NASA Astrophysics Data System (ADS)
Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia
2014-05-01
In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro experience we consider the objectivity of the Volcanic Activity Level a powerful tool to focus the discussions in a Scientific Committee on the activity forecast and on the expected scenarios, rather than on the multiple explanations of the data fluctuations, which is one of the main sources of conflict in the Scientific Committee discussions. Although the Volcanic Alert System was designed specifically for the unrest episodes at El Hierro, the involved methodologies may be applied to other situations of unrest.
Integrating Multiple Space Ground Sensors to Track Volcanic Activity
NASA Technical Reports Server (NTRS)
Chien, Steve; Davies, Ashley; Doubleday, Joshua; Tran, Daniel; Jones, Samuel; Kjartansson, Einar; Thorsteinsson, Hrobjartur; Vogfjord, Kristin; Guomundsson, Magnus; Thordarson, Thor;
2011-01-01
Volcanic activity can occur with little or no warning. Increasing numbers of space borne assets can enable coordinated measurements of volcanic events to enhance both scientific study and hazard response. We describe the use of space and ground measurements to target further measurements as part of a worldwide volcano monitoring system. We utilize a number of alert systems including the MODVOLC, GOESVOLC, US Air Force Weather Advisory, and Volcanic Ash Advisory Center (VAAC) alert systems. Additionally we use in-situ data from ground instrumentation at a number of volcanic sites, including Iceland.
Stable isotope geochemistry of fumaroles: an insight into volcanic surveillance
NASA Astrophysics Data System (ADS)
Panichi, C.; La Ruffa, G.
2001-12-01
In active volcanic environments magmatic water may accumulate in the volcanic-hosted geothermal systems, or, more rarely may reach the surface along deep fractures inside the volcano crater. Knowledge of magmatic contribution to emerging fluids in volcanic active areas is critical to understanding the chemical evolution of the magma, the conditions in which it exists in the crust, and the mechanisms by which it erupts in the crust. The source of volatiles (especially water) is also of interest when eruptions are driven by the expansion of hydrothermal fluids against atmospheric pressure, without the involvement of fresh magma ('hydrothermal' or 'phreatomagmatic' eruptions). In both cases the occurrence of volcanic and/or phreatic activities is likely to be preceded by substantial isotopic and chemical changes in the crater fumarolic systems. H and O isotopic composition of condensed water from crater fumaroles appear to be able to give strong evidence for the existence of magmatic waters in the high-temperature manifestations of the volcanic systems. Isotopic data and specific hydrological models from seven different volcanic systems (Galeras Volcano, Colombia, Kilauea Volcano, Hawaii, Kudryvy Volcano, Kuril volcanic arc, Mt St Helens, USA; Guagua Pichincha, Ecuador; Vulcano island, Italy; the Aegean Volcanic Arc, Greece) are discussed in order to highlight the possibility to use those isotopic parameters in the assessment of the environmental risks of an active volcanic area.
Rapid response of a hydrologic system to volcanic activity: Masaya volcano, Nicaragua
Pearson, S.C.P.; Connor, C.B.; Sanford, W.E.
2008-01-01
Hydrologic systems change in response to volcanic activity, and in turn may be sensitive indicators of volcanic activity. Here we investigate the coupled nature of magmatic and hydrologic systems using continuous multichannel time series of soil temperature collected on the flanks of Masaya volcano, Nicaragua, one of the most active volcanoes in Central America. The soil temperatures were measured in a low-temperature fumarole field located 3.5 km down the flanks of the volcano. Analysis of these time series reveals that they respond extremely rapidly, on a time scale of minutes, to changes in volcanic activity also manifested at the summit vent. These rapid temperature changes are caused by increased flow of water vapor through flank fumaroles during volcanism. The soil temperature response, ~5 °C, is repetitive and complex, with as many as 13 pulses during a single volcanic episode. Analysis of the frequency spectrum of these temperature time series shows that these anomalies are characterized by broad frequency content during volcanic activity. They are thus easily distinguished from seasonal trends, diurnal variations, or individual rainfall events, which triggered rapid transient increases in temperature during 5% of events. We suggest that the mechanism responsible for the distinctive temperature signals is rapid change in pore pressure in response to magmatism, a response that can be enhanced by meteoric water infiltration. Monitoring of distal fumaroles can therefore provide insight into coupled volcanic-hydrologic-meteorologic systems, and has potential as an inexpensive monitoring tool.
Mechanical interaction between volcanic systems in Libya
NASA Astrophysics Data System (ADS)
Elshaafi, Abdelsalam; Gudmundsson, Agust
2018-01-01
The spatial distributions of monogenetic volcanoes, primarily volcanic craters, within the four principal volcanic provinces of Libya are examined and presented on a volcano-density map. Six main volcanic clusters have been identified, referred to as volcanic systems. Remarkably, the Al Haruj (AHVP) and Nuqay (NVP) volcanic provinces have double-peak volcano-density distributions, while the Gharyan (GVP) and As Sawda (SVP) volcanic provinces have single-peak volcano-density distributions. We interpret each volcano-density peak as corresponding to a separate volcanic system, so that there is a total of six systems in these four provinces. There was an overlap in volcanic activity in these provinces with at least three simultaneously active. We propose that each of the 6 volcanic systems was/is supplied with magma from a large sill-like reservoir - similar in lateral dimensions to the systems/clusters themselves. Numerical results show zones of high tensile and shear stresses between the reservoirs that coincide roughly with the main swarms of extension (dykes and volcanic fissures) and shear (faults) fractures in the areas. The most recent volcanic eruptions in Libya fall within the modelled high-stress concentration zones, primarily eruptions in the volcano Waw an Namus and the Holocene Al Mashaqaq lava flow. There are no known eruptions in Libya in historical time, but some or all the volcanic systems may have had one or more arrested historical dyke injections. In particular, part of the recurrent seismic events in the Hun Graben in the northwest Libya may be related to dyke propagation and arrest. If some of the inferred magma reservoirs are still fluid, as is likely, they pose earthquake and volcanic hazards to parts of Libya, particularly to the city of Gharyan and Zallah town, as well as to many oil-field operations.
Volcano hazards assessment for the Lassen region, northern California
Clynne, Michael A.; Robinson, Joel E.; Nathenson, Manuel; Muffler, L.J. Patrick
2012-01-01
The Lassen region of the southernmost Cascade Range is an active volcanic area. At least 70 eruptions have occurred in the past 100,000 years, including 3 in the past 1,000 years, most recently in 1915. The record of past eruptions and the present state of the underlying magmatic and hydrothermal systems make it clear that future eruptions within the Lassen Volcanic Center are very likely. Although the annual probability of an eruption is small, the consequences of some types of eruptions could be severe. Compared to those of a typical Cascade composite volcano, eruptive vents at Lassen Volcanic Center and the surrounding area are widely dispersed, extending in a zone about 50 km wide from the southern boundary of Lassen Volcanic National Park north to the Pit River. This report presents a discussion of volcanic and other geologic hazards in the Lassen area and delineates hazards zones for different types of volcanic activity. Owing to its presence in a national park with significant visitorship, its explosive behavior, and its proximity to regional infrastructure, the Lassen Volcanic Center has been designated a "high threat volcano" in the U.S. Geological Survey National Volcano Early Warning System assessment. Volcanic eruptions are typically preceded by seismic activity and ground deformation, and the Lassen area has a network of seismometers and Global Positioning System stations in place to monitor for early warning of volcanic activity.
NASA Astrophysics Data System (ADS)
R Stephen J, S.; Cashman, K. V.
2015-12-01
A complete theory of episodic volcanism is lacking. Melt generation related to large scale tectonic processes is likely continuous but surface volcanic activity is typically episodic; for most volcanoes short-lived eruptions alternate with long periods of dormancy. Many models of volcanic activity and geophysical unrest are framed by a conceptual model of shallow magma chamber recharge, in which various phenomena are attributed to magma transport from deeper levels. While many aspects of volcanism are explained by this concept it has little explanatory power for key aspects of volcanism, including time scales of dormancy, eruption duration and eruption magnitude. Extensive trans-crustal igneous systems develop beneath active volcanoes in which much of the system is in a mushy state in which buoyancy-driven segregation of melt and magmatic fluid occurs to form layers, which are inherently unstable. We postulate that such systems are prone to destabilisation in which segregating layers amalgamate to form ephemeral magma chambers and in which melts and magmatic fluids decouple. Periods of dormancy relate to slow processes of segregation while short periods of volcanic unrest and eruption relate to episodic and rapid processes of destabilisation of the mush system. In this conceptual framework volatiles rather than magma recharge plays the key role in the dynamics of the shallow parts of the magmatic systems. Magma ascent during episodes of destabilisation does not itself cause pressurisation because melts and crystals are near incompressible, while volatile exsolution and decompression results in major pressure changes that can lead to unrest and eruption. These concepts are applied to the interpretation of stratigraphic, geochronological, geophysical, geochemical, petrological and volcanological data of volcanic activity at the Soufrière Hills Volcano (SHV), Montserrat.
Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities
NASA Astrophysics Data System (ADS)
Connor, Charles
2014-05-01
Worldwide, tremendous progress has been made in recent decades in forecasting volcanic events, such as episodes of volcanic unrest, eruptions, and the potential impacts of eruptions. Generally these forecasts are divided into two categories. Short-term forecasts are prepared in response to unrest at volcanoes, rely on geophysical monitoring and related observations, and have the goal of forecasting events on timescales of hours to weeks to provide time for evacuation of people, shutdown of facilities, and implementation of related safety measures. Long-term forecasts are prepared to better understand the potential impacts of volcanism in the future and to plan for potential volcanic activity. Long-term forecasts are particularly useful to better understand and communicate the potential consequences of volcanic events for populated areas around volcanoes and for siting critical infrastructure, such as nuclear facilities. Recent work by an international team, through the auspices of the International Atomic Energy Agency, has focused on developing guidelines for long-term volcanic hazard assessments. These guidelines have now been implemented for hazard assessment for nuclear facilities in nations including Indonesia, the Philippines, Armenia, Chile, and the United States. One any time scale, all volcanic hazard assessments rely on a geologically reasonable conceptual model of volcanism. Such conceptual models are usually built upon years or decades of geological studies of specific volcanic systems, analogous systems, and development of a process-level understanding of volcanic activity. Conceptual models are used to bound potential rates of volcanic activity, potential magnitudes of eruptions, and to understand temporal and spatial trends in volcanic activity. It is these conceptual models that provide essential justification for assumptions made in statistical model development and the application of numerical models to generate quantitative forecasts. It is a tremendous challenge in quantitative volcanic hazard assessments to encompass alternative conceptual models, and to create models that are robust to evolving understanding of specific volcanic systems by the scientific community. A central question in volcanic hazards forecasts is quantifying rates of volcanic activity. Especially for long-dormant volcanic systems, data from the geologic record may be sparse, individual events may be missing or unrecognized in the geologic record, patterns of activity may be episodic or otherwise nonstationary. This leads to uncertainty in forecasting long-term rates of activity. Hazard assessments strive to quantify such uncertainty, for example by comparing observed rates of activity with alternative parametric and nonparametric models. Numerical models are presented that characterize the spatial distribution of potential volcanic events. These spatial density models serve as the basis for application of numerical models of specific phenomena such as development of lava flow, tephra fallout, and a host of other volcanic phenomena. Monte Carlo techniques (random sampling, stratified sampling, importance sampling) are methods used to sample vent location and other key eruption parameters, such as eruption volume, magma rheology, and eruption column height for probabilistic models. The development of coupled scenarios (e.g., the probability of tephra accumulation on a slope resulting in subsequent debris flows) is also assessed through these methods, usually with the aid of event trees. The primary products of long-term forecasts are a statistical model of the conditional probability of the potential effects of volcanism, should an eruption occur, and the probability of such activity occurring. It is emphasized that hazard forecasting is an iterative process, and board consideration must be given to alternative conceptual models of volcanism, weighting of volcanological data in the analyses, and alternative statistical and numerical models. This structure is amenable to expert elicitation in order to weight alternative models and to explore alternative scenarios.
U.S. Geological Survey's Alert Notification System for Volcanic Activity
Gardner, Cynthia A.; Guffanti, Marianne C.
2006-01-01
The United States and its territories have about 170 volcanoes that have been active during the past 10,000 years, and most could erupt again in the future. In the past 500 years, 80 U.S. volcanoes have erupted one or more times. About 50 of these recently active volcanoes are monitored, although not all to the same degree. Through its five volcano observatories, the U.S. Geological Survey (USGS) issues information and warnings to the public about volcanic activity. For clarity of warnings during volcanic crises, the USGS has now standardized the alert-notification system used at its observatories.
Experimental study on the effect of calcination on the volcanic ash activity of diatomite
NASA Astrophysics Data System (ADS)
Xiao, Liguang; Pang, Bo
2017-09-01
The volcanic ash activity of diatomite was studied under the conditions of aerobic calcination and vacuum calcination by the combined water rate method, it was characterized by XRD, BET and SEM. The results showed that the volcanic ash activity of diatomite under vacuum conditions was higher than that of aerobic calcination, 600°C vacuum calcination 2h, the combined water rate of diatomite-Ca(OH)2-H2O system was increased from 6.24% to 71.43%, the volcanic ash activity reached the maximum value, the specific surface
Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring
Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni
2015-01-01
This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro. PMID:26295394
Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring.
Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni
2015-08-19
This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro.
Ambient Noise Surface Wave Tomography of the volcanic systems of eastern Iceland
NASA Astrophysics Data System (ADS)
Green, R. G.; Priestley, K. F.; White, R. S.
2015-12-01
The Vatnajökull region of central-east Iceland lies above the head of the Iceland mantle plume where the crust is thickest due to enhanced melt supply. As a result the region contains a high density of volcanic rift systems, with six large subglacial central volcanoes. Due to the ice cover, the geological structure of the area and the location of past eruptions are poorly known. Imaging of the crustal velocity heterogeneities beneath the ice sheet aims to reveal much in terms of the structure of these volcanic plumbing systems. Mapping of significant velocity changes through time may also be indicative of movement of melt around the central volcanoes; one of which (Bárðarbunga) experienced a major rifting event in August 2014 (Sigmundsson et al. Nature 2015, Green et al. Nature Geosci. 2015). We present results from tomographic imaging of the volcanic systems in the region, using continuous data from a local broadband seismic network in central-east Iceland which provides excellent ray path coverage of the volcanic systems. This is supplemented by data from the HOTSPOT and ICEMELT experiments and the permanent monitoring stations of the Icelandic Meteorological Office. We process the continuous data following Benson et al. 2007 and automatic frequency-time analysis (FTAN) routines are used to extract more than 9000 dispersion measurements. We then generate Rayleigh wave group velocity maps which we present here. We find low velocity regions beneath the Vatnajökull icecap which are bounded by the surface expression of the volcanic rift systems. The lower velocities also extend north-west to the volcanic system under the Hofsjökull ice cap, and northwards towards Askja and the volcanic systems of the northern volcanic zone. We also produce locations and focal mechanisms of earthquakes caused by magmatic and hydrothermal activity to correlate structure with the activity of the volcanic systems.
Volcanic processes in the Solar System
Carr, M.H.
1987-01-01
This article stresses that terrestrial volcanism represents only part of the range of volcanism in the solar system. Earth processes of volcanicity are dominated by plate tectonics, which does not seem to operate on other planets, except possibly on Venus. Lunar volcanicity is dominated by lava effusion at enormous rates. Mars is similar, with the addition to huge shield volcanoes developed over fixed hotspots. Io, the moon closest to Jupiter, is the most active body in the Solar System and, for example, much sulphur and silicates are emitted. The eruptions of Io are generated by heating caused by tides induced by Jupiter. Europa nearby seems to emit water from fractures and Ganymede is similar. The satellites of Saturn and Uranus are also marked by volcanic craters, but they are of very low temperature melts, possibly of ammonia and water. The volcanism of the solar system is generally more exotic, the greater the distance from Earth. -A.Scarth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochstein, M.P.; Sudarman, Sayogi
There are at least 30 high temperatures systems (with inferred reservoir temperatures > 200 C) along the active Sumatra Arc that transfer heat from crustal intrusions to the surface. These systems, together with eleven active volcanoes, five degassing volcanoes and one caldera volcano (Lake Toba), are controlled by the Sumatra Fault Zone, an active mega shear zone that follows the median axis of the arc. At least half of the active and degassing volcanoes are associated with volcanic geothermal reservoirs containing magmatic gases and acid fluids. Large, low temperature resources exist in the Tertiary sedimentary basins of east Sumatra (back-arcmore » region), where anomalously higher thermal gradients (up to 8 C/100 m) have been measured. Volcanic activity was not continuous during the Cenozoic; subduction and arc volcanism probably decreased after the Eocene as a result of a clockwise rotation of Sumatra. In the Late Miocene, subduction started again, and andesitic volcanism reached a new peak of intensity in the Pliocene and has been continuous ever since. Rhyolitic volcanism, which has produced voluminous ignimbrite flows, began later (Pliocene/Pleistocene). All known rhyolitic centers associated with ignimbrite flows appear to lie along the Sumatra Fault Zone.« less
NASA Astrophysics Data System (ADS)
Takarada, S.
2012-12-01
The first Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) was held in Tsukuba, Ibaraki Prefecture, Japan from February 23 to 24, 2012. The workshop focused on the formulation of strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis, and volcanic eruptions. More than 150 participants attended the workshop. During the workshop, the G-EVER1 accord was approved by the participants. The Accord consists of 10 recommendations like enhancing collaboration, sharing of resources, and making information about the risks of earthquakes and volcanic eruptions freely available and understandable. The G-EVER Hub website (http://g-ever.org) was established to promote the exchange of information and knowledge among the Asia-Pacific countries. Several G-EVER Working Groups and Task Forces were proposed. One of the working groups was tasked to make the next-generation real-time volcano hazard assessment system. The next-generation volcano hazard assessment system is useful for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is planned to be developed based on volcanic eruption scenario datasets, volcanic eruption database, and numerical simulations. Defining volcanic eruption scenarios based on precursor phenomena leading up to major eruptions of active volcanoes is quite important for the future prediction of volcanic eruptions. Compiling volcanic eruption scenarios after a major eruption is also important. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and styles, is important for the next-generation volcano hazard assessment system. The volcanic eruption database is developed based on past eruption results, which only represent a subset of possible future scenarios. Hence, different distributions from the previous deposits are mainly observed due to the differences in vent position, volume, eruption rate, wind directions and topography. Therefore, numerical simulations with controlled parameters are needed for more precise volcanic eruption predictions. The use of the next-generation system should enable the visualization of past volcanic eruptions datasets such as distributions, eruption volumes and eruption rates, on maps and diagrams using timeline and GIS technology. Similar volcanic eruptions scenarios should be easily searchable from the eruption database. Using the volcano hazard assessment system, prediction of the time and area that would be affected by volcanic eruptions at any locations near the volcano should be possible, using numerical simulations. The system should estimate volcanic hazard risks by overlaying the distributions of volcanic deposits on major roads, houses and evacuation areas using a GIS enabled systems. Probabilistic volcanic hazards maps in active volcano sites should be made based on numerous numerical simulations. The next-generation real-time hazard assessment system would be implemented with user-friendly interface, making the risk assessment system easily usable and accessible online.
How will melting of ice affect volcanic hazards in the twenty-first century?
Tuffen, Hugh
2010-05-28
Glaciers and ice sheets on many active volcanoes are rapidly receding. There is compelling evidence that melting of ice during the last deglaciation triggered a dramatic acceleration in volcanic activity. Will melting of ice this century, which is associated with climate change, similarly affect volcanic activity and associated hazards? This paper provides a critical overview of the evidence that current melting of ice will increase the frequency or size of hazardous volcanic eruptions. Many aspects of the link between ice recession and accelerated volcanic activity remain poorly understood. Key questions include how rapidly volcanic systems react to melting of ice, whether volcanoes are sensitive to small changes in ice thickness and how recession of ice affects the generation, storage and eruption of magma at stratovolcanoes. A greater frequency of collapse events at glaciated stratovolcanoes can be expected in the near future, and there is strong potential for positive feedbacks between melting of ice and enhanced volcanism. Nonetheless, much further research is required to remove current uncertainties about the implications of climate change for volcanic hazards in the twenty-first century.
NASA Astrophysics Data System (ADS)
Meliksetian, Khachatur; Lavrushin, Vassily; Shahinyan, Hrach; Aidarkozhina, Altin; Navasardyan, Gevorg; Ermakov, Alexander; Zakaryan, Shushan; Prasolov, Edward; Manucharyan, Davit; Gyulnazaryan, Shushan; Grigoryan, Edmond
2017-04-01
It is widely accepted, that geothermal activity in the conductive heat flow processes, such as volcanism and hydrothermal activity, is manifestation of the thermal mass transfer process in the Earth's crust, where geothermal and geochemical processes are closely connected. Therefore, geochemistry and isotope compositions of thermal mineral waters within and on periphery of volcanic clusters may represent key indicators for better understanding of geothermal activity in geodynamically active zones. Geochemical features of heat and mass transport in hydrothermal systems related to active volcanic and fault systems in continental collision related orogenic elevated plateaus such as Anatolian-Armenian-Iranian highlands are still poorly understood. In this contribution we attempt to fill these gaps in our knowledge of relations of geochemical and geothermal processes in collision zones. We present new data on chemical compositions, trace element geochemistry of thermal waters of Lesser Caucasus, (Armenia) as well as isotope analysis of free gases such as {}3He/{}4He, {}40Ar/{}36Ar, δ{}13?(CO{}2), nitrogen δ{}15N(N{}2) and oxygen and hydrogen isotopes in water phases (δD, δ{}18O). To reveal some specific features of formation of fluid systems related to thermal activity in the areas of collision related active volcanism and active geodynamics a complex geochemical (SiO{}2, K-Na, Na-Li, Li-Mg) and isotope geothermometers (δ{}18O(CaCO{}3) - δ{}18O(H{}2O)) were applied. The distribution of δ{}13?(??{}2) values in free gases of mineral waters of Armenia demonstrates that gases related to Quaternary volcanic fields are characterized by relatively light δ{}13?(CO{}2) values close to mantle derived gases, while on periphery of volcanic systems relatively heavy values of δ{}13?(CO{}2) indicate strong influence of metamorphic and sedimentary derived carbon dioxide. Distribution of nitrogen isotopes δ{}15N(N{}2) demonstrate an inverse correlation with δ{}13?(CO{}2) values and similarly to carbon dioxide indicate presence of metamorphic nitrogen on the periphery and strong influence of atmospheric (and mantle derived) nitrogen within volcanic fields. Results of geochemical and isotope investigations, as well as estimated temperatures of the formation of the mineral compositions of thermal waters demonstrate, that these studied hydrothermal systems originated within thermal anomaly fields associated with young (Pleistocene-Holocene) volcanic fields in Armenia. Basing on geochemical and isotope data, as well as on estimations of temperatures of water formation, calculated using various geothermometers, thermal anomaly fields, related to young volcanic activity and faults, within Armenian and neighboring areas of Lesser Caucasus are outlined. These results are used to reveal potential and promising areas for geothermal energy exploration in Armenia. This research is completed in framework of joint Armenian-Russian research grant funded by State Committee of Science of Armenia (grant #15RF-076) and Russian Foundation for Basic Research (grant#15-55-05069).
Volcanic processes in the solar system
Carr, M.H.
1987-01-01
Eruptions of ammonia, water, and sulfur. These have become some of the concerns of planetary volcanologists as they try to understand volcanic processes on other planetary bodies. As exploration of the Solar System has continues, we have been confronted with more and more exotic forms of volcanism and have come to realize that the types of volcanic activity observed on Earth represent only a fraction of the array of volcanic phenomena that are possible. Some volcanic features of other planets have close terrestrial counterparts and appear to have been formed by similar mechanisms and from similar magmas to those on the Earth. but other features are totally different and appear to have been formed from materials that are not normally associated with volcanism on Earth.
Volcanic Gas Emissions Mapping Using a Mass Spectrometer System
NASA Technical Reports Server (NTRS)
Griffin, Timothy P.; Diaz, J. Andres
2008-01-01
The visualization of hazardous gaseous emissions at volcanoes using in-situ mass spectrometry (MS) is a key step towards a better comprehension of the geophysical phenomena surrounding eruptive activity. In-Situ gas data consisting of helium, carbon dioxide, sulfur dioxide, and other gas species, were acquired with an MS system. MS and global position system (GPS) data were plotted on ground imagery, topography, and remote sensing data collected by a host of instruments during the second Costa Rica Airborne Research and Technology Applications (CARTA) mission This combination of gas and imaging data allowed 3-dimensional (3-D) visualization of the volcanic plume end the mapping of gas concentration at several volcanic structures and urban areas This combined set of data has demonstrated a better tool to assess hazardous conditions by visualizing and modeling of possible scenarios of volcanic activity. The MS system is used for in-situ measurement of three-dimensional gas concentrations at different volcanic locations with three different transportation platforms, aircraft, auto, and hand carried. The demonstration for urban contamination mapping is also presented as another possible use for the MS system.
NASA Astrophysics Data System (ADS)
Londono, John Makario
2016-09-01
In the last nine years (2007-2015), the Cerro Bravo-Cerro Machín volcanic complex (CBCMVC), located in central Colombia, has experienced many changes in volcanic activity. In particular at Nevado del Ruiz volcano (NRV), Cerro Machin volcano (CMV) and Cerro Bravo (CBV) volcano. The recent activity of NRV, as well as increasing seismic activity at other volcanic centers of the CBCMVC, were preceded by notable changes in various geophysical and geochemical parameters, that suggests renewed magmatic activity is occurring at the volcanic complex. The onset of this activity started with seismicity located west of the volcanic complex, followed by seismicity at CBV and CMV. Later in 2010, strong seismicity was observed at NRV, with two small eruptions in 2012. After that, seismicity has been observed intermittently at other volcanic centers such as Santa Isabel, Cerro España, Paramillo de Santa Rosa, Quindío and Tolima volcanoes, which persists until today. Local deformation was observed from 2007 at NRV, followed by possible regional deformation at various volcanic centers between 2011 and 2013. In 2008, an increase in CO2 and Radon in soil was observed at CBV, followed by a change in helium isotopes at CMV between 2009 and 2011. Moreover, SO2 showed an increase from 2010 at NRV, with values remaining high until the present. These observations suggest that renewed magmatic activity is currently occurring at CBCMVC. NRV shows changes in its activity that may be related to this new magmatic activity. NRV is currently exhibiting the most activity of any volcano in the CBCMVC, which may be due to it being the only open volcanic system at this time. This suggests that over the coming years, there is a high probability of new unrest or an increase in volcanic activity of other volcanoes of the CBCMVC.
NASA Astrophysics Data System (ADS)
Pedersen, Rikke; Sigmundsson, Freysteinn; Drouin, Vincent; Rafn Heimisson, Elías; Parks, Michelle; Dumont, Stéphanie; Árnadóttir, Þóra; Masterlark, Timothy; Ófeigsson, Benedíkt G.; Jónsdóttir, Kristín; Hooper, Andrew
2016-04-01
The geological setting of Iceland provides rich opportunities of studying magma-tectonic interactions, as it constitutes Earth's largest part of the mid-oceanic ridge system exposed above sea level. A series of volcanic and seismic zones accommodate the ~2 cm/year spreading between the North-American and Eurasian plates, and the Icelandic hot-spot conveniently provides the means of exposing this oceanic crust-forming setting above sea-level. Both extinct and active plumbing system structures can be studied in Iceland, as the deeply eroded tertiary areas provide views into the structures of extinct volcanic systems, and active processes can be inferred on in the many active volcanic systems. A variety of volcanic and tectonic processes cause the Icelandic crust to deform continuously, and the availability of contemporaneous measurements of crustal deformation and seismicity provide a powerful data set, when trying to obtain insight into the processes working at depth, such as magma migration through the uppermost lithosphere, magma induced host rock deformation and volcanic eruption locations and styles. The inferences geodetic and seismic datasets allow on the active plate spreading processes and subsurface magma movements in Iceland will be reviewed, in particular in relation to the Northern Volcanic Zone (NVZ). There the three phases of a rifting cycle (rifting, post-rifting, inter-rifting) have been observed. The NVZ is an extensional rift segment, bounded to the south by the Icelandic mantle plume, and to the north by the Tjörnes transform zone. The NVZ has typically been divided into five partly overlapping en-echelon fissure swarms, each with a central main volcanic production area. Most recently, additional insight into controlling factors during active rifting has been provided by the Bárðarbunga activity in 2014-2015 that included a major rifting event, the largest effusive eruption in Iceland since 1783, and a gradual caldera collapse. It is evident from available datasets that improved rifting-cycle models do need to incorporate realistic lithospheric properties, as well as the dynamic transport of magma, in order to reproduce the variety of observations, and provide means of forecasting large future dyking events and eruptions at active rifting segments.
