnetic survey of the volcanic structure of Socorro Island in the Revillagigedo Archipielago are presented. Socorro is part of a group of seamounts and oceanic islands built by volcanic activity at the northern end of the Mathematician ridge and intersection with the Clarion and Rivera fracture zones. Subaerial volcanic activity is characterized by alkaline and peralkaline compositions, marked by pre-, syn- and post-caldera phases of the Evermann volcano, and the Holocene mafic activity of the Lomas Coloradas. The magnetic survey conducted in the central-southern sector of the island permits to investigate the volcanic structure and subsurface stratigraphy. Regional fields for second- and third-degree polynomials show a magnetic low over the caldera, positive anomalies above the pre-caldera deposits and intermediate amplitude anomalies over Lomas Coloradas. Residual fields delineate the structural rim of the caldera, anomaly trends for the pre- and post-caldera deposits and a broad anomaly over Lomas Coloradas. Regional-residual anomalies, first vertical derivative, analytical upward and downward continuations, and forward four-layer modeling are used to construct the geophysical models. Rock magnetic properties were analyzed on samples collected at 24 different sites. Magnetic susceptibility showed wide range of variation from ~10 to ~500 10-3 SI, corresponding to the different lithologies from trachytes and glass-rich tuffs to alkali basalts. Data have been divided into groups with low, intermediate and high values. Rock magnetic analyses indicate that magnetite and titanomagnetites are the main magnetization carriers. Magnetic hysteresis loops indicate low coercivity minerals, with high saturation and remanent magnetizations and PSD domain states. Magnetic susceptibility versus temperature curves show irreversible behavior with Curie temperatures around 560-575 C, suggesting magnetite and Ti-poor titanomagnetites. Paleomagnetic directions

  13. Triggering of volcanic activity by large earthquakes

    NASA Astrophysics Data System (ADS)

    Avouris, D.; Carn, S. A.; Waite, G. P.

    2011-12-01

    Statistical analysis of temporal relationships between large earthquakes and volcanic eruptions suggests seismic waves may trigger eruptions even over great distances, although the causative mechanism is not well constrained. In this study the relationship between large earthquakes and subtle changes in volcanic activity was investigated in order to gain greater insight into the relationship between dynamic stress and volcanic response. Daily measurements from the Ozone Monitoring Instrument (OMI), onboard the Aura satellite, provide constraints on volcanic sulfur dioxide (SO2) emission rates as a measure of subtle changes in activity. An SO2 timeseries was produced from OMI data for thirteen persistently active volcanoes. Seismic surface-wave amplitudes were modeled from the source mechanisms of moment magnitude (Mw) ≥7 earthquakes, and peak dynamic stress (PDS) was calculated. The SO2 timeseries for each volcano was used to calculate a baseline threshold for comparison with post-earthquake emission. Delay times for an SO2 response following each earthquake at each volcano were analyzed and compared to a random catalog. The delay time analysis was inconclusive. However, an analysis based on the occurrence of large earthquakes showed a response at most volcanoes. Using the PDS calculations as a filtering criterion for the earthquake catalog, the SO2 mass for each volcano was analyzed in 28-day windows centered on the earthquake origin time. If the average SO2 mass after the earthquake was greater than an arbitrary percentage of pre-earthquake mass, we identified the volcano as having a response to the event. This window analysis provided insight on what type of volcanic activity is more susceptible to triggering by dynamic stress. The volcanoes with lava lakes included in this study, Ambrym, Gaua, Villarrica, and Erta Ale, showed a clear response to dynamic stress while the volcanoes with lava domes, Merapi, Semeru, and Bagana showed no response at all. Perhaps

  14. Active Volcanic and Hydrothermal Processes at NW Rota-1 Submarine Volcano: Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Baker, E. T.; Butterfield, D. A.; Chadwick, W. W.; de Ronde, C.; Dower, J.; Evans, L.; Hein, J.; Juniper, K.; Lebon, G.; Lupton, J. E.; Merle, S.; Metaxas, A.; Nakamura, K.; Resing, J. E.; Roe, K.; Stern, R.; Tunnicliffe, V.

    2004-12-01

    Dives with the remotely operated vehicle ROPOS in March/April 2004 documented a volcanic eruption at NW Rota-1, a submarine volcano of basaltic composition located at 14\\deg 36.0'N, 144\\deg 46.5'E lying 65 km northwest of Rota Island in the Commonwealth of the Northern Mariana Islands. The site was chosen as a dive target because of the of the high concentrations of H2S and alunite in the hydrothermal plume overlying its summit in February 2003. The summit of the volcano is composed of curvilinear volcanic ridge oriented NW-SE bounded by NE-SW trending normal faults. Lavas collected on the upper part of the edifice are primitive to moderately fractionated basalts (Mg# = 51-66). The eruptive activity is occurring within a small crater (Brimstone Pit) located on the upper south flank of the volcano at 550 m, about 30 m below the summit. The crater is approximately 15 m wide and at least 20 meters deep. The ROPOS's cameras observed billowing clouds of sulfur-rich fluid rising out of the crater, punctuated by frequent bursts of several minutes duration that entrained glassy volcanic ejecta up to at least 2 cm in diameter. ROPOS recorded a temperature of 38\\degC within the plume. The volcanic activity had substantial temporal variability on the scale of minutes. ROPOS was sometimes completely enveloped by the plume while on the rim of the crater, and its surfaces were coated with large sulfur droplets. Black glassy fragments were entrained in the plume up to least 50 m above the crater and deposits of this material were on ledges and tops of outcrops up to several hundred meters from Brimstone Pit. The pit crater fluids have an extremely high content of particulate sulfur and extremely acidic, with pH around 2.0. This strongly implicates magmatic degassing of SO2 and disproportionation into elemental S and sulfuric acid. Diffuse venting of clear fluids was also present on the summit of the volcano, with temperatures exceeding 100\\degC in volcaniclastic sands

  15. Hunting for the Tristan plume - An upper mantle tomography around the volcanic island Tristan da Cunha

    NASA Astrophysics Data System (ADS)

    Schlömer, Antje; Geissler, Wolfram H.; Jokat, Wilfried; Jegen, Marion

    2016-04-01

    Tristan da Cunha is a volcanic island in the South Atlantic close to the Mid-Atlantic Ridge. It is part of an area consisting of widely scattered seamounts and small islands at the western and youngest end of the aseismic Walvis Ridge. Tristan da Cunha together with the Walvis Ridge represents the classical example of a mantle plume track, because of the connection to the Cretaceous Etendeka flood basalt province in NW Namibia. The genesis of the island has so far remained enigmatic. It is hotly debated, if Tristan da Cunha sits actually above a deep mantle plume or if it is only originated by upwelling material from weak (leaky) fracture zones. It also has to be clarified if there are any indications for a plume-ridge interaction. Geochemical investigations have shown complex compositions of magmatic samples from Tristan da Cunha, which could be interpreted as a mixing of plume-derived melts and depleted upper mantle sources. To improve our understanding about the origin of Tristan and to test the mantle plume hypothesis, we deployed 24 broadband ocean-bottom seismometers and 2 seismological land stations around and on the island during an expedition in January 2012 with the German research vessel Maria S. Merian. After acquiring continuous seismological data for almost one year, the seismometers were recovered in early January 2013. We cross-correlated the arrival times of teleseismic P and PKP phases to perform a finite-frequency tomography of the upper mantle beneath the study area. Here we show the 3D mantle structure in terms of velocity variations: We do not image a "classical" plume-like structure directly beneath Tristan da Cunha, but we observe regions of low velocities at the edges of our array that we relate to local mantle upwelling from potentially deeper sources. Additionally we discuss local seismicity within the Tristan da Cunha region, which show processes along the nearby mid-ocean ridge and transform faults. Furthermore, the local seismicity

  16. New insights into landslide processes around volcanic islands from Remotely Operated Vehicle (ROV) observations offshore Montserrat

    NASA Astrophysics Data System (ADS)

    Watt, S. F. L.; Jutzeler, M.; Talling, P. J.; Carey, S. N.; Sparks, R. S. J.; Tucker, M.; Stinton, A. J.; Fisher, J. K.; Wall-Palmer, D.; Hühnerbach, V.; Moreton, S. G.

    2015-07-01

    Submarine landslide deposits have been mapped around many volcanic islands, but interpretations of their structure, composition, and emplacement are hindered by the challenges of investigating deposits directly. Here we report on detailed observations of four landslide deposits around Montserrat collected by Remotely Operated Vehicles, integrating direct imagery and sampling with sediment core and geophysical data. These complementary approaches enable a more comprehensive view of large-scale mass-wasting processes around island-arc volcanoes than has been achievable previously. The most recent landslide occurred at 11.5-14 ka (Deposit 1; 1.7 km3) and formed a radially spreading hummocky deposit that is morphologically similar to many subaerial debris-avalanche deposits. Hummocks comprise angular lava and hydrothermally altered fragments, implying a deep-seated, central subaerial collapse, inferred to have removed a major proportion of lavas from an eruptive period that now has little representation in the subaerial volcanic record. A larger landslide (Deposit 2; 10 km3) occurred at ˜130 ka and transported intact fragments of the volcanic edifice, up to 900 m across and over 100 m high. These fragments were rafted within the landslide, and are best exposed near the margins of the deposit. The largest block preserves a primary stratigraphy of subaerial volcanic breccias, of which the lower parts are encased in hemipelagic mud eroded from the seafloor. Landslide deposits south of Montserrat (Deposits 3 and 5) indicate the wide variety of debris-avalanche source lithologies around volcanic islands. Deposit 5 originated on the shallow submerged shelf, rather than the terrestrial volcanic edifice, and is dominated by carbonate debris.

  17. Living on Active Volcanoes - The Island of Hawai'i

    USGS Publications Warehouse

    Heliker, Christina; Stauffer, Peter H.; Hendley, James W., II

    1997-01-01

    People on the Island of Hawai'i face many hazards that come with living on or near active volcanoes. These include lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and tsunamis (giant seawaves). As the population of the island grows, the task of reducing the risk from volcano hazards becomes increasingly difficult. To help protect lives and property, U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory closely monitor and study Hawai'i's volcanoes and issue timely warnings of hazardous activity.

  18. Hazard assessment at Teide-Pico Viejo volcanic complex (Tenerife, Canary Islands)

    NASA Astrophysics Data System (ADS)

    Marti, Joan; Sobradelo, Rosa; Felpeto, Alicia

    2010-05-01

    Mid to long-term hazard assessment is conducted at Teide-Pico Viejo volcanic complex as a first step to evaluate volcanic risk in Tenerife, a densely populated island that is one of the biggest tourist destinations in Europe. Teide-Pico Viejo stratovolcanoes started to grow up in the interior of the Las Cañadas caldera, in the central part of Tenerife, about 190 ka ago, after the formation of the youngest sector of the caldera. Since then they have produced more than 150 km3 of rocks which represent a complete basanite to phonolite series. Eruptive activity at Teide-Pico Viejo complex has been traditionally considered as mostly effusive, but new field data has revealed that explosive activity of phonolitic and basaltic magmas, including plinian and subplinian eruptions and the generation of a wide range of PDCs, has also been significant, particularly during the last 30 ka. Most of the Teide products have been emplaced towards the north, inside the Icod and La Orotava valleys, or at the interior of the caldera, while towards the south the caldera wall has stopped the emplacement of such products from going further. The last eruption from the Teide-Pico Viejo central vents, the Lavas Negras eruption, took place about 1000 years ago, but younger eruptive episodes have occurred along the flanks of these stratovolcanoes. Despite the occurrence of numerous eruptions during the last 30 ka and the existence of unequivocal signs of activity in historical times (fumaroles, seismicity) and, even, a clear unrest episode that started in 2004 and is still ongoing, Teide-Pico Viejo stratovolcanoes have not been considered as a major threat by some scientists and also by the local authorities who have dedicated minimum attention to them in the recently approved regional emergency plan. If this view prevails it is obvious that risk mitigation in Tenerife will not succeed. In order to contribute to change that view on the danger potential of Teide-Pico Viejo, and to insist on the

  19. Active Volcanism on Io: Global Distribution and Variations in Activity

    USGS Publications Warehouse

    Lopes-Gautier, R.; McEwen, A.S.; Smythe, W.B.; Geissler, P.E.; Kamp, L.; Davies, A.G.; Spencer, J.R.; Keszthelyi, L.; Carlson, R.; Leader, F.E.; Mehlman, R.; Soderblom, L.

    1999-01-01

    Io's volcanic activity has been monitored by instruments aboard the Galileo spacecraft since June 28, 1996. We present results from observations by the near-infrared mapping spectrometer (NIMS) for the first 10 orbits of Galileo, correlate them with results from the Solid State Imaging System (SSI) and from groundbased observations, and compare them to what was known about Io's volcanic activity from observations made during the two Voyager flybys in 1979. A total of 61 active volcanic centers have been identified from Voyager, groundbased, and Galileo observations. Of these, 41 are hot spots detected by NIMS and/or SSI. Another 25 locations were identified as possible active volcanic centers, mostly on the basis of observed surface changes. Hot spots are correlated with surface colors, particularly dark and red deposits, and generally anti-correlated with white, SO2-rich areas. Surface features corresponding to the hot spots, mostly calderas or flows, were identified from Galileo and Voyager images. Hot spot temperatures obtained from both NIMS and SSI are consistent with silicate volcanism, which appears to be widespread on Io. Two types of hot spot activity are present: persistent-type activity, lasting from months to years, and sporadic events, which may represent either short-lived activity or low-level activity that occasionally flares up. Sporadic events are not often detected, but may make an important contribution to Io's heat flow and resurfacing. The distribution of active volcanic centers on the surface does not show any clear correlation with latitude, longitude, Voyager-derived global topography, or heat flow patterns predicted by the asthenosphere and deep mantle tidal dissipation models. However, persistent hot spots and active plumes are concentrated toward lower latitudes, and this distribution favors the asthenosphere rather than the deep mantle tidal dissipation model. ?? 1999 Academic Press.

  20. Paleomagnetism from Deception Island (South Shetlands archipelago, Antarctica), new insights into the interpretation of the volcanic evolution using a geomagnetic model

    NASA Astrophysics Data System (ADS)

    Oliva-Urcia, B.; Gil-Peña, I.; Maestro, A.; López-Martínez, J.; Galindo-Zaldívar, J.; Soto, R.; Gil-Imaz, A.; Rey, J.; Pueyo, O.

    2016-07-01

    Deception Island shows the most recent exposed active volcanism in the northern boundary of the Bransfield Trough. The succession of the volcanic sequence in the island is broadly divided into pre- and post-caldera collapse units although a well-constrained chronological identification of the well-defined successive volcanic episodes is still needed. A new paleomagnetic investigation was carried out on 157 samples grouped in 20 sites from the volcanic deposits of Deception Island (South Shetlands archipelago, Antarctic Peninsula region) distributed in: (1) volcanic breccia (3 sites) and lavas (2 sites) prior to the caldera collapse; (2) lavas emplaced after the caldera collapse (10 sites); and (3) dikes cutting pre- and the lowermost post-caldera collapse units (5 sites). The information revealed by paleomagnetism provides new data about the evolution of the multi-episodic volcanic edifice of this Quaternary volcano, suggesting that the present-day position of the volcanic materials is close to their original emplacement position. The new data have been combined with previous paleomagnetic results in order to tentatively propose an age when comparing the paleomagnetic data with a global geomagnetic model. Despite the uncertainties in the use of averaged paleomagnetic data per volcanic units, the new data in combination with tephra occurrences noted elsewhere in the region suggest that the pre-caldera units (F1 and F2) erupted before 12,000 year BC, the caldera collapse took place at about 8300 year BC, and post-caldera units S1 and S2 are younger than 2000 year BC.

  1. Paleomagnetism from Deception Island (South Shetlands archipelago, Antarctica), new insights into the interpretation of the volcanic evolution using a geomagnetic model

    NASA Astrophysics Data System (ADS)

    Oliva-Urcia, B.; Gil-Peña, I.; Maestro, A.; López-Martínez, J.; Galindo-Zaldívar, J.; Soto, R.; Gil-Imaz, A.; Rey, J.; Pueyo, O.

    2015-10-01

    Deception Island shows the most recent exposed active volcanism in the northern boundary of the Bransfield Trough. The succession of the volcanic sequence in the island is broadly divided into pre- and post-caldera collapse units although a well-constrained chronological identification of the well-defined successive volcanic episodes is still needed. A new paleomagnetic investigation was carried out on 157 samples grouped in 20 sites from the volcanic deposits of Deception Island (South Shetlands archipelago, Antarctic Peninsula region) distributed in: (1) volcanic breccia (3 sites) and lavas (2 sites) prior to the caldera collapse; (2) lavas emplaced after the caldera collapse (10 sites); and (3) dikes cutting pre- and the lowermost post-caldera collapse units (5 sites). The information revealed by paleomagnetism provides new data about the evolution of the multi-episodic volcanic edifice of this Quaternary volcano, suggesting that the present-day position of the volcanic materials is close to their original emplacement position. The new data have been combined with previous paleomagnetic results in order to tentatively propose an age when comparing the paleomagnetic data with a global geomagnetic model. Despite the uncertainties in the use of averaged paleomagnetic data per volcanic units, the new data in combination with tephra occurrences noted elsewhere in the region suggest that the pre-caldera units (F1 and F2) erupted before 12,000 year BC, the caldera collapse took place at about 8300 year BC, and post-caldera units S1 and S2 are younger than 2000 year BC.

  2. Imaging an Active Volcano Edifice at Tenerife Island, Spain

    NASA Astrophysics Data System (ADS)

    Ibáñez, Jesús M.; Rietbrock, Andreas; García-Yeguas, Araceli

    2008-08-01

    An active seismic experiment to study the internal structure of Teide volcano is being carried out on Tenerife, a volcanic island in Spain's Canary Islands archipelago. The main objective of the Tomography at Teide Volcano Spain (TOM-TEIDEVS) experiment, begun in January 2007, is to obtain a three-dimensional (3-D) structural image of Teide volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models based mainly on sparse geophysical and geological data. The multinational experiment-involving institutes from Spain, the United Kingdom, Italy, Ireland, and Mexico-will generate a unique high-resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.

  3. Miocene Blanca Fan, Northern Channel Islands, California: Small fans reflecting tectonism and volcanism

    USGS Publications Warehouse

    McLean, H.; Howell, D.G.

    1984-01-01

    Blanca fan is a submarine fan composed of Miocene volcaniclastic strata. Parts of the fan system are exposed on Santa Cruz and Santa Rosa Islands, and possibly correlative strata crop out on San Miguel and Santa Catalina Islands. The Blanca fan and underlying breccia reflect regional transcurrent faulting in the California Continental Borderland and development of a system of rapidly subsiding basins and uplifted linear ridges during early and middle Miocene time. Erosion of uplifted crystalline basement rocks followed by the onset of silicic volcanism created linear sediment sources for the alluvial and submarine fans, respectively. ?? 1984 Springer-Verlag New York Inc.

  4. Interannual variations of soil organic carbon fractions in unmanaged volcanic soils (Canary Islands, Spain).

    PubMed

    Armas-Herrera, Cecilia María; Mora, Juan Luis; Arbelo, Carmen Dolores; Rodríguez-Rodríguez, Antonio

    2012-10-01

    The stability over time of the organic C stocked in soils under undisturbed ecosystems is poorly studied, despite being suitable for detecting changes related to climate fluctuations and global warming. Volcanic soils often show high organic C contents due to the stabilization of organic matter by short-range ordered minerals or Al-humus complexes. We investigated the dynamics of different organic C fractions in volcanic soils of protected natural ecosystems of the Canary Islands (Spain) to evaluate the stability of their C pools. The study was carried out in 10 plots, including both undisturbed and formerly disturbed ecosystems, over two annual periods. C inputs to (litterfall) and outputs from (respiration) the soil, root C stocks (0-30 cm), soil organic C (SOC) fractions belonging to C pools with different degrees of biogeochemical stability -total oxidisable C (TOC), microbial biomass C (MBC), water soluble C (WSC), hot-water extractable C (HWC), humic C (HSC), - and total soil N (TN) (at 0-15 and 15-30 cm) were measured seasonally.A statistically significant interannual increase in CO(2) emissions and a decrease in the SOC, mainly at the expense of the most labile organic forms, were observed, while the root C stocks and litterfall inputs remained relatively constant over the study period. The observed changes may reflect an initial increase in SOC resulting from low soil respiration rates due to drought during the first year of study. The soils of nearly mature ecosystems were more apparently affected by C losses, while those undergoing the process of active natural regeneration exhibited disguised C loss because of the C sequestration trend that is characteristic of progressive ecological succession. PMID:23145325

  5. Interannual variations of soil organic carbon fractions in unmanaged volcanic soils (Canary Islands, Spain)

    PubMed Central

    Armas-Herrera, Cecilia María; Mora, Juan Luis; Arbelo, Carmen Dolores; Rodríguez-Rodríguez, Antonio

    2012-01-01

    The stability over time of the organic C stocked in soils under undisturbed ecosystems is poorly studied, despite being suitable for detecting changes related to climate fluctuations and global warming. Volcanic soils often show high organic C contents due to the stabilization of organic matter by short-range ordered minerals or Al-humus complexes. We investigated the dynamics of different organic C fractions in volcanic soils of protected natural ecosystems of the Canary Islands (Spain) to evaluate the stability of their C pools. The study was carried out in 10 plots, including both undisturbed and formerly disturbed ecosystems, over two annual periods. C inputs to (litterfall) and outputs from (respiration) the soil, root C stocks (0–30 cm), soil organic C (SOC) fractions belonging to C pools with different degrees of biogeochemical stability –total oxidisable C (TOC), microbial biomass C (MBC), water soluble C (WSC), hot-water extractable C (HWC), humic C (HSC), – and total soil N (TN) (at 0–15 and 15–30 cm) were measured seasonally.A statistically significant interannual increase in CO2 emissions and a decrease in the SOC, mainly at the expense of the most labile organic forms, were observed, while the root C stocks and litterfall inputs remained relatively constant over the study period. The observed changes may reflect an initial increase in SOC resulting from low soil respiration rates due to drought during the first year of study. The soils of nearly mature ecosystems were more apparently affected by C losses, while those undergoing the process of active natural regeneration exhibited disguised C loss because of the C sequestration trend that is characteristic of progressive ecological succession. PMID:23145325

  6. Fluoride content in drinking water supply in São Miguel volcanic island (Azores, Portugal).

    PubMed

    Cordeiro, S; Coutinho, R; Cruz, J V

    2012-08-15

    High fluoride contents in the water supply of the city of Ponta Delgada, located in the volcanic island of São Miguel (Azores, Portugal) have been reported. Dental fluorosis in São Miguel has been identified and described in several medical surveys. The water supply in Ponta Delgada consists entirely of groundwater. A study was carried out in order to characterize the natural F-pollution of a group of springs (30) and wells (3), that are associated to active central volcanoes of a trachytic nature. Two springs known for their high content in fluoride were sampled, both located in the central volcano of Furnas. The sampled waters are cold, ranging from slightly acidic to slightly alkaline (pH range 6.53-7.60), exhibiting a low electrical conductivity (springs range 87-502 μS/cm; wells range 237-1761 μS/cm), and are mainly from the Na-HCO(3), Na-HCO(3)-Cl and Na-Cl-HCO(3) water types. Results suggest two main trends of geochemical evolution: silicate weathering, enhanced by CO(2) dilution, and seawater spraying. Fluoride contents range between 0.17 mg/L and 2 mg/L, and no seasonal variations were detected. Results in the sources of the water supply system are lower than those of the Furnas volcano, which reach 5.09 mgF/L, demonstrating the effect of F-rich gaseous emanations in this area. Instead, the higher fluoride contents in the water supply are mainly due to silicate weathering in aquifers made of more evolved volcanic rocks. PMID:22705903

  7. 3-D linear inversion of gravity data: method and application to Basse-Terre volcanic island, Guadeloupe, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Barnoud, Anne; Coutant, Olivier; Bouligand, Claire; Gunawan, Hendra; Deroussi, Sébastien

    2016-04-01

    We use a Bayesian formalism combined with a grid node discretization for the linear inversion of gravimetric data in terms of 3-D density distribution. The forward modelling and the inversion method are derived from seismological inversion techniques in order to facilitate joint inversion or interpretation of density and seismic velocity models. The Bayesian formulation introduces covariance matrices on model parameters to regularize the ill-posed problem and reduce the non-uniqueness of the solution. This formalism favours smooth solutions and allows us to specify a spatial correlation length and to perform inversions at multiple scales. We also extract resolution parameters from the resolution matrix to discuss how well our density models are resolved. This method is applied to the inversion of data from the volcanic island of Basse-Terre in Guadeloupe, Lesser Antilles. A series of synthetic tests are performed to investigate advantages and limitations of the methodology in this context. This study results in the first 3-D density models of the island of Basse-Terre for which we identify: (i) a southward decrease of densities parallel to the migration of volcanic activity within the island, (ii) three dense anomalies beneath Petite Plaine Valley, Beaugendre Valley and the Grande-Découverte-Carmichaël-Soufrière Complex that may reflect the trace of former major volcanic feeding systems, (iii) shallow low-density anomalies in the southern part of Basse-Terre, especially around La Soufrière active volcano, Piton de Bouillante edifice and along the western coast, reflecting the presence of hydrothermal systems and fractured and altered rocks.

  8. Is La Reunion island volcanic complex a perfect cone? If so, what it implies

    NASA Astrophysics Data System (ADS)

    Hosseini, K.; Villeneuve, N.; Deplus, C.; Bachelery, P.

    2013-12-01

    The morphology of La Reunion island as well as the interactions between the different volcanoes that composed this volcanic island have been the subject of several articles in the past. These studies mostly focused on landscapes of the region in order to explain how they have been formed by using geomorphological, geophysical or geochemical approaches. Recently high resolution bathymetry acquisition during oceanographic cruises FOREVER and ERODER allowed to perform very fine analyses of sea floor morphologies around the Island. In the present work, we propose using this high resolution bathymetry combined with aerial LIDAR Digital Elevation Model (performed by the French Institut Geographique National), a large-scale study of La Reunion Island Volcanic complex in which the whole volcanic cone of ˜5.01 104 Km3, from the deep sea floor (4200 m deep) to the higher summit at 3070 m was modeled. The motivation of this study was based on some evidence that the shape and the size of volcanoes resulting from complex evolutions can be close to a perfect cone. As a technical novelty, we use a simple topographic/geometric approach All the morphometric analyzes are based on the perfect cone and volcanic edifice comparison. For a perfect cone, a transect crossing the summit is the line of symmetry. As a result, if we cut the cone in two equivalent parts, the first half part is perfectly overlapping the second one. We call this: "mirror effect". We analyzed 30 cross sections (each other separated by 6° angle rotation), 200 km long, centered on the current summit of the Piton des Neiges. Moreover, we applied the "mirror effect" in order to compare the North-Western and the South-Eastern parts of La Reunion. The outcomes of our geometric analysis of La Reunion volcanic complex are (i) debris flows and erosion morphologies play a relatively minor role in the final shape of La Reunion volcanic complex, (ii) the omnipresence of Piton des Neiges volcano compare to visible and non

  9. Characteristics of Mineralized Volcanic Centers in Javanese Sunda Island Arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Setijadji, L. D.; Imai, A.; Watanabe, K.

    2007-05-01

    The subduction-related arc magmatism in Java island, Sunda Arc, Indonesia might have started in earliest Tertiary period, but the distinctively recognizable volcanic belts related with Java trench subduction occurred since the Oligocene. We compiled geoinformation on volcanic centers of different epochs, distribution of metallic mineral deposits, petrochemistry of volcanic rocks, geologic structures, and regional gravity image in order to elucidate characteristics of the known mineralized volcanic centers. Metallic deposits are present in various styles from porphyry-related, high-sulfidation, and low-sulfidation epithermal systems; all related with subaerial volcanism and subvolcanic plutonism. Only few and small occurrences of volcanigenic massive sulfides deposits suggest that some mineralization also occurred in a submarine environment. Most locations of mineral deposits can be related with location of Tertiary volcanic centers along the volcanic arcs (i.e. volcanoes whose genetic link with subduction is clear). On the other side there is no mineralization has been identified to occur associated with backarc magmatism whose genetic link with subduction is under debate. There is strong evidence that major metallic deposit districts are located within compressive tectonic regime and bound by coupling major, deep, and old crustal structures (strike-slip faults) that are recognizable from regional gravity anomaly map. So far the most economical deposits and the only existing mines at major industry scale are high-grade epithermal gold deposits which are young (Upper Miocene to Upper Pliocene), concentrated in Bayah dome complex in west Java, and are associated with alkalic magmatism-volcanism. On the other hand, known porphyry Cu-Au deposits are associated with old (Oligocene to Upper Miocene) stocks, and except for one case, all deposits are located in east Java. Petrochemical data suggest a genetic relationship between porphyry mineralization with low- to

  10. Early and Late Cretaceous volcanism and reef-building in the Marshall Islands

    NASA Astrophysics Data System (ADS)

    Lincoln, Jonathan M.; Pringle, Malcolm S.; Silva, Isabella Premoli

    Radiometric and biostratigraphic ages for samples recovered from fourteen guyots, seamounts and atolls in the Marshall Islands document construction of carbonate platforms and the volcanos on which the platforms grew during the Early and Late Cretaceous. Previously, the only evidence for reef-building during the Early and Late Cretaceous in the Marshall Islands was shallow-bank fossils deposited in turbidites penetrated at DSDP Site 462 in the Nauru Basin. The distribution of volcano and platform ages reported in this paper suggests a complex history that cannot be explained by passage of the region over a single hotspot. Assemblages of whole and fragmented rudists recovered from two guyots may be equivalent to the lower to middle Albian of the Gulf of Mexico coast. Limestones dated Cenomanian or older that contain shallow-water debris document the existence of carbonate banks during the Early Cretaceous at three additional guyots. A 40Ar/39Ar age of 138.2±0.8 Ma for Look Seamount is the first direct evidence of seamount volcanism in the Marshall Islands during the Early Cretaceous. Limestones of Late Cretaceous age that contain shallow-water debris were recovered from nine seamounts or guyots in the Marshall Islands; limestones of Eocene age have been recovered at two other locations. Late Cretaceous 40Ar/39Ar ages, including a revised age of 75.9±0.6 Ma for the basalt recovered from the bottom of the Anewetak Atoll drill core, have been determined for 6 volcanic edifices in this region. Four Marshall Islands sites of volcanism and reef-building during the Late Cretaceous are located at, or adjacent to, sites of volcanism or reef-building during the Early Cretaceous. This superposition of ages suggests multiple periods of volcanism, uplift, reef-building, and subsidence that cannot be explained with a single hotspot model. The origin of the Marshall Islands could be explained by the passage of the region over more than one hotspot over a period of at least 70 m.y.

  11. Chemical weathering fluxes from volcanic islands and the importance of groundwater: The Hawaiian example

    NASA Astrophysics Data System (ADS)

    Schopka, Herdis Helga; Derry, Louis A.

    2012-07-01

    We investigated the products and rates of chemical weathering on the Hawaiian Islands, sampling streams on Kaua'i and both streams and groundwater wells on the island of Hawai'i. Dissolved silica was used to investigate the flowpaths of water drained into streams. We found that flowpaths exert a major control on the observed chemical weathering rates. A strong link exists between the degree of landscape dissection and flowpaths of water through the landscape, with streams in undissected landscapes receiving water mainly from surface runoff and streams in highly dissected landscapes receiving a considerable fraction of their water from groundwater (springs and/or seepage). Total alkalinity in Hawaiian streams and groundwater is produced exclusively by silicate chemical weathering. We find that fluxes of total alkalinity (often called "CO2 consumption rate" in the geochemical literature), from the islands are lower than those observed in basaltic regions elsewhere. Groundwater is, overall, the major transport vector for products of chemical weathering from the Hawaiian Islands. On the youngest and largest island, submarine groundwater discharge (SGD) transports more than an order of magnitude more solutes to the ocean than surface water and on the youngest part of the youngest island, SGD is the only link between the terrestrial weathering system and the ocean. These results suggest that groundwater, and particularly SGD, needs to be included in geochemical weathering budgets of volcanic islands.

  12. Volcanic Activity at Tvashtar Catena, Io

    NASA Technical Reports Server (NTRS)

    Milazzo, M. P.; Keszthelyi, L. P.; Radebaugh, J.; Davies, A. G.; McEwen, A. S.

    2004-01-01

    Tvashtar Catena (63 N, 120 W) is one of the most interesting features on Io. This chain of large paterae (caldera-like depressions) has exhibited highly variable volcanic activity in a series of observations. Tvashtar is the type example of a style of volcanism seen only at high latitudes, with short-lived Pele-type plumes and short-lived by intense thermal events. Evidence for a hot spot at Tvashtar was first detected in an eclipse observation in April 1997 (orbit G7) by the Solid State Imager (SSI) on the Galileo Spacecraft. Tvashtar was originally targeted for observation at higher resolution in the close flyby in November 1999 (I25) because of its interesting large-scale topography. There are relatively few but generally larger paterae at high latitudes on Io. I25 images revealed a 25 km long, 1-2 km high lava curtain via a pattern of saturation and bleeding in the CCD image, which requires very high temperatures.

  13. The 2011 volcanic crisis at El Hierro (Canary Islands): monitoring ground deformation through tiltmeter and gravimetric observations

    NASA Astrophysics Data System (ADS)

    Arnoso, J.; Montesinos, F. G.; Benavent, M.; Vélez, E. J.

    2012-04-01

    El Hierro is an ocean island located at the western end of the Canary Islands, and along with Tenerife and La Palma islands have been the most geologically active in the recent past. The island has a triple armed rift and, presently, is at the stage of growth, representing the summit of a volcanic shield elevating from the seafloor at depth of 4000 m up to 1501 m above the sea level (Münn et al., 2006; Carracedo et al., 1999). Since July 19th, 2011 seismic activity has produced more than 11950 events up to date. The seismic crisis resulted in a volcanic eruption that began on October 10th, being still currently active. The new volcano is located 2 km off the coast and about 300 m depth, in the submarine flank of the southern rift of the island, which is extended some 40 km length. Since September 2004 until November 2010 two continuous tilt stations were installed at the north, Balneario site (BA), and at the center of the island, Aula de la Naturaleza (AU) site. Both stations were used to assess the pattern of local ground movements in the island. When seismic swarm started on past July 2011, we have reinstalled both tilt stations (BA and AU) and 2 new ones located at the south of the island, namely Montaña Quemada (MQ) and Restinga (RE) sites. We have used short base platform tiltmeters that measure ground tilts with resolutions varying from 0.1 up to 0.01 microradians (µrad). On October 8th, a 4.4 magnitude earthquake took place and is supposed that fractured the ocean crust at some 8-10 km off the south coast of the island and about 1000 m depth. Typical spike signals were observed at the tilt stations. Two days after, the eruption onset was recorded also at tilt stations through a remarkable increase of the high frequency signal, being of large amplitude the components (radial) orientated towards the new volcano edifice. When compared with previous tiltmeter records in the island, tilt pattern were clearly modified several times at the stations when strong

  14. 3D Attenuation Tomography of the Volcanic Island of Tenerife (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Prudencio, J.; Ibáñez, J. M.; Del Pezzo, E.; Martí, J.; García-Yeguas, A.; De Siena, L.

    2015-09-01

    This paper shows a new multidisciplinary interpretation approach to the internal structure of Tenerife Island. The central core of this work is the determination of the three-dimensional attenuation structure of the region using P-waves and the coda normalization method. This study has been performed using 45,303 seismograms recorded at 85 seismic stations from an active experiment (air gun shots) conducted in January 2007. The interpretation of these new results is done combining the new images with previous studies performed in the area such as seismic velocity tomography, magnetic structure, magnetotelluric surveys or gravimetric models. Our new 3D images indicate the presence of seismic attenuation contrasts, with areas of high and low seismic attenuation patterns. High seismic attenuation zones are observed both in shallow and in deeper areas. The shallowest area of Las Cañadas caldera complex (1-3 km thick) is dominated by high attenuation behavior, and it is interpreted as the combined effect of sedimentary and volcanoclastic deposits, multifracture systems and the presence of shallow aquifers. At the same time, the deeper analyzed area, more than 8 km below sea level, is dominated by a high attenuation pattern, and it is interpreted as the consequence of the effect of high-temperature rocks in the crustal-mantle boundary. This interpretation is compatible and confirmed by previous models that indicate the presence of underplating magma in this region. On the contrary, some low attenuation bodies and structures have been identified at different depths. A deep low attenuation central body is interpreted as the original central structure associated with the early stage of Tenerife Island. At shallower depths, some low attenuation bodies are compatible with old intermediate magmatic chambers postulated by petrological studies. Finally, in the north of the island (La Orotava valley) we can interpret the low attenuation structure as the headwall of this valley

  15. The nephelinitic–phonolitic volcanism of the Trindade Island (South Atlantic Ocean): Review of the stratigraphy, and inferences on the volcanic styles and sources of nephelinites

    NASA Astrophysics Data System (ADS)

    Pires, Gustavo Luiz Campos; Bongiolo, Everton Marques

    2016-12-01

    Trindade Island is located in the South Atlantic Ocean, 1170 km from the Brazilian coast, and represents the eastern end of the E-W Vitória-Trindade Chain. It shows the youngest plume-induced (ca. 3.7 to <0.17 Ma) subaerial volcanism on the South American plate, associated with the Trindade plume activity. Almeida (1961) recognized five volcanogenic successions at Trindade (in decreasing age): the Trindade Complex (TC, >2.4 Ma) and the Desejado (DF, ∼2.4 to 1.5 Ma), Morro Vermelho (MV, <0.17 Ma), Valado (VF, no age) and Paredão (PF, no age) formations, composed of effusive-pyroclastic deposits and subvolcanic intrusions associated with nephelinite-phonolite volcanic episodes. We revised the original Almeida's (1961) stratigraphy with additional field work and petrography to recognize eruptive styles and processes within the nephelinite-phonolite volcanism. Also, available geochemical databases were used to improve the stratigraphic correlation between nephelinites from different units and to characterize their mantle sources. The nephelinitic volcanism may represent Strombolian and Hawaiian-type activity of low viscosity and volatile-rich lavas interlayered with pyroclastic successions (fall-out deposits). Phonolitic deposits record explosive Vulcanian-style episodes of volatile-rich and higher-viscosity lavas interlayered with pyroclastic deposits (mostly pyroclastic flows). Geochemical data allowed the individualization of nephelinites as follows: (1) MV olivine-rich nephelinites and all olivine-free varieties are low K2O/Na2O, K2O/TiO2 and intermediate CaO/Al2O3 that may be derived from N-MORB and HIMU mantle components; (2) the VF olivine-rich nephelinites have high K2O/Na2O, K2O/TiO2 and CaO/Al2O3 that indicates both EM and HIMU mantle sources and; (3) the PF olivine-rich nephelinites show high K2O/TiO2 similar to those from VF, and intermediate CaO/Al2O3 as nephelinites from MV rocks, suggesting a mixed source with EM + HIMU > N-MORB components. We

  16. The volcanic evolution of Martinique Island: Insights from K-Ar dating into the Lesser Antilles arc migration since the Oligocene

    NASA Astrophysics Data System (ADS)

    Germa, Aurélie; Quidelleur, Xavier; Labanieh, Shasa; Chauvel, Catherine; Lahitte, Pierre

    2011-12-01

    The Lesser Antilles island arc bifurcates into two lines in its northern part, with an old branch to the east and a recent active branch to the west. Martinique is located at the southern tip of the separation. The two arcs diverge northward, and at maximum divergence are separated by a 50 km wide depression. Despite this separation, which suggests a jump in volcanism, activity has been almost continuous in Martinique Island with a slow displacement of the eruptive centers to the west. Considering timing of emplacement, previous authors defined three cycles of activity, the old, intermediate and recent arcs, of Late Oligocene-Early Miocene, Mid Miocene and Late Miocene to present ages, respectively. The present study investigates the timing of emplacement of the volcanic units in Martinique Island in order to constrain the activity of the old and intermediate Lesser Antilles arcs, as recorded on this island. Unspiked K-Ar age determinations on groundmass and plagioclase separates (Cassignol-Gillot technique) were conducted on 20 samples from the old and intermediate volcanic chains. Martinique has evolved as eight distinct volcanic centers: (1) Basal Complex and Sainte Anne Series (24.8 ± 0.4-20.8 ± 0.4 Ma) for the old arc; (2) Vauclin-Pitault Chain (16.1 ± 0.2-8.44 ± 0.12 Ma) and (3) South-western Volcanism (9.18 ± 0.16-7.10 ± 0.10 Ma) for the intermediate arc; and (4) Morne Jacob volcano (5.14 ± 0.07-1.54 ± 0.03 Ma), (5) Trois Ilets Volcanism (2.358 ± 0.034 Ma and 346 ± 27 ka), (6) Carbet Complex (998 ± 14 to 322 ± 6 ka), (7) Mount Conil (543 ± 8 to 127 ± 2 ka) and (8) Mount Pelée (126 ± 2 ka to present) for the recent arc ( Germa et al., 2010, 2011a).We propose migration rates of 1.1-1.4 km/Myr westward, toward the back arc region throughout the whole volcanic history of Martinique Island. These rates, together with geochemical evidence for a more enriched signature in the youngest magmas, are consistent with a geodynamic evolution involving the

  17. The morphology of insular shelves as a key for understanding the geological evolution of volcanic islands: Insights from Terceira Island (Azores)

    NASA Astrophysics Data System (ADS)

    Quartau, R.; Hipólito, A.; Romagnoli, C.; Casalbore, D.; Madeira, J.; Tempera, F.; Roque, C.; Chiocci, F. L.

    2014-05-01

    from volcanic ocean islands result from the competition between two main processes, wave erosion that forms and enlarges them and volcanic progradation that reduces their dimension. In places where erosion dominates over volcanism, shelf width can be used as a proxy for the relative age of the subaerial volcanic edifices and reconstruction of their extents prior to erosion can be achieved. In this study, new multibeam bathymetry and high-resolution seismic reflection profiles are exploited to characterize the morphology of the insular shelves adjacent to each volcanic edifice of Terceira Island in order to improve the understanding of its evolution. Subaerial morphological and geological/stratigraphic data were also used to establish the connection between the onshore and offshore evolution. Shelf width contiguous to each main volcanic edifice is consistent with the known subaerial geological history of the island; most of the older edifices have wider shelves than younger ones. The shelf edge proved to be a very useful indicator in revealing the original extent of each volcanic edifice in plan view. Its depth was also used to reconstruct vertical movements, showing that older edifices like Serra do Cume-Ribeirinha, Guilherme Moniz, and Pico Alto have subsided while more recent ones have not. The morphology of the shelf (namely the absence/presence of fresh lava flow morphologies and several types of erosional, depositional, and tectonic features) integrated with the analysis of the coastline morphology allowed us to better constrain previous geological interpretations of the island evolution.

  18. Temporal and geochemical constraints on active volcanism in southeastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Catalano, J. P.; Baldwin, S.; Fitzgerald, P. G.; Webb, L. E.; Hollocher, K.

    2010-12-01

    Active volcanism in southeastern Papua New Guinea occurs on the Papuan Peninsula (Mt. Lamington and Mt. Victory), in the Woodlark Rift (Dobu Island, SE Goodenough Island, and Western Fergusson Island), and in the Woodlark Basin. In the Woodlark Basin seafloor spreading is active and decompression melting of the mantle produces basalts. However, the cause of volcanism on the Papuan Peninsula and immediately west of active seafloor spreading rift tip in the Woodlark Basin is controversial. Previous studies have suggested active volcanism there results from 1) southward subduction of Solomon Sea lithosphere at the Trobriand Trough or 2) decompression melting as the lithosphere is extended and eventually ruptures. To evaluate these possibilities 20 samples were collected from a bimodal basalt-rhyolite suite in the D’Entrecasteaux Islands approximately 80 km west of the sea floor spreading rift tip. Siliceous ash flow tuffs on Dobu Island, Sanaroa Island, and Eastern Fergusson Island consist of sanidine/anorthoclase + Fe/Ti oxides (illmenite/ magnetite) ± quartz ± nepheline ± clinopyroxene ± xenocrystic olivine. Sanidine and K-feldspar from these ash flow tuffs yielded flat age spectra with 40Ar/39Ar isochron ages of 0.008 ± 0.002 Ma and 0.553 ± 0.001 Ma. ICP-MS trace and REE geochemistry on felsic rocks from Dobu Island and Eastern Fergusson Island yielded multi-element diagrams with enriched incompatible elements, and corresponding negative Nb, Sr, Eu, and Ti anomalies. In contrast, mafic volcanics from SE Goodenough Island are comprised of plagioclase + olivine + Fe/Ti oxides ± orthopyroxene ± clinopyroxene ± hornblende ± biotite. Biotite yielded a 40Ar/39Ar isochron age of 0.376 ± 0.05 Ma. MORB-normalized multi-element diagrams of mafic rocks from SE Goodenough Island are LREE-enriched patterns with negative Nb and positive Sr anomalies. In comparison, multi-element diagrams from previous work on mafic rocks from the New Britain arc to the north also

  19. Monitoring the NW volcanic rift-zone of Tenerife, Canary Islands, Spain: sixteen years of diffuse CO_{2} degassing surveys

    NASA Astrophysics Data System (ADS)

    Rodríguez, Fátima; Halliwell, Simon; Butters, Damaris; Padilla, Germán; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria, is the only one that has developed a central volcanic complex characterized by the eruption of differentiated magmas. At present, one of the most active volcanic structures in Tenerife is the North-West Rift-Zone (NWRZ), which has hosted two historical eruptions: Arenas Negras in 1706 and Chinyero in 1909. Since the year 2000, 47 soil CO2 efflux surveys have been undertaken at the NWRZ of Tenerife Island to evaluate the temporal and spatial variations of CO2 efflux and their relationships with the volcanic-seismic activity. We report herein the last results of diffuse CO2 efflux survey at the NWRZ carried out in July 2015 to constrain the total CO2 output from the studied area. Measurements were performed in accordance with the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. During 2015 survey, soil CO2 efflux values ranged from non-detectable up to 103 g m‑2 d‑1. The total diffuse CO2 output released to atmosphere was estimated at 403 ± 17 t d‑1, values higher than the background CO2 emission estimated on 143 t d‑1. For all campaigns, soil CO2 efflux values ranged from non-detectable up to 141 g m‑2 d‑1, with the highest values measured in May 2005. Total CO2 output from the studied area ranged between 52 and 867 t d‑1. Temporal variations in the total CO2 output showed a temporal correlation with the onsets of seismic activity, supporting unrest of the volcanic system, as is also suggested by anomalous seismic activity recorded in the area during April 22-29, 2004. Spatial distribution of soil CO2 efflux values also showed changes in magnitude and amplitude, with higher CO2 efflux values located along a trending WNW-ESE area. Subsurface magma movement is proposed as a cause for the observed changes in the total output of diffuse CO2 emission, as well as for the spatial distribution of

  20. The origin of the Line Islands: plate or plume controlled volcanism?

    NASA Astrophysics Data System (ADS)

    Storm, L. P.; Konter, J. G.; Koppers, A. A.

    2011-12-01

    Geochemical compositions of melts produced in the Earth's mantle provide key data for our understanding of the Earth's internal structure. Particularly, the range in compositions for oceanic intraplate volcanism has fueled the ongoing debate on the dynamic origin of hotspots. Traditionally, hotspots have been interpreted to originate from narrow, upwelling plumes of hot mantle material that reach the bottom of the tectonic plates. Progressively younger volcanoes, as seen at, for example, Hawaii, are then derived from plume melts. However, such a plume may originate from the core-mantle boundary, the top of seismically defined superplumes, or the origin may not lie in a buoyantly upwelling plume at all. The presence of an age progressive volcanic chain and a large igneous province, a high buoyancy flux, the geochemical composition of the erupted lavas, and seismically slow velocities have been used to distinguish different hotspot origins. Volcanic chains that lack most of these features may originate from the eruption of shallow melts along lithospherically controlled cracks. A unique area to study this type of volcanism is the Line Islands. These islands define a complex chain of volcanoes south of Hawaii that morphologically define multiple sub-groups. Moreover, recent age dating has revealed a complex geochronology. Combined geochronological and geochemical data from the Line Islands allude to the presence of shallow mantle melts that feed eruptions where there are weaknesses in the plates due to fractures or fissures. The Line Islands consist of elongated ridges, seamounts, atolls and islands that form the northern segment of the Line-Tuamotu chain of volcanoes. The volcanic chain is divided into three morphologically distinct regions; the northern, central and southern provinces. Long en echelon ridges of the Line Islands Cross Trend intersect the northern province at 14-16°N, which consists of the section between the Molokai and Clarion fracture zones. The

  1. Diffuse CO2 emission from the NE volcanic rift-zone of Tenerife (Canary Islands, Spain): a 15 years geochemical monitoring

    NASA Astrophysics Data System (ADS)

    Padilla, Germán; Alonso, Mar; Shoemaker, Trevor; Loisel, Ariane; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.

    2016-04-01

    The North East Rift (NER) volcanic zone of Tenerife Island is one of the three volcanic rift-zones of the island (210 km2). The most recent eruptive activity along the NER volcanic zone took place in the 1704-1705 period with the volcanic eruptions of Siete Fuentes, Fasnia and Arafo volcanoes. The aim of this study was to report the results of a soil CO2 efflux survey undertaken in June 2015, with approximately 580 measuring sites. In-situ measurements of CO2 efflux from the surface environment of NER volcanic zone were performed by means of a portable non-dispersive infrared spectrophotometer (NDIR) model LICOR Li800 following the accumulation chamber method. To quantify the total CO2 emission from NER volcanic zone, soil CO2 efflux contour maps were constructed using sequential Gaussian simulation (sGs) as interpolation method. The total diffuse CO2 emission rate was estimated in 1209 t d‑1, with CO2 efflux values ranging from non-detectable (˜0.5 g m‑2 d‑1) up to 123 g m‑2 d‑1, with an average value of 5.9 g m‑2 d‑1. If we compare these results with those obtained in previous surveys developed in a yearly basis, they reveal slightly variations from 2006 to 2015, with to pulses in the CO2 emission observed in 2007 and 2014. The main temporal variation in the total CO2 output does not seem to be masked by external variations. First peak precedes the anomalous seismicity registered in and around Tenerife Island between 2009 and 2011, suggesting stress-strain changes at depth as a possible cause for the observed changes in the total output of diffuse CO2 emission. Second peak could be related with futures changes in the seismicity. This study demonstrates the importance of performing soil CO2 efflux surveys as an effective surveillance volcanic tool.