NASA Technical Reports Server (NTRS)
Hughes, S. S.; Nawotniak, S. E. Kobs; Borg, C.; Mallonee, H. C.; Purcell, S.; Neish, C.; Garry, W. B.; Haberle, C. W.; Lim, D. S. S.; Heldmann, J. L.
2016-01-01
Compositionally and morphologically diverse lava flows erupted on the Great Rift of Idaho approximately 2.2 ka (kilo-annum, 1000 years ago) during a volcanic "flare-up" of activity following an approximately 2 ky (kiloyear, 1000 years) hiatus in eruptions. Volcanism at Craters of the Moon (COTM), Wapi and Kings Bowl lava fields around this time included primitive and evolved compositions, separated over 75 kilometers along the approximately 85 kilometers-long rift, with striking variability in lava flow emplacement mechanisms and surface morphologies. Although the temporal associations may be coincidental, the system provides a planetary analog to better understand magma dynamics along rift systems, including that associated with lunar floor-fractured craters. This study aims to help bridge the knowledge gap between ancient rift volcanism evident on the Moon and other terrestrial planets, and active rift volcanism, e.g., at Hawai'i and Iceland.
Structural features related to the volcanic gases in Southern Okinawa Trough
NASA Astrophysics Data System (ADS)
Wang, H. F.; Hsu, S. K.; Tsia, C. H.; Chen, S. C.; Wu, M. F.
2016-12-01
The Okinawa Trough is a rifted back-arc basin, heavily sedimented and formed in an intracontinental rift zone behind the Ryukyu trench-arc system. The Southern Okinawa Trough (SOT) east of Taiwan is the place where post-collisional extension happened. The collision moved southwestward and the Ryukyu trench-arc extension westward, Arc volcanism is dominant in the Northern Ryukyu volcanic arc and back-arc volcanism in the Southern Okinawa Trough. Marine geophysical data including side-scan sonar (SSS), sub-bottom profiler (SBP) and echo sounder system (EK60) data are used in this study. Active fluid activities out of seafloor are obvious from various images observed on these data, such as gas plumes. These hydrothermal vents have been located at a water depth of 1400 m. Our preliminary results show that gas seepage structures appear in the location where is a week zone, such as a normal fault in the slope. The hydrothermal activity within the Okinawa Trough is associated with volcanism located in rift zones in the Southern Okinawa Trough. However, the origin of the submarine hydrothermal fluids within the Okinawa Trough is diverse with contributions from volcanic, sedimentary and magmatic sources, needed further investigations.
Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls
NASA Astrophysics Data System (ADS)
Escartin, Javier
2016-04-01
Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While less studied, similar hydrothermal systems are found elsewhere associated to other central volcanoes along the ridge axis (e.g., Menez Gwenn at the Mid-Atlantic Ridge and Soria Mornia or Troll Wall at the Arctic Ridges). Long-lived hydrothermal activity plays an important role in controlling the thermal structure of the lithosphere and its accretion at and near-axis, and also determining the distribution and biogeography of vent communities. Along slow-spreading segments, long-lived hydrothermal activity can be provided both by volcanic systems (e.g., Lucky Strike) and tectonic systems (oceanic detachment faults). While magmatic and hydrothermal activity is relatively well understood now in volcanic systems (e.g., Lucky Strike), tectonic systems (oceanic detachment faults) require further integrated studies to constrain the links between long-lived localization of deformation along oceanic detachment faults, hydrothermal activity, and origin and nature of off-axis heat sources animating hydrothermal circulation.
Steam explosions, earthquakes, and volcanic eruptions -- what's in Yellowstone's future?
Lowenstern, Jacob B.; Christiansen, Robert L.; Smith, Robert B.; Morgan, Lisa A.; Heasler, Henry
2005-01-01
Yellowstone, one of the world?s largest active volcanic systems, has produced several giant volcanic eruptions in the past few million years, as well as many smaller eruptions and steam explosions. Although no eruptions of lava or volcanic ash have occurred for many thousands of years, future eruptions are likely. In the next few hundred years, hazards will most probably be limited to ongoing geyser and hot-spring activity, occasional steam explosions, and moderate to large earthquakes. To better understand Yellowstone?s volcano and earthquake hazards and to help protect the public, the U.S. Geological Survey, the University of Utah, and Yellowstone National Park formed the Yellowstone Volcano Observatory, which continuously monitors activity in the region.
2015 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory
Dixon, James P.; Cameron, Cheryl E.; Iezzi, Alexandra M.; Wallace, Kristi
2017-09-28
The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 14 volcanic centers in Alaska during 2015. The most notable volcanic activity consisted of continuing intermittent ash eruptions from Cleveland and Shishaldin volcanoes in the Aleutian Islands. Two eruptive episodes, at Veniaminof and Pavlof, on the Alaska Peninsula ended in 2015. During 2015, AVO re-established the seismograph network at Aniakchak, installed six new broadband seismometers throughout the Aleutian Islands, and added a Multiple component Gas Analyzer System (MultiGAS) station on Augustine.
First Evidence of Epithermal Gold Occurrences in the SE Afar Rift, Republic of Djibouti
NASA Astrophysics Data System (ADS)
Moussa, Nima; Fouquet, Yves; Caminiti, Antoine Marie; Le Gall, Bernard; Rolet, Joel; Bohn, Marcel; Etoubleau, Joel; Delacourt, Christophe; Jalludin, Mohamed
2010-05-01
The Republic of Djibouti, located at the SE part of the Afar volcanic Triangle, is characterized by intense tectonic and bimodal volcanic activity, and is emplaced over an earlier magmatic rift system, as old as 25-30 Ma. Each magmatic event is accompanied by hydrothermal activity. Few works have been so far published on hydrothermal mineralization in the Afar area. Mineralization generally occur as veins and are mainly associated with acidic volcanic intrusions along the fractures at the edges of grabens established during the last 4 Ma. Eighty samples from hydrothermal quartz ± carbonate veins and breccias were studied on 9 different sites representative of 4 main volcanic events ranging in age from early Miocene up to Present. Gold was found in excess of 200 ppb in 30% of the samples. Mineralogical analyses based on optical reflected light microscopy, X-Ray diffractometry, X-Ray fluorescence, inductively coupled plasma mass spectroscopy and electron microprobe, led us to identify two types of gold mineralization (i) native gold, electrum, hessite and sulfides (chalcopyrite, pyrite, bornite, ± sphalerite, and galena) in massive quartz breccias and banded chalcedony, (ii) gold, electrum, hematite, magnetite, trace minerals (argentite) and adularia in banded chalcedony. Another group without gold is characterized by quartz, pyrite ± goethite. Secondary minerals are characterized by goethite, native silver and native copper. Arsenic is enriched in pyrite in samples with a high gold content. The bimodal volcanism, the occurrence of adularia, the native gold and electrum in banded silica veins, are classically observed in neutral epithermal systems. The discovery of this type of mineralization in a recent-active continental rift system supplies new insights about hydrothermal processes associated with volcanic activity in a spreading context. Keywords: Republic of Djibouti, Afar Triangle, Hydrothermal, Epithermal system, Gold
Kawah Ijen volcanic activity: A review
Caudron, Corentin; Syahbana, Devy Kamil; Lecocq, Thomas; van Hinsberg, Vincent; McCausland, Wendy; Triantafyllou, Antoine; Camelbeeck, Thierry; Bernard, Alain; Surono,
2015-01-01
Kawah Ijen is a composite volcano located at the easternmost part of Java island in Indonesia and hosts the largest natural acidic lake in the world. We have gathered all available historical reports on Kawah Ijen’s activity since 1770 with the purpose of reviewing the temporal evolution of its activity. Most of these observations and studies have been conducted from a geochemical perspective and in punctuated scientific campaigns. Starting in 1991, the seismic activity and a set of volcanic lake parameters began to be weekly available. We present a database of those measurements that, combined with historical reports, allow us to review each eruption/unrest that occurred during the last two centuries. As of 2010, the volcanic activity is monitored by a new multi-disciplinary network, including digital seismic stations, and lake level and temperature measurements. This detailed monitoring provides an opportunity for better classifying seismic events and forecasting volcanic unrest at Kawah Ijen, but only with the understanding of the characteristics of this volcanic system gained from the historical review presented here.
Automated Identification of Volcanic Plumes using the Ozone Monitoring Instrument (OMI)
NASA Astrophysics Data System (ADS)
Flower, V. J. B.; Oommen, T.; Carn, S. A.
2015-12-01
Volcanic eruptions are a global phenomenon which are increasingly impacting human populations due to factors such as the extension of population centres into areas of higher risk, expansion of agricultural sectors to accommodate increased production or the increasing impact of volcanic plumes on air travel. In areas where extensive monitoring is present these impacts can be moderated by ground based monitoring and alert systems, however many volcanoes have little or no monitoring capabilities. In many of these regions volcanic alerts are generated by local communities with limited resources or formal communication systems, however additional eruption alerts can result from chance encounters with passing aircraft. In contrast satellite based remote sensing instruments possess the capability to provide near global daily monitoring, facilitating automated volcanic eruption detection. One such system generates eruption alerts through the detection of thermal anomalies, known as MODVOLC, and is currently operational utilising moderate resolution MODIS satellite data. Within this work we outline a method to distinguish SO2 eruptions from background levels recorded by the Ozone Monitoring Instrument (OMI) through the identification and classification of volcanic activity over a 5 year period. The incorporation of this data into a logistic regression model facilitated the classification of volcanic events with an overall accuracy of 80% whilst consistently identifying plumes with a mass of 400 tons or higher. The implementation of the developed model could facilitate the near real time identification of new and ongoing volcanic activity on a global scale.
NASA Astrophysics Data System (ADS)
Manaka, T.; Ushie, H.; Araoka, D.; Inamura, A.; Suzuki, A.; Kawahata, H.
2013-12-01
The global carbon cycle, one of the important biogeochemical cycles controlling the surface environment of the Earth, has been greatly affected by human activity. Anthropogenic nutrient loading from urban sewage and agricultural runoff has caused eutrophication of aquatic systems. The impact of this eutrophication and consequent photosynthetic activity on CO2 exchange between freshwater systems and the atmosphere is unclear. In this study, we focused on how nutrient loading to lakes affects their carbonate system. Here, we report results of surveys of lakes in Japan at different stages of eutrophication. Alkalization due to photosynthetic activity and decreases in PCO2 had occurred in eutrophic lakes (e.g., Lake Kasumigaura), whereas in an acidotrophic lake (Lake Inawashiro) that was impacted by volcanic hot springs, nutrient loading was changing the pH and carbon cycling. When the influence of volcanic activity was stronger in the past in Lake Inawashiro, precipitation of volcanic-derived iron and aluminum had removed nutrients by co-precipitation. During the last three decades, volcanic activity has weakened and the lake water has become alkalized. We inferred that this rapid alkalization did not result just from the reduction in acid inputs but was also strongly affected by increased photosynthetic activity during this period. Human activities affect many lakes in the world. These lakes may play an important part in the global carbon cycle through their influence on CO2 exchange between freshwater and the atmosphere. Biogeochemical changes and processes in these systems have important implications for future changes in aquatic carbonate systems on land.
Noachian Faulting: What Do Faults Tell Us About the Tectonic History of Tharsis?
NASA Technical Reports Server (NTRS)
Anderson, R. C.; Dohm, J. M.
2001-01-01
The western hemisphere of Mars is dominated by the formation of Tharsis, which is an enormous high-standing region (roughly 25% of the surface area of the planet) capped by volcanics, including the solar system's largest shield volcanoes. Tharsis is surrounded by an enormous radiating system of grabens and a circumferential system of wrinkle ridges that extends over the entire western hemisphere of Mars. This region is perhaps the largest and most long lived tectonic and volcanic province of any of the terrestrial planets with a well-preserved history of magmatic-driven activity that began in the Noachian and has lasted throughout Martian geologic time. Tharsis and the surrounding regions comprise numerous components, including volcanic constructs of varying sizes and extensive lava flow fields, large igneous plateaus, fault and ridge systems of varying extent and relative age of formation, gigantic outflow channel systems, vast system of canyons, and local and regional centers of tectonic activity. Many of these centers are interpreted to be the result of magmatic-related activity, including uplift, faulting, dike emplacement, volcanism, and local hydrothermal activity. Below we present a summary of our work for Tharsis focusing primarily on the earliest stage of development, the Noachian period. Here we hone in on the early centers and how they relate to the early development of the Tharsis Magmatic Complex (TMC).
NASA Astrophysics Data System (ADS)
Lupi, M.; Fuchs, Florian; Pacheco, Javier F.
2014-06-01
The M7.6 Nicoya earthquake struck at the interface between the Cocos plate and the Caribbean plate on 5 September 2012 inducing a ground acceleration of 0.5 m s-2 at the Irazú-Turrialba volcanic complex. We use data from six seismic stations deployed around and atop the Irazú-Turrialba volcanic complex to show the increase of local seismic activity after the M7.6 Nicoya earthquake. The response consists in more than 300 locatable earthquakes occurring in swarm sequences along a fault system that intersects the Irazú-Turrialba volcanic complex. In addition, we point out that major aftershocks are followed by increases of seismic activity in the same region. The weak static stress variation imposed by the main slip of the Nicoya earthquake at the Irazú-Turrialba volcanic complex suggests a dynamic triggering mechanism. We expand this concept suggesting that this behavior may be similar to the one observed in the Chilean and Japanese volcanic arcs during the M8.8 2010 Maule, Chile, and M9.0 2011 Tohoku, Japan, earthquakes. Finally, we highlight that the combined action of dynamic stress and short-lived coseismic relaxation may trigger seismic activity in geological systems in near-critical conditions.
Classifying Volcanic Activity Using an Empirical Decision Making Algorithm
NASA Astrophysics Data System (ADS)
Junek, W. N.; Jones, W. L.; Woods, M. T.
2012-12-01
Detection and classification of developing volcanic activity is vital to eruption forecasting. Timely information regarding an impending eruption would aid civil authorities in determining the proper response to a developing crisis. In this presentation, volcanic activity is characterized using an event tree classifier and a suite of empirical statistical models derived through logistic regression. Forecasts are reported in terms of the United States Geological Survey (USGS) volcano alert level system. The algorithm employs multidisciplinary data (e.g., seismic, GPS, InSAR) acquired by various volcano monitoring systems and source modeling information to forecast the likelihood that an eruption, with a volcanic explosivity index (VEI) > 1, will occur within a quantitatively constrained area. Logistic models are constructed from a sparse and geographically diverse dataset assembled from a collection of historic volcanic unrest episodes. Bootstrapping techniques are applied to the training data to allow for the estimation of robust logistic model coefficients. Cross validation produced a series of receiver operating characteristic (ROC) curves with areas ranging between 0.78-0.81, which indicates the algorithm has good predictive capabilities. The ROC curves also allowed for the determination of a false positive rate and optimum detection for each stage of the algorithm. Forecasts for historic volcanic unrest episodes in North America and Iceland were computed and are consistent with the actual outcome of the events.
Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series
NASA Astrophysics Data System (ADS)
Chaussard, E.; Amelung, F.; Aoki, Y.
2013-08-01
use 2007-2011 Advanced Land Observing Satellite (ALOS) data to perform an arc-wide interferometric synthetic aperture radar (InSAR) time series survey of the Trans-Mexican Volcanic Belt (TMVB) and to study time-dependent ground deformation of four Indonesian volcanoes selected following the 2007-2009 study of Chaussard and Amelung (2012). Our objectives are to examine whether arc volcanoes exhibit long-term edifice-wide cyclic deformation patterns that can be used to characterize open and closed volcanic systems and to better constrain in which cases precursory inflation is expected. We reveal deformation cycles at both regularly active and previously inactive Indonesian volcanoes, but we do not detect deformation in the TMVB, reflecting a lower activity level. We identify three types of relationships between deformation and activity: inflation prior to eruption and associated with or followed by deflation (Kerinci and Sinabung), inflation without eruption and followed by slow deflation (Agung), and eruption without precursory deformation (Merapi, Colima, and Popocatépetl; at Merapi, no significant deformation is detected even during eruption). The first two cases correspond to closed volcanic systems and suggest that the traditional model of magmatic systems and eruptive cycles do apply to andesitic volcanoes (i.e., inflation and deflation episodes associated with magma accumulation or volatile exsolution in a crustal reservoir followed by eruptions or in situ cooling). In contrast, the last case corresponds to open volcanic systems where no significant pressurization of the magmatic reservoirs is taking place prior to eruptions and thus no long-term edifice-wide ground deformation can be detected. We discuss these results in terms of InSAR's potential for forecasting volcanic unrest.
NASA Astrophysics Data System (ADS)
Cigolini, Corrado; Laiolo, Marco; Coppola, Diego
2017-04-01
The behavior of fluids in hydrothermal systems is critical in volcano monitoring and geothermal prospecting. Analyzing the time series of radon emissions on active volcanoes is strategic for detecting and interpreting precursory signals of changes in volcanic activity, eventually leading to eruptions. Radon is a radioactive gas generated from the decay of U bearing rocks, soils and magmas. Although radon has been regarded as a potential precursor of earthquakes, radon anomalies appear to be better suited to forecast volcanic eruptions since we know where paroxysms may occur and we can follow the evolution of volcanic activity. Radon mapping at active volcanoes is also a reliable tool to assess diffuse and concentrated degassing as well as efficiently detecting earthquake-volcano interactions. Systematic radon monitoring has been shown to be a key factor for evaluating the rise of volcanic and hydrothermal fluids. In fact, the decay properties of radon, the duration of radon anomalies together with sampling rates may be cross-checked with the chemistry of hydrothermal fluids (and their transport properties) to constrain fluids ascent rates and to infer the permeability and porosity of rocks in sectors surrounding the active conduits. We hereby further discuss the data of radon surveys and monitoring at Somma-Vesuvius, Stromboli and La Soufrière (Guadeloupe, Lesser Antilles). The integrated analysis of seismic and geochemical data, including radon emissions, may be successfully used in testing temperature distributions and variations of porosity and permeability in volcanic hydrothermal systems and can be used as a proxy to analyze geothermal reservoirs.
Grain size and shape analysis of the AD 1226 tephra layer, Reykjanes volcanic system
NASA Astrophysics Data System (ADS)
Ösp Magnúsdóttir, Agnes; Höskuldsson, Ármann; Larsen, Guðrún; Tumi Guðmunsson, Magnús; Sigurgeirsson, Magnús Á.
2014-05-01
Recent explosive eruptions in Iceland have drawn attention to long range tephra transport in the atmosphere. In Iceland tephra forming explosion eruptions are frequent, due to abundance of water. However, the volcanism on the island is principally basaltic. Volcanism along the Reykjanes Peninsula is divided into five distinct volcanic systems. Volcano-tectonic activity within these systems is periodic, with recurrence intervals in the range of 1 ka. Last volcano-tectonic sequence began around AD 940, shortly after settlement of Iceland, and lasted through AD 1340. During this period activity was characterized by basaltic fissure eruptions. Furthermore, this activity period on the Reykjanes peninsula began within the eastern most volcanic system and gradually moved towards the west across the peninsula. The 1226 eruption was a basaltic fissure eruption with in the Reykjanes volcanic system. The eruption began on land and gradually progressed towards the SW until the volcanic fissure extended into the sea. Water-magma interaction changed the eruption from effusive into explosive forming the largest tephra layer on the peninsula. Due to its close proximity to the Keflavik international airport and that of the capital of Iceland it is important to get an insight into, the characteristics, generation and distribution of such tephra deposits. In this eruption the tephra produced had an approximate volume of 0.1 km3 and covered an area of some 3500 km2 within the 0.5 cm isopach. Total grain size distribution of this tephra layer will be presented along with analysis of principal grain shapes of the finer portion of the tephra layer as a function of distance from the source. The tephra grain size is dominated by particles finer than 1 millimeter with an almost complete absence of large grains independent of distance from the source. Comprehensive understanding of the characteristics of tephra generated in this eruption can help us to understand hazards posed by future eruptions of similar nature in the area.
The Quaternary and Pliocene Yellowstone Plateau volcanic field of Wyoming, Idaho, and Montana
Christiansen, Robert L.
2001-01-01
This region of Yellowstone National Park has been the active focus of one of the Earth's largest magmatic systems for more than 2 million years. The resulting volcanism has been characterized by the eruption of voluminous rhyolites and subordinate basalts but virtually no lavas of intermediate composition. The magmatic system at depth remains active and drives the massive hydrothermal circulation for which the park is widely known. Studies of the volcanic field using geologic mapping and petrology have defined three major cycles of rhyolitic volcanism, each climaxed by the eruption of a rhyolitic ash-flow sheet having a volume of hundreds of thousands of cubic kilometers. The field also has been analyzed in terms of its magmatic and tectonic evolution, including its regional relation to the Snake River plain and to basin-range tectonic extension.
Effect of subglacial volcanism on changes in the West Antarctic Ice Sheet
NASA Technical Reports Server (NTRS)
Behrendt, John C.
1993-01-01
Rapid changes in the West Antarctic Ice Sheet (WAIS) may affect future global sea-level changes. Alley and Whillans note that 'the water responsible for separating the glacier from its bed is produced by frictional dissipation and geothermal heat,' but assume that changes in geothermal flux would ordinarily be expected to have slower effects than glaciological parameters. I suggest that episodic subglacial volcanism and geothermal heating may have significantly greater effects on the WAIS than is generally appreciated. The WAIS flows through the active, largely asiesmic West Antarctic rift system (WS), which defines the sub-sea-level bed of the glacier. Various lines of evidence summarized in Behrendt et al. (1991) indicate high heat flow and shallow asthenosphere beneath the extended, weak lithosphere underlying the WS and the WAIS. Behrendt and Cooper suggest a possible synergistic relation between Cenozoic tectonism, episodic mountain uplift and volcanism in the West Antarctic rift system, and the waxing and waning of the Antarctic ice sheet beginning about earliest Oligocene time. A few active volcanoes and late-Cenozoic volcanic rocks are exposed throughout the WS along both flanks, and geophysical data suggest their presence beneath the WAIS. No part of the rift system can be considered inactive. I propose that subglacial volcanic eruptions and ice flow across areas of locally (episodically?) high heat flow--including volcanically active areas--should be considered possibly to have a forcing effect on the thermal regime resulting in increased melting at the base of the ice streams.
The Volcanic History of Mars and Influences on Carbon Outgassing
NASA Astrophysics Data System (ADS)
Bleacher, J. E.; Whelley, P.
2015-12-01
Exploration of Mars has revealed some of the most impressive volcanic landforms found throughout the solar system. Volatiles outgassed from volcanoes were likely to have strongly influenced atmospheric chemistry and affected the martian climate. On Earth the role of carbon involved in volcanic outgassing is strongly influenced by tectonic setting, with the greatest weight percent contributions coming from partial mantle melts associated with hot spot volcanism. Most martian volcanic centers appear to represent this style of volcanism. Thus, one important factor in understanding the martian carbon cycle through time is understanding this volatile's link to the planet's volcanic history. The identified volcanic constructs on Mars are not unlike those of the Earth suggesting similar magmatic and eruptive processes. However, the dimensions of many martian volcanic features are significantly larger. The distribution of volcanoes and volcanic deposits on Mars are not spatially or temporally uniform. Large volcanoes (> 100 km diameter) are spatially concentrated in volcanic provinces that likely represent focused upwellings or zones of crustal weakness that enabled magma ascension. Smaller (10s km diameters) volcanoes such as cones, low shields and fissures are often grouped into fields and their lava flows coalesce to produce low slope plains. In some cases plains lava fields are quite extensive with little to no evidence for the volcanic constructs. Although martian volcanism appears to have been dominated by effusive eruptions with likely contributions from passive degassing from the interior, explosive volcanic centers and deposits are known to exist. After the development of a martian crust the planet's volcanic style appears to have evolved from early explosive activity to effusive activity centered at major volcanoes to effusive distributed activity in fields. However, questions remain as to whether or not these styles significantly overlapped in time and if so, why? As scientists continue to learn more about carbon's role in terrestrial volcanism, it is reasonable to question how and how much carbon was involved in different styles of martian volcanic activity and how carbon and other volatiles have affected the martian atmosphere and climate through time.
NASA Astrophysics Data System (ADS)
García, Alicia; Berrocoso, Manuel; Marrero, José M.; Fernández-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramón
2014-06-01
The 2011 volcanic unrest at El Hierro Island illustrated the need for a Volcanic Alert System (VAS) specifically designed for the management of volcanic crises developing after long repose periods. The VAS comprises the monitoring network, the software tools for analysis of the monitoring parameters, the Volcanic Activity Level (VAL) management, and the assessment of hazard. The VAS presented here focuses on phenomena related to moderate eruptions, and on potentially destructive volcano-tectonic earthquakes and landslides. We introduce a set of new data analysis tools, aimed to detect data trend changes, as well as spurious signals related to instrumental failure. When data-trend changes and/or malfunctions are detected, a watchdog is triggered, issuing a watch-out warning (WOW) to the Monitoring Scientific Team (MST). The changes in data patterns are then translated by the MST into a VAL that is easy to use and understand by scientists, technicians, and decision-makers. Although the VAS was designed specifically for the unrest episodes at El Hierro, the methodologies may prove useful at other volcanic systems.
Active Volcanism on Io: Global Distribution and Variations in Activity
Lopes-Gautier, R.; McEwen, A.S.; Smythe, W.B.; Geissler, P.E.; Kamp, L.; Davies, A.G.; Spencer, J.R.; Keszthelyi, L.; Carlson, R.; Leader, F.E.; Mehlman, R.; Soderblom, L.
1999-01-01
Io's volcanic activity has been monitored by instruments aboard the Galileo spacecraft since June 28, 1996. We present results from observations by the near-infrared mapping spectrometer (NIMS) for the first 10 orbits of Galileo, correlate them with results from the Solid State Imaging System (SSI) and from groundbased observations, and compare them to what was known about Io's volcanic activity from observations made during the two Voyager flybys in 1979. A total of 61 active volcanic centers have been identified from Voyager, groundbased, and Galileo observations. Of these, 41 are hot spots detected by NIMS and/or SSI. Another 25 locations were identified as possible active volcanic centers, mostly on the basis of observed surface changes. Hot spots are correlated with surface colors, particularly dark and red deposits, and generally anti-correlated with white, SO2-rich areas. Surface features corresponding to the hot spots, mostly calderas or flows, were identified from Galileo and Voyager images. Hot spot temperatures obtained from both NIMS and SSI are consistent with silicate volcanism, which appears to be widespread on Io. Two types of hot spot activity are present: persistent-type activity, lasting from months to years, and sporadic events, which may represent either short-lived activity or low-level activity that occasionally flares up. Sporadic events are not often detected, but may make an important contribution to Io's heat flow and resurfacing. The distribution of active volcanic centers on the surface does not show any clear correlation with latitude, longitude, Voyager-derived global topography, or heat flow patterns predicted by the asthenosphere and deep mantle tidal dissipation models. However, persistent hot spots and active plumes are concentrated toward lower latitudes, and this distribution favors the asthenosphere rather than the deep mantle tidal dissipation model. ?? 1999 Academic Press.
Initiative for the creation of an integrated infrastructure of European Volcano Observatories
NASA Astrophysics Data System (ADS)
Puglisi, G.; Bachelery, P.; Ferreira, T. J. L.; Vogfjörd, K. S.
2012-04-01
Active volcanic areas in Europe constitute a direct threat to millions of European citizens. The recent Eyjafjallajökull eruption also demonstrated that indirect effects of volcanic activity can present a threat to the economy and the lives of hundreds of million of people living in the whole continental area even in the case of activity of volcanoes with sporadic eruptions. Furthermore, due to the wide political distribution of the European territories, major activities of "European" volcanoes may have a worldwide impact (e.g. on the North Atlantic Ocean, West Indies included, and the Indian Ocean). Our ability to understand volcanic unrest and forecast eruptions depends on the capability of both the monitoring systems to effectively detect the signals generated by the magma rising and on the scientific knowledge necessary to unambiguously interpret these signals. Monitoring of volcanoes is the main focus of volcano observatories, which are Research Infrastructures in the ESFRI vision, because they represent the basic resource for researches in volcanology. In addition, their facilities are needed for the design, implementation and testing of new monitoring techniques. Volcano observatories produce a large amount of monitoring data and represent extraordinary and multidisciplinary laboratories for carrying out innovative joint research. The current distribution of volcano observatories in Europe and their technological state of the art is heterogeneous because of different types of volcanoes, different social requirements, operational structures and scientific background in the different volcanic areas, so that, in some active volcanic areas, observatories are lacking or poorly instrumented. Moreover, as the recent crisis of the ash in the skies over Europe confirms, the assessment of the volcanic hazard cannot be limited to the immediate areas surrounding active volcanoes. The whole European Community would therefore benefit from the creation of a network of volcano observatories, which would enable strengthening and sharing the technological and scientific level of current infrastructures. Such a network could help to achieve the minimum goal of deploying an observatory in each active volcanic area, and lay the foundation for an efficient and effective volcanic monitoring system at the European level.
The Guanacaste Volcanic Arc Sliver of Northwestern Costa Rica.
Montero, Walter; Lewis, Jonathan C; Araya, Maria Cristina
2017-05-11
Recent studies have shown that the Nicoya Peninsula of northwestern Costa Rica is moving northwestward ~11 mm a -1 as part of a tectonic sliver. Toward the northwest in El Salvador the northern sliver boundary is marked by a dextral strike-slip fault system active since Late Pleistocene time. To the southeast there is no consensus on what constitutes the northern boundary of the sliver, although a system of active crustal faults has been described in central Costa Rica. Here we propose that the Haciendas-Chiripa fault system serves as the northeastern boundary for the sliver and that the sliver includes most of the Guanacaste volcanic arc, herein the Guanacaste Volcanic Arc Sliver. In this paper we provide constraints on the geometry and kinematics of the boundary of the Guanacaste Volcanic Arc Sliver that are timely and essential to any models aimed at resolving the driving mechanism for sliver motion. Our results are also critical for assessing geological hazards in northwestern Costa Rica.
Russian eruption warning systems for aviation
Neal, C.; Girina, O.; Senyukov, S.; Rybin, A.; Osiensky, J.; Izbekov, P.; Ferguson, G.
2009-01-01
More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded. ?? Springer Science+Business Media B.V. 2009.
NASA Astrophysics Data System (ADS)
Norini, G.; Groppelli, G.; Sulpizio, R.; Carrasco-Núñez, G.; Dávila-Harris, P.; Pellicioli, C.; Zucca, F.; De Franco, R.
2015-08-01
The Los Humeros Volcanic Complex (LHVC) is an important geothermal target in the Trans-Mexican Volcanic Belt. Understanding the structure of the LHVC and its influence on the occurrence of thermal anomalies and hydrothermal fluids is important to get insights into the interplay between the volcano-tectonic setting and the characteristics of the geothermal resources in the area. In this study, we present a structural analysis of the LHVC, focused on Quaternary tectonic and volcano-tectonic features, including the areal distribution of monogenetic volcanic centers. Morphostructural analysis and structural field mapping revealed the geometry, kinematics and dynamics of the structural features in the study area. Also, thermal infrared remote sensing analysis has been applied to the LHVC for the first time, to map the main endogenous thermal anomalies. These data are integrated with newly proposed Unconformity Bounded Stratigraphic Units, to evaluate the implications for the structural behavior of the caldera complex and geothermal field. The LHVC is characterized by a multistage formation, with at least two major episodes of caldera collapse: Los Humeros Caldera (460 ka) and Los Potreros Caldera (100 ka). The study suggests that the geometry of the first collapse recalls a trap-door structure and impinges on a thick volcanic succession (10.5-1.55 Ma), now hosting the geothermal reservoir. The main ring-faults of the two calderas are buried and sealed by the widespread post-calderas volcanic products, and for this reason they probably do not have enough permeability to be the main conveyers of the hydrothermal fluid circulation. An active, previously unrecognized fault system of volcano-tectonic origin has been identified inside the Los Potreros Caldera. This fault system is the main geothermal target, probably originated by active resurgence of the caldera floor. The active fault system defines three distinct structural sectors in the caldera floor, where the occurrence of hydrothermal fluids is controlled by fault-induced secondary permeability. The resurgence of the caldera floor could be induced by an inferred magmatic intrusion, representing the heat source of the geothermal system and feeding the simultaneous monogenetic volcanic activity around the deforming area. The operation of the geothermal field and the plans for further exploration should focus on, both, the active resurgence fault system and the new endogenous thermal anomalies mapped outside the known boundaries of the geothermal field.
NASA Astrophysics Data System (ADS)
Hu, Jun-Hao; Song, Xie-Yan; He, Hai-Long; Zheng, Wen-Qin; Yu, Song-Yue; Chen, Lie-Meng; Lai, Chun-Kit
2018-04-01
Understanding processes of magma replenishment in a magma plumbing system is essential to predict eruption potential of a dormant volcano. In this study, we present new petrologic and thermobarometric data for youngest lava flows from the Holocene Heikongshan volcano in the Tengchong area, SW China. Clinopyroxene phenocrysts from the trachytic lava flows display various textural/compositional zoning styles (i.e., normal, reverse and oscillatory). Such zoning patterns are indicative of an open magmatic plumbing system with multiphase magma replenishment and mixing, which were likely a key drive of the volcanic eruptions. Thermobarometric calculations of these zoned clinopyroxene phenocrysts yield crystallization pressures of 3.8-7.1 kbar (peak at 4.5-7.0 kbar), corresponding to a magma chamber at depths of 14-21 km. The calculated depths are consistent with the large low-resistivity body at 12-30 km beneath the Heikongshan volcano, implying that the magmatic plumbing system may still be active. Recent earthquakes in the Tengchong area suggest that the regional strike-slip faulting are still active, and may trigger future volcanic eruptions if the magma chamber(s) beneath the Tengchong volcanic field is disturbed, in spite of the volcanic quiescence since 1609 CE.
NASA Astrophysics Data System (ADS)
Rubin, K. H.; Chadwick, W. C.; Embley, R. W.; Butterfield, D. A.
2018-05-01
Newly-discovered extensive explosive deep sea volcanism produces distinct stratovolcano structures and physical rock characteristics, and host primarily diffuse flow hydrothermal activity, unlike focused flow systems at effusive submarine volcanoes.
Io - One of at Least Four Simultaneous Erupting Volcanic Eruptions
NASA Technical Reports Server (NTRS)
1979-01-01
This photo of an active volcanic eruption on Jupiter's satellite Io was taken 1 hour, 52 minutes after the accompanying picture, late in the evening of March 4, 1979, Pacific time. On the limb of the satellite can be seen one of at least four simultaneous volcanic eruptions -- the first such activity ever observed on another celestial body. Seen against the limb are plume-like structures rising more than 60 miles (100 kilometers) above the surface. Several eruptions have been identified with volcanic structures on the surface of Io, which have also been identified by Voyager 1's infrared instrument as being abnormally hot -- several hundred degrees warmer than surrounding terrain. The fact that several eruptions appear to be occurring at the same time suggests that Io has the most active surface in the solar system and that volcanism is going on there essentially continuously. Another characteristic of the observed volcanism is that it appears to be extremely explosive, with velocities more than 2,000 miles an hour (at least 1 kilometer per second). That is more violent than terrestrial volcanoes like Etna, Vesuvius or Krakatoa.
NASA Astrophysics Data System (ADS)
Powell, T.; Neuberg, J.
2003-04-01
The low-frequency seismic events on Montserrat are linked to conduit resonance and the pressurisation of the volcanic system. Analysis of these events tell us more about the behaviour of the volcanic system and provide a monitoring and interpretation tool. We have written an Automated Event Classification Algorithm Program (AECAP), which finds and classifies seismic events and calculates seismic parameters such as energy, intermittency, peak frequency and event duration. Comparison of low-frequency energy with the tilt cycles in 1997 allows us to link pressurisation of the volcano with seismic behaviour. An empirical relationship provides us with an estimate of pressurisation through released seismic energy. During 1997, the activity of the volcano varied considerably. We compare seismic parameters from quiet periods to those from active periods and investigate how the relationships between these parameters change. These changes are then used to constrain models of magmatic processes during different stages of volcanic activity.
Frequency Based Volcanic Activity Detection through Remotely Sensed Data
NASA Astrophysics Data System (ADS)
Worden, A. K.; Dehn, J.; Webley, P. W.
2015-12-01
Satellite remote sensing has proved to offer a useful and relatively inexpensive method for monitoring large areas where field work is logistically unrealistic, and potentially dangerous. Current sensors are able to detect the majority of explosive volcanic activity; those that tend to effect and represent larger scale changes in the volcanic systems, eventually relating to ash producing periods of extended eruptive activity, and effusive activity. As new spaceborne sensors are developed, the ability to detect activity improves so that a system to gauge the frequency of volcanic activity can be used as a useful monitoring tool. Four volcanoes were chosen for development and testing of a method to monitor explosive activity: Stromboli (Italy); Shishaldin and Cleveland (Alaska, USA); and Karymsky (Kamchatka, Russia). Each volcano studied had similar but unique signatures of pre-cursory and eruptive activity. This study has shown that this monitoring tool could be applied to a wide range of volcanoes and still produce useful and robust data. Our method deals specifically with the detection of small scale explosive activity. The method described here could be useful in an operational setting, especially at remote volcanoes that have the potential to impact populations, infrastructure, and the aviation community. A number of important factors will affect the validity of application of this method. They are: (1) the availability of a continuous and continually populated dataset; (2) appropriate and reasonable sensor resolutions; (3) a recorded history of the volcano's previous activity; and, if available, (4) some ground-based monitoring system. We aim to develop the method further to be able to capture and evaluate the frequency of other volcanic processes such as lava flows, phreatomagmatic eruptions and dome growth and collapse. The work shown here has served to illustrate the capability of this method and monitoring tool for use at remote, un-instrumented volcanoes.
Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón
2014-01-02
This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.
Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón
2014-01-01
This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis. PMID:24451461
Sensor web enables rapid response to volcanic activity
Davies, Ashley G.; Chien, Steve; Wright, Robert; Miklius, Asta; Kyle, Philip R.; Welsh, Matt; Johnson, Jeffrey B.; Tran, Daniel; Schaffer, Steven R.; Sherwood, Robert
2006-01-01
Rapid response to the onset of volcanic activity allows for the early assessment of hazard and risk [Tilling, 1989]. Data from remote volcanoes and volcanoes in countries with poor communication infrastructure can only be obtained via remote sensing [Harris et al., 2000]. By linking notifications of activity from ground-based and spacebased systems, these volcanoes can be monitored when they erupt.Over the last 18 months, NASA's Jet Propulsion Laboratory (JPL) has implemented a Volcano Sensor Web (VSW) in which data from ground-based and space-based sensors that detect current volcanic activity are used to automatically trigger the NASA Earth Observing 1 (EO-1) spacecraft to make highspatial-resolution observations of these volcanoes.
NASA Astrophysics Data System (ADS)
Shirzaei, Manoochehr; Walter, Thomas
2010-05-01
Volcanic unrest and eruptions are one of the major natural hazards next to earthquakes, floods, and storms. It has been shown that many of volcanic and tectonic unrests are triggered by changes in the stress field induced by nearby seismic and magmatic activities. In this study, as part of a mobile volcano fast response system so-called "Exupery" (www.exupery-vfrs.de) we present an arrangement for semi real time assessing the stress field excited by volcanic activity. This system includes; (1) an approach called "WabInSAR" dedicated for advanced processing of the satellite data and providing an accurate time series of the surface deformation [1, 2], (2) a time dependent inverse source modeling method to investigate the source of volcanic unrest using observed surface deformation data [3, 4], (3) the assessment of the changes in stress field induced by magmatic activity at the nearby volcanic and tectonic systems. This system is implemented in a recursive manner that allows handling large 3D data sets in an efficient and robust way which is requirement of an early warning system. We have applied and validated this arrangement on Mauna Loa volcano, Hawaii Island, to assess the influence of the time dependent activities of Mauna Loa on earthquake occurrence at the Kaoiki seismic zone. References [1] M. Shirzaei and T. R. Walter, "Wavelet based InSAR (WabInSAR): a new advanced time series approach for accurate spatiotemporal surface deformation monitoring," IEEE, pp. submitted, 2010. [2] M. Shirzaei and R. T. Walter, "Deformation interplay at Hawaii Island through InSAR time series and modeling," J. Geophys Res., vol. submited, 2009. [3] M. Shirzaei and T. R. Walter, "Randomly Iterated Search and Statistical Competency (RISC) as powerful inversion tools for deformation source modeling: application to volcano InSAR data," J. Geophys. Res., vol. 114, B10401, doi:10.1029/2008JB006071, 2009. [4] M. Shirzaei and T. R. Walter, "Genetic algorithm combined with Kalman filter as powerful tool for nonlinear time dependent inverse modelling: Application to volcanic deformation time series," J. Geophys. Res., pp. submitted, 2010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Michael J.; Schmidt, Anja; Easter, Richard
Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptionsmore » between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.« less
Faults and volcanoes: Main volcanic structures in the Acambay Graben, Mexico
NASA Astrophysics Data System (ADS)
Aguirre-Diaz, G. J.; Pedrazzi, D.; Suñe-Puchol, I.; Lacan, P.
2016-12-01
The Mexican Volcanic Belt (MVB) province is best known by the major stratovolcanoes, such as Popocatepetl and Colima, but most of the province is formed by modest size stratovolcanoes and monogenetic cones. Regional fault systems were developed together with the building of the volcanic province; the most notorious one is Chapala-Tula Fault System (CTFS), which runs parallel to the central sector of the MVB, and thus it is also referred to as the Intra-Arc fault system. Acambay graben (AG) is part of this central system. It is a 20 x 70 km depression located 100 km to the NW of Mexico City, at the easternmost end of the E-W trending CTFS, and was formed as the result of NS to NE oriented extension. Seismically active normal faults, such as the Acambay-Tixmadejé fault, with a mB =7 earthquake in 1912, delimit the AG. The graben includes several volcanic structures and associated deposits ranging in age from Miocene to 3 ka. The main structures are two stratovolcanoes, Altamirano (900 m high) and Temascalcingo (800 m high). There are also several Miocene-Pliocene lava domes, and Quaternary small cinder cones and shield volcanoes. Faulting of the Acambay graben affects all these volcanic forms, but depending on their ages, the volcanoes are cut by several faults or by a few. That is the case of Altamirano and Temascalcingo volcanoes, where the former is almost unaffected whereas the latter is highly dissected by faults. Altamirano is younger than Temascalcingo; youngest pyroclastic deposits from Altamirano are dated at 12-3 ka, and those from Temascalcingo at 40-25 ka (radiocarbon ages). The relatively young ages found in volcanic deposits within the Acambay graben raise the volcanic danger level in this area, originally marked as an inactive volcanic zone, but activity could restart at any time. Supported by DGAPA-PAPIIT-UNAM grant IN-104615.
A multi-data stream assimilation framework for the assessment of volcanic unrest
NASA Astrophysics Data System (ADS)
Gregg, Patricia M.; Pettijohn, J. Cory
2016-01-01
Active volcanoes pose a constant risk to populations living in their vicinity. Significant effort has been spent to increase monitoring and data collection campaigns to mitigate potential volcano disasters. To utilize these datasets to their fullest extent, a new generation of model-data fusion techniques is required that combine multiple, disparate observations of volcanic activity with cutting-edge modeling techniques to provide efficient assessment of volcanic unrest. The purpose of this paper is to develop a data assimilation framework for volcano applications. Specifically, the Ensemble Kalman Filter (EnKF) is adapted to assimilate GPS and InSAR data into viscoelastic, time-forward, finite element models of an evolving magma system to provide model forecasts and error estimations. Since the goal of this investigation is to provide a methodological framework, our efforts are focused on theoretical development and synthetic tests to illustrate the effectiveness of the EnKF and its applicability in physical volcanology. The synthetic tests provide two critical results: (1) a proof of concept for using the EnKF for multi dataset assimilation in investigations of volcanic activity; and (2) the comparison of spatially limited, but temporally dense, GPS data with temporally limited InSAR observations for evaluating magma chamber dynamics during periods of volcanic unrest. Results indicate that the temporally dense information provided by GPS observations results in faster convergence and more accurate model predictions. However, most importantly, the synthetic tests illustrate that the EnKF is able to swiftly respond to data updates by changing the model forecast trajectory to match incoming observations. The synthetic results demonstrate a great potential for utilizing the EnKF model-data fusion method to assess volcanic unrest and provide model forecasts. The development of these new techniques provides: (1) a framework for future applications of rapid data assimilation and model development during volcanic crises; (2) a method for hind-casting to investigate previous volcanic eruptions, including potential eruption triggering mechanisms and precursors; and (3) an approach for optimizing survey designs for future data collection campaigns at active volcanic systems.
NASA Astrophysics Data System (ADS)
Heap, Michael J.; Kennedy, Ben M.; Farquharson, Jamie I.; Ashworth, James; Mayer, Klaus; Letham-Brake, Mark; Reuschlé, Thierry; Gilg, H. Albert; Scheu, Bettina; Lavallée, Yan; Siratovich, Paul; Cole, Jim; Jolly, Arthur D.; Baud, Patrick; Dingwell, Donald B.
2017-02-01
Our multidisciplinary study aims to better understand the permeability of active volcanic hydrothermal systems, a vital prerequisite for modelling and understanding their behaviour and evolution. Whakaari/White Island volcano (an active stratovolcano at the north-eastern end of the Taupo Volcanic Zone of New Zealand) hosts a highly reactive hydrothermal system and represents an ideal natural laboratory to undertake such a study. We first gained an appreciation of the different lithologies at Whakaari and (where possible) their lateral and vertical extent through reconnaissance by land, sea, and air. The main crater, filled with tephra deposits, is shielded by a volcanic amphitheatre comprising interbedded lavas, lava breccias, and tuffs. We deployed field techniques to measure the permeability and density/porosity of (1) > 100 hand-sized sample blocks and (2) layered unlithified deposits in eight purpose-dug trenches. Our field measurements were then groundtruthed using traditional laboratory techniques on almost 150 samples. Our measurements highlight that the porosity of the materials at Whakaari varies from ∼ 0.01 to ∼ 0.7 and permeability varies by eight orders of magnitude (from ∼ 10-19 to ∼ 10-11 m2). The wide range in physical and hydraulic properties is the result of the numerous lithologies and their varied microstructures and alteration intensities, as exposed by a combination of macroscopic and microscopic (scanning electron microscopy) observations, quantitative mineralogical studies (X-ray powder diffraction), and mercury porosimetry. An understanding of the spatial distribution of lithology and alteration style/intensity is therefore important to decipher fluid flow within the Whakaari volcanic hydrothermal system. We align our field observations and porosity/permeability measurements to construct a schematic cross section of Whakaari that highlights the salient findings of our study. Taken together, the alteration typical of a volcanic hydrothermal system can result in increases (due to alteration-induced dissolution and fracturing) and decreases (due to hydrothermal precipitation) to permeability. Importantly, a decrease in permeability-be it due to fracture sealing in lava, pore-filling alunite precipitation in tuff, near-vent cementation by sulphur, and/or well-sorted layers of fine ash-can result in pore pressure augmentation. An increase in pore pressure could result in ground deformation, seismicity, jeopardise the stability of the volcanic slopes, and/or drive the wide variety of eruptions observed at Whakaari. Our systematic study offers the most complete porosity-permeability dataset for a volcanic hydrothermal system to date. These new data will inform and support modelling, unrest monitoring, and eruption characterisation at Whakaari and other hydrothermally modified volcanic systems worldwide.
NASA Astrophysics Data System (ADS)
Diaz, J. A.; Pieri, D. C.; Bland, G.; Fladeland, M. M.
2013-12-01
The development of small unmanned aerial systems (sUAS) with a variety of sensor packages, enables in situ and proximal remote sensing measurements of volcanic plumes. Using Costa Rican volcanoes as a Natural Laboratory, the University of Costa Rica as host institution, in collaboration with four NASA centers, have started an initiative to develop low-cost, field-deployable airborne platforms to perform volcanic gas & ash plume research, and in-situ volcanic monitoring in general, in conjunction with orbital assets and state-of-the-art models of plume transport and composition. Several gas sensors have been deployed into the active plume of Turrialba Volcano including a miniature mass spectrometer, and an electrochemical SO2 sensor system with temperature, pressure, relative humidity, and GPS sensors. Several different airborne platforms such as manned research aircraft, unmanned aerial vehicles, tethered balloons, as well as man-portable in-situ ground truth systems are being used for this research. Remote sensing data is also collected from the ASTER and OMI spaceborne instruments and compared with in situ data. The CARTA-UAV 2013 Mission deployment and follow up measurements successfully demonstrated a path to study and visualize gaseous volcanic emissions using mass spectrometer and gas sensor based instrumentation in harsh environment conditions to correlate in situ ground/airborne data with remote sensing satellite data for calibration and validation purposes. The deployment of such technology improves on our current capabilities to detect, analyze, monitor, model, and predict hazards presented to aircraft by volcanogenic ash clouds from active and impending volcanic eruptions.
NASA Astrophysics Data System (ADS)
Tonini, Roberto; Barsotti, Sara; Sandri, Laura; Tumi Guðmundsson, Magnús
2015-04-01
Icelandic volcanism is largely dominated by basaltic magma. Nevertheless the presence of glaciers over many Icelandic volcanic systems results in frequent phreatomagmatic eruptions and associated tephra production, making explosive eruptions the most common type of volcanic activity. Jökulhlaups are commonly considered as major volcanic hazard in Iceland for their high frequency and potentially very devastating local impact. Tephra fallout is also frequent and can impact larger areas. It is driven by the wind direction that can change with both altitude and season, making impossible to predict a priori where the tephra will be deposited during the next eruptions. Most of the volcanic activity in Iceland occurs in the central eastern part, over 100 km to the east of the main population centre around the capital Reykjavík. Therefore, the hazard from tephra fallout in Reykjavík is expected to be smaller than for communities settled near the main volcanic systems. However, within the framework of quantitative hazard and risk analyses, less frequent and/or less intense phenomena should not be neglected, since their risk evaluation depends on the effects suffered by the selected target. This is particularly true if the target is highly vulnerable, as large urban areas or important infrastructures. In this work we present the preliminary analysis aiming to perform a Probabilistic Volcanic Hazard Assessment (PVHA) for tephra fallout focused on the target area which includes the municipality of Reykjavík and the Keflavík international airport. This approach reverts the more common perspective where the hazard analysis is focused on the source (the volcanic system) and it follows a multi-source approach: indeed, the idea is to quantify, homogeneously, the hazard due to the main hazardous volcanoes that could pose a tephra fallout threat for the municipality of Reykjavík and the Keflavík airport. PVHA for each volcanic system is calculated independently and the results from all the PVHAs can be combined at the end. This will allow to: 1) possibly add the contribution of new volcanic systems, 2) compare and hierarchically rank the tephra fallout risk among both all the considered volcanoes and, possibly, other kinds of risk, and 3) quantitatively assess the overall tephra fallout hazard over the target area. As practical application, we selected a first subset consisting of the five most hazardous volcanic systems for tephra fallout that could affect the selected target area. These are the ones with the highest number of eruptions in the last 1100 years (Katla, Hekla, Grímsvötn) and the ones located closest to the target area (Reykjanes and Snæfellsjökull). PVHA is computed using the PyBetVH tool (an improvement of the Bayesian Event Tree for Volcanic Hazard -BET_VH- model) and tephra dispersal is modelled by means of VOL-CALPUFF numerical code. Katla volcanic system is used as pilot case study because of its eruptive history and behaviour are well known and documented. We found that some considerations and results derived from the study of Katla could be general and applied to the other considered volcanoes and, more in general, to other Icelandic volcanic systems. The work was financially supported by the European Science Foundation (ESF), in the framework of the Research Networking Programme MeMoVolc.
The LUSI Seismic Experiment: Deployment of a Seismic Network around LUSI, East Java, Indonesia
NASA Astrophysics Data System (ADS)
Karyono, Karyono; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Haryanto, Iyan; Masturyono, Masturyono; Hadi, Soffian; Rohadi, Suprianto; Suardi, Iman; Rudiyanto, Ariska; Pranata, Bayu
2015-04-01
The spectacular Lusi eruption started in northeast Java, Indonesia the 29 of May 2006 following a M6.3 earthquake striking the island. Initially, several gas and mud eruption sites appeared along the reactivated strike-slip Watukosek fault system and within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. Lusi is located few kilometres to the NE of the Arjuno-Welirang volcanic complex. Lusi sits upon the Watukosek fault system. From this volcanic complex originates the Watukosek fault system that was reactivated by the M6.3 earthquake in 2006 and is still periodically reactivated by the frequent seismicity. To date Lusi is still active and erupting gas, water, mud and clasts. Gas and water data show that the Lusi plumbing system is connected with the neighbouring Arjuno-Welirang volcanic complex. This makes the Lusi eruption a "sedimentary hosted geothermal system". To verify and characterise the occurrence of seismic activity and how this perturbs the connected Watukosek fault, the Arjuno-Welirang volcanic system and the ongoing Lusi eruption, we deployed 30 seismic stations (short-period and broadband) in this region of the East Java basin. The seismic stations are more densely distributed around LUSI and the Watukosek fault zone that stretches between Lusi and the Arjuno Welirang (AW) complex. Fewer stations are positioned around the volcanic arc. Our study sheds light on the seismic activity along the Watukosek fault system and describes the waveforms associated to the geysering activity of Lusi. The initial network aims to locate small event that may not be captured by the Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG) seismic network and it will be crucial to design the second phase of the seismic experiment that will consist of a local earthquake tomography of the Lusi-Arjuno Welirang region and temporal variations of vp/vs ratios. Such variations will then be ideally related to large-magnitude seismic events. This project is an unprecedented monitoring of a multi component system including an Lusi active eruption, an unlocked strike slip fault, a neighbouring volcanic arc all affected by frequent seismicity. Our study will also provide a large dataset for a qualitative analysis of earthquake triggering studies, earthquake-volcano and earthquake-earthquake interactions. The seismic experiment suggested in this study enforces our knowledge about Lusi and will represent a step further towards the reconstruction of a society devastated by Lusi disaster.
Lowenstern, J. B.; Janik, C.J.; Fournier, R.O.; Tesfai, T.; Duffield, W.A.; Clynne, M.A.; Smith, James G.; Woldegiorgis, L.; Weldemariam, K.; Kahsai, G.
1999-01-01
Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of ~10 km2 on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures >225??C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO2, H2S and He) are largely magmatic in origin. Permeability beneath the volcanic center may be high, given the amount of intrusion-related deformation and the active normal faulting within the Danakil depression.Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of approx. 10 km2 on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures >225??C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO2, H2S and He) are largely magmatic in origin. Permeability beneath the volcanic center may be high, given the amount of intrusion-related deformation and the active normal faulting within the Danakil depression.
NASA Technical Reports Server (NTRS)
Davies, A. G.; Matson, D. L.; Leone, G.; Wilson, L.; Keszthelyi, L. P.
2004-01-01
Studies of Galileo Near Infrared Mapping Spectrometer (NIMS) data and ground based data of volcanism at Prometheus and Loki Patera on Io reveal very different mechanisms of lava emplacement at these two volcanoes. Data analyses show that the periodic nature of Loki Patera s volcanism from 1990 to 2001 is strong evidence that Loki s resurfacing over this period resulted from the foundering of a crust on a lava lake. This process is designated passive , as there is no reliance on sub-surface processes: the foundering of the crust is inevitable. Prometheus, on the other hand, displays an episodicity in its activity which we designate active . Like Kilauea, a close analog, Prometheus s effusive volcanism is dominated by pulses of magma through the nearsurface plumbing system. Each system affords views of lava resurfacing processes through modelling.
Modeling Seasonal Thermal Radiance Cycles for Change Detection at Volcanic / Geothermal Areas
NASA Astrophysics Data System (ADS)
Vaughan, R.; Beuttel, B. S.