  2. Volcanological evolution of the Rivi-Capo Volcanic Complex at Salina, Aeolian Islands: magma storage processes and ascent dynamics

    NASA Astrophysics Data System (ADS)

    Nicotra, Eugenio; Viccaro, Marco; De Rosa, Rosanna; Sapienza, Marco

    2014-08-01

    Lava flows and pyroclastic deposits from strombolian fallout related to the activity of the Rivi and Capo volcanoes, which are representative of early subaerial volcanoes on Salina (Aeolian Islands), have been investigated through a geological-petrological approach. Our geological field survey shows that Rivi and Capo volcanoes are part of a single N50°E aligned volcanic complex, here named Rivi-Capo Volcanic Complex (RCVC). Stratigraphically specific rock sampling has allowed reconstruction of the magma feeding processes through time. Whole rock major element compositions, together with core-to-rim profiles of plagioclase and clinopyroxene crystals, show a general evolution toward more basic compositions through the three formations constituting the Capo volcano and within the Rivi center. MELTS simulations and mass balance modeling suggest that the RCVC rocks are the result of fractional crystallization of plagioclase, clinopyroxene, and olivine (ca. 45 % of solid removed) from a primary magma. In addition to fractional crystallization, continuous recharge and mixing with more basic magma coming from deeper parts of the magmatic plumbing system contributed to the final volcanic rock compositions. Our textural and microanalytical data on plagioclase and clinopyroxene crystals allow the definition of a multilevel magmatic storage system with reservoirs at ~20 and ~3 km below sea level. When processes of magma differentiation, ascent, and storage are considered together with the stratigraphic position of each sample, a history of continuous modification of the RCVC plumbing system can be constructed. Volcanism may have been characterized by fissure-type eruptions during the early stages (Lower Capo, Lower Rivi, and Middle Capo Formations), gradually changing later to central-type volcanism (Upper Capo and Upper Rivi Formations).

  3. A spaceborne inventory of volcanic activity in Antarctica and southern oceans, 2000-10

    USGS Publications Warehouse

    Patrick, Matthew R.; Smellie, John L.

    2015-01-01

    Of the more than twenty historically active volcanoes in Antarctica and the sub-Antarctic region only two, to our knowledge, host any ground-based monitoring instruments. Moreover, because of their remoteness, most of the volcanoes are seldom visited, thus relegating the monitoring of volcanism in this region almost entirely to satellites. In this study, high temporal resolution satellite data from the Hawaii Institute of Geophysics and Planetology's MODVOLC system using MODIS (Moderate Resolution Imaging Spectroradiometer) are complemented with high spatial resolution data (ASTER, or Advanced Spaceborne Thermal Emission and Reflection Radiometer, and similar sensors) to document volcanic activity throughout the region during the period 2000–10. Five volcanoes were observed in eruption (Mount Erebus, Mount Belinda, Mount Michael, Heard Island and McDonald Island), which were predominantly low-level and effusive in nature. Mount Belinda produced tephra, building a cinder cone in addition to an extensive lava field. Five volcanoes exhibited detectable thermal, and presumed fumarolic, activity (Deception, Zavodovski, Candlemas, Bristol, and Bellingshausen islands). A minor eruption reported at Marion Island was not detected in our survey due to its small size. This study also discovered a new active vent on Mount Michael, tracked dramatic vent enlargement on Heard Island, and provides an improved picture of the morphology of some of the volcanoes.

  4. Space and time evolution of volcanism within Basse-Terre Island (Guadeloupe, Lesser Antilles) based on new geochronology, geochemistry and geomorphology data

    NASA Astrophysics Data System (ADS)

    Ricci, J.; Quidelleur, X.; Lahitte, P.; Pallares, C.

    2013-12-01

    Basse-Terre Island, located on the Lesser Antilles volcanic arc, is a volcanic complex resulting from the intra-oceanic subduction of the North and South American plates beneath the Caribbean plate. Composed by five main volcanic massifs (Basal complex, Septentrional Chain, Axial Chain, Caribbean Mount, and Grande-Decouverte volcanic complex), its activity has started at 2.79 × 0.04 Ma in the northern part of the island, then, has migrated southward to the current active volcanic dome of La Soufriere volcano. Thirty six new analyses for major and trace elements obtained here increase the previous dataset to more than one hundred samples covering the entire Basse-Terre Island. Major elements show a SiO2 content ranging from 47 to 65 wt.%, with most samples being andesite and basaltic-andesite. K2O vs. SiO2 diagram shows that these lavas belong to the low-K (or tholeitic affinity) and normal calc-alkaline series, with K contents ranging from 0.39 to 1.4 wt.%. Multi-elements diagrams display slight enrichment in most incompatible elements and LREE, with positives anomalies in Sr, Pb, La and Ba, characteristic of subduction derived rocks. Finally, diagrams of incompatible elements ratios, such as Th/Nb vs. Th/Yb, highlight a slight decrease of partial melting rate through time suggesting that younger rocks of Basse-Terre Island are more contaminated by slab-related subduction fluids than older rocks. Focusing on the southern Basse-Terre Island, geochemical data coupled with forty-seven new accurate K-Ar ages added to previous dataset, together with DEM geomorphological studies, allow us to provide the four main steps of the general evolution model for southern Basse-Terre Island for the last 1 Ma. First, our new ages constrain the volcanic activity of the Piton de Bouillante volcano (northernmost part of the Axial Chain), between 880 × 14 and 712 × 12 ka. Taking into account that all volcanoes from the southern part of the Axial Chain, as well as Icaque and

  5. Effects of seagulls on ecosystem respiration, soil nitrogen and vegetation cover on a pristine volcanic island, Surtsey, Iceland

    NASA Astrophysics Data System (ADS)

    Sigurdsson, B. D.; Magnusson, B.

    2010-03-01

    When Surtsey rose from the North Atlantic Ocean south of Iceland in 1963, it became a unique natural laboratory on how organisms colonize volcanic islands and form ecosystems with contrasting structures and functions. In July, 2004, ecosystem respiration rate (Re), soil properties and surface cover of vascular plants were measured in 21 permanent research plots distributed among the juvenile communities of the island. The plots were divided into two main groups, inside and outside a seagull (Larus spp.) colony established on the island. Vegetation cover of the plots was strongly related to the density of gull nests. Occurrence of nests and increased vegetation cover also coincided with significant increases in Re, soil carbon, nitrogen and C:N ratio, and with significant reductions in soil pH and soil temperatures. Temperature sensitivity (Q10 value) of Re was determined as 5.3. When compared at constant temperature the Re was found to be 59 times higher within the seagull colony, similar to the highest fluxes measured in drained wetlands or agricultural fields in Iceland. The amount of soil nitrogen, mainly brought onto the island by the seagulls, was the critical factor that most influenced ecosystem fluxes and vegetation development on Surtsey. The present study shows how ecosystem activity can be enhanced by colonization of animals that transfer resources from a nearby ecosystem.

  6. Soil microbial structure and function post-volcanic eruption on Kasatochi Island and regional controls on microbial heterogeneity

    NASA Astrophysics Data System (ADS)

    Zeglin, L. H.; Rainey, F.; Wang, B.; Waythomas, C.; Talbot, S. L.

    2013-12-01

    Microorganisms are abundant and diverse in soil and their integrated activity drives nutrient cycling on the ecosystem scale. Organic matter (OM) inputs from plant production support microbial heterotrophic life, and soil geochemistry constrains microbial activity and diversity. As vegetation and soil develops over time, these factors change, modifying the controls on microbial heterogeneity. Following a volcanic eruption, ash deposition creates new surfaces where both organismal growth and weathering processes are effectively reset. The trajectory of microbial community development following this disturbance depends on both organic matter accumulation and geochemical constraints. Also, dispersal of microbial cells to the sterile ash surface may determine microbial community succession. The Aleutian Islands (Alaska, USA) are a dynamic volcanic region, with active and dormant volcanoes distributed across the volcanic arc. One of these volcanoes, Kasatochi, erupted violently in August 2008, burying a small lush island in pryoclastic flows and fine ash. Since, plants and birds are beginning to re-establish on developing surfaces, including legacy soils exposed by rapid erosion of pyroclastic deposits, suggesting that recovery of microbial life is also proceeding. However, soil microbial diversity and function has not been examined on Kasatochi Island or across the greater Aleutian region. The project goal is to address these questions: How is soil microbial community structure and function developing following the Kasatochi eruption? What is the relative importance of dispersal, soil OM and geochemistry to microbial community heterogeneity across the Aleutians? Surface mineral soil (20-cm depth) samples were collected from Kasatochi Island in summer 2013, five years after the 2008 eruption, and from eight additional Aleutian islands. On Kasatochi, pryoclastic deposits, exposed legacy soils supporting regrowth of remnant dune wild-rye (Leymus mollis) and mesic meadow

  7. The Online GVP/USGS Weekly Volcanic Activity Report: Providing Timely Information About Worldwide Volcanism

    NASA Astrophysics Data System (ADS)

    Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.

    2001-12-01

    The awesome power and intricate inner workings of volcanoes have made them a popular subject with scientists and the general public alike. About 1500 known volcanoes have been active on Earth during the Holocene, approximately 50 of which erupt per year. With so much activity occurring around the world, often in remote locations, it can be difficult to find up-to-date information about current volcanism from a reliable source. To satisfy the desire for timely volcano-related information the Smithsonian Institution and US Geological Survey combined their strengths to create the Weekly Volcanic Activity Report. The Smithsonian's Global Volcanism Program (GVP) has developed a network of correspondents while reporting worldwide volcanism for over 30 years in their monthly Bulletin of the Global Volcanism Network. The US Geological Survey's Volcano Hazards Program studies and monitors volcanoes in the United States and responds (upon invitation) to selected volcanic crises in other countries. The Weekly Volcanic Activity Report is one of the most popular sites on both organization's websites. The core of the Weekly Volcanic Activity Report is the brief summaries of current volcanic activity around the world. In addition to discussing various types of volcanism, the summaries also describe precursory activity (e.g. volcanic seismicity, deformation, and gas emissions), secondary activity (e.g. debris flows, mass wasting, and rockfalls), volcanic ash hazards to aviation, and preventative measures. The summaries are supplemented by links to definitions of technical terms found in the USGS photoglossary of volcano terms, links to information sources, and background information about reported volcanoes. The site also includes maps that highlight the location of reported volcanoes, an archive of weekly reports sorted by volcano and date, and links to commonly used acronyms. Since the Weekly Volcanic Activity Report's inception in November 2000, activity has been reported at

  8. Thermography of volcanic areas on Piton de la Fournaise, Reunion Island : Mapping surface properties and possible detection of convective air flow within volcanic debris

    NASA Astrophysics Data System (ADS)

    Antoine, R.; Baratoux, D.; Rabinowicz, M.; Saracco, G.; Bachelery, P.; Staudacher, T.; Fontaine, F.

    2007-12-01

    We report on the detection of air convection in a couple of quasi circular cavities forming the 300 years old volcanically inactive cone of Formica Leo (Piton de la Fournaise, Reunion Island) [1]. Infrared thermal images of the cone have been acquired in 2006 from a hand held camera at regular time interval during a complete diurnal cycle. During night and dawn, the data display hot rims and cold centers. Both the conductivity contrasts of the highly porous soils filling the cavities and their 30° slopes are unable to explain the systematic rim to center temperature drop. Accordingly, this signal could be attributed to an air convection dipping inside the highly porous material at the center of each cavity, then flowing upslope along the base of the soil layer, before exiting it along the rims. Anemometrical and electrical data acquired in 2007 allow for the first time the direct detection of this air flow on the field: dipping gas velocities are measured at the center of the cone and self-potentials anomalies [2] generated by the humid air flow in the porous medium are detected. To quantify this process, we present 2D/3D numerical models of air convection in a sloped volcanic soil with a surface temperature evolving between day and night and taking into account electrical phenomena created by the air flow. At this present stage, this work constitutes a first step to investigate the deep structure of the active caldera of Bory-Dolomieu. The detection of the air flow at the surface could be of paramount importance for the understanding of volcanic hazards of the Reunion volcano. [1] Antoine et. al, submitted to G-Cubed [2] Darnet, PhD, Université Louis Pasteur (2003)

  9. Integrating Multiple Space Ground Sensors to Track Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Davies, Ashley; Doubleday, Joshua; Tran, Daniel; Jones, Samuel; Kjartansson, Einar; Thorsteinsson, Hrobjartur; Vogfjord, Kristin; Guomundsson, Magnus; Thordarson, Thor; Mandl, Daniel

    2011-01-01

    Volcanic activity can occur with little or no warning. Increasing numbers of space borne assets can enable coordinated measurements of volcanic events to enhance both scientific study and hazard response. We describe the use of space and ground measurements to target further measurements as part of a worldwide volcano monitoring system. We utilize a number of alert systems including the MODVOLC, GOESVOLC, US Air Force Weather Advisory, and Volcanic Ash Advisory Center (VAAC) alert systems. Additionally we use in-situ data from ground instrumentation at a number of volcanic sites, including Iceland.

  10. Tsunami deposits at high altitudes on the flanks of volcanic islands

    NASA Astrophysics Data System (ADS)

    Paris, Raphael

    2016-04-01

    It is actually difficult to infer the mechanisms and dynamics of giant mass failures of oceanic shield volcanoes and to evaluate related tsunami hazards. Marine conglomerates and gravels found at unusually high elevations in Hawaii, Cape Verde, Mauritius and Canary Islands are often interpreted as being the result of tsunami waves generated by such massive flank failures. In the first part of this contribution, we document tsunami deposits (marine gravels with pumices) attached to the northwestern slopes of Tenerife, Canary Islands, at altitudes up to 132 m asl. Stratigraphy of the deposits and composition of the pumices allows identifying sources of the successive tsunamis and proposing a new scenario for the Icod flank failure and El Abrigo caldera-forming eruption ca. 170 ka. Then we propose a litterature review of tsunami deposits at high altitudes on the flanks of volcanic islands, and especially oceanic shield volcanoes. These deposits are discussed in terms of texture, structure, composition and particularly the juvenile volcanic material, and implications for better understanding the mechanisms controlling massive flank failures.

  11. Volcanic activity at Tvashtar Catena, Io

    USGS Publications Warehouse

    Milazzo, M.P.; Keszthelyi, L.P.; Radebaugh, J.; Davies, A.G.; Turtle, E.P.; Geissler, P.; Klaasen, K.P.; Rathbun, J.A.; McEwen, A.S.

    2005-01-01

    Galileo's Solid State Imager (SSI) observed Tvashtar Catena four times between November 1999 and October 2001, providing a unique look at a distinctive high latitude volcanic complex on Io. The first observation (orbit I25, November 1999) resolved, for the first time, an active extraterrestrial fissure eruption; the brightness temperature was at least 1300 K. The second observation (orbit I27, February 2000) showed a large (??? 500 km 2) region with many, small, hot, regions of active lava. The third observation was taken in conjunction with Cassini imaging in December 2000 and showed a Pele-like, annular plume deposit. The Cassini images revealed an ???400 km high Pele-type plume above Tvashtar Catena. The final Galileo SSI observation of Tvashtar (orbit I32, October 2001), revealed that obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. In this paper, we primarily analyze the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of simple advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping eruptions. The highest reliable color temperature is ???1300 K. Although higher temperatures cannot be ruled out, they do not need to be invoked to fit the observed data. The total power output from the active lavas in February 2000 was at least 1011 W. ?? 2005 Elsevier Inc. All rights reserved.

  12. Ultramafic Volcanism Associated With the El Golfo Giant Lateral Collapse, El Hierro, Canary Islands

    NASA Astrophysics Data System (ADS)

    Longpré, M.; Troll, V. R.; Hansteen, T. H.; Walter, T. R.

    2006-12-01

    It is firmly established that giant landslides play a key role in the evolution of ocean island volcanoes. On- and off-shore studies of e.g. Réunion Island, the Hawaiian, Canarian, and Cape Verdean archipelagoes confirm enormous landslide volumes up to thousands of km3 and runout distances frequently exceeding a hundred km [1]. Accelerated post-collapse volcanism has been witnessed at strato-volcanoes (e.g. Bezymianny, Mt. St. Helens), but may also be common for shield-volcanoes (Waianae, Oahu [2]; Teno, Tenerife [3]). The extent of this phenomenon and its consequences for the magmatic plumbing system of the volcanic edifice are poorly constrained. Between 15-134 ka, the El Golfo giant lateral collapse removed a 150-180 km3 sector of the volcanic edifice of El Hierro, the youngest and westernmost of the Canary Islands. Although no major volcanic edifice has been established since the collapse, post-El Golfo landslide volcanic vents concentrate at the base of the collapse scarp while additonal eruptions occurred along the triaxial rift system of the island [4]. Whilst pre- collapse volcanics include relatively differentiated rocks (up to trachytes, SiO2 ~55 wt%, MgO ~1.5 wt% [4]), a drastic change in the volcanic regime is reflected in the post-collapse eruptions of crystal-rich (up to 60 volume %, with megacrysts up to 3 cm in size) lava flows and pyroclastics (basanites, ankaramites, and picrites, SiO2 <45 wt%, MgO = 6-15 wt%). Chemical thermobarometry [5] using augite and olivine (Fo 71-81) rims, fused groundmass, and whole rock compositions of post-collapse samples indicates that crystallisation mostly occurred in the uppermost mantle at pressures and temperatures in the range of 7-13 kbar and 1150-1250°C, respectively. Most volcanics include several crystal populations, including complex normal and reverse zonation patterns. Narrow outer rims (last ~20 μm) of the augite and olivine crystals commonly show a sharp decrease in Mg# (from ~80 to ~70). We propose

  13. Hydrothermal system of Central Tenerife Volcanic Complex, Canary Islands (Spain), inferred from self-potential measurements

    NASA Astrophysics Data System (ADS)

    Villasante-Marcos, Víctor; Finizola, Anthony; Abella, Rafael; Barde-Cabusson, Stéphanie; Blanco, María José; Brenes, Beatriz; Cabrera, Víctor; Casas, Benito; De Agustín, Pablo; Di Gangi, Fabio; Domínguez, Itahiza; García, Olaya; Gomis, Almudena; Guzmán, Juan; Iribarren, Ilazkiñe; Levieux, Guillaume; López, Carmen; Luengo-Oroz, Natividad; Martín, Isidoro; Moreno, Manuel; Meletlidis, Stavros; Morin, Julie; Moure, David; Pereda, Jorge; Ricci, Tullio; Romero, Enrique; Schütze, Claudia; Suski-Ricci, Barbara; Torres, Pedro; Trigo, Patricia

    2014-02-01

    An extensive self-potential survey was carried out in the central volcanic complex of Tenerife Island (Canary Islands, Spain). A total amount of ~ 237 km of profiles with 20 m spacing between measurements was completed, including radial profiles extending from the summits of Teide and Pico Viejo, and circular profiles inside and around Las Cañadas caldera and the northern slopes of Teide and Pico Viejo. One of the main results of this mapping is the detection of well-developed hydrothermal systems within the edifices of Teide and Pico Viejo, and also associated with the flank satellite M. Blanca and M. Rajada volcanoes. A strong structural control of the surface manifestation of these hydrothermal systems is deduced from the data, pointing to the subdivision of Teide and Pico Viejo hydrothermal systems in three zones: summit crater, upper and lower hydrothermal systems. Self-potential maxima related to hydrothermal activity are absent from the proximal parts of the NE and NW rift zones as well as from at least two of the mafic historical eruptions (Chinyero and Siete Fuentes), indicating that long-lived hydrothermal systems have developed exclusively over relatively shallow felsic magma reservoirs. Towards Las Cañadas caldera floor and walls, the influence of the central hydrothermal systems disappears and the self-potential signal is controlled by the topography, the distance to the water table of Las Cañadas aquifer and its geometry. Nevertheless, fossil or remanent hydrothermal activity at some points along the Caldera wall, especially around the Roques de García area, is also suggested by the data. Self-potential data indicate the existence of independent groundwater systems in the three calderas of Ucanca, Guajara and Diego Hernández, with a funnel shaped negative anomaly in the Diego Hernández caldera floor related to the subsurface topography of the caldera bottom. Two other important self-potential features are detected: positive values towards the

  14. Hydrothermal system of Central Tenerife Volcanic Complex, Canary Islands (Spain), inferred from self-potential measurements

    NASA Astrophysics Data System (ADS)

    Villasante-Marcos, Víctor; Finizola, Anthony; Barde-Cabusson, Stéphanie; López, Carmen; Di Gangi, Fabio; Levieux, Guillaume; Morin, Julie; Ricci, Tullio; Schütze, Claudia; Suski-Ricci, Barbara

    2014-05-01

    An extensive self-potential survey was carried out in the central volcanic complex of Tenerife Island (Canary Islands, Spain). A total amount of ~237 km of profiles with 20 m spacing between measurements was completed, including radial profiles extending from the summits of Teide and Pico Viejo, and circular profiles inside and around Las Cañadas caldera and the northern slopes of Teide and Pico Viejo. One of the main results of this mapping is the detection of well-developed hydrothermal systems within the edifices of Teide and Pico Viejo, and also associated with the flank satellite M. Blanca and M. Rajada volcanoes. A strong structural control of the surface manifestation of these hydrothermal systems is deduced from the data, pointing to the subdivision of Teide and Pico Viejo hydrothermal systems in three zones: summit crater, upper and lower hydrothermal systems. Self-potential maxima related to hydrothermal activity are absent from the proximal parts of the NE and NW rift zones as well as from at least two of the mafic historical eruptions (Chinyero and Siete Fuentes), indicating that long-lived hydrothermal systems have developed exclusively over relatively shallow felsic magma reservoirs. Towards Las Cañadas caldera floor and walls, the influence of the central hydrothermal systems disappears and the self-potential signal is controlled by the topography, the distance to the water table of Las Cañadas aquifer and its geometry. Nevertheless, fossil or remanent hydrothermal activity at some points along the Caldera wall, especially around the Roques de García area, is also suggested by the data. Self-potential data indicate the existence of independent groundwater systems in the three calderas of Ucanca, Guajara and Diego Hernández, with a funnel shaped negative anomaly in the Diego Hernández caldera floor related to the subsurface topography of the caldera bottom. Two other important self-potential features are detected: positive values towards the

  15. Measuring volcanic gases at Taal Volcano Main Crater for monitoring volcanic activity and possible gas hazard

    NASA Astrophysics Data System (ADS)

    Arpa, M.; Hernandez Perez, P. A.; Reniva, P.; Bariso, E.; Padilla, G.; Melian Rodriguez, G.; Barrancos, J.; Calvo, D.; Nolasco, D.; Padron, E.; Garduque, R.; Villacorte, E.; Fajiculay, E.; Perez, N.; Solidum, R.

    2012-12-01

    Taal is an active volcano located in southwest Luzon, Philippines. It consists of mainly tuff cones which have formed an island at the center of a 30 km wide Taal Caldera. Most historical eruptions, since 1572 on Taal Volcano Island, have been characterized as hydromagmatic eruptions. Taal Main Crater, produced during the 1911 eruption, is the largest crater in the island currently filled by a 1.2 km wide, 85 m deep acidic lake. The latest historical eruption occurred in 1965-1977. Monitoring of CO2 emissions from the Main Crater Lake (MCL) and fumarolic areas within the Main Crater started in 2008 with a collaborative project between ITER and PHIVOLCS. Measurements were done by accumulation chamber method using a Westsystem portable diffuse fluxmeter. Baseline total diffuse CO2 emissions of less than 1000 t/d were established for the MCL from 3 campaign-type surveys between April, 2008 to March, 2010 when seismicity was within background levels. In May, 2010, anomalous seismic activity from the volcano started and the total CO2 emission from the MCL increased to 2716±54 t/d as measured in August, 2010. The CO2 emission from the lake was highest last March, 2011 at 4670±159 t/d when the volcano was still showing signs of unrest. Because CO2 emissions increased significantly (more than 3 times the baseline value) at this time, this activity may be interpreted as magmatic and not purely hydrothermal. Most likely deep magma intrusions occurred but did not progress further to shallower depths and no eruption occurred. No large increase in lake water temperature near the surface (average for the whole lake area) during the period when CO2 was above background, it remained at 30-34°C and a few degrees lower than average ambient temperature. Total CO2 emissions from the MCL have decreased to within baseline values since October, 2011. Concentrations of CO2, SO2 and H2S in air in the fumarolic area within the Main Crater also increased in March, 2011. The measurements

  16. Volcanic Evolution in the Galapagos: The Geochemistry and Petrology of Espanola Island

    NASA Astrophysics Data System (ADS)

    McGuire, M.; Varga, K. C.; Harpp, K. S.; Geist, D.; Hall, M. L.

    2015-12-01

    The Galapagos Archipelago consists of a series of volcanic islands located ~1,000 km west of South America that are thought to be the result of a mantle plume. The southeasternmost island, Espanola, is one of the smallest of the major islands, measuring only 7 by 14 km and reaching an elevation of 200 m. Espanola is also the oldest island in the chain, with K-Ar dates from 3.01 ± 0.11 to 3.31 ± 0.36 million years (Hall et al. 1983; White et al., 1993). The southern coast is defined by cliffs that exceed 100 m in height, made up of nearly flat-lying lavas that are each several meters thick. The northern coastline consists of lavas that dip gently toward the ocean from the highlands, as well as remnants of eroded cinder cones. Paleomagnetic measurements made in the field indicate that the western half of the island is reversely polarized, whereas most lavas measured across the eastern half are normally polarized. Major element analyses of samples from across the island indicate that fractional crystallization is the dominant process controlling chemical variations in Espanola lavas, suggesting a relatively long-lived magmatic plumbing system. Stratigraphically constrained chemical variations suggest the magma chamber may have experienced periodic replenishment by compositionally homogeneous primitive melts. Variable fluid-mobile trace element concentrations provide some evidence for contributions from ancient, recycled oceanic crust to the parental melts. Espanola lavas have more depleted Sr and Pb radiogenic isotope ratios than either Floreana or Fernandina, and lie on a mixing curve between the composition of the plume and that of the depleted upper mantle. Between ~3 and 8 Ma, the Galapagos Spreading Center was closer to the Galapagos plume than it is today. Given that Espanola was constructed during the same period, the depleted isotopic signatures suggest that plume-ridge interaction may have been a strong influence on the island's geochemical composition.

  17. Significance of an Active Volcanic Front in the Far Western Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Kelemen, P. B.; Hoernle, K.

    2015-12-01

    Discovery of a volcanic front west of Buldir Volcano, the western-most emergent Aleutian volcano, demonstrates that the surface expression of Aleutian volcanism falls below sea level just west of 175.9° E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. The newly discovered sites of western Aleutian seafloor volcanism are the Ingenstrem Depression, a 60 km-long structural depression just west of Buldir, and an unnamed area 300 km further west, referred to as the Western Cones. These locations fall along a volcanic front that stretches from Buldir to Piip Seamount near the Komandorsky Islands. Western Aleutian seafloor volcanic rocks include large quantities of high-silica andesite and dacite, which define a highly calc-alkaline igneous series and carry trace element signatures that are unmistakably subduction-related. This indicates that subducting oceanic lithosphere is present beneath the westernmost Aleutian arc. The rarity of earthquakes below depths of 200 km indicates that the subducting plate is unusually hot. Some seafloor volcanoes are 6-8 km wide at the base, and so are as large as many emergent Aleutian volcanoes. The seafloor volcanoes are submerged in water depths >3000 m because they sit on oceanic lithosphere of the Bering Sea. The volcanic front is thus displaced to the north of the ridge of arc crust that underlies the western Aleutian Islands. This displacement, which developed since approximately 6 Ma when volcanism was last active on the islands, must be a consequence of oblique convergence in a system where the subducting plate and large blocks of arc crust are both moving primarily in an arc-parallel sense. The result is a hot-slab system where low subduction rates probably limit advection of hot mantle to the subarc, and produce a relatively cool and perhaps stagnant mantle wedge. The oceanic setting and highly oblique subduction geometry also severely limit rates of sediment subduction, so the volcanic rocks, which

  18. Comment on "Construction and destruction of a volcanic island developed inside an oceanic rift: Graciosa Island, Terceira Rift, Azores" by Sibrant et al. (2014) and proposal of a new model for Graciosa's geological evolution

    NASA Astrophysics Data System (ADS)

    Quartau, R.; Hipólito, A.; Mitchell, N. C.; Gaspar, J. L.; Brandão, F.

    2015-09-01

    Volcanoes rising above sea level within extensional oceanic plate boundaries provide accessible locations with which to study the effects of plate tectonic and volcanic processes of such areas. However, relying solely on subaerial observations can lead to biased interpretations. Reconciling the information provided by multibeam echo sounders on the submarine parts of volcanic islands with geology and geomorphology observable above sea level can potentially provide more robust interpretations. In this comment of the study of Sibrant et al. (2014), which is based almost solely on subaerial observations, we show how the published multibeam sonar data around Graciosa reveals that their proposed successive phases of destruction of the volcanic edifices composing the island by massive landslides is incompatible with the high-resolution bathymetry. The data reveal no large-scale debris avalanche deposits or characteristic flank collapse scars where Sibrant et al. (2014) propose these landslides to have occurred. Instead, the data show volcanic constructional areas, some of which have simply been eroded by wave abrasion. The interpretation of collapse structures appears to have originated partly from a misreading of the volcano-stratigraphy and tectonic structures. Overall, wave erosion coupled with subaerial erosion and tectonic activity can more easily explain the onshore observations of Sibrant et al. (2014), providing a less catastrophic explanation for the evolution of Graciosa Island.

  19. Quantitative volcanic susceptibility analysis of Lanzarote and Chinijo Islands based on kernel density estimation via a linear diffusion process

    NASA Astrophysics Data System (ADS)

    Galindo, I.; Romero, M. C.; Sánchez, N.; Morales, J. M.

    2016-06-01

    Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures.

  20. Quantitative volcanic susceptibility analysis of Lanzarote and Chinijo Islands based on kernel density estimation via a linear diffusion process

    PubMed Central

    Galindo, I.; Romero, M. C.; Sánchez, N.; Morales, J. M.

    2016-01-01

    Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures. PMID:27265878

  1. Quantitative volcanic susceptibility analysis of Lanzarote and Chinijo Islands based on kernel density estimation via a linear diffusion process.

    PubMed

    Galindo, I; Romero, M C; Sánchez, N; Morales, J M

    2016-01-01

    Risk management stakeholders in high-populated volcanic islands should be provided with the latest high-quality volcanic information. We present here the first volcanic susceptibility map of Lanzarote and Chinijo Islands and their submarine flanks based on updated chronostratigraphical and volcano structural data, as well as on the geomorphological analysis of the bathymetric data of the submarine flanks. The role of the structural elements in the volcanic susceptibility analysis has been reviewed: vents have been considered since they indicate where previous eruptions took place; eruptive fissures provide information about the stress field as they are the superficial expression of the dyke conduit; eroded dykes have been discarded since they are single non-feeder dykes intruded in deep parts of Miocene-Pliocene volcanic edifices; main faults have been taken into account only in those cases where they could modified the superficial movement of magma. The application of kernel density estimation via a linear diffusion process for the volcanic susceptibility assessment has been applied successfully to Lanzarote and could be applied to other fissure volcanic fields worldwide since the results provide information about the probable area where an eruption could take place but also about the main direction of the probable volcanic fissures. PMID:27265878

  2. Composition, geometry, and emplacement dynamics of a large volcanic island landslide offshore Martinique: From volcano flank-collapse to seafloor sediment failure?

    NASA Astrophysics Data System (ADS)

    Brunet, Morgane; Le Friant, Anne; Boudon, Georges; Lafuerza, Sara; Talling, Peter; Hornbach, Matthew; Ishizuka, Osamu; Lebas, Elodie; Guyard, Hervé

    2016-03-01

    Landslides are common features in the vicinity of volcanic islands. In this contribution, we investigate landslides emplacement and dynamics around the volcanic island of Martinique based on the first scientific drilling of such deposits. The evolution of the active Montagne Pelée volcano on this island has been marked by three major flank-collapses that removed much of the western flank of the volcano. Subaerial collapse volumes vary from 2 to 25 km3 and debris avalanches flowed into the Grenada Basin. High-resolution seismic data (AGUADOMAR-1999, CARAVAL-2002, and GWADASEIS-2009) is combined with new drill cores that penetrate up to 430 m through the three submarine landslide deposits previously associated to the aerial flank-collapses (Site U1399, Site U1400, Site U1401, IODP Expedition 340, Joides Resolution, March-April 2012). This combined geophysical and core data provide an improved understanding of landslide processes offshore a volcanic island. The integrated analysis shows a large submarine landslide deposit, without debris avalanche deposits coming from the volcano, comprising up to 300 km3 of remobilized seafloor sediment that extends for 70 km away from the coast and covers an area of 2100 km2. Our new data suggest that the aerial debris avalanche deposit enter the sea but stop at the base of submarine flank. We propose a new model dealing with seafloor sediment failures and landslide propagation mechanisms, triggered by volcanic flank-collapse events affecting Montagne Pelée volcano. Newly recognized landslide deposits occur deeper in the stratigraphy, suggesting the recurrence of large-scale mass-wasting processes offshore the island and thus, the necessity to better assess the associated tsunami hazards in the region.

  3. Transient changes in bacterioplankton communities induced by the submarine volcanic eruption of El Hierro (Canary Islands).

    PubMed

    Ferrera, Isabel; Arístegui, Javier; González, José M; Montero, María F; Fraile-Nuez, Eugenio; Gasol, Josep M

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1-V3 regions for Bacteria and V3-V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70-200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed. PMID

  4. Transient Changes in Bacterioplankton Communities Induced by the Submarine Volcanic Eruption of El Hierro (Canary Islands)

    PubMed Central

    Ferrera, Isabel; Arístegui, Javier; González, José M.; Montero, María F.; Fraile-Nuez, Eugenio; Gasol, Josep M.

    2015-01-01

    The submarine volcanic eruption occurring near El Hierro (Canary Islands) in October 2011 provided a unique opportunity to determine the effects of such events on the microbial populations of the surrounding waters. The birth of a new underwater volcano produced a large plume of vent material detectable from space that led to abrupt changes in the physical-chemical properties of the water column. We combined flow cytometry and 454-pyrosequencing of 16S rRNA gene amplicons (V1–V3 regions for Bacteria and V3–V5 for Archaea) to monitor the area around the volcano through the eruptive and post-eruptive phases (November 2011 to April 2012). Flow cytometric analyses revealed higher abundance and relative activity (expressed as a percentage of high-nucleic acid content cells) of heterotrophic prokaryotes during the eruptive process as compared to post-eruptive stages. Changes observed in populations detectable by flow cytometry were more evident at depths closer to the volcano (~70–200 m), coinciding also with oxygen depletion. Alpha-diversity analyses revealed that species richness (Chao1 index) decreased during the eruptive phase; however, no dramatic changes in community composition were observed. The most abundant taxa during the eruptive phase were similar to those in the post-eruptive stages and to those typically prevalent in oceanic bacterioplankton communities (i.e. the alphaproteobacterial SAR11 group, the Flavobacteriia class of the Bacteroidetes and certain groups of Gammaproteobacteria). Yet, although at low abundance, we also detected the presence of taxa not typically found in bacterioplankton communities such as the Epsilonproteobacteria and members of the candidate division ZB3, particularly during the eruptive stage. These groups are often associated with deep-sea hydrothermal vents or sulfur-rich springs. Both cytometric and sequence analyses showed that once the eruption ceased, evidences of the volcano-induced changes were no longer observed

  5. Remote sensing for active volcano monitoring in Barren Island, India

    SciTech Connect

    Bhattacharya, A.; Reddy, C.S.S.; Srivastav, S.K. )

    1993-08-01

    The Barren Island Volcano, situated in the Andaman Sea of the Bay of Bengal, erupted recently (March, 1991) after a prolonged period of quiescence of about 188 years. This resumed activity coincides with similar outbreaks in the Philippines and Japan, which are located in an identical tectonic environment. This study addresses (1) remote sensing temporal monitoring of the volcanic activity, (2) detecting hot lava and measuring its pixel-integrated and subpixel temperatures, and (3) the importance of SWIR bands for high temperature volcanic feature detection. Seven sets of TM data acquired continuously from 3 March 1991 to 8 July 1991 have been analyzed. It is concluded that detectable pre-eruption warming took place around 25 March 1991 and volcanic activity started on 1 April 1991. It is observed that high temperature features, such as an erupting volcano, can register emitted thermal radiance in SWIR bands. Calculation of pixel-integrated and sub-pixel temperatures related to volcanic vents has been made, using the dual-band method. 6 refs.

  6. Chronic exposure to volcanic air pollution and DNA damage in Furnas Volcano (São Miguel Island, Azores, Portugal) inhabitants

    NASA Astrophysics Data System (ADS)

    Linhares, Diana; Garcia, Patricia; Silva, Catarina; Ferreira, Teresa; Barroso, Joana; Camarinho, Ricardo; Rodrigues, Armindo

    2015-04-01

    Many studies in volcanic air pollution only have in consideration the acute toxic effects of gas or ash releases however the impact of chronic exposure to ground gas emissions in human health is yet poorly known. In the Azores archipelago (Portugal), São Miguel island has one of the most active and dangerous volcanoes: Furnas Volcano. Highly active fumarolic fields, hot springs and soil diffuse degassing phenomena are the main secondary volcanic phenomena that can be seen at the volcano surroundings. One of the main gases released in these diffuse degassing areas is radon (222Rn), which decay results in solid particles that readily settle within the airways. These decay particles emit alpha radiation that is capable of causing severe DNA damage that cumulatively can eventually cause cancer. Previous studies have established that chronic exposure to chromosome-damaging agents can lead to the formation of nuclear anomalies, such as micronuclei that is used for monitoring DNA damage in human populations. The present study was designed to evaluate whether chronic exposure to volcanic air pollution, associated to 222Rn, might result in DNA damage in human oral epithelial cells. A cross sectional study was performed in a study group of 142 individuals inhabiting an area where volcanic activity is marked by active fumarolic fields and soil degassing (hydrothermal area), and a reference group of 368 individuals inhabiting an area without these secondary manifestations of volcanism (non-hydrothermal area). For each individual, 1000 buccal epithelial cells were analyzed for the frequency of micronucleated cells (MNc) and the frequency of cells with other nuclear anomalies (ONA: pyknosis, karyolysis and karyorrhexis), by using the micronucleus assay. Information on lifestyle factors and an informed consent were obtained from each participant. Assessment of indoor radon was performed with the use of radon detectors. Data were analyzed with logistic regression models, adjusted

  7. Influence of management practices on C stabilization pathways in agricultural volcanic ash soils (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Hernandez, Zulimar; María Álvarez, Ana; Carral, Pilar; de Figueiredo, Tomas; Almendros, Gonzalo

    2014-05-01

    Although C stabilization mechanisms in agricultural soils are still controversial [1], a series of overlapped pathways has been suggested [2] such as: i) insolubilization of low molecular weight precursors of soil organic matter (SOM) with reactive minerals through physical and chemical bonding, ii) selective accumulation of biosynthetic substances which are recalcitrant because of its inherent chemical composition, and iii) preservation and furter diagenetic transformation of particulate SOM entrapped within resistant microaggregates, where diffusion of soil enzymes is largely hampered. In some environments where carbohydrate and N compounds are not readily biodegraded, e.g., with water saturated micropores, an ill-known C stabilization pathway may involve the formation of Maillard's reaction products [3]. In all cases, these pathways converge in the formation of recalcitrant macromolecular substances, sharing several properties with the humic acid (HA) fraction [4]. In template forests, the selective preservation and further microbial reworking of plant biomass has been identified as a prevailing mechanism in the accumulation of recalcitrant SOM forms [5]. However, in volcanic ash soils with intense organomineral interactions, condensation reactions of low molecular weight precursors with short-range minerals may be the main mechanism [6]. In order to shed some light about the effect of agricultural management on soil C stabilization processes on volcanic ash soils, the chemical composition of HA and some structural proxies of SOM informing on its origin and potential resistance to biodegradation, were examined in 30 soils from Canary Islands (Spain) by visible, infrared (IR) and 13C nuclear magnetic resonance (NMR) spectroscopies, elementary analysis and pyrolytic techniques. The results of multivariate treatments, suggested at least three simultaneous C stabilization biogeochemical trends: i) diagenetic alteration of plant biomacromolecules in soils receiving

  8. Age, geochemical affinity and geodynamic setting of granitoids and felsic volcanics in the basement of Wrangel Island

    NASA Astrophysics Data System (ADS)

    Luchitskaya, Marina; Moiseev, Artem; Sokolov, Sergey; Tuchkova, Marianna; Sergeev, Sergey

    2016-04-01

    Granitoids and basic rocks of Wrangel Island are the components of Precambrian metamorphic basement, exposed in the anticlinorium in the central part of the island and named as Wrangel complex (Kameneva, 1970; Ageev, 1979; Til'man et al., 1964, 1970; Ganelin, 1989; Kos'ko et al., 1993, 2003). The latter is composed of volcanic, volcaniclastic and clastic rocks metamorphosed in greenshist to locally lower amphibolite facies (Kos'ko et al., 2003; Cecile et al., 1991). Obtained earlier datings of granitoids and basic rocks from Wrangel complex display a wide scatter: 609-700 Ma, U-Pb zircon (Cecile et al., 1991; Kos'ko et al., 1993); 590 Ma, Pb-Pb zircon; 574, 575 Ma, K-Ar whole rock; 475 Ma, Rb-Sr muscovite (Kos'ko et al., 2003). Our previous U-Pb SHRIMP datings indicate the episode of granitoid activity in 681-707 Ma (Luchitskaya et al., 2014). Here we present new results from zircon SIMS and LA-ICP-MS U-Pb dating and geochemical data for granites and felsic volcanics of Wrangel complex. Granites of Wrangel complex in the area of Khishchnikov River form small tabular bodies less than 30 meters in thickness. They range from slightly recrystallized muscovite granites to gneissic and mylonitic ones. Felsic and basic volcanics are exposed in the central part of Wrangel Island (rivers Neizvestnaya and Krasnyy Flag). Their interrelations are unknown and earlier they were considered as single bymodal assemblage of C1 sequence (Kos'ko et. al., 1993, 2003). Samples were collected in the area of Pervaya Mountain, visible thickness of volcanics ~100 meters. Basalts are overlain by conglomerates with detrite zircons no younger than 550 Ma (Moiseev et al., 2009, 2015). Wheited mean ages of zircons from muscovite granites and mylonitic ones are 592.9±6.7 Ma (n=10) and 692.9±5.0 Ma (n=30); in two samples we suppose the age of crystallization ~700 Ma. Wheited mean ages of zircons from felsic volcanics are 594.4±7.1 Ma (n=10) and 598.6±7.5 Ma (n=10). Granites and felsic

  9. Acquisition, capitalization, modeling and sharing of volcanic and seismic monitoring data at La Réunion Island

    NASA Astrophysics Data System (ADS)

    Boissier, Patrice; Di Muro, Andrea; Henriette, Laura; Rivière, Audrey; Roult, Geneviève; Agrinier, Pierre; Beauducel, François; Davoine, Paule-Annick; Dyon, Joël; Ferrazzini, Valérie; Kowalski, Philippe; Lemarchand, Arnaud; Nercessian, Alexandre; Peltier, Aline; Shapiro, Nikolai; Staudacher, Thomas; Villeneuve, Nicolas

    2014-05-01

    Piton de la Fournaise is one of the most active volcano in the world with an average of one eruption every 9 months, and rest periods of short duration (only 2 periods exceeded 5 years during the last 50 years). Even if 97 percent of the recent volcanic activity took place within the uninhabited Enclos Fouque caldera; only 3 eruptions occurred outside of the caldera, threatening inhabited areas. The distal 1977 eruption (NE rift), the lave flows of which passed through Piton Sainte-Rose village, destroying houses and forced the evacuation of part of the population, triggered an awareness of volcanic risk at Piton de la Fournaise and led to the creation of the Piton de la Fournaise Volcano Observatory (OVPF - IPGP) in 1979. During thirty-five years, the continuous monitoring networks (geophysical and geochemical), measurements campaigns and phenomenological observation (e.g. imaging and films in the visible and infrared) have built an extraordinary amount of heterogeneous data in terms of format (digital and analog) and storage supports (paper, magnetic tape, floppy disk, etc.). With the aim to structure and distribute the data acquired since its establishment the OVPF conceived an innovative project for "Acquisition, capitalization, modeling and sharing of volcanic and seismic monitoring data at La Reunion Island". The project is funded by the European Regional Development Fund - Convergence (2007-2013) and supported by the local government (Region Reunion). The project is structured around two main parts : - Action 1: acquisition, digitizing and data backup, - Action 2: development of an Information System. On one hand, the project has the ultimate goal to facilitate the distribution of high quality data and long time series to the largest number of beneficiaries of the local, national and international scientific community and of the public and private sectors through IPGP Internet portals (IPGP Data Center and VOLOBSIS). On the other hand, the information system

  10. A possible prebiotic origin on volcanic islands of oligopyrrole-type photopigments and electron transfer cofactors.

    PubMed

    Fox, Stefan; Strasdeit, Henry

    2013-06-01

    Tetrapyrroles are essential to basic biochemical processes such as electron transfer and photosynthesis. However, it is not known whether these evolutionary old molecules have a prebiotic origin. We have serendipitously obtained pyrroles, which are the corresponding monomers, in laboratory experiments that simulated the interaction of amino acid-containing seawater with molten lava. The thermal pyrrole formation from amino acids, which so far has only been reported for special cases, can be explained by the observation that the amino acids become metal bonded, for example in (CaCl2)3(Hala)2·6H2O (Hala=DL-alanine), when the seawater evaporates. At a few hundred degrees Celsius, sea salt crusts also release hydrochloric acid (HCl). On primordial volcanic islands, the volatile pyrroles and HCl must have condensed at cooler locations, for example, in rock pools. There, pyrrole oligomerization may have occurred. To study this possibility, we added formaldehyde and nitrite, two species for which plausible prebiotic sources are known, to 2,4-diethylpyrrole and HCl. We found that even at high dilution conjugated (oxidized) oligomers, including octaethylporphyrin and other cyclic and open-chain tetrapyrroles, were formed. All experiments were conducted under rigorously oxygen-free conditions. Our results suggest that primitive versions of present-day biological cofactors such as chlorophylls, bilins, and heme were spontaneously abiotically synthesized on primordial volcanic islands and thus may have been available to the first protocells. PMID:23742230

  11. Hawaii and Beyond: Volcanic Islands as Model Systems for Biogeochemical and Human Ecodynamic Research

    NASA Astrophysics Data System (ADS)

    Chadwick, O.

    2012-12-01

    The Hawaiian Islands provide an excellent natural lab for understanding geochemical and ecosystem processes. The most important features are: a) increasing volcano age with distance from the hotspot, b) asymmetric rainfall distribution imposed by the northeasterly trade winds and orographic processes, creating wet windward and dry leeward landscapes, c) an impoverished vegetation assemblage allowing the same species to grow in strongly varying climate and soil conditions, d) the ability to hold topography relatively constant over long time scales by sampling on volcanic shield remnants that are preserved even on the oldest high island, Kauai, and e) a long-term topographic evolution that carves the gently sloping shield surfaces into steep-sided, amphitheater headed, relatively flat floored valleys. Although deeply incised valleys are well represented in Kauai, the later stages of volcanic island evolution are not well expressed in the exposed Hawaiian Islands. Therefore, I also consider examples from the Society and Gambier Islands in French Polynesia to demonstrate the biogeochemical and human ecodynamic impacts of valley expansion and subsidence leading to drowning of all but the highest elevation interfluves. In Hawaii, I and many colleagues have characterized the details of biogeochemical processes such as: a) variations in oxygen isotopes in soil water and soil minerals, b) changing nutrient sources using Sr, Ca, and Mg isotopes, c) mineral - carbon sorption and its implications for carbon storage in soils and for mineral ripening, and d) the development of leaching and redox driven pedogenic thresholds. Here, I address how these biogeochemical features influence human land-use decisions in prehistoric Hawaii and elsewhere in the Pacific. Polynesian radiation into the eastern Pacific occurred rapidly after 1300 y bp. Although they carried with them a kitchen garden each new island presented a different environmental challenge. They were sensitive to

  12. Geophysical monitoring from seafloor observatories in Italian volcanic sites: Marsili Seamount, Etna Volcano and Stromboli Island.

    NASA Astrophysics Data System (ADS)

    Giovanetti, Gabriele; Monna, Stephen; Lo Bue, Nadia; Embriaco, Davide; Frugoni, Francesco; Marinaro, Giuditta; De Caro, Mariagrazia; Sgroi, Tiziana; Montuori, Caterina; De Santis, Angelo; Cianchini, Gianfranco; Favali, Paolo; Beranzoli, Laura

    2016-04-01

    Many volcanoes on Earth are located within or near the oceans and observations from the seafloor can be very important for a more complete understanding of the structure and nature of these volcanoes. We present some results obtained from data acquired in volcanic sites in the Central Mediterranean Sea. Data were taken by means of stand-alone free-fall systems, and fixed-point ocean observatories, both cabled and autonomous, some of which are part of the European research infrastructure EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org). EMSO observatories strongly rely on a multidisciplinary approach, in spite of the many technical challenges that the operation of very different sensors by means of a single acquisition system presents. We focus on three volcanic sites near the coasts of Italy (Marsili seamount, Stromboli Island and Etna Volcano) involved in subduction processes and to the opening of the Central Mediterranean basin. Through multidisciplinary analysis we were able to associate geophysical and oceanographic signals to a common volcanic source in a more reliable way with respect to single sensor analysis, showing the potential of long-term seafloor monitoring in unravelling otherwise still obscure aspects of such volcanoes. The very strong expansion of seafloor monitoring, which is taking place both in the quantity of the infrastructures and in the technological capabilities, suggests that there will be important developments in the near future.