2013-12-01
Remote sensing observations of thermal features associated with (and often preceding) volcanic activity have been used for decades to detect and monitor volcanism. However, anomalous thermal precursors to volcanic eruptions are usually only recognized retrospectively. One of the reasons for this is that precursor thermal activity is often too subtle in magnitude (spatially, temporally, or in absolute temperature) to be unambiguously detected in time to issue warnings or forecasts. Part of the reason for this is the trade-off between high spatial and high temporal resolution associated with satellite imaging systems. Thus, the goal of this work has been to develop some techniques for using high-temporal-resolution, coarse-spatial-resolution imagery to try to detect subtle thermal anomalies. To identify anomalies, background thermal activity must first be characterized. Every active, or potentially active, volcano has a unique thermal history that provides information about normal background thermal activity due to seasonal or diurnal variations. Understanding these normal variations allows recognition of anomalous activity that may be due to volcanic / hydrothermal processes - ultimately with a lead time that may be sufficient to issue eruption warnings or forecasts. Archived MODIS data, acquired ~daily from 2000 to 2012, were used to investigate seasonal thermal cycles at three volcanic areas with different types of thermal features: Mount St. Helens, which had a dacite dome-building eruption from 2004-2008; Mount Ruapehu, which has a 500-m diameter active summit crater lake; and Yellowstone, which is a large active geothermal system that has hundreds of hot springs and fumarole fields spread out over a very large area. The focus has been on using MODIS 1-km sensor radiance data in the MIR and TIR wavelength regions that are sensitive to thermal emission from features that range in temperature from hundreds of °C, down to tens of °C (below the boiling temperature of water). To detect such features it is best to use data acquired at night, as this maximizes the delta T between the thermal target and non-thermal background and minimizes the effects of the Sun. Decadal time-series plots of nighttime MODIS sensor radiance data over the target areas show that seasonal thermal cycles due to varying solar incidence angle can be modeled with a sine function and removed to reveal subtle changes in TIR radiance. The seasonal sine function is unique to each volcanic / geothermal area and can be modeled iteratively using a least squares fit to the cloud of radiance data. The sine function model can also be used to generate a first-order cloud cover approximation for the nighttime TIR data. This work helps establish a framework for improved thermal alarm algorithms, automated thermal detection methods, and operational monitoring techniques for active, or potentially active, volcanoes throughout the world. This type of background study is a step toward establishing a global volcanic eruption forecasting system using satellite-based remote sensing data that are sensitive to subtle precursor thermal anomalies.
Payton, Gardner W.; Susong, D.D.; Kip, Solomon D.; Heasler, H.
2010-01-01
Snowmelt hydrograph analysis and groundwater age dates of cool water springs on the Yellowstone volcanic plateau provide evidence of high volumes of groundwater circulation in watersheds comprised of quaternary Yellowstone volcanics. Ratios of maximum to minimum mean daily discharge and average recession indices are calculated for watersheds within and surrounding the Yellowstone volcanic plateau. A model for snowmelt recession is used to separate groundwater discharge from overland runoff, and compare groundwater systems. Hydrograph signal interpretation is corroborated with chlorofluorocarbon (CFC) and tritium concentrations in cool water springs on the Yellowstone volcanic plateau. Hydrograph parameters show a spatial pattern correlated with watershed geology. Watersheds comprised dominantly of quaternary Yellowstone volcanics are characterized by slow streamflow recession, low maximum to minimum flow ratios. Cool springs sampled within the Park contain CFC's and tritium and have apparent CFC age dates that range from about 50 years to modern. Watersheds comprised of quaternary Yellowstone volcanics have a large volume of active groundwater circulation. A large, advecting groundwater field would be the dominant mechanism for mass and energy transport in the shallow crust of the Yellowstone volcanic plateau, and thus control the Yellowstone hydrothermal system. ?? 2009 Elsevier B.V.
Mainshock-aftershock clustering in volcanic regions
Giron, Ricardo Garza; Brodsky, Emily E.; Prejean, Stephanie
2018-01-01
swarms and mainshock-aftershock sequences. The former is commonly thought to dominate in volcanic and geothermal regions, but aftershock production, including within swarms, is not well studied in volcanic regions. Here we compare mainshock-aftershock clustering in active volcanic regions in Japan to nearby nonvolcanic regions. We find that aftershock production is similar in both areas by two separate metrics: (1) Both volcanic and nonvolcanic regions have similar proportions of areas that cluster into mainshock-aftershock sequences. (2) Volcanic areas with mainshock-aftershock sequences have aftershock productivity at least as high as nonvolcanic regions. We also find that volcano-tectonic events that are precursors to an eruption are more common at volcanoes without mainshock-aftershock clusters than at volcanoes with well-defined mainshock-aftershock clusters. This last finding hints at a strategy to identify volcanic systems where cataloged earthquakes are good predictors of behavior.
NASA Astrophysics Data System (ADS)
Arnoso, J.; Vélez, E. J.; Soler, V.; Montesinos, F. G.; Benavent, M.
2012-04-01
The volcanic island of Lanzarote is located at the northeastern end of the Canary Islands. Together with Fuerteventura Island, Lanzarote constitutes the emergent part of the East Canary Ridge, which presents a NNE-SSW volcanic alignment. Last eruptive events took place in 1824 and during the period 1730-1736, which is the largest to occur in the archipelago and throw out about 1.3 km3 of volcanic materials. The Lanzarote Geodynamic Laboratory (LGL) was created in 1986 with the idea of making Lanzarote as a natural laboratory to carry out studies in order to acquire more knowledge about its origin, present status and evolution (Vieira et al., 1991; 2006). The LGL has a multidisciplinary scientific purpose and, among others, various objectives are devoted to investigate mass distribution in the Earth system and surface displacements associated to volcanic and/or seismic activity in the island. The influence of LGL is extended throughout the whole geographical area of Lanzarote, including small islands located at the north. The laboratory has 3 observing modules distributed along the island according to its infrastructure and scientific objectives, where more than 70 sensors are recording continuously gravity variations, ground deformations, sea level, seismic activity, meteorological parameters, etc. All these observations are supplemented by periodic measurement of geodetic and geophysical networks that allow us to make studies at local, insular and regional scales. The application of geodetic and geophysical techniques to identify geodynamic signals related to volcanic processes is then a permanent research activity of the laboratory. Nowadays, this fact becomes more interesting due to the ongoing volcanic eruption that is taking place in other island of the Canary Archipelago, El Hierro, since past July 2011. That is, the multidisciplinary research carry on up to now at the LGL allow us to apply multiparameter observations of different kinds of volcanic manifestations at the surface level, and to compare geodynamic processes associated with an active area of the Earth's crust. In turn, the results obtained can provide new inputs for studying precursor of volcanic activity and also contribute to volcanic hazard mitigation. The LGL aims to be a permanent status of renewal, using new technologies for data recording and real time transmission, as well as for testing new sensors, scientific equipment and observational techniques related to monitoring and observation of volcanic activity. All these capabilities are necessary when high-resolution ground based observations must provide us the basis for studying the sources of volcanic deformation. The laboratory is thus open to support and to enhance the collaboration among scientists, as well as national and international institutions involved in research at active volcanic areas.
NASA Astrophysics Data System (ADS)
Matoza, Robin S.; Green, David N.; Le Pichon, Alexis; Shearer, Peter M.; Fee, David; Mialle, Pierrick; Ceranna, Lars
2017-04-01
We experiment with a new method to search systematically through multiyear data from the International Monitoring System (IMS) infrasound network to identify explosive volcanic eruption signals originating anywhere on Earth. Detecting, quantifying, and cataloging the global occurrence of explosive volcanism helps toward several goals in Earth sciences and has direct applications in volcanic hazard mitigation. We combine infrasound signal association across multiple stations with source location using a brute-force, grid-search, cross-bearings approach. The algorithm corrects for a background prior rate of coherent unwanted infrasound signals (clutter) in a global grid, without needing to screen array processing detection lists from individual stations prior to association. We develop the algorithm using case studies of explosive eruptions: 2008 Kasatochi, Alaska; 2009 Sarychev Peak, Kurile Islands; and 2010 Eyjafjallajökull, Iceland. We apply the method to global IMS infrasound data from 2005-2010 to construct a preliminary acoustic catalog that emphasizes sustained explosive volcanic activity (long-duration signals or sequences of impulsive transients lasting hours to days). This work represents a step toward the goal of integrating IMS infrasound data products into global volcanic eruption early warning and notification systems. Additionally, a better understanding of volcanic signal detection and location with the IMS helps improve operational event detection, discrimination, and association capabilities.
Historic hydrovolcanism at Deception Island (Antarctica): implications for eruption hazards
NASA Astrophysics Data System (ADS)
Pedrazzi, Dario; Németh, Károly; Geyer, Adelina; Álvarez-Valero, Antonio M.; Aguirre-Díaz, Gerardo; Bartolini, Stefania
2018-01-01
Deception Island (Antarctica) is the southernmost island of the South Shetland Archipelago in the South Atlantic. Volcanic activity since the eighteenth century, along with the latest volcanic unrest episodes in the twentieth and twenty-first centuries, demonstrates that the volcanic system is still active and that future eruptions are likely. Despite its remote location, the South Shetland Islands are an important touristic destination during the austral summer. In addition, they host several research stations and three summer field camps. Deception Island is characterised by a Quaternary caldera system with a post-caldera succession and is considered to be part of an active, dispersed (monogenetic), volcanic field. Historical post-caldera volcanism on Deception Island involves monogenetic small-volume (VEI 2-3) eruptions such forming cones and various types of hydrovolcanic edifices. The scientific stations on the island were destroyed, or severely damaged, during the eruptions in 1967, 1969, and 1970 mainly due to explosive activity triggered by the interaction of rising (or erupting) magma with surface water, shallow groundwater, and ice. We conducted a detailed revision (field petrology and geochemistry) of the historical hydrovolcanic post-caldera eruptions of Deception Island with the aim to understand the dynamics of magma-water interaction, as well as characterise the most likely eruptive scenarios from future eruptions. We specifically focused on the Crimson Hill (estimated age between 1825 and 1829), and Kroner Lake (estimated age between 1829 and 1912) eruptions and 1967, 1969, and 1970 events by describing the eruption mechanisms related to the island's hydrovolcanic activity. Data suggest that the main hazards posed by volcanism on the island are due to fallout, ballistic blocks and bombs, and subordinate, dilute PDCs. In addition, Deception Island can be divided into five areas of expected activity due to magma-water interaction, providing additional data for correct hazard assessment on the island.
Episodes of fluvial and volcanic activity in Mangala Valles, Mars.
Keske, Amber L; Hamilton, Christopher W; McEwen, Alfred S; Daubar, Ingrid J
2015-01-01
A new mapping-based study of the 900-km-long Mangala Valles outflow system was motivated by the availability of new high-resolution images and continued debates about the roles of water and lava in outflow channels on Mars. This study uses photogeologic analysis, geomorphic surface mapping, cratering statistics, and relative stratigraphy. Results show that Mangala Valles underwent at least two episodes of fluvial activity and at least three episodes of volcanic activity during the Late Amazonian. The occurrence of scoured bedrock at the base of the mapped stratigraphy, in addition to evidence provided by crater retention ages, suggests that fluvial activity preceded the deposition of two of the volcanic units. Crater counts performed at 30 locations throughout the area have allowed us to construct the following timeline: (1) formation of Noachian Highlands and possible initial flooding event(s) before ~1 Ga, (2) emplacement of Tharsis lava flows in the valley from ~700 to 1000 Ma, (3) a megaflooding event at ~700-800 Ma sourced from Mangala Fossa, (4) valley fill by a sequence of lava flows sourced from Mangala Fossa ~400-500 Ma, (5) another megaflooding event from ~400 Ma, (6) a final phase of volcanism sourced from Mangala Fossa ~300-350 Ma, and (7) emplacement of eolian sedimentary deposits in the northern portion of the valley ~300 Ma. These results are consistent with alternating episodes of aqueous flooding and volcanism in the valles. This pattern of geologic activity is similar to that of other outflow systems, such as Kasei Valles, suggesting that there is a recurring, and perhaps coupled, nature of these processes on Mars.
Magmatic unrest beneath Mammoth Mountain, California
Hill, D.P.; Prejean, S.
2005-01-01
Mammoth Mountain, which stands on the southwest rim of Long Valley caldera in eastern California, last erupted ???57,000 years BP. Episodic volcanic unrest detected beneath the mountain since late 1979, however, emphasizes that the underlying volcanic system is still active and capable of producing future volcanic eruptions. The unrest symptoms include swarms of small (M ??? 3) earthquakes, spasmodic bursts (rapid-fire sequences of brittle-failure earthquakes with overlapping coda), long-period (LP) and very-long-period (VLP) volcanic earthquakes, ground deformation, diffuse emission of magmatic CO2, and fumarole gases with elevated 3He/4He ratios. Spatial-temporal relations defined by the multi-parameter monitoring data together with earthquake source mechanisms suggest that this Mammoth Mountain unrest is driven by the episodic release of a volume of CO2-rich hydrous magmatic fluid derived from the upper reaches of a plexus of basaltic dikes and sills at mid-crustal depths (10-20 km). As the mobilized fluid ascends through the brittle-plastic transition zone and into overlying brittle crust, it triggers earthquake swarm activity and, in the case of the prolonged, 11-month-long earthquake swarm of 1989, crustal deformation and the onset of diffuse CO2 emissions. Future volcanic activity from this system would most likely involve steam explosions or small-volume, basaltic, strombolian or Hawaiaan style eruptions. The impact of such an event would depend critically on vent location and season.
NASA Astrophysics Data System (ADS)
Brueseke, M. E.; Hart, W. K.
2004-12-01
The Santa Rosa-Calico volcanic field (SC) of northern Nevada is perhaps the most chemically and physically diverse of all volcanic fields associated with mid-Miocene northwestern USA volcanism. SC volcanism occurred from 16.5 to 14 Ma and was characterized by the eruption of a complete compositional spectrum from basalt through high-Si rhyolite. Locally derived tholeiitic lava flows and shallow intrusive bodies are chemically and isotopically identical to the Steens Basalt (87/86Sri=<0.7040), the Oregon Plateau-wide mid-Miocene flood basalt. Andesite-dacite lava flows are exposed as at least four geographically and chemically distinct packages representing products of multiple, discrete magmatic systems. The most voluminous of these is calc-alkaline and characterized by abundant granitoid and mafic xenoliths/xenocrysts and radiogenic Sr isotopic ratios. Subalkaline silicic lava flows, domes, and shallow intrusive bodies define three diffuse north-south trending zones. Textural, chemical, and isotopic variability within the silicic units is linked to their spatial and temporal distribution, again necessitating the existence of multiple magmatic systems. The youngest locally derived silicic units are ash flows exposed in the central portion of the SC that erupted in actively forming sedimentary basins at ˜15.4 Ma. Underlying the 400-1500m thick package of SC volcanic rocks are temporally ( ˜103 and ˜85 Ma), chemically, and isotopically (87/86Sr at 16 Ma= 0.7045 to 0.7058 and 0.7061 to >0.7070) heterogeneous granitoid plutons and a package of ˜20-23 Ma calc-alkaline, arc-related intermediate lava flows. The observed disequilibrium textures, xenoliths, and chemical/isotopic diversity suggests that upwelling Steens magma interacted with local crust, siliceous crustal melts, and the mafic plutonic roots of early Miocene arc volcanism in multiple magmatic systems characterized by heterogeneous open system processes. The formation of these systems is tectonically controlled as evidenced by magma eruption/ascent along active zones of lithospheric extension. Thus, the observed physical and chemical diversity in this volcanic field is attributed to a combination of factors; tectonic setting, availability of upwelling mafic magma(s), nature of pre-Miocene crustal addition and lithospheric modification, and the resulting array of magma sources and petrogenetic processes.
Crustal imaging of western Michoacán and the Jalisco Block, Mexico, from Ambient Seismic Noise
NASA Astrophysics Data System (ADS)
Spica, Zack; Cruz-Atienza, Víctor M.; Reyes-Alfaro, Gabriel; Legrand, Denis; Iglesias-Mendoza, Arturo
2014-12-01
Detailed crustal imaging of western Michoacán and the Jalisco Block is obtained from ambient noise tomography. Results show a deep and well-delineated volcanic system below the Colima volcano complex, rooting up to ~ 22 km depth, with a shallow magmatic chamber constrained to the first ~ 7 km. A shallow low-velocity system to the south of the Chapala rift and west of the Michoacán-Guanajuato volcanic field merges, underneath the Colima rift, with the Colima volcano system at about 20 km depth, honoring the geometry of the Trans-Mexican Volcanic Belt. For depths greater than ~30 km, low-velocity features become parallel to the slab strike, right beneath the Mascota, Ayutla and Tapalpa volcanic fields, suggesting the presence of the mantle wedge above the Rivera plate. All mentioned low-velocity bodies are spatially correlated with the superficial volcanic activity suggesting their magmatic origin so that, the shallower these bodies, the younger are the associated volcanic deposits. Along the coast, different depths of the uppermost layer of the Rivera and the Cocos plates suggest that the latter plate subducts with an angle ~ 9° steeper than the former.
Geologic field-trip guide to the volcanic and hydrothermal landscape of the Yellowstone Plateau
Morgan Morzel, Lisa Ann; Shanks, W. C. Pat; Lowenstern, Jacob B.; Farrell, Jamie M.; Robinson, Joel E.
2017-11-20
Yellowstone National Park, a nearly 9,000 km2 (~3,468 mi2) area, was preserved in 1872 as the world’s first national park for its unique, extraordinary, and magnificent natural features. Rimmed by a crescent of older mountainous terrain, Yellowstone National Park has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of late Cenozoic explosive and effusive volcanism, on-going tectonism, glaciation, and hydrothermal activity. The Yellowstone Caldera is the centerpiece of the Yellowstone Plateau. The Yellowstone Plateau lies at the most northeastern front of the 17-Ma Yellowstone hot spot track, one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Over six days, this field trip presents an intensive overview into volcanism, tectonism, and hydrothermal activity on the Yellowstone Plateau (fig. 1). Field stops are linked directly to conceptual models related to monitoring of the various volcanic, geochemical, hydrothermal, and tectonic aspects of the greater Yellowstone system. Recent interest in young and possible future volcanism at Yellowstone as well as new discoveries and synthesis of previous studies, (for example, tomographic, deformation, gas, aeromagnetic, bathymetric, and seismic surveys), provide a framework in which to discuss volcanic, hydrothermal, and seismic activity in this dynamic region.
Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM)
NASA Astrophysics Data System (ADS)
Mills, Michael J.; Schmidt, Anja; Easter, Richard; Solomon, Susan; Kinnison, Douglas E.; Ghan, Steven J.; Neely, Ryan R.; Marsh, Daniel R.; Conley, Andrew; Bardeen, Charles G.; Gettelman, Andrew
2016-03-01
Accurate representation of global stratospheric aerosols from volcanic and nonvolcanic sulfur emissions is key to understanding the cooling effects and ozone losses that may be linked to volcanic activity. Attribution of climate variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the rate of global average temperature increases. We have compiled a database of volcanic SO2 emissions and plume altitudes for eruptions from 1990 to 2014 and developed a new prognostic capability for simulating stratospheric sulfate aerosols in the Community Earth System Model. We used these combined with other nonvolcanic emissions of sulfur sources to reconstruct global aerosol properties from 1990 to 2014. Our calculations show remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD) and with in situ measurements of stratospheric aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD calculations represent a clear improvement over available satellite-based analyses, which generally ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at middle and high latitudes. Our SAD calculations greatly improve on that provided for the Chemistry-Climate Model Initiative, which misses about 60% of the SAD measured in situ on average during both volcanically active and volcanically quiescent periods.
Observing Active Volcanism on Earth and Beyond With an Autonomous Science Investigation Capability
NASA Astrophysics Data System (ADS)
Davies, A. G.; Mjolsness, E. D.; Fink, W.; Castano, R.; Park, H. G.; Zak, M.; Burl, M. C.
2001-12-01
Operational constraints imposed by restricted downlink and long communication delays make autonomous systems a necessity for exploring dynamic processes in the Solar System and beyond. Our objective is to develop an onboard, modular, automated science analysis tool that will autonomously detect unexpected events, identify rare events at predicted sites, quantify the processes under study, and prioritize the science data and analyses as they are collected. A primary target for this capability is terrestrial active volcanism. Our integrated, science-driven command and control package represents the next stage of the automatic monitoring of volcanic activity pioneered by GOES. The resulting system will maximize science return from day-to-day instrument use and provide immediate reaction to capture the fullest information from infrequent events. For example, a sensor suite consisting of a Galileo-like multi-filter visible wavelength camera and an infrared spectrometer, can acquire high-spatial resolution data of eruptions of lava and volcanic plumes and identify large concentrations of volcanic SO2. After image/spectrum formation, software is applied to the data which is capable of change detection (in the visible and infrared), feature identification (both in imagery and spectra), and novelty detection. In this particular case, the latter module detects change in the parameter space of an advanced multi-component black-body volcanic thermal emission model by means of a novel technique called the "Grey-Box" method which analyzes time series data through a combination of deterministic and stochastic models. This approach can be demonstrated using data obtained by the Galileo spacecraft of ionian volcanism. The system autonomously identifies the most scientifically important targets and prioritizes data and analyses for return. All of these techniques have been successfully demonstrated in laboratory experiments, and are ready to be tested in an operational environment. After identification of a target of interest, an onboard planner prioritizes resources to obtain the best possible dataset of the identified process. We emphasize that the software is modular. The change detection and feature identification modules can be applied to any imaged dataset, and are not confined to volcanic targets. Applications are therefore widespread, across all NASA Enterprises. Examples include detection and quantification of extraterrestrial volcanism (Io, Triton), the monitoring of features in planetary atmospheres (Earth, Gas Giants), the ebb and flow of ices (Earth, Mars), asteriod, comet and supernova detection, change detection in magnetic fields, and identification of structure within radio outbursts.
Monitoring diffuse volcanic degassing during volcanic unrests: the case of Campi Flegrei (Italy).
Cardellini, C; Chiodini, G; Frondini, F; Avino, R; Bagnato, E; Caliro, S; Lelli, M; Rosiello, A
2017-07-28
In volcanoes with active hydrothermal systems, diffuse CO 2 degassing may constitute the primary mode of volcanic degassing. The monitoring of CO 2 emissions can provide important clues in understanding the evolution of volcanic activity especially at calderas where the interpretation of unrest signals is often complex. Here, we report eighteen years of CO 2 fluxes from the soil at Solfatara of Pozzuoli, located in the restless Campi Flegrei caldera. The entire dataset, one of the largest of diffuse CO 2 degassing ever produced, is made available for the scientific community. We show that, from 2003 to 2016, the area releasing deep-sourced CO 2 tripled its extent. This expansion was accompanied by an increase of the background CO 2 flux, over most of the surveyed area (1.4 km 2 ), with increased contributions from non-biogenic source. Concurrently, the amount of diffusively released CO 2 increased up to values typical of persistently degassing active volcanoes (up to 3000 t d -1 ). These variations are consistent with the increase in the flux of magmatic fluids injected into the hydrothermal system, which cause pressure increase and, in turn, condensation within the vapor plume feeding the Solfatara emission.
Mainshock-Aftershocks Clustering Detection in Volcanic Regions
NASA Astrophysics Data System (ADS)
Garza Giron, R.; Brodsky, E. E.; Prejean, S. G.
2017-12-01
Crustal earthquakes tend to break their general Poissonean process behavior by gathering into two main kinds of seismic bursts: swarms and mainshock-aftershocks sequences. The former is commonly related to volcanic or geothermal processes whereas the latter is a characteristic feature of tectonically driven seismicity. We explore the mainshock-aftershock clustering behavior of different active volcanic regions in Japan and its comparison to non-volcanic regions. We find that aftershock production in volcanoes shows mainshock-aftershocks clustering similar to what is observed in non-volcanic areas. The ratio of volanic areas that cluster in mainshock-aftershocks sequences vs the areas that do not is comparable to the ratio of non-volcanic regions that show clustering vs the ones that do not. Furthermore, the level of production of aftershocks for most volcanic areas where clustering is present seems to be of the same order of magnitude, or slightly higher, as the median of the non-volcanic regions. An interesting example of highly aftershock-productive volcanoes emerges from the 2000 Miyakejima dike intrusion. A big seismic cluster started to build up rapidly in the south-west flank of Miyakejima to later propagate to the north-west towards the Kozushima and Niijima volcanoes. In Miyakejima the seismicity showed a swarm-like signature with a constant earthquake rate, whereas Kozushima and Niijima both had expressions of highly productive mainshock-aftershocks sequences. These findings are surprising given the alternative mechanisms available in volcanic systems for releasing deviatoric strain. We speculate that aftershock behavior might hold a relationship with the rheological properties of the rocks of each system and with the capacity of a system to accumulate or release the internal pressures caused by magmatic or hydrothermal systems.
NASA Astrophysics Data System (ADS)
Cardellini, Carlo; Frigeri, Alessandro; Lehnert, Kerstin; Ash, Jason; McCormick, Brendan; Chiodini, Giovanni; Fischer, Tobias; Cottrell, Elizabeth
2015-04-01
The release of volatiles from the Earth's interior takes place in both volcanic and non-volcanic areas of the planet. The comprehension of such complex process and the improvement of the current estimates of global carbon emissions, will greatly benefit from the integration of geochemical, petrological and volcanological data. At present, major online data repositories relevant to studies of degassing are not linked and interoperable. In the framework of the Deep Earth Carbon Degassing (DECADE) initiative of the Deep Carbon Observatory (DCO), we are developing interoperability between three data systems that will make their data accessible via the DECADE portal: (1) the Smithsonian Institutionian's Global Volcanism Program database (VOTW) of volcanic activity data, (2) EarthChem databases for geochemical and geochronological data of rocks and melt inclusions, and (3) the MaGa database (Mapping Gas emissions) which contains compositional and flux data of gases released at volcanic and non-volcanic degassing sites. The DECADE web portal will create a powerful search engine of these databases from a single entry point and will return comprehensive multi-component datasets. A user will be able, for example, to obtain data relating to compositions of emitted gases, compositions and age of the erupted products and coincident activity, of a specific volcano. This level of capability requires a complete synergy between the databases, including availability of standard-based web services (WMS, WFS) at all data systems. Data and metadata can thus be extracted from each system without interfering with each database's local schema or being replicated to achieve integration at the DECADE web portal. The DECADE portal will enable new synoptic perspectives on the Earth degassing process allowing to explore Earth degassing related datasets over previously unexplored spatial or temporal ranges.
Role of social media and networking in volcanic crises and communication
Sennert, Sally K.; Klemetti, Erik W.; Bird, Deanne
2017-01-01
The growth of social media as a primary and often preferred news source has contributed to the rapid dissemination of information about volcanic eruptions and potential volcanic crises as an eruption begins. Information about volcanic activity comes from a variety of sources: news organisations, emergency management personnel, individuals (both public and official) and volcano monitoring agencies. Once posted, this information is easily shared, increasing the reach to a much broader population than the original audience. The onset and popularity of social media as a vehicle for eruption information dissemination has presented many benefits as well as challenges, and points towards a need for a more unified system for information. This includes volcano observatories using social media as an official channels to distribute activity statements, forecasts and predictions on social media, in addition to the archiving of images and data activity. This chapter looks at two examples of projects that collect / disseminate information regarding volcanic crises and eruptive activity utilizing social media sources. Based on those examples, recommendations are made to volcanic observatories in relation to the use of social media as a two-way communication tool. These recommendations include: using social media as a two-way dialogue to communicate and receive information directly from the public and other sources; stating that the social media account is from an official source; and, posting types of information that the public are seeking such as images, videos and figures.
Volcanic systems of Iceland and their magma source
NASA Astrophysics Data System (ADS)
Sigmarsson, Olgeir
2017-04-01
Several active hot-spot volcanoes produce magma from mantle sources which composition varies on decadal time scale. This is probably best demonstrated by the recent work of Pietruszka and collaborators on Kilauea, Hawaii. In marked contrast, basalt lavas from volcanic system in Iceland located above the presumed centre of the Iceland mantle plume have uniform isotope composition over the last 10 thousand years. Volcanic systems are composed of a central volcano and a fissure swarm, or a combination of both and they represent a fundamental component of the neovolcanic zones in Iceland. Four such systems, those of Askja, Bárðarbunga, Kverkfjöll and Grímsvötn in central Iceland were chosen for investigation. The last three have central volcanoes covered by the Vatnajökull ice-sheet whereas part of their fissure swarms is ice-free. Tephra produced during subglacial eruptions together with lavas from the fissure swarms of Holocene age have been collected and analysed for Sr, Nd and Th isotope ratios. Those volcanic formations that can be univocally correlated to a given volcanic system display uniform isotope ratio but different from one volcanic system to another. An exception to this regularity is that Askja products have isotope ratios indistinguishable from those of Gímsvötn, but since these volcanic systems lies far apart their lava fields do not overlap. A practical aspect of these findings was demonstrated during the rifting event of Bárðarbunga and fissure eruption forming the Holuhraun lava field. Relatively low, O isotope ratios in these basalts and heterogeneous macrocrystal composition have been ascribed to important metabasaltic crustal contamination with or without crystal mush recycling. In that case a surprisingly efficient magma mixing and melt homogenization must have occurred in the past beneath the volcanic systems. One possibility is that during the rapid deglaciation much mantle melting occurred and melts accumulated at the mantle-crust boundary or within the crust in magma reservoirs that are still feeding the volcanic systems. A second possible explanation for absence of temporal variations of isotope ratios for a given volcanic system during the last 10 thousand years is that the roots of these systems lie at further depths within the mantle. In that case, extensive fertile source rock of recycled origin with distinct isotope composition must feed the volcanic system and that the melt extraction mechanism from these source regions does not alter (or homogenize) the final melt products. The consequences of these two mechanisms and possible discrimination between them will be discussed.
NASA Astrophysics Data System (ADS)
Zuccarello, Francesco; Cannata, Andrea; Gresta, Stefano; Palano, Mimmo; Viccaro, Marco
2016-04-01
The 2014 volcanic activity of Mt. Etna has been characterized by a marked change in the eruptive behavior with respect to the one that occurred during the 2011-2013 time interval. During the 2011-2013 period, the volcanic activity was characterized by the occurrence of more than 40 vigorous lava fountain episodes at the summit New South-East Crater (hereinafter NSEC). Conversely, from the end of 2013 to the end of 2014, although intense Strombolian and effusive activity took place at NSEC, the volcanic activity never culminated in sustained lava fountaining and voluminous tephra emission. The July - August 2014 eruption can be framed within such a low level of volcanic activity. This eruption started on July 5 2014, when a fissure opened on the lower eastern flank of the summit North-East Crater (hereinafter NEC), close to the fracture field of the 2008-2009 eruption. These fissures fed weak Strombolian activity and minor lava emission from two new vents located at about 3000 m elevation. On July 25, more intense Strombolian activity took place at a further vent opened close to these two vents, at 3090 m elevation. The eruption from the vents on the lower eastern flank of NEC continued until August 9. Before the end of this eruption, on 8 August a new eruptive episode started at NSEC. This last eruption, culminating during August 11-14 with vigorous Strombolian activity and lava effusion, ended on August 16. Moreover, such a contemporaneous activity at both NSEC and NEC lends credit to the existence of a shallow link between the two craters. Taking advantage from the availability of an extensive dataset of geochemical, seismic and geodetic data we have here analyzed the volcanic activity characterizing this eruptive event. This integrated, multidisciplinary study is aimed at improving the knowledge of the deeper and shallower portions of the magmatic feeding system along with the magma transfer mechanisms toward the surface.
Mainshock-Aftershock Clustering in Volcanic Regions
NASA Astrophysics Data System (ADS)
Garza-Giron, Ricardo; Brodsky, Emily E.; Prejean, Stephanie G.
2018-02-01
Earthquakes break their general Poissonean behavior through two types of seismic bursts: swarms and mainshock-aftershock sequences. The former is commonly thought to dominate in volcanic and geothermal regions, but aftershock production, including within swarms, is not well studied in volcanic regions. Here we compare mainshock-aftershock clustering in active volcanic regions in Japan to nearby nonvolcanic regions. We find that aftershock production is similar in both areas by two separate metrics: (1) Both volcanic and nonvolcanic regions have similar proportions of areas that cluster into mainshock-aftershock sequences. (2) Volcanic areas with mainshock-aftershock sequences have aftershock productivity at least as high as nonvolcanic regions. We also find that volcano-tectonic events that are precursors to an eruption are more common at volcanoes without mainshock-aftershock clusters than at volcanoes with well-defined mainshock-aftershock clusters. This last finding hints at a strategy to identify volcanic systems where cataloged earthquakes are good predictors of behavior.
NW-SE Pliocene-Quaternary extension in the Apan-Acoculco region, eastern Trans-Mexican Volcanic Belt
NASA Astrophysics Data System (ADS)
García-Palomo, Armando; Macías, José Luis; Jiménez, Adrián; Tolson, Gustavo; Mena, Manuel; Sánchez-Núñez, Juan Manuel; Arce, José Luis; Layer, Paul W.; Santoyo, Miguel Ángel; Lermo-Samaniego, Javier
2018-01-01
The Apan-Acoculco area is located in the eastern portion of the Mexico basin and the Trans-Mexican Volcanic Belt. The area is transected by right-stepping variably dipping NE-SW normal faults. The Apan-Tlaloc Fault System is a major discontinuity that divides the region into two contrasting areas with different structural and volcanic styles. a) The western area is characterized by a horst-graben geometry with widespread Quaternary monogenetic volcanism and scattered outcrops of Miocene and Pliocene rocks. b) The eastern area is dominated by tilted horsts with a domino-like geometry with widespread Miocene and Pliocene rocks, scattered Quaternary monogenetic volcanoes and the Acoculco Caldera. Gravity data suggest that this structural geometry continues into the Mesozoic limestones. Normal faulting was active since the Pliocene with three stages of extension. One of them, an intense dilatational event began during late Pliocene and continues nowadays, contemporaneously with the emplacement of the Apan-Tezontepec Volcanic Field and the Acoculco caldera. Statistical analysis of cone elongation, cone instability, and the kinematic analysis of faults attest for a NW50°SE ± 7° extensional regime in the Apan-Acoculco area. The activity in some portions of the Apan-Tlaloc Fault System continues today as indicated by earthquake swarms recorded in 1992 and 1996, that disrupted late Holocene paleosols, and Holocene volcanism.
Vita, Fabio; Kern, Christoph; Inguaggiato, Salvatore
2014-01-01
Active long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and power-inefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, portable, low-power LP-DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. The LP-DOAS was used to measure sulfur dioxide (SO2) emissions from La Fossa crater, Vulcano, Italy, where column densities of up to 1.2 × 1018 molec cm−2 (~ 500 ppmm) were detected along open paths of up to 400 m in total length. The instrument's SO2 detection limit was determined to be 2 × 1016 molec cm−2 (~ 8 ppmm), thereby making quantitative detection of even trace amounts of SO2 possible. The instrument is capable of measuring other volcanic volatile species as well. Though the spectral evaluation of the recorded data showed that chlorine monoxide (ClO) and carbon disulfide (CS2) were both below the instrument's detection limits during the experiment, the upper limits for the X / SO2 ratio (X = ClO, CS2) could be derived, and yielded 2 × 10−3 and 0.1, respectively. The robust design and versatility of the instrument make it a promising tool for monitoring of volcanic degassing and understanding processes in a range of volcanic systems.
Janecke, S.U.; Hammond, B.F.; Snee, L.W.; Geissman, J.W.
1997-01-01
A study of extension, volcanism, and sedimentation in the middle Eocene Panther Creek half graben in central Idaho shows that it formed rapidly during an episode of voluminous volcanism. The east-southeast-tilted Panther Creek half graben developed across the northeast edge of the largest cauldron complex of the Challis volcanic field and along the northeast-trending Trans-Challis fault zone. Two normal fault systems bound the east side of the half graben. One fault system strikes northeast, parallel to the Trans-Challis fault zone, and the other strikes north to northwest. The geometry of the basin-fill deposits shows that movement on these two normal fault systems was synchronous and that both faults controlled the development of the Panther Creek half graben. Strikes of the synextension volcanic and sedimentary rocks are similar throughout the half graben, whereas dips decrease incrementally upsection from as much as 60?? to less than 10??. Previous K-Ar dates and a new 40Ar/39Ar plateau date from the youngest widespread tuff in the basin suggest that most of basin formation spanned 3 m.y. between about 47.7 Ma and 44.5 Ma. As much as 6.5 km of volcanic and sedimentary rocks were deposited during that time. Although rates of extension and subsidence were very high, intense volcanic activity continually filled the basin with ash-flow tuffs, outpacing subsidence and sedimentation, until the end of basin development. After the abrupt end of Challis volcanism, locally derived pebble to boulder conglomerate and massive, reworked ash accumulated in the half graben. These sedimentary rocks make up a small part of the basin fill in the Panther Creek half graben and were derived mainly from Proterozoic metasedimentary rocks uplifted in the footwall of the basin. The east-southeast tilt of the sedimentary rocks, their provenance and coarse grain size, and the presence of a gravity slide block derived from tilted volcanic rocks in the hanging wall attest to continued tectonism during conglomerate deposition. Provenance data from the sedimentary rocks imply that the highland in the footwall of the Panther Creek half graben was never thickly blanketed by synex-tension volcanic rocks, despite intense volcanic activity. Analysis of the Panther Creek half graben and other intra-arc rift basins supports previous interpretations that relative rates of volcanism and subsidence control the proportion of volcanic rocks deposited in intra-arc rifts.
A Proposed Community Network For Monitoring Volcanic Emissions In Saint Lucia, Lesser Antilles
NASA Astrophysics Data System (ADS)
Joseph, E. P.; Beckles, D. M.; Robertson, R. E.; Latchman, J. L.; Edwards, S.
2013-12-01
Systematic geochemical monitoring of volcanic systems in the English-speaking islands of the Lesser Antilles was initiated by the UWI Seismic Research Centre (SRC) in 2000, as part of its volcanic surveillance programme for the English-speaking islands of the Lesser Antilles. This programme provided the first time-series observations used for the purpose of volcano monitoring in Dominica and Saint Lucia, permitted the characterization of the geothermal fluids associated with them, and established baseline studies for understanding of the hydrothermal systems during periods of quiescence (Joseph et al., 2011; Joseph et al., 2013). As part of efforts to improve and expand the capacity of SRC to provide volcanic surveillance through its geothermal monitoring programme, it is necessary to develop economically sustainable options for the monitoring of volcanic emissions/pollutants. Towards this effort we intend to work in collaboration with local authorities in Saint Lucia, to develop a monitoring network for quantifying the background exposure levels of ambient concentrations of volcanic pollutants, SO2 in air and As in waters (as health significant marker elements in the geothermal emissions) that would serve as a model for the emissions monitoring network for other volcanic islands. This programme would facilitate the building of local capacity and training to monitor the hazardous exposure, through the application and transfer of a regionally available low-cost and low-technology SO2 measurement/detection system in Saint Lucia. Existing monitoring technologies to inform evidence based health practices are too costly for small island Caribbean states, and no government policies or health services measures currently exist to address/mitigate these influences. Gases, aerosols and toxic elements from eruptive and non-eruptive volcanic activity are known to adversely affect human health and the environment (Baxter, 2000; Zhang et al., 2008). Investigations into the impact of volcanic emissions on health have been almost exclusively focused on acute responses, or the effects of one-off eruptions (Horwell and Baxter, 2006). However, little attention has been paid to any long-term impacts on human health in the population centers around volcanoes as a result of exposure to passive emissions from active geothermal systems. The role of volcano tourism is also recognized as an important contributor to the economy of volcanic islands in the Lesser Antilles. However, if it is to be promoted as a sustainable sector of the tourism industry tourists, tour guides, and vendors must be made aware of the potential health hazards facing them in volcanic environments.
Berger, Byron R.; Bonham, Harold F.
1990-01-01
The western United States has been the locus of considerable subaerial volcanic and plutonic igneous activity since the mid-Mesozoic. After the destruction of the Jurassic-Cretaceous magmatic arc-trench system, subduction was re-established in the Late Mesozoic with low-angle underthrusting of the oceanic plate beneath western North America. This resulted in crustal shortening during the Late Cretaceous to Early Tertiary and removal of the mantle lithosphere west of the Rocky Mountains. Commencing in the Eocene, flat subduction ceased, the volcanic arc began to re-establish itself along the continental margin, and the hingeline along the steepening subducting plate migrated from east to west. The crust east of the migrating hingeline was exposed to hot asthenosphere, and widespread tectonics and volcanic activity resulted. Hydrothermal activity accompanied the volcanism resulting in numerous epithermal gold-silver deposits. The temporal and spatial distributions of epithermal deposits in the region are therefore systematic and can be subdivided into discrete time intervals which are related to widespread changes in magmatic activity. Time intervals selected for discussion are Pre-Cenozoic, 66-55 Ma, 54-43 Ma, 42-34 Ma, 33-24 Ma, 23-17 Ma, and <17 Ma. Many of these intervals contain both sedimentary-rock and two varieties of volcanic-rock hosted deposits (adularia-sericite and alunite-kaolinite ± pyrophyllite). Continental rifting is important to the formation of deposits, and, within any given region, it is at the initiation of deep rifting that alunite-kaolinite ± pyrophyllite type epithermal deposits are formed. Adularia-sericite type deposits are most common, being related to all compositions and styles of volcanic activity. Therefore, the volcano-tectonic context of the western United States provides a unified framework in which to understand and explore for epithermal type deposits.
Catalogue of Icelandic Volcanoes
NASA Astrophysics Data System (ADS)
Ilyinskaya, Evgenia; Larsen, Gudrun; Gudmundsson, Magnus T.; Vogfjord, Kristin; Pagneux, Emmanuel; Oddsson, Bjorn; Barsotti, Sara; Karlsdottir, Sigrun
2016-04-01
The Catalogue of Icelandic Volcanoes is a newly developed open-access web resource in English intended to serve as an official source of information about active volcanoes in Iceland and their characteristics. The Catalogue forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the effort of FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. Volcanic activity in Iceland occurs on volcanic systems that usually comprise a central volcano and fissure swarm. Over 30 systems have been active during the Holocene (the time since the end of the last glaciation - approximately the last 11,500 years). In the last 50 years, over 20 eruptions have occurred in Iceland displaying very varied activity in terms of eruption styles, eruptive environments, eruptive products and the distribution lava and tephra. Although basaltic eruptions are most common, the majority of eruptions are explosive, not the least due to magma-water interaction in ice-covered volcanoes. Extensive research has taken place on Icelandic volcanism, and the results reported in numerous scientific papers and other publications. In 2010, the International Civil Aviation Organisation (ICAO) funded a 3 year project to collate the current state of knowledge and create a comprehensive catalogue readily available to decision makers, stakeholders and the general public. The work on the Catalogue began in 2011, and was then further supported by the Icelandic government and the EU through the FP7 project FUTUREVOLC. The Catalogue of Icelandic Volcanoes is a collaboration of the Icelandic Meteorological Office (the state volcano observatory), the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere. The Catalogue is built up of chapters with texts and various mapped information for each of the 32 volcanic systems. The contributions can be classified into three types: 1. Text and other material (including maps and tephra grain size data) on geological aspects and eruption history. This constitutes the bulk of the information presented in the catalogue. 2. Sub-chapters on current alert level and activity status for each volcanic system, updated automatically with information from the IMO monitoring network. 3. Sub-chapters on eruption scenarios, based on the eruption history. We will showcase the newly opened Catalogue web resource at EGU 2016.
NASA Astrophysics Data System (ADS)
Arai, Ryuta; Kodaira, Shuichi; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki
2018-04-01
Tectonic and volcanic structures of the northern Ryukyu arc are investigated on the basis of multichannel seismic (MCS) reflection data. The study area forms an active volcanic front in parallel to the non-volcanic island chain in the eastern margin of the Eurasian plate and has been undergoing regional extension on its back-arc side. We carried out a MCS reflection experiment along two across-arc lines, and one of the profiles was laid out across the Tokara Channel, a linear bathymetric depression which demarcates the northern and central Ryukyu arcs. The reflection image reveals that beneath this topographic valley there exists a 3-km-deep sedimentary basin atop the arc crust, suggesting that the arc segment boundary was formed by rapid and focused subsidence of the arc crust driven by the arc-parallel extension. Around the volcanic front, magmatic conduits represented by tubular transparent bodies in the reflection images are well developed within the shallow sediments and some of them are accompanied by small fragments of dipping seismic reflectors indicating intruded sills at their bottoms. The spatial distribution of the conduits may suggest that the arc volcanism has multiple active outlets on the seafloor which bifurcate at crustal depths and/or that the location of the volcanic front has been migrating trenchward over time. Further distant from the volcanic front toward the back-arc (> 30 km away), these volcanic features vanish, and alternatively wide rift basins become predominant where rapid transitions from normal-fault-dominant regions to strike-slip-fault-dominant regions occur. This spatial variation in faulting patterns indicates complex stress regimes associated with arc/back-arc rifting in the northern Okinawa Trough.[Figure not available: see fulltext.
Episodes of fluvial and volcanic activity in Mangala Valles, Mars
Keske, Amber L.; Hamilton, Christopher W.; McEwen, Alfred S.; Daubar, Ingrid J.
2017-01-01
A new mapping-based study of the 900-km-long Mangala Valles outflow system was motivated by the availability of new high-resolution images and continued debates about the roles of water and lava in outflow channels on Mars. This study uses photogeologic analysis, geomorphic surface mapping, cratering statistics, and relative stratigraphy. Results show that Mangala Valles underwent at least two episodes of fluvial activity and at least three episodes of volcanic activity during the Late Amazonian. The occurrence of scoured bedrock at the base of the mapped stratigraphy, in addition to evidence provided by crater retention ages, suggests that fluvial activity preceded the deposition of two of the volcanic units. Crater counts performed at 30 locations throughout the area have allowed us to construct the following timeline: (1) formation of Noachian Highlands and possible initial flooding event(s) before ~1 Ga, (2) emplacement of Tharsis lava flows in the valley from ~700 to 1000 Ma, (3) a megaflooding event at ~700–800 Ma sourced from Mangala Fossa, (4) valley fill by a sequence of lava flows sourced from Mangala Fossa ~400–500 Ma, (5) another megaflooding event from ~400 Ma, (6) a final phase of volcanism sourced from Mangala Fossa ~300–350 Ma, and (7) emplacement of eolian sedimentary deposits in the northern portion of the valley ~300 Ma. These results are consistent with alternating episodes of aqueous flooding and volcanism in the valles. This pattern of geologic activity is similar to that of other outflow systems, such as Kasei Valles, suggesting that there is a recurring, and perhaps coupled, nature of these processes on Mars. PMID:29176911
NASA Technical Reports Server (NTRS)
Ennis, M. E.; Davies, A. G.
2005-01-01
The Jovian satellite Io is the most volcanically active body in the Solar System. Previous analyses [e.g., 1-4] indicate the presence of high-temperature silicate volcanism on Io, similar to silicate volcanism occurring on Earth. Instruments onboard the Galileo spacecraft, especially the Near Infrared Mapping Spectrometer (NIMS) and the Solid State Imager (SSI), provided much data of Io s active volcanoes throughout the duration of the Galileo mission (June 1996-September 2003). NIMS data is particularly sensitive to thermal emission from active and cooling lava over cooling times of seconds to a few years. The objective of this ongoing study of Io s volcanism is to determine the variability of thermal emission from volcanoes on Io s surface, in order to better understand the styles of eruption, and to constrain the volumes of material erupted. Ultimately, this will help to constrain the contribution of active volcanism to Io s thermal budget. Data have been analyzed for the volcano Zamama, located at 173 W, 21 N, and the power output of Zamama, the volumes of lava being erupted, and the eruption rate determined. Culann and Tupan have also been analysed in this way. This abstract primarily concentrates on Zamama.
Multidimensional analysis and probabilistic model of volcanic and seismic activities
NASA Astrophysics Data System (ADS)
Fedorov, V.
2009-04-01
A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial body, as well as to forecast of changes in its relief. As the volcanic and seismic processes are of cosmic nature and occurrence, it seems logical to investigate their chronological structure in terms of astronomical time reference system or in parameters of the Earth orbital movement. Gravitational interaction of the Earth with the moon, the Sun and planets of the Solar system forms the physical basis of this multidimensional system; it manifests itself in tidal deformations of the Earth's lithosphere and in periodical changes in the planet rotation and orbital speed. A search for chronological correlation between the Earth's volcanism and seismicity on one hand and the orbital parameters dynamic on the other shows a certain promise in relation to prognostic decisions. It should be kept in mind that the calculation of astronomical characteristics (Ephemerides), which is one of the main lines in theoretical astronomy, spans many years both in the past and in future. It seems appropriate therefore to apply the astronomical time reference system to investigations of chronological structure of volcanic and seismic processes from the methodical viewpoint, as well as for retrospective and prognostic analyses. To investigate temporal pattern of the volcanic and seismic processes and to find a degree of their dependence on tidal forces, we used the astronomical time reference system as related to the Earth's orbital movement. The system is based on substitution of calendar dates of eruption and earthquakes for corresponding values of known astronomical characteristics, such as the Earth to Sun and Earth to Moon distances, ecliptic latitude of the Moon, etc. In coordinates of astronomical parameters (JPL Planetary and Lunar Efemerides, 1997, as compiled by the Jet Propulsion Laboratory, California Institute of Technology, on the basis of DE 406 block developed by NASA), we analyzed massifs of information, both volcanological (Catalogue of the World volcanic eruptions by I.I. Gushchenko, 1979) and seismological (database of USGS/NEIC Significant Worldwide Earthquakes, 2150 B.C.- 1994 A.D.) information which displays dynamics of endogenic relief-forming processes over a period of 1900 to 1994. In the course of the analysis, a substitution of calendar variable by a corresponding astronomical one has been performed and the epoch superposition method was applied. In essence, the method consists in that the massifs of information on volcanic eruptions (over a period of 1900 to 1977) and seismic events (1900-1994) are differentiated with respect to value of astronomical parameters which correspond to the calendar dates of the known eruptions and earthquakes, regardless of the calendar year. The obtained spectra of volcanic eruptions and violent earthquake distribution in the fields of the Earth orbital movement parameters were used as a basis for calculation of frequency spectra and diurnal probability of volcanic and seismic activity. The objective of the proposed investigations is a probabilistic model development of the volcanic and seismic events, as well as GIS designing for monitoring and forecast of volcanic and seismic activities. In accordance with the stated objective, three probability parameters have been found in the course of preliminary studies; they form the basis for GIS-monitoring and forecast development. 1. A multidimensional analysis of volcanic eruption and earthquakes (of magnitude 7) have been performed in terms of the Earth orbital movement. Probability characteristics of volcanism and seismicity have been defined for the Earth as a whole. Time intervals have been identified with a diurnal probability twice as great as the mean value. Diurnal probability of volcanic and seismic events has been calculated up to 2020. 2. A regularity is found in duration of dormant (repose) periods has been established. A relationship has been found between the distribution of the repose period probability density and duration of the period. 3. Features of spatial distribution of volcanic eruptions and earthquakes of magnitude 7 were analyzed, and those related to the Earth rotation identified. Frequencies of their spatial distribution are calculated. Using those parameters as the base, a scheme (algorithm) of probabilistic monitoring (long-range forecast) has been developed for volcanic and seismic events. Refereces (in Russian): 1. Fedorov V.M. Gravitational factors and astronomy-based chronology of processes in geospheres. Moscow University Publishing House, 2000. 368 p. 2. Fedorov V.M. Comparison between chronology of the Earth volcanic activity and characteristics of its orbital motion // Vulkanologiya i seismologiya, № 5, 2001, p. 65-67. 3. Fedorov V.M. Specific features of latitudinal distribution of volcanic eruptions// Vulkanologiya i seismologiya, № 4, 2002, p.39-43. 4. Fedorov V.M. Specific features of latitudinal distribution of endogenic relief-forming processes and the rotation of the Earth // Geomorphologiya, № 1, 2003, p.3-9. 5. Fedorov V.M. Comparison between chronology of the Earth volcanic and seismic activity and characteristics of its orbital motion // Izvestiya RAS. Ser. Geogr. № 5, 2003, p.16-20. 6. Fedorov V.M. Chronological structure and probability of volcanic events as related to tidal deformation of lithosphere // Vulkanologiya i seismologiya, № 1, 2005, p.44-50. 7. Fedorov V.M. Multidimensional analysis and a probabilistic model of the activity of endogenic relief-forming processes // Geomorphology, № 2, 2007, p. 37 - 48. 8. Fedorov V.M. Multidimensional analysis - is a spatiotemporal structure of the geodynamic activity of Earth// Vestnik Moskovskogo Universiteta; Ser. 4. Geology, № 4, 2007, p. 24-31.
NASA Astrophysics Data System (ADS)
Korteniemi, J.; Kukkonen, S.
2018-04-01
Outflow channel formation on the eastern Hellas rim region is traditionally thought to have been triggered by activity phases of the nearby volcanoes Hadriacus and Tyrrhenus Montes: As a result of volcanic heating subsurface volatiles were mobilized. It is, however, under debate, whether eastern Hellas volcanism was in fact more extensive, and if there were volcanic centers separate from the identified central volcanoes. This work describes previously unrecognized structures in the Niger-Dao Valles outflow channel complex. We interpret them as volcanic edifices: cones, a shield, and a caldera. The structures provide evidence of an additional volcanic center within the valles and indicate volcanic activity both prior to and following the formation of the outflow events. They expand the extent, type, and duration of volcanic activity in the Circum-Hellas Volcanic Province and provide new information on interaction between volcanism and fluvial activity.
Abe, Harue; Ueno, Saneyoshi; Takahashi, Toshimori; Tsumura, Yoshihiko; Hasegawa, Masami
2013-01-01
Observations of interspecies interactions during volcanic activity provide important opportunities to study how organisms respond to environmental devastation. Japanese camellia (Camellia japonica L.) and its main avian pollinator, the Japanese White-eye (Zosterops japonica), offer an excellent example of such an interaction as key members of the biotic community on Miyake-jima, which erupted in 2000 and continues to emit volcanic gases. Both species exhibit higher resistance to volcanic damage than other species. We examined the effects of volcanic activity on this plant-pollinator system by estimating pollen flow and the genetic diversity of the next generation. The results showed that despite a decrease in Camellia flowers, the partitioning of allelic richness among mother-tree pollen pools and seeds decreased while the migration rate of pollen from outside the study plot and the pollen donor diversity within a fruit increased as the index of volcanic damage increased. In areas with low food (flower) density due to volcanic damage, Z. japonica ranged over larger areas to satisfy its energy needs rather than moving to areas with higher food density. Consequently, the genetic diversity of the seeds (the next plant generation) increased with the index of volcanic damage. The results were consistent with previously published data on the movement of Z. japonica based on radio tracking and the genetic diversity of Camellia pollen adhering to pollinators. Overall, our results indicated that compensation mechanisms ensured better pollination after volcanic disturbance.
NASA Astrophysics Data System (ADS)
Blankenship, D. D.; Danque, H. A.; Quartini, E.; Young, D. A.
2012-12-01
It is well established that the geological framework for the evolution of the marine-based West Antarctic ice sheet (WAIS) is the Cretaceous through Cenozoic rifting of the underlying lithosphere. The southern flank of this rift along the Whitmore Mountains underlies the upper reaches of the Ross Sea catchment of the WAIS and has been identified as a site of active subglacial volcanism. Interestingly, the northern flank of this rift represented by the upward doming of the Marie Byrd Land volcanic province has not yet been associated with active subglacial volcanism. Similarly, it is not known whether the heterogeneity of geothermal flux associated with these existing and potential rift flank volcanic provinces extends across the floor of the rift between the rift flanks. Here we present geophysical evidence for heterogeneous geothermal flux associated with active subglacial volcanism along the northern rift flank adjacent to Marie Byrd Land where it intersects the ice divide for the Ross and Amundsen Sea sectors for the WAIS. We further evaluate the evidence for the continuity of heterogeneous geothermal flux along this ice divide and across the rift floor between the two flanks of the West Antarctic rift system.
InSAR observations of active volcanoes in Latin America
NASA Astrophysics Data System (ADS)
Morales Rivera, A. M.; Chaussard, E.; Amelung, F.
2012-12-01
Over the last decade satellite-based interferometric synthetic aperture radar (InSAR) has developed into a well-known technique to gauge the status of active volcanoes. The InSAR technique can detect the ascent of magma to shallow levels of the volcanic plumbing system because new arriving magma pressurizes the system. This is likely associated with the inflation of the volcanic edifice and the surroundings. Although the potential of InSAR to detect magma migration is well known, the principal limitation was that only for few volcanoes frequent observations were acquired. The ALOS-1 satellite of the Japanese Aerospace Exploration Agency (JAXA) acquired a global L-band data set of 15-20 acquisitions during 2006-2011. Here we use ALOS InSAR and Small Baseline (SB) time-series methods for a ground deformation survey of Latin America with emphasis on the northern Andes. We present time-dependent ground deformation data for the volcanoes in Colombia, Ecuador and Peru and interpret the observations in terms of the dynamics of the volcanic systems.
Physico-chemical changes of the ground waters related to the 2011 El Hierro magmatic reactivation
NASA Astrophysics Data System (ADS)
Dionis, S.; Melián, G.; Padrón, E.; Padilla, G.; Nolasco, D.; Rodríguez, F.; Hernández, I.; Peraza, D.; Barrancos, J.; Hernández, P.; Calvo, D.; Pérez, N.