  13. New insights from IODP Expedition 340 offshore Montserrat: First drilling of large volcanic island landslides

    NASA Astrophysics Data System (ADS)

    Talling, Peter; Le Friant, Anne; Ishizuka, Osamu; Watt, Sebastian; Coussens, Maya; Jutzeler, Martin; Wall-Palmer, Deborah; Palmer, Martin; Cassidy, Michael; Kataoka, Kyoko; Endo, Daisuko; McCanta, Molly; Trofimovs, Jessica; Hatfield, Robert; Stinton, Adam; Lebas, Elodie; Boudon, Georges; Expedition 340 Shipboard Science Party, IODP

    2015-04-01

    Montserrat now provides one of the most complete datasets for understanding the character and tempo of hazardous events at volcanic islands. Much of the erupted material ends up offshore, and this offshore record may be easier to date due to intervening hemiplegic sediments between event beds. The offshore dataset includes the first scientific drilling of volcanic island landslides during IODP Expedition 340, together with an unusually comprehensive set of shallow sediment cores and 2-D and 3-D seismic surveys. Most recently in 2013, Remotely Operated Vehicle (ROV) dives mapped and sampled the surface of the main landslide deposits. This contribution aims to provide an overview of key insights from ongoing work on IODP Expedition 340 Sites offshore Montserrat.Key objectives are to understand the composition (and hence source), emplacement mechanism (and hence tsunami generation) of major landslides, together with their frequency and timing relative to volcanic eruption cycles. The most recent major collapse event is Deposit 1, which involved ~1.8 km cubed of material and produced a blocky deposit at ~12-14ka. Deposit 1 appears to have involved not only the volcanic edifice, but also a substantial component of a fringing bioclastic shelf, and material locally incorporated from the underlying seafloor. This information allows us to test how first-order landslide morphology (e.g. blocky or elongate lobes) is related to first-order landslide composition. Preliminary analysis suggests that Deposit 1 occurred shortly before a second major landslide on the SW of the island (Deposit 5). It may have initiated English's Crater, but was not associated with a major change in magma composition. An associated turbidite-stack suggests it was emplaced in multiple stages, separated by at least a few hours and thus reducing the tsunami magnitude. The ROV dives show that mega-blocks in detail comprise smaller-scale breccias, which can travel significant distances without complete

  14. GRID based Thermal Images Processing for volcanic activity monitoring

    NASA Astrophysics Data System (ADS)

    Mangiagli, S.; Coco, S.; Drago, L.; Laudani, A.,; Lodato, L.; Pollicino, G.; Torrisi, O.

    2009-04-01

    Since 2001, the Catania Section of the National Institute of Geophysics and Volcanology (INGV) has been running the video stations recording the volcanic activity of Mount Etna, Stromboli and the Fossa Crater of Vulcano island. The video signals of 11 video cameras (seven operating in the visible band and four in infrared) are sent in real time to INGV Control Centre where they are visualized on monitors and archived on a dedicated NAS storage. The video surveillance of the Sicilian volcanoes, situated near to densely populated areas, helps the volcanologists providing the Civil Protection authorities with updates in real time on the on-going volcanic activity. In particular, five video cameras are operating on Mt. Etna and they record the volcano from the south and east sides 24 hours a day. During emergencies, mobile video stations may also be used to better film the most important phases of the activity. Single shots are published on the Catania Section intranet and internet websites. On June 2006 a A 40 thermal camera was installed in Vulcano La Fossa Crater. The location was in the internal and opposite crater flank (S1), 400 m distant from the fumarole field. The first two-year of data on temperature distribution frequency were recorded with this new methodology of acquisition, and automatically elaborated by software at INGV Catania Section. In fact a dedicated software developed in IDL, denominated Volcano Thermo Analysis (VTA), was appositely developed in order to extract a set of important features, able to characterize with a good approssimation the volcanic activity. In particular the program first load and opportunely convert the thermal images, then according to the Region Of Interest (ROI) and the temperature ranges defined by the user provide to automatic spatial and statistic analysis. In addition the VTA is able to analysis all the temporal series of images available in order to achieve the time-event analysis and the dynamic of the volcanic

  15. The dykes and structural setting of the volcanic front in the Lesser Antilles island arc

    NASA Astrophysics Data System (ADS)

    Wadge, G.

    1986-12-01

    The orientations of dykes from many of the islands of the Lesser Antilles island arc have been mapped. Most of these dykes can be interpreted in terms of local or regional swarms derived from specific volcanoes of known age, with distinct preferred orientations. Dykes are known from all Cenozoic epochs except the Palaeocene, but are most common in Pliocene, Miocene and Oligocene rocks. A majority of the sampled dykes are basaltic, intrude volcaniclastic host rocks and show a preference for widths of 1 1.25 m. Locally, dyke swarms dilate their hosts by up to 9% over hundreds of metres and up to 2% over distances of kilometres. The azimuths of dykes of all ages show a general NE-SW preferred orientation with a second NW-SE mode particularly in the Miocene rocks of Martinique. The regional setting for these minor intrusions is a volcanic front above a subduction zone composed of three segments: Saba-Montserrat, Guadeloupe-Martinique, St. Lucia-Grenada. The spacing of volcanic centres along this front is interpreted in terms of rising plumes of basaltic magma spaced about 30 km apart. This magma is normally intercepted at crustal depths by dioritic plutons and andesitic/dacitic magma generated there. Plumes which intersect transverse fracture systems or which migrate along the front can avoid these crustal traps. Throughout its history the volcanic front as a whole has migrated, episodically, towards the backarc at an average velocity of about 1 km/Ma. The local direction of plate convergence is negatively correlated with the local preferred orientation of dykes. The dominant NE-SW azimuth mode corresponds closely to the direction of faulting in the sedimentary cover of the backarc and the inferred tectonic fabric of the oceanic crust on which the arc is founded. A generalised model of the regional stress field that controls dyke intrusion outside of the immediate vicinity of central volcanic vents is proposed, in which the maximum horizontal stress parallels the

  16. Using volcanic tremor for eruption forecasting at White Island volcano (Whakaari), New Zealand

    NASA Astrophysics Data System (ADS)

    Chardot, Lauriane; Jolly, Arthur D.; M. Kennedy, Ben; Fournier, Nicolas; Sherburn, Steven

    2015-09-01

    Eruption forecasting is a challenging task because of the inherent complexity of volcanic systems. Despite remarkable efforts to develop complex models in order to explain volcanic processes prior to eruptions, the material Failure Forecast Method (FFM) is one of the very few techniques that can provide a forecast time for an eruption. However, the method requires testing and automation before being used as a real-time eruption forecasting tool at a volcano. We developed an automatic algorithm to issue forecasts from volcanic tremor increase episodes recorded by Real-time Seismic Amplitude Measurement (RSAM) at one station and optimised this algorithm for the period August 2011-January 2014 which comprises the recent unrest period at White Island volcano (Whakaari), New Zealand. A detailed residual analysis was paramount to select the most appropriate model explaining the RSAM time evolutions. In a hindsight simulation, four out of the five small eruptions reported during this period occurred within a failure window forecast by our optimised algorithm and the probability of an eruption on a day within a failure window was 0.21, which is 37 times higher than the probability of having an eruption on any day during the same period (0.0057). Moreover, the forecasts were issued prior to the eruptions by a few hours which is important from an emergency management point of view. Whereas the RSAM time evolutions preceding these four eruptions have a similar goodness-of-fit with the FFM, their spectral characteristics are different. The duration-amplitude distributions of the precursory tremor episodes support the hypothesis that several processes were likely occurring prior to these eruptions. We propose that slow rock failure and fluid flow processes are plausible candidates for the tremor source of these episodes. This hindsight exercise can be useful for future real-time implementation of the FFM at White Island. A similar methodology could also be tested at other

  17. The tsunami effects of a volcanic island flank collapse on a semi-enclosed basin: The Pico-São Jorge channel in the Azores archipelago

    NASA Astrophysics Data System (ADS)

    Quartau, R.; Omira, R.; Ramalho, I.; Baptista, M. A.; Mitchell, N. C.

    2015-12-01

    The Azores archipelago is a set of nine volcanic islands in the middle of the North Atlantic, close to the triple junction between the North American, Eurasian and African plates. Due to their location, the islands are seismic and volcanically active, which makes them especially vulnerable to these types of hazards that could eventually trigger flank collapses, capable of generating destructive tsunamis. However, solid evidence of large-scale flank collapses has only been found recently in Pico Island (Costa et al., 2014; Quartau et al., 2015). This study investigates for the first time the tsunami effects of a flank collapse of the northeastern subaerial slope of Pico Island that occurred more than 70 ka ago. We first reconstructed the pre-event sub-aerial morphology of the island, and then numerically model the flank failure involving an estimated volume of ~8 km3, its flow toward and under the sea of ~14 km, and the subsequent tsunami generation and propagation. The modelling suggests that the collapse of Pico created a mega-tsunami that significantly impacted the coast of adjacent São Jorge Island only after 7 minutes after generation, with wave run-up reaching a maximum of 50 m at some coastlines. Most of the tsunami energy became trapped in the semi-enclosed basin between Pico and São Jorge Islands, with only relatively little energy escaping to neighboring islands. Acknowledgments The author wishes to acknowledge the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe)" for its major contribution for the success of this study. Publication supported by project FCT UID/GEO/50019/2013 - Instituto Dom Luiz. The author also acknowledges Fundação Luso-Americana para o Desenvolvimento for supporting the participation in the meeting.

  18. Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity

    NASA Astrophysics Data System (ADS)

    Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.

    2012-12-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.

  19. The Azuaje travertine: an example of aragonite deposition in a recent volcanic setting, N Gran Canaria Island, Spain

    NASA Astrophysics Data System (ADS)

    Rodríguez-Berriguete, A.; Alonso-Zarza, A. M.; Cabrera, M. C.; Rodriguez-Gonzalez, A.

    2012-11-01

    The Azuaje travertines in the north of Gran Canary Island crop out in the Azuaje Gorge, which is incised into Miocene volcanic breccias of the Roque Nublo Formation. This travertine is interesting because of the scarcity of travertines in the Canary Islands and its close relationship with recent volcanic events. Part of the travertine overlies a lava flow, dated at 2420 ± 40 years BP. The travertine is composed mainly of aragonite in both perched systems on the gorge walls and in gorge bottom deposits parallel to the present stream. Perched systems include deposits from the feeder conduits within the Roque Nublo Formation that spilled out through waterfalls and over barriers. The gorge (valley) bottom system includes barrier and pool deposits. The main laminated facies are composed mostly of large fibrous aragonite crystals, while there are also common micritic and porous microfabrics. Shrubs, coated grains, coated bubbles and rafts are present in many of the deposits. Detailed study of the microfacies shows the presence of sparsely distributed biogenic features. The δ13C values are between + 4.0 and + 11.0‰, and the δ18O values range between - 11.0 and - 2.0‰ VPDB. These δ13C values lie within the range of those of thermogene travertines fed by thermal waters that cooled downstream, as indicated by the increase of the carbon and oxygen isotope values in that direction. The common occurrence of fibrous radial fabrics is interpreted to be due to disequilibrium conditions during aragonite precipitation. Disequilibrium was likely caused by rapid CO2 degassing of the thermal waters that led to a rapid increase in the degree of aragonite saturation. Thus, the morphology of the aragonite crystals and the isotopic composition indicate that the formation of the Azuaje travertine was mostly due to abiogenic processes induced by rapid degassing of thermal waters, linked to the presence of a recent lava flow within the Gorge. In short, the Azuaje travertine shows the

  20. Long-term monitoring of stable isotopic compositions of precipitation over volcanic island, Jeju, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Young-Hee; Koh, Dong-Chan; Park, Won-Bae; Bong, Yeon-Sik; Lee, Kwang-Sik; Lee, Jeonghoon

    2015-04-01

    Stable isotopic compositions of precipitation can be widely used to understand moisture transport in the atmosphere, proxies for paleoclimate and interactions between groundwater and precipitation. Over Jeju volcanic island, located southwest of the Korean Peninsula, precipitation penetrated directly into the highly permeable aquifer is the main source of groundwater. In this study, long-term stable isotopic compositions of precipitation over Jeju Island are characterized to describe spatial and temporal patterns for hydrology and paleoclimate. At fifteen sites from September 2000 to December 2003, precipitation samples were collected and analyzed by Isotope Ratio Mass Spectrometer at the Korea Basic Science Institute. Compared to Lee et al. (2003), the two seasonal local meteoric water lines widen, which may change the relative contributions of winter and summer season precipitation to the groundwater recharge. The precipitation isotopes are inversely correlated with precipitation amount in summer, whereas they do not show a strong correlation with surface air temperature. The precipitation isotopes monthly averaged relatively show a periodic function (R2=0.63 and 0.40 for hydrogen and oxygen, respectively), and deuterium excess (d-excess=δD-8×δ18O) shows a strong pattern of quadratic function (R2=0.97), which is related to a seasonal change of air masses. Altitude effect of precipitation isotopes, which can be a clue to reveal sources of groundwater, can be observed in every aspect of the volcanic island (for the oxygen isotope, -0.14‰ for east and west, -0.18‰ for north and -0.085‰ for south per 100 m). Our analysis of precipitation isotopes will be helpful to provide limitations and opportunities for paleoclimate reconstruction using isotopic proxies and water movement from atmosphere to subsurface.

  1. Volcanic emissions of metals and halogens from White Island (New Zealand) and Erebus volcano (Antarctica) determined with chemical traps

    NASA Astrophysics Data System (ADS)

    Wardell, L. J.; Kyle, P. R.; Counce, D.

    2008-11-01

    Volcanic emission rates of As, Sb, Pb, Hg, Se, Cl, and F were determined at Erebus volcano, Antarctica and White Island, New Zealand, using chemical traps. The trace metal fluxes were determined by combining the species to S ratios in the solutions with SO 2 emission rates measured by correlation spectrometry at the two volcanoes. At Erebus volcano, fluxes for the metals Pb and Hg were 2.0 × 10 - 4 and 8.1 × 10 - 6 kg s - 11 , respectively. Fluxes for Cl, F, As, Sb and Se (0.35, 0.15, 2.5 × 10 - 4 , 1.2 × 10 - 5 , and 4.5 × 10 - 6 kg s - 1 , respectively) agreed within error limits for values determined previously by the LiOH impregnated filter method [Zreda-Gostynska, G., Kyle, P., Finnegan, D., Prestbo, K., 1997. Volcanic gas emissions from Mount Erebus and their impact on the Antarctic environment. Journal of Geophysical Research, 102(B7): 15039-15055.], demonstrating the utility of the chemical trap method. A fall in the As/S ratio from 7 × 10 - 4 in 1997/1999 to 3 × 10 - 4 in 2000 at Erebus coincided with a change in the frequency and style of eruptive activity that may have been due to injection of magma into the system. At White Island, chemical trap data indicated fluxes of Cl = 0.90, F = 0.0079, Pb = 2.7 × 10 - 4 , Hg = 1.1 × 10 - 5 , As = 1.3 × 10 - 4 , Sb = 1.9 × 10 - 5 and Se = 1.5 × 10 - 5 kg s - 1 . Samples collected 600 m downwind of the active crater were comparable to samples collected adjacent to the main gas vent, showing that this method can still be used at some distance from a degassing vent.

  2. Cooling rate variation in natural volcanic glasses from Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Wilding, M.; Webb, Sharon; Dingwell, D.; Ablay, Giray; Marti, Joan

    1996-10-01

    Silicate melts form glasses in a variety of geological environments. The relaxation (equilibration) of the frozen glass structure provides a means of investigating the quench rates of natural glasses, and this cooling history provides an important constraint for models of melt dynamics. Phonolite glasses from the central volcanic edifice of Tenerife, Canary Islands indicate a range of five orders of magnitude cooling rate, determined by modeling the relaxation of the structure-dependent property, enthalpy ( H) across the glass transition. The relaxation of enthalpy is determined by heat capacity ( c p = Δ H/Δ T) measurement of natural glass samples by differential scanning calorimetry (DSC). Upon heating, the heat capacity curve in the vicinity of the glass transition has a geometry characteristic of the previous cooling rate. A series of thermal treatments applied to each individual sample results in a set of sample-specific parameters which are used to model the heat capacity curve of the naturally cooled glass. The cooling rate is then derived. The equivalence of shear and enthalpic relaxation enables the relaxation of enthalpy for these volcanic samples to be described by a general term for the evolution of fictive temperature. Quench rates for thirty-one glasses are calculated to be within the range 10°C s 1 to 7°C per day. The cooling rates quoted are linear approximations across the glass transition. Within different volcanic facies cooling rates depend on several factors. The most rapidly cooled glasses occur where samples lose heat by radiation from the surface. Our analyses indicate that in certain environments, a natural annealing process results in slow quench rates. This is interpreted as either a slow initial cooling process or the reheating of a glass to an annealing temperature within the glass transition interval. The latter results in relaxation to a lower temperature structure. Controls on these processes include the initial temperature and

  3. Isotopic variations with distance and time in the volcanic islands of the Cameroon line: evidence for a mantle plume origin

    NASA Astrophysics Data System (ADS)

    Lee, Der-Chuen; Halliday, Alex N.; Fitton, J. Godfrey; Poli, Giampero

    1994-05-01

    The oceanic sector of the Cameroon line consists of three volcanic islands: Principe, São Tomé and Pagalu. New 40Ar 39Ar data for Pagalu basalts, combined with published KAr ages for Principe and São Tomé, indicate that all three islands have been active in the past 5 Ma. They have similar petrogenetic histories, with basements of basaltic flows capped by more evolved rocks. However, the age of the earliest exposed volcanic rocks decreases oceanward from Principe (31 Ma) to São Tomé (13 Ma) to Pagalu (4.8 Ma). This age progression is consistent with the suggested motion of the African plate over this period of time. The average incompatible trace element compositions of < 10 Ma lavas with ⩾ 4 wt% MgO on each island are very similar. However, ( 87Sr/86Sr) t increases from 0.7029 to 0.7037 and ( 206Pb/204Pb) t decreases from 20.2 to 18.9 from Principe through São Tomé to Pagalu for all samples younger than 10 Ma. In addition to the overall spatial isotopic variations, Principe and São Tomé display temporal isotopic variations, with Pb isotopic ratios becoming progressively more radiogenic. Pagalu shows no temporal geochemical or isotopic differences and the island has the least radiogenic Pb but most radiogenic Sr. These distinctive Pb, Sr and Nd isotopic compositions are also found in the early tholeiitic hyaloclastite breccia from Principe (31 Ma). Similarly, the Nd and Sr isotopic compositions are identical to those of the earliest São Tomé lavas (13 Ma) and the Pb isotopic compositions of early São Tomé samples are only slightly radiogenic relative to Pagalu. Therefore, it is probable that all these islands were initiated from a common source, similar to that of Pagalu, that migrated relative to the melt zone of each island with time. Since their initiation, the magma conduits at Principe and São Tomé have been gradually modified by the introduction of a HIMU component. The common source from which the islands were initially derived

  4. Comparative analysis of the impact of geological activity on the structural design of telescope facilities in the Canary Islands, Hawaii and Chile

    NASA Astrophysics Data System (ADS)

    Eff-Darwich, A.; García-Lorenzo, B.; Rodriguez-Losada, J. A.; de La Nuez, J.; Hernández-Gutiérrez, L. E.; Romero-Ruiz, M. C.

    2010-09-01

    An analysis of the impact of seismic and volcanic activity has been carried out at selected astronomical sites, namely the observatories of El Teide (Tenerife, Canary Islands), Roque de los Muchachos (La Palma, Canary Islands), Mauna Kea (Hawaii) and Paranal (Chile), and the candidate site of Cerro Ventarrones (Chile). Hazard associated with volcanic activity is low or negligible at all sites, whereas seismic hazard is very high in Chile and Hawaii. The lowest geological hazard in both seismic and volcanic activity is found at Roque de los Muchachos observatory, on the island of La Palma.

  5. Recent volcanic activity on Venus - Evidence from radiothermal emissivity measurements

    NASA Technical Reports Server (NTRS)

    Robinson, Cordula A.; Wood, John A.

    1993-01-01

    Radiothermal emissivity measurements are analyzed in order to study large volcanic constructs on Venus and to correlate details of the reflectivity/emissivity patterns with geological landforms and stratigraphy visible in corresponding SAR images. There appears to be a correlation between locations on Venus where high emissivity at high altitudes and low emissivity at low altitudes are observed. These phenomena are attributed here to relatively recent volcanic activity: the former to summit eruptions that have not had time to weather to the low-emissivity state, the latter to continuing emission of volcanic gases from neighboring small plains volcanoes. The pattern of reflectivity and emissivity on Maat Mons is examined in the light of these findings. It is concluded that Maat Mons has undergone the most recent episode of volcanic activity of all the volcanoes studied here.

  6. Spatial and temporal variations of diffuse CO_{2} degassing at the N-S volcanic rift-zone of Tenerife (Canary Islands, Spain) during 2002-2015 period

    NASA Astrophysics Data System (ADS)

    Alonso, Mar; Ingman, Dylan; Alexander, Scott; Barrancos, José; Rodríguez, Fátima; Melián, Gladys; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria Island, is the only one with a central volcanic complex that started to grow at about 3.5 Ma. Nowadays the central complex is formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and was partially filled by post-caldera volcanic products. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 Ma (Dóniz et al., 2008). Most of the monogenetic cones are aligned following a triple junction-shaped rift system, as result of inflation produced by the concentration of emission vents and dykes in bands at 120o to one another as a result of minimum stress fracturing of the crust by a mantle upwelling. The main structural characteristic of the southern volcanic rift (N-S) of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Four main volcanic successions in the southern volcanic rift zone of Tenerife, temporally separated by longer periods (˜70 - 250 ka) without volcanic activity, have been identified (Kröchert and Buchner, 2008). Since there are currently no visible gas emissions at the N-S rift, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. We report here the last results of diffuse CO2 efflux survey at the N-S rift of Tenerife, performed using the accumulation chamber method in the summer period of 2015. The objectives of the surveys were: (i) to constrain the total CO2 output from the studied area and (ii) to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for the N-S rift of Tenerife. Soil CO2 efflux values ranged from non-detectable up to 31.7 g m‑2 d‑1. A spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, did not show an

  7. Geophysical imaging of the lacustrine sediments deposited in the La Calderilla Volcanic Caldera (Gran Canaria Island, Spain) for paleoclimate research

    NASA Astrophysics Data System (ADS)

    Himi, Mahjoub; Rodríguez-González, Alejandro; Criado, Constantino; Tapias, Josefina C.; Ravazzi, Cesare; Pérez-Torrado, Francisco; Casas, Albert

    2016-04-01

    The discovery of well-preserved maar structures is important not only for studying the eruptive activity and formation of volcanoes, but also for paleoclimate research, since laminated maar lake sediments may contain very detailed archives of climate and environmental history. Maars are a singular type of volcanic structure generated by explosive phreatomagmatic eruptions as a result of interaction between rising magma and groundwater. This kind of structures are characterised by circular craters, often filled with water and/or lacustrine sediments and surrounded by a ring of pyroclastic deposits.Recently a borehole was drilled at the bottom of La Calderilla volcanic complex which penetrated about 8.7 m in its sedimentary sequence and paleobotanical study has supplied the first evidence of paleoenvironmental evolution during the Holocene on the Gran Canaria Island. This survey, however, did not penetrate into the substrate because the total thickness of the sedimentary fill was unknown. Since the age of formation of La Calderilla volcanic complex based on K/Ar dating is about 85,000 years (Upper Pleistocene), the possibility of its sedimentary fill extends beyond of the Holocene is extremely attractive, since, for example, there are few paleoenvironmental data regarding how much the last glaciation that affected the Canary Islands. In these circumstances, the knowledge of the total thickness of the lacustrine sediments is crucial to design a deeper borehole in the next future. Therefore, the subsurface characterisation provided by geophysics is essential for determining thickness and geometry of the sedimentary filling. Multielectrode ERT method was used to obtain five 2-D resistivity cross-sections into La Calderilla volcanic caldera. An Iris Syscal Pro resistivity system with 48 electrodes connected to a 94 m long cable (2m electrode spacing) in Wenner-Schlumberger configuration for an investigation depth of about 20 m. Data quality (q <2 %).was assessed by

  8. Tectonic and volcanic implications of a cratered seamount off Nicobar Island, Andaman Sea

    NASA Astrophysics Data System (ADS)

    Kamesh Raju, K. A.; Ray, Durbar; Mudholkar, Abhay; Murty, G. P. S.; Gahalaut, V. K.; Samudrala, Kiranmai; Paropkari, A. L.; Ramachandran, Ratheesh; Surya Prakash, L.

    2012-08-01

    The region of the Nicobar earthquake swarm of January 2005 has been explored during a recent cruise using multibeam swath bathymetry, seafloor imaging and TV-guided sampling to decipher the seafloor morphology, nature and tectonic frame work. A seamount with well-developed crater at the summit was discovered near to the center of the Nicobar swarm. Rock samples collected by TV-guided grab from the seamount crater are dacite, rhyolite and andesite type with a veneer of ferromanganese oxide coating. The aggregates recovered from the slope consisted of manganese globules. The geochemistry of the globules suggests 66-97% Mn-oxide indicative of hydrothermal origin. The morphology of the seamount, seafloor video footage and geochemistry of the seabed samples suggest that the cratered seamount has erupted in the recent geological past and is dormant at present. This is the first documented report of submarine arc-volcanism in the Andaman Sea. This finding substantiates the prediction of a submarine volcano east of Nicobar Island. Study of the seismicity and the stress pattern in the region suggest that the earthquake swarm in the region occurred due to 2004 Sumatra-Andaman megathrust earthquake. The derived stress pattern suggests that the 2004 earthquake greatly reduced the normal stress in the region of West Andaman fault from the planes or unclamped them. Thus unclamping of the region by the 2004 Sumatra Andaman earthquake led to the initiation of the swarm through predominantly strike slip faulting. The newly discovered dormant submarine volcano indicates the volcanic nature of the region. We suggest that this submarine volcano is a link between sub-aerial volcanoes of Barren-Narcondam Islands of the Andaman Sea and the volcanoes of Sumatra.

  9. Causes and mobility of large volcanic landslides: application to Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Hürlimann, M.; Garcia-Piera, J. O.; Ledesma, A.

    2000-12-01

    Giant volcanic landslides are one of the most hazardous geological processes due to their volume and velocity. Since the 1980 eruption and associated debris avalanche of Mount St. Helens hundreds of similar events have been recognised worldwide both on continental volcanoes and volcanic oceanic islands. However, the causes and mobility of these enormous mass movements remain unresolved. Tenerife exhibits three voluminous subaerial valleys and a wide offshore apron of landslide debris produced by recurrent flank failures with ages ranging from Upper Pliocene to Middle Pleistocene. We have selected the La Orotava landslide for analysis of its causes and mobility using a variety of simple numerical models. First, the causes of the landslide have been evaluated using Limit Equilibrium Method and 2D Finite Difference techniques. Conventional parameters including hydrostatic pore pressure and material strength properties, together with three external processes, dike intrusion, caldera collapse and seismicity, have been incorporated into the stability models. The results indicate that each of the external mechanism studied is capable of initiating slope failures. However, we propose that a combination of these processes may be the most probable cause for giant volcanic landslides. Second, we have analysed the runout distance of the landslide using a simple model treating both the subaerial and submarine parts of the sliding path. The effect of the friction coefficient, drag forces and hydroplaning has been incorporated into the model. The results indicate that hydroplaning particularly can significantly increase the mobility of the landslide, which may reach runout distances greater than 70 km. The models presented are not considered definite and have mainly a conceptual purpose. However, they provide a physical basis from which to better interpret these complex geologic phenomena and should be taken into account in the prediction of future events and the assessment of

  10. Late Cretaceous lithospheric extension in SE China: Constraints from volcanic rocks in Hainan Island

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Liang, Xinquan; Kröner, Alfred; Cai, Yongfeng; Shao, Tongbin; Wen, Shunv; Jiang, Ying; Fu, Jiangang; Wang, Ce; Dong, Chaoge

    2015-09-01

    Petrological, geochemical and in-situ zircon U-Pb dating and Hf-isotope analyses have been carried out on a suite of basalt-andesite-rhyolite volcanic rocks exposed in the Liuluocun area, Hainan Island, SE China. Zircon analyses show that these volcanic rocks crystallized in the Early Cretaceous (ca. 102 Ma). The basalts are characterized by low MgO contents and mg-numbers but high rare earth element, high field strength element and large ion lithophile element contents and Nb-Ta negative anomalies. They have relatively uniform Sr-Nd isotope compositions with εNd(t) values of - 4.09 to - 3.63. The andesites show enrichment of high field strength element and rare earth element with negligible Eu anomalies. They have εNd(t) values of - 2.35 to - 3.88 and εHf(t) values of - 9.73 to - 1.13. The rhyolites have high K2O and SiO2 contents. They are characterized by prominent Eu, P and Ti negative anomalies and enrichment in large ion lithophile element, and show εHf(t) values of - 7.51 to + 0.47 and εNd(t) values of - 2.49 to - 2.69. Petrogenetic analysis indicates that the Liuluocun volcanic rocks were produced by incomplete reaction of the mantle wedge peridotite with felsic melts derived from partial melting of subducted sediment. All these characteristics, combined with geological observations, suggest that their formation was related to regional lithospheric extension in the South China Craton during the Early Cretaceous, which may have been caused by subduction of the Paleo-Pacific plate beneath the continental plate of China.

  11. Paleosecular variation analysis of high-latitude paleomagnetic data from the volcanic island of Jan Mayen

    NASA Astrophysics Data System (ADS)

    Cromwell, G.; Tauxe, L.; Staudigel, H.; Pedersen, L. R.; Constable, C.; Pedersen, R.; Duncan, R. A.; Staudigel, P.

    2009-12-01

    Recent investigation of high-latitude paleomagnetic data from the Erebus Volcanic Province (EVP), Antarctica shows a departure from magnetic dipole predictions for paleointensity data for the period 0-5 Ma. The average EVP paleointensity (31.5 +/- 2.4 μT) is equivalent to low-latitude measurements (1) or approximately half the strength predicted for a dipole at high-latitude. Also, paleosecular variation models (e.g., 2,3) predict dispersions of directions that are much lower than the high latitude observations. Observed low intensity values may be the result of reduced convective flow inside the tangent cylinder of the Earth’s core or insufficient temporal sampling (1). More high-latitude paleomagnetic data are necessary in order to investigate the cause of the depressed intensity values and to provide better geographic and temporal resolution for future statistical paleosecular variation models. To address this, we carried out two field seasons, one in Spitzbergen (79°N, 14°E) and one on the young volcanic island of Jan Mayen (71°N, 8°W). The latter sampling effort was guided by age analyses of samples obtained by P. Imsland (unpublished and 4). We will present new paleodirectional and paleointensity data from a total of 25 paleomagnetic sites. These data enhance the temporal resolution of global paleomagnetic data and allow for a more complete evaluation of the time-averaged magnetic field from 0-5 Ma. We will present a new analysis of paleosecular variation based on our new data, in combination with other recently published data sets. (1) Lawrence, K.P., L.Tauxe, H. Staudigel, C.G. Constable, A. Koppers, W. MacIntosh, C.L. Johnson, Paleomagnetic field properties at high southern latitude. Geochemistry Geophysics Geosystems 10 (2009). (2) McElhinny, M.W., P.L. McFadden, Paleosecular variation over the past 5 Myr based on a new generalized database. Geophysics Journal International 131 (1997), 240-252. (3) Tauxe, L., Kent, D.V., A simplified statistical

  12. Geochemistry and petrogenesis of the Gallego Volcanic Field, Solomon Islands, SW Pacific and geotectonic implications

    NASA Astrophysics Data System (ADS)

    Petterson, M. G.; Haldane, M. I.; Smith, D. J.; Billy, D.; Jordan, N. J.

    2011-08-01

    The Upper Miocene to present day Gallego Volcanic Field (GVF) is located in northwest Guadalcanal, Solomon Islands, SW Pacific, and potentially includes the offshore Savo volcano. The GVF is a multi-centred complex covering an area of ~ 800 km 2 on Guadalcanal and a further ~ 30 km 2 on the island of Savo, north of west Guadalcanal. GVF volcanism is characterised by effusive eruptions of lava, intrusion of sub-volcanic plutons, as well as pyroclastic flow and fall deposits dominated by block and ash flow deposits. Geochemical analysis of a representative suite of samples from the GVF demonstrates that the GVF comprise largely a 'main suite' of basalts to andesites and minor trachyandesites. The predominant mineralogy of the GVF comprises plagioclase, amphibole, clinopyroxene and magnetite-ilmenite. Associated with the 'main suite' are cognate nodules composed of hornblendite, gabbros, and clinopyroxenite. Interpretation of major and trace element geochemistry and petrographic studies suggests that fractionation was dominated by early clinopyroxene, and later amphibole + clinopyroxene + minor plagioclase. Geochemical features such as the incompatibility of Sr suggest that plagioclase largely crystallised en-masse late in the fractionation sequence. The presence of amphibole and late fractionation of plagioclase is suggestive of derivation from initially water-rich magmas. The region is characterised by strong geographically-related geochemical variations as evidenced by the Woodlark (and Manus) basins: basalts become more arc-like within the ocean basins with decreasing distance to the subducting trench. The GVF-Savo volcanoes are spatially and geochemically affected by deep N-S fractures that show some evidence of sympathetic geochemical variations with distance from the trench (e.g. Sr/Y ratios). Comparison with a range of international data for Th/Nb vs Pb/Nb and Dy/Yb vs SiO 2 indicate that: amphibole was indeed a strong controlling phase on magmatic evolution

  13. The Rurutu Hotspot: Isotopic and Trace Element Evidence of HIMU Hotspot Volcanism in the Tuvalu Islands

    NASA Astrophysics Data System (ADS)

    Finlayson, V.; Konter, J. G.; Konrad, K.; Koppers, A. A. P.; Jackson, M. G.

    2014-12-01

    Current Pacific absolute plate motion (APM) models include 2 major, long-lived hotspot tracks: the ~85 Ma Hawaiian-Emperor and the ~76 Ma Louisville tracks. Prior to ~50 Ma, these two hotspot tracks show significant inter-hotspot drift, mainly due to large southern motion of the Hawaiian hotspot [1,2]. A third track would allow for a more robust evaluation of the relationship between APM models and inter-hotspot drift. We present trace element and Pb isotope evidence for a potential third long-lived Pacific hotspot trail—the Rurutu hotspot—anchored in the Cook-Austral Islands. Based on high 206Pb/204Pb ratios, 70-55 Ma volcanism in the Gilbert Ridge has been linked to the Rurutu hotspot [3]. The Gilbert Ridge may continue south into the Tuvalu Islands, where APM models predict that the Rurutu hotspot track captures the change in Pacific plate motion around 50 Ma at the intersection of Tuvalu and Samoa. Sampling of the deep submarine flanks of atolls and seamounts in Tuvalu and westernmost Samoa took place during the 2013 RR1310 (R/V Roger Revelle) expedition. We present new Pb isotope and HFSE trace element data on 28 samples that support a Rurutu origin for Tuvalu volcanism and confirm HIMU signatures previously observed in 5 Tuvalu samples (206Pb/204Pb >20.1, several >21.0; 87Sr/86Sr < 0.705). Statistical tests indicate that Tuvalu HFSE element ratios show similarities with Cook-Austral HIMU and differences with Samoa EMII volcanism. Low Hf/Nb ratios are often a predictor of HIMU samples (206Pb/204Pb > 20.8). Moderately HIMU compositions (206Pb/204Pb = 20.0) correspond to slightly higher Hf/Nb. In an effort to test if compositional agreement with the Cook-Australs is reflected in an age progression, 40Ar/39Ar ages will be presented by Konrad et al. (this volume). [1] Tarduno et al., (2003) DOI:10.1126/science.1086442 [2] Koppers et al., (2012) DOI: 10.1038/ngeo1638 [3] Konter et al., (2008) DOI: 10.1016/j.epsl.2008.08.023

  14. The Physics of a Volcanic System: What is the Actual Role Played by Tectonic Setting in Controlling Volcanic Activity?

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.

    2005-12-01

    Modern text-books commonly explain volcanic activity as a direct consequence of plate tectonics, overlooking the different scales characteristic of both types of processes. By acknowledging such differences, however, it is possible to envisage a model of a volcanic system that is based in the same principles of hydrostatics established by Blaise Pascal over 300 yrs ago. Such principles allow us to estimate the local conditions required for the occurrence of volcanism at a given location highlighting the importance of the rock strength and the density difference between melt and its surroundings. This model shows that the minimum thickness of the zone of partial melting in the mantle (or seismically defined Low Velocity Zone) that is required to feed volcanic activity might range from 5 to over 100 km, but also that under certain circumstances a rock strength < 200 MPa may suffice to keep magma trapped at depth whereas in other cases a strength > 600 MPa will not suffice to stop magma ascent resulting in volcanic activity at the surface. Consequently, the model of volcanism developed here explains why is that a given LVZ may lead to volcanic activity in some places whereas a completely identical LVZ may not result in volcanic activity in a different location. Consequently, this model provides a general framework that allows us to better understand the actual role played by tectonic setting in controlling volcanism at a planetary scale.

  15. Hydrogeochemistry and environmental isotopes of ground water in Jeju volcanic island, Korea: implications for nitrate contamination

    NASA Astrophysics Data System (ADS)

    Koh, Dong-Chan; Chang, Ho-Wan; Lee, Kwang-Sik; Ko, Kyung-Seok; Kim, Yongje; Park, Won-Bae

    2005-07-01

    Ground water from springs and public supply wells was investigated for hydrochemistry and environmental isotopes of 3H, 18O and D in Jeju volcanic island, Korea. The wells are completed in a basaltic aquifer and the upper part of hydrovolcanic sedimentary formation. Nitrate contamination is conspicuous in the coastal area where most of the samples have nitrate concentrations well above 1 mg NO3N/l. Agricultural land use seems to have a strong influence on the distribution of nitrate in ground water. Comparison of stable isotopic compositions of precipitation and ground water show that ground water mostly originates from rainy season precipitation without significant secondary modification and that local recharge is dominant. 3H concentration of ground water ranged from nearly zero to 5 TU and is poorly correlated with vertical location of well screens. The occurrence of the 3H-free, old ground water is due to the presence of low permeability layers near the boundary of the basaltic aquifer and the hydrovolcanic sedimentary formation, which significantly limits ground water flow from the upper basaltic aquifer. The old ground water exhibited background-level nitrate concentrations despite high nitrate loadings, whereas young ground water had considerably higher nitrate concentrations. This correlation of 3H and nitrate concentration may be ascribed to the history of fertilizer use that has increased dramatically since the early 1960s in the island. This suggests that 3H can be used as a qualitative indicator for aquifer vulnerability to nitrate contamination.

  16. Geochemistry and Ar/Ar dating of upper pleistocene volcanic rocks from Kerguelen islands (Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Ethien, R.; Feraud, G.; Gerbe, M. C.; Cottin, J. Y.; O'Reilly, S. Y.; Giret, A.

    2003-04-01

    The Kerguelen islands archipelago (6500 Km^2) is the third largest oceanic island in the world, after Island and Hawaï. It is located upon the Kerguelen plateau, which is the second Large Igneous Province (LIP) after Ontong-Java. This oceanic plateau consist of an accumulation of flood basalts, related to the long-lived ˜119 Ma Kerguelen plume. The flood basalts (˜29-24 Ma; Nicolaysen et al., 2000) represent 85% of the rocks of Kerguelen. The Rallier-du-Baty (R.d.B.) peninsula, which forms the southwestern part of the Kerguelen archipelago, is mostly made of alkaline rocks constituting two well-defined ring-complexes. The northern ring-complex consists of a succession of seven discrete syenitic ring-dykes, one later caldera volcano and a more recent volcanic complex. The volcanism is bimodal with trachy-basalts and trachy-andesites, with true scarce basalts constituting the mafic lavas and trachytes and rhyolites constituting the felsic lavas. The felsic magmas were erupted as abundant pyroclastic deposits and lava flows. The mineralogy of those volcanic rocks is typical of an alcaline series, with the presence of K-feldspars (sanidines) in the most differentiated volcanic rocks. The evolution from trachyte to rhyolite seems to be controlled by crystal fractionation, with some trace element distribution and Sr isotopic ratios largely disturbed by open-system processes such as assimilation of hydrothermally altered crust and interaction with seawater. The studies of the oxygen isotopes confirm this hypothesis. Indeed, the high values of δ18O for the rhyolites (δ18O= 10.3 and 12.4) could be interpreted by an alteration by fluids at low temperatures. The Nd isotopic ratio are typical of mantellic values, with no significant variations. Whereas some units of the northern R.d.B. plutonic complex yield a narrow range of K/Ar ages on bulk rocks, from 6.2 ± 0.2 Ma to 4.9 ± 0.2 Ma (Dosso and al., 1979), the formation of a discrete caldera centered on the "Table de l

  17. Tracing the evolution of island-arc volcanism in the Tanna-Futuna transect (New Hebrides)

    NASA Astrophysics Data System (ADS)

    Lima, S. M.; Haase, K. M.; Beier, C.

    2014-12-01

    The New Hebrides island arc, located in the southwestern Pacific, is associated with the fast subduction of the Australian Plate under the North Fiji Basin. It extends over 1500 km including the entire Vanuatu archipelago. Several studies dealing with the geochemistry of the most important islands interpret the chemical variability to originate from the heterogeneities in the sub-arc mantle wedge1 and variable addition of the subduction component along the arc2. In order to trace the differences between the source(s) of New Hebrides volcanic arc and back-arc magmatism, five submarine cones (4 of them aligned NE-SW), located in the Futuna Through, were sampled. The lavas range from basalt to andesite with fractionation of olivine being the main magma evolution mechanism until MgO ≈ 6 wt.%. The most primitive lavas have similar fractionation-corrected TiO2 (0.90-1.18 wt.%) and Na2O (2.89-3.41 wt.%) contents suggesting comparable degrees of partial melting. The comparison with published data from adjacent islands shows a more important contribution of the slab closer to the trench (Tanna) where the erupted basalts, basaltic trachyandesites and trachyandesites have considerably higher U/Nb and Ba/Nb ratios. Yet, these lavas display significant negative Sr anomalies (PM-normalized). This could provide evidence of input of continental derived sediments or could reflect the role of plagioclase in the source / evolution of these magmas. The first hypothesis is not supported by published data from the Vanuatu trench3 and the second is not supported by the decoupled behavior of Sr and Eu in normalized-diagrams. On the other hand, island crust samples collected along the northern flank of Futuna Island display strong positive anomalies of Sr and, although more modest, the submarine cones show a similar behavior. Based on source chemical tracers, an increasing depletion of the source is observed from east to west, consistent with progressive mantle flow towards the arc front

  18. Ancient Tectonic and Volcanic Activity in the Tharsis Region

    NASA Astrophysics Data System (ADS)

    Werner, S. C.; Kronberg, P.; Hauber, E.; Grott, M.; Steinberger, B.; Torsvik, T. H.; Neukum, G.

    The two topographically dominating volcanic provinces on Mars are the Tharsis and the Elysium regions, situated close to the equator on the dichotomy boundary between the heavily cratered (older) highlands and the northern lowlands (about 100 degrees apart). The regions are characterized by volcanoes whose morphologies are analogous to volcanic landforms on Earth, and the huge volcanoes in the Tharsis region (Olympus Mons and Tharsis Montes) are prime examples resembling many characteristics of Hawaiian shield volcanoes. The main difference between the Martian and terrestrial volcanoes are their size and the length of the flows, possibly due to higher eruption rates, the "stationary" character of the source (no plate tectonics) and the lower gravity. The Tharsis plateau is the topographically most prominent region on Mars, and associated with an areoid high. On Earth, large geoid highs are related to longlived heterogeneities near the core-mantle boundary that are sources for large igneous provinces. The Tharsis' volcanic vent structures were active at least episodically over the past 4 billion years (based on crater count statistics), which indicates long-lived volcanic and magmatic activity. Two major groups of tectonic features are related to the Tharsis bulge: a concentric set of wrinkle ridges indicating compression radial to Tharsis,and several sets of extensional structures that radiate outward from different centers within Tharsis, indicating tension circumferential to Tharsis. No landforms imply ancient plate tectonics. Here, we present surface ages associated with volcanic and tectonic landforms with a special focus on the ancient magma-tectonic environment (see Grott et al. 2006, this volume). We will examine the long-lived volcanism and tectonic surface expressions and discuss whether Mars volcanism could represent deep mantle plumes.

  19. Regional Triggering of Volcanic Activity Following Large Magnitude Earthquakes

    NASA Astrophysics Data System (ADS)

    Hill-Butler, Charley; Blackett, Matthew; Wright, Robert

    2015-04-01

    There are numerous reports of a spatial and temporal link between volcanic activity and high magnitude seismic events. In fact, since 1950, all large magnitude earthquakes have been followed by volcanic eruptions in the following year - 1952 Kamchatka M9.2, 1960 Chile M9.5, 1964 Alaska M9.2, 2004 & 2005 Sumatra-Andaman M9.3 & M8.7 and 2011 Japan M9.0. While at a global scale, 56% of all large earthquakes (M≥8.0) in the 21st century were followed by increases in thermal activity. The most significant change in volcanic activity occurred between December 2004 and April 2005 following the M9.1 December 2004 earthquake after which new eruptions were detected at 10 volcanoes and global volcanic flux doubled over 52 days (Hill-Butler et al. 2014). The ability to determine a volcano's activity or 'response', however, has resulted in a number of disparities with <50% of all volcanoes being monitored by ground-based instruments. The advent of satellite remote sensing for volcanology has, therefore, provided researchers with an opportunity to quantify the timing, magnitude and character of volcanic events. Using data acquired from the MODVOLC algorithm, this research examines a globally comparable database of satellite-derived radiant flux alongside USGS NEIC data to identify changes in volcanic activity following an earthquake, February 2000 - December 2012. Using an estimate of background temperature obtained from the MODIS Land Surface Temperature (LST) product (Wright et al. 2014), thermal radiance was converted to radiant flux following the method of Kaufman et al. (1998). The resulting heat flux inventory was then compared to all seismic events (M≥6.0) within 1000 km of each volcano to evaluate if changes in volcanic heat flux correlate with regional earthquakes. This presentation will first identify relationships at the temporal and spatial scale, more complex relationships obtained by machine learning algorithms will then be examined to establish favourable

  20. Classifying Volcanic Activity Using an Empirical Decision Making Algorithm

    NASA Astrophysics Data System (ADS)

    Junek, W. N.; Jones, W. L.; Woods, M. T.

    2012-12-01

    Detection and classification of developing volcanic activity is vital to eruption forecasting. Timely information regarding an impending eruption would aid civil authorities in determining the proper response to a developing crisis. In this presentation, volcanic activity is characterized using an event tree classifier and a suite of empirical statistical models derived through logistic regression. Forecasts are reported in terms of the United States Geological Survey (USGS) volcano alert level system. The algorithm employs multidisciplinary data (e.g., seismic, GPS, InSAR) acquired by various volcano monitoring systems and source modeling information to forecast the likelihood that an eruption, with a volcanic explosivity index (VEI) > 1, will occur within a quantitatively constrained area. Logistic models are constructed from a sparse and geographically diverse dataset assembled from a collection of historic volcanic unrest episodes. Bootstrapping techniques are applied to the training data to allow for the estimation of robust logistic model coefficients. Cross validation produced a series of receiver operating characteristic (ROC) curves with areas ranging between 0.78-0.81, which indicates the algorithm has good predictive capabilities. The ROC curves also allowed for the determination of a false positive rate and optimum detection for each stage of the algorithm. Forecasts for historic volcanic unrest episodes in North America and Iceland were computed and are consistent with the actual outcome of the events.

  1. Volcanic hazard management in dispersed volcanism areas

    NASA Astrophysics Data System (ADS)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  2. Geomorphological features in the southern Canary Island Volcanic Province: The importance of volcanic processes and massive slope instabilities associated with seamounts

    NASA Astrophysics Data System (ADS)

    Palomino, Desirée; Vázquez, Juan-Tomás; Somoza, Luis; León, Ricardo; López-González, Nieves; Medialdea, Teresa; Fernández-Salas, Luis-Miguel; González, Francisco-Javier; Rengel, Juan Antonio

    2016-02-01

    The margin of the continental slope of the Volcanic Province of Canary Islands is characterised by seamounts, submarine hills and large landslides. The seabed morphology including detailed morphology of the seamounts and hills was analysed using multibeam bathymetry and backscatter data, and very high resolution seismic profiles. Some of the elevation data are reported here for the first time. The shape and distribution of characteristics features such as volcanic cones, ridges, slides scars, gullies and channels indicate evolutionary differences. Special attention was paid to recent geological processes that influenced the seamounts. We defined various morpho-sedimentary units, which are mainly due to massive slope instability that disrupt the pelagic sedimentary cover. We also studied other processes such as the role of deep bottom currents in determining sediment distribution. The sediments are interpreted as the result of a complex mixture of material derived from a) slope failures on seamounts and submarine hills; and b) slides and slumps on the continental slope.

  3. Systematic re-analysis of 23 years of volcanic seismicity on Hawaii Island

    NASA Astrophysics Data System (ADS)

    Matoza, R. S.; Shearer, P. M.; Okubo, P.

    2014-12-01

    The analysis and interpretation of seismicity from mantle depths to the surface plays a key role in understanding how volcanoes work. We are developing and applying methods for the systematic reanalysis of waveforms from volcano-seismic networks, including high-precision earthquake relocation, spectral event classification, and robust focal mechanism and stress drop estimates. Our primary dataset is the ~50-station permanent network of the USGS Hawaiian Volcano Observatory (HVO), but we are extending our methods for application to other volcanic systems. We have converted the entire HVO digital waveform and phase-pick database from 1986 to 2009 (~260,0000 events) to a uniform custom event format, greatly facilitating systematic analyses. A comprehensive multi-year catalog of high-precision relocated seismicity for all of Hawaii Island exhibits a dramatic sharpening of earthquake clustering along faults, streaks, and magmatic features, permitting a more detailed understanding of fault geometries and volcanic and tectonic processes. Automated spectral identification and relocation of long-period (LP, 0.5-5 Hz) seismicity near the summit region of Kilauea Volcano shows that most intermediate depth (5-15 km) LP events occur within a compact volume that has remained at a fixed location for over 23 years. An unanticipated result from our relocation work is the emergence of sharp ring seismicity features. We have so far identified 2 ring features: a full ring of diameter ~2 km on the northwest flank of Mauna Loa, and a half-ring feature of diameter ~0.5 km near Makaopuhi Crater. We are also performing comprehensive spectral analyses to estimate spatial variations in stress drop of shear-failure earthquakes.

  4. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial

  5. Storage conditions and eruptive dynamics of central versus flank eruptions in volcanic islands: The case of Tenerife (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Andújar, Joan; Costa, Fidel; Scaillet, Bruno

    2013-06-01

    We report the results of phase equilibrium experiments on a phonolite produced during one of the most voluminous flank eruptions (ca. 1 km3) of the Teide-Pico Viejo complex (Tenerife Island). Combined with previous experimental and volcanological data we address the factors that control the structure of the phonolitic plumbing system of Teide-Pico Viejo stratovolcanoes. The Roques Blancos phonolite erupted ca 1800 BP and contains ~ 14 wt.% phenocrysts, mainly anorthoclase, biotite, magnetite, diopside and lesser amounts of ilmenite. Crystallization experiments were performed at temperatures of 900 °C, 850 °C and 800 °C, in the pressure range 200 MPa to 50 MPa. The oxygen fugacity (fO2) was varied between NNO + 0.3 (0.3 log units above to the Ni-NiO solid buffer) to NNO-2, whilst dissolved water contents varied from 7 wt.% to 1.5 wt.%. The comparison between natural and experimental phase proportions and compositions, including glass, indicates that the phonolite magma was stored prior to eruption at 900 ± 15 °C, 50 ± 15 MPa, with about 2.2 wt.% H2O dissolved in the melt, at an oxygen fugacity of NNO-0.5 (± 0.5). The difference in composition between the rim and the cores of the natural anorthoclase phenocrysts suggests that the phonolite was heated by about 50 °C before the eruption, upon intrusion of a hotter tephriphonolitic magma. The comparison between the storage conditions of Roques Blancos and those inferred for other phonolites of the Teide-Pico Viejo volcanic complex shows that flank eruptions are fed by reservoirs located at relatively shallow depths (1-2 km) compared to those feeding Teide central eruptions (5 km).