2012-04-01
The island of El Hierro (278 Km2), is the smallest, the southwesternmost and the youngest island (˜1.12 My) of the Canarian archipelago. The main geological characteristics of El Hierro consist on the presence of three convergent ridges of volcanic cones on a truncated trihedron shape and giant landslides between the three rift zones, being the most recent El Golfo on the northwest flank of the island. On July 2011 an anomalous seismic activity at Hierro Island started and suggested the initial stage of a volcanic unrest in the volcanic system. On October 10, after the occurrence of more than 10,000 earthquakes, a submarine eruption started. Evidences of this submarine volcanic eruption were visible on the sea surface to the south of La Restinga village, at the south of the island, in the form of large light-green coloured area, turbulent gas emission and the appearance of steamy volcanic fragments three days later. As part of its volcanic surveillance activities, the Instituto Volcanologico de Canarias (INVOLCAN) started a hydrogeochemical monitoring program on August 2011 in order to evaluate the temporal evolution of several physico-chemical parameters of the ground water system of El Hierro. Four observation sites were selected: three wells on the north of the island, where the seismic activity was located at the beginning of the volcano-seismic unrest (SIMO, FRON and PADO) and one horizontal well (gallery) in the south (TACO). Ground water sampling is being regularly collected, three times per week, at each observation site, and in-situ measurements of pH, conductivity and temperature measurements are performed. After 6 month of monitoring, no significant changes have been observed on pH and temperature measurements from all the observation sites. However, clear sharp decrease of conductivity was observed at SIMO on October 10 when the seismic tremor started. In addition, the strongest conductivity decrease pattern was observed later on at SIMO and PADO on November 4; one week earlier of the largest seismic event registered during this volcanic crisis on November 11 (M = 4.6). This observed physico-chemical changes in the ground water system might be explained as a result of the changes on the strain/stress field due to the seismic activity enhancing mixing of water bodies with different conductivities.
Distinguishing high surf from volcanic long-period earthquakes
Lyons, John; Haney, Matt; Fee, David; Paskievitch, John F.
2014-01-01
Repeating long-period (LP) earthquakes are observed at active volcanoes worldwide and are typically attributed to unsteady pressure fluctuations associated with fluid migration through the volcanic plumbing system. Nonvolcanic sources of LP signals include ice movement and glacial outburst floods, and the waveform characteristics and frequency content of these events often make them difficult to distinguish from volcanic LP events. We analyze seismic and infrasound data from an LP swarm recorded at Pagan volcano on 12–14 October 2013 and compare the results to ocean wave data from a nearby buoy. We demonstrate that although the events show strong similarity to volcanic LP signals, the events are not volcanic but due to intense surf generated by a passing typhoon. Seismo-acoustic methods allow for rapid distinction of volcanic LP signals from those generated by large surf and other sources, a critical task for volcano monitoring.
NASA Astrophysics Data System (ADS)
Karabacak, Volkan; Uysal, I. Tonguç; Ünal-İmer, Ezgi; Mutlu, Halim; Zhao, Jian-xin
2017-12-01
Central Anatolia represents one of the most outstanding examples of intraplate deformation related to both continental collision and back-arc extension generating non-uniformly distributed stress fields. In this study, we provide direct field evidence of various stress directions and investigate carbonate-filled fracture systems in the Central Anatolian Volcanic Province using U/Th geochronology and isotope geochemistry for evaluating the episodes of latest volcanic activity under regional stress. Field data reveal two independent fracture systems in the region. Successive fracture development has been controlled by two different volcanic eruption centers (Hasandağ Composite Volcano and Acıgöl Caldera). Trace element, and stable (C and O) and radiogenic (Sr) isotope compositions of carbonate veins indicate different fluid migration pathways for two different fracture systems. The U/Th age data for carbonate veins of two independent fracture systems indicate that the crustal deformation intensified during 7 episodic periods in the last 150 ka. The NNE-trending first fracture system was formed as a result of strain cycles in a period from 149 ± 2.5, through 91 ± 1.5 to 83 ± 2.5 ka BP. Subsequent deformation events represented by the ENE-trending second fracture zone have been triggered during the period of 53 ± 3.5, 44 ± 0.6 and 34 ± 1 ka BP before the first fracture zone resumed the activity at about 4.7 ± 0.15 ka BP. Although further studies are needed to evaluate statistical significance of age correlations, the periods of carbonate precipitation inferred from U-Th age distributions in this study are comparable with the previous dating results of surrounding volcanic eruption events.
Progress in Near Real-Time Volcanic Cloud Observations Using Satellite UV Instruments
NASA Astrophysics Data System (ADS)
Krotkov, N. A.; Yang, K.; Vicente, G.; Hughes, E. J.; Carn, S. A.; Krueger, A. J.
2011-12-01
Volcanic clouds from explosive eruptions can wreak havoc in many parts of the world, as exemplified by the 2010 eruption at the Eyjafjöll volcano in Iceland, which caused widespread disruption to air traffic and resulted in economic impacts across the globe. A suite of satellite-based systems offer the most effective means to monitor active volcanoes and to track the movement of volcanic clouds globally, providing critical information for aviation hazard mitigation. Satellite UV sensors, as part of this suite, have a long history of making unique near-real time (NRT) measurements of sulfur dioxide (SO2) and ash (aerosol Index) in volcanic clouds to supplement operational volcanic ash monitoring. Recently a NASA application project has shown that the use of near real-time (NRT,i.e., not older than 3 h) Aura/OMI satellite data produces a marked improvement in volcanic cloud detection using SO2 combined with Aerosol Index (AI) as a marker for ash. An operational online NRT OMI AI and SO2 image and data product distribution system was developed in collaboration with the NOAA Office of Satellite Data Processing and Distribution. Automated volcanic eruption alarms, and the production of volcanic cloud subsets for multiple regions are provided through the NOAA website. The data provide valuable information in support of the U.S. Federal Aviation Administration goal of a safe and efficient National Air Space. In this presentation, we will highlight the advantages of UV techniques and describe the advances in volcanic SO2 plume height estimation and enhanced volcanic ash detection using hyper-spectral UV measurements, illustrated with Aura/OMI observations of recent eruptions. We will share our plan to provide near-real-time volcanic cloud monitoring service using the Ozone Mapping and Profiler Suite (OMPS) on the Joint Polar Satellite System (JPSS).
Global volcanic aerosol properties derived from emissions, 1990-2015, using CESM1(WACCM)
NASA Astrophysics Data System (ADS)
Mills, Michael; Schmidt, Anja; Easter, Richard; Solomon, Susan; Kinnison, Douglas; Ghan, Steven; Neely, Ryan; Marsh, Daniel; Conley, Andrew; Bardeen, Charles; Gettelman, Andrew
2016-04-01
Accurate representation of global stratospheric aerosols from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-losses that may be linked to volcanic activity. Attribution of climate variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the rate of global average temperature increases. We have compiled a database of volcanic SO2 emissions and plume altitudes for eruptions from 1990 to 2015, and developed a new prognostic capability for simulating stratospheric sulfate aerosols in the Community Earth System Model (CESM). We combined these with other non-volcanic emissions of sulfur sources to reconstruct global aerosol properties from 1990 to 2015. Our calculations show remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of stratospheric aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD calculations represent a clear improvement over available satellite-based analyses, which generally ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD calculations greatly improve on that provided for the Chemistry-Climate Model Initiative, which misses about 60% of the SAD measured in situ on average during both volcanically active and volcanically quiescent periods. The stark differences in SAOD and SAD compared to other data sets will have significant effects on calculations of the radiative forcing of climate and global stratospheric chemistry over the period 2005-2015. In light of these results, the impact of volcanic aerosols in reducing the rate of global average temperature increases since the year 2000 should be revisited. We have made our calculated aerosol properties from January 1990 to November 2015 available for public download.
Rapid onset of mafic magmatism facilitated by volcanic edifice collapse
NASA Astrophysics Data System (ADS)
Cassidy, M.; Watt, S. F. L.; Talling, P. J.; Palmer, M. R.; Edmonds, M.; Jutzeler, M.; Wall-Palmer, D.; Manga, M.; Coussens, M.; Gernon, T.; Taylor, R. N.; Michalik, A.; Inglis, E.; Breitkreuz, C.; Le Friant, A.; Ishizuka, O.; Boudon, G.; McCanta, M. C.; Adachi, T.; Hornbach, M. J.; Colas, S. L.; Endo, D.; Fujinawa, A.; Kataoka, K. S.; Maeno, F.; Tamura, Y.; Wang, F.
2015-06-01
Volcanic edifice collapses generate some of Earth's largest landslides. How such unloading affects the magma storage systems is important for both hazard assessment and for determining long-term controls on volcano growth and decay. Here we present a detailed stratigraphic and petrological analyses of volcanic landslide and eruption deposits offshore Montserrat, in a subduction zone setting, sampled during Integrated Ocean Drilling Program Expedition 340. A large (6-10 km3) collapse of the Soufrière Hills Volcano at ~130 ka was followed by explosive basaltic volcanism and the formation of a new basaltic volcanic center, the South Soufrière Hills, estimated to have initiated <100 years after collapse. This basaltic volcanism was a sharp departure from the andesitic volcanism that characterized Soufrière Hills' activity before the collapse. Mineral-melt thermobarometry demonstrates that the basaltic magma's transit through the crust was rapid and from midcrustal depths. We suggest that this rapid ascent was promoted by unloading following collapse.
Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)
NASA Astrophysics Data System (ADS)
Ruch, J.; Vezzoli, L.; De Rosa, R.; Di Lorenzo, R.; Acocella, V.
2016-02-01
The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic, and structural field data along the strike-slip central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures, and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activities steadily migrated eastward and currently focus on a 10 km long × 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.
Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array
NASA Astrophysics Data System (ADS)
Jurado, Maria Jose; Molino, Erik; Lopez, Carmen
2013-04-01
A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.
Submarine geology and geomorphology of active Sub-Antarctic volcanoes: Heard and McDonald Islands
NASA Astrophysics Data System (ADS)
Watson, S. J.; Coffin, M. F.; Whittaker, J. M.; Lucieer, V.; Fox, J. M.; Carey, R.; Arculus, R. J.; Bowie, A. R.; Chase, Z.; Robertson, R.; Martin, T.; Cooke, F.
2016-12-01
Heard and McDonald Islands (HIMI) are World Heritage listed sub-Antarctic active volcanic islands in the Southern Indian Ocean. Built atop the Kerguelen Plateau by Neogene-Quaternary volcanism, HIMI represent subaerial exposures of the second largest submarine Large Igneous Province globally. Onshore, processes influencing island evolution include glaciers, weathering, volcanism, vertical tectonics and mass-wasting (Duncan et al. 2016). Waters surrounding HIMI are largely uncharted, due to their remote location. Hence, the extent to which these same processes shape the submarine environment around HIMI has not been investigated. In early 2016, we conducted marine geophysical and geologic surveys around HIMI aboard RV Investigator (IN2016_V01). Results show that volcanic and sedimentary features prominently trend east-west, likely a result of erosion by the eastward flowing Antarctic Circumpolar Current and tidal currents. However, spatial patterns of submarine volcanism and sediment distribution differ substantially between the islands. >70 sea knolls surround McDonald Island suggesting substantial submarine volcanism. Geophysical data reveals hard volcanic seafloor around McDonald Island, whereas Heard Island is characterised by sedimentary sequences tens of meters or more thick and iceberg scours - indicative of glacial processes. Differences in submarine geomorphology are likely due to the active glaciation of Heard Island and differing rock types (Heard: alkali basalt, McDonald: phonolite), and dominant products (clastics vs. lava). Variations may also reflect different magmatic plumbing systems beneath the two active volcanoes (Heard produces larger volumes of more focused lava, whilst McDonald extrudes smaller volumes of more evolved lavas from multiple vents across the edifice). Using geophysical data, corroborated with new and existing geologic data, we present the first geomorphic map revealing the processes that shape the submarine environment around HIMI.
Volcanology: Lessons learned from Synthetic Aperture Radar imagery
NASA Astrophysics Data System (ADS)
Pinel, V.; Poland, M. P.; Hooper, A.
2014-12-01
Twenty years of continuous Earth observation by satellite SAR have resulted in numerous new insights into active volcanism, including a better understanding of subsurface magma storage and transport, deposition of volcanic materials on the surface, and the structure and development of volcanic edifices. This massive archive of data has resulted in fundamental leaps in our understanding of how volcanoes work - for example, identifying magma accumulation at supposedly quiescent volcanoes, even in remote areas or in the absence of ground-based data. In addition, global compilations of volcanic activity facilitate comparison of deformation behavior between different volcanic arcs and statistical evaluation of the strong link between deformation and eruption. SAR data are also increasingly used in timely hazard evaluation thanks to decreases in data latency and growth in processing and analysis techniques. The existing archive of SAR imagery is on the cusp of being enhanced by a new generation of satellite SAR missions, in addition to ground-based and airborne SAR systems, which will provide enhanced temporal and spatial resolution, broader geographic coverage, and improved availability of data to the scientific community. Now is therefore an opportune time to review the contributions of SAR imagery to volcano science, monitoring, and hazard mitigation, and to explore the future potential for SAR in volcanology. Provided that the ever-growing volume of SAR data can be managed effectively, we expect the future application of SAR data to expand from being a research tool for analyzing volcanic activity after the fact, to being a monitoring and research tool capable of imaging a wide variety of processes on different temporal and spatial scales as those processes are occurring. These data can then be used to develop new models of how volcanoes work and to improve quantitative forecasts of volcanic activity as a means of mitigating risk from future eruptions.
NASA Astrophysics Data System (ADS)
Pearce, R.; Mitchell, T. M.; Moorkamp, M.; Araya, J.; Cembrano, J. M.; Yanez, G. A.; Hammond, J. O. S.
2017-12-01
At convergent plate boundaries, volcanic orogeny is largely controlled by major thrust fault systems that act as magmatic and hydrothermal fluid conduits through the crust. In the south-central Andes, the volcanically and seismically active Tinguiririca and Planchon-Peteroa volcanoes are considered to be tectonically related to the major El Fierro thrust fault system. These large scale reverse faults are characterized by 500 - 1000m wide hydrothermally altered fault cores, which possess a distinct conductive signature relative to surrounding lithology. In order to establish the subsurface architecture of these fault systems, such conductivity contrasts can be detected using the magnetotelluric method. In this study, LEMI fluxgate-magnetometer long-period and Metronix broadband MT data were collected at 21 sites in a 40km2 survey grid that surrounds this fault system and associated volcanic complexes. Multi-remote referencing techniques is used together with robust processing to obtain reliable impedance estimates between 100 Hz and 1,000s. Our preliminary inversion results provide evidence of structures within the 10 - 20 km depth range that are attributed to this fault system. Further inversions will be conducted to determine the approximate depth extent of these features, and ultimately provide constraints for future geophysical studies aimed to deduce the role of these faults in volcanic orogeny and hydrothermal fluid migration processes in this region of the Andes.
NASA Astrophysics Data System (ADS)
Feuillet, Nathalie; Beauducel, FrançOis; Tapponnier, Paul
2011-10-01
The oblique convergence between North American and Caribbean plates is accommodated in a bookshelf faulting manner by active, oblique-normal faults in the northern part of the Lesser Antilles arc. In the last 20 years, two M > 6 earthquakes occurred along a large, arc parallel, en echelon fault system, the 16 March 1985 in Redonda and 21 November 2004 in Les Saintes. A better understanding of active faulting in this region permit us to review the location and magnitude of historical earthquakes by using a regional seismic attenuation law. Several others moderate earthquakes may have occurred along the en echelon fault system implying a strong seismic hazard along the arc. These faults control the effusion of volcanic products and some earthquakes seem to be correlated in time with volcanic unrest. Shallow earthquakes on intraplate faults induced normal stress and pressure changes around neighboring volcano and may have triggered volcanic activity. The Redonda earthquake could have initiated the 1995 eruption of Montserrat's Soufrière Hills by compressing its plumbing system. Conversely, pressure changes under the volcano increased Coulomb stress changes and brought some faults closer to failure, promoting seismicity. We also discuss the magnitude of the largest 11 January 1839 and 8 February 1843 megathrust interplate earthquakes. We calculate that they have increased the stress on some overriding intraplate faults and the extensional strain beneath several volcanoes. This may explain an increase of volcanic and seismic activity in the second half of the 19th century culminating with the devastating, 1902 Mount Pelée eruption.
NASA Astrophysics Data System (ADS)
Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian
2016-04-01
The 29th of May 2006 numerous eruption sites started in northeast Java, Indonesia following to a M6.3 earthquake striking the island.Within a few weeks an area or nearly 2 km2 was covered by boiling mud and rock fragments and a prominent central crater (named Lusi) has been erupting for the last 9.5 years. The M.6.3 seismic event also triggered the activation of the Watukosek strike slip fault system that originates from the Arjuno-Welirang volcanic complex and extends to the northeast of Java hosting Lusi and other mud volcanoes. Since 2006 this fault system has been reactivated in numerous instances mostly following to regional seismic and volcanic activity. However the mechanism controlling this activity have never been investigated and remain poorly understood. In order to investigate the relationship existing between seismicity, volcanism, faulting and Lusi activity, we have deployed a network of 31 seismometers in the framework of the ERC-Lusi Lab project. This network covers a large region that monitors the Lusi activity, the Watukosek fault system and the neighboring Arjuno-Welirang volcanic complex. In particular, to understand the consistent pattern of the source mechanism, relative to the general tectonic stress in the study area, a detailed analysis has been carried out by performing the moment tensor inversion for the near field data collected from the network stations. Furthermore these data have been combined with the near field data from the regional network of the Meteorological, Climatological and Geophysical Agency of Indonesia that covers the whole country on a broader scale. Keywords: Lusi, microseismic event, focal mechanism
MINERVA: An INSAR Monitoring Service for Volcanic Hazard
NASA Astrophysics Data System (ADS)
Tampellini, M. L.; Sansosti, E.; Usai, S.; Lanari, R.; Borgstrom, S.; van Persie, M.; Ricciardi, G. P.; Maddalena, V.; Cicero, L.; Pepe, A.
2004-06-01
MINERVA (Monitoring by Interferometric SAR of Environmental Risk in Volcanic Areas) is a small scale service demonstration project financed by ESA in the Data User Programme framework. The objective of the project is the design, development and assessment of a demonstrative information service based on the interferometric processing of images acquired from either the ASAR instrument on board ENVISAT-I or SAR instruments on board ERS1/2. The system is based on a new approach for the processing of INSAR data, which allows to optimize the quality of interferograms spanning from 35 days up to several years, and to merge them to generate a single solution describing the temporal evolution of the ground deformations in the examined risk area. The system allows to update this solution each time a new SAR image is available, and constitutes therefore an innovative tool for monitoring of the ground displacements in risk areas. The system has been implemented and demonstrated at Osservatorio Vesuviano (Naples, Italy), which is the institution responsible for monitoring the volcanic phenomena in the Neapolitan volcanic district, and for alerting the Italian civil authorities (''Protezione Civile'') in case such monitoring activity reveals signals of imminent eruptions. In particular, the MINERVA system has been used to monitor the ground deformations at the Phlegrean Fields, a densely populated, high-hazard zone which is subject to alternate phases of uplift and subsidence, accompanied often by seismic activity.
NASA Technical Reports Server (NTRS)
Cauthen, Clay; Coombs, Cassandra R.
1996-01-01
In 1891, the Virunga Mountains of Eastern Zaire were first acknowledged as volcanoes, and since then, the Virunga Mountain chain has demonstrated its potentially violent volcanic nature. The Virunga Mountains lie across the Eastern African Rift in an E-W direction located north of Lake Kivu. Mt. Nyamuragira and Mt. Nyiragongo present the most hazard of the eight mountains making up Virunga volcanic field, with the most recent activity during the 1970-90's. In 1977, after almost eighty years of moderate activity and periods of quiescence, Mt. Nyamuragira became highly active with lava flows that extruded from fissures on flanks circumscribing the volcano. The flows destroyed vast areas of vegetation and Zairian National Park areas, but no casualties were reported. Mt. Nyiragongo exhibited the same type volcanic activity, in association with regional tectonics that effected Mt. Nyamuragira, with variations of lava lake levels, lava fountains, and lava flows that resided in Lake Kivu. Mt. Nyiragongo, recently named a Decade volcano, presents both a direct and an indirect hazard to the inhabitants and properties located near the volcano. The Virunga volcanoes pose four major threats: volcanic eruptions, lava flows, toxic gas emission (CH4 and CO2), and earthquakes. Thus, the volcanoes of the Eastern African volcanic field emanate harm to the surrounding area by the forecast of volcanic eruptions. During the JSC Summer Fellowship program, we will acquire and collate remote sensing, photographic (Space Shuttle images), topographic and field data. In addition, maps of the extent and morphology(ies) of the features will be constructed using digital image information. The database generated will serve to create a Geographic Information System for easy access of information of the Eastem African volcanic field. The analysis of volcanism in Eastern Africa will permit a comparison for those areas from which we have field data. Results from this summer's work will permit further study and monitoring of the volcanic activity in the area. This is of concern due to the large numbers of refugees fleeing into Zaire where they are being positioned at the base of Mt. Nyiragongo. The refugees located at the base of the volcano are in direct hazard of suffocation by gas emission and destruction by lava flow. The results from this summer study will be used to secure future funding to enable continuation of this project.
600 kyr of Hydrothermal Activity on the Cleft Segment of the Juan de Fuca Ridge
NASA Astrophysics Data System (ADS)
Middleton, J. L.; Mukhopadhyay, S.; Langmuir, C. H.; Costa, K.; McManus, J. F.; Katz, R. F.; Huybers, P. J.; Winckler, G.; Li, Y.
2017-12-01
Pressure fluctuations caused by glacially driven variations in sea level may modulate magmatic and hydrothermal output at submarine volcanic centers, with falling sea level driving increased volcanic activity. In turn, glacially paced changes in submarine volcanism could induce globally synchronous variations in the delivery of bioavailable iron and CO2 from mid-ocean ridges and thus provide solid-Earth feedbacks into the climate system. While evaluation of submarine volcanic output on orbital-timescales is technically challenging, near-ridge sediment cores hosting hydrothermal plume precipitates provide continuous, spatially integrated, and datable records to investigate the long-term behavior of hydrothermal systems. We will present new sedimentary records of hydrothermal variability spanning the past 600 kyr on the Cleft Segment of the Juan de Fuca Ridge in the Northeast Pacific. As an intermediate spreading-rate ridge, the Juan de Fuca Ridge is hypothesized to be particularly sensitive to sea level forcing at the Milankovitch frequencies of Pleistocene glacial cycles. Thus, the new records can be used to examine the connection between sea level and hydrothermal activity over multiple glacial cycles. Hydrothermal input is determined from iron and copper, with a titanium-based correction for lithogenic contributions. Sedimentary fluxes are then constrained using excess thorium-230 and extraterrestrial helium-3 as constant flux proxies. Preliminary results indicate 10-fold changes in hydrothermal iron and copper fluxes over the past 600 kyr and suggest a quasiperiodic variability in hydrothermal deposition on 100 to 120 kyr cycles. Comparison of the Juan de Fuca record with model predictions for an intermediate spreading ridge forced by Pleistocene glacial cycles finds frequent coincidence between predicted positive anomalies in magmatic output and observed peaks in hydrothermal deposition. This work encourages the continued exploration of the relationship between glacial cycles and submarine volcanic activity.
NASA Astrophysics Data System (ADS)
Magalhaes, F. P.; Lopes, R. M. C.; Rathbun, J. A.; Gonzalez, W. D.; Morgenthaler, J. P.; Echer, E.; Echer, M. P. D. S.
2015-12-01
Io, the innermost of the Jupiter's four Galilean moons, is a remarkable object in the Solar System, due to its intense and energetic volcanic activity. The volcanic sulfur and oxygen in Io's tenuous atmosphere escapes forming an extended neutral cloud around Io and Jupiter. Subsequently, by ionization and pickup ions, a ring of charged particles encircling Jupiter is created, forming the Io plasma torus. Considering this scenario, it is reasonable to expect that the Io plasma torus should be affected by changes in Io's volcanism. Interactions between Io and the Jovian environment is unique and yet not very well understood. Here we present two sets of observations. One from the Galileo Near-Infrared Imaging Spectrograph (NIMS) instrument, which obtained spectral image cubes between 0.7 and 5.2 microns. The other dataset is from ground-based observations of the [SII] 6731 Å emission lines from the Io plasma torus, obtained at McMath-Pierce Solar Telescope, at Kitt Peak. Our dataset from the [SII] 6731 Å emission lines cover more years than the one from the NIMS data. The years presented in this work for a comparative study are from 1998 through 2001. Using the NIMS instrument we were able to identify which volcanoes were active and measure their level of activity. From the [SII] 6731 Å emission lines we were able to trace the densest part of the torus and also the brightness of both ansa. By comparing the results from the Galileo instrument and the ground-based observations, we are exploring how the Io plasma torus responds to large eruptions from Io. We aim with this study to help improve our understanding of this complex coupled system, Jupiter-Io.
Duffield, Wendell A.; ,
1992-01-01
Most high-temperature, hydrothermal-convection systems probably are heated by bodies of magma (and/or hot plutons), whose presence is suggested by geologically young, if not active volcanism. Study of a young volcanic area provides information about the general thermal status of the underlying heat source, and detailed information about the time-space-volume-composition (TSVC) characteristics for a volcanic area can help define temperature at least semi-quantitatively when interpreted within the framework of published magma-cooling models. Thus, TSVC study is a fairly powerful and cost effective tool in the pre-drilling phase of an exploration program in young volcanic terrane. Examples are described for Coso, California; Agua de Pau, Azores; and Tecuamburro, Guatemala.
Venezky, Dina Y.; Newhall, Christopher G.
2007-01-01
WOVOdat Overview During periods of volcanic unrest, the ability to forecast near future activity has been a primary concern for human populations living near volcanoes. Our ability to forecast future activity and mitigate hazards is based on knowledge of previous activity at the volcano exhibiting unrest and knowledge of previous activity at similar volcanoes. A small set of experts with past experience are often involved in forecasting. We need to both preserve the knowledge the experts use and continue to investigate volcanic data to make better forecasts. Advances in instrumentation, networking, and data storage technologies have greatly increased our ability to collect volcanic data and share observations with our colleagues. The wealth of data creates numerous opportunities for gaining a better understanding of magmatic conditions and processes, if the data can be easily accessed for comparison. To allow for comparison of volcanic unrest data, we are creating a central database called WOVOdat. WOVOdat will contain a subset of time-series and geo-referenced data from each WOVO observatory in common and easily accessible formats. WOVOdat is being created for volcano experts in charge of forecasting volcanic activity, scientists investigating volcanic processes, and the public. The types of queries each of these groups might ask range from, 'What volcanoes were active in November of 2002?' and 'What are the relationships between tectonic earthquakes and volcanic processes?' to complex analyses of volcanic unrest to determine what future activity might occur. A new structure for storing and accessing our data was needed to examine processes across a wide range of volcanologic conditions. WOVOdat provides this new structure using relationships to connect the data parameters such that searches can be created for analogs of unrest. The subset of data that will fill WOVOdat will continue to be collected by the observatories, who will remain the primary archives of raw and detailed data on individual episodes of unrest. MySQL, an Open Source database, was chosen as the WOVOdat database for its integration with common web languages. The question of where the data will be stored and how the disparate data sets will be integrated will not be discussed in detail here. The focus of this document is to explain the data types, formats, and table organization chosen for WOVOdat 1.0. It was written for database administrators, data loaders, query writers, and anyone who monitors volcanoes. We begin with an overview of several challenges faced and solutions used in creating the WOVOdat schema. Specifics are then given for the parameters and table organization. After each table organization section, basic create table statements are included for viewing the database field formats. In the next stage of the project, scripts will be needed for data conversion, entry, and cleansing. Views will also need to be created once the data have been loaded and the basic queries are better known. Many questions and opportunities remain. We look forward to the growth and continual improvement in efficiency of the system. We hope WOVOdat will improve our understanding of magmatic systems and help mitigate future volcanic hazards.
The failed eruption of Mt. Etna in December 2005: Evidence from volcanic tremor analyses
NASA Astrophysics Data System (ADS)
Falsaperla, S.; Barberi, G.; Cocina, O.
2013-12-01
Strong changes in seismic radiation, comparable to those preceding and/or accompanying eruptive activity in recent years, were recorded at Mt. Etna volcano, Italy, from November 2005 to January 2006. The amplitude of volcanic tremor peaked in mid-December 2005 after a continuous, slow increase from August 2005 onward, during which neither effusive nor paroxysmal activity was observed by volcanologists and alpine guides. During this time span, the centroid locations of volcanic tremor moved toward the surface, more and more clustered below the summit craters. The application of pattern classification analysis based on Self-Organizing Maps and fuzzy clustering to volcanic tremor data highlighted variations in the frequency domain as well. These changes were temporally associated with ground deformation variations, as indicative of a mild inflation of the summit of the volcano, and with a conspicuous increase in the SO2 plume-flux emission. Overall, we interpret this evidence as the result of recharging of the volcanic feeder at depth (>3 km below sea level) during which magma did not reach the shallow plumbing system.
Airborne volcanic ash; a global threat to aviation
Neal, Christina A.; Guffanti, Marianne C.