  6. Probabilistic approach to decision making under uncertainty during volcanic crises. Retrospective analysis of the 2011 eruption of El Hierro, in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Sobradelo, Rosa; Martí, Joan; Kilburn, Christopher; López, Carmen

    2014-05-01

    Understanding the potential evolution of a volcanic crisis is crucial to improving the design of effective mitigation strategies. This is especially the case for volcanoes close to densely-populated regions, where inappropriate decisions may trigger widespread loss of life, economic disruption and public distress. An outstanding goal for improving the management of volcanic crises, therefore, is to develop objective, real-time methodologies for evaluating how an emergency will develop and how scientists communicate with decision makers. Here we present a new model BADEMO (Bayesian Decision Model) that applies a general and flexible, probabilistic approach to managing volcanic crises. The model combines the hazard and risk factors that decision makers need for a holistic analysis of a volcanic crisis. These factors include eruption scenarios and their probabilities of occurrence, the vulnerability of populations and their activities, and the costs of false alarms and failed forecasts. The model can be implemented before an emergency, to identify actions for reducing the vulnerability of a district; during an emergency, to identify the optimum mitigating actions and how these may change as new information is obtained; and after an emergency, to assess the effectiveness of a mitigating response and, from the results, to improve strategies before another crisis occurs. As illustrated by a retrospective analysis of the 2011 eruption of El Hierro, in the Canary Islands, BADEMO provides the basis for quantifying the uncertainty associated with each recommended action as an emergency evolves, and serves as a mechanism for improving communications between scientists and decision makers.

  7. Heterogeneity of hydrodynamic properties and groundwater circulation of a coastal andesitic volcanic aquifer controlled by tectonic induced faults and rock fracturing - Martinique island (Lesser Antilles - FWI)

    NASA Astrophysics Data System (ADS)

    Vittecoq, B.; Reninger, P. A.; Violette, S.; Martelet, G.; Dewandel, B.; Audru, J. C.

    2015-10-01

    We conducted a multidisciplinary study to analyze the structure and the hydrogeological functioning of an andesitic coastal aquifer and to highlight the importance of faults and associated rock fracturing on groundwater flow. A helicopter-borne geophysical survey with an unprecedented resolution (SkyTEM) was flown over this aquifer in 2013. TDEM resistivity, total magnetic intensity, geological and hydrogeological data from 30 boreholes and two pumping tests were correlated, including one which lasted an exceptional 15 months. We demonstrate that heterogeneous hydrodynamic properties and channelized flows result from tectonically-controlled aquifer compartmentalization along the structural directions of successive tectonic phases. Significant fracturing of the central compartment results in enhanced hydrodynamic properties of the aquifer and an inverse relationship between electrical resistivity and transmissivity. Basalts within the fractured compartment have lower resistivity and higher permeability than basalts outside the compartment. Pumping tests demonstrate that the key factor is the hydraulic conductivity contrast between compartments rather than the hydrodynamic properties of the fault structure. In addition, compartmentalization and associated transmissivity contrasts protect the aquifer from seawater intrusion. Finally, unlike basaltic volcanic islands, the age of the volcanic formations is not the key factor that determines hydrodynamic properties of andesitic islands. Basalts that are several million years old (15 Ma here) have favorable hydrodynamic properties that are generated or maintained by earthquakes/faulting that result from active subduction beneath these islands, which is superimposed on their primary permeability.

  8. Frequency Based Volcanic Activity Detection through Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Worden, A. K.; Dehn, J.; Webley, P. W.

    2015-12-01

    Satellite remote sensing has proved to offer a useful and relatively inexpensive method for monitoring large areas where field work is logistically unrealistic, and potentially dangerous. Current sensors are able to detect the majority of explosive volcanic activity; those that tend to effect and represent larger scale changes in the volcanic systems, eventually relating to ash producing periods of extended eruptive activity, and effusive activity. As new spaceborne sensors are developed, the ability to detect activity improves so that a system to gauge the frequency of volcanic activity can be used as a useful monitoring tool. Four volcanoes were chosen for development and testing of a method to monitor explosive activity: Stromboli (Italy); Shishaldin and Cleveland (Alaska, USA); and Karymsky (Kamchatka, Russia). Each volcano studied had similar but unique signatures of pre-cursory and eruptive activity. This study has shown that this monitoring tool could be applied to a wide range of volcanoes and still produce useful and robust data. Our method deals specifically with the detection of small scale explosive activity. The method described here could be useful in an operational setting, especially at remote volcanoes that have the potential to impact populations, infrastructure, and the aviation community. A number of important factors will affect the validity of application of this method. They are: (1) the availability of a continuous and continually populated dataset; (2) appropriate and reasonable sensor resolutions; (3) a recorded history of the volcano's previous activity; and, if available, (4) some ground-based monitoring system. We aim to develop the method further to be able to capture and evaluate the frequency of other volcanic processes such as lava flows, phreatomagmatic eruptions and dome growth and collapse. The work shown here has served to illustrate the capability of this method and monitoring tool for use at remote, un-instrumented volcanoes.

  9. 3D Bayesian inversion of magnetic data applied to Basse-Terre volcanic island, Guadeloupe, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Barnoud, Anne; Bouligand, Claire; Coutant, Olivier

    2015-04-01

    We linearly invert magnetic data for 3D magnetization distribution using a Bayesian methodology with a grid discretization of the space. The Bayesian approach introduces covariance matrices to regularize the ill-posed problem and overcome the non-uniqueness of the solution (Tarantola & Valette, 1982). The use of spatial covariance matrices and grid discretization leads to smooth and compact models. The algorithm provides 3D magnetization models along with resolution parameters extracted from the resolution matrix. The direct computation of the magnetic field includes the surface topography and assumes a linear relationship between rock magnetization and the magnetic field they produce. The methodology is applied to aeromagnetic data from the volcanic island of Basse-Terre in Guadeloupe, Lesser Antilles (Le Borgne & Le Mouël 1976, Le Mouël et al., 1979). Low magnetizations (a few A/m) allow linear inversion that takes into account polarity inversions of the geomagnetic field that occurred across the volcanic history of the island. Inverted magnetizations are consistent with paleomagnetic measurements on surface samples (Carlut et al., 2000 ; Samper et al., 2007). The resulting 3D model is validated against a 2D inversion performed in the Fourier domain (Parker & Huestis, 1974; Bouligand et al., 2014). The 3D distribution of magnetization helps identifying the different volcanic edifices that build the island both at the surface and up to 3 km depth.

  10. Active Volcanism on Io as Seen by Galileo SSI

    NASA Astrophysics Data System (ADS)

    McEwen, Alfred S.; Keszthelyi, Laszlo; Geissler, Paul; Simonelli, Damon P.; Carr, Michael H.; Johnson, Torrence V.; Klaasen, Kenneth P.; Breneman, H. Herbert; Jones, Todd J.; Kaufman, James M.; Magee, Kari P.; Senske, David A.; Belton, Michael J. S.; Schubert, Gerald

    1998-09-01

    Active volcanism on Io has been monitored during the nominal Galileo satellite tour from mid 1996 through late 1997. The Solid State Imaging (SSI) experiment was able to observe many manifestations of this active volcanism, including (1) changes in the color and albedo of the surface, (2) active airborne plumes, and (3) glowing vents seen in eclipse. About 30 large-scale (tens of kilometers) surface changes are obvious from comparison of the SSI images to those acquired by Voyager in 1979. These include new pyroclastic deposits of several colors, bright and dark flows, and caldera-floor materials. There have also been significant surface changes on Io during the Galileo mission itself, such as a new 400-km-diameter dark pyroclastic deposit around Pillan Patera. While these surface changes are impressive, the number of large-scale changes observed in the four months between the Voyager 1 and Voyager 2 flybys in 1979 suggested that over 17 years the cumulative changes would have been much more impressive. There are two reasons why this was not actually the case. First, it appears that the most widespread plume deposits are ephemeral and seem to disappear within a few years. Second, it appears that a large fraction of the volcanic activity is confined to repeated resurfacing of dark calderas and flow fields that cover only a few percent of Io's surface. The plume monitoring has revealed 10 active plumes, comparable to the 9 plumes observed by Voyager. One of these plumes was visible only in the first orbit and three became active in the later orbits. Only the Prometheus plume has been consistently active and easy to detect. Observations of the Pele plume have been particularly intriguing since it was detected only once by SSI, despite repeated attempts, but has been detected several times by the Hubble Space Telescope at 255 nm. Pele's plume is much taller (460 km) than during Voyager 1 (300 km) and much fainter at visible wavelengths. Prometheus-type plumes (50

  11. Active Volcanism on Io as Seen by Galileo SSI

    USGS Publications Warehouse

    McEwen, A.S.; Keszthelyi, L.; Geissler, P.; Simonelli, D.P.; Carr, M.H.; Johnson, T.V.; Klaasen, K.P.; Breneman, H.H.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Senske, D.A.; Belton, M.J.S.; Schubert, G.

    1998-01-01

    Active volcanism on Io has been monitored during the nominal Galileo satellite tour from mid 1996 through late 1997. The Solid State Imaging (SSI) experiment was able to observe many manifestations of this active volcanism, including (1) changes in the color and albedo of the surface, (2) active airborne plumes, and (3) glowing vents seen in eclipse. About 30 large-scale (tens of kilometers) surface changes are obvious from comparison of the SSI images to those acquired by Voyager in 1979. These include new pyroclastic deposits of several colors, bright and dark flows, and caldera-floor materials. There have also been significant surface changes on Io during the Galileo mission itself, such as a new 400-km-diameter dark pyroclastic deposit around Pillan Patera. While these surface changes are impressive, the number of large-scale changes observed in the four months between the Voyager 1 and Voyager 2 flybys in 1979 suggested that over 17 years the cumulative changes would have been much more impressive. There are two reasons why this was not actually the case. First, it appears that the most widespread plume deposits are ephemeral and seem to disappear within a few years. Second, it appears that a large fraction of the volcanic activity is confined to repeated resurfacing of dark calderas and flow fields that cover only a few percent of Io's surface. The plume monitoring has revealed 10 active plumes, comparable to the 9 plumes observed by Voyager. One of these plumes was visible only in the first orbit and three became active in the later orbits. Only the Prometheus plume has been consistently active and easy to detect. Observations of the Pele plume have been particularly intriguing since it was detected only once by SSI, despite repeated attempts, but has been detected several times by the Hubble Space Telescope at 255 nm. Pele's plume is much taller (460 km) than during Voyager 1 (300 km) and much fainter at visible wavelengths. Prometheus-type plumes (50

  12. Diffuse volcanic degassing and thermal energy release 2015 surveys from the summit cone of Teide volcano, Tenerife (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Melián, Gladys; Asensio-Ramos, María; Padilla, Germán; Alonso, Mar; Halliwell, Simon; Sharp, Emerson; Butters, Damaris; Ingman, Dylan; Alexander, Scott; Cook, Jenny; Pérez, Nemesio M.

    2016-04-01

    The summit cone of Teide volcano (Spain) is characterized by the presence of a weak fumarolic system, steamy ground, and high rates of diffuse CO2 degassing all around this area. The temperature of the fumaroles (83° C) corresponds to the boiling point of water at discharge conditions. Water is the major component of these fumarolic emissions, followed by CO2, N2, H2, H2S, HCl, Ar, CH4, He and CO, a composition typical of hydrothermal fluids. Previous diffuse CO2 surveys have shown to be an important tool to detect early warnings of possible impending volcanic unrests at Tenerife Island (Melián et al., 2012; Pérez et al., 2013). In July 2015, a soil and fumarole gas survey was undertaken in order to estimate the diffuse volcanic degassing and thermal energy release from the summit cone of Teide volcano. A diffuse CO2 emission survey was performed selecting 170 observation sites according to the accumulation chamber method. Soil CO2 efflux values range from non-detectable (˜0.5 g m‑2d‑1) up to 10,672 g m‑2d‑1, with an average value of 601 g m‑2d‑1. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. Measurement of soil CO2 efflux allowed an estimation of 162 ± 14 t d‑1 of deep seated derived CO2. To calculate the steam discharge associated with this volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio equal to 1.19 (range, 0.44-3.42) as a representative value of the H2O/CO2 mass ratios for Teide fumaroles. The resulting estimate of the steam flow associated with the gas flux is equal to 193 t d‑1. The condensation of this steam results in a thermal energy release of 5.0×1011J d‑1 for Teide volcano or a total heat flow of 6 MWt. The diffuse gas emissions and thermal energy released from the summit of Teide volcano are comparable to those observed at other volcanoes. Sustained surveillance using these methods will be valuable for monitoring the activity of Teide volcano.

  13. The effects of agriculture on the volcanic aquifers of the canary islands

    NASA Astrophysics Data System (ADS)

    Custodio, E.; Guerra, J. A.; Jiménez, J.; Medina, J. A.; Soler, C.

    1983-12-01

    Agriculture is a basic economic activity in the Canary Islands, a Spanish region in the Atlantic Ocean, facing the Sahara. The main crops are bananas, tomatoes, and other special ones suitable for exportation. Fertilizers are applied in high quantities on the scarce land available. The relatively good vertical permeability of the soils favors the deep infiltration of irrigation return flows. Water is obtained by an extraordinary net of shaft wells and water galleries, supplemented when possible by surface reservoirs in the deep gullies. Water is distributed by an extensive network of pipes and canals, allowing the transportation of water to virtually any point from any water source. Water quality is widely variable, from almost rain water to brackish, with a high frequency of sodium bicarbonate types. Return flows, especially when water is applied with good irrigation techniques and the original quality is poor, are saline and contain chemicals leached from the fertilizers. On Tenerife Island, most of the return flows go to coastal aquifers, while most of the water comes from high-altitude water galleries. Agricultural pollution is not generally appraised, but it exists. It can be masked by the frequent, high natural nitrate content in groundwater. On Gran Canaria Island, since water comes mainly from deep shaft wells near the irrigated areas, the nitrate pollution is much more clear. On La Palma Island, besides the nitrate pollution, a potassium pollution of agricultural origin has been mentioned. Other situations on the remaining islands are also discussed. It can be concluded that agriculture is a big concern for the water quality in many areas and impairs its suitability for other uses. Because of the great depth of the water table, the nitrate pollution may not become obvious for many years, especially for the deep-water galleries.

  14. High resolution seismic data coupled to Multibeam bathymetry of Stromboli island collected in the frame of the Stromboli geophysical experiment: implications with the marine geophysics and volcanology of the Aeolian Arc volcanic complex (Sicily, Southern Tyrrhenian sea, Italy).

    PubMed

    Aiello, Gemma; Di Fiore, Vincenzo; Marsella, Ennio; Passaro, Salvatore

    2014-01-01

    New high resolution seismic data (Subbottom Chirp) coupled to high resolution Multibeam bathymetry collected in the frame of the Stromboli geophysical experiment aimed at recording active seismic data and tomography of the Stromboli Island are here presented. The Stromboli geophysical experiment has been already carried out based on onshore and offshore data acquisition in order to investigate the deep structure and the location of the magma chambers of the Stromboli volcano. A new detailed swath bathymetry of Stromboli Island is here shown and discussed to reconstruct an up-to-date morpho-bathymetry and marine geology of the area compared to the volcanologic setting of the Aeolian Arc volcanic complex. Due to its high resolution the new Digital Terrain Model of the Stromboli Island gives interesting information about the submerged structure of the volcano, particularly about the volcano-tectonic and gravitational processes involving the submarine flanks of the edifice. Several seismic units have been identified based on the geologic interpretation of Subbottom Chirp profiles recorded around the volcanic edifice and interpreted as volcanic acoustic basement pertaining to the volcano and overlying slide chaotic bodies emplaced during its complex volcano-tectonic evolution. They are related to the eruptive activity of Stromboli, mainly poliphasic and to regional geological processes involving the intriguing geology of the Aeolian Arc, a volcanic area still in activity and needing improved research interest. PMID:24860717

  15. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial

  16. Volcanic and geochemical evolution of the Teno massif, Tenerife, Canary Islands: Some repercussions of giant landslides on ocean island magmatism

    NASA Astrophysics Data System (ADS)

    Longpré, Marc-Antoine; Troll, Valentin R.; Walter, Thomas R.; Hansteen, Thor H.

    2009-12-01

    Large-scale, catastrophic mass wasting is a major process contributing to the dismantling of oceanic intraplate volcanoes. Recent studies, however, have highlighted a possible feedback relationship between flank collapse, or incipient instability, and subsequent episodes of structural rearrangement and/or renewed volcano growth. The Teno massif, located in northwestern Tenerife (Canary Islands), is a deeply eroded Miocene shield volcano that was built in four major eruptive phases punctuated by two lateral collapses, each removing >20-25 km3 of the volcano's north flank. In this paper, we use detailed field observations and petrological and geochemical data to evaluate possible links between large-scale landslides and subsequent volcanism/magmatism during Teno's evolution. Inspection of key stratigraphic sequences reveals that steep angular unconformities, relics of paleolandslide scars, are marked by polymict breccias. Near their base, these deposits typically include abundant juvenile pyroclastic material, otherwise scarce in the region. While some of Teno's most evolved, low-density magmas were produced just before flank collapses, early postlandslide lava sequences are characterized by anomalously high proportions of dense ankaramite flows, extremely rich in clinopyroxene and olivine crystals. A detailed sampling profile shows transitions from low-Mg # lavas relatively rich in SiO2 to lavas with low silica content and comparatively high Mg # after both landslides. Long-term variations in Zr/Nb, normative nepheline, and La/Lu are coupled but do not show a systematic correlation with stratigraphic boundaries. We propose that whereas loading of the growing precollapse volcano promoted magma stagnation and differentiation, the successive giant landslides modified the shallow volcano-tectonic stress field at Teno, resulting in widespread pyroclastic eruptions and shallow magma reservoir drainage. This rapid unloading of several tens of km3 of near-surface rocks

  17. Monitoring of geological activity on astronomical sites of the Canary Islands, Hawaii, and Chile

    NASA Astrophysics Data System (ADS)

    Eff-Darwich, Antonio; Garcia-Lorenzo, Begoña; Rodriguez-Losada, Jose A.; Hernández-Gutiérrez, Luis E.; de la Nuez, Julio; Romero-Ruiz, Maria C.

    2009-09-01

    Future large and extremely large ground-based telescopes will demand stable geological settings.Remote sensing could be an unvaluable tool to analyse the impact of geological activity at selected astronomical sites, namely the observatories of El Teide (Tenerife, Canary Islands), Roque de los Muchachos (La Palma, Canary Islands), Mauna Kea (Hawaii) and Paranal (Chile; the candidate site of Cerro Ventarrones, Chile). In this sense, the extent of lava flows, eruptive clouds or ground deformation associated to seismic and/or volcanic activity could be analysed and characterised through remote sensing.

  18. Acute health effects associated with exposure to volcanic air pollution (vog) from increased activity at Kilauea Volcano in 2008.

    PubMed

    Longo, Bernadette M; Yang, Wei; Green, Joshua B; Crosby, Frederick L; Crosby, Vickie L

    2010-01-01

    In 2008, the Kilauea Volcano on the island of Hawai'i increased eruption activity and emissions of sulfurous volcanic air pollution called vog. The purpose of this study was to promptly assess for a relative increase in cases of medically diagnosed acute illnesses in an exposed Hawaiian community. Using a within-clinic retrospective cohort design, comparisons were made for visits of acute illnesses during the 14 wk prior to the increased volcanic emissions (low exposure) to 14 wk of high vog exposure when ambient sulfur dioxide was threefold higher and averaged 75 parts per billion volume per day. Logistic regression analysis estimated effect measures between the low- and high-exposure cohorts for age, gender, race, and smoking status. There were statistically significant positive associations between high vog exposure and visits for medically diagnosed cough, headache, acute pharyngitis, and acute airway problems. More than a sixfold increase in odds was estimated for visits with acute airway problems, primarily experienced by young Pacific Islanders. These findings suggest that the elevated volcanic emissions in 2008 were associated with increased morbidity of acute illnesses in age and racial subgroups of the general Hawaiian population. Continued investigation is crucial to fully assess the health impact of this natural source of sulfurous air pollution. Culturally appropriate primary- and secondary-level health prevention initiatives are recommended for populations in Hawai'i and volcanically active areas worldwide. PMID:20818536

  19. A conceptual model of geological risk in the Ischia Island (Italy): highlights on volcanic history, seismicity and flooding

    NASA Astrophysics Data System (ADS)

    Carlino, Stefano; Cubellis, Elena; Iannuzzi, Raffaello; Luongo, Giuseppe

    2010-05-01

    During the last eight centuries the island of Ischia was hit by earthquakes, volcanic eruptions and floods producing heavy damages and numerous fatalities. Since the last twenty century the Ischia population is grown very fast, nowadays more than 56.000 people live in the island and 4 million of people visit it during the year, thus this area is characterised as an high geological risk territory. The island is here presented as an interesting "laboratory" for volcanic, seismic and hydrogeological risks assessment, from which to draw lessons for planning in risk areas. Ischia is a volcanic field, formed by the succession of effusive and explosive eruptions which formed lavas, welded and loose pyroclastic rocks. The succession of rock layers, with different permeability, promotes, during heavy rainfall, the formation of flows with high kinetic energy, which can produce devastating landslides. In this context, the remarkable development of settlements in the island, occurred in recent times, and the lack of planning that bring attention to the vulnerability of the area, have produced an exponential risk increase. Eruptions, earthquakes, flooding occurred in the island of Ischia in the past, have produced a wealth literature about catastrophic natural events. In general, the accounts of the events were recorded by various means, such as: newspaper, property disputes, historical and sociological analysis, poetic or artistic works, scientific analysis. As regard volcanism, earthquakes, tsunamis, there are myths, legends, historical documents, archaeological findings and results of recent surveys. Documented descriptions of historical eruptive events are only available for the last eruption of 1301-1302, while there are records for eruptive events in the early centuries of the Christian Age. More comprehensive accounts are available about historical seismicity. Information and documentations are available since the 1228 earthquake. However, more detailed and useful

  20. Sedimentation under influence of syndepositional tectonism and volcanism: Cretaceous Daeri Member, Wido Island, Korea

    NASA Astrophysics Data System (ADS)

    Gul Hwang, In; Gihm, Yong Sik

    2015-04-01

    The Cretaceous Daeri Member is an ancient volcanic-sedimentary succession and can be classified into lower, middle and upper members, based on vertical changes in lithologic character. The lower Daeri Member is composed of the homogeneous reddish mudstones deposited on the arid to semi-arid, floodplain environment without major volcanic activities. The middle Daeri Member is represented by thick (up to 250 m) and laterally extensive andesite as well as minor epiclastic deposits. The upper Daeri Member was formed with the onset of an explosive volcanic eruption, and large amounts of fine-grained pyroclastic sediments were deposited by pyroclastic density currents during the eruption. After the eruption, the pyroclastic sediments were resedimented by episodic sediment-gravity flows, forming conformable accumulation of the resedimented pyroclastic deposits (130 m thick). Lack of major erosional surface is interpreted be due to growing accommodation space resulted from tectonic subsidence and arid to semi-arid climatic conditions with high rates of sediment supply after the volcanic eruption. In the Daeri Member, intrabasinal normal faults (Fault A to C) divided the basin into four blocks (Block 1 to 4), and spatial distribution of the Daeri Member is also largely controlled by the intrabasinal normal faults. The upper Daeri Member is developed only on hangingwall blocks (Block 2 and 3, whereas footwall blocks (Block 1 and4) are only composed of lower and middle Daeri members. The spatial stratigraphic relationships suggest a progressive increase in accommodation space on the hangingwall blocks during the deposition, indicating syndepositional tectonic subsidence. In addition, the resedimented pyroclastic deposits in Block 3 show northeastward (downcurrent) changes in depositional processes from debris flows to hyperconcentrated flow and sheetfloods with a decrease in maximum ten clasts away from Fault B, implying abrupt decrease in topographic gradient between Block 2

  1. Paleomagnetism of Harutagawa formation in the Hohi Volcanic Zone in northeastern part of Kyushu Island, Japan

    NASA Astrophysics Data System (ADS)

    Kudou, T.; Shibuya, H.

    2008-12-01

    The Beppu-Shimabara graben in the Hohi Volcanic Zone (HVZ) in northeastern part of Kyushu Island, Japan is thought to be a volcano-tectonic depression. Volcanic stratigraphy and age studies of the area have unraveled the late Pliocene structural formation history of HVZ (e.g. Kamata, 1994, Kido, 2007). The age and sedimentation rate of lacustrine deposits in HVZ is one of the keys for interpreting the temporal relation between the formation of Beppu-Shimabara graben and the huge pyroclastic flows appeared in the area. We study the magnetostratigraphy of the Harutagawa formation, which is one of those lacustrine deposits. The formation is dominated by conglomerates and mad stones to siltstones, in the lower and upper parts, respectively, but bares many tuff layers all over the formation. Fission track ages of two tuff layers, one is from lower part and the other is from upper part of Harutagawa formation, are determined as 3.86 ± 0.77Ma and 3.6 ± 0.2Ma, respectively (Kido, 2007). Samples for paleomagnetic analyses have been collected at 28 sites in several continuous outcrop of the Harutagawa formation. The sites are set to be spaced equally in the stratigraphy. Samples were collected by a portable electric motor drill. A few pilot specimens from each site are subjected to progressive thermal and alternating field (AF) demagnetization. However, AF demagnetization is not effective. All remaining specimens are, therefore, submitted to the progressive thermal demagnetization. The samples have mean magnetic intensity of 1.7 × 10- 4A/m and 7.7 × 10-5A/m before and after demagnetization, respectively. Samples from 6 sites have no stable component or are thought to be completely remagnetized by the present magnetic field. As the result, 22 sites are determined their polarities; 8 were reversed and 14 were normal. The normal polarity sites were correlative to Sidufjall, Nunivak and Cochiti subchrons in the Gilbert reversed polarity chron. This correlation indicates that

  2. Episodes of fluvial and volcanic activity in Mangala Valles, Mars

    NASA Astrophysics Data System (ADS)

    Keske, Amber L.; Hamilton, Christopher W.; McEwen, Alfred S.; Daubar, Ingrid J.

    2015-01-01

    A new mapping-based study of the 900-km-long Mangala Valles outflow system was motivated by the availability of new high-resolution images and continued debates about the roles of water and lava in outflow channels on Mars. This study uses photogeologic analysis, geomorphic surface mapping, cratering statistics, and relative stratigraphy. Results show that Mangala Valles underwent at least two episodes of fluvial activity and at least three episodes of volcanic activity during the Late Amazonian. The occurrence of scoured bedrock at the base of the mapped stratigraphy, in addition to evidence provided by crater retention ages, suggests that fluvial activity preceded the deposition of two of the volcanic units. Crater counts performed at 30 locations throughout the area have allowed us to construct the following timeline: (1) formation of Noachian Highlands and possible initial flooding event(s) before ∼1 Ga, (2) emplacement of Tharsis lava flows in the valley from ∼700 to 1000 Ma, (3) a megaflooding event at ∼700-800 Ma sourced from Mangala Fossa, (4) valley fill by a sequence of lava flows sourced from Mangala Fossa ∼400-500 Ma, (5) another megaflooding event from ∼400 Ma, (6) a final phase of volcanism sourced from Mangala Fossa ∼300-350 Ma, and (7) emplacement of eolian sedimentary deposits in the northern portion of the valley ∼300 Ma. These results are consistent with alternating episodes of aqueous flooding and volcanism in the valles. This pattern of geologic activity is similar to that of other outflow systems, such as Kasei Valles, suggesting that there is a recurring, and perhaps coupled, nature of these processes on Mars.

  3. Chronology of the 2014 volcanic eruption on the island of Fogo, Cape Verde

    NASA Astrophysics Data System (ADS)

    Silva, Sónia; Cardoso, Nadir; Alfama, Vera; Cabral, Jeremias; Semedo, Helio; Pérez, Nemesio M.; Dionis, Samara; Hernández, Pedro A.; Barrancos, José; Melián, Gladys V.; Pereira, José Manuel; Rodríguez, Fátima

    2015-04-01

    Twenty seven historical eruptions have ocurred at Fogo Island since its discovery and settlement (Ribeiro, 1960; Torres et al., 1997). This summary covers the events of the 27th eruption, which started on November 23, 2014, in Cha das Caldeiras, Fogo Island, along a NNE-SSW fissure on the east flank of the 1995 Pico Novo vent with the appearance of four eruptive vents and emissions of gases, pyroclastic rocks and lava. The eruptive column reached an estimated altitude of 6000 m, with aa lavas spilled over and ash fall in Cha das Caldeiras and other locations in the islands of Fogo and Brava (which lies 17km from Fogo). The Hawaiian style fissural stage originated about seven craters with gas and lava emission, that formed two lava flows of aa and pahoehoe style who started the destruction of Portela village, with average speeds of 1-3 meters/hour to 8-10 meters/hour with faster paces up to 1 meter/3 minutes, with thicknesses ranging between 1.5 meters to 10 meters, and temperatures of around 800 ° C. The Strombolian stage, gave rise to a main crater (from the coalescence of small craters) and three small craters or emmision vents, which released aa lava flows with development of lava fronts from one or two lava tubes at the base of the volcanic cone which also reached maximum lengths of 300 to 500 meters at estimated speeds of 20-30 meters/minute to 8-10 meters/minute, that destroyed the Portela and Bangaeira villages. Loud explosions and strong rumbling was also heard at the eruption site. A pahoehoe lava flow developed to the Ilhéu de Losna site, at an average speed of 1 meter/2minutes and a width of about 3 m which was divided into two fronts (north and south of this location) having buried all crop fields (vineyards and other crops) and some houses. The eruption is ongoing in the main vent, with the emission of gases and ash (dark color fumaroles), scorias, spatter and ballistics up to 30-40 feet high, forming eruptive columns with height of 200-1000 meters

  4. Stratigraphy and Geochemistry of the Lower Permian Esayoo Volcanics, Northwest Ellesmere Island: Insights into Sverdrup Basin Paleogeography

    NASA Astrophysics Data System (ADS)

    Morris, N. J.; Beauchamp, B.; Cuthbertson, J. P.; Chau, Y.

    2012-12-01

    The Esayoo Volcanics consist of altered Lower Permian basalts that outcrop on northwest Ellesmere Island and northeast Axel Heiberg, within the Sverdrup Basin, Arctic Canada. Rifting in the Sverdrup Basin initiated in the Early Carboniferous and ceased during the Early Permian. The Esayoo volcanics geochemically classify as alkaline to transitional within-plate-basalts, with high Ti/Y and Zr/Y ratios. Eruptions are coincident with two rifting pulses of Sakmarian and Kungurian age. During the 2011 July field season, ten stratigraphic sections of the Esayoo Volcanics were measured at four locations on northwest Ellesmere Island: Borup Fiord Pass, Oobloyah Bay, Ricker Glacier and Mount Leith. The Esayoo Volcanics reach a maximum thickness of 450 m near Oobloyah Bay, and thin west, east and north of Oobloyah Bay with respective thicknesses of 140 m, 69 m and 75 m. At Oobloyah Bay, volcanic rocks occur at two stratigraphic levels. The lower Esayoo unit lies within the Raanes Formation, a mixed clastic-carbonate, and further west at Ricker Glacier within the upper Hare Fiord Formation, a black siliceous shale-siltstone. The upper Esayoo unit is below the Assistance Formation, carbonate-rich to clean quartz sandstone, and below the Sabine Bay Formation, a clean quartz sandstone with abundant cross-beds. Thin 1 to 2 m shales that indicate maximum flooding surfaces overlie both the upper and lower Esayoo units. Each measured section was divided into individual flow units that averaged 7 m thick. Dominant textures observed within individual flow units include: thin 2-3 cm thick amygdule-rich bases transitioning into thick 2-10 m thick massive flow interiors; frothy, amygdule-rich flow tops 1-3 m thick; and chaotic vesicular units with amygdules ranging from 0.5-3 cm in width and pervasive cross-cutting calcite veins and stringers. The lower level at Oobloyah Bay is composed of a laminated volcaniclastic rock that is rich in heterozoan marine bioclasts, with associated pillow

  5. Basaltic island sand provenance

    SciTech Connect

    Marsaglia, K.M. . Dept. of Geological Sciences)

    1992-01-01

    The Hawaiian Islands are an ideal location to study basaltic sand provenance in that they are a series of progressively older basaltic shield volcanoes with arid to humid microclimates. Sixty-two sand samples were collected from beaches on the islands of Hawaii, Maui, Oahu and Kauai and petrographically analyzed. The major sand components are calcareous bioclasts, volcanic lithic fragments, and monomineralic grains of dense minerals and plagioclase. Proportions of these components vary from island to island, with bioclastic end members being more prevalent on older islands exhibiting well-developed fringing reef systems and volcanic end members more prevalent on younger, volcanically active islands. Climatic variations across the island of Hawaii are reflected in the percentage of weathered detritus, which is greater on the wetter, northern side of the island. The groundmass of glassy, basaltic lithics is predominantly black tachylite, with lesser brown sideromelane; microlitic and lathwork textures are more common than holohyaline vitric textures. Other common basaltic volcanic lithic fragments are holocrystalline aggregates of silt-sized pyroxene or olivine, opaque minerals and plagioclase. Sands derived from alkalic lavas are texturally and compositionally indistinguishable from sands derived from tholeiitic lavas. Although Hawaiian basaltic sands overlap in composition with magmatic arc-derived sands in terms of their relative QFL, QmPK and LmLvLs percentages, they are dissimilar in that they lack felsic components and are more enriched in lathwork volcanic lithic fragments, holocrystalline volcanic lithic fragments, and dense minerals.

  6. The Detection, Characterization and Tracking of Recent Aleutian Island Volcanic Ash Plumes and the Assessment of Their Impact on Aviation

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Hudnall, L. A.; Matus, A.; Krueger, A. J.; Trepte, C. r.

    2010-01-01

    The Aleutian Islands of Alaska are home to a number of major volcanoes which periodically present a significant hazard to aviation. During summer of 2008, the Okmok and Kasatochi volcanoes experienced moderate eruptive events. These were followed a dramatic, major eruption of Mount Redoubt in late March 2009. The Redoubt case is extensively covered in this paper. Volcanic ash and SO2 from each of these eruptions dispersed throughout the atmosphere. This created the potential for major problems for air traffic near the ash dispersions and at significant distances downwind. The NASA Applied Sciences Weather Program implements a wide variety of research projects to develop volcanic ash detection, characterization and tracking applications for NASA Earth Observing System and NOAA GOES and POES satellites. Chemistry applications using NASA AURA satellite Ozone Monitoring System (OMI) retrievals produced SO2 measurements to trace the dispersion of volcanic aerosol. This work was complimented by advanced multi-channel imager applications for the discrimination and height assignment of volcanic ash using NASA MODIS and NOAA GOES and POES imager data. Instruments similar to MODIS and OMI are scheduled for operational deployment on NPOESS. In addition, the NASA Calipso satellite provided highly accurate measurements of aerosol height and dispersion for the calibration and validation of these algorithms and for corroborative research studies. All of this work shortens the lead time for transition to operations and ensures that research satellite data and applications are operationally relevant and utilized quickly after the deployment of operational satellite systems. Introduction

  7. Characterization of early microbial communities on volcanic deposits along a vegetation gradient on the island of Miyake, Japan.

    PubMed

    Guo, Yong; Fujimura, Reiko; Sato, Yoshinori; Suda, Wataru; Kim, Seok-won; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Narisawa, Kazuhiko; Ohta, Hiroyuki

    2014-01-01

    The 2000 eruption of Mount Oyama on the island of Miyake (Miyake-jima) created a unique opportunity to study the early ecosystem development on newly exposed terrestrial substrates. In this study, bacterial and fungal communities on 9- and 11-year-old volcanic deposits at poorly to fully vegetation-recovered sites in Miyake-jima, Japan, were characterized by conventional culture-based methods and pyrosequencing of 16S rRNA and 18S rRNA genes. Despite the differences in the vegetation cover, the upper volcanic deposit layer samples displayed low among-site variation for chemical properties (pH, total organic carbon, and total nitrogen) and microbial population densities (total direct count and culturable count). Statistical analyses of pyrosequencing data revealed that the microbial communities of volcanic deposit samples were phylogenetically diverse, in spite of very low-carbon environmental conditions, and their diversity was comparable to that in the lower soil layer (buried soil) samples. Comparing with the microbial communities in buried soil, the volcanic deposit communities were characterized by the presence of Betaproteobacteria and Gammaproteobacteria as the main bacterial class, Deinococcus- Thermus as the minor bacterial phyla, and Ascomycota as the major fungal phyla. Multivariate analysis revealed that several bacterial families and fungal classes correlated positively or negatively with plant species. PMID:24463576

  8. Characterization of Early Microbial Communities on Volcanic Deposits along a Vegetation Gradient on the Island of Miyake, Japan

    PubMed Central

    Guo, Yong; Fujimura, Reiko; Sato, Yoshinori; Suda, Wataru; Kim, Seok-won; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Narisawa, Kazuhiko; Ohta, Hiroyuki

    2014-01-01

    The 2000 eruption of Mount Oyama on the island of Miyake (Miyake-jima) created a unique opportunity to study the early ecosystem development on newly exposed terrestrial substrates. In this study, bacterial and fungal communities on 9- and 11-year-old volcanic deposits at poorly to fully vegetation-recovered sites in Miyake-jima, Japan, were characterized by conventional culture-based methods and pyrosequencing of 16S rRNA and 18S rRNA genes. Despite the differences in the vegetation cover, the upper volcanic deposit layer samples displayed low among-site variation for chemical properties (pH, total organic carbon, and total nitrogen) and microbial population densities (total direct count and culturable count). Statistical analyses of pyrosequencing data revealed that the microbial communities of volcanic deposit samples were phylogenetically diverse, in spite of very low-carbon environmental conditions, and their diversity was comparable to that in the lower soil layer (buried soil) samples. Comparing with the microbial communities in buried soil, the volcanic deposit communities were characterized by the presence of Betaproteobacteria and Gammaproteobacteria as the main bacterial class, Deinococcus- Thermus as the minor bacterial phyla, and Ascomycota as the major fungal phyla. Multivariate analysis revealed that several bacterial families and fungal classes correlated positively or negatively with plant species. PMID:24463576

  9. Modelling Gravimetric Fluctuations due to Hydrological Processes in Active Volcanic Settings

    NASA Astrophysics Data System (ADS)

    Hemmings, B.; Gottsmann, J.; Whitaker, F.

    2014-12-01

    Both static and dynamic gravimetric surveys are widely used to monitor magmatic processes in active volcanic settings. However, attributing residual gravimetric signals solely to magma movement can result in misdiagnosis of a volcano's pre-eruptive state and incorrect assessment of hazard. The relative contribution of magmatic and aqueous fluids to integrated gravimetric and geodetic data has become an important topic for debate, particularly in restless caldera systems. Groundwater migration driven by volcanically-induced pressure changes, and groundwater mass fluctuations associated with seasonal and inter-annual variations in recharge may also contribute to measured gravity changes. Here we use numerical models to explore potential gravimetric signals associated with fundamental hydrological processes, focusing on variations in recharge and hydrogeological properties. TOUGH2 simulations demonstrate the significance of groundwater storage within a thick unsaturated zone (up to 100 m). Changes are dominantly in response to inter-annual recharge variations and can produce measurable absolute gravity variations of several 10s of μgal. Vadose zone storage and the rate of response to recharge changes depend on the hydrological properties. Porosity, relative and absolute permeability and capillary pressure conditions all affect the amplitude and frequency of modelled gravity time series. Spatial variations in hydrologic properties and importantly, hydrological recharge, can significantly affect the phase and amplitude of recorded gravity signals. Our models demonstrate the potential for an appreciable hydrological component within gravimetric measurements on volcanic islands. Characterisation of hydrological processes within a survey area may be necessary to robustly interpret gravity signals in settings with significant recharge fluctuations, a thick vadose zone and spatially variable hydrological properties. Such modelling enables further exploration of feedbacks

  10. A new multi-disciplinary model for the assessment and reduction of volcanic risk: the example of the island of Vulcano, Italy

    NASA Astrophysics Data System (ADS)

    Simicevic, Aleksandra; Bonadonna, Costanza; di Traglia, Federico; Rosi, Mauro

    2010-05-01

    is the starting point of the identification of suitable mitigation measures which will be analyzed through a cost-benefit analysis to assess their financial feasibility. Information about public networks is also recorded in order to give an overall idea of the built environment condition of the island. The vulnerability assessment of the technical systems describes the potential damages that could stress systems like electricity supply, water distribution, communication networks or transport systems. These damages can also be described as function disruption of the system. The important aspect is not only the physical capacity of a system to resist, but also its capacity to continue functioning. The model will be tested on the island of Vulcano in southern Italy. Vulcano is characterized by clear signs of volcanic unrest and is the type locality for a deadly style of eruption. The main active system of Vulcano Island (La Fossa cone) is known to produce a variety of eruption styles and intensities, each posing their own hazards and threats. Six different hazard scenarios have been identified based on a detailed stratigraphic work. The urbanization on Vulcano took place in the 1980s with no real planning and its population mostly subsists on tourism. Our preliminary results show that Vulcano is not characterized by a great variability of architectural typologies and construction materials. Three main types of buildings are present (masonry with concrete frame, masonry with manufactured stone units, masonry with hollow clay bricks) and no statistically significant trends were found between physical and morphological characteristics. The recent signs of volcanic unrest combined with a complex vulnerability of the island due to an uncontrolled urban development and a significant seasonal variation of the exposed population in summer months result in a high volcanic risk. As a result, Vulcano represents the ideal environment to test a multi-hazard based risk model and to

  11. Preliminary Results on the 2015 Eruption of Wolf Volcano, Isabela Island, Galápagos: Chronology, Dispersion of the Volcanic Products, and Insight into the Eruptive Dynamics

    NASA Astrophysics Data System (ADS)

    Wright, H. M. N.; Bernard, B.; Ramon, P.; Guevara, A.; Hidalgo, S.; Pacheco, D. A.; Narváez, D.; Vásconez, F.

    2015-12-01

    After 33 years of quiescence, Wolf volcano, located in the northernmost tip of Isabela Island (Galápagos Islands, Ecuador), started a new eruption on May 25, 2015. The first signs of activity were recorded at 5:50 UTC (23:50 on May 24, Local Time in Galápagos) by a seismic station installed on Fernandina island. The first visual observation was reported at 7:38 UTC (1:38 LT). Based on amateur film footage, the vent was a >800 m-long circumferential fissure that produced a >100 m-high lava curtain. The eruption also released a 15 km-high gas plume with a large amount of SO2 and minimal ash content. Lightning was observed in the plume but not near the vent. Due to complex wind directions at high altitude, the gas cloud drifted in all directions eventually coming toward the continent and producing an extremely small ashfall in Quito that was detected only through the use of homemade ashmeters. The ash sample included lava droplets, scoria, and one small fragment of reticulite, indicating high lava fountaining during the first days of the eruption. The active vents on the circumferential fissure, initially located on the SE side of the caldera outer rim, moved progressively northward, eventually extending for a total of 2 km. One week later on June 02, satellite imagery (OMI, GOME, MODIS) documented decreased volcanic activity, leaving two new lava fields covering over 17 km2 on the SE (10 km-long and up to 2 km-wide) and E (7 km-long and up to 1 km-wide, reaching the sea) flanks of the volcano. Volcanic activity resumed on June 11, and on June 13 it shifted into the caldera, apparently emerging from a fissure close to the vent from the 1982 eruption, about 4 km W of the circumferential fissure. This new lava flow covered approximately 3.5 km2 of the caldera floor. Finally, volcanic activity waned at the end of June and appeared to have ended by July 11, accounting for one of the largest eruptions in the Galápagos since 1968 based on remote sensing.

  12. Jovian dust streams: A monitor of Io's volcanic plume activity

    USGS Publications Warehouse

    Kruger, H.; Geissler, P.; Horanyi, M.; Graps, A.L.; Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Moissl, R.; Johnson, T.V.; Grun, E.

    2003-01-01

    Streams of high speed dust particles originate from Jupiter's moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200 km s-1. The Galileo spacecraft has continuously monitored the dust streams during 34 revolutions about Jupiter between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between 10-3 and 10 kg s-1, and is typically in the range of 0.1 to 1 kg s-1. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes. Copyright 2003 by the American Geophysical Union.

  13. Relationship between Jovian Hectometric Attenuation Lanes And Io Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Spencer, J. R.; Stansberry, J. A.

    2001-01-01

    Within the Galileo plasma wave instrument data a narrow (in frequency) attenuation band is seen in the hectometric (HOM) emission that varies in frequency with system III longitude. This attenuation lane is believed to be the result of near-grazing incidence or coherent scattering of radio emission near the outer edge of the Io torus, i.e., when the ray path is nearly tangent to an L shell containing the Io flux tube. Such a process should, therefore, be enhanced when the Io volcanic activity is increased and the Io flux tube has enhanced density. We have performed a systematic study of the existing Galileo radio emission data in an effort to determine the phenomenology and frequency of occurrence of the attenuation lanes and the association, if any, with published volcanic activity of Io. Our results indicate that the attenuation lanes are present almost all of the time but are enhanced on occasion. The best examples of attenuation lanes occur when Galileo is within approximately 65 R(sub J) of Jupiter and thus are probably more apparent because of the increased signal-to-noise ratio of the radio receivers. The lack of continuous monitoring of Io activity and the lack of known activity on the anti-Earthward side of Io are problematic and make detailed correlation with radio emission very difficult at this time. Nevertheless, if the data are displayed for periods when the spacecraft is within 65 R(sub J) (i.e., for each perijove pass), then the highest-contrast lanes occur on most passes when the Io volcanic activity is also high for that pass. These results support our current understanding of attenuation lane formation and suggest that future efforts can be made to better understand the interaction of HOM emission with the Io flux tube.

  14. Spatio-temporal evolution of a dispersed magmatic system and its implications for volcano growth, Jeju Island Volcanic Field, Korea

    NASA Astrophysics Data System (ADS)

    Brenna, Marco; Cronin, Shane J.; Smith, Ian E. M.; Sohn, Young Kwan; Maas, Roland

    2012-09-01

    Jeju Island is the emergent portion of a basaltic volcanic field developed over the last c. 1.8 Ma on continental crust. Initial volcanism comprised dispersed, small-volume (< 0.01 km3) alkali basaltic eruptions that incrementally constructed a tuff pile. Lavas and scoria from continuing small-scaled monogenetic volcanism capped this foundation. From c. 0.4 Ma large-volume (> 1 km3) eruptions began, with lavas building a composite shield. Three magma suites can be recognized: Early Pleistocene high-Al alkali (HAA), and Late Pleistocene to Holocene low-Al alkali (LAA) and subalkali (SA). The chemical similarity between small-volume and primitive large-volume eruptions suggests analogous parent magmas and fractionation histories that are independent of erupted volumes. The large-volume magmas evolved to trachyte, which erupted in two distinct episodes: the HAA Sanbangsan suite at c. 750 ka and the LAA Hallasan suite at c. 25 ka. Sr and Nd isotopes indicate that the early trachytes were contaminated by upper crustal material, whereas the later magmas were not. Both suites bear a Nd isotope signature indicative of lower crustal interaction. Sub-suites transitional between HAA and LAA, and between LAA and SA, indicate that melting occurred in discrete, but adjacent, mantle domains. Throughout the evolution of this volcano, each magma batch erupted separately, and a centralized plumbing system was never created. The Island's central peak (Mt. Halla 1950 m a.s.l.) is therefore not a sensu stricto stratovolcano, but marks the point of peak magma output in a distributed magmatic system. Jeju's shape and topography thus represent the spatial variation of fertility of the mantle below it. An increase in melt production in the Late Pleistocene was related to a deepening of the melting zone due to regional tectonic rearrangements. Temporal coincidences between magmatic pulses on Jeju and large-scale caldera eruptive events along the nearest subduction system in Kyushu, Japan

  15. The search for active release of volcanic gases on Mars

    NASA Astrophysics Data System (ADS)

    Khayat, Alain; Villanueva, Geronimo; Mumma, Michael; Tokunaga, Alan

    2015-11-01

    The study of planetary atmospheres by means of spectroscopy is important for understanding their origin and evolution. The presence of short-lived trace gases in the martian atmosphere would imply recent production, for example, by ongoing geologic activity. On Earth, sulfur dioxide (SO2), sulfur monoxide (SO) and hydrogen sulfide (H2S) are the main sulfur-bearing gases released during volcanic outgassing. Carbonyl sulfide (OCS), also released from some volcanoes on Earth (e.g., Erebus and Nyiragongo), could be formed by reactions involving SO2 or H2S inside magma chambers. We carried out the first ground-based, semi-simultaneous, multi-band and multi-species search for such gases above the Tharsis and Syrtis volcanic regions on Mars. The submillimeter search extended between 23 November 2011 and 13 May 2012 which corresponded to Mars’ mid Northern Spring and early Northern Summer seasons (Ls = 34-110°). The strong submillimeter rotational transitions of SO2, SO and H2S were targeted using the high-resolution heterodyne receiver (aka Barney) on the Caltech Submillimeter Observatory. We reached sensitivities sufficient to detect a volcanic release on Mars that is 4% of the SO2 released continuously from Kilauea volcano in Hawaii, or 5% that of the Masaya volcano in Nicaragua. The infrared search covered OCS in its combination band (ν2+ν3) at 3.42 μm at two successive Mars years, during Mars’ late Northern Spring and mid Northern Summer seasons, spanning Ls= 43º and Ls= 147º. The targeted volcanic districts were observed during the two intervals, 14 Dec. 2011 to 6 Jan. 2012 in the first year, and 30 May 2014 to 16 June 2014 in the second year, using the high resolution infrared spectrometer (CSHELL) on NASA’s Infrared Telescope Facility (NASA/IRTF). We will present our results and discuss their implications for current volcanic outgassing activity on the red planet. We gratefully acknowledge support from the NASA Planetary Astronomy Program under NASA

  16. Palaeo-islands as refugia and sources of genetic diversity within volcanic archipelagos: the case of the widespread endemic Canarina canariensis (Campanulaceae).

    PubMed

    Mairal, M; Sanmartín, I; Aldasoro, J J; Culshaw, V; Manolopoulou, I; Alarcón, M

    2015-08-01

    Geographical isolation by oceanic barriers and climatic stability has been postulated as some of the main factors driving diversification within volcanic archipelagos. However, few studies have focused on the effect that catastrophic volcanic events have had on patterns of within-island differentiation in geological time. This study employed data from the chloroplast (cpDNA haplotypes) and the nuclear (AFLPs) genomes to examine the patterns of genetic variation in Canarina canariensis, an iconic plant species associated with the endemic laurel forest of the Canary Islands. We found a strong geographical population structure, with a first divergence around 0.8 Ma that has Tenerife as its central axis and divides Canarian populations into eastern and western clades. Genetic diversity was greatest in the geologically stable 'palaeo-islands' of Anaga, Teno and Roque del Conde; these areas were also inferred as the ancestral location of migrant alleles towards other disturbed areas within Tenerife or the nearby islands using a Bayesian approach to phylogeographical clustering. Oceanic barriers, in contrast, appear to have played a lesser role in structuring genetic variation, with intra-island levels of genetic diversity larger than those between-islands. We argue that volcanic eruptions and landslides after the merging of the palaeo-islands 3.5 Ma played key roles in generating genetic boundaries within Tenerife, with the palaeo-islands acting as refugia against extinction, and as cradles and sources of genetic diversity to other areas within the archipelago. PMID:26096229

  17. Permeability Reduction in Passively Degassing Seawater-dominated Volcanic-hydrothermal systems: Processes and Perils on Raoul Island, Kermadecs (NZ)

    NASA Astrophysics Data System (ADS)

    Christenson, B. W.; Reyes, A. G.

    2014-12-01

    The 2006 eruption from Raoul Island occurred apparently in response to local tectonic swarm activity, but without any precursory indication of volcanic unrest within the hydrothermal system on the island. The eruption released some 200 T of SO2, implicating the involvement of a deep magmatic vapor input into the system during/prior to the event. In the absence of any recognized juvenile material in the eruption products, previous explanations for this eruptive event focused on this vapor being a driving force for the eruption. In 2004, at least 80 T/d of CO2 was escaping from the hydrothermal system, but mainly through areas that did not correspond to the 2006 eruption vents. The lack of a pre-eruptive hydrothermal system response related to the seismic event in 2006 can be explained by the presence of a hydrothermal mineralogic seal in the vent area of the volcano. Evidence for the existence of such a seal was found in eruption deposits in the form of massive fracture fillings of aragonite, calcite and anhydrite. Fluid inclusion homogenization temperatures in these phases range from ca. 140 °C to 220 °C which, for pure water indicate boiling point depths of between 40 and 230 m assuming a cold hydrostatic pressure constraint. Elevated pressures behind this seal are consistent with the occurrence of CO2 clathrates in some inclusion fluids, indicating CO2 concentrations approaching 1 molal in the parent fluids. Reactive transport modeling of magmatic volatile inputs into what is effectively a seawater-dominated hydrothermal system provide valuable insights into seal formation. Carbonate mineral phases ultimately come to saturation along this flow path, but we suggest that focused deposition of the observed massive carbonate seal is facilitated by near-surface boiling of these CO2-enriched altered seawaters, leading to large degrees of supersaturation which are required for the formation of aragonite. As the seal grew and permeability declined, pore pressures

  18. Ultra-long-range hydroacoustic observations of submarine volcanic activity at Monowai, Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Metz, D.; Watts, A. B.; Grevemeyer, I.; Rodgers, M.; Paulatto, M.

    2016-02-01

    Monowai is an active submarine volcanic center in the Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of 5 days, with explosive activity directly linked to the generation of seismoacoustic T phases. We show, using cross-correlation and time-difference-of-arrival techniques, that the eruption is detected as far as Ascension Island, equatorial South Atlantic Ocean, where a bottom moored hydrophone array is operated as part of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization. Hydroacoustic phases from the volcanic center must therefore have propagated through the Sound Fixing and Ranging channel in the South Pacific and South Atlantic Oceans, a source-receiver distance of ~15,800 km. We believe this to be the furthest documented range of a naturally occurring underwater signal above 1 Hz. Our findings, which are consistent with observations at regional broadband stations and long-range, acoustic parabolic equation modeling, have implications for submarine volcano monitoring.

  19. Bayesian event tree for long-term volcanic hazard assessment: Application to Teide-Pico Viejo stratovolcanoes, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Sobradelo, R.; Martí, J.

    2010-05-01

    In modern volcanology one of the most important goals is to perform hazard and risk assessment of volcanoes near urbanized areas. Previous work has been done to assess volcanic hazard in the form of event tree structures containing possible eruptive scenarios. Probability methods have been applied to these structures to estimate the long term probability for each scenario. However, most of these event tree models show restrictions in the eruptive scenarios they consider and/or on the possibility of having volcanic unrest triggered by other forces than magmatic. In this paper, we present a Bayesian event tree structure which accounts for external triggers (geothermal, seismic) as a source of volcanic unrest and looks at the hazard from different types of magma composition and different vent locations (as opposite to a central vent only). We apply the model to the particular case of Teide-Pico Viejo stratovolcanoes, two alkaline composite volcanoes that have erupted 1.8-3 km3 of mafic and felsic magmas from different vent sites during the last 35 ka, situated on a densely populated island, one of the biggest tourist destinations of Europe, and for which limited geological and no historical data exist. Hence, the importance of volcanic hazard assessment for risk-based decision-making in land use planning and emergency management. A previous attempt to estimate the volcanic hazard for Teide-Pico Viejo has been done using an event tree structure based on Elicitation of Expert Judgment. The new method overcomes some limitations of the previous method, including human decision bias, epistemic and aleatoric uncertainties, restrictions on the segmentation complexity of the event tree structure, and automatically updating. The main steps are the following: (1) Design an extensive tree-shaped Bayesian network with possible eruptive scenarios following the case of Teide-Pico Viejo volcanic complex. (2) Build a Bayesian model to estimate the long term volcanic hazard for each

  20. A structural outline of the Yenkahe volcanic resurgent dome (Tanna Island, Vanuatu Arc, South Pacific)

    NASA Astrophysics Data System (ADS)

    Merle, O.; Brothelande, E.; Lénat, J.-F.; Bachèlery, P.; Garaébiti, E.

    2013-12-01

    A structural study has been conducted on the resurgent Yenkahe dome (5 km long by 3 km wide) located in the heart of the Siwi caldera of Tanna Island (Vanuatu arc, south Pacific). This spectacular resurgent dome hosts a small caldera and a very active strombolian cinder cone - the Yasur volcano - in the west and exhibits an intriguing graben in its central part. Detailed mapping and structural observations make it possible to unravel the volcano-tectonic history of the dome. It is shown that, following the early formation of a resurgent dome in the west, a complex collapse (caldera plus graben) occurred and this was associated with the recent uplift of the eastern part of the present dome. Eastward migration of the underlying magma related to regional tectonics is proposed to explain this evolution.

  1. The Effect of Recent Volcanic Activity on the Seismic Structure of Madagascar

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Aleqabi, G. I.; Pratt, M. J.; Shore, P.; Wiens, D. A.; Nyblade, A.; Rambolamanana, G.; Andriampenomanana Ny Ony, F. S. T.; Tsiriandrimanana, R.

    2014-12-01

    The seismic structure of Madagascar is determined using ambient-noise and two-plane-wave earthquake surface waves analyses. A deep low-velocity anomaly is seen in regions of recent volcanic activity in the central and northern regions of the island. The primary data used are from the 2011-2013 MACOMO (Madagascar, the Comoros, and Mozambique) broadband seismic array from the PASSCAL program of IRIS (Incorporated Research Institutions for Seismology), funded by the NSF. Additional data came from the RHUM-RUM project (led by G. Barruol and K. Sigloch), the Madagascar Seismic Profile (led by F. Tilmann), and the GSN. For the ambient-noise study, Rayleigh wave green's functions for all interstation paths are extracted from the broadband seismic data recorded from August 2011 until October 2013. Rayleigh wave group and phase velocity dispersion curves are extracted in the 8 - 50 s period range, identifying shallow crustal structure. For deeper structure, the two-plane-wave method is used on teleseismic earthquake data to obtain surface wave phase velocities in the 20 - 182 s period range. In the inversion, a finite-frequency kernel is used for each period, and a 1-D shear velocity structure is determined at each location. A three-dimensional S-wave velocity model of the crust and upper mantle is obtained from assembling the 1-D models. Preliminary results show a good correlation between the Rayleigh wave velocities and the geology of Madagascar, which includes areas of ancient Archaean craton. The slowest seismic velocities are associated with known volcanic regions in both the central and northern regions, which have experienced volcanic activity within the past million years.

  2. Monitoring and analyses of volcanic activity using remote sensing data at the Alaska Volcano Observatory: Case study for Kamchatka, Russia, December 1997

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Dean, K., G.; Dehn, J.; Miller, T., P.; Kirianov, V. Yu.

    There are about 100 potentially active volcanoes in the North Pacific Ocean region that includes Alaska, the Kamchatka Peninsula, and the Kurile Islands, but fewer than 25% are monitored seismically. The region averages about five volcanic eruptions per year, and more than 20,000 passengers and millions of dollars of cargo fly the air routes in this region each day. One of the primary public safety objectives of the Alaska Volcano Observatory (AVO) is to mitigate the hazard posed by volcanic ash clouds drifting into these busy air traffic routes. The AVO uses real-time remote sensing data (AVHRR, GOES, and GMS) in conjunction with other methods (primarily seismic) to monitor and analyze volcanic activity in the region. Remote sensing data can be used to detect volcanic thermal anomalies and to provide unique information on the location, movement, and composition of volcanic eruption clouds. Satellite images are routinely analyzed twice each day at AVO and many times per day during crisis situations. As part of its formal working relationship with the Kamchatka Volcanic Eruption Response Team (KVERT), the AVO provides satellite observations of volcanic activity in Kamchatka and distributes notices of volcanic eruptions from KVERT to non-Russian users in the international aviation community. This paper outlines the current remote sensing capabilities and operations of the AVO and describes the responsibilities and procedures of federal agencies and international aviation organizations for volcanic eruptions in the North Pacific region. A case study of the December 4, 1997, eruption of Bezymianny volcano, Russia, is used to illustrate how real-time remote sensing and hazard communication are used to mitigate the threat of volcanic ash to aircraft.

  3. Carbon-14 ages of the past 20 ka of eruptive activity of Teide volcano, Canary Islands

    NASA Astrophysics Data System (ADS)

    Carracedo, J. C.; Guillou, H.; Paterne, M.; Pérez Torrado, F. J.; Paris, R.; Badiola, E. R.

    2003-04-01

    Teide volcano, the highest volcano on earth (3718 m a.s.l., >7 Km high) after Mauna Loa and Mauna Kea in the Hawaiian Islands, forms a volcanic complex in the centre of the Island of Tenerife. Its most recent eruptive activity (last 20 Ka) is associated with the very active NW branch of the 120º triple rift system of the island. Most of the eruptions of Tenerife during the past 20 ka have occurred along this volcanic feature, frequently in the production of extensive mafic and felsic lava flows, many of which reached the coast, crossing what is now one of the most densely populated areas of Tenerife and of any oceanic island in the world. However, despite numerous previous studies, very important basic geological information is still lacking, in particular dating of these flows to construct a geochronological framework for the evolution of the Teide-NW rift system, and a scientifically based, much needed volcanic hazard assessment. New carbon-14 ages, obtained via coupled mass spectrometer, and others in process, provide important time constraints on the evolution of Teide's volcanic system, the frequency and distribution of its eruptions, and the associated volcanic hazards. Most of the eruptions are not related to the Teide stratovolcano, which apparently had only one eruption in the last 20 Ka about 1240 ± 60 years BP, but to the Pico Viejo volcano (17570 ± 150 years BP), flank parasitic vents (Mña. Abejera upper vent, 5170 ± 110 years BP; Mña. Abejera lower vent, 4790 ± 70 years BP; Mancha Ruana, 2420 ± 70 years BP; Mña. La Angostura, 2010 ± 60 years BP and Roques Blancos, 1790 ± 60 years BP) and the NW rift (Mña. Chío, 3620 ± 70 years BP). Although the volcanic activity during the past 20 ka included the involvement of at least 7 voluminous phonolitic flank vents in the northern, more unstable slopes of the Teide, it took place without any apparent response of the volcano; on the contrary, these eruptions seemed to progressively buttress and

  4. Galileo SSI Observations of Volcanic Activity at Tvashtar Catena, Io

    NASA Technical Reports Server (NTRS)

    Milazzo, M. P.; Keszthely, L. P.; Radebaugh, J.; Davies, A. G.; Turtle, E. P.; Geissler, P.; Klaasen, K. P.; McEwen, A. S.

    2005-01-01

    Introduction: We report on the analysis of the Galileo SSI's observations of the volcanic activity at Tvashtar Catena, Io as discussed by Milazzo et al. Galileo's Solid State Imager (SSI) observed Tvashtar Catena (63 deg N, 120 deg W) four times between November 1999 and October 2001, providing a unique look at the distinctive high latitude volcanism on Io. The November 1999 observation spatially resolved, for the first time, an active extraterrestrial fissure eruption. The brightness temperature of the lavas at the November 1999 fissure eruption was 1300 K. The second observation (orbit I27, February 2000) showed a large (approx. 500 sq km) region with many, small spots of hot, active lava. The third observation was taken in conjunction with a Cassini observation in December 2000 and showed a Pele-like plume deposition ring, while the Cassini images revealed a 400 km high Pele-type plume above the Catena. The final Galileo SSI observation of Tvashtar was acquired in October 2001, and all obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. We have concentrated on analyzing the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of "simple" advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping (in time and space) eruptions.

  5. Aerosol disturbances of the stratosphere over Tomsk according to data of lidar observations in volcanic activity period 2006-2011

    NASA Astrophysics Data System (ADS)

    Makeev, Andrey P.; Burlakov, Vladimir D.; Dolgii, Sergey I.; Nevzorov, Aleksey V.; Trifonov, Dimitar A.

    2012-11-01

    We summarize and analyze the lidar measurements (Tomsk: 56.5°N; 85.0°E) of the optical characteristics of the stratospheric aerosol layer (SAL) in the volcanic activity period 2006-2011. The background SAL state with minimal aerosol content, which was observed since 1997 under the conditions of long-term volcanically quiescent period, was interrupted in October 2006 by a series of explosive eruptions of volcanoes of the Pacific Ring of Fire: Rabaul (October 2006, New Guinea); Okmok and Kasatochi (July-August 2008, Aleutian Islands); Redoubt (March-April 2009, Alaska); Sarychev Peak (June 2009, Kuril Islands), and Grimsvötn (May 2011, Iceland). A short-term and minor disturbance of the lower stratosphere was also observed in April 2010 after eruption of the Icelandic volcano Eyjafjallajokull. The developed regional empirical model of the vertical distribution of background SAL optical characteristics was used to identify the periods of elevated stratospheric aerosol content after each of the volcanic eruptions.

  6. Nondestructive neutron activation analysis of volcanic samples: Hawaii

    SciTech Connect

    Zoller, W.H.; Finnegan, D.L.; Crowe, B.

    1986-01-01

    Samples of volcanic emissions have been collected between and during eruptions of both Kilauea and Mauna Loa volcanoes during the last three years. Airborne particles have been collected on Teflon filters and acidic gases on base-impregnated cellulose filters. Chemically neutral gas-phase species are collected on charcoal-coated cellulose filters. The primary analytical technique used is nondestructive neutron activation analysis, which has been used to determine the quantities of up to 35 elements on the different filters. The use of neutron activation analysis makes it possible to analyze for a wide range of elements in the different matrices used for the collection and to learn about the distribution between particles and gas phases for each of the elements.

  7. Mapping fumarolic fields in volcanic areas: A methodological approach based on the case study of La Fossa cone, Vulcano island (Italy)

    NASA Astrophysics Data System (ADS)

    Madonia, Paolo; Cangemi, Marianna; Costa, Michela; Madonia, Ivan

    2016-09-01

    Changes in the activity state of a volcano can be inferred by monitoring the steam flux from fumarolic fields, in terms of 4D (x, y, z, time) variations in temperature and extension of the zone. During the last decades, several studies in this field have been conducted worldwide, and at Vulcano island (Italy) in particular. Both direct and remotely sensed measurements have been used for identifying thermally anomalous areas, but the possible role of the hydrothermal alteration of volcanic products, producing a sealing effect that obscures the surface thermal evidence of fumarolic activity, have never been explored. The novelty of the present study, carried out at La Fossa cone (Vulcano Island), was the integration of direct and remotely sensed temperature measurements with the evaluation of soil permeability, for the precise mapping of areas where shallow hydrothermal circulation could occur even in the absence of surface evidence. The main results of this study concern the role of a coating found on rock surfaces and regolith in introducing mapping errors, especially during diachronic temperature surveys based on remotely sensed measurements.

  8. Petrogenesis of Mafic Volcanic Rocks from the Pribilof Islands, Alaska, by Melting of Metasomatically Enriched Depleted Lithosphere, Crystallization Differentiation, and Magma Mixing

    NASA Astrophysics Data System (ADS)

    Feeley, T. C.; Chang, J. M.; Deraps, M. R.

    2008-12-01

    The Pribilof Islands, Alaska, are located in the Bering Sea in a continental intraplate setting. In this study we examine the petrology and geochemistry of mafic volcanic rocks from St. Paul (0.54 to 0.003 Ma) and St. George (2.9 to 1.4 Ma) Islands, the two largest Pribilof Islands. Together these islands offer an opportunity to simultaneously investigate an active and extinct Bering Sea basaltic volcanic field in a setting where features such as lithospheric thickness and composition, distance from the Aleutian arc front, and other tectonic factors are virtually constant. Rocks from St. George can be divided into three groups. Group 1 contains high MgO, low SiO2 rocks that are primarily basanites. Group 2 contains high MgO, high SiO2 rocks that predominantly alkali basalts. Group 3 contains intermediate to low MgO rocks that include alkali basalts and trachybasalts with high modal plagioclase contents. Major and trace element compositions indicate that Groups 1 and 2 formed by partial melting (2-4%) of amphibole-bearing, garnet peridotite. Group 1 rocks were produced from the most hydrous parts of the mantle, as they show the strongest signature of amphibole in their source. Rocks from St. Paul inlcude alkali basalts and basanites with MgO contents from 4.2 to 14.4 wt% at relatively constant SiO2 contents (43.1 to 47.3 wt%). The most primitive St. Paul rocks are interpreted as mixtures between magmas with compositions similar to Groups 1 and 2 from St. George Island. These magmas subsequently fractionated olivine, clinopyroxene, and spinel to form more evolved, plagioclase-rich rocks. Plagioclase-rich Group 3 rocks from St. George can be modeled as mixtures between an evolved St. Paul end-member and a fractionated Group 2 end-member from St. George. Mantle potential temperatures estimated for primitive basanites and alkali basalts average 1370°C and are similar to those calculated for mid-ocean ridge basalts (MORB). Similarly, 87Sr/86Sr and 143Nd/144Nd values for

  9. Influence of explosive volcanic events on the activation versus de-activation of a modern turbidite system: the example of the Dohrn canyon-fan in the continental slope of the Campania volcanic district (Naples Bay, Italy - Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Roca, M.; Budillon, F.; Pappone, G.; Insinga, D.

    2015-12-01

    The interplay between volcanic activity, volcano-clastic yield and activation/deactivation of a turbidite system can be evaluated along the continental margin of Campania region (Tyrrhenian Sea - Italy), an active volcanic area, where three wide canyon-fans occur at short distances one to another. Actually, the Dohrn, Magnaghi and Cuma canyons cut the continental slope and shelf off Ischia and Procida volcanic islands and off the Campania Plain where Phlegraean Field and Mt. Vesuvius active vents are located. This research, partly supported by the Italian Flagship Project Ritmare, is based on single-channel, high-resolution seismic profiles (Sparker-One 16 kJ, 0.5 s twtt), swath-bathymetry and litho- and tephra-stratigraphy of gravity cores. We focused on the stratigraphic constraint of paleo-thalweg features and channel/levees deposits in seismics, debris flow, turbidites and hemipelagites in cores, to learn more on the activation/deactivation stages of the canyon Dohrn, in the frame of relative eustatic sea level variations over the Middle Pleistocene-Holocene time span.Preliminary outcomes suggest that even major volcanic events occurred in the last 300 ky, such as ignimbrite eruptions or large fallouts, have caused the infilling of the canyon head and the cover of pre-existing seabed morphology. As a consequence, the temporary deactivation of the turbidite system has occurred, despite the volcano-clastic overload in the coastal environment. Phases of renewed activities of the thalweg are observed to be in step with falling stages of sea level, which have driven the re-incision of canyon valleys through continuous volcano-clastic debris and turbidites down-flows. Since Holocene, the quiescence of the Dohrn Canyon has been documented, despite the intense volcano-tectonic activity in the area.

  10. Volcanic geomorphology of Tambora (Sumbawa island, Indonesia) on the basis of SRTM DEM data

    NASA Astrophysics Data System (ADS)

    Favalli, Massimiliano; Karátson, David; Gertisser, Ralf; Fornaciai, Alessandro

    2016-04-01

    Tambora volcano (ca. 2700 m a.s.l.), famous for its great 1815 eruption, is located at the western tip of Sanggar Peninsula, Sumbawa. It is characterized by trachybasalts, trachyandesites and tephriphonolites that build up a 30 x 40 km and >1000 km3 large shield-like volcano (Self et al. 1984), inferred to be up to 4,300 m high prior to 1815. The volcano was truncated during the 1815 eruption by a 6 x 7 km wide, 1.2 km deep caldera, revealing pre-eruptive units in the caldera walls (e.g. 1-5 ka tuff layers and <43 ka lava series) and minor features of post-1815 activity on the caldera floor. In our study we use 30 m-resolution SRTM DEM data to constrain the pre-1815 volcanic geomorphology of the volcano. Representative sections along the volcano flanks show that 1) the volcano shape can be best constrained by exponential and not linear profiles, pointing to an original composite- rather than a shield-like volcano, and 2) the edifice is somewhat elongated in NNW-SSE direction, thus having an elliptical and not circular shape. With these findings, we attempted to construct the palaeo-topography of the volcano by fitting a regular surface onto the existent one using the method of Favalli et al. (2014). Our results show that, when fitting the surface to all topography data of the flanks, the reconstructed summit has an elevation of <3,500 m a.s.l., whereas fitting a regular surface from above (i.e. by enhancing topographic outliers), the original volcano summit has an elevation of ~3,900 m. When assessing the altitude, we need to take into account that prior to 1815 the volcano may not have been a simple cone, but a rather more complex edifice with two peaks and/or perhaps a small caldera, so we prefer an original elevation ~3,700 m. This still makes Tambora one of the highest volcanoes along the Sunda arc, comparable to Semeru or Rinjani. Interpretation of the SRTM DEM surface also allows other volcano-geomorphic features to be inferred. The relatively undissected

  11. Development and recent activity of the San Andrés landslide on El Hierro, Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Klimeš, Jan; Yepes, Jorge; Becerril, Laura; Kusák, Michal; Galindo, Inés; Blahut, Jan

    2016-05-01

    Extremely voluminous landslides with a long run-out (also known as megalandslides) on oceanic volcanic islands are infrequent denudational processes on such islands. At the same time, they represent a major geological hazard that must be looked into to avoid negative consequences for the inhabitants of these islands. Their occurrence can be related to periods of intense seismo-volcanic activity, similar to that which occurred on El Hierro Island over 2011-2012. Landslides on volcanic islands are studied using onshore and offshore geological, geophysical and geomorphological records, considering their unique triggering conditions (e.g. lava intrusions, eruptive vents, magma chamber collapses). Previous work has pointed out similarities between specific cases of landslides on volcanic islands and deep-seated gravitational slope deformations (DSGSDs) which are typical in high mountain settings. Nevertheless, the methodological approaches and concepts used to investigate DSGSDs are not commonly applied on volcanic islands studies, even though their use may provide new information about the development stage, recent movements and future hazards. Therefore, this approach for studying the San Andrés landslide (SAL) on El Hierro (Canary Islands) has been developed applying a detailed morphological field mapping, an interpretation of digital elevation models, structural measurements, kinematic testing, and a precise movement monitoring system. The acquired information revealed a strong structural influence on the landslide morphology and the presence of sets of weakened planes acting as the sliding surfaces of the SAL or secondary landslides within its body. The presence of secondary landslides, deep erosive gullies, coastal cliffs and high on-shore relative relief also suggests a high susceptibility to future landslide movement. Direct monitoring on the landslide scarps and the slip plane, performed between February 2013 and July 2014, using an automated optical

  12. Spiders on a Hot Volcanic Roof: Colonisation Pathways and Phylogeography of the Canary Islands Endemic Trap-Door Spider Titanidiops canariensis (Araneae, Idiopidae)

    PubMed Central

    Opatova, Vera; Arnedo, Miquel A.

    2014-01-01

    Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In

  13. Spiders on a Hot Volcanic Roof: Colonisation Pathways and Phylogeography of the Canary Islands Endemic Trap-Door Spider Titanidiops canariensis (Araneae, Idiopidae).

    PubMed

    Opatova, Vera; Arnedo, Miquel A

    2014-01-01

    Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In

  14. New inferences from spectral seismic energy measurement of a link between regional seismicity and volcanic activity at Mt. Etna, Italy

    NASA Astrophysics Data System (ADS)

    Ortiz, R.; Falsaperla, S.; Marrero, J. M.; Messina, A.

    2009-04-01

    The existence of a relationship between regional seismicity and changes in volcanic activity has been the subject of several studies in the last years. Generally, activity in basaltic volcanoes such as Villarica (Chile) and Tungurahua (Ecuador) shows very little changes after the occurrence of regional earthquakes. In a few cases volcanic activity has changed before the occurrence of regional earthquakes, such as observed at Teide, Tenerife, in 2004 and 2005 (Tárraga et al., 2006). In this paper we explore the possible link between regional seismicity and changes in volcanic activity at Mt. Etna in 2006 and 2007. On 24 November, 2006 at 4:37:40 GMT an earthquake of magnitude 4.7 stroke the eastern coast of Sicily. The epicenter was localized 50 km SE of the south coast of the island, and at about 160 km from the summit craters of Mt. Etna. The SSEM (Spectral Seismic Energy Measurement) of the seismic signal at stations at 1 km and 6 km from the craters highlights that four hours before this earthquake the energy associated with volcanic tremor increased, reached a maximum, and finally became steady when the earthquake occurred. Conversely, neither before nor after the earthquake, the SSEM of stations located between 80 km and 120 km from the epicentre and outside the volcano edifice showed changes. On 5 September, 2007 at 21:24:13 GMT an earthquake of magnitude 3.2 and 7.9 km depth stroke the Lipari Island, at the north of Sicily. About 38 hours before the earthquake occurrence, there was an episode of lava fountain lasting 20 hours at Etna volcano. The SSEM of the seismic signal recorded during the lava fountain at a station located at 6 km from the craters highlights changes heralding this earthquake ten hours before its occurrence using the FFM method (e.g., Voight, 1988; Ortiz et al., 2003). A change in volcanic activity - with the onset of ash emission and Strombolian explosions - was observed a couple of hours before the occurrence of the regional

  15. Nested Architecture of Pyroclastic Bedforms Generated by a Single Flow Event: Outcrop Examples from the Izu Volcanic Islands, Japan

    NASA Astrophysics Data System (ADS)

    Nemoto, Y.; Yoshida, S.

    2009-12-01

    We claim that compound bedforms, where small bedforms (e.g., dunes and antidunes) occur within and around the larger bedforms, are common in pyroclastic-flow deposits, using Quaternary-Holocene outcrop examples from the modern Izu volcanic island chain some 100-150 km SSW of Tokyo. The nested occurrence of bedforms have been well documented for siliciclastic deposits, as exemplified by compound dunes where small dunes (c. cm- dm thick) occur between the avalanche surfaces within larger dunes, indicating that these dunes of different sizes were produced simultaneously. However, compound dunes have rarely been reported from pyroclastic deposits. In contrast, we have discovered that compound dunes are common in pyroclastic flow deposits in the late Pleistocene & Holocene outcrops in Niijima and Oshima of the Izu volcanic island chain. Moreover, these outcrops contain abundant compound antidunes, which have been reported from neither siliciclastic or pyroclastic deposits. This is probably because flume studies, where most of published antidune studies are based, focus on small (c. cm-dm high) antidunes. In Niijima Island, we examined pyroclastic-flow deposits shed from Mt. Miyatsuka (14 ka) and Mt. Mukai (886 A.D.). Both groups of deposits contain abundant antidune stratifications, which commonly form nested structures in a two- or three-fold hierarchy, with subordinate crossbeddings originated from dune migrations. Each class of antidunes is characterized by multiple scour surfaces and vertical aggradations around mounds of lag deposits above erosion surfaces, and typically has both upstream and downstream accretion components with different proportions. The late Pleistocene pyroclastic outcrops of the nearby Oshima Island exhibit similar patterns. The geometry of the accretion surfaces vary significantly in the outcrops of both Niijima and Oshima. Whereas the antidunes dominated by upstream accretion are characterized by (1) gently inclined accretion surface and (2

  16. Assessment of correlation between geophysical and hydrogeological parameters of volcanic deposits at Bandama Caldera (Gran Canaria, Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Casas, Albert; Himi, Mahjoub; Estévez, Esmeralda; Lovera, Raúl; Sendrós, Alexandre; Palacios-Díaz, M. Pino; Tapias, Josefina C.; Cabrera, M. Carmen

    2015-04-01

    The characterization of the preferential areas of water infiltration through the vadose zone is of paramount importance to assess the pollution vulnerability of the underlying aquifers. Nevertheless, geometry and the hydraulic conductivity of each geological unit which constitute the unsaturated zone are difficult to study from traditional techniques (samples from trenches) and normally do not go beyond a meter depth from of the surface. On the other hand, boreholes are expensive and provide only local information not always representative of the whole unsaturated zone. For this reason, geophysical techniques and among them the electrical resistivity tomography method can be applicable in volcanic areas, where basaltic rocks, pyroclastic and volcanic ash-fall deposits have a wide range of values. In order to characterize the subsurface geology below the golf course of Bandama (Gran Canaria Island), irrigated with reclaimed wastewater, a detailed electrical resistivity tomography survey has been carried out. This technique has allowed to define the geometry of the existing geological formations by their high electrical resistivity contrast. Subsequently, in representative outcrops the value of resistivity of each of these lithologies has been measured and simultaneously undisturbed samples have been taken measuring the hydraulic conductivity in the laboratory. Finally a statistical correlation between both variables has been established for evaluating the vulnerability to groundwater pollution at different zones of the golf course.

  17. Using IMS hydrophone data for detecting submarine volcanic activity: Insights from Monowai, 26°S Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Metz, Dirk; Watts, Anthony B.; Grevemeyer, Ingo; Rodgers, Mel; Paulatto, Michele

    2016-04-01

    Only little is known on active volcanism in the ocean. As eruptions are attenuated by seawater and fallout does not regularly reach the sea surface, eruption rates and mechanisms are poorly understood. Estimations on the number of active volcanoes across the modern seas range from hundreds to thousands, but only very few active sites are known. Monowai is a submarine volcanic centre in the northern Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of five days, with explosive activity directly linked to the generation of seismoacoustic tertiary waves ('T-phases'), recorded at three broadband seismic stations in the region. We show, using windowed cross-correlation and time-difference-of-arrival techniques, that T-phases associated with this eruption are detected as far as Ascension Island, South Atlantic Ocean, where two bottom-moored hydrophone arrays are operated as part of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). We observe a high incidence of T-phase arrivals during the time of the eruption, with the angle of arrival stabilizing at the geodesic azimuth between the IMS arrays and Monowai. T-phases from the volcanic centre must therefore have propagated through the Sound Fixing And Ranging (SOFAR) channel in the South Pacific and South Atlantic Oceans and over a total geodesic range of approximately 15,800 km, one of the longest source-receiver distances of any naturally occurring underwater signal ever observed. Our findings, which are consistent with observations at regional broadband stations and two dimensional, long-range, parabolic equation modelling, highlight the exceptional capabilities of the hydroacoustic waveform component of the IMS for remotely detecting episodes of submarine volcanic activity. Using Monowai and the hydrophone arrays at Ascension Island as a natural laboratory, we investigate the long-term eruptive record of a submarine volcano from

  18. Groundwater flow in a volcanic-sedimentary coastal aquifer: Telde area, Gran Canaria, Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Cabrera, M. C.; Custodio, E.

    Groundwater conditions in a 75- km2 coastal area around the town of Telde in eastern Gran Canaria island have been studied. Pliocene to Recent volcanic materials are found, with an intercalated detrital formation (LPDF), which is a characteristic of the area. Groundwater development has become intensive since the 1950s, mostly for intensive agricultural irrigation and municipal water supply. The LPDF is one order of magnitude more transmissive and permeable than the underlying Phonolitic Formation when median values are compared (150 and 15 m2 day-1 5 and 0.5 m day-1, respectively). These two formations are highly heterogeneous and the ranges of expected well productivities partly overlap. The overlying recent basalts constituted a good aquifer several decades ago but now are mostly drained, except in the southern areas. Average values of drainable porosity (specific yield) seem to be about 0.03 to 0.04, or higher. Groundwater development has produced a conspicuous strip where the watertable has been drawn down as much as 40 m in 20 years, although the inland watertable elevation is much less affected. Groundwater reserve depletion contributes only about 5% of ed water, and more than 60% of this is transmitted from inland areas. Groundwater discharge into the sea may still be significant, perhaps 30% of total inflow to the area is discharged to the sea although this value is very uncertain. Les conditions de gisement de l'eau souterraine d'une région de 75 km2 de la côte Est de l'île de la Grande Canarie (archipel des Canaries), dans le secteur de Telde, ont été étudiées, en utilisant seulement les données fournies par les puits d'exploitation existants. Les matériaux volcaniques, d'âge Pliocène à sub-actuel, sont séparés par une formation détritique (FDLP), qui constitue la principale singularité de cette région. L'exploitation de l'eau souterraine est devenue intensive à partir de 1950, principalement pour des besoins d'irrigation (agriculture

  19. Bimodal volcanism in northeast Puerto Rico and the Virgin Islands (Greater Antilles Island Arc): Genetic links with Cretaceous subduction of the mid-Atlantic ridge Caribbean spur

    NASA Astrophysics Data System (ADS)

    Jolly, Wayne T.; Lidiak, Edward G.; Dickin, Alan P.

    2008-07-01

    Bimodal extrusive volcanic rocks in the northeast Greater Antilles Arc consist of two interlayered suites, including (1) a predominantly basaltic suite, dominated by island arc basalts with small proportions of andesite, and (2) a silicic suite, similar in composition to small volume intrusive veins of oceanic plagiogranite commonly recognized in oceanic crustal sequences. The basaltic suite is geochemically characterized by variable enrichment in the more incompatible elements and negative chondrite-normalized HFSE anomalies. Trace element melting and mixing models indicate the magnitude of the subducted sediment component in Antilles arc basalts is highly variable and decreases dramatically from east to west along the arc. In the Virgin Islands, the sediment component ranges between< 0.5 to ˜ 1% in Albian rocks, and between ˜ 1 and 2% in succeeding Cenomanian to Campanian strata. In comparison, sediment proportions in central Puerto Rico range between 0.5 to 1.5% in the Albian to 2 to > 4% during the Cenomanian-Campanian interval. The silicic suite, consisting predominantly of rhyolites, is characterized by depleted Al 2O 3 (average < 16%), low Mg-number (molar Mg/Mg + Fe < 0.5), TiO 2 (< 1.0%), and Sr/Y (< 10), oceanic or arc-like Sr, Nd, and Pb isotope signatures, and by the presence of plagioclase. All of these features are consistent with an anatexic origin in gabbroic sources, of both oceanic and arc-related origin, within the sub-arc basement. The abundance of silicic lavas varies widely along the length of the arc platform. In the Virgin Islands on the east, rhyolites comprise up to 80% of Lower Albian strata (112 to 105 Ma), and about 20% in post-Albian strata (105 to 100 Ma). Farther west, in Puerto Rico, more limited proportions (< 20%) of silicic lavas were erupted. The systematic variation of both sediment flux and abundance of crustally derived silicic lavas are consistent with current tectonic models of Caribbean evolution involving approximately

  20. Crustal deformation and volcanism at active plate boundaries

    NASA Astrophysics Data System (ADS)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and

  1. Relationship between normal faulting and volcanic activity in the Taranaki backarc basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Giba, M.; Walsh, J. J.; Nicol, A.

    2009-04-01

    Volcanoes and normal faults are, by definition, both present within volcanic rifts. Despite this association the causal relationships between volcanism and normal faulting can be unclear and are poorly understood. One of the principal challenges for investigations of the links between faulting and volcanic activity, is the definition of the detailed temporal relationships between these two processes. The northern Taranaki Basin, which benefits from excellent seismic (2D and 3D) and drillhole coverage, provides the basis for a detailed study of volcanism and faulting over the last ca 15 Myr. Most of the basin is characterised by sedimentation rates which exceed fault displacement rates, a condition which permits displacement backstripping of these syn-sedimentary growth faults. The timing of a suite of mostly andesitic submarine volcanoes has been constrained by interdigitation of the volcanic cones with basinal sedimentary rocks. Eleven dated horizons within the ca 15 Myr and younger stratigraphy together with mapping provide a means of examining the temporal and spatial links between fault and volcanic activity within the basin. The northern Taranaki Basin has a multiphase deformation history, with extension during the Late Cretaceous to Mid Eocene (ca 80-45 Ma), followed by contraction in the Late Eocene to Early Miocene (ca 40-18 Ma) and then by Mid Miocene to recent back arc extension (ca 15-0 Ma). The youngest phase of extensional faulting initiated in the north and west of the basin and migrated to the southeast where present activity is focused. Volcanic activity also commenced in the north during the Mid Miocene and migrated towards the south and east. Volcanism and backarc extension are driven by subduction of the Pacific plate along the Hikurangi margin. The southward and eastward migration of both faulting and volcanic activity is attributed to the steepening and rotation of the subducting slab beneath the Taranaki Basin. Despite the common origin of

  2. Reconnaissance paleomagnetic study of the Eocene Admiralty Island volcanics, southeast Alaska: evidence for pre-late Eocene accretion

    SciTech Connect

    Panuska, B.C.; Decker, J.

    1985-01-01

    Paleomagnetic data have shown that many of the terranes in southern and southeastern Alaska originated in equatorial paleolatitudes. The ages(s) of accretion of these terranes is much debated and paleomagnetic studies constraining this age are limited. As part of a larger study, reconnaissance samples of the Admiralty Island Volcanics (Eocene) were collected at Deepwater Point and Little Pybus Bay on the southern coast of Admiralty Island. Thermal or AF cleaning effectively isolated stable magnetic components in most specimens. Homoclinal dip of the flows precludes a fold test and reversals were not observed. However, 3 penecontemporaneous feeder dikes have magnetic directions which are statistically different from the magnetic directions of the flows they intrude (baked contact test). In addition, the flows have not been affected by a regional overprinting observed in most pre-Tertiary rocks. Thus, these magnetic directions are provisionally interpreted as primary. Assuming a reversed geomagnetic polarity during the eruption of the flows, the mean direction is not significantly different than the expected North American direction. Although more data are necessary to prove a primary remanence and to insure that secular variation has been averaged out, the preliminary evidence suggests that the Southern Alaska superterrane had accreted to North American by Eocene time. These results are similar to findings in south central Alaska, which also suggest that the major terrane translation and had been completed by the early Tertiary.

  3. Nematode diversity, abundance and community structure 50 years after the formation of the volcanic island of Surtsey

    NASA Astrophysics Data System (ADS)

    Ilieva-Makulec, K.; Bjarnadottir, B.; Sigurdsson, B. D.

    2014-10-01

    The soil nematode fauna can give important insights into soil development and other habitat changes that occur during primary succession. We investigated the generic composition, density, distribution and community structure of nematodes 50 years after the formation of a pristine volcanic island, Surtsey, Iceland. Part of the island has received additional nutrient inputs from seagulls breeding there since 1985, while the reminder has been much less affected and is at present found at a different successional sere. In total, 25 genera of nematodes were identified, of which 14 were reported on Surtsey for the first time. Nematode communities were more diverse in the more infertile area outside the gull colony, where 24 genera were found, compared to 18 inside. The trophic structure of the nematode communities showed relatively higher abundance of fungal feeders in the infertile areas, but relatively more bacterial- and plant-feeders inside the colony. Nematode abundance in surface soil was, however, significantly higher within the gull colony, with 16.7 ind. cm-2 compared to 3.6 ind. cm-2 outside. A multivariate analysis indicated that the nematode abundance and distribution on Surtsey were most strongly related to the soil C : N ratio, soil acidity, plant cover and biomass, soil temperature and soil depth.

  4. Identification of shallow volcanic structures in Timanfaya National Park (Lanzarote, Canary Islands) through combined geophysical prospecting techniques

    NASA Astrophysics Data System (ADS)

    Gomez-Ortiz, David; Montesinos, Fuensanta G.; Martin-Crespo, Tomas; Solla, Mercedes; Arnoso, Jose; Velez, Emilio

    2014-05-01

    The Timanfaya National Park is a volcanic area, which occupies a surface area of about 51 sq. km in the southwest of Lanzarote Island (Canary Archipelago, Spain). The 1730-1736 eruption gave rise to this volcanic landscape with more than 30 volcanic cones formed in different phases of basaltic type eruptions. It was one of the most important volcanic events occurred in the Canary Archipelago over the last 500 years. Several canyons ("jameos") are crossing this landscape in all directions, being created while the surface of the lava cooled off, and broke into pieces, falling down into the several tubes. Its location and identification is important to prevent hazards or to achieve a good exploitation from a visitor viewpoint in a restricted touristic area as the Timanfaya National Park. The use of prospective techniques to investigate the near subsurface structure of the park is very complicated, and only some regional study through gravity, magnetism and seismicity have been undertaken to attempt to model the deeper crustal structure of Lanzarote Island. This work presents a new study about the location of recent lava tubes at the volcanic area of Timanfaya National Park by the analysis and joint interpretation of high-resolution gravity, ground penetrating radar (GPR), and electromagnetic induction (EMI) data obtained over areas which had not been surveyed up to date. The studied lava flows are located at the Calderas Quemadas zone. The processed GPR radargram displays a complex pattern of reflections along the whole profile up to ~9 m depth. The strongest reflections can be grouped in four different areas defined by several hyperbolic reflections. Direct visual inspections carried out in the field allow confirming the occurrence of lava tubes at two of the locations where hyperbolic reflections are defined. Then, the strong reflections observed have been interpreted as the effect of the roof and bottom interfaces of several lava tubes. A microgravity survey along

  5. Groundwater flow in a volcanic-sedimentary coastal aquifer: Telde area, Gran Canaria, Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Cabrera, M. C.; Custodio, E.

    Groundwater conditions in a 75- km2 coastal area around the town of Telde in eastern Gran Canaria island have been studied. Pliocene to Recent volcanic materials are found, with an intercalated detrital formation (LPDF), which is a characteristic of the area. Groundwater development has become intensive since the 1950s, mostly for intensive agricultural irrigation and municipal water supply. The LPDF is one order of magnitude more transmissive and permeable than the underlying Phonolitic Formation when median values are compared (150 and 15 m2 day-1 5 and 0.5 m day-1, respectively). These two formations are highly heterogeneous and the ranges of expected well productivities partly overlap. The overlying recent basalts constituted a good aquifer several decades ago but now are mostly drained, except in the southern areas. Average values of drainable porosity (specific yield) seem to be about 0.03 to 0.04, or higher. Groundwater development has produced a conspicuous strip where the watertable has been drawn down as much as 40 m in 20 years, although the inland watertable elevation is much less affected. Groundwater reserve depletion contributes only about 5% of ed water, and more than 60% of this is transmitted from inland areas. Groundwater discharge into the sea may still be significant, perhaps 30% of total inflow to the area is discharged to the sea although this value is very uncertain. Les conditions de gisement de l'eau souterraine d'une région de 75 km2 de la côte Est de l'île de la Grande Canarie (archipel des Canaries), dans le secteur de Telde, ont été étudiées, en utilisant seulement les données fournies par les puits d'exploitation existants. Les matériaux volcaniques, d'âge Pliocène à sub-actuel, sont séparés par une formation détritique (FDLP), qui constitue la principale singularité de cette région. L'exploitation de l'eau souterraine est devenue intensive à partir de 1950, principalement pour des besoins d'irrigation (agriculture

  6. Gish Bar Patera, Io: Geology and Volcanic Activity, 1996-2001

    NASA Technical Reports Server (NTRS)

    Perry, Jason; Radebaugh, Jani; Lopes, Rosaly; McEwen, Alfred; Keszthelyi, Laszlo

    2003-01-01

    Since the two Voyagers passed by Jupiter in 1979, it has been known that volcanic activity is ubiquitous on the surface of Io. With over 400 volcanic centers, Io is even more volcanically active than the earth with massive flood basalt-style eruptions and komatitite lavas a common occurrence. Additionally, some volcanoes appear to be giant lava lakes, with violent activity churning the crust of the lake for periods of 20 years or more. Finally, sulfur is believed to play a large role in Io's volcanism, be it as a primary lava or as a secondary product of large, high-temperature eruptions. By studying one volcano in particular, Gish Bar Patera, one can observe many of these characteristics in one volcanic center.

  7. Evidence for late tertiary volcanic activity in the northern black hills, South dakota.

    PubMed

    Kirchner, J G

    1977-05-27

    Rhyolitic volcanic rock in the northern Black Hills has a potassium-argon isotopic age of 10.5 +/- 1.5 million years. This is considerably younger than any previously reported igneous activity in this or adjacent areas and indicates that the renewed uplift of the Black Hills, which occurred after the Oligocene epoch, was also accompanied by some volcanism. PMID:17778711

  8. Sedimentological and geochemical evidence for multistage failure of volcanic island landslides: A case study from Icod landslide on north Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Hunt, James E.; Wynn, Russell B.; Masson, Douglas G.; Talling, Peter J.; Teagle, Damon A. H.

    2011-12-01

    Volcanic island landslides can pose a significant geohazard through landslide-generated tsunamis. However, a lack of direct observations means that factors influencing tsunamigenic potential of landslides remain poorly constrained. The study of distal turbidites generated from past landslides can provide useful insights into key aspects of the landslide dynamics and emplacement process, such as total event volume and whether landslides occurred as single or multiple events. The northern flank of Tenerife has undergone multiple landslide events, the most recent being the Icod landslide dated at ˜165 ka. The Icod landslide generated a turbidite with a deposit volume of ˜210 km3, covering 355,000 km2of seafloor off northwest Africa. The Icod turbidite architecture displays a stacked sequence of seven normally graded sand and mud intervals (named subunits SBU1-7). Evidence from subunit bulk geochemistry, volume, basal grain size, volcanic glass composition and sand mineralogy, combined with petrophysical and geophysical data, suggests that the subunit facies represents multistage retrogressive failure of the Icod landslide. The basal subunits (SBU1-3) indicate that the first three stages of the landslide had a submarine component, whereas the upper subunits (SBU4-7) originated above sea level. The presence of thin, non-bioturbated, mud intervals between subunit sands suggests a likely time interval of at least several days between each stage of failure. These results have important implications for tsunamigenesis from such landslides, as multistage retrogressive failures, separated by several days and with both a submarine and subaerial component, will have markedly lower tsunamigenic potential than a single-block failure.

  9. Io's Diverse Styles of Volcanic Activity: Results from Galileo NIMS

    NASA Technical Reports Server (NTRS)

    Lopes, R. M. C.; Smythe, W. D.; Kamp, L. W.; Doute, S.; Carlson, R.; McEwen, A.; Geissler, P.

    2001-01-01

    Observations by Galileo's Near-Infrared Mapping Spectrometer were used to map the thermal structure of several of Io's hot spots, revealing different styles of volcanism Additional information is contained in the original extended abstract..

  10. Characterization and interpretation of volcanic activity at Redoubt, Bezymianny and Karymsky volcanoes through direct and remote measurements of volcanic emissions

    NASA Astrophysics Data System (ADS)

    Lopez, Taryn M.

    Surface measurements of volcanic emissions can provide critical insight into subsurface processes at active volcanoes such as the influx or ascent of magma, changes in conduit permeability, and relative eruption size. In this dissertation I employ direct and remote measurements of volcanic emissions to characterize activity and elucidate subsurface processes at three active volcanoes around the North Pacific. The 2009 eruption of Redoubt Volcano, Alaska, produced elevated SO2 emissions that were detected by the Ozone Monitoring Instrument (OMI) satellite sensor for over three months. This provided a rare opportunity to characterize Redoubt's daily SO2 emissions and to validate the OMI measurements. Order of magnitude variations in daily SO2 mass were observed, with over half of the cumulative SO2 emissions released during the explosive phase of the eruption. Correlations among OMI daily SO2 mass, tephra mass and acoustic energies during the explosive phase suggest that OMI data may be used to infer eruption size and explosivity. From 2007 through 2010 direct and remote measurements of volcanic gas composition and flux were measured at Bezymianny Volcano, Kamchatka, Russia. During this period Bezymianny underwent five explosive eruptions. Estimates of passive and eruptive SO2 emissions suggest that the majority of SO2 is released passively. Order of magnitude variations in total volatile flux observed throughout the study period were attributed to changes in the depth of gas exsolution and separation from the melt at the time of sample collection. These findings suggest that exsolved gas composition may be used to detect magma ascent prior to eruption at Bezymianny Volcano. Karymsky Volcano, Kamchatka, Russia, is a dynamic volcano which exhibited four end-member activity types during field campaigns in 2011 and 2012, including: discrete ash explosions, pulsatory degassing, gas jetting, and explosive eruption. These activity types were characterized quantitatively

  11. Complex explosive volcanic activity on the Moon within Oppenheimer crater

    NASA Astrophysics Data System (ADS)

    Bennett, Kristen A.; Horgan, Briony H. N.; Gaddis, Lisa R.; Greenhagen, Benjamin T.; Allen, Carlton C.; Hayne, Paul O.; Bell, James F.; Paige, David A.