2010-01-01
The world's busy air traffic corridors pass over or downwind of hundreds of volcanoes capable of hazardous explosive eruptions. The risk to aviation from volcanic activity is significant - in the United States alone, aircraft carry about 300,000 passengers and hundreds of millions of dollars of cargo near active volcanoes each day. Costly disruption of flight operations in Europe and North America in 2010 in the wake of a moderate-size eruption in Iceland clearly demonstrates how eruptions can have global impacts on the aviation industry. Airborne volcanic ash can be a serious hazard to aviation even hundreds of miles from an eruption. Encounters with high-concentration ash clouds can diminish visibility, damage flight control systems, and cause jet engines to fail. Encounters with low-concentration clouds of volcanic ash and aerosols can accelerate wear on engine and aircraft components, resulting in premature replacement. The U.S. Geological Survey (USGS), in cooperation with national and international partners, is playing a leading role in the international effort to reduce the risk posed to aircraft by volcanic eruptions.
NASA Astrophysics Data System (ADS)
Tanaka, Yoshikazu
1993-06-01
Geomagnetic changes associated with the volcanic activity of Aso volcano were detected with a dense network of continuously recording proton-precession magnetometers during the period from June 1989 to June 1990. Magnetic date clearly indicate that changes in the magnetization within the volcano are most probably caused by temperature changes. This activity can be divided into five stages, which are characterized by magnetization and demagnetization of the volcano. These magnetic changes with durations of a few months are definitely correlated with some typical volcanic events at the crater as well as the volcanic tremor activity. The demagnetization stage appears when the vent is covered by a water pool or the volcanic activity is enhanced. The magnetization stage follows the opening of a vent and several large explosions which make the vent permeable. The source of magnetic changes lies at a depth of about 200 m below the crater rim in the southwestern part of the active crater. Magnetic moments responsible for observed magnetic changes at stages 1, 2 and 4 are 3.4, -5.2 and -2.2 Wbm, respectively. The corresponding source volume is estimated as a single sphere of radius 40-50 m or a spherical shell of 100 m or so. An effective mechanism of rapid heating/cooling exists, which is ascribed to the interaction of groundwater and superheated vapor, i.e., a shallow hydrothermal system. This hydrothermal system driven by the surface cap of the vent, controls every feature of the eruptions at the final outlet of Aso volcano.
Analogue and numerical modelling in Volcanology: Development, evolution and future challenges
NASA Astrophysics Data System (ADS)
Kavanagh, Janine; Annen, Catherine
2015-04-01
Since the inception of volcanology as a science, analogue modelling has been an important methodology to study the formation and evolution of the volcanic system. With the development of computing capacities numerical modelling has become a widely used tool to explore magmatic process quantitatively and try to predict eruptive behaviour. Processes of interest include the development and establishment of the volcanic plumbing system, the propagation of magma to the surface to feed eruptions, the construction of a volcanic edifice and the dynamics of eruptive processes. An important ultimate aim is to characterise and measure the experimental volcanic and magmatic phenomena, to inform and improve eruption forecasting for hazard assessments. In nature, volcanic activity is often unpredictable and in an environment that is highly changeable and forbidding. Volcanic or magmatic activity cannot be repeated at will and has many (often unconstrained) variables. The processes of interest are frequently hidden from view, for example occurring beneath the Earth's surface or within a pyroclastic flow or plume. The challenges of working in volcanic terrains and gathering 'real' volcano data mean that analogue and numerical models have gained significant importance as a method to study the geometrics, kinematics, and dynamics of volcano growth and eruption. A huge variety of analogue materials have been used in volcanic modelling, often bringing out the more creative side of the scientific mind. As with all models, the choice of appropriate materials and boundary conditions are critical for assessing the relevance and usefulness of the experimental results. Numerical simulation has proved a useful tool to test the physical plausibility of conceptual models and presents the advantage of being applicable at different scales. It is limited however in its predictive power by the number of free parameters needed to describe geological systems. In this special symposium we will attempt to review the use and significance of analogue and numerical modelling in volcanological research over the past century to the present day. We introduce some of the new techniques being developed through a multidisciplinary approach, and offer some perspectives on how these might be used to help shape the direction of future research in volcanology.
Geodetic Volcano Monitoring Research in Canary Islands: Recent Results
NASA Astrophysics Data System (ADS)
Fernandez, J.; Gonzalez, P. J.; Arjona, A.; Camacho, A. G.; Prieto, J. F.; Seco, A.; Tizzani, P.; Manzo, M. R.; Lanari, R.; Blanco, P.; Mallorqui, J. J.
2009-05-01
The Canarian Archipelago is an oceanic island volcanic chain with a long-standing history of volcanic activity (> 40 Ma). It is located off the NW coast of the African continent, lying over a transitional crust of the Atlantic African passive margin. At least 12 eruptions have been occurred on the islands of Lanzarote, Tenerife and La Palma in the last 500 years. Volcanism manifest predominantly as basaltic strombolian monogenetic activity (whole archipelago) and central felsic volcanism (active only in Tenerife Island). We concentrate our studies in the two most active islands, Tenerife and La Palma. In these islands, we tested different methodologies of geodetic monitoring systems. We use a combination of ground- and space-based techniques. At Tenerife Island, a differential interferometric study was performed to detect areas of deformation. DInSAR detected two clear areas of deformation, using this results a survey-based GPS network was designed and optimized to control those deformations and the rest of the island. Finally, using SBAS DInSAR results weak spatial long- wavelength subsidence signals has been detected. At La Palma, the first DInSAR analysis have not shown any clear deformation, so a first time series analysis was performed detecting a clear subsidence signal at Teneguia volcano, as for Tenerife a GPS network was designed and optimized taking into account stable and deforming areas. After several years of activities, geodetic results served to study ground deformations caused by a wide variety of sources, such as changes in groundwater levels, volcanic activity, volcano-tectonics, gravitational loading, etc. These results proof that a combination of ground-based and space-based techniques is suitable tool for geodetic volcano monitoring in Canary Islands. Finally, we would like to strength that those results could have serious implications on the continuous geodetic monitoring system design and implementation for the Canary Islands which is under development nowadays.
NASA Astrophysics Data System (ADS)
Kovacs, Marinel; Seghedi, Ioan; Yamamoto, Masatsugu; Fülöp, Alexandrina; Pécskay, Zoltán; Jurje, Maria
2017-12-01
We present the first comprehensive study of Miocene volcanic rocks of the Oaş-Gutâi Volcanic Zone (OGVZ), Romania, which are exposed in the eastern Transcarpathian Basin (TB), within the Eastern Alpine-Western Carpathian-Northern Pannonian (ALCAPA) block. Collision between the ALCAPA block and Europe at 18-16 Ma produced the Carpathian fold-and-thrust belt. This was followed by clockwise rotation and an extensional regime forming core complexes of the separated TB fragment. Based on petrographic and geochemical data, including Srsbnd Nd isotopic compositions and Ksbnd Ar ages, we distinguish three types of volcanic activity in the OGVZ: (1) early Miocene felsic volcanism that produced caldera-related ignimbrites in the Gutâi Mountains (15.4-14.8 Ma); (2) widespread middle-late Miocene intermediate/andesitic volcanism (13.4-7.0 Ma); and (3) minor late Miocene andesitic/rhyolitic volcanism comprising the Oraşu Nou rhyolitic volcano and several andesitic-dacitic domes in the Oaş Mountains (11.3-9.5 Ma). We show that magma evolution in the OGVZ was controlled by assimilation-fractional crystallization and magma-mixing processes within an interconnected multi-level crustal magmatic reservoir. The evolution of volcanic activity within the OGVZ was controlled by the geodynamics of the Transcarpathian Basin. The early felsic and late intermediate Miocene magmas were emplaced in a post-collisional setting and were derived from a mantle source region that was modified by subduction components (dominantly sediment melts) and lower crust. The style of volcanism within the eastern TB system exhibits spatial variations, with andesitic composite volcanoes (Gutâi Mountains) observed at the margins, and isolated andesitic-rhyolitic monogenetic volcanoes (Oaş Mountains) in the center of the basin.
Temporal and Spatial Analysis of Monogenetic Volcanic Fields
NASA Astrophysics Data System (ADS)
Kiyosugi, Koji
Achieving an understanding of the nature of monogenetic volcanic fields depends on identification of the spatial and temporal patterns of volcanism in these fields, and their relationships to structures mapped in the shallow crust and inferred in the deep crust and mantle through interpretation of geochemical, radiometric and geophysical data. We investigate the spatial and temporal distributions of volcanism in the Abu Monogenetic Volcano Group, Southwest Japan. E-W elongated volcano distribution, which is identified by a nonparametric kernel method, is found to be consistent with the spatial extent of P-wave velocity anomalies in the lower crust and upper mantle, supporting the idea that the spatial density map of volcanic vents reflects the geometry of a mantle diapir. Estimated basalt supply to the lower crust is constant. This observation and the spatial distribution of volcanic vents suggest stability of magma productivity and essentially constant two-dimensional size of the source mantle diapir. We mapped conduits, dike segments, and sills in the San Rafael sub-volcanic field, Utah, where the shallowest part of a Pliocene magmatic system is exceptionally well exposed. The distribution of conduits matches the major features of dike distribution, including development of clusters and distribution of outliers. The comparison of San Rafael conduit distribution and the distributions of volcanoes in several recently active volcanic fields supports the use of statistical models, such as nonparametric kernel methods, in probabilistic hazard assessment for distributed volcanism. We developed a new recurrence rate calculation method that uses a Monte Carlo procedure to better reflect and understand the impact of uncertainties of radiometric age determinations on uncertainty of recurrence rate estimates for volcanic activity in the Abu, Yucca Mountain Region, and Izu-Tobu volcanic fields. Results suggest that the recurrence rates of volcanic fields can change by more than one order of magnitude on time scales of several hundred thousand to several million years. This suggests that magma generation rate beneath volcanic fields may change over these time scales. Also, recurrence rate varies more than one order of magnitude between these volcanic fields, consistent with the idea that distributed volcanism may be influenced by both the rate of magma generation and the potential for dike interaction during ascent.
NASA Astrophysics Data System (ADS)
de Lauro, E.; de Martino, S.; Falanga, M.; Palo, M.
2011-12-01
We investigate the physical processes associated with volcanic tremor and explosions. A volcano is a complex system where a fluid source interacts with the solid edifice so generating seismic waves in a regime of low turbulence. Although the complex behavior escapes a simple universal description, the phases of activity generate stable (self-sustained) oscillations that can be described as a non-linear dynamical system of low dimensionality. So, the system requires to be investigated with non-linear methods able to individuate, decompose, and extract the main characteristics of the phenomenon. Independent Component Analysis (ICA), an entropy-based technique is a good candidate for this purpose. Here, we review the results of ICA applied to seismic signals acquired in some volcanic areas. We emphasize analogies and differences among the self-oscillations individuated in three cases: Stromboli (Italy), Erebus (Antarctica) and Volcán de Colima (Mexico). The waveforms of the extracted independent components are specific for each volcano, whereas the similarity can be ascribed to a very general common source mechanism involving the interaction between gas/magma flow and solid structures (the volcanic edifice). Indeed, chocking phenomena or inhomogeneities in the volcanic cavity can play the same role in generating self-oscillations as the languid and the reed do in musical instruments. The understanding of these background oscillations is relevant not only for explaining the volcanic source process and to make a forecast into the future, but sheds light on the physics of complex systems developing low turbulence.
Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system.
Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai
2016-06-17
Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report (3)He/(4)He measurements in CO2-dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a (3)He/(4)He signature of at least 7.0 Ra (being Ra the (3)He/(4)He ratio of atmospheric He equal to 1.39×10(-6)), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like (3)He/(4)He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano.
Back-Projection Imaging of extended, diffuse seismic sources in volcanic and hydrothermal systems
NASA Astrophysics Data System (ADS)
Kelly, C. L.; Lawrence, J. F.; Beroza, G. C.
2017-12-01
Volcanic and hydrothermal systems exhibit a wide range of seismicity that is directly linked to fluid and volatile activity in the subsurface and that can be indicative of imminent hazardous activity. Seismograms recorded near volcanic and hydrothermal systems typically contain "noisy" records, but in fact, these complex signals are generated by many overlapping low-magnitude displacements and pressure changes at depth. Unfortunately, excluding times of high-magnitude eruptive activity that typically occur infrequently relative to the length of a system's entire eruption cycle, these signals often have very low signal-to-noise ratios and are difficult to identify and study using established seismic analysis techniques (i.e. phase-picking, template matching). Arrays of short-period and broadband seismic sensors are proven tools for monitoring short- and long-term changes in volcanic and hydrothermal systems. Time-reversal techniques (i.e. back-projection) that are improved by additional seismic observations have been successfully applied to locating volcano-seismic sources recorded by dense sensor arrays. We present results from a new computationally efficient back-projection method that allows us to image the evolution of extended, diffuse sources of volcanic and hydrothermal seismicity. We correlate short time-window seismograms from receiver-pairs to find coherent signals and propagate them back in time to potential source locations in a 3D subsurface model. The strength of coherent seismic signal associated with any potential source-receiver-receiver geometry is equal to the correlation of the short time-windows of seismic records at appropriate time lags as determined by the velocity structure and ray paths. We stack (sum) all short time-window correlations from all receiver-pairs to determine the cumulative coherence of signals at each potential source location. Through stacking, coherent signals from extended and/or repeating sources of short-period energy radiation interfere constructively while background noise signals interfere destructively, such that the most likely source locations of the observed seismicity are illuminated. We compile results to analyze changes in the distribution and prevalence of these sources throughout a systems entire eruptive cycle.
Catalogue of Icelandic Volcanoes
NASA Astrophysics Data System (ADS)
Ilyinskaya, Evgenia; Larsen, Gudrún; Gudmundsson, Magnús T.; Vogfjörd, Kristin; Jonsson, Trausti; Oddsson, Björn; Reynisson, Vidir; Pagneux, Emmanuel; Barsotti, Sara; Karlsdóttir, Sigrún; Bergsveinsson, Sölvi; Oddsdóttir, Thorarna
2017-04-01
The Catalogue of Icelandic Volcanoes (CIV) is a newly developed open-access web resource (http://icelandicvolcanoes.is) intended to serve as an official source of information about volcanoes in Iceland for the public and decision makers. CIV contains text and graphic information on all 32 active volcanic systems in Iceland, as well as real-time data from monitoring systems in a format that enables non-specialists to understand the volcanic activity status. The CIV data portal contains scientific data on all eruptions since Eyjafjallajökull 2010 and is an unprecedented endeavour in making volcanological data open and easy to access. CIV forms a part of an integrated volcanic risk assessment project in Iceland GOSVÁ (commenced in 2012), as well as being part of the European Union funded effort FUTUREVOLC (2012-2016) on establishing an Icelandic volcano supersite. The supersite concept implies integration of space and ground based observations for improved monitoring and evaluation of volcanic hazards, and open data policy. This work is a collaboration of the Icelandic Meteorological Office, the Institute of Earth Sciences at the University of Iceland, and the Civil Protection Department of the National Commissioner of the Iceland Police, with contributions from a large number of specialists in Iceland and elsewhere.
Seismic monitoring at Deception Island volcano (Antarctica): Recent advances
NASA Astrophysics Data System (ADS)
Carmona, E.; Almendros, J.; Martín, R.; Cortés, G.; Alguacil, G.; Moreno, J.; Martín, B.; Martos, A.; Serrano, I.; Stich, D.; Ibáñez, J. M.
2012-04-01
Deception Island (South Shetland Island, Antarctica) is an active volcano with recent eruptions (e.g. 1967, 1969 and 1970). It is also among the Antarctic sites most visited by tourists. Besides, there are currently two scientific bases operating during the austral summers, usually from late November to early March. For these reasons it is necessary to deploy a volcano monitoring system as complete as possible, designed specifically to endure the extreme conditions of the volcanic environment and the Antarctic climate. The Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR) performs seismic monitoring on Deception Island since 1994 during austral summer surveys. The seismicity basically includes volcano-tectonic earthquakes, long-period events and volcanic tremor, among other signals. The level of seismicity is moderate, except for a seismo-volcanic crisis in 1999. The seismic monitoring system has evolved during these years, following the trends of the technological developments and software improvements. Recent advances have been mainly focused on: (1) the improvement of the seismic network introducing broadband stations and 24-bit data acquisition systems; (2) the development of a short-period seismic array, with a 12-channel, 24-bit data acquisition system; (3) the implementation of wireless data transmission from the network stations and also from the seismic array to a recording center, allowing for real-time monitoring; (4) the efficiency of the power supply systems and the monitoring of the battery levels and power consumption; (5) the optimization of data analysis procedures, including database management, automated event recognition tools for the identification and classification of seismo-volcanic signals, and apparent slowness vector estimates using seismic array data; (6) the deployment of permanent seismic stations and the transmission of data during the winter using a satellite connection. A single permanent station is operating at Deception Island since 2008. In the current survey we collaborate with the Spanish Army to add another permanent station that will be able to send to the IAG-UGR seismic information about the activity of the volcano during the winter, using a communications satellite (SPAINSAT). These advances simplify the field work and the data acquisition procedures, and allow us to obtain high-quality seismic data in real-time. These improvements have a very important significance for a better and faster interpretation of the seismo-volcanic activity and assessment of the volcanic hazards at Deception Island volcano.
Magma plumbing system and seismicity of an active mid-ocean ridge volcano.
Schmid, Florian; Schlindwein, Vera; Koulakov, Ivan; Plötz, Aline; Scholz, John-Robert
2017-02-20
At mid-ocean ridges volcanism generally decreases with spreading rate but surprisingly massive volcanic centres occur at the slowest spreading ridges. These volcanoes can host unexpectedly strong earthquakes and vigorous, explosive submarine eruptions. Our understanding of the geodynamic processes forming these volcanic centres is still incomplete due to a lack of geophysical data and the difficulty to capture their rare phases of magmatic activity. We present a local earthquake tomographic image of the magma plumbing system beneath the Segment 8 volcano at the ultraslow-spreading Southwest Indian Ridge. The tomography shows a confined domain of partial melt under the volcano. We infer that from there melt is horizontally transported to a neighbouring ridge segment at 35 km distance where microearthquake swarms and intrusion tremor occur that suggest ongoing magmatic activity. Teleseismic earthquakes around the Segment 8 volcano, prior to our study, indicate that the current magmatic spreading episode may already have lasted over a decade and hence its temporal extent greatly exceeds the frequent short-lived spreading episodes at faster opening mid-ocean ridges.
NASA Astrophysics Data System (ADS)
Camargo, S. J.; Sobel, A. H.; Polvani, L. M.; Emanuel, K.; Previdi, M. J.
2017-12-01
Previous work has shown that aerosol cooling reduces tropical cyclone (TC) potential intensity (PI) more strongly than greenhouse gas warming increases it. This has the consequence that PI shows only small increases in simulations of the historical period despite considerable global warming over that period. We use CMIP5 models, as well as offline radiative kernels, to better understand this result. The outsize effect of aerosol forcing is a consequence of the fact that tropospheric aerosols act in the shortwave while greenhouse gases act in the longwave. Shortwave forcing has a greater impact on PI than does longwave, because of the differences in the response of the surface energy budget to the direct, temperature-independent component of the forcing. Shortwave forcing mainly drives the climate system in the surface, while greenhouse gases do so at the top of the atmosphere, so that net longwave flux associated with a temperature change can be small, especially at high temperature. Our kernel results also indicate that the temperature-dependent longwave feedback component is also greater by approximately a factor of two for the shortwave than the longwave forcing. Recent papers using observations and proxy reconstructions suggested a reduction of frequency, duration and intensity of Atlantic TCs in the years following volcanic eruptions. Observations show no significant reduction of TC activity in the first season after three large volcanic eruptions in the 20th Century, with the exception of the North Atlantic. The response to these volcanic eruptions cannot be separated from the coinciding El Niño events either in observations or in reanalysis. Both the NCAR Large Ensemble and CMIP5 models show a strong reduction in the PI following large volcanic eruptions. But, given that the models response to volcanic aerosols is known to be too strong, when a bias correction is considered, the PI signal after the volcanic eruptions becomes much smaller. Furthermore, there is no statistically significant reduction in TC activity for either the explicit synthetic downscaled CMIP5 storms following the volcanic eruptions. Therefore, there is little evidence of a global reduction of TC activity from direct volcanic aerosols.
Steven, Thomas A.
1984-01-01
PART A: Igneous activity in the Marysvale volcanic field of western Utah can be separated into many episodes of extrusion, intrusion, and hydrothermal activity. The rocks of the western Tushar Mountains, near the western part of the volcanic field, include intermediate-composition, calc-alkalic volcanic rocks erupted from scattered volcanoes in Oligocene through earliest Miocene time and related monzonitic intrusions emplaced 24-23 m.y. ago. Beginning 22-21 m.y. ago and extending through much of the later Cenozoic, a bimodal basalt-rhyolite assemblage was erupted widely throughout the volcanic field. Only volcanic and intrusive rocks belonging to the rhyolitic end member of this bimodal assemblage are present in the western Tushar Mountains; most of these rocks either fill the Mount Belknap caldera (19 m.y. old) or are part of the rhyolite of Gillies Hill (9---8 m.y. old). Episodic hydrothermal activity altered and mineralized rocks at many places in the western Tushar Mountains during Miocene time. The earliest activity took place in and adjacent to monzonitic calcalkalic intrusions emplaced in the vicinity of Indian Creek and Cork Ridge. These rocks were widely propylitized, and gold-bearing quartz-pyrite-carbonate veins formed in local fractures. Hydrothermal activity associated with the Mount Belknap caldera mobilized and redeposited uranium contained in the caldera-fill rocks and formed primary concentrations of lithophile elements (including molybdenum and uranium) in the vicinity of intrusive bodies. Hydrothermal activity associated with the rhyolite of Gillies Hill altered and mineralized rocks at several places along the fault zone that marks the western margin of the Tushar Mountains; the zoned alunite and gold deposits at Sheep Rock, the gold deposit at the Sunday Mine, and an alunite deposit near Indian Creek were thus produced. Resetting of isotopic ages suggests that another center of hydrothermally altered rocks associated with a buried pluton about 16 m.y. old may exist near Indian Creek just west of the Mount Belknap caldera. Geophysical evidence confirms the probability of a buried pluton near Indian Creek, and also indicates that another buried pluton probably exists beneath the 9-m.y.-old mineralized area at Sheep Rock. The mineral potential of the different hydrothermal systems, and the types of minerals deposited probably vary considerably from one period of mineralization to another and from one depth environment to another within a given system. PART B: The Big John caldera, on the western flank of the Tushar Mountains in the Marysvale volcanic field in west-central Utah, formed 23-22 m.y. ago in response to ash-flow eruptions of the Delano Peak Tuff Member of the Bullion Canyon Volcanics. These eruptions were near the end of the period of Oligocene-early Miocene calc-alkalic igneous activity that built a broad volcanic plateau in this part of Utah. About 22 m.y. ago, the composition of rocks erupted changed to a bimodal assemblage of mafic and silicic volcanics that was erupted episodically through the remainder of Cenozoic time. The alkali rhyolites are uranium rich in part, and are associated with all the known uranium deposits in the Marysvale volcanic field. The Big John caldera was a broad drained basin whose floor was covered by a layer of stream gravels when ash flows from the western source area of the Mount Belknap Volcanics filled the caldera with the Joe Lott Tuff Member about 19 m.y. ago. Devitrified and zeolitized rocks in the caldera fill have lost one-quarter to one-half of the uranium contained in the original magma. This mobilized uranium probably moved into the hydrologic regime, and some may have been redeposited in stream gravels underlying the Joe Lott within the caldera, or in gravels filling the original drainage channel that extended south from the caldera.
NASA Astrophysics Data System (ADS)
Awadallah Estévez, Shadia; Moure-García, David; Torres-González, Pedro; Acosta Sánchez, Leopoldo; Domínguez Cerdeña, Itahiza
2017-04-01
Volatiles dissolved in magma are released as gases when pressure or stress conditions change. H2O, CO2, SO2 and H2S are the most abundant gases involved in volcanic processes. Emission rates are related to changes in the volcanic activity. Therefore, in order to predict possible eruptive events, periodic measurements of CO2 concentrations from the soil should be carried out. In the last years, CO2 monitoring has been widespread for many reasons. A direct relationship between changes in volcanic activity and variations in concentration, diffuse flux and isotope ratios of this gas, have been observed prior to some eruptions or unrest processes. All these factors have pointed out the fact that CO2 emission data are crucial in volcanic monitoring programs. In addition, relevant instrumentation development has also taken place: improved accuracy, cost reduction and portability. Considering this, we propose a low cost and a low power consumption system for measuring CO2 concentration in the soil based on Arduino. Through a perforated pick-axe buried at a certain depth, gas samples are periodically taken with the aid of a piston. These samples are injected through a pneumatic circuit in the spectrometer, which measures the CO2 concentration. Simultaneously, the system records the following meteorological parameters: atmospheric pressure, precipitation, relative humidity and air and soil temperature. These parameters are used to correct their possible influence in the CO2 soil concentration. Data are locally stored (SD card) and transmitted via GPRS or WIFI to a data analysis center.
Unmanned Aerial Mass Spectrometer Systems for In-Situ Volcanic Plume Analysis
NASA Astrophysics Data System (ADS)
Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C. Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin
2015-02-01
Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.
Unmanned aerial mass spectrometer systems for in-situ volcanic plume analysis.
Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin
2015-02-01
Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.
Detecting and Cataloging Global Explosive Volcanism Using the IMS Infrasound Network
NASA Astrophysics Data System (ADS)
Matoza, R. S.; Green, D. N.; LE Pichon, A.; Fee, D.; Shearer, P. M.; Mialle, P.; Ceranna, L.
2015-12-01
Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. These eruptions can also inject large volumes of ash into heavily travelled aviation corridors, thus posing a significant societal and economic hazard. Detecting and counting the global occurrence of explosive volcanism helps with progress toward several goals in earth sciences and has direct applications in volcanic hazard mitigation. This project aims to build a quantitative catalog of global explosive volcanic activity using the International Monitoring System (IMS) infrasound network. We are developing methodologies to search systematically through IMS infrasound array detection bulletins to identify signals of volcanic origin. We combine infrasound signal association and source location using a brute-force, grid-search, cross-bearings approach. The algorithm corrects for a background prior rate of coherent infrasound signals in a global grid. When volcanic signals are identified, we extract metrics such as location, origin time, acoustic intensity, signal duration, and frequency content, compiling the results into a catalog. We are testing and validating our method on several well-known case studies, including the 2009 eruption of Sarychev Peak, Kuriles, the 2010 eruption of Eyjafjallajökull, Iceland, and the 2015 eruption of Calbuco, Chile. This work represents a step toward the goal of integrating IMS data products into global volcanic eruption early warning and notification systems. Additionally, a better characterization of volcanic signal detection helps improve understanding of operational event detection, discrimination, and association capabilities of the IMS network.
A review of laboratory and numerical modelling in volcanology
NASA Astrophysics Data System (ADS)
Kavanagh, Janine L.; Engwell, Samantha L.; Martin, Simon A.
2018-04-01
Modelling has been used in the study of volcanic systems for more than 100 years, building upon the approach first applied by Sir James Hall in 1815. Informed by observations of volcanological phenomena in nature, including eye-witness accounts of eruptions, geophysical or geodetic monitoring of active volcanoes, and geological analysis of ancient deposits, laboratory and numerical models have been used to describe and quantify volcanic and magmatic processes that span orders of magnitudes of time and space. We review the use of laboratory and numerical modelling in volcanological research, focussing on sub-surface and eruptive processes including the accretion and evolution of magma chambers, the propagation of sheet intrusions, the development of volcanic flows (lava flows, pyroclastic density currents, and lahars), volcanic plume formation, and ash dispersal. When first introduced into volcanology, laboratory experiments and numerical simulations marked a transition in approach from broadly qualitative to increasingly quantitative research. These methods are now widely used in volcanology to describe the physical and chemical behaviours that govern volcanic and magmatic systems. Creating simplified models of highly dynamical systems enables volcanologists to simulate and potentially predict the nature and impact of future eruptions. These tools have provided significant insights into many aspects of the volcanic plumbing system and eruptive processes. The largest scientific advances in volcanology have come from a multidisciplinary approach, applying developments in diverse fields such as engineering and computer science to study magmatic and volcanic phenomena. A global effort in the integration of laboratory and numerical volcano modelling is now required to tackle key problems in volcanology and points towards the importance of benchmarking exercises and the need for protocols to be developed so that models are routinely tested against real world
data.