    2016-07-01

    Oppenheimer crater is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining inferred to form larger regional deposits. We use Lunar Reconnaissance Orbiter Camera images and Diviner Radiometer mid-infrared data, Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra, and Clementine orbiter Ultraviolet/visible camera images to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. Mineralogically, we find that the deposits are variable mixtures of orthopyroxene and minor clinopyroxene sourced from the crater floor, juvenile clinopyroxene, and juvenile iron-rich glass, and that the mineralogy of the pyroclastics varies both across the Oppenheimer deposits as a whole and within individual deposits. We observe similar variability in the inferred iron content of pyroclastic glasses, and note in particular that the northwest deposit, associated with Oppenheimer U crater, contains the most iron-rich volcanic glass thus far identified on the Moon, which could be a useful future resource. We propose that this variability in mineralogy indicates variability in eruption style, and that it cannot be explained by a simple Vulcanian eruption. A Vulcanian eruption should cause significant country rock to be incorporated into the pyroclastic deposit; however, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases and very little floor material. Thus, we propose that at least the most recent portion of these deposits must have erupted via a Strombolian or more continuous fire

  12. SO2 on Venus: IUE, HST and ground-based measurements, and the active volcanism connection

    NASA Technical Reports Server (NTRS)

    Na, C. Y.; Barker, E. S.; Stern, S. A.; Esposito, L. W.

    1993-01-01

    Magellan images have shown that the volcanic features are widespread over the surface of Venus. The question of whether there is active volcanism is important for understanding both the atmospheric and the geological processes on Venus. The thick cloud cover of Venus precludes any direct observation of active volcanoes even if they exist. The only means of monitoring the active volcanism on Venus at present seems to be remote sensing from Earth. Continuous monitoring of SO2 is important to establish the long term trend of SO2 abundance and to understand the physical mechanism responsible for the change.

  13. Catastrophic volcanism

    NASA Technical Reports Server (NTRS)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  14. Rapid response of a hydrologic system to volcanic activity: Masaya volcano, Nicaragua

    USGS Publications Warehouse

    Pearson, S.C.P.; Connor, C.B.; Sanford, W.E.

    2008-01-01

    Hydrologic systems change in response to volcanic activity, and in turn may be sensitive indicators of volcanic activity. Here we investigate the coupled nature of magmatic and hydrologic systems using continuous multichannel time series of soil temperature collected on the flanks of Masaya volcano, Nicaragua, one of the most active volcanoes in Central America. The soil temperatures were measured in a low-temperature fumarole field located 3.5 km down the flanks of the volcano. Analysis of these time series reveals that they respond extremely rapidly, on a time scale of minutes, to changes in volcanic activity also manifested at the summit vent. These rapid temperature changes are caused by increased flow of water vapor through flank fumaroles during volcanism. The soil temperature response, ~5 °C, is repetitive and complex, with as many as 13 pulses during a single volcanic episode. Analysis of the frequency spectrum of these temperature time series shows that these anomalies are characterized by broad frequency content during volcanic activity. They are thus easily distinguished from seasonal trends, diurnal variations, or individual rainfall events, which triggered rapid transient increases in temperature during 5% of events. We suggest that the mechanism responsible for the distinctive temperature signals is rapid change in pore pressure in response to magmatism, a response that can be enhanced by meteoric water infiltration. Monitoring of distal fumaroles can therefore provide insight into coupled volcanic-hydrologic-meteorologic systems, and has potential as an inexpensive monitoring tool.

  15. Analysis of particle motions of volcanic earthquakes at White Island, New Zealand, using multicomponent complex trace analysis method

    NASA Astrophysics Data System (ADS)

    Han, Arim; Kim, Ki Young; Jolly, Arthur D.

    2015-04-01

    To investigate particle motions of volcanos seismic waves, we applied multicomponent complex trace analysis to the non-harmonic tremor detected on August 19 and very long period (VLP) and long period (LP) events recorded on October 3, 2013 at seismic stations WIZ and WSRZ on White Island volcano in New Zealand. Seismic data of 1,000 s duration from continuous records were digitized at a 100-Hz sample rate. Since spectral ranges for the tremor and LP events were overlapped to each other, a low-pass filter with a corner frequency of 0.5 Hz was applied to the VLP event only. To generate the quadrature traces, we applied the Hilbert transform to seismic data and then we calculated instantaneous polarization attributes. To minimize the effects of rapid temporal changes, 10-s moving averages were applied to the instantaneous polarization attributes. The volcanic tremor was mainly composed of horizontally polarized waves with retrograde elliptic motions for which the phase difference between vertical and horizontal components and the reciprocal ellipticity was 9 deg and 0.2 to 0.3, respectively. The rise angle less than 4 deg indicated that the sources were located at shallow depths. The VLP event was linearly polarized with phase difference nearly constant at 0 deg, reciprocal ellipticity close to 0.1, and rise angle of 58 and 52 deg at the two seismic stations. The positive values of rise angle indicate that the VLP event was composed of the compressional waves. Using the values of rise angle, elevations, and surface locations of two seismic stations, we computed the source depth of the VLP event. The depth was estimated to be 0.9 km. The LP events had values for phase difference of 11 and 3 deg, reciprocal ellipticity of 0.2 to 0.3 and rise angle less than 5 deg. The polarization attributes and particle motions of the LP events were similar to those of the volcanic tremor.

  16. Volcanic soils and landslides: the case study of the Ischia island (southern Italy) and relationship with other Campania events

    NASA Astrophysics Data System (ADS)

    Vingiani, S.; Mele, G.; De Mascellis, R.; Terribile, F.; Basile, A.

    2015-01-01

    An integrated investigation has been carried out over the soils involved in the landslide phenomena occurred in the 2006 at Mt. Vezzi in the Ischia island (southern Italy). Chemical, physical (i.e. particle size distribution, hydrological analyses and direct measurements of soil porosity), mineralogical and micromorphological properties of three soil profiles selected in two of the main detachment crowns were analysed. The studied soils, having a volcanic origin, showed a substantial abrupt discontinuity of all the studied properties in correspondence of the 2C horizon, also identified as sliding surface of the landslide phenomena. With respect to the above horizons, the 2C showed (i) as a grey fine ash, almost pumices free, with a silt content increased by the 20%, (ii) ks values one order of magnitude lower, (iii) a porosity concentrated in the small size (15 to 30 μm modal class) pores characterized by very low percolation threshold (around 15-25 μm), (iv) occurrence of expandable clay minerals and (v) higher Na content in the exchange complex. Therefore, most of these properties indicated 2C as a lower permeability horizon than the above. Nevertheless, only the identification of a thin (6.5 mm) finely stratified ash layer on the top of 2C enabled to assume this interface as an impeding layer to vertical and horizontal water fluxes, as testified by the hydromorphic features (e.g. Fe / Mn concretions) within and on the top of the layer. Despite the Mt. Vezzi soil environment has many properties (high gradient northern facing slope, similar forestry, volcanic origin of the parent material) in common with those of many Campania debris-mud flows, the results of this study did not support the found relationship between Andosols and debris-mudflows, but emphasize the role of vertical discontinuities as landslide predisposing factor.

  17. Embedded ARM system for volcano monitoring in remote areas: application to the active volcano on Deception Island (Antarctica).

    PubMed

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-01

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis. PMID:24451461

  18. Embedded ARM System for Volcano Monitoring in Remote Areas: Application to the Active Volcano on Deception Island (Antarctica)

    PubMed Central

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-01

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis. PMID:24451461

  19. Discovery of Seafloor Massive Sulfides in an Andesite-Dacite Knoll Caldera off Present-Day Volcanic Front, Izu-Ogasawara Island Arc, Japan

    NASA Astrophysics Data System (ADS)

    Iizasa, K.; Asada, A.; Lee, S.; Mizuno, K.; Katase, F.; Kojima, M.; Kurozawa, T.

    2015-12-01

    We report the discovery of sulfide mounds with 20 to 30 m high sulfide chimneys in the Higashi-Aogashima hydrothermal field of a Quaternary andesite-dacite knoll caldera at the frontal arc side off Quaternary volcanic front, Izu-Ogasawara island arc, Japan. The discovery was carried out based on the systematic survey method of geological technique and a developed acoustic device using AUV. The knoll caldera 12 km east of Aogashima volcanic island is the size 10 km to 9 km of its rim and 820 m deep at its deepest caldera floor. According to the results of heavy mineral analysis for caldera sediments by a gravity corer, at least two areas were inferred to sites of potential hydrothermal activity associated with seafloor massive sulfides. After the precise acoustic survey using AUV there are many mound-like structures in the both inferred areas on the floor. Two major hydrothermal fields among them so far, which are a conical sulfide mound on the southeast flank of the central cone and a ridge-like mound on the inferred caldera boundary fault in the southeast, were confirmed based on sulfide samples recovered by a gravity corer during the next survey stage. One of them occurs at the water depth of 760 m to 770 m. It has active sulfide chimneys (ca. 20 m high) on the conical sulfide mound of about 40 m in diameter with 20 m high. Samples from the mound are composed of major sphalerite with moderate galena and barite, and minor chalcopyrite and pyrite. Another mound associated with chimneys at the water depth ranging from 740m to 770m on the southeast caldera boundary fault forms a small, east-west trend ridge-like shape. The ridge sizes more than 100 m long with 10 m wide. Chimneys are more than 30 m high. It is inferred that the mound is composed of major sphalerite and moderate barite based on samples cored at the margin of the mound. These results indicate that more than several sulfide mounds would be confirmed in the caldera floor by ROV surveys this September.

  20. Observed multivariable signals of late 20th and early 21st century volcanic activity

    NASA Astrophysics Data System (ADS)

    Santer, Benjamin D.; Solomon, Susan; Bonfils, Céline; Zelinka, Mark D.; Painter, Jeffrey F.; Beltran, Francisco; Fyfe, John C.; Johannesson, Gardar; Mears, Carl; Ridley, David A.; Vernier, Jean-Paul; Wentz, Frank J.

    2015-01-01

    The relatively muted warming of the surface and lower troposphere since 1998 has attracted considerable attention. One contributory factor to this "warming hiatus" is an increase in volcanically induced cooling over the early 21st century. Here we identify the signals of late 20th and early 21st century volcanic activity in multiple observed climate variables. Volcanic signals are statistically discernible in spatial averages of tropical and near-global SST, tropospheric temperature, net clear-sky short-wave radiation, and atmospheric water vapor. Signals of late 20th and early 21st century volcanic eruptions are also detectable in near-global averages of rainfall. In tropical average rainfall, however, only a Pinatubo-caused drying signal is identifiable. Successful volcanic signal detection is critically dependent on removal of variability induced by the El Niño-Southern Oscillation.

  1. Living on the edge: demographic and phylogeographical patterns in the woodlouse-hunter spider Dysdera lancerotensis Simon, 1907 on the eastern volcanic ridge of the Canary Islands.

    PubMed

    Bidegaray-Batista, Leticia; Macías-Hernández, Nuria; Oromí, Pedro; Arnedo, Miquel A

    2007-08-01

    The Eastern Canary Islands are the emerged tips of a continuous volcanic ridge running parallel to the northeastern African coast, originated by episodic volcanic eruptions that can be traced back to the Miocene and that, following a major period of quiescence and erosion, continued from the Pliocene to the present day. The islands have been periodically connected by eustatic sea-level changes resulting from Pleistocene glacial cycles. The ground-dwelling spider Dysdera lancerotensis Simon, 1907 occurs along the entire ridge, except on recent barren lavas and sand dunes, and is therefore an ideal model for studying the effect of episodic geological processes on terrestrial organisms. Nested clade and population genetic analyses using 39 haplotypes from 605 base pairs of mitochondrial DNA cytochrome c oxidase I sequence data, along with phylogenetic analyses including two additional mitochondrial genes, uncover complex phylogeographical and demographic patterns. Our results indicate that D. lancerotensis colonized the ridge from north to south, in contrast to what had been expected given the SSW-NNE trend of volcanism and to what had been reported for other terrestrial arthropods. The occurrence of several episodes of extinction, recolonization and expansion are hypothesized for this species, and areas that act as refugia during volcanic cycles are identified. Relaxed molecular clock methods reveal divergence times between main haplotype lineages that suggest an older origin of the northern islets than anticipated based on geological evidence. This study supports the key role of volcanism in shaping the distribution of terrestrial organisms on oceanic islands and generates phylogeographical predictions that warrant further research into other terrestrial endemisms of this fascinating region. PMID:17651197

  2. Use of High Temporal Resolution Thermal Imagery of Karymsky's Volcanic Plume to Constrain Volcanic Activity and Elucidate Vent Processes

    NASA Astrophysics Data System (ADS)

    Lopez, T. M.; Dehn, J.; Belousov, A.; Fee, D.; Buurman, H.; Grapenthin, R.; Ushakov, S.

    2011-12-01

    Analysis of high temporal resolution thermal imagery of the volcanic plume from Karymsky volcano, Kamchatka, Russia, was performed to characterize the activity and elucidate vent processes observed during a field campaign from 21 through 26 July 2008. Observed emission styles ranged from explosive eruptions, gas jetting, gas puffing, passive degassing, to absent degassing. These styles can be broadly categorized according to the thermal data. Specifically, we interpret: (1) apparent temperatures in excess of 120°C to indicate eruption of juvenile material; (2) exponential trends between maximum apparent temperature and radiation above background values to indicate degassing or explosive eruptions; (3) flat and/or flat-exponential hybrid trends between maximum apparent temperature and radiation to indicate absent degassing and/or gas puffing, or a transition between degassing and absent degassing; and (4) strong periodicity identified by inspection or through power spectral density analysis of timeseries data to indicate gas puffing. Based on our thermal observations we propose that these styles of volcanic emissions are primarily controlled by shallow vent processes, with the range of emission styles reflecting a continuum between open and closed vent activity. Specifically, we propose that (1) periods of absent degassing indicate vent sealing; (2) periods of gas puffing indicate cyclic behavior between partial vent sealing and vent fracturing; and (3) passive degassing, gas jetting, and continuous eruption all indicate open vent conditions. We suggest that secondary influences by magma recharge and gas exsolution processes may contribute to variations in degassing style under open vent conditions. These results suggest that trends in thermal timeseries data, such as maximum apparent temperature and radiation, can be used to quantitatively characterize volcanic activity and may help constrain vent processes at active volcanoes.

  3. Resilient Plant–Bird Interactions in a Volcanic Island Ecosystem: Pollination of Japanese Camellia Mediated by the Japanese White-Eye

    PubMed Central

    Abe, Harue; Ueno, Saneyoshi; Takahashi, Toshimori; Tsumura, Yoshihiko; Hasegawa, Masami

    2013-01-01

    Observations of interspecies interactions during volcanic activity provide important opportunities to study how organisms respond to environmental devastation. Japanese camellia (Camellia japonica L.) and its main avian pollinator, the Japanese White-eye (Zosterops japonica), offer an excellent example of such an interaction as key members of the biotic community on Miyake-jima, which erupted in 2000 and continues to emit volcanic gases. Both species exhibit higher resistance to volcanic damage than other species. We examined the effects of volcanic activity on this plant–pollinator system by estimating pollen flow and the genetic diversity of the next generation. The results showed that despite a decrease in Camellia flowers, the partitioning of allelic richness among mother-tree pollen pools and seeds decreased while the migration rate of pollen from outside the study plot and the pollen donor diversity within a fruit increased as the index of volcanic damage increased. In areas with low food (flower) density due to volcanic damage, Z. japonica ranged over larger areas to satisfy its energy needs rather than moving to areas with higher food density. Consequently, the genetic diversity of the seeds (the next plant generation) increased with the index of volcanic damage. The results were consistent with previously published data on the movement of Z. japonica based on radio tracking and the genetic diversity of Camellia pollen adhering to pollinators. Overall, our results indicated that compensation mechanisms ensured better pollination after volcanic disturbance. PMID:23646136

  4. Volcanic Plume Degassing of CO2: High Resolution Analysis With a Multi-Sensor gas Analyzer, and Applications to Etna, Stromboli and Vulcano Island (Italy)

    NASA Astrophysics Data System (ADS)

    Aiuppa, A.; Federico, C.; Giudice, G.; Gurrieri, S.

    2005-12-01

    The acquisition of high-resolution time series of CO2 emissions from active volcanoes is a challenge of current volcanic gas research. Recently, we have developed a field-portable gas analyzer, allowing the real-time measurement of CO2 and SO2 in volcanic plumes (Aiuppa et al., 2005). The gas analyzer integrates an IR spectrometer (for CO2), an electrochemical sensor specific to SO2, and a data-logger board enabling data capture, analysis and logging with a 3s time step. At open conduit volcanoes (Etna and Stromboli), the gas analyzer was used for the real time monitoring of CO2 and SO2 concentrations in the near-vent volcanic plumes. At Etna, the CO2 to SO2 ratio was relatively constant in the short term (on time scales of hours), while displaying larger fluctuations over longer periods: the CO2 to SO2 ratio ranged 2.2 to 10.8 during passive degassing over September 2004-August 2005. The highest CO2 to SO2 ratio were interpreted as due to degassing of more primitive CO2-rich magmas feeding the shallow volcano plumbing system. At Stromboli, high-frequency variations were observed, with the CO2 to SO2 ratio fluctuating from 8-14 during passive degassing to 25-35 during strombolian explosions. At both volcanoes, combining of these data with high-frequency DOAS determinations of SO2 output rates will provide the real time determination of CO2 output rates. At Vulcano Island, the gas analyzer was exposed to gas effluents released from several tenths of fumaroles (for a minimum of 30 determinations at any given fumarole and for each species over an observation period of 90s). This allowed defining the chemical structure and heterogeneity of the fumarole field in terms of the CO2 to SO2 ratio (H2S was also measured by specific electrochemical sensor). The main degassing fumaroles (T > 150°C) had an average CO2/(SO2+H2S) molar ratios of 35, while S-poor compositions (CO2/(SO2+H2S) > 50) characterized the field margins, probably due to deposition of native sulfur. The

  5. G-EVER Activities and the Next-generation Volcanic Hazard Assessment System

    NASA Astrophysics Data System (ADS)

    Takarada, S.

    2013-12-01

    The Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) is a consortium of Asia-Pacific geohazard research institutes that was established in 2012. G-EVER aims to formulate strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis and volcanic eruptions. G-EVER is working on enhancing collaboration, sharing of resources, and making information on the risks of earthquakes and volcanic eruptions freely available and understandable. The 1st G-EVER International Symposium was held in Tsukuba, Japan in March 11, 2013. The 2nd Symposium is scheduled in Sendai, Tohoku Japan, in Oct. 19-20, 2013. Currently, 4 working groups were proposed in the G-EVER Consortium. The next-generation volcano hazard assessment WG is developing a useful system for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is based on volcanic eruption history datasets, volcanic eruption database, and numerical simulations. Volcanic eruption histories including precursor phenomena leading to major eruptions of active volcanoes are very important for future prediction of volcanic eruptions. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and types, is important for the next-generation volcano hazard assessment system. Proposing international standards on how to estimate the volume of volcanic products is important to make a high quality volcanic eruption database. Spatial distribution database of volcanic products (e.g. tephra and pyroclastic flow distributions), encoded into a GIS based database is necessary for more precise area and volume estimation and risk assessments. The volcanic eruption database is developed based on past eruption results, which only represents a subset of possible future scenarios. Therefore, numerical simulations with controlled parameters are needed for more precise volcanic eruption

  6. Regimes of Volcanic Activity at Mt. Etna in 2007-2009 inferred from Unsupervised Pattern Recognition on Volcanic Tremor Data

    NASA Astrophysics Data System (ADS)

    Falsaperla, S. M.; Behncke, B.; Langer, H. K.; Messina, A.; Spampinato, S.

    2009-12-01

    Mt Etna is a well monitored basaltic volcano for which high-quality, multidisciplinary data set are continuously available for around-the-clock surveillance. Particularly, volcano-seismic data sets cover decades long local recordings, temporally encompassing different styles of eruptive activity, from Strombolian eruptions to lava fountains and lava flows. Intense earthquakes swarms have often heralded effusive activity. However, from the seismic point of view, volcanic tremor has proved to be one of the most reliable indicators of impending eruptive activity. Indeed, changes in the volcano feeder show up in the signature of tremor, its spectral characteristics and source location. Some of us (Langer and Messina) have recently developed a new software for the classification of volcanic tremor data, combining Self Organizing Maps (also known as Kohonen Maps) along with Cluster and Fuzzy Analysis. This software allows us to analyse the background seismic radiation at permanent broadband stations located at various distance from the summit craters to identify transitions from pre-eruptive to eruptive activity. Throughout the analysis of the data flow, the software provides an unsupervised classification of the spectral characteristics (i.e., amplitude and frequency content) of the signal. The information embedded in the spectrum is interpreted to assign a specific state of the volcano. An application of this new software is proposed here on the eruptive events at Etna of 2007-2009, which consisted of 7 episodes of lava fountaining, periodic Strombolian activity at the summit craters, followed by lava emissions on the upper east flank of the volcano, with start on 13 May 2008 and end on 6 July 2009. In the study period the source of volcanic tremor was always shallow (less than 3 km) and within the volcano edifice. The upraise of magma to the surface was fast and associated with changes of volcanic tremor features, which covered time windows of variable duration from

  7. Volcanic geomorphological classification of the cinder cones of Tenerife (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Dóniz-Páez, J.

    2015-01-01

    This paper proposes a method to establish a morphological classification of Tenerife's cinder cones on the basis of a dual analysis of qualitative (existence, geometry and disposition of craters) and quantitative morphometric parameters (major and minor diameters and cone elongation, major and minor diameters and crater elongation). The result obtained is a morphological classification of the cinder cones of Tenerife, which can be sub-divided into four types: ring-shaped-cones, horseshoe-shaped-volcanoes, multiple volcanoes and volcanoes without crater. In Tenerife there is a clear dominance of horseshoe-shaped volcanoes (69.0%) over ring-shaped cones (13.1%), volcanoes without craters (11.4%) and multiple volcanoes (6.4%). The classification presented in this paper is characterized by its simplicity which makes it possible to include all morphological types of volcanoes found in Tenerife. This fact also renders our classification a useful tool to apply in other, both insular and continental volcanic areas to eventually analyze and systematize the study of eruptive edifices with similar traits.

  8. Helium isotopic variations in volcanic rocks from Loihi Seamount and the Island of Hawaii

    USGS Publications Warehouse

    Kurz, M.D.; Jenkins, W.J.; Hart, S.R.; Clague, D.

    1983-01-01

    Helium isotopic ratios ranging from 20 to 32 times the atmospheric 3He 4He(RA) have been observed in a suite of 15 basaltic glasses from the Loihi Seamount. These ratios, which are up to four times higher than those of MORB glasses and more than twice those of nearby Kilauea, are strongly suggestive of a primitive source of volatiles supplying this volcanism. The Loihi glasses measured span a broad compositional range, and the 3He/4He ratios were found to be generally lower for the alkali basalts than for the tholeiites. The component with a lower 3He 4He ratio appears to be associated with olivine xenocrysts, within which fluid inclusions are probably the carrier of contaminant helium. One Loihi sample has a much lower isotopic ratio ( 30 RA) helium with some (variable) component of lithospheric contamination added during "breakthrough", while the later stages are characterized by a relaxation toward lithospheric 3He 4He ratios (??? 8 RA) due to isolation of the diapir from the mantle below (as the plate moves on), and subsequent mining of the inherited helium and contamination from the surrounding lithosphere. The abrupt contrast in 3He 4He ratios between Kilauea and Loihi, despite their close proximity, is indicative of the small lateral extent of the plume. ?? 1983.

  9. Occurrence of upslope flows at the Pico mountaintop observatory: A case study of orographic flows on a small, volcanic island

    NASA Astrophysics Data System (ADS)

    Kleissl, J.; Honrath, R. E.; Dziobak, M. P.; Tanner, D.; Val MartíN, M.; Owen, R. C.; Helmig, D.

    2007-05-01

    Upslope flows caused by mechanical forcing in strong synoptic winds or by buoyant forcing driven by solar heating under weak synoptic winds can influence the air composition at mountaintop observatories. Using meteorological and trace gas measurements at the PICO-NARE observatory on Pico mountain (Azores Islands, North Atlantic Ocean), the frequency and impact of such orographic flows on a small, volcanic, subtropical island was examined. To determine the origin of mechanically lifted air, upstream kinetic energy was balanced against potential energy gained during uplift (Sheppard's model). Mechanically forced upslope flow is most important during October through April, when the calculated probability of observing marine boundary layer (MBL) air at the observatory near the summit ranges from 35 to 60% per month. In contrast, lower synoptic wind speeds and a more stable lower free troposphere during May-September result in a reduced frequency of MBL impacts (<20%). Buoyant upslope flows (BUF) were quantified through meteorological measurements on the mountain slope in summer 2004. Diurnal cycles of wind direction on the mountain slope consistent with daytime upslope and nighttime downslope flow were found on 24% of the days during late June, July, and August 2004. Buoyant forcing can also occur in the presence of moderate synoptic winds, resulting in enhancement of the mechanically forced upslope flow on the windward side of the mountain. Such conditions were found on 15% of the summer days in 2004. However, on BUF days the specific humidity at the mountaintop was significantly smaller than on the slope, indicating turbulent mixing during ascent or vertical decoupling of air masses. Impacts of BUF or a mixture of buoyant and mechanical upslope flow on O3 or nitrogen oxides mixing ratios at the mountaintop station were rare or extremely small, and no significant diurnal cycle of O3 (expected if daytime BUF of MBL air occurred regularly) was present. Midday increases

  10. Volcanic air pollution over the Island of Hawai'i: Emissions, dispersal, and composition. Association with respiratory symptoms and lung function in Hawai'i Island school children

    USGS Publications Warehouse

    Tam, Elizabeth K.; Miike, Rei; Labrenz, Susan; Sutton, Andrew; Elias, Tamar; Davis, James A.; Chen, Yi-Leng; Tantisira, Kelan; Dockery, Douglas; Avol, Edward

    2016-01-01

    Environmental data suggested 4 different vog exposure zones with SO2, PM2.5, and particulate acid concentrations (mean ± s.d.) as follows: 1) Low (0.3 ± 0.2 ppb, 2.5 ± 1.2 μg/m3, 0.6 ± 1.1 nmol H +/m3), 2) Intermittent (1.6 ± 1.8 ppb, 2.8 ± 1.5 μg/m3, 4.0 ± 6.6 nmol H +/m3), 3) Frequent (10.1 ± 5.2 ppb, 4.8 ± 1.9 μg/m3, 4.3 ± 6.7 nmol H +/m3), and 4) Acid (1.2 ± 0.4 ppb, 7.2 ± 2.3 μg/m3, 25.3 ± 17.9 nmol H +/m3). Participants (1957) in the 4 zones differed in race, prematurity, maternal smoking during pregnancy, environmental tobacco smoke exposure, presence of mold in the home, and physician-diagnosed asthma. Multivariable analysis showed an association between Acid vog exposure and cough and strongly suggested an association with FEV1/FVC < 0.8, but not with diagnosis of asthma, or chronic persistent wheeze or bronchitis in the last 12 months. Conclusions: Hawai'i Island's volcanic air pollution can be very acidic, but contains few co-contaminants originating from anthropogenic sources of air pollution. Chronic exposure to acid vog is associated with increased cough and possibly with reduced FEV1/FVC, but not with asthma or bronchitis. Further study is needed to better understand how volcanic air pollution interacts with host and environmental factors to affect respiratory symptoms, lung function, and lung growth, and to determine acute effects of episodes of increased emissions.

  11. Volcanology and volcanic activity with a primary focus on potential hazard impacts for the Hawaii geothermal project

    SciTech Connect

    Moore, R.B.; Delaney, P.T.; Kauahikaua, J.P.

    1993-10-01

    This annotated bibliography reviews published references about potential volcanic hazards on the Island of Hawaii that are pertinent to drilling and operating geothermal wells. The first two sections of this annotated bibliography list the most important publications that describe eruptions of Kilauea volcano, with special emphasis on activity in and near the designated geothermal subzones. References about historic eruptions from Mauna Loa`s northeast rift zone, as well as the most recent activity on the southern flank of dormant Mauna Kea, adjacent to the Humu`ula Saddle are described. The last section of this annotated bibliography lists the most important publications that describe and analyze deformations of the surface of Kilauea and Mauna Loa volcanoes.

  12. What drives centuries-long polygenetic scoria cone activity at Barren Island volcano?

    NASA Astrophysics Data System (ADS)

    Sheth, Hetu

    2014-12-01

    Barren Island in the Andaman Sea is an active mafic stratovolcano, which had explosive and effusive eruptions, followed by caldera formation, in prehistoric time (poorly dated). A scoria cone within the caldera, marking volcanic resurgence, was active periodically from 1787 to 1832 (the historic eruptions). Since 1991, the same scoria cone has produced six eruptions, commonly including lava flows. Links between Barren Island's eruptions and giant earthquakes (such as the 26 December 2004 Great Sumatra megathrust earthquake) have been suggested, though there is no general correlation between them. The ≥ 227-year-long activity of the scoria cone, named here Shanku ("cone"), is normally driven by purely magmatic processes. I present a "source to surface" model for Barren Island and Shanku, including the source region, deeper and shallow magma chambers, volcanotectonics, dyking from magma chambers, and eruptions and eruptive style as controlled by crustal stresses, composition and volatile content. Calculations show that dykes ~ 0.5 m thick and a few hundred meters long, originating from shallow-level magma chambers (~ 5 km deep), are suitable feeders of the Shanku eruptions. Shanku, a polygenetic scoria cone (at least 13 eruptions since 1787), has three excellent analogues, namely Anak Krakatau (40 eruptions since 1927), Cerro Negro (23 eruptions since 1850), and Yasur (persistent activity for the past hundreds of years). This is an important category of volcanoes, gradational between small "monogenetic" scoria cones and larger "polygenetic" volcanoes.

  13. 3H-3He groundwater ages of the layered aquifer system in the agricultural fields of Jeju volcanic island, South Korea

    NASA Astrophysics Data System (ADS)

    Koh, Eun-Hee; Kaown, Dugin; Yoon, Yoon Yeol; Lee, Kang-Kun

    2015-04-01

    In the Gosan area (the western parts of Jeju volcanic Island), due to the distribution of impermeable clay layers in the subsurface geology, two aquifer systems (shallow perched and deep regional aquifers) are locally observed. Severe nitrate contamination has been occurred in the two aquifers resulting from heavily performed agricultural activities in the study area. From the previous study, poorly grouted wells of regional groundwater wells were considered as a major pathway of the nitrate contamination in the regional aquifer by directly inflows of the nitrate-rich perched groundwater. For fully understanding the characteristics of the groundwater recharge in relations with the nitrate contamination in the layered aquifers, groundwater ages were estimated by using the 3H-3He age dating method in this study. The calculated 3H-3He ages for the perched groundwater showed younger ages as 4.4 ~ 11.3 years than that of the regional groundwater, which has rages of 22.1 ~ >60.0 years. The NO3-N contaminant sources were derived from the recently recharged water based on the negative correlation between recharged dates and nitrate concentrations for groundwater. Moreover, the occurrence of old regional groundwater wells (3H < 0.5 TU, more than 60 years) with low NO3-N concentrations (< 3.0 mg/L) demonstrated that a separated regional aquifer system which was not affected by nitrate contaminants underlay the regional aquifer with the elevated NO3-N concentrations.

  14. Characterization of volcanic activity using observations of infrasound, volcanic emissions, and thermal imagery at Karymsky Volcano, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Lopez, T.; Fee, D.; Prata, F.

    2012-04-01

    Karymsky Volcano is one of the most active and dynamic volcanoes in Kamchatka, with activity ranging from vigorous degassing, frequent ash emissions, and apparent vent sealing, all punctuated by daily to weekly explosive magmatic eruptions. Recent studies have highlighted the strengths in using complementary infrasound measurements and remote volcanic emission measurements to characterize volcanic activity, with the potential to discriminate emission-type, approximate ash-cloud height, and estimate SO2 emission mass. Here we use coincident measurements of infrasound, SO2, ash, and thermal radiation collected over a ten day period at Karymsky Volcano in August 2011 to characterize the observed activity and elucidate vent processes. The ultimate goal of this project is to enable different types of volcanic activity to be identified using only infrasound data, which would significantly improve our ability to continuously monitor remote volcanoes. Four types of activity were observed. Type 1 activity is characterized by discrete ash emissions occurring every 1 - 5 minutes that either jet or roil out of the vent, by plumes from 500 - 1500 m (above vent) altitudes, and by impulsive infrasonic onsets. Type 2 activity is characterized by periodic pulses of gas emission, little or no ash, low altitude (100 - 200 m) plumes, and strong audible jetting or roaring. Type 3 activity is characterized by sustained emissions of ash and gas, with multiple pulses lasting from ~1 - 3 minutes, and by plumes from 300 - 1500 m. Type 4 activity is characterized by periods of relatively long duration (~30 minutes to >1 hour) quiescence, no visible plume and weak SO2 emissions at or near the detection limit, followed by an explosive, magmatic eruption, producing ash-rich plumes to >2000 m, and centimeter to meter (or greater) sized pyroclastic bombs that roll down the flanks of the edifice. Eruption onset is accompanied by high-amplitude infrasound and occasionally visible shock

  15. Reconstruction of the paleo-coastline of Santorini island (Greece), after the 1613 BC volcanic eruption: A GIS-based quantitative methodology

    NASA Astrophysics Data System (ADS)

    Oikonomidis, Dimitrios; Albanakis, Konstantinos; Pavlides, Spyridon; Fytikas, Michael

    2016-02-01

    A catastrophic volcanic explosion took place in Thera/Santorini island around 1613 BC, known as the `Minoan' eruption. Many papers have dealt with the shape of the shoreline of the island before the eruption, but none with the shape of the shoreline exactly after it, assuming that it would be the same with the contemporary one. However, this is not correct due to the wave erosion. In this paper, a new DEM was constructed, covering both land and submarine morphology, then topographic sections were drawn around the island. Using these sections, the `missing parts' (sea-wave erosion) were calculated, the shoreline was reconstructed as it was one day after the eruption and finally the erosion rate was calculated.

  16. What is controlling spectral reflectance of lava flows? First results of a field spectrometric survey of volcanic surfaces on Tenerife Island

    NASA Astrophysics Data System (ADS)

    Li, Long; Kervyn, Matthieu; Solana, Carmen; Canters, Frank

    2014-05-01

    Space-based remote sensing techniques have demonstrated their great value in volcanic studies thanks to their synoptic spatial coverage and the repeated acquisitions. On satellite images, volcanic surfaces display a wide range of colors, and therefore contrasted reflectance spectra. Understanding the factors controlling the spectral reflectance of volcanic materials at different wavelength is essential to mapping volcanic areas. Detailed investigation into spectra of volcanic materials are, however, restricted due to the trade-off between spatial and spectral resolution of space-based sensors, such as Hyperion imagery that allows resolving 220 spectral bands ranging from 400 to 2500 nm with a spatial resolution of 30 meters. In order to better understand reflectance of volcanic materials, especially lava, a field campaign was launched in Tenerife Island, Spain in November 2013 with an ASD FieldSpec 3 to document the reflectance spectra of historical mafic lava flow surfaces. 20 specific lava and lapilli surfaces, with contrasted age, surface roughness, weathering condition and vegetation coverage were characterized, using a systematic recording method documenting the spectra's variability within a 15×15 m2 area. Results show that all the volcanic materials have great differences in spectral reflectance. Among them, lava's reflectance is low but still slightly higher than that of lapilli. Comparison of rough and smooth lava surfaces on the same lava flow suggests that roughness tends to increase the reflectance of lava surfaces. Also, vegetation and lichen alter lava's reflectance in some spectral regions, especially through a rise in the near infrared part of the spectrum. It is therefore suggested that reflectance spectra of lava evolve over time due to weathering processes, such as chemical alteration and growth of lichen and moss. In addition, it is possible to compare field measurements with spectra derived from Hyperion imagery, resulting in a strong match

  17. Non-equilibrium degassing and a primordial source for helium in ocean-island volcanism.

    PubMed

    Gonnermann, Helge M; Mukhopadhyay, Sujoy

    2007-10-25

    Radioactive decay of uranium and thorium produces 4He, whereas 3He in the Earth's mantle is not produced by radioactive decay and was only incorporated during accretion-that is, it is primordial. 3He/4He ratios in many ocean-island basalts (OIBs) that erupt at hotspot volcanoes, such as Hawaii and Iceland, can be up to sixfold higher than in mid-ocean ridge basalts (MORBs). This is inferred to be the result of outgassing by melt production at mid-ocean ridges in conjunction with radiogenic ingrowth of 4He, which has led to a volatile-depleted upper mantle (MORB source) with low 3He concentrations and low 3He/4He ratios. Consequently, high 3He/4He ratios in OIBs are conventionally viewed as evidence for an undegassed, primitive mantle source, which is sampled by hot, buoyantly upwelling deep-mantle plumes. However, this conventional model provides no viable explanation of why helium concentrations and elemental ratios of He/Ne and He/Ar in OIBs are an order of magnitude lower than in MORBs. This has been described as the 'helium concentration paradox' and has contributed to a long-standing controversy about the structure and dynamics of the Earth's mantle. Here we show that the helium concentration paradox, as well as the full range of noble-gas concentrations observed in MORB and OIB glasses, can self-consistently be explained by disequilibrium open-system degassing of the erupting magma. We show that a higher CO2 content in OIBs than in MORBs leads to more extensive degassing of helium in OIB magmas and that noble gases in OIB lavas can be derived from a largely undegassed primitive mantle source. PMID:17960241

  18. Properties of rainfall in a tropical volcanic island deduced from UHF wind profiler measurements

    NASA Astrophysics Data System (ADS)

    Réchou, A.; Narayana Rao, T.; Bousquet, O.; Plu, M.; Decoupes, R.

    2014-02-01

    The microphysical properties of rainfall at the island of Réunion are analysed and quantified according to one year of wind profiler observations collected at Saint-Denis international airport. The statistical analysis clearly shows important differences in rain vertical profiles as a function of the seasons. During the dry season, the vertical structure of precipitation is driven by trade wind and boundary-layer inversions, both of which limit the vertical extension of the clouds. The rain rate is lower than 2.5 mm h-1 throughout the lower part of the troposphere (about 2 km) and decreases in the higher altitudes. During the moist season, the average rain rate is around 5 mm h-1 and nearly uniform from the ground up to 4 km. The dynamical and microphysical properties (including drop size distributions) of four distinct rainfall events are also investigated through the analysis of four case studies representative of the variety of rain events occurring on Réunion: summer deep convection, northerly-to-northeasterly flow atmospheric pattern, cold front and winter depression embedded in trade winds. Radar-derived rain parameters are in good agreement with those obtained from collocated rain gauge observations in all cases, which demonstrates that accurate qualitative and quantitative analysis can be inferred from wind profiler data. Fluxes of kinetic energy are also estimated from wind profiler observations in order to evaluate the impact of rainfall on soil erosion. Results show that horizontal kinetic energy fluxes are systematically one order of magnitude higher than vertical kinetic energy fluxes. A simple relationship between the reflectivity factor and vertical kinetic energy fluxes is proposed based on the results of the four case studies.

  19. Geodynamic settings of microcontinents, non-volcanic islands and submerged continental marginal plateau formation

    NASA Astrophysics Data System (ADS)

    Dubinin, Evgeny; Grokholsky, Andrey; Makushkina, Anna

    2016-04-01

    Complex process of continental lithosphere breakup is often accompanied by full or semi isolation of small continental blocks from the parent continent such as microcontinents or submerged marginal plateaus. We present different types of continental blocks formed in various geodynamic settings. The process depends on thermo-mechanical properties of rifting. 1) The continental blocks fully isolated from the parent continent. This kind of blocks exist in submerged form (Elan Bank, the Jan-Mayen Ridge, Zenith Plateau, Gulden Draak Knoll, Batavia Knoll) and in non-submerged form in case of large block size. Most of listed submerged blocks are formed in proximity of hot-spot or plume. 2) The continental blocks semi-isolated from the parent continent. Exmouth Plateau, Vøring, Agulhas, Naturaliste are submerged continental plateaus of the indicated category; Sri Lanka, Tasmania, Socotra are islands adjacent to continent here. Nowadays illustration of this setting is the Sinai block located between the two continental rifts. 3) The submerged linear continental blocks formed by the continental rifting along margin (the Lomonosov Ridge). Suggested evolution of this paragraph is the rift propagation along existing transtensional (or another type) transform fault. Future example of this type might be the California Peninsula block, detached from the North American plate by the rifting within San-Andreas fault. 4) The submerged continental blocks formed by extensional processes as the result of asthenosphere flow and shear deformations. Examples are submerged blocks in the central and southern Scotia Sea (Terror Bank, Protector Basin, Discovery Bank, Bruce Bank etc.). 5) The continental blocks formed in the transform fault systems originated in setting of contradict rifts propagation in presence of structure barriers, rifts are shifted by several hundreds kilometers from each other. Examples of this geodynamic setting are Equatorial Atlantic at the initial development stage

  20. Volcanism in Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Eichelberger, L. G.

    2008-12-01

    The diverse and robust volcanism of Kamchatka challenges our understanding of subduction zone volcanism on both local volcanic and regional tectonic scales (e.g., AGU Geophysics Monograph 172). One might expect the two North Pacific peninsula/ island arc pairs, Kamchatka Peninsula/ Kuriles and Alaska Peninsula/ Aleutians, to be twins, but there are some important differences as well as similarities. In both cases, the continental margin largely controls the position of the volcanic front on the peninsulas and the associated island arcs are pinned to the peninsula tips. The unusually acute Aleutian-Kamchatka subduction cusp may have formed by jamming and outboard (southeastward) jumping of Bering subduction at about 50 Ma to form the Aleutians, with capture of the Bering microplate by the North American plate. Perhaps the acuteness was augmented by convergence of the Emperor Seamount Chain with the junction. Another outboard (eastward) jump may explain the two lines of volcanoes in Kamchatka, which are partially separated by the rift-like Central Kamchatka Depression. This is thought to have occurred at 7 - 10 Ma when 3 seamounts were accreted as capes to the eastern edge of Kamchatka. But other workers, pointing to east-west chemical trends and persistence of volcanism in the inboard Sredinny Range, prefer to postulate two depths of volatile release from the same intact slab. On the Alaska Peninsula, Quaternary volcanic deposits are discontinuous and even famous Mount Katmai is a volumetric dwarf. The opposite is the case in Kamchatka, where pre-volcanic basement under the young eastern volcanic front is sparsely exposed and Holocene stratovolcanoes rise as high as 4,835 m. Calderas are so numerous they sometimes overlap. Some exhibit repeated andesitic stratovolcano - silicic caldera cycles over remarkably short time frames. Remoteness, international politics, and challenging weather have conspired to make Kamchatka's volcanoes less appreciated by non

  1. Volcanic eruption source parameters from active and passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly

  2. Volcanic features of Io

    USGS Publications Warehouse

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    Volcanic activity is apparently higher on Io than on any other body in the Solar System. Its volcanic landforms can be compared with features on Earth to indicate the type of volcanism present on Io. ?? 1979 Nature Publishing Group.

  3. Thermal anomalies in fumaroles at Vulcano island (Italy) and their relationship with seismic activity and stress-induced permeability changes

    NASA Astrophysics Data System (ADS)

    Madonia, Paolo; Cusano, Paola; Diliberto, Iole Serena; Cangemi, Marianna

    2016-04-01

    Fumarole thermal monitoring is a useful tool in the evaluation of volcanic activity, since temperatures strongly relate to the upward flux of magmatic volatiles. Once depurated from meteorological noise, their variations can reflect permeability changes due to crustal stress dynamics eventually associated to seismic activity. In this work, we discuss a fumarole temperature record acquired in the period September 2009 - May 2012 at Vulcano island (Italy), during which changes of volcanic state, local seismic activity and teleseisms occurred. Apart from positive thermal anomalies driven by increments in volcanic activity, we observed 3 episodes at least of concurrence between tectonic earthquakes and fumarole temperature increments, with particular reference to the local August 16th, 2010 Lipari earthquake, the March 11th, 2011 Sendai-Honshu (Japan) earthquake and a seismic swarm occurred along the Tindari-Letojanni fault in July-August 2011. We interpreted the seismic-related anomalies as "crustal fluid transients", i.e. signals of volcanogenic vapour flow variations induced by stress-induced permeability changes. From this perspective fumarolic activity can be considered as a tracer of geodynamic instability but, since seismic and volcanic phenomena are in mutual cause-effect relationships, a multidisciplinary observation system is mandatory for correctly addressing thermal data interpretation.

  4. Anatahan, Northern Mariana Islands: Reconnaissance geological observations during and after the volcanic crisis of spring 1990, and monitoring prior to the May 2003 eruption

    USGS Publications Warehouse

    Rowland, S.K.; Lockwood, J.P.; Trusdell, F.A.; Moore, R.B.; Sako, M.K.; Koyanagi, R.Y.; Kojima, G.

    2005-01-01

    Anatahan island is 9.5 km east-west by 3.5 km north-south and truncated by an elongate caldera 5 km east-west by 2.5 km north-south. A steep-walled pit crater ???1 km across and ???200 m deep occupies the eastern part of the caldera. The island is the summit region of a mostly submarine stratovolcano. The oldest subaerial rocks (stage 1) are exposed low on the outer flanks and in the caldera walls. These include thick (???10 m) and thin (2-3 m) lava flows, well-indurated tuffs, and scoria units that make up the bulk of the island. Rock compositions range from basaltic andesite to dacite, and most are plagioclase-phyric. On the steep north and south flanks of the volcano, these rocks are cut by numerous east-west-oriented, few-hundred-m-long lineaments of undetermined origin. Indurated breccias unconformably overlie scarps cut into stage 1 units low on the south flank. Intermediate-age eruptive units (stage 2) include caldera-filling lava flows and pyroclastic deposits and, on the outer flanks, vents and valley-filling lava flows. The youngest pre-2003 volcanic unit on Anatahan (stage 3) is a hydromagmatic surge and fall deposit rich in accretionary lapilli. Prior to 2003, this unit was found over almost the entire island, and in many places original depositional surfaces and outcrops could be found in high-energy environments along the coast, indicating a young (but undetermined) age. During reconnaissance visits in 1990, 1992, 1994, and 2001, geothermal activity (fumaroles as well as pits with boiling, sediment-laden pools) was observed in the southern part of the pit crater. In March and April 1990, increased local seismicity, a large regional earthquake, and reported increased fumarolic activity in the pit crater prompted evacuation of Anatahan village, at the west end of the island. Our first field investigation took place in late April 1990 to assess the level of volcanic unrest, conduct reconnaissance geological observations, collect rock and geothermal water

  5. Active submarine volcanism on the Society hotspot swell (west Pacific): A geochemical study

    SciTech Connect

    Devey, C.W.; Albarede, F.; Michard, A. ); Cheminee, J.L. ); Muehe, R.; Stoffers, P. )

    1990-04-10

    The present work deals with the petrography and geochemistry of lavas dredged from five active submarine volcanoes (named Mehetia, Moua Pihaa, Rocard, Teahitia, and Cyana) from the southeast end of the Society Islands hotspot trace. Most samples are basic and alkaline. Fractionation modelling based on major and minor compatible element variations suggests that olivine and minor clinopyroxene were the major fractionating phases. Rocard and Cyana have yielded more evolved, trachy-phonolitic, glassy samples. Both basaltic and phonolitic samples are incompatible-element enriched. The trachy-phonolite patterns show middle (REE) depletion and negative Eu anomalies. The Moua Pihaa basalts have flatter patterns than the other basalts. All smaples, with the exception of a sample from Moua Pihaa which has elevated {sup 206}Pb/{sup 204}Pb, fall on linear Sr-Nd-Pb isotopic arrays, suggesting two end-member mixing. The Sr isotopic variations in the samples excluding Moua Pihaa correlate positively with Rb/Nb, Pb/Ce, and SiO{sub 2} variations, idicating a component of mantle enriched by injection of material from a subducted oceanic slab. Correlation of {sup 207}Pb/{sup 204}Pb with {sup 87}Sr/{sup 86}Sr suggests that the subducted material is geochemically old. The absence of a MORB component in the Society magmatism, the small volumes of the Polynesian hotspot volcanoes, and the lack of more intense volcanic activity near the center of the Pacific Superswell, all lead to the conclusion that the latter is unlikely to be caused by a large convective plume.

  6. Geologic evolution of the Jemez Mountains and their potential for future volcanic activity

    SciTech Connect

    Burton, B.W.

    1982-01-01

    Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10/sup -9//km/sup 2//y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10/sup -7//y.

  7. A biological quality index for volcanic Andisols and Aridisols (Canary Islands, Spain): variations related to the ecosystem degradation.

    PubMed

    Armas, Cecilia María; Santana, Bayanor; Mora, Juan Luis; Notario, Jesús Santiago; Arbelo, Carmen Dolores; Rodríguez-Rodríguez, Antonio

    2007-05-25

    The aim of this work is to identify indicators of biological activity in soils from the Canary Islands, by studying the variation of selected biological parameters related to the processes of deforestation and accelerated soil degradation affecting the Canarian natural ecosystems. Ten plots with different degrees of maturity/degradation have been selected in three typical habitats in the Canary Islands: laurel forest, pine forest and xerophytic scrub with Andisols and Aridisols as the most common soils. The studied characteristics in each case include total organic carbon, field soil respiration, mineralized carbon after laboratory incubation, microbial biomass carbon, hot water-extractable carbon and carboxymethylcellulase, beta-d-glucosidase and dehydrogenase activities. A Biological Quality Index (BQI) has been designed on the basis of a regression model using these variables, assuming that the total soil organic carbon content is quite stable in nearly mature ecosystems. Total carbon in mature ecosystems has been related to significant biological variables (hot water-extractable carbon, soil respiration and carboxymethylcellulase, beta-d-glucosidase and dehydrogenase activities), accounting for nearly 100% of the total variance by a multiple regression analysis. The index has been calculated as the ratio of the value calculated from the regression model and the actual measured value. The obtained results show that soils in nearly mature ecosystems have BQI values close to unit, whereas those in degraded ecosystems range between 0.24 and 0.97, depending on the degradation degree. PMID:17316768

  8. Sulfur dioxide - Episodic injection shows evidence for active Venus volcanism

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.

    1984-01-01

    Pioneer Venus ultraviolet spectra from the first 5 years of operation show a decline (by more than a factor of 10) in sulfur dioxide abundance at the cloud tops and in the amount of submicron haze above the clouds. At the time of the Pioneer Venus encounter, the values for both parameters greatly exceeded earlier upper limits. However, Venus had a similar appearance in the late 1950's, implying the episodic injection of sulfur dioxide possibly caused by episodic volcanism. The amount of haze in the Venus middle atmosphere is about ten times that found in earth's stratosphere after the most recent major volcanic eruptions, and the thermal energy required for this injection on Venus is greater by about an order of magnitude than the largest of these recent earth eruptions and about as large as the Krakatoa eruption of 1883. The episodic behavior of sulfur dioxide implies that steady-state models of the chemistry and dynamics of cloud-top regions may be of limited use.

  9. U.S. Geological Survey's Alert Notification System for Volcanic Activity

    USGS Publications Warehouse

    Gardner, Cynthia A.; Guffanti, Marianne C.

    2006-01-01

    The United States and its territories have about 170 volcanoes that have been active during the past 10,000 years, and most could erupt again in the future. In the past 500 years, 80 U.S. volcanoes have erupted one or more times. About 50 of these recently active volcanoes are monitored, although not all to the same degree. Through its five volcano observatories, the U.S. Geological Survey (USGS) issues information and warnings to the public about volcanic activity. For clarity of warnings during volcanic crises, the USGS has now standardized the alert-notification system used at its observatories.

  10. 3D-Reconstruction of recent volcanic activity from ROV-video, Charles Darwin Seamounts, Cape Verdes

    NASA Astrophysics Data System (ADS)

    Kwasnitschka, T.; Hansteen, T. H.; Kutterolf, S.; Freundt, A.; Devey, C. W.

    2011-12-01

    As well as providing well-localized samples, Remotely Operated Vehicles (ROVs) produce huge quantities of visual data whose potential for geological data mining has seldom if ever been fully realized. We present a new workflow to derive essential results of field geology such as quantitative stratigraphy and tectonic surveying from ROV-based photo and video material. We demonstrate the procedure on the Charles Darwin Seamounts, a field of small hot spot volcanoes recently identified at a depth of ca. 3500m southwest of the island of Santo Antao in the Cape Verdes. The Charles Darwin Seamounts feature a wide spectrum of volcanic edifices with forms suggestive of scoria cones, lava domes, tuff rings and maar-type depressions, all of comparable dimensions. These forms, coupled with the highly fragmented volcaniclastic samples recovered by dredging, motivated surveying parts of some edifices down to centimeter scale. ROV-based surveys yielded volcaniclastic samples of key structures linked by extensive coverage of stereoscopic photographs and high-resolution video. Based upon the latter, we present our workflow to derive three-dimensional models of outcrops from a single-camera video sequence, allowing quantitative measurements of fault orientation, bedding structure, grain size distribution and photo mosaicking within a geo-referenced framework. With this information we can identify episodes of repetitive eruptive activity at individual volcanic centers and see changes in eruptive style over time, which, despite their proximity to each other, is highly variable.

  11. High resolution 3D P wave velocity structure beneath Tenerife Island (Canary Islands, Spain) based on tomographic inversion of active-source data

    NASA Astrophysics Data System (ADS)

    GarcíA-Yeguas, Araceli; Koulakov, Ivan; IbáñEz, Jesús M.; Rietbrock, A.

    2012-09-01

    We present a high resolution 3 dimensional (3D) P wave velocity model for Tenerife Island, Canaries, covering the top of Teide volcano (3,718 m a.s.l.) down to around 8 km below sea level (b.s.l). The tomographic inversion is based on a large data set of travel times obtained from a 3D active seismic experiment using offshore shots (air guns) recorded at more than 100 onshore seismic stations. The obtained seismic velocity structure is strongly heterogeneous with significant (up to 40%) lateral variations. The main volcanic structure of the Las Cañadas-Teide-Pico Viejo Complex (CTPVC) is characterized by a high P wave velocity body, similar to many other stratovolcanoes. The presence of different high P wave velocity regions inside the CTPVC may be related to the geological and volcanological evolution of the system. The presence of high P wave velocities at the center of the island is interpreted as evidence for a single central volcanic source for the formation of Tenerife. Furthermore, reduced P wave velocities are found in a small confined region in CTPVC and are more likely related to hydrothermal alteration, as indicated by the existence of fumaroles, than to the presence of a magma chamber beneath the system. In the external regions, surrounding CTPVC a few lower P wave velocity regions can be interpreted as fractured zones, hydrothermal alterations, porous materials and thick volcaniclastic deposits.

  12. Elastic flexure explains the offset of primary volcanic activity upstream of the Réunion and Hawaii plume axis

    NASA Astrophysics Data System (ADS)

    Gerbault, Muriel; Fontaine, Fabrice; Rabinowicz, Michel; Bystricky, Micha

    2016-04-01

    Recent tomography reveals that surface volcanism at la Réunion and Hawaii develops offset by 150-180 km upstream to the plume axis with respect to plate motion. We use elasto-visco-plastic 2D numerical models to describe the development of compressional stresses at the base of the lithosphere, resulting from elastic plate bending above the upward load exerted by the plume head. This horizontal compression is ~20 km thick, has a ~ 150 km radius and lays around ~50-70 km depth where temperature varies from ~600°C to ~750°C. It is suggested that the buoyant melts percolating in the plume head pond below this zone of compression and eventually spread laterally to the extent where compression vanishes. There, melts resume their ascension and propagate through dikes up to ~35 km depth where the field stress rotates again due to plate curvature change. Flexural compression is a transient phenomenon that depends: (i) on the relaxation time of elasto-plastic stresses between ~600° and ~750°C, (ii) on the thermal erosion of the lithosphere induced by the plume, and (iii) on the ratio of the normal versus tangential stress exerted by the plume on the lithosphere. We find that for a plate 70 My old, this horizontal compression lasts for about 5 Myrs. This time span exceeds the time during which both the Indian and Pacific plates drift over the Reunion and Hawaii plumes, respectively. Accordingly, our model explains i) the ~150 km shift between the surface volcanism and the axis of the plume, ii) the ~5 Myrs synchronous activity of the volcanoes of la Réunion and Mauritius, and (iii) the present pounding of melts at 35 km depth detected below the Reunion and Mauritius Islands. Plume-lithosphere interaction is one of the numerous subjects that Genia Burov studied and modeled; the present study uses a similar code to the one he used, and is inspired by several of his assumptions. In support of his own goals and worries, we show here the importance of thermo

  13. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  14. Okataina Volcanic Centre, Taupo Volcanic Zone, New Zealand: A review of volcanism and synchronous pluton development in an active, dominantly silicic caldera system

    NASA Astrophysics Data System (ADS)

    Cole, J. W.; Deering, C. D.; Burt, R. M.; Sewell, S.; Shane, P. A. R.; Matthews, N. E.

    2014-01-01

    The Okataina Volcanic Centre (OVC) is one of eight caldera systems, which form the central part of the Taupo Volcanic Zone, New Zealand. During its ~ 625 kyr volcanic history, which perhaps equates to ~ 750 kyr of magmatic history, the OVC has experienced two definite periods of caldera collapse (Matahina, ~ 322 ka, and Rotoiti, for which dates of 61 and 45 ka have recently been published), one probable collapse (Utu, ~ 557 ka) and one possible collapse (Kawerau, ~ 33 ka). Each collapse accompanied voluminous ignimbrite eruptions. Rhyolite dome extrusion and explosive tephra eruptions have occurred throughout the history of OVC.

  15. Estimation of age of Dali-Ganis rifting and associated volcanic activity, Venus

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. T.

    1993-01-01

    This paper deals with the estimation of age for the Dali and Ganis Chasma rift zones and their associated volcanism based on photogeologic analysis of stratigraphic relations of rift-associated features with impact craters which have associated features indicative of their age. The features are radar-dark and parabolic, and they are believed to be mantles of debris derived from fallout of the craters' ejecta. They are thought to be among the youngest features on the Venusian surface, so their 'parent' craters must also be very young, evidently among the youngest 10 percent of Venus' crater population. Dali Chasma and Ganis Chasma are a part of a system of rift zones contained within eastern Aphrodite and Atla Regio which is a significant component of Venus tectonics. The rifts of this system are fracture belts which dissect typical Venusian plains with rare islands of tessera terrain. The rift zone system consists of several segments following each other (Diane, Dali, Ganis) and forming the major rift zone line, about 10,000 km long, which has junctions with several other rift zones, including Parga Chasma Rift. The junctions are usually locations of rift-associated volcanism in the form of volcanic edifices (Maat and Ozza Montes) or plain-forming flows flooding some areas within the rift zones and the adjacent plains.

  16. The geochemistry and petrogenesis of basalts from the Taupo Volcanic Zone and Kermadec Island Arc, S.W. Pacific

    NASA Astrophysics Data System (ADS)

    Gamble, J. A.; Smith, I. E. M.; McCulloch, M. T.; Graham, I. J.; Kokelaar, B. P.

    1993-01-01

    Basalts from the Taupo Volcanic Zone (TVZ), New Zealand, the Kermadec Island Arc (KA) and its back-arc basin, the Havre Trough show systematic variations in trace-element and isotope geochemistry which are attributed to differences in tectonic setting and source heterogeneity along a more or less continuous plate boundary. Basalts from the Kermadec Arc are characterised by low abundances of high field strength elements (HFSE) such as Ti, Zr, Nb, Ta and Hf and have high ratios of Ti/Zr and low ratios of Ti/Sc and Ti/V relative to typical MORB. Basalts from TVZ also show low abundances of the HFS elements relative to MORB but show lower Ti/Zr, higher Ti/V and Ti/Sc ratios and generally higher Zr abundances than KA most basalts. The Havre Trough basalt is mildly alkaline (< 1% normative nepheline) like many back-arc basin basalts from the Pacific rim, contrasting with the hypersthene normative TVZ and KA rocks. It has higher Zr than most TVZ basalts and all KA basalts. Ratios such as Ti/V, Ti/Sc and Ti/Zr are within the range of TVZ and MORB basalts but distinct from KA basalts. The depleted (relative to MORB) HFSE characteristics of the KA and TVZ basalts are complemented by high abundances of large ion lithophile elements (LIL), such as Ba, Rb and K, when compared to MORB, yielding the distinctive LIL-enriched pattern of subduction related rocks on a normalised multi-element plot. In contrast, the Havre Trough basalt is MORB-like. Chondrite-normalised Rare Earth Element (REE) patterns for the TVZ basalts show a field overlapping with that defined by the southern KA (Rumble Sea Mounts), with light REE enriched patterns (Ce/Yb n = ˜ 1.8-3) and flat heavy REE (Tb-Lu). Basalts from the northern KA are typically light REE depleted (Ce/Yb n = 0.5) or slightly enriched (Ce/Yb n = 1.5). The REE pattern of the Havre Trough basalt is distinctive from both the KA and TVZ fields, being richer in the heavy REE, yet similar to many basalts from back-arc basins. Sr and Nd

  17. Diffuse H_{2} emission: a useful geochemical tool to monitor the volcanic activity at El Hierro volcano system

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Melián, Gladys; González-Santana, Judit; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Padrón, Eleazar; Hernández, Pedro A.

    2016-04-01

    The occurrence of interfering processes affecting reactive gases as CO2 during its ascent from magmatic bodies or hydrothermal systems toward the surface environment hinders the interpretation of their enrichments in the soil atmosphere and fluxes for volcano monitoring purposes (Marini and Gambardella, 2005). These processes include gas scrubbing by ground-waters and interaction with rocks, decarbonatation processes, biogenic production, etc. Within the rest of the soil gases, particularly interest has been addressed to light and highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. H2 is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas (Giggenbach, 1987). Although H2 can be produced in soils by N2-fixing and fertilizing bacteria, soils are considered nowadays as sinks of molecular hydrogen (Smith-Downey et al., 2006). Because of its chemical and physical characteristics, H2 generated within the crust moves rapidly and escapes to the atmosphere. These characteristics make H2 one of the best geochemical indicators of magmatic and geothermal activity at depth. El Hierro is the youngest and the SW-most of the Canary Islands and the scenario of the last volcanic eruption of the archipelago, a submarine eruption that took place 2 km off the southern coast of the island from October 2011 to March 2012. Since at El Hierro Island there are not any surface geothermal manifestations (fumaroles, etc), we have focused our studies on soil degassing surveys. Here we show the results of soil H2 emission surveys that have been carried out regularly since mid-2012. Soil gas samples were collected in ˜600 sites selected based on their accessibility and geological criteria. Soil gases were sampled at ˜40

  18. 40Ar/39Ar geochronology of the Neogene-Quaternary Harrat Al-Madinah intercontinental volcanic field, Saudi Arabia: Implications for duration and migration of volcanic activity

    NASA Astrophysics Data System (ADS)

    Moufti, M. R.; Moghazi, A. M.; Ali, K. A.

    2013-01-01

    New 40Ar/39Ar ages, based on incremental heating techniques for groundmass separates of 25 samples, are presented for the Harrat Al-Madinah volcanic field, part of Harrat Rahat in the north western part of the Arabian plate. This area is an active volcanic field characterized by the occurrence of two historical eruptions approximately in 641 and 1256 AD. Field investigations of the main volcanic landforms indicate dominantly monogenetic strombolian eruptions, in addition to local more explosive eruptions. The lavas consist mainly of olivine basalt and hawaiite flows with minor evolved rocks of mugearite, benmoreite, and trachyte that occur mainly as domes, tuff cones and occasionally as lava flows. Previous K/Ar dating shows that the Harrat Al-Madinah lava flows and associated domes comprise seven units spanning an age range of ca. 1.7 Ma-Recent. The new 40Ar/39Ar age determinations confirm, to a great extent, the previously obtained K/Ar ages in the sense that no major systematic biases were found in the general stratigraphy of the different flow units. However, the 40Ar/39Ar plateau ages show that volcanism in this area began in the Neogene (˜10 Ma) and continued to Recent, with the most voluminous eruptions occurring in the Quaternary. Neogene volcanism occurred in at least three pulses around 10, 5 and 2 Ma, whereas Quaternary volcanism produced at least seven units reflecting lava flow emplacement in the time period of 1.90 Ma-Recent. Thus, the whole duration of volcanic activity in the Harrat Al-Madinah (10 Ma-Recent) appears much longer than that previously identified. The longevity of volcanism in the same part of the moving Arabian plate and absence of evidence for uni-directional migration of volcanic activity indicate that there is no fixed plume beneath this region. The NNW-trending distribution of the volcanic vents is parallel to the Red Sea, and suggests their origin is related to periodic extensional episodes along the reactivated Red Sea fault

  19. Exploring Hawaiian volcanism

    USGS Publications Warehouse

    Poland, Michael P.; Okubo, Paul G.; Hon, Ken

    2013-01-01

    In 1912 the Hawaiian Volcano Observatory (HVO) was established by Massachusetts Institute of Technology professor Thomas A. Jaggar Jr. on the island of Hawaii. Driven by the devastation he observed while investigating the volcanic disasters of 1902 at Montagne Pelée in the Caribbean, Jaggar conducted a worldwide search and decided that Hawai‘i provided an excellent natural laboratory for systematic study of earthquake and volcano processes toward better understanding of seismic and volcanic hazards. In the 100 years since HVO’s founding, surveillance and investigation of Hawaiian volcanoes have spurred advances in volcano and seismic monitoring techniques, extended scientists’ understanding of eruptive activity and processes, and contributed to development of global theories about hot spots and mantle plumes.

  20. The influence of volcanic activity on suspended sediment yield of rivers (Kamchatka, Russia)

    NASA Astrophysics Data System (ADS)

    Kuksina, Ludmila

    2014-05-01

    Kamchatka is specific region of suspended sediment yield formation. This fact is particularly connected with active volcanism in the territory. The influence of volcanism on suspended sediment yield characteristics was studied in various time scales - into-diurnal, seasonal and long-term ones. The study of spatial variability of these characteristics reveals the maximum values characterize river basins in zones of strong impact of volcanic eruptions, especially, rivers draining slopes and flanks of active volcanoes. Into-diurnal fluctuations were studied for rivers in volcanic areas. They are characterized by synchronous changes of water flow and turbidity. It's determined by weak erosion-preventive capacity of friable volcanic deposits and big slopes of channels (2.5 - 6.0 %). The maximum of water flow and turbidity is observed at the period between 12 and 6 pm. The air temperature reaches its maximum by that time, and consequently, the intensity of snow melting is also maximum one. The maximum of turbidity advances diurnal maximum of water flow a little, and it's connected with the features of flood wave moving and consecutive maximums of slopes, turbidity, velocity, water flow, and capacity of stream during flush. Into-diurnal fluctuations are determined by complicated and little-studied processes of mass transfer between stream and channel deposits. These processes are connected with into-diurnal changes of stream capacity and water transfer between channel and underflow. As the result water regime is pulsating. Rivers under the influence of volcanic eruptions transport the main amount of sediments during floods which usually occur in summer-autumn period (in the absence of extreme floods in winter-spring period during volcanic eruptions). Combination of maximum snow supply, significant precipitation in warm part of the year and weak erosion-preventive capacity of friable volcanic deposits on volcanoes slopes is the reason of the most intense erosion in this

  1. A long-term volcanic hazard event tree for Teide-Pico Viejo stratovolcanoes (Tenerife, Canary Islands)

    NASA Astrophysics Data System (ADS)

    Martí, J.; Aspinall, W. P.; Sobradelo, R.; Felpeto, A.; Geyer, A.; Ortiz, R.; Baxter, P.; Cole, P.; Pacheco, J.; Blanco, M. J.; Lopez, C.

    2008-12-01

    We propose a long-term volcanic hazards event tree for Teide-Pico Viejo stratovolcanoes, two complex alkaline composite volcanoes that have erupted 1.8-3 km 3 of mafic and felsic magmas from different vent sites during the last 35 ka. This is the maximum period that can be investigated from surface geology and also represents an upper time limit for the appearance of the first phonolites on that volcano. The whole process of the event tree construction was divided into three stages. The first stage included the determination of the spatial probability of vent opening for basaltic and phonolitic eruptions, based on the available geological and geophysical data. The second, involved the analysis of the different eruption types that have characterised the volcanic activity from Teide during this period. The third stage focussed on the generation of the event tree from the information obtained in the two previous steps and from the application of a probabilistic analysis on the occurrence of each possible eruption type. As for other volcanoes, the structure of the Teide-Pico Viejo Event Tree was subdivided into several steps of eruptive progression from general to more specific events. The precursory phase was assumed as an unrest episode of any geologic origin (magmatic, hydrothermal or tectonic), which could be responsible for a clear increase of volcanic activity revealed by geophysical and geochemical monitoring. According to the present characteristics of Teide-Pico Viejo and their past history, we started by considering whether the unrest episode would lead to a sector collapse or not. If the sector collapse does not occur but an eruption is expected, this could be either from the central vents or from any of the volcanoes' flanks. In any of these cases, there are several possibilities according to what has been observed in the period considered in our study. In the case that a sector collapse occurs and is followed by an eruption we considered it as a flank

  2. The Variation of Volcanic Tremor During Active Stage in the 1986 Izu-Oshima Eruption

    NASA Astrophysics Data System (ADS)

    Kurokawa, Aika; Kurita, Kei

    2014-05-01

    Izu-Oshima is one of the most active volcanoes in Japan. The latest eruption of Nov. 1986 exhibited a curious eruption sequence; the strombolian type eruption started on 15 Nov. at the central vent and it had continued for 4 days. Then after it ceased, subplinian type fissure eruptions occurred inside and outside the caldera where several hundreds meters to few kilometers away from the central vent. Lava flows were associated with these two eruption episodes. Petrologically compositions of these two kinds of lava are completely dissimilar; magma from the central vent is basaltic with narrow range of chemical composition, which is almost same as that of the previous stages while magma from the fissures is evolved one with wider variations of composition [Aramaki and Fujii, 1988]. This means that two distinct magma sources, which were chemically separated but mechanically coupled, should have existed prior to the eruption. The most important issue concerning this eruption is how the mechanical interaction between two magma sources took place and evolved. Throughout the eruption sequence, remarkable activities of seismic tremor have been observed. In this presentation we report evolution of tremor sources to characterize the interaction based on the recently recovered seismic records and we propose a reinterpretation of the eruption sequence. We analyzed volcanic tremor in Nov. 1986 on digitized seismic records of 7 stations in the Island. The aim of this analysis is to estimate the movement of two kinds of magma associated with the change of the eruption styles. Firstly root mean square amplitudes of the filtered seismic signals and their spectrum were calculated. The tremor style changed from continuous mode to intermittent, sporadic mode at the period between the summit eruption and the fissure eruptions. The dominant frequency also changed around the same time. Secondly to derive the location of tremor source, Amplitude Inversion Method [Battaglia and Aki, 2003

  3. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    NASA Astrophysics Data System (ADS)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  4. Soil radon measurements as a potential tracer of tectonic and volcanic activity.

    PubMed

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  5. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    PubMed Central

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  6. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    SciTech Connect

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.

    1994-12-31

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  7. Ecosystem respiration, vegetation development and soil nitrogen in relation to breeding density of seagulls on a pristine volcanic island, Surtsey, Iceland

    NASA Astrophysics Data System (ADS)

    Sigurdsson, B. D.; Magnusson, B.

    2009-08-01

    Since its birth in 1963 by volcanic eruption in the North Atlantic Ocean off Iceland, Surtsey has been a unique natural laboratory on how organisms colonize volcanic islands and form ecosystems with contrasting structure and function. In July, 2004, ecosystem respiration rate, soil properties and surface cover of vascular plants were measured on 21 plots distributed among the main plant communities found 40 years after the primary succession started. The plots could be divided into two groups, inside and outside seagull (Larus sp.) colonies found on the island. Vegetation cover of the plots was strongly related to the density of seagull nests within and around them. The occurrence of seagull nests and increased vegetation also coincided with significant increase in ecosystem respiration, soil carbon and nitrogen, and with significantly lower soil pH and soil temperatures. The ecosystem respiration was high inside the gull colonies, similar to the highest fluxes measured in drained wetlands or agricultural fields in Iceland. The most important factor for vegetation succession and ecosystem function on Surtsey seems to be the amount of nitrogen, which was mainly brought in by the seagulls.

  8. Impacts of Dust on Tropical Volcanic Soil Formation: Insights from Strontium and Uranium-Series Isotopes in Soils from Basse-Terre Island, French Guadeloupe

    NASA Astrophysics Data System (ADS)

    Pereyra, Y.; Ma, L.; Sak, P. B.; Gaillardet, J.; Buss, H. L.; Brantley, S. L.

    2015-12-01

    Dust inputs play an important role in soil formation, especially for thick soils developed on tropical volcanic islands. In these regions, soils are highly depleted due to intensive chemical weathering, and mineral nutrients from dusts have been known to be important in sustaining soil fertility and productivity. Tropical volcanic soils are an ideal system to study the impacts of dust inputs on the ecosystem. Sr and U-series isotopes are excellent tracers to identify sources of materials in an open system if the end-members have distinctive isotope signatures. These two isotope systems are particularly useful to trace the origin of atmospheric inputs into soils and to determine rates and timescales of soil formation. This study analyzes major elemental concentrations, Sr and U-series isotope ratios in highly depleted soils in the tropical volcanic island of Basse-Terre in French Guadeloupe to determine atmospheric input sources and identify key soil formation processes. We focus on three soil profiles (8 to 12 m thick) from the Bras-David, Moustique Petit-Bourg, and Deshaies watersheds; and on the adjacent rivers to these sites. Results have shown a significant depletion of U, Sr, and major elements in the deep profile (12 to 4 m) attributed to rapid chemical weathering. The top soil profiles (4 m to the surface) all show addition of elements such as Ca, Mg, U, and Sr due to atmospheric dust. More importantly, the topsoil profiles have distinct Sr and U-series isotope compositions from the deep soils. Sr and U-series isotope ratios of the top soils and sequential extraction fractions confirm that the sources of the dust are from the Saharan dessert, through long distance transport from Africa to the Caribbean region across the Atlantic Ocean. During the transport, some dust isotope signatures may also have been modified by local volcanic ashes and marine aerosols. Our study highlights that dusts and marine aerosols play important roles in element cycles and

  9. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 2--morphological and mineralogical features.

    PubMed

    Calabrese, S; D'Alessandro, W

    2015-01-01

    Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques. PMID:25311770

  10. Chemistry of ash-leachates: a reliable monitoring tool for volcanic activity

    NASA Astrophysics Data System (ADS)

    Armienta, M. A.; De la Cruz-Reyna, S.; Soler, A.; Ceniceros, N.; Cruz, O.; Aguayo, A.

    2012-04-01

    Real-time volcanic hazard assessment requires the integrated interpretation of data obtained with different monitoring methods, particularly when people may be at risk. One of the methods rendering earliest precursory variations reflecting the internal state of a volcano is the geochemical analysis of gases, ground or lake waters related to volcanic systems, and volcanic ash. At Popocatépetl volcano, Central México, chemical fluctuations of the soluble cover of volcanic ash particles has proved to reflect diverse characteristics of the eruption types. Chloride, sulfate and fluoride concentrations of ash leachates have been consistently measured within the current eruptive episode beginning in December 1994. Particularly, main anions presented diverse relative concentrations in periods of dome extrusions, contrasting with hydrothermal activity or quiescence. Multivariate statistical analysis revealed that higher proportions of fluoride in the leachates corresponded to new dome emplacements and relatively higher sulfate concentrations to hydrothermal ashes, although these results may be ambiguous at times. However, different sulfur isotopic ratios were measured in sulfate from ashes erupted during periods dominated by hydrothermal activity to those emitted during dome emplacement. Additionally, ascent of fresh magma was reflected on high fluoride concentrations jointly with low 34S-SO4 isotopic values. It is thus recommended to maintain persistent analyses of ash-leachates from on-going eruptions as a monitoring tool at active volcanoes.

  11. Exploratory Data Analysis Using a Dedicated Visualization App: Looking for Patterns in Volcanic Activity

    NASA Astrophysics Data System (ADS)

    van Manen, S. M.; Chen, S.

    2015-12-01

    Here we present an App designed to visualize and identify patterns in volcanic activity during the last ten years. It visualizes VEI (volcanic explosivity index) levels, population size, frequency of activity, and geographic region, and is designed to address the issue of oversampling of data. Often times, it is difficult to access a large set of data that can be scattered at first glance and hard to digest without visual aid. This App serves as a model that solves this issue and can be applied to other data. To enable users to quickly assess the large data set it breaks down the apparently chaotic abundance of information into categories and graphic indicators: color is used to indicate the VEI level, size for population size within 5 km of a volcano, line thickness for frequency of activity, and a grid to pinpoint a volcano's latitude. The categories and layers within them can be turned on and off by the user, enabling them to scroll through and compare different layers of data. By visualising the data this way, patterns began to emerge. For example, certain geographic regions had more explosive eruptions than others. Another good example was that low frequency larger impact volcanic eruptions occurred more irregularly than smaller impact volcanic eruptions, which had a more stable frequencies. Although these findings are not unexpected, the easy to navigate App does showcase the potential of data visualization for the rapid appraisal of complex and abundant multi-dimensional geoscience data.

  12. The Volcanic Ash Strategic Initiative Team (VAST) - operational testing activities and exercises

    NASA Astrophysics Data System (ADS)

    Wotawa, Gerhard; Arnold, Delia; Eckhardt, Sabine; Kristiansen, Nina; Maurer, Christian; Prata, Fred; Stohl, Andreas; Zehner, Claus

    2013-04-01

    The project VAST performs its activities within an ESA (European Space Agency) initiative to enhance the use of Earth Observation (EO) data in volcanic ash monitoring and forecasting. The VAST project aims at further exploring the suitability of EO data for such activities and to improve volcanic ash atmospheric transport forecasting services through exercises and demonstration activities in operational environments. Previous to the in-house deployment of the demonstration service, several exercises on operations and communication exchange are needed and first results are presented here. These exercises include technical in-house settings and conceptual planning of the operations with procedure development, volcanic eruptions drills that trigger the acquiring of data and dispersion/forecasting calculations with preliminary estimates of source terms and finally, an international exercise that provides a test case volcanic event to evaluate response times and the usefulness of the different products obtained. Products also include ensemble dispersion forecasts, on one hand multi-input ensembles utilizing the ECMWF EPS system, and on the other hand multi-model ensembles based on different dispersion models driven with different input data. As part of the work, socio-economic aspects need to be taken into account as well. This includes also the identification of best practices on how results can be presented to the stakeholders, including national authorities and policy makers, and the general public.

  13. VEPP Exercise: Volcanic Activity and Monitoring of Pu`u `O`o, Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. A.

    2010-12-01

    A 10-week project will be tested during the Fall semester 2010, for a Volcanic Hazards elective course, for undergraduate Geology students of the University of Puerto Rico at Mayaguez. This exercise was developed during the Volcanoes Exploration Project: Pu`u `O`o (VEPP) Workshop, held on the Big Island of Hawaii in July 2010. For the exercise the students will form groups (of 2-4 students), and each group will be assigned a monitoring technique or method, among the following: seismic (RSAM data), deformation (GPS and tilt data), observations (webcam and lava flow maps), gas and thermal monitoring. The project is designed for Geology undergraduates who have a background in introductory geology, types of volcanoes and eruptions, magmatic processes, characteristics of lava flows, and other related topics. It is divided in seven tasks, starting with an introduction and demonstration of the VEPP website and the VALVE3 software, which is used to access monitoring data from the current eruption of Pu`u `O`o, Kilauea volcano, Hawaii. The students will also familiarize themselves with the history of Kilauea volcano and its current eruption. At least weekly the groups will acquire data (mostly near-real-time) from the different monitoring techniques, in the form of time series, maps, videos, and images, in order to identify trends in the data. The groups will meet biweekly in the computer laboratory to work together in the analysis and interpretation of the data, with the support of the instructor. They will give reports on the progress of the exercise, and will get feedback from the instructor and from the other expert groups. All groups of experts will relate their findings to the recent and current activity of Kilauea volcano, and the importance of their specific type of monitoring. The activity will culminate with a written report and an oral presentation. The last task of the project consists of a wrap-up volcano monitoring exercise, in which the students will

  14. The STRATegy COLUMN for Precollege Science Teachers: Volcanic Activity.

    ERIC Educational Resources Information Center

    Metzger, Ellen Pletcher

    1995-01-01

    Describes resources for information and activities involving volcanoes. Includes an activity that helps students become familiar with the principal types of volcanoes and explores how the viscosity of magma affects the way a volcano erupts. (MKR)

  15. Location of multi-phase volcanic events from a temporary dense seismic array at White Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, Arthur; Lokmer, Ivan; Thun, Johannes; Salichon, Jerome; Fournier, Nico; Fry, Bill

    2016-04-01

    The August 2012 to October 2013 White Island eruption sequence included an increase in gas flux and RSAM seismic tremor beginning in late 2011. Prior to this unrest, a small swarm of 25 events was observed on 19-21 August 2011. The events were captured on a temporary dense seismic array including 12 broadband sensors that were deployed between June and November 2011. Each event comprised coupled earthquakes having distinct high frequency (HF = >1 s), long-period (LP = 2-4 s) and very long period (VLP = 10-30 s) pulses. For each coupled HF, LP and VLP event, we compute the source locations, origin times and related uncertainties by application of standard arrival time locations for the HF events and waveform back-projection for the LP and VLP events. Preliminary results suggest that the events are centred beneath active vent at depths generally less than 2 km. The HF earthquakes have diffuse locations (<2 km), while LP events are constrained to generally shallower source depths (< 1km) and VLP events have slightly deeper source locations (1 to 2 km). The arrival-time locations have been constrained using a realistic shallow velocity model while the waveform back-projection locations have been constrained by thorough synthetic testing. Emergent onsets for LP and VLP sources make an analysis of the absolute origin times problematic but waveform matching of VLP to LP components suggests relative time variations of less than a second or two. We will discuss the location and relative timing for the three event types in context with possible hydrothermal and magmatic processes at White Island volcano.

  16. High resolution DEM from Tandem-X interferometry: an accurate tool to characterize volcanic activity

    NASA Astrophysics Data System (ADS)

    Albino, Fabien; Kervyn, Francois

    2013-04-01

    Tandem-X mission was launched by the German agency (DLR) in June 2010. It is a new generation high resolution SAR sensor mainly dedicated to topographic applications. For the purpose of our researches focused on the study of the volcano-tectonic activity in the Kivu Rift area, a set of Tandem-X bistatic radar images were used to produce a high resolution InSAR DEM of the Virunga Volcanic Province (VVP). The VVP is part of the Western branch of the African rift, situated at the boundary between D.R. Congo, Rwanda and Uganda. It has two highly active volcanoes, Nyiragongo and Nyamulagira. A first task concerns the quantitative assessment of the vertical accuracy that can be achieved with these new data. The new DEMs are compared to other space borne datasets (SRTM, ASTER) but also to field measurements given by differential GPS. Multi-temporal radar acquisitions allow us to produce several DEM of the same area. This appeared to be very useful in the context of an active volcanic context where new geomorphological features (faults, fissures, volcanic cones and lava flows) appear continuously through time. For example, since the year 2000, time of the SRTM acquisition, we had one eruption at Nyiragongo (2002) and six eruptions at Nyamulagira (2001, 2002, 2004, 2006, 2010 and 2011) which all induce large changes in the landscape with the emplacement of new lava fields and scoria cones. From our repetitive Tandem-X DEM production, we have a tool to identify and also quantify in term of size and volume all the topographic changes relative to this past volcanic activity. These parameters are high value information to improve the understanding of the Virunga volcanoes; the accurate estimation of erupted volume and knowledge of structural features associated to past eruptions are key parameters to understand the volcanic system, to ameliorate the hazard assessment, and finally contribute to risk mitigation in a densely populated area.

  17. Planetary Volcanism

    NASA Technical Reports Server (NTRS)

    Antonenko, I.; Head, J. W.; Pieters, C. W.

    1998-01-01

    The final report consists of 10 journal articles concerning Planetary Volcanism. The articles discuss the following topics: (1) lunar stratigraphy; (2) cryptomare thickness measurements; (3) spherical harmonic spectra; (4) late stage activity of volcanoes on Venus; (5) stresses and calderas on Mars; (6) magma reservoir failure; (7) lunar mare basalt volcanism; (8) impact and volcanic glasses in the 79001/2 Core; (9) geology of the lunar regional dark mantle deposits; and (10) factors controlling the depths and sizes of magma reservoirs in Martian volcanoes.

  18. Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes

    NASA Astrophysics Data System (ADS)

    Londono, John Makario

    2016-09-01

    In the last nine years (2007-2015), the Cerro Bravo-Cerro Machín volcanic complex (CBCMVC), located in central Colombia, has experienced many changes in volcanic activity. In particular at Nevado del Ruiz volcano (NRV), Cerro Machin volcano (CMV) and Cerro Bravo (CBV) volcano. The recent activity of NRV, as well as increasing seismic activity at other volcanic centers of the CBCMVC, were preceded by notable changes in various geophysical and geochemical parameters, that suggests renewed magmatic activity is occurring at the volcanic complex. The onset of this activity started with seismicity located west of the volcanic complex, followed by seismicity at CBV and CMV. Later in 2010, strong seismicity was observed at NRV, with two small eruptions in 2012. After that, seismicity has been observed intermittently at other volcanic centers such as Santa Isabel, Cerro España, Paramillo de Santa Rosa, Quindío and Tolima volcanoes, which persists until today. Local deformation was observed from 2007 at NRV, followed by possible regional deformation at various volcanic centers between 2011 and 2013. In 2008, an increase in CO2 and Radon in soil was observed at CBV, followed by a change in helium isotopes at CMV between 2009 and 2011. Moreover, SO2 showed an increase from 2010 at NRV, with values remaining high until the present. These observations suggest that renewed magmatic activity is currently occurring at CBCMVC. NRV shows changes in its activity that may be related to this new magmatic activity. NRV is currently exhibiting the most activity of any volcano in the CBCMVC, which may be due to it being the only open volcanic system at this time. This suggests that over the coming years, there is a high probability of new unrest or an increase in volcanic activity of other volcanoes of the CBCMVC.

  19. Influence of volcanic activity on the population genetic structure of Hawaiian Tetragnatha spiders: Fragmentation, rapid population growth and the potential for accelerated evolution

    USGS Publications Warehouse

    Vandergast, A.G.; Gillespie, R.G.; Roderick, G.K.

    2004-01-01

    Volcanic activity on the island of Hawaii results in a cyclical pattern of habitat destruction and fragmentation by lava, followed by habitat regeneration on newly formed substrates. While this pattern has been hypothesized to promote the diversification of Hawaiian lineages, there have been few attempts to link geological processes to measurable changes in population structure. We investigated the genetic structure of three species of Hawaiian spiders in forests fragmented by a 150-year-old lava flow on Mauna Loa Volcano, island of Hawaii: Tetragnatha quasimodo (forest and lava flow generalist), T. anuenue and T. brevignatha (forest specialists). To estimate fragmentation effects on population subdivision in each species, we examined variation in mitochondrial and nuclear genomes (DNA sequences and allozymes, respectively). Population subdivision was higher for forest specialists than for the generalist in fragments separated by lava. Patterns of mtDNA sequence evolution also revealed that forest specialists have undergone rapid expansion, while the generalist has experienced more gradual population growth. Results confirm that patterns of neutral genetic variation reflect patterns of volcanic activity in some Tetragnatha species. Our study further suggests that population subdivision and expansion can occur across small spatial and temporal scales, which may facilitate the rapid spread of new character states, leading to speciation as hypothesized by H. L. Carson 30 years ago.

  20. Influence of volcanic activity on the population genetic structure of Hawaiian Tetragnatha spiders: fragmentation, rapid population growth and the potential for accelerated evolution.

    PubMed

    Vandergast, Amy G; Gillespie, Rosemary G; Roderick, George K

    2004-07-01

    Volcanic activity on the island of Hawaii results in a cyclical pattern of habitat destruction and fragmentation by lava, followed by habitat regeneration on newly formed substrates. While this pattern has been hypothesized to promote the diversification of Hawaiian lineages, there have been few attempts to link geological processes to measurable changes in population structure. We investigated the genetic structure of three species of Hawaiian spiders in forests fragmented by a 150-year-old lava flow on Mauna Loa Volcano, island of Hawaii: Tetragnatha quasimodo (forest and lava flow generalist), T. anuenue and T. brevignatha (forest specialists). To estimate fragmentation effects on population subdivision in each species, we examined variation in mitochondrial and nuclear genomes (DNA sequences and allozymes, respectively). Population subdivision was higher for forest specialists than for the generalist in fragments separated by lava. Patterns of mtDNA sequence evolution also revealed that forest specialists have undergone rapid expansion, while the generalist has experienced more gradual population growth. Results confirm that patterns of neutral genetic variation reflect patterns of volcanic activity in some Tetragnatha species. Our study further suggests that population subdivision and expansion can occur across small spatial and temporal scales, which may facilitate the rapid spread of new character states, leading to speciation as hypothesized by H. L. Carson 30 years ago. PMID:15189199

  1. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska.

    PubMed

    Zeglin, Lydia H; Wang, Bronwen; Waythomas, Christopher; Rainey, Frederick; Talbot, Sandra L

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance. PMID:26032670

  2. Organic matter quantity and source affects microbial community structure and function following volcanic eruption on Kasatochi Island, Alaska

    USGS Publications Warehouse

    Zeglin, Lydia H.; Wang, Bronwen; Waythomas, Christopher F.; Rainey, Frederick; Talbot, Sandra

    2016-01-01

    In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance.

  3. International Collaboration on Building Local Technical Capacities for Monitoring Volcanic Activity at Pacaya Volcano, Guatemala.

    NASA Astrophysics Data System (ADS)

    Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.

    2015-12-01

    Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.

  4. Early Cretaceous arc volcanic suite in Cebu Island, Central Philippines and its implications on paleo-Pacific plate subduction: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Deng, Jianghong; Yang, Xiaoyong; Zhang, Zhao-Feng; Santosh, M.

    2015-08-01

    The Philippine island arc system is a collage of amalgamated terranes of oceanic, continental and island arc affinities. Here we investigate a volcanic suite in Cebu Island of central Philippines, including basalt, diabase dike, basaltic pyroclastic rock and porphyritic andesite. LA-ICP-MS U-Pb geochronology of zircon grains from the porphyritic andesite and pyroclastic rock yielded ages of 126 ± 3 Ma and 119 ± 2 Ma, respectively, indicating an Early Cretaceous age. The age distribution of the detrital zircons from river sand in the area displays a peak at ca. 118 Ma, close to the age of the pyroclastic rock. The early Cretaceous volcanic rocks in the central Philippines were previously regarded as parts of ophiolite complexes by most investigators, whereas the Cebu volcanics are distinct from these, and display calc-alkaline affinity and island arc setting, characterized by high LREE/HREE ratios and low HFSE contents. These features are similar to the Early Cretaceous arc basalts in the Amami Plateau and east Halmahera in the northernmost and southernmost West Philippine Basin respectively. Zircon Hf isotopes of the pyroclastic rocks show depleted nature similar to those of the Amami Plateau basalts, implying the subducted Pacific-type MORB as probable source. Zircon Hf isotopes of the porphyritic andesite show slight enrichment relative to that of the pyroclastic rocks and MORB, indicating subducted sediments as a minor end-member in the source. The Hf isotopic compositions of the volcanic rocks are also reflected in the detrital zircons from the river sands. We propose that the volcanic rocks of Cebu Island were derived from partial melting of sub-arc mantle wedge which was metasomatized by dehydration of subducted oceanic crust together with minor pelagic sediments. Within the tectonic environment of Southeast Asia during Early Cretaceous, the volcanic rocks in Cebu Island can be correlated to the subduction of paleo-Pacific plate. The Early Cretaceous

  5. Detailed bathymetry and magnetic anomaly inthe Central Ryukyu Arc, Japan: implications for a westward shift of the volcanic front after ~2.1 Ma

    NASA Astrophysics Data System (ADS)

    Sato, T.; Oda, H.; Ishizuka, O.; Arai, K.

    2014-12-01

    Detailed bathymetry and magnetic anomalies in the southern part of the Central Ryukyu Arc reveal recent volcanic structures in a southwestward extension of the active volcanic front of the Ryukyu Arc. A line of bathymetric highs running subparallel to this recent volcanic front was observed ~20 km to the east. A set of small, sharply defined magnetic anomalies extends southward from this line of bathymetric highs to the islands Kume-jima and Aguni-jima, suggesting the former existence of an ancient volcanic front. The ages of volcanic rocks from these islands indicate that magmatic activity along the ancient volcanic front continued until at least ~2.1 Ma. The presence of magnetic anomalies between the two volcanic fronts suggests that the volcanic front has moved gradually westward. This shift can be explained by the termination of asthenospheric upwelling and/or the rapid retreat of the Ryukyu Trench after its change in subduction direction.

  6. Detailed bathymetry and magnetic anomaly in the Central Ryukyu Arc, Japan: implications for a westward shift of the volcanic front after approximately 2.1 Ma

    NASA Astrophysics Data System (ADS)

    Sato, Taichi; Oda, Hirokuni; Ishizuka, Osamu; Arai, Kohsaku

    2014-12-01

    Detailed bathymetry and magnetic anomalies in the southern part of the Central Ryukyu Arc reveal recent volcanic structures in a southwestward extension of the active volcanic front of the Ryukyu Arc. A line of bathymetric highs running subparallel to this recent volcanic front was observed approximately 20 km to the east. A set of small, sharply defined magnetic anomalies extends southward from this line of bathymetric highs to the islands Kume-jima and Aguni-jima, suggesting the former existence of an ancient volcanic front. The ages of volcanic rocks from these islands indicate that magmatic activity along the ancient volcanic front continued until at least approximately 2.1 Ma. The presence of magnetic anomalies between the two volcanic fronts suggests that the volcanic front has moved gradually westward. This shift can be explained by the termination of asthenospheric upwelling and/or the rapid retreat of the Ryukyu Trench after its change in subduction direction.

  7. Distinguishing Phenocrysts From Xenocrysts; Dating the Onset of Volcanic Activity on the Isle of Rum, Scotland.

    NASA Astrophysics Data System (ADS)

    Troll, V. R.; Nicoll, G. R.; Emeleus, H. C.; Donaldson, C. H.

    2005-12-01

    Major volcanic activity on the Isle of Rum started with eruption of rhyodacite, now preserved as intrusive and extrusive parts of the intra-caldera succession. A thick sequence of intra-caldera ignimbrites and sedimentary breccias are preserved in the north and south of the island. Twenty feldspar crystals of the rhyodacite were dated using Ar/Ar and yielded a mean apparent age of 60.83 ± 0.27Ma (MSWD = 3.4), consistent with previously published dates for the crosscutting (i.e. younger) ultrabasic-layered intrusion of 60.53 ± 0.08Ma, Hamilton et al., (1998, Nature). On an age versus probability plot the feldspars do not, however, show a simple Gaussian distribution, but a major peak at 60.33Ma and two smaller shoulders at approx 61.4Ma and 63Ma. Our preliminary interpretation of the older ages is that they include a) xenocrysts derived from earlier Tertiary plutonics (61.4Ma peak) and b) older feldspars that have largely re-equilibrated within the rhyodacite magma chamber, possibly derived from Lewisian gneiss (63Ma peak). This may imply a residence time of these xenocrysts in the magma chamber of up to several years; cf. Gansecki et al., (1996, Earth Planet Sci. Lett.). The youngest and strongest age peak at 60.33Ma is suggested to represent the rhyodacite event. The oxygen isotope composition of the rhyodacite feldspars (6.88 ‰) is in the range of magmatic phenocrysts (6-7.5 ‰) and Lewisian gneisses (5-8 ‰) and well above the very low oxygen isotope values usually associated with high-T alteration. Hydrothermal overprint due to the layered ultrabasic intrusion was therefore probably minimal. We suggest the 60.33 ± 0.21Ma crystal age represents the rhyodacite eruption/intrusion event, implying that the ultrabasic-layered suite was already forming at depth and emplaced at shallow structural levels quickly thereafter. These new age dates tie in very well with recent work by Chambers et al., (2005, Lithos), highlighting a very quick succession of events

  8. Crystal Zoning Constrains on the Processes and Time Scales Involved in Monogenetic Mafic Volcanism (Tenerife, Canary Islands)

    NASA Astrophysics Data System (ADS)

    Albert, H.; Costa Rodriguez, F.; Marti, J.

    2014-12-01

    Most of the historical eruptive activity in Tenerife has been relatively mafic and mildly-explosive monogenetic eruptions, and thus it seems that this activity is the most likely in the near future. Here we investigate the processes and time scales that lead to such eruptions with the aim to better interpret and plan for any possible unrest in the island. We focus on three historical eruptions: Siete Fuentes (December 31 1704-January 1705), Fasnia (January 5-January 13 1705) and Arafo (February 2-February 26 1705) issued from a 10 km long basaltic fissure eruption oriented N45E and covering an area of 10.4 km2. The erupted volume increases by 5-fold from the first to the last eruption. All magmas are tephritic, although the bulk-rock becomes more mafic with time due to accumulation of olivine with Cr-spinel inclusions, and clinopyroxene rather than to the appearance of a truly more primitive melt. Olivine core compositions of the three eruptions range between Fo79 and Fo87. Frequency histograms show three main populations: at Fo79-80, Fo80-82 and Fo84-87 displaying normal and reverse zoning. Thermodynamic calculations show that only cores with Fo80-82 are in equilibrium with the whole rock. Clinopyroxene phenocrysts can have large pools of matrix glass and show rims of different composition. Only the rims, with Mg#84-86, are in equilibrium with the whole-rock. Considering olivine cores and clinopyroxene rims in equilibrium we obtained a temperature range of 1150-1165°C, and MELTS calculations suggest pressures of 1 to 5 kbar. The variety of olivine core populations reflects mixing and mingling between three different magmas, and their proportions have changed with time from Siete Fuentes to Arafo. Most crystals have complex zoning profiles that record two events: (1) one of magma mixing/mingling at depth, (2) another of magma transport and ascent to the surface. Magma mixing at depth ranges from about 3 months to two years and is similar for the three eruptions

  9. Factors limiting microbial activity in volcanic tuff at Yucca Mountain

    SciTech Connect

    Kieft, T.L.; Kovacik, W.P.; Taylor, J.

    1996-09-01

    Samples of tuff aseptically collected from 10 locations in the Exploratory Shaft Facility at the site of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada Test Site were analyzed for microbiological populations, activities, and factors limiting microbial activity. Radiotracer assays ({sup 14}C-labeled organic substrate mineralization), direct microscopic counts, and plate counts were used. Radiolabeled substrates were glucose, acetate, and glutamate. Radiotracer experiments were carried out with and without moisture and inorganic nutrient amendments to determine factors limiting to microbial activities. Nearly all samples showed the presence of microorganisms with the potential to mineralize organic substrates. Addition of inorganic nutrients stimulated activities in a small number of samples. The presence of viable microbial communities within the tuff has implications for transport of contaminants.

  10. 1994 Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Doukas, Michael P.; McGimsey, Robert G.

    1995-01-01

    During 1994, the Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, or false alarms at nine volcanic centers-- Mount Sanford, Iliamna, the Katmai group, Kupreanof, Mount Veniaminof, Shishaldin, Makushin, Mount Cleveland and Kanaga (table 1). Of these volcanoes, AVO has a real time, continuously recording seismic network only at Iliamna, which is located in the Cook Inlet area of south-central Alaska (fig. 1). AVO has dial-up access to seismic data from a 5-station network in the general region of the Katmai group of volcanoes. The remaining unmonitored volcanoes are located in sparsely populated areas of the Wrangell Mountains, the Alaska Peninsula, and the Aleutian Islands (fig. 1). For these volcanoes, the AVO monitoring program relies chiefly on receipt of pilot reports, observations of local residents and analysis of satellite imagery.

  11. Compilation of Disruptions to Airports by Volcanic Activity (Version 1.0, 1944-2006)

    USGS Publications Warehouse

    Guffanti, Marianne; Mayberry, Gari C.; Casadevall, Thomas J.; Wunderman, Richard

    2008-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. To more fully characterize the nature and scope of volcanic hazards to airports, we collected data on incidents of airports throughout the world that have been affected by volcanic activity, beginning in 1944 with the first documented instance of damage to modern aircraft and facilities in Naples, Italy, and extending through 2006. Information was gleaned from various sources, including news outlets, volcanological reports (particularly the Smithsonian Institution's Bulletin of the Global Volcanism Network), and previous publications on the topic. This report presents the full compilation of the data collected. For each incident, information about the affected airport and the volcanic source has been compiled as a record in a Microsoft Access database. The database is incomplete in so far as incidents may not have not been reported or documented, but it does present a good sample from diverse parts of the world. Not included are en-route diversions to avoid airborne ash clouds at cruise altitudes. The database has been converted to a Microsoft Excel spreadsheet. To make the PDF version of table 1 in this open-file report resemble the spreadsheet, order the PDF pages as 12, 17, 22; 13, 18, 23; 14, 19, 24; 15, 20, 25; and 16, 21, 26. Analysis of the database reveals that, at a minimum, 101 airports in 28 countries were impacted on 171 occasions from 1944 through 2006 by eruptions at 46 volcanoes. The number of affected airports (101) probably is better constrained than the number of incidents (171) because recurring disruptions at a given airport may have been lumped together or not reported by news agencies, whereas the initial disruption likely is noticed and reported and thus the airport correctly counted.

  12. Hawaiian Island Archipelago

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The entire Hawaiian Island Archipelago (21.5N, 158.0W) is seen in this single view. The islands are a favorite international resort and tourist attraction drawing visitors from all over the world to enjoy the tropical climate, year round beaches and lush island flora. Being volcanic in origin, the islands' offer a rugged landscape and on the big island of Hawaii, there is still an occasional volcanic eruption of lava flows and steam vents.

  13. Diffuse helium and hydrogen degassing to reveal hidden geothermal resources in oceanic volcanic islands: The Canarian archipelago case study

    NASA Astrophysics Data System (ADS)

    Rodríguez, Fátima; Pérez, Nemesio M.; Padrón, Eleazar; Dionis, Samara; López, Gabriel; Melián, Gladys V.; Asensio-Ramos, María; Hernández, Pedro A.; Padilla, German; Barrancos, José; Marrero, Rayco; Hidalgo, Raúl

    2015-04-01

    During geothermal exploration, the geochemical methods are extensively used and play a major role in both exploration and exploitation phases. They are particularly useful to assess the subsurface temperatures in the reservoir, the origin of the fluid, and flow directions within the reservoir. The geochemical exploration is based on the assumption that fluids on the surface reflect physico-chemical and thermal conditions in the geothermal reservoir at depth. However, in many occasions there is not any evidence of endogenous fluids manifestations at surface, that traditionally evidence the presence of an active geothermal system. Discovery of new geothermal systems will therefore require exploration of areas where the resources are either hidden or lie at great depths. Geochemical methods for geothermal exploration at these areas must include soil gas surveys, based on the detection of anomalously high concentrations of some hydrothermal gases in the soil atmosphere, generally between 40 cm and 1 meter depth from the surface. Among soil gases, particularly interest has been addressed to non-reactive and/or highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. This is the case of helium (He) and hydrogen (H2), that have unique characteristics as a geochemical tracer, owing to their chemical and physical characteristics. Enrichments of He and H2 observed in the soil atmosphere can be attributed almost exclusively to migration of deep-seated gas toward the surface. In this work we show the results of soil gas geochemistry studies, focused mainly in non-reactive and/or highly mobile gases as He and H2, in five minning grids at Tenerife and Gran Canaria, Canay Islands, Spain, during 2011-2014. The primary objective was to use different geochemical evidences of deep-seated gas emission to sort the possible

  14. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions

    USGS Publications Warehouse

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.

    2007-01-01

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.

  15. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions.

    PubMed

    Thomas, R J; Krehbiel, P R; Rison, W; Edens, H E; Aulich, G D; Winn, W P; McNutt, S R; Tytgat, G; Clark, E

    2007-02-23

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms. PMID:17322054

  16. Explosive activity associated with the growth of volcanic domes

    USGS Publications Warehouse

    Newhall, C.G.; Melson, W.G.

    1983-01-01

    Domes offer unique opportunities to measure or infer the characteristics of magmas that, at domes and elsewhere, control explosive activity. A review of explosive activity associated with historical dome growth shows that: 1. (1) explosive activity has occurred in close association with nearly all historical dome growth; 2. (2) whole-rock SiO2 content, a crude but widely reported indicator of magma viscosity, shows no systematic relationship to the timing and character of explosions; 3. (3) the average rate of dome growth, a crude indicator of the rate of supply of magma and volatiles to the near-surface enviornment, shows no systematic relationship to the timing or character of explosions; and 4. (4) new studies at Arenal and Mount St. Helens suggest that water content is the dominant control on explosions from water-rich magmas, whereas the crystal content and composition of the interstitial melt (and hence magma viscosity) are equally or more important controls on explosions from water-poor magmas. New efforts should be made to improve current, rather limited techniques for monitoring pre-eruption volatile content and magma viscosity, and thus the explosive potential of magmas. ?? 1983.

  17. Chemical composition of soils in the areas of volcanic ashfalls around active volcanoes in Kamchatka

    NASA Astrophysics Data System (ADS)

    Zakharikhina, L. V.; Litvinenko, Yu. S.

    2016-03-01

    The geochemical features of volcanic soils (Andosols) in the northern soil province of Kamchatka are identified. The background regional concentrations ( Cb r ) of most of chemical elements in the studied soils are lower than their average concentrations in soils of the world and in the European volcanic soils. Only Na, Ca, and Mg are present in elevated concentrations in all the studied soils in the north of Kamchatka. Regional background concentrations of elements are exceeded by 1.6 times in the area of active ashfalls of the Tolbachik volcano and by 1.3 times in the area of active ashfalls of the Shiveluch volcano. The concentrations of mobile forms of elements in these areas exceed their regional background concentrations by 2.1 and 2.6 times, respectively.

  18. Hawaiian oral tradition describes 400 years of volcanic activity at Kīlauea

    USGS Publications Warehouse

    Swanson, Donald A.

    2008-01-01

    Culturally significant oral tradition involving Pele, the Hawaiian volcano deity, and her youngest sister Hi'iaka may involve the two largest volcanic events to have taken place in Hawai'i since human settlement: the roughly 60-year-long ‘Ailā’au eruption during the 15th century and the following development of Kīlauea's caldera. In 1823, Rev. William Ellis and three others became the first Europeans to visit Kīlauea's summit and were told stories about Kīlauea's activity that are consistent with the Pele–Hi'iaka account and extend the oral tradition through the 18th century. Recent geologic studies confirm the essence of the oral traditions and illustrate the potential value of examining other Hawaiian chants and stories for more information about past volcanic activity in Hawai‘i.

  19. New insights into composition and source, single or multistage emplacement, and relationship to eruption cycles from first drilling of volcanic island landslides, offshore Montserrat

    NASA Astrophysics Data System (ADS)

    Talling, Peter

    2013-04-01

    Volcanic island landslides include the largest mass flows on our planet. They can pose a significant hazard due to the landslide itself, and through generation of far-travelling tsunamis. The potential tsunami magnitude is highly controversial, and depends on where material originates, and how the landslide is emplaced. It is also important to know whether landslides are preceded or post-dated by major eruptions, and whether landslides play a role in initiation of new volcanic centres. IODP Expedition 340 recovered the first cores through volcanic island landslides, located offshore Montserrat and Martinique. Here we analyse two landslides offshore Montserrat, where we also have unusually comprehensive seismic data and shallow cores. The younger Deposit 1 (~1.8 cubic km) contains chaotically distributed blocks and was emplaced as a granular avalanche. The older and larger volume (~9 cubic km) Deposit 2 contains blocks in its proximal part, but generally has a smoother surface. Cores from IODP Site U1395 (~25 km from the volcano) contain a spectacular ~7 m thick stack of massive, graded turbidite sands associated with Deposit 2. For comparison, the 1995-recent eruption on Montserrat only produced a ~20 cm thick deposit at this location. The stacked turbidites lack intervening mud suggesting emplacement by pulses in a single event. Deposit 2 is ~100 m thick at Site 1394, where it comprises flat-lying turbidite sands and hemipelagic mud, and thin intervals of homogenised muddy sand. Most turbidites contain a significant (20-90%) bioclastic component. The surprising composition of Deposit 2 can be explained by two hypotheses. First, the flat-lying turbidites and hemipelagic muds are in-situ and record episodic failure over a prolonged period of time. Second, emplacement of material from the volcano caused failure of sea floor sediment, and the turbidite sand and hemipelagic muds are flat-lying blocks of seafloor sediment incorporated into the landslide. Shear was

  20. New insight into composition and source, single or multistage emplacement, and relationship to eruption cycles from first drilling of volcanic island landslides, offshore Montserrat

    NASA Astrophysics Data System (ADS)

    Talling, P. J.; Kataoka, K.; Endo, D.; Watt, S. F.; Le Friant, A.; Ishizuka, O.; Scientific Party, I.; Berndt, C.; Crutchley, G.; Karstens, J.

    2012-12-01

    Volcanic island landslides include the largest mass flows on our planet. They can pose a significant hazard due to the landslide itself, and through generation of far-travelling tsunamis. The potential tsunami magnitude is highly controversial, and depends on where material originates, and how the landslide is emplaced. It is also important to know whether landslides are preceded or post-dated by major eruptions, and whether landslides play a role in initiation of new volcanic centres. IODP Expedition 340 recovered the first cores through volcanic island landslides, located offshore Montserrat and Martinique. Here we analyse two landslides offshore Montserrat, where we also have unusually comprehensive seismic data and shallow cores. The younger Deposit 1 (~1.8 km3) contains chaotically distributed blocks and was emplaced as a granular avalanche. The older and larger volume (~9 km3) Deposit 2 contains blocks in its proximal part, but generally has a smoother surface. Cores from IODP Site U1395 (~25 km from the volcano) contain a spectacular ~7 m thick stack of turbidite sands associated with Deposit 2. For comparison, the 1995-recent eruption on Montserrat only produced a ~20 cm thick deposit at this location. The stacked turbidites lack intervening mud suggesting emplacement by pulses in one event. Deposit 2 is ~100 m thick at Site 1394, where it comprises flat-lying turbidite sands and hemipelagic mud, and thin intervals of homogenised muddy sand. Most turbidites contain a significant (20-90%) bioclastic component. The surprising composition of Deposit 2 can be explained by two hypotheses. First, the flat-lying turbidites and hemipelagic muds are in-situ and record episodic failure over a prolonged period of time. Second, emplacement of material from the volcano caused failure of sea floor sediment, and the turbidite sand and hemipelagic muds are flat-lying blocks of seafloor sediment incorporated into the landslide. Shear was concentrated on the homogenised

  1. Quantifying unsteadiness and dynamics of pulsatory volcanic activity

    NASA Astrophysics Data System (ADS)

    Dominguez, L.; Pioli, L.; Bonadonna, C.; Connor, C. B.; Andronico, D.; Harris, A. J. L.; Ripepe, M.

    2016-06-01

    Pulsatory eruptions are marked by a sequence of explosions which can be separated by time intervals ranging from a few seconds to several hours. The quantification of the periodicities associated with these eruptions is essential not only for the comprehension of the mechanisms controlling explosivity, but also for classification purposes. We focus on the dynamics of pulsatory activity and quantify unsteadiness based on the distribution of the repose time intervals between single explosive events in relation to magma properties and eruptive styles. A broad range of pulsatory eruption styles are considered, including Strombolian, violent Strombolian and Vulcanian explosions. We find a general relationship between the median of the observed repose times in eruptive sequences and the viscosity of magma given by η ≈ 100 ṡtmedian. This relationship applies to the complete range of magma viscosities considered in our study (102 to 109 Pa s) regardless of the eruption length, eruptive style and associated plume heights, suggesting that viscosity is the main magma property controlling eruption periodicity. Furthermore, the analysis of the explosive sequences in terms of failure time through statistical survival analysis provides further information: dynamics of pulsatory activity can be successfully described in terms of frequency and regularity of the explosions, quantified based on the log-logistic distribution. A linear relationship is identified between the log-logistic parameters, μ and s. This relationship is useful for quantifying differences among eruptive styles from very frequent and regular mafic events (Strombolian activity) to more sporadic and irregular Vulcanian explosions in silicic systems. The time scale controlled by the parameter μ, as a function of the median of the distribution, can be therefore correlated with the viscosity of magmas; while the complexity of the erupting system, including magma rise rate, degassing and fragmentation efficiency

  2. Middle Miocene hiatus in volcanic activity in the Great Basin area of the Western United States

    USGS Publications Warehouse

    McKee, E.H.; Noble, D.C.; Silberman, M.L.

    1970-01-01

    A summary of potassium-argon dates shows that a high level of igneous activity in the Great Basin and adjacent regions during middle Tertiary time (40 to 20 my ago) was followed by a period of relative quiescence in middle Miocene time that lasted for several million years (from 20 to 17 my ago). Volcanism resumed 16 my ago mainly at the margins of the region and has continued to the present. ?? 1970.

  3. First volcanic CO2 budget estimate for three actively degassing volcanoes in the Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Robidoux, Philippe; Aiuppa, Alessandro; Conde, Vladimir; Galle, Bo; Giudice, Gaetano; Avard, Geoffroy; Muñoz, Angélica

    2014-05-01

    CO2 is a key chemical tracer for exploring volcanic degassing mechanisms of basaltic magmatic systems (1). The rate of CO2 release from sub-aerial volcanism is monitored via studies on volcanic plumes and fumaroles, but information is still sparse and incomplete for many regions of the globe, including the majority of the volcanoes in the Central American Volcanic Arc (2). Here, we use a combination of remote sensing techniques and in-situ measurements of volcanic gas plumes to provide a first estimate of the CO2 output from three degassing volcanoes in Central America: Turrialba, in Costa Rica, and Telica and San Cristobal, in Nicaragua. During a field campaign in March-April 2013, we obtained (for the three volcanoes) a simultaneous record of SO2 fluxes (from the NOVAC network (3)) and CO2 vs. SO2 concentrations in the near-vent plumes (obtained via a temporary installed fully-automated Multi-GAS instrument (4)). The Multi-GAS time-series allowed to calculate the plume CO2/SO2 ratios for different intervals of time, showing relatively stable gas compositions. Distinct CO2 - SO2 - H2O proportions were observed at the three volcanoes, but still within the range of volcanic arc gas (5). The CO2/SO2 ratios were then multiplied by the SO2 flux in order to derive the CO2 output. At Turrialba, CO2/SO2 ratios fluctuated, between March 12 and 19, between 1.1 and 5.7, and the CO2flux was evaluated at ~1000-1350 t/d (6). At Telica, between March 23 and April 8, a somewhat higher CO2/SO2 ratio was observed (3.3 ± 1.0), although the CO2 flux was evaluated at only ~100-500 t/d (6). At San Cristobal, where observations were taken between April 11 and 15, the CO2/SO2 ratio ranged between 1.8 and 7.4, with a mean CO2 flux of 753 t/d. These measurements contribute refining the current estimates of the total CO2 output from the Central American Volcanic Arc (7). Symonds, R.B. et al., (2001). J. Volcanol. Geotherm. Res., 108, 303-341 Burton, M. R. et al. (2013). Reviews in

  4. Satellite measurements of recent volcanic activity at Oldoinyo Lengai, Tanzania

    NASA Astrophysics Data System (ADS)

    Vaughan, R. Greg; Kervyn, Matthieu; Realmuto, Vince; Abrams, Michael; Hook, Simon J.

    2008-06-01

    Oldoinyo Lengai (OL) is the only active volcano in the world that produces natrocarbonatite lava. These carbonate-rich lavas are unique in that they have relatively low temperatures (495-590 °C) and very low viscosity. OL has been erupting intermittently since 1983, mostly with small lava flows, pools and spatter cones (hornitos) confined to the summit crater. Explosive, ash-producing eruptions are rare, however, on September 4, 2007 the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) captured the first satellite image of an ash plume erupting from OL, which may be indicative of a new phase of more silica-rich products and explosive activity that has not occurred since 1966-1967. In the months prior to the eruption, thermal infrared (TIR) satellite monitoring detected an increasing number of thermal anomalies around OL. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor analyzed with the MODLEN algorithm detected more than 30 hot spots in the last week of August and first week of September 2007, some of which were from bush fires ignited by lava flows or spatter around the volcano. Higher-resolution ASTER data confirmed the location of these burn scars associated with lava flows. ASTER also detected the appearance of an anomalous hot spot at the summit of OL in mid-June with temperatures ~ 440 °C, the presence of several new lava flows in the crater in July and August, and on September 4 measured higher temperatures (~ 550 °C) possibly suggesting a more silicate-rich eruption. ASTER spectral emissivity data were interpreted to indicate a mixture of carbonate and silicate ash in the eruption plume from September 4. Based on the analysis of both ASTER and MODIS data combined with occasional field observations, there appear to have been 2 distinct eruptive events so far in 2007: a typical natrocarbonatite eruption confined to the summit crater in June-July, and a more intense eruption in August-September consisting of

  5. Polymagmatic activity and complex magma evolution at the monogenetic Mt Gambier Volcanic Complex in the Newer Volcanics Province, SE Australia

    NASA Astrophysics Data System (ADS)

    van Otterloo, Jozua; Raveggi, Massimo; Cas, Ray; Maas, Roland

    2015-04-01

    Monogenetic volcanism can produce eruptive suites showing considerable complexity in compositional features and pre-eruptive magma evolution. The ~5 ka Mt Gambier Volcanic Complex (MGVC), a monogenetic volcanic centre in the Newer Volcanics Province (NVP), SE Australia, is a good example. It displays a complex stratigraphy of interbedded deposits related to different eruption styles from a multi-vent system. Formation of the MGVC proceeded through simultaneous eruption of two alkali basaltic magma batches: a more alkaline and light rare earth element enriched basanite batch (Mg# 58-62) in the west and a trachybasalt batch (Mg# 58-64) enriched in SiO2 and CaO in the east. Trace element modelling suggests an origin of both magma batches from a single parental melt formed by 4-5% partial melting of a metasomatised lherzolite source in the asthenospheric mantle (2.2 GPa; ~80 km). At the base of the lithosphere, part of this parental melt interacted with a deep-seated pyroxenite contaminant to form the trachybasaltic suite. Further modification of either magma batch at crustal levels appears to have been negligible. Isotope and trace element signatures are consistent with the inferred asthenospheric magma source; Pb isotopes in particular suggest a source with mixed Indian mid-ocean ridge basalt (MORB)-Enriched Mantle 2 (EM2) affinities, the latter perhaps related to metasomatic overprinting. It is argued that Cainozoic NVP volcanism in SE Australia is not necessarily related to a mantle plume but can be explained by other models involving asthenospheric upwelling. Fast magma ascent rates in the lithosphere evidenced by the presence of mantle xenoliths may reflect reactivation of lithospheric structures that provide magma pathways to the surface.

  6. Evidence of volcanic and glacial activity in Chryse and Acidalia Planitiae, Mars

    USGS Publications Warehouse

    Martinez-Alonso, Sara; Mellon, Michael T.; Banks, Maria E.; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2011-01-01

    Chryse and Acidalia Planitiae show numerous examples of enigmatic landforms previously interpreted to have been influenced by a water/ice-rich geologic history. These landforms include giant polygons bounded by kilometer-scale arcuate troughs, bright pitted mounds, and mesa-like features. To investigate the significance of the last we have analyzed in detail the region between 60°N, 290°E and 10°N, 360°E utilizing HiRISE (High Resolution Imaging Science Experiment) images as well as regional-scale data for context. The mesas may be analogous to terrestrial tuyas (emergent sub-ice volcanoes), although definitive proof has not been identified. We also report on a blocky unit and associated landforms (drumlins, eskers, inverted valleys, kettle holes) consistent with ice-emplaced volcanic or volcano-sedimentary flows. The spatial association between tuya-like mesas, ice-emplaced flows, and further possible evidence of volcanism (deflated flow fronts, volcanic vents, columnar jointing, rootless cones), and an extensive fluid-rich substratum (giant polygons, bright mounds, rampart craters), allows for the possibility of glaciovolcanic activity in the region.Landforms indicative of glacial activity on Chryse/Acidalia suggest a paleoclimatic environment remarkably different from today's. Climate changes on Mars (driven by orbital/obliquity changes) or giant outflow channel activity could have resulted in ice-sheet-related landforms far from the current polar caps.

  7. Geochemistry of Post-Shield and Secondary Volcanism on and Around the Island of Kaua`i

    NASA Astrophysics Data System (ADS)

    Swinnard, L.; Garcia, M. O.; Weis, D.

    2007-12-01

    The Koloa Volcanics are the most voluminous (~ 58 km3) and long-lived (2.4 m.y.) example of Hawaiian rejuvenated volcanism. The recent discovery of extensive Koloa volcanism offshore heightens their importance in helping to determine the mechanism(s) responsible for downstream plume-related volcanism, as do post-shield lavas. We collected a suite of K-Ar dated, post-shield and Koloa lavas and new offshore samples for major and trace element, and Pb, Sr, and Nd isotope characterization for comparison with well characterized shield lavas. Previous studies of Koloa lavas were compromised by rock alteration. X-ray fluorescence analyses of new, unaltered to weakly altered rocks indicate the Koloa Volcanics are exclusively alkalic, ranging from alkali basalts to foidites, while the post-shield stage lavas range from tholeiites to hawaiites and basanites. Preliminary results show that four of five offshore blocks are tholeiitic, and may be related to the Kaua`i shield. The other is geochemically similar to Koloa Volcanics. The post-shield stage is primarily defined by its age range, rather than by its geochemistry. These lavas were erupted between 4.0-3.6 Ma vs. 5.14-4.0 Ma for shield lavas, and were followed by the rejuvenated stage after a 1.2 Ma hiatus. Major and trace element data show overlapping compositions for the post-shield stage and the shield or rejuvenated stages. Based on trace element ratios, two geochemically distinct groups can be distinguished within the post-shield stage. This distinction is shown clearly on plots of Ba/Ce vs. Zr/Nb and Ba/Sr vs. Zr/Nb, where the alkalic samples plot near to, but not within, the Koloa lavas field and the tholeiitic samples, plot in a separate field, within the tholeiitic shield field. No temporal gradational trend exists in trace element ratios from shield stage through post-shield to rejuvenated stages. Whereas the shield and rejuvenated stages form separate fields, post-shield stage lavas do not form a transitional

  8. Continuous in situ measurements of volcanic gases with a diode-laser-based spectrometer: CO2 and H2O concentration and soil degassing at Vulcano (Aeolian islands: Italy)

    PubMed Central

    De Rosa, Maurizio; Gagliardi, Gianluca; Rocco, Alessandra; Somma, Renato; De Natale, Paolo; De Natale, Giuseppe

    2007-01-01

    We report on a continuous-measurement campaign carried out in Vulcano (Aeolian islands, Sicily), devoted to the simultaneous monitoring of CO2 and H2O concentrations. The measurements were performed with an absorption spectrometer based on a semiconductor laser source emitting around a 2-μm wavelength. The emitted radiation was selectively absorbed by two molecular ro-vibrational transitions specific of the investigated species. Data for CO2 and H2O concentrations, and CO2 soil diffusive flux using an accumulation chamber configuration, were collected at several interesting sampling points on the island (Porto Levante beach- PLB, Fossa Grande Crater – FOG- and Valley of Palizzi, PAL). CO2/H2O values, measured on the ground, are very similar (around 0.019 (± 0.006)) and comparable to the previous discrete detected values of 0.213 (Fumarole F5-La Fossa crater rim) and 0.012 (Fumarole VFS – Baia Levante beach) obtaid during the 1977–1993 heating phase of the crater fumaroles. In this work much more homogeneous values are found in different points of the three sites investigated. The field work, although carried out in a limited time window (25th–28th August 2004), pointed out the new apparatus is suitable for continuous gas monitoring of the two species and their ratios, which are important geochemical indicators of volcanic activity, for which other reliable continuous monitoring systems are not yet available. PMID:17448243

  9. Investigation of origin for seawater intrusion using geophysical well logs and absolute ages of volcanic cores in the eastern part of Jeju Island

    NASA Astrophysics Data System (ADS)

    Hwang, Seho; Shin, Jehyun

    2010-05-01

    Jeju located in the southern extremity of Korea is volcanic island, one of best-known tourist attractions in Korea. Jeju Province operates the monitoring boreholes for the evaluation of groundwater resources in coastal area. Major rock types identified from drill cores are trachybasalt, acicular basalt, scoria, hyalocastite, tuff, unconsolidated U formation, and seoguipo formation and so on. Various conventional geophysical well loggings including radioactive logs (natural gamma log, dual neutron log, and gamma-gamma log), electrical log (or electromagnetic induction log), caliper log, fluid temperature/ conductivity log, and televiewer logs have been conducted to identify basalt sequences and permeable zone, and verify seawater intrusion in monitoring boreholes. The conductivity logs clearly show the fresh water-saline water boundaries, but we find it hard to identify the permeable zones because of the mixed groundwater within the boreholes. Temperature gradient logs are mostly related with lithologic boundaries and permeable zones intersected by boreholes of eastern coasts. The wide range of periodic electrical conductivity logging in the deeper depth of monitoring boreholes indicates the possibility of submarine groundwater discharge. However we did not clearly understand the origin of seawater intrusion in the eastern coast until now. So we analysis the electrical conductivity profiles, record of sea-level change and 40Ar/39Ar absolute ages of volcanic rock cores from twenty boreholes in east coast. From comparing absolute ages of volcanic rock cores and sea-level of their ages, we find that the almost ages of depth showing high salinity groundwater are about 100 Ka, and from 130Ka to about 180Ka. The former is after the interglacial period and the latter is illinoian. These results indicate that the abrupt raising of sea level after illinoian formed the regional coast, and the zone of present seawater intrusion also are above the depth of illinoin period. So

  10. Can vesicle size distributions predict eruption intensity during volcanic activity?

    NASA Astrophysics Data System (ADS)

    LaRue, A.; Baker, D. R.; Polacci, M.; Allard, P.; Sodini, N.

    2013-06-01

    We studied three-dimensional (3-D) vesicle size distributions by X-ray microtomography in scoria collected during the relatively quiescent Phase II of the 2010 eruption at Eyjafjallajökull volcano, Iceland. Our goal was to compare the vesicle size distributions (VSDs) measured in these samples with those found in Stromboli volcano, Italy. Stromboli was chosen because its VSDs are well-characterized and show a correlation with eruption intensity: typical Strombolian activity produces VSDs with power-law exponents near 1, whereas larger and more energetic Vulcanian-type explosions and Plinian eruptions produce VSDs with power-law exponents near 1.5. The hypothesis to be tested was whether or not the samples studied in this work would contain VSDs similar to normal Strombolian products, display higher power-law exponents, or be described by exponential functions. Before making this comparison we tested the hypothesis that the phreatomagmatic nature of the Eyjafjallajökull eruption might have a significant effect on the VSDs. We performed 1 atm bubble-growth experiments in which the samples were inundated with water and compared them to similar, control, experiments without water inundation. No significant differences between the VSDs of the two sets of experiments were found, and the hypothesis is not supported by the experimental evidence; therefore, VSDs of magmatic and phreatomagmatic eruptions can be directly compared. The Phase II Eyjafjallajökull VSDs are described by power law exponents of ~ 0.8, typical of normal Strombolian eruptions. The comparable VSDs and behavior of Phase II of the Eyjafjallajökull 2010 eruption to Stromboli are interpreted to be a reflection of similar conduit systems in both volcanoes that are being constantly fed by the ascent of deep magma that mixes with resident magma at shallow depths. Such behavior implies that continued activity during Phase II of the Eyjafjallajökull eruption could be expected and would have been predicted

  11. Can vesicle size distributions assess eruption intensity during volcanic activity?

    NASA Astrophysics Data System (ADS)

    LaRue, A.; Baker, D. R.; Polacci, M.; Allard, P.; Sodini, N.

    2013-10-01

    We studied three-dimensional (3-D) vesicle size distributions by X-ray microtomography in scoria collected during the relatively quiescent Phase II of the April-May 2010 eruption at Eyjafjallajökull volcano, Iceland. Our goal was to compare cumulative vesicle size distributions (VSDs) measured in these samples with those found in Stromboli volcano, Italy. Stromboli was chosen because its VSDs are well-characterized and show a correlation with eruption intensity: typical Strombolian activity produces VSDs with power-law exponents near 1, whereas larger and more energetic vulcanian-type explosions and Plinian eruptions produce VSDs with power-law exponents near 1.5. The first hypothesis to be tested was whether or not the samples studied in this work would contain VSDs similar to normal Strombolian products, display higher power-law exponents, or be described by exponential functions. Before making this comparison, we tested a second hypothesis, which was that the magma-water interactions in the Eyjafjallajökull eruption might have a significant effect on the VSDs. We performed 1 bar bubble-growth experiments in which the samples were inundated with water and compared them to similar control experiments without water inundation. No significant differences between the VSDs of the two sets of experiments were found, and the second hypothesis is not supported by the experimental evidence. The Phase II Eyjafjallajökull VSDs are described by power-law exponents of ~0.8, typical of normal Strombolian eruptions, and support the first hypothesis. The comparable VSDs and behavior of Phase II of the Eyjafjallajökull 2010 eruption to Stromboli are interpreted to be a reflection of similar conduit systems in both volcanoes that are being constantly fed by the ascent of mingled/mixed magma from depth. Such behavior implies that continued activity during Phase II of the Eyjafjallajökull eruption could be expected and would have been predicted, had our VSDs been measured in

  12. Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province

    PubMed Central

    Canals, Miquel; Lastras, Galderic; Hermida, Nuria; Amblas, David; Arrese, Beatriz; Martín-Sosa, Pablo; Acosta, Juan

    2016-01-01

    Concepcion Bank is the largest seamount in the Canary Islands Seamount Province (CISP), an oceanic area off NW Africa including 16 main seamounts, the Canaries archipelago and the Selvagens subarchipelago. The Bank is located 90 km northeast of Lanzarote Island and has been identified as a candidate Marine Protected Area (MPA) to be included in the Natura 2000 network. A compilation of complementary datasets consisting of multibeam bathymetry, TOPAS seismic reflection profiles, side scan sonar sonographs, Remotely Operated Vehicle video records and seafloor samples allowed describing in detail and ground truthing the submarine landforms and bioconstructions exhibited by the bank. The Concepcion Bank presently rises up to 2,433 m above the adjacent seafloor and exhibits two main domains: an extensive summit plateau and steep flanks. The sub-round summit plateau is 50km by 45 km and ranges from 158 to 1,485 m depth. The steep flanks that bound it descend to depths ranging between 1,700 and 2,500 m and define a seamount base that is 66km by 53 km. This morphology is the result of constructive and erosive processes involving different time scales, volumes of material and rates of change. The volcanic emplacement phase probably lasted 25–30 million years and was likely responsible for most of the 2,730 km3 of material that presently form the seamount. Subsequently, marine abrasion and, possibly, subaerial erosion modulated by global sea level oscillations, levelled the formerly emerging seamount summit plateau, in particular its shallower (<400 m), flatter (<0.5°) eastern half. Subsidence associated to the crustal cooling that followed the emplacement phase further contributed the current depth range of the seamount. The deeper and steeper (2.3°) western half of Concepcion Bank may result from tectonic tilting normal to a NNE-SSW fracture line. This fracture may still be expressed on the seafloor surface at some scarps detected on the seamount’s summit. Sediment

  13. Morphometry of Concepcion Bank: Evidence of Geological and Biological Processes on a Large Volcanic Seamount of the Canary Islands Seamount Province.

    PubMed

    Rivera, Jesus; Canals, Miquel; Lastras, Galderic; Hermida, Nuria; Amblas, David; Arrese, Beatriz; Martín-Sosa, Pablo; Acosta, Juan

    2016-01-01

    Concepcion Bank is the largest seamount in the Canary Islands Seamount Province (CISP), an oceanic area off NW Africa including 16 main seamounts, the Canaries archipelago and the Selvagens subarchipelago. The Bank is located 90 km northeast of Lanzarote Island and has been identified as a candidate Marine Protected Area (MPA) to be included in the Natura 2000 network. A compilation of complementary datasets consisting of multibeam bathymetry, TOPAS seismic reflection profiles, side scan sonar sonographs, Remotely Operated Vehicle video records and seafloor samples allowed describing in detail and ground truthing the submarine landforms and bioconstructions exhibited by the bank. The Concepcion Bank presently rises up to 2,433 m above the adjacent seafloor and exhibits two main domains: an extensive summit plateau and steep flanks. The sub-round summit plateau is 50km by 45 km and ranges from 158 to 1,485 m depth. The steep flanks that bound it descend to depths ranging between 1,700 and 2,500 m and define a seamount base that is 66km by 53 km. This morphology is the result of constructive and erosive processes involving different time scales, volumes of material and rates of change. The volcanic emplacement phase probably lasted 25-30 million years and was likely responsible for most of the 2,730 km3 of material that presently form the seamount. Subsequently, marine abrasion and, possibly, subaerial erosion modulated by global sea level oscillations, levelled the formerly emerging seamount summit plateau, in particular its shallower (<400 m), flatter (<0.5°) eastern half. Subsidence associated to the crustal cooling that followed the emplacement phase further contributed the current depth range of the seamount. The deeper and steeper (2.3°) western half of Concepcion Bank may result from tectonic tilting normal to a NNE-SSW fracture line. This fracture may still be expressed on the seafloor surface at some scarps detected on the seamount's summit. Sediment waves

  14. 78 FR 49553 - Three Mile Island, Unit 2; Post Shutdown Decommissioning Activities Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Three Mile Island, Unit 2; Post Shutdown Decommissioning Activities Report AGENCY: Nuclear...) for Three Mile Island, Unit 2 (TMI-2). The PSDAR provides an overview of GPUN's...

  15. 1995 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.

    1996-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity (SVA) at 6 volcanic centers in 1995: Mount Martin (Katmai Group), Mount Veniaminof, Shishaldin, Makushin, Kliuchef/Korovin, and Kanaga. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) on the 1995 eruptions of 2 Russian volcanoes: Bezymianny and Karymsky. This report summarizes volcanic activity in Alaska during 1995 and the AVO response, as well as information on the 2 Kamchatkan eruptions. Only those reports or inquiries that resulted in a "significant" investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of phone calls throughout the year reporting steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1995 response record.

  16. Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Davies, Ashley G.; Doubleday, Joshua R.; Tran, Daniel Q.

    2014-01-01

    The study of volcanoes is important for both purely scientific and human survival reasons. From a scientific standpoint, volcanic gas and ash emissions contribute significantly to the terrestrial atmosphere. Ash depositions and lava flows can also greatly affect local environments. From a human survival standpoint, many people live within the reach of active volcanoes, and therefore can be endangered by both atmospheric (ash, debris) toxicity and lava flow. There are many potential information sources that can be used to determine how to best monitor volcanic activity worldwide. These are of varying temporal frequency, spatial regard, method of access, and reliability. The problem is how to incorporate all of these inputs in a general framework to assign/task/reconfigure assets to monitor events in a timely fashion. In situ sensing can provide a valuable range of complementary information such as seismographic, discharge, acoustic, and other data. However, many volcanoes are not instrumented with in situ sensors, and those that have sensor networks are restricted to a relatively small numbers of point sensors. Consequently, ideal volcanic study synergistically combines space and in situ measurements. This work demonstrates an effort to integrate spaceborne sensing from MODIS (Terra and Aqua), ALI (EO-1), Worldview-2, and in situ sensing in an automated scheme to improve global volcano monitoring. Specifically, it is a "sensor web" concept in which a number of volcano monitoring systems are linked together to monitor volcanic activity more accurately, and this activity measurement automatically tasks space assets to acquire further satellite imagery of ongoing volcanic activity. A general framework was developed for evidence combination that accounts for multiple information sources in a scientist-directed fashion to weigh inputs and allocate observations based on the confidence of an events occurrence, rarity of the event at that location, and other scientists

  17. Submarine volcanic activity, ocean-acoustic waves and internal ocean tides

    NASA Astrophysics Data System (ADS)

    Sugioka, Hiroko; Fukao, Yoshio; Hibiya, Toshiyuki

    2005-12-01

    Submarine volcanic event often generates acoustic waves (T-waves) traveling over long distances through the low velocity channel (SOFAR) of the ocean. By a method of coherent stacking of T-waves from a submarine volcanic activity in northern Mariana, we found a significant semidiurnal variation of T-wave travel times. The amplitude of variation is an order of larger than those reported in the previous ocean sound transmission experiments. Ray-theoretical consideration for the numerically simulated ocean tides indicates that such large T-phase travel time variation is a consequence of large up-and-down movement of seawater around the axis of the SOFAR channel due to the M2 internal tide effectively converted from external tidal forcing. T-phases, a ubiquitous feature of the ocean acoustic noise field, can be used to infer internal tidal motion and the associated ocean mixing.

  18. Acoustic waves in the atmosphere and ground generated by volcanic activity

    SciTech Connect

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  19. Recent activity of Anatahan volcano, Northern Marina Islands, and its magma plumbing system

    NASA Astrophysics Data System (ADS)

    Nakada, S.; Morita, Y.; Matsushima, T.; Tabei, T.; Watanabe, A.; Maeno, F.; Camacho, J. T.

    2009-12-01

    The volcanic activity of Anatahan that began in 2003 has declined such as faint emission of volcanic gas from the crater and scarcity of volcanic tremor in 2009. Our team carried out geological, geodetic and seismological observation repeatedly till mid-2009 from the beginning of the eruption. The early phase of the eruption (2003-2004) can be characterized by magmatic and phreatomagmatic explosions, contrasting to mainly phreatic nature in the later phase (2005-2008). The active crater (Eastern Crater) was widened and deepened (much below the sea level) as the eruption progressed. Dominant products of phreatic explosions comprise of thick accumulation of thin layers of fine ash. A rough estimate of the total volume during these 5 years is as much as 1 km3, close to the volume of materials lost by enlargement of the active crater. Seismic observation was carried out during mid-2008 and mid-2009 by settling 5 temporary stations covering the whole of the island, each of which includes a 3 components short-period seismometer with corner frequency of 1Hz and a low-power consumption digital data recorder with 24-bits AD resolutions. GPS campaign observation was repeated in the same station during this period. VT and LP event were observed, though very low in occurrence in this period. Hypocenters of VT and LP events show all events occurred at the depth of less than 8km around the eastern crater. Among them, LP events occurred in the shallower (less than 3km) region. The error in the depth may be not more than a few kilometers, but that in the epicenter should be smaller than 1km because the most events are located inside of the seismic network. Moreover, the tremors observed in the 2008 summer continued for about 3 weeks. The amplitude increased gradually, kept at the maximum, and stopped abruptly. During the maximum amplitude period, ash emission was observed by VAAC. Estimated reduced displacement at the maximum is about 1 cm2, typical of a hydro-magmatic eruption

  20. Lake-floor sediment texture and composition of a hydrothermally-active, volcanic lake, Lake Rotomahana

    NASA Astrophysics Data System (ADS)

    Pittari, A.; Muir, S. L.; Hendy, C. H.

    2016-03-01

    Young volcanic lakes undergo a transition from rapid, post-eruptive accumulation of volcaniclastic sediment to slower pelagic settling under stable lake conditions, and may also be influenced by sublacustrine hydrothermal systems. Lake Rotomahana is a young (129 year-old), hydrothermally-active, volcanic lake formed after the 1886 Tarawera eruption, and provides a unique insight into the early evolution of volcanic lake systems. Lake-bottom sediment cores, 20-46 cm in length, were taken along a transect across the lake and characterised with respect to stratigraphy, facies characteristics (i.e., grain size, componentry) and pore water silica concentrations. The sediments generally comprise two widespread facies: (i) a lower facies of light grey to grey, very fine lacustrine silt derived from the unconsolidated pyroclastic deposits that mantled the catchment area immediately after the eruption, which were rapidly reworked and redeposited into the lake basin; and (ii) an upper facies of dark, fine-sandy diatomaceous silt, that settled from the pelagic zone of the physically stable lake. Adjacent to sublacustrine hydrothermal vents, the upper dark facies is absent, and the upper part of the light grey to grey silt is replaced by a third localised facies comprised of hydrothermally altered pale yellow to yellowish brown, laminated silt with surface iron-rich encrustations. Microspheres, which are thought to be composed of amorphous silica, although some may be halloysite, have precipitated from pore water onto sediment grains, and are associated with a decrease in pore water silicon concentration. Lake Rotomahana is an example of a recently-stabilised volcanic lake, with respect to sedimentation, that shows signs of early sediment silicification in the presence of hydrothermal activity.

  1. Explosive volcanic activity on Venus: The roles of volatile contribution, degassing, and external environment

    NASA Astrophysics Data System (ADS)

    Airey, M. W.; Mather, T. A.; Pyle, D. M.; Glaze, L. S.; Ghail, R. C.; Wilson, C. F.

    2015-08-01

    We investigate the conditions that will promote explosive volcanic activity on Venus. Conduit processes were simulated using a steady-state, isothermal, homogeneous flow model in tandem with a degassing model. The response of exit pressure, exit velocity, and degree of volatile exsolution was explored over a range of volatile concentrations (H2O and CO2), magma temperatures, vent altitudes, and conduit geometries relevant to the Venusian environment. We find that the addition of CO2 to an H2O-driven eruption increases the final pressure, velocity, and volume fraction gas. Increasing vent elevation leads to a greater degree of magma fragmentation, due to the decrease in the final pressure at the vent, resulting in a greater likelihood of explosive activity. Increasing the magmatic temperature generates higher final pressures, greater velocities, and lower final volume fraction gas values with a correspondingly lower chance of explosive volcanism. Cross-sectionally smaller, and/or deeper, conduits were more conducive to explosive activity. Model runs show that for an explosive eruption to occur at Scathach Fluctus, at Venus' mean planetary radius (MPR), 4.5% H2O or 3% H2O with 3% CO2 (from a 25 m radius conduit) would be required to initiate fragmentation; at Ma'at Mons (~9 km above MPR) only ~2% H2O is required. A buoyant plume model was used to investigate plume behaviour. It was found that it was not possible to achieve a buoyant column from a 25 m radius conduit at Scathach Fluctus, but a buoyant column reaching up to ~20 km above the vent could be generated at Ma'at Mons with an H2O concentration of 4.7% (at 1300 K) or a mixed volatile concentration of 3% H2O with 3% CO2 (at 1200 K). We also estimate the flux of volcanic gases to the lower atmosphere of Venus, should explosive volcanism occur. Model results suggest explosive activity at Scathach Fluctus would result in an H2O flux of ~107 kg s-1. Were Scathach Fluctus emplaced in a single event, our model

  2. Numerical modelling of gas-water-rock interactions in volcanic-hydrothermal environment: the Ischia Island (Southern Italy) case study.

    NASA Astrophysics Data System (ADS)

    Di Napoli, R.; Federico, C.; Aiuppa, A.; D'Antonio, M.; Valenza, M.

    2012-04-01

    Hydrothermal systems hosted within active volcanic systems represent an excellent opportunity to investigate the interactions between aquifer rocks, infiltrating waters and deep-rising magmatic fluids, and thus allow deriving information on the activity state of dormant volcanoes. From a thermodynamic perspective, gas-water-rock interaction processes are normally far from equilibrium, but can be represented by an array of chemical reactions, in which irreversible mass transfer occurs from host rock minerals to leaching solutions, and then to secondary hydrothermal minerals. While initially developed to investigate interactions in near-surface groundwater environments, the reaction path modeling approach of Helgeson and co-workers can also be applied to quantitative investigation of reactions in high T-P environments. Ischia volcano, being the site of diffuse hydrothermal circulation, is an ideal place where to test the application of reaction-path modeling. Since its last eruption in 1302 AD, Ischia has shown a variety of hydrothermal features, including fumarolic emissions, diffuse soil degassing and hot waters discharges. These are the superficial manifestation of an intense hydrothermal circulation at depth. A recent work has shown the existence of several superposed aquifers; the shallowest (near to boiling) feeds the numerous surface thermal discharges, and is recharged by both superficial waters and deeper and hotter (150-260°C) hydrothermal reservoir fluids. Here, we use reaction path modelling (performed by using the code EQ3/6) to quantitatively constrain the compositional evolution of Ischia thermal fluids during their hydrothermal flow. Simulations suggest that compositions of Ischia groundwaters are buffered by interactions between reservoir rocks and recharge waters (meteoric fluids variably mixed - from 2 to 80% - with seawater) at shallow aquifer conditions. A CO2 rich gaseous phase is also involved in the interaction processes (fCO2 = 0.4-0.6 bar

  3. Modeled Aeromagnetic Anomalies, Controlled By Radar Ice Sounding, As Evidence for Subglacial Volcanic Activity in the West Antarctic Rift System (WR) Beneath the Area of the Divide of the West Antarctic Ice Sheet (WAIS)

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2014-12-01

    The Thwaites and Pine Island ice shelves, buttressing the WAIS, have passed the turning point as they are eaten away by warmer ocean waters (Joghin et al., 2014; Rignot et al., 2014). There is an increasing evidence (aeromagnetic, radar ice-sounding, high heat flow, subglacial volcanic seismicity, and several exposed and subglacial active volcanoes), for volcanic activity in the WR beneath the WAIS, which flows through it. The 5-km, orthogonally line spaced, central West Antarctica (CWA) aerogeophysical survey defined >400 high amplitude volcanic magnetic anomalies correlated with glacial bed topography. Modeled anomalies defined magnetic properties; interpreted volcanic edifices were mostly removed by the moving ice into which they were erupted. Very high apparent susceptibility contrasts (.001->.3 SI) are typical of measured properties from volcanic exposures in the WAIS area. About 90% of the magnetic sources have normal magnetization in the present field direction. Two explanations as to why the anomalies are not approximately 50% negative: (1) Volcanic activity resulting in these anomalies occurred in a predominantly normal field (unlikely). (2) Sources are a combination of induced and remanent magnetization resulting in anomalies of low amplitude (induced cancels remanent) and are not recognized because they are <100 nT (most probable). About 18 high relief, (~600-2000 m) "volcanic centers" beneath the WAIS surface, probably were erupted subaerially when the WAIS was absent; nine of these are in the general area beneath the divide of the WAIS. A 70-km wide, ring of interpreted subglacial volcanic rocks may define a volcanic caldera underlying thedivide (Behrendt et al., 1998). A 2 km-high subaerially erupted volcano (subglacial Mt Thiel, ~78o30'S, 111oW) ~ 100 km north of the WAISCORE, could be the source an ash layer observed in the core. Models by Tulaczyk and Hossainzadeh (2011) indicate >4mm/yr basal melting beneath the WAIS, supportive of high heat flow

  4. Reply to the comment by Quartau et al. on "Construction and destruction of a volcanic island developed inside an oceanic rift: Graciosa Island, Terceira Rift, Azores", J. Volcanol. Geotherm. Res. 284, 32-45, by Sibrant et al. (2014)

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Marques, F. O.; Hildenbrand, A.

    2015-09-01

    In Sibrant et al. (2014), we reconstructed the evolution of Graciosa Island (Azores). We extensively discussed the nature and the meaning of the destruction episodes, either tectonics or gravitational, and concluded that the island has evolved through major landslides. In their comment, Quartau et al. (2015) conclude that (1) "Sibrant et al. (2014) is based almost solely on subaerial observations," which is false because we used the bathymetric data available to us (Figs. 3 and 4 in Sibrant et al., 2014). (2) "…the published multibeam sonar data around Graciosa reveals that their proposed successive phases of destruction of the volcanic edifices composing the island by massive landslides is incompatible with the high-resolution bathymetry." First, saying that the data were published is misleading because only two images are now provided in Quartau et al. (2015). Most of the high-resolution data used by Quartau et al. (2015) are not published, and they still do not release the data for us to analyse and use in this reply. Second, the high-resolution bathymetric maps are not incompatible with our model. For instance, mounds on the eastern submarine slope may actually be landslide blocks, and the platform developed to the S may correspond to flank collapses of the successive volcanoes, blanketed more recently by the young basaltic cover. (3) "The interpretation of collapse structures appears to have originated partly from a misreading of the volcano-stratigraphy and tectonic structures". We certainly did not "misread" the volcanic stratigraphy and tectonic structures in Graciosa; in great contrast to Quartau et al. (2015), we (a) used major unconformities to establish the volcano-stratigraphy, (b) calibrated this stratigraphy with high precision K-Ar dating, (c) made careful measurement of lava flow attitudes to infer the pre-collapse position of the main edifices, and (d) did not use hypothetical tectonic faults, as Quartau et al. (2015) did, to draw an

  5. The ELSA tephra stack: Volcanic activity in the Eifel during the last 500,000 years

    NASA Astrophysics Data System (ADS)

    Förster, Michael W.; Sirocko, Frank

    2016-07-01

    Tephra layers of individual volcanic eruptions are traced in several cores from Eifel maar lakes, drilled between 1998 and 2014 by the Eifel Laminated Sediment Archive (ELSA). All sediment cores are dated by 14C and tuned to the Greenland interstadial succession. Tephra layers were characterized by the petrographic composition of basement rock fragments, glass shards and characteristic volcanic minerals. 10 marker tephra, including the well-established Laacher See Tephra and Dümpelmaar Tephra can be identified in the cores spanning the last glacial cycle. Older cores down to the beginning of the Elsterian, show numerous tephra sourced from Strombolian and phreatomagmatic eruptions, including the 40Ar/39Ar dated differentiated tephra from Glees and Hüttenberg. In total, at least 91 individual tephra can be identified since the onset of the Eifel volcanic activity at about 500,000 b2k, which marks the end of the ELSA tephra stack with 35 Strombolian, 48 phreatomagmatic and 8 tephra layers of evolved magma composition. Many eruptions cluster near timings of the global climate transitions at 140,000, 110,000 and 60,000 b2k. In total, the eruptions show a pattern, which resembles timing of phases of global sea level and continental ice sheet changes, indicating a relation between endogenic and exogenic processes.

  6. Infrasound Monitoring of the Volcanic Activities of Japanese Volcanoes in Korea

    NASA Astrophysics Data System (ADS)

    Lee, H. I.; Che, I. Y.; Shin, J. S.

    2015-12-01

    Since 1999 when our first infrasound array station(CHNAR) has been installed at Cheolwon, Korea Institute of Geoscience and Mineral Resources(KIGAM) is continuously observing infrasound signals with an infrasound array network, named KIN(Korean Infrasound Network). This network is comprised of eight seismo-acoustic array stations(BRDAR, YPDAR, KMPAR, CHNAR, YAGAR, KSGAR, ULDAR, TJIAR). The aperture size of the smallest array is 300m and the largest is about 1.4km. The number of infrasound sensors are between 4(TJIAR) and 18(YAGAR), and 1~5 seismometers are collocated with infrasound sensors. Many interesting infrasound signals associated with different type of sources, such as blasting, large earthquake, bolide, volcanic explosion are detected by KIN in the past 15 years. We have analyzed the infrasound signals possibly associated with the japanese volcanic explosions with reference to volcanic activity report published by Japanese Meteorological Agency. Analysis results of many events, for example, Asama volcano explosion in 2004 and Shinmoe volcano in 2011, are well matched with the official report. In some cases, however, corresponding infrasound signals are not identified. By comparison of the infrasound signals from different volcanoes, we also found that the characteristics of signals are distinguishing. It may imply that the specific volcano has its own unique fingerprint in terms of infrasound signal. It might be investigated by long-term infrasound monitoring for a specific volcano as a ground truth generating repetitive infrasound signal.

  7. Assessing microbial activities in metal contaminated agricultural volcanic