NASA Astrophysics Data System (ADS)
Guardo, Roberto; De Siena, Luca
2017-04-01
The timely estimation of short- and long-term volcanic hazard relies on the existence of detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers, while particularly challenging to obtain, provide important data to locate feasible eruptive centers and forecast flank collapses and lava ascending paths. Here, we model the volcanic structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spectral Ratio method, generally applied to industrial and engineering settings. The integration of this technique with Web-based Geographic Information System improves precision during the acquisition phase. It also integrates geological and geophysical visualization of 3D surface and subsurface structures in a queryable environment representing their exact three-dimensional geographic position, enhancing interpretation. The results show high-resolution 3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seismic tomography imaging and (2) the results of recent remote sensing imaging. The main novelty with respect to previous model is the presence of a vertical structure that divides the pre-existing volcanic complexes of Ellittico and Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A comparison with recent remote sensing and geological results, however, shows clear connections between the anomaly and dynamic active during the last 15 years. We infer that seismic noise measurements from miniaturized instruments, when combined with remote sensing techniques, represent an important resource when monitoring volcanic media and eruptions, reducing the risk of loss of human lives and instrumentation.
NASA Astrophysics Data System (ADS)
Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.
2001-12-01
The awesome power and intricate inner workings of volcanoes have made them a popular subject with scientists and the general public alike. About 1500 known volcanoes have been active on Earth during the Holocene, approximately 50 of which erupt per year. With so much activity occurring around the world, often in remote locations, it can be difficult to find up-to-date information about current volcanism from a reliable source. To satisfy the desire for timely volcano-related information the Smithsonian Institution and US Geological Survey combined their strengths to create the Weekly Volcanic Activity Report. The Smithsonian's Global Volcanism Program (GVP) has developed a network of correspondents while reporting worldwide volcanism for over 30 years in their monthly Bulletin of the Global Volcanism Network. The US Geological Survey's Volcano Hazards Program studies and monitors volcanoes in the United States and responds (upon invitation) to selected volcanic crises in other countries. The Weekly Volcanic Activity Report is one of the most popular sites on both organization's websites. The core of the Weekly Volcanic Activity Report is the brief summaries of current volcanic activity around the world. In addition to discussing various types of volcanism, the summaries also describe precursory activity (e.g. volcanic seismicity, deformation, and gas emissions), secondary activity (e.g. debris flows, mass wasting, and rockfalls), volcanic ash hazards to aviation, and preventative measures. The summaries are supplemented by links to definitions of technical terms found in the USGS photoglossary of volcano terms, links to information sources, and background information about reported volcanoes. The site also includes maps that highlight the location of reported volcanoes, an archive of weekly reports sorted by volcano and date, and links to commonly used acronyms. Since the Weekly Volcanic Activity Report's inception in November 2000, activity has been reported at over 60 volcanoes, with an average of 10 volcanoes discussed each week. Notable volcanic activity during November 2000-November 2001 included an eruption beginning on 6 February at Nyamuragira in the Democratic Republic of the Congo; it issued low-viscosity lava flows that traveled towards inhabited towns, and also produced ash clouds that adversely effected the health of residents and livestock near the volcano. Eruptions at Mayon in the Philippines on 24 June and 25 July caused local authorities to raise the alert to the highest level, close area airports, and evacuate thousands of residents near the volcano. Most recently a large flank eruption at Etna in Italy began on 17 July and gained worldwide attention as extensive lava flows threatened a small town and a tourist complex. While the information found in the Weekly Volcanic Activity Report, ranging from large eruptions to small precursory events, is of interest to the general public, it has also proven to be a valuable resource to volcano observatory staff, universities, researchers, secondary schools, and the aviation community.
NASA Technical Reports Server (NTRS)
De Silva, S. L.; Francis, P. W.
1990-01-01
A synoptic study of the volcanoes of southern Peru (14-17 deg S), the northernmost part of the Central Volcanic Zone (CVZ 14-28 deg S) of the Andes, was conducted on the basis of Landsat TM images and color photography. The volcanoes were classified and their relative ages determined using subtle glacial-morphological features. Eight of them were postulated as potentially active. These are located in a narrow volcanic zone which probably reflects a steep dip of the Nazca plate through the zone of magma generation. The break in the trend of the volcanic arc possibly reflects the complexity of the crustal stress field above a major segment boundary in the subducting plate. There are also fields of mafic monogenetic centers in this region. In comparison with the southern part of the CVZ, the general paucity of older volcanic edifices north of 17 deg S suggested a more recent onset of volcanism, a possible result of the oblique subduction of the Nazca ridge and the consequent northward migration of its intersection with the Peru-Chile trench. This, together with the lack of any large silicic caldera systems and youthful dacite domes, suggested that there are real differences in the volcanic evolution of the two parts of the CVZ.
NASA Astrophysics Data System (ADS)
Tynan, M. C.; Smith, K. D.; Savino, J. M.; Vogt, T. J.
2004-12-01
Observed regional mega-rings define a zone ˜80-100 km in diameter centered on Timber Mountain (TM). The mega-rings encompass known smaller rhyolitic nested Miocene calderas ( ˜11-15 my, < 10 km circular to elliptical small "rings") and later stage basaltic features (< 11 my, small flows, cones, dikes) in the Southwest Nevada Volcanic Field. Miocene rhyolitic calderas cluster within the central area and on the outer margin of the interpreted larger mega-ring complex. The mega-ring interpretation is consistent with observations of regional physiography, tomographic images, seismicity patterns, and structural relationships. Mega-rings consist of arcuate faulted blocks with deformation (some remain active structures) patterns showing a genetic relationship to the TM volcanic system; they appear to be spatially associated and temporally correlated with Miocene volcanism and two geophysically identified crustal/upper mantle features. A 50+ km diameter pipe-like high velocity anomaly extends from crustal depth to over 200 km beneath TM (evidence for 400km depth to NE). The pipe is located between two ˜100 km sub-parallel N/S linear trends of small-magnitude earthquake activity, one extending through the central NV Test Site, and a second located near Beatty, NV. Neither the kinematics nor relational mechanism of 100km seismically active N/S linear zones, pipe, and mega-rings are understood. Interpreted mega-rings are: 1) Similar in size to larger terrestrial volcanic complexes (e.g., Yellowstone, Indonesia's Toba system); 2) Located in the region of structural transition from the Mohave block to the south, N/S Basin and Range features to the north, Walker Lane to the NW, and the Las Vegas Valley shear zone to the SE; 3) Associated with the two seismically active zones (similar to other caldera fault-bounded sags), the mantle high velocity feature, and possibly a regional bouguer gravity anomaly; 4) Nearly coincident with area hydrologic basins and sub-basins; 5) Similar to features described from terrestrial and planetary caldera-collapse studies, and as modeled in laboratory scaled investigations (ice melt, balloon/sand). Post Mid-Miocene basalts commonly occur within or adjacent to the older rhyolitic caldera moats; other basaltic material occurs marginal to both the outer rings of the interpreted mega-ring system and high velocity pipe. The YM repository may be situated in an isolated structural setting within the mega-ring system; basaltic materials are absent in the block for over 11my for geologic reasons. The mega-ring model may better explain YM area structures (Highway 95 fault), tectonism, and volcanism. Coincident physiographic, geologic, and geophysical features associated with the mega-rings feature, and temporal characteristics of regional seismicity and volcanism suggest the need to critically re-assess regional scale and YM tectonic, seismotectonic, and volcanic models.
NASA Astrophysics Data System (ADS)
Valadez, S.; Martinez-serrano, R.; Juarez-Lopez, K.; Solis-Pichardo, G.; Perez-Arvizu, O.
2011-12-01
The study of magmatism in the Trans-Mexican Volcanic Belt (TMVB) has great importance due to several features such as its obliquity with respect to the Middle American Trench and its petrological and geochemical variability, which are not common in most typical volcanic arcs. Although several papers have contributed significantly to the understanding of most important magmatic processes in this province, there are still several questions such as the characterization of magmatic sources. In the present work, we provide new stratigraphic, petrographic, geochemical and Sr, Nd and Pb isotopic data as well as some K-Ar age determinations from the Xihuingo-Chichicuautla volcanic field (XCVF), located at the eastern part of the TMVB, with the aim to identify the magmatic sources that produced the main volcanic rocks. The volcanic structures in the XCVF are divided in two main groups according to the petrographic and geochemical compositions: 1) dacitic domes, andesitic lava flows and some dacitic-rhyolitic ignimbrites and 2) scoria cones, shield volcanoes and associated lava flows of basalt to basaltic-andesite composition. Distribution of most volcanic structures is probably controlled by NE-SW fault and fractures system. This fault system was studied by other authors who established that volcanic activity started ca. 13.5 Ma ago, followed by a volcanic hiatus of ca. 10 Ma, and the late volcanic activity began ca. 3 to 1 Ma. In this work we dated 2 rock samples by K-Ar method, which yielded ages of 402 and 871 Ka, which correspond to the most recent volcanic activity in this study area. The volcanic rocks of the XCVF display compositions from basalts to rhyolites but in general all rocks show trace element patterns typical of magmatic arcs. However, we can identify two main magmatic sources: a depleted magmatic source represented by dacitic-andesitic rocks which present a LILE enrichment with respect to HFSE indicating that a magmatic source was modified by fluids derived from the subduction processes. These magmas probably suffered fractional crystallization and minor assimilation in the continental crust. Sr, Nd isotopic compositions for this first group display the most radiogenic values (87Sr/86Sr from 0.7046 to 0.7047 and ɛNd from 2.2 to 2.8). The second source for the basaltic-andesite and basalt could be associated with an enriched mantle. These rocks present a minor LILE enrichment with respect to HSFE, and Sr and Nd isotopic values less radiogenic than the felsic rocks of the first group (87Sr/86Sr from 0.7040 to 0.7045 and ɛNd from 3.1 to 4.8). According to these evidences we can establish that the magmas emplaced in the study area were produced from a heterogeneous mantle source with complex magmatic processes combined with different interaction degrees between the magmas and continental crust.
NASA Astrophysics Data System (ADS)
Davies, A. G.; Chien, S. A.; Castano, R.; Tran, D. Q.; Scharenbroich, L. J.
2006-12-01
Mission science return is increased through use of onboard autonomy, and using disparate assets integrated into an autonomously-operating sensor web that can re-task these assets to rapidly obtain additional data. Software on spacecraft has been used to analyse data to detect dynamic events of high interest, such as on- going volcanic activity. This capability has been successfully demonstrated by the NASA New Millennium Program Autonomous Sciencecraft Experiment (ASE), on the Earth Observing 1 spacecraft in Earth-orbit [1-2]. The potential now exists for eruption parameters to be quantified onboard a spacecraft, using models that relate thermal emission to volumetric eruption rate. This promises a notification not only of on-going activity, but also the magnitude of the event, within a few hours of the original observation, a process that normally takes weeks. ASE/EO-1 is part of the JPL Volcano Sensor Web [3]. This autonomous system collates information of volcanic activity from numerous assets and retasks EO-1 to obtain observations as soon as practicable. The use of a ground-based planner allows rapid insertion or replacement of new observations, with no human intervention. Endusers are notified automatically by email. Spacecraft autonomy, involving automatic fault detection and mitigation, onboard processing of data, and replanning of observations, allows mission operations to break free from pre-ordained operations sequencing, necessary for studying dynamic volcanic processes on other bodies in the Solar System (e.g., Io and Enceladus). Onboard processing allows quantification of dynamic processes, improving both science content per returned byte and optimization of subsequent resource use. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. [1] Chien, S. et al. (2004) The EO-1 Autonomous Science Agent, Proceedings of the 2004 Conferences on Autonomous Agents and Multi-agent Systems (AAMAS), New York City, USA, July 2004. [2] Davies, A. G. et al. (2006) Monitoring active volcanism with the Autonomous Sciencecraft Experiment (ASE) on EO-1, RSE, 101, 427-446. [3] Davies, A. G. et al., (2006) Sensor Web enables rapid response to volcanic activity, Eos, 87, 1, 1&5.
Volcanic Hazards Survey in the Trans Mexican Volcanic Belt
NASA Technical Reports Server (NTRS)
Abrams, Michael; Siebe, Claus; Macias, Jose Luis
1996-01-01
We have assembled a digital mosaic of 11 Landsat Thematic images to serve as a mapping base for reconnaissance activities within the Trans Mexican Volcanic Belt. This will aid us in interpretation and in the evaluation of potential activity of all the volcanic centers there. One result is a volcanic hazards map of the area.
Geologic map of the Lassen region, Cascade Range, USA
Clynne, Michael; Muffler, L.J.
1990-01-01
A preliminary geologic map at 1:50,000 of the Lassen region encompasses 1400 km2. The map displays many small, monogenetic volcanoes of basalt to andesite as well as three major late Pliocene and Quaternary volcanic centers that have erupted products ranging from basaltic andesite to rhyolite. The youngest of these volcanic centers is the Lassen volcanic center, active from 600,000 years B.P. to the present. A major caldera formed at 400,000 years B.P. and has subsequently been filled with silicic lavas. The Lassen geothermal system, which consists of a central vapor-dominated reservoir at a temperature of 235??C underlain by a reservoir of hot water, is centered at Bumpass Hell within Lassen Volcanic National Park.
A geo-spatial data management system for potentially active volcanoes—GEOWARN project
NASA Astrophysics Data System (ADS)
Gogu, Radu C.; Dietrich, Volker J.; Jenny, Bernhard; Schwandner, Florian M.; Hurni, Lorenz
2006-02-01
Integrated studies of active volcanic systems for the purpose of long-term monitoring and forecast and short-term eruption prediction require large numbers of data-sets from various disciplines. A modern database concept has been developed for managing and analyzing multi-disciplinary volcanological data-sets. The GEOWARN project (choosing the "Kos-Yali-Nisyros-Tilos volcanic field, Greece" and the "Campi Flegrei, Italy" as test sites) is oriented toward potentially active volcanoes situated in regions of high geodynamic unrest. This article describes the volcanological database of the spatial and temporal data acquired within the GEOWARN project. As a first step, a spatial database embedded in a Geographic Information System (GIS) environment was created. Digital data of different spatial resolution, and time-series data collected at different intervals or periods, were unified in a common, four-dimensional representation of space and time. The database scheme comprises various information layers containing geographic data (e.g. seafloor and land digital elevation model, satellite imagery, anthropogenic structures, land-use), geophysical data (e.g. from active and passive seismicity, gravity, tomography, SAR interferometry, thermal imagery, differential GPS), geological data (e.g. lithology, structural geology, oceanography), and geochemical data (e.g. from hydrothermal fluid chemistry and diffuse degassing features). As a second step based on the presented database, spatial data analysis has been performed using custom-programmed interfaces that execute query scripts resulting in a graphical visualization of data. These query tools were designed and compiled following scenarios of known "behavior" patterns of dormant volcanoes and first candidate signs of potential unrest. The spatial database and query approach is intended to facilitate scientific research on volcanic processes and phenomena, and volcanic surveillance.
MPF model ages of the Rembrandt basin and scarp system, Mercury.
NASA Astrophysics Data System (ADS)
Ferrari, Sabrina; Massironi, Matteo; Marchi, Simone; Byrne, Paul K.; Klimczak, Christian; Cremonese, Gabriele
2013-04-01
The 715-km-diameter Rembrandt basin is the largest well-preserved impact feature of the southern hemisphere of Mercury [1] (Fig. 1), and was imaged for the first time during the second flyby of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission [2]. Much of the basin interior is covered by smooth, high-reflectance plains interpreted to be of volcanic origin [1-3] that host sets of contractional and extensional tectonic structures. Notably, Rembrandt basin and its smooth plains are cross-cut by a 1,000-km-long reverse fault system [1-5] that trends ~E-W, bending toward the north within the basin. The individual faults of this system accommodated crustal shortening that resulted from global contraction as Mercury's interior cooled [1]. The current shape of the reverse fault system may have been influenced by the formation of the Rembrandt basin [5]. The emplacement of the interior smooth plains predates both the basin-related tectonism and the final development of the giant scarp, which is suggestive of either short-lived volcanic activity immediately after basin formation or a later volcanic phase set against prolonged tectonic activity. In order to quantify the duration of volcanic and tectonic activity in and around Rembrandt basin, we determined the crater count-derived ages of the involved terrains by means of the Model Production Function (MPF) chronology of Mercury [6-8], which is rely on the knowledge of the impactors flux on the planet. Crater chronology allowed us to constrain the Rembrandt basin formation to the early Calorian period and a widespread resurfacing up to 3.5 Ga ago. The volcanic activity affected both the basin and its surroundings, but ended prior to some basin-related and regional faulting. Hence, if the giant scarp begun to develop even before the basin formation (as suggested by its length-displacement profile across the basin itself, [5]) the regional tectonic activity along this structure might have started even before the Late Heavy Bombardment period and lasted for more than 300 Ma, when the volcanic activity in this part of hermean surface was already accomplished. [1] Watters T. R. et al. (2009) Science, 324, 618. [2] Solomon S. C. et al. (2008) Science, 321, 59. [3] Denevi B. W. et al. (2009) Science, 324, 613. [4] Byrne P. K. et al. (2012) LPS, 43, abstract 1722. [5] Ferrari S. et al. (2012) EPSC, 7, abstract 2012-874. [6] Marchi S. et al. (2009) The Astron. Jour., 137, 4936. [7] Massironi M. et al. (2009) Geophys. Res. Lett., 36, L21204. [8] Marchi S. et al. (2011) Plaet. Space Sci., 59, 1968.
Evidence for Extending Anomalous Miocene Volcanism at the Edge of the East Antarctic Craton
NASA Astrophysics Data System (ADS)
Licht, K. J.; Groth, T.; Townsend, J. P.; Hennessy, A. J.; Hemming, S. R.; Flood, T. P.; Studinger, M.
2018-04-01
Using field observations followed by petrological, geochemical, geochronological, and geophysical data, we infer the presence of a previously unknown Miocene subglacial volcanic center 230 km from the South Pole. Evidence of volcanism is from boulders of olivine-bearing amygdaloidal/vesicular basalt and hyaloclastite deposited in a moraine in the southern Transantarctic Mountains. 40Ar/39Ar ages from five specimens plus U-Pb ages of detrital zircon from glacial till indicate igneous activity 25-17 Ma. The likely source of the volcanism is a circular -735 nT magnetic anomaly 60 km upflow from the sampling site. Subaqueous textures of the volcanics indicate eruption beneath ice or into water at the margin of an ice mass during the early Miocene. These rocks record the southernmost Cenozoic volcanism in Antarctica and expand the known extent of the oldest lavas associated with West Antarctic Rift system. They may be an expression of lithospheric foundering beneath the southern Transantarctic Mountains.
Seismicity of Cascade Volcanoes: Characterization and Comparison
NASA Astrophysics Data System (ADS)
Thelen, W. A.
2016-12-01
Here we summarize and compare the seismicity around each of the Very High Threat Volcanoes of the Cascade Range of Washington, Oregon and California as defined by the National Volcanic Early Warning System (NVEWS) threat assessment (Ewert et al., 2005). Understanding the background seismic activity and processes controlling it is critical for assessing changes in seismicity and their implications for volcanic hazards. Comparing seismicity at different volcanic centers can help determine what critical factors or processes affect the observed seismic behavior. Of the ten Very High Threat Volcanoes in the Cascade Range, five volcanoes are consistently seismogenic when considering earthquakes within 10 km of the volcanic center or caldera edge (Mount Rainier, Mount St. Helens, Mount Hood, Newberry Caldera, Lassen Volcanic Center). Other Very High Threat volcanoes (South Sister, Mount Baker, Glacier Peak, Crater Lake and Mount Shasta) have comparatively low rates of seismicity and not enough recorded earthquakes to calculate catalog statistics. Using a swarm definition of 3 or more earthquakes occurring in a day with magnitudes above the largest of the network's magnitude of completenesses (M 0.9), we find that Lassen Volcanic Center is the "swarmiest" in terms of percent of seismicity occurring in swarms, followed by Mount Hood, Mount St. Helens and Rainier. The predominance of swarms at Mount Hood may be overstated, as much of the seismicity is occurring on surrounding crustal faults (Jones and Malone, 2005). Newberry Caldera has a relatively short record of seismicity since the permanent network was installed in 2011, however there have been no swarms detected as defined here. Future work will include developing discriminates for volcanic versus tectonic seismicity to better filter the seismic catalog and more precise binning of depths at some volcanoes so that we may better consider different processes. Ewert J. W., Guffanti, M. and Murray, T. L. (2005). An Assessment of Volcanic Threat and Monitoring Capabilities in the United States: Framework for a National Volcano Early Warning System, USGS Open File Report 2005-1164, 62 pp. Jones, J., & Malone, S. D. (2005). Mount hood earthquake activity: Volcanic or tectonic origins? Bulletin Of The Seismological Society Of America, 95(3), 818-832.
Jovian dust streams: A monitor of Io's volcanic plume activity
Kruger, H.; Geissler, P.; Horanyi, M.; Graps, A.L.; Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Moissl, R.; Johnson, T.V.; Grun, E.
2003-01-01
Streams of high speed dust particles originate from Jupiter's moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200 km s-1. The Galileo spacecraft has continuously monitored the dust streams during 34 revolutions about Jupiter between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between 10-3 and 10 kg s-1, and is typically in the range of 0.1 to 1 kg s-1. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes. Copyright 2003 by the American Geophysical Union.
Anatomy of a fumarolic system inferred from a multiphysics approach.
Gresse, Marceau; Vandemeulebrouck, Jean; Byrdina, Svetlana; Chiodini, Giovanni; Roux, Philippe; Rinaldi, Antonio Pio; Wathelet, Marc; Ricci, Tullio; Letort, Jean; Petrillo, Zaccaria; Tuccimei, Paola; Lucchetti, Carlo; Sciarra, Alessandra
2018-05-15
Fumaroles are a common manifestation of volcanic activity that are associated with large emissions of gases into the atmosphere. These gases originate from the magma, and they can provide indirect and unique insights into magmatic processes. Therefore, they are extensively used to monitor and forecast eruptive activity. During their ascent, the magmatic gases interact with the rock and hydrothermal fluids, which modify their geochemical compositions. These interactions can complicate our understanding of the real volcanic dynamics and remain poorly considered. Here, we present the first complete imagery of a fumarolic plumbing system using three-dimensional electrical resistivity tomography and new acoustic noise localization. We delineate a gas reservoir that feeds the fumaroles through distinct channels. Based on this geometry, a thermodynamic model reveals that near-surface mixing between gas and condensed steam explains the distinct geochemical compositions of fumaroles that originate from the same source. Such modeling of fluid interactions will allow for the simulation of dynamic processes of magmatic degassing, which is crucial to the monitoring of volcanic unrest.
Hamling, Ian J; Hreinsdóttir, Sigrun; Bannister, Stephen; Palmer, Neville
2016-06-01
Continental rifting and seafloor spreading play a fundamental role in the generation of new crust. However, the distribution of magma and its relationship with tectonics and volcanism remain poorly understood, particularly in back-arc settings. We show evidence for a large, long-lived, off-axis magmatic intrusion located on the margin of the Taupo Volcanic Zone, New Zealand. Geodetic data acquired since the 1950s show evidence for uplift outside of the region of active extension, consistent with the inflation of a magmatic body at a depth of ~9.5 km. Satellite radar interferometry and Global Positioning System data suggest that there was an increase in the inflation rate from 2003 to 2011, which correlates with intense earthquake activity in the region. Our results suggest that the continued growth of a large magmatic body may represent the birth of a new magma chamber on the margins of a back-arc rift system.
A LiDAR Survey of an Exposed Magma Plumbing System in the San Rafael Desert, Utah
NASA Astrophysics Data System (ADS)
Richardson, J. A.; Kinman, S.; Connor, L.; Connor, C.; Wetmore, P. H.
2013-12-01
Fields of dozens to hundreds of volcanoes are a common occurrence on Earth and are created due to distributed-style volcanism often referred to as "monogenetic." These volcanic fields represent a significant hazard on both local and regional scales. While it is important to understand the physical states of active volcanic fields, it is difficult or impossible to directly observe active magma emplacement. Because of this, observing an exposed magmatic plumbing system may enable further efforts to describe active volcanic fields. The magmatic plumbing system of a Pliocene-aged monogenetic volcanic field is currently exposed as a sill and dike swarm in the San Rafael Desert of Central Utah. Alkali diabase and shonkinitic sills and dikes in this region intruded into Mesozoic sedimentary units of the Colorado Plateau and now make up the most erosion resistant units, forming mesas, ridges, and small peaks associated with sills, dikes, and plug-like bodies respectively. Diez et al. (Lithosphere, 2009) and Kiyosugi et al. (Geology, 2012) provide evidence that each cylindrical plug-like body represents a conduit that once fed one volcano. The approximate original depth of the currently exposed swarm is estimated to be 0.8 km. Volcanic and sedimentary materials may be discriminated at very high resolution with the use of Light Detection and Ranging (LiDAR). LiDAR produces a three dimensional point cloud, where each point has an associated return intensity. High resolution, bare earth digital elevation models (DEMs) can be produced after vegetation is identified and removed from the dataset. The return intensity at each point can enable classification as either sedimentary or volcanic rock. A Terrestrial LiDAR Survey (TLS) has been carried out to map a large hill with at least one volcanic conduit at its core. This survey implements a RIEGL VZ-400 3D Laser Scanner, which successfully maps solid objects in line-of-sight and within 600 meters. The laser used has a near infrared wavelength. The scanner is set up at 11 scan positions around the conduit edifice, enabling the creation of a 3D point cloud for the edifice and surrounding surface geology. Vegetation is then removed and the point cloud is georeferenced to create a bare earth DEM. Points are assigned RGB color values using calibrated photographs taken coincident to the laser scanning. With the processed LiDAR point cloud, volcanic and sedimentary materials may be discriminated by return intensity and RGB color values. We find that intrusive material returns a demonstrably lower intensity signal than the lighter sedimentary units. Along with field mapping during the TLS, this information can provide high resolution detail of the local magma plumbing system. Exposed dikes, sills, and conduits mapped by this survey are extrapolated into a 3D space from the top of the edifice the base election of the survey to provide a first-order estimate of the final intrusive volume of the now eroded volcanic field in this location.
Using LiCSAR as a fast-response system for the detection and the monitoring of volcanic unrest
NASA Astrophysics Data System (ADS)
Albino, F.; Biggs, J.; Hatton, E. L.; Spaans, K.; Gaddes, M.; McDougall, A.
2017-12-01
Based on the Smithsonian Institution volcano database, a total of 13256 volcanoes exist on Earth with 1273 having evidence of eruptive or unrest activity during the Holocene. InSAR techniques have proven their ability to detect and to quantify volcanic ground deformation on a case-by-case basis. However, the use of InSAR for the daily monitoring of every active volcano requires the development of automatic processing that can provide information in a couple of hours after a new radar acquisition. The LiCSAR system (http://comet.nerc.ac.uk/COMET-LiCS-portal/) answers this requirement by processing the vast amounts of data generated daily by the EU's Sentinel-1 satellite constellation. It provides now high-resolution deformation data for the entire Alpine-Himalayan seismic belt. The aim of our study is to extend LiCSAR system to the purpose of volcano monitoring. For each active volcano, the last Sentinel products calculated (phase, coherence and amplitude) will be available online in the COMET Volcano Deformation Database. To analyse this large amount of InSAR products, we develop an algorithm to automatically detect ground deformation signals as well as changes in coherence and amplitude in the time series. This toolbox could be a powerful fast-response system for helping volcanological observatories to manage new or ongoing volcanic crisis. Important information regarding the spatial and the temporal evolution of each ground deformation signal will also be added to the COMET database. This will benefit to better understand the conditions in which volcanic unrest leads to an eruption. Such worldwide survey enables us to establish a large catalogue of InSAR products, which will also be suitable for further studies (mapping of new lava flows, modelling of magmatic sources, evaluation of stress interactions).
NASA Astrophysics Data System (ADS)
Roman, D. C.; Neuberg, J.; Luckett, R. R.
2006-08-01
Episodes of volcanic unrest do not always lead to an eruption. Many of the commonly monitored signals of volcanic unrest, including surface deformation and increased degassing, can reflect perturbations to a deeper magma storage system, and may persist for years without accompanying eruptive activity. Signals of volcanic unrest can also persist following the end of an eruption. Furthermore, the most reliable eruption precursor, the occurrence of low-frequency seismicity, appears to reflect very shallow processes and typically precedes eruptions by only hours to days. Thus, the identification of measurable and unambiguous indicators that are sensitive to changes in the mid-level conduit system during an intermediate stage of magma ascent is of critical importance to the field of volcano monitoring. Here, using data from the ongoing eruption of the Soufrière Hills Volcano, Montserrat, we show that ˜90° changes in the orientation of double-couple fault-plane solutions for high-frequency 'volcanotectonic' (VT) earthquakes reflect pressurization of the mid-level conduit system prior to eruption and may precede the onset of eruptive episodes by weeks to months. Our results demonstrate that, once the characteristic stress field response to magma ascent at a given volcano is established, a relatively simple analysis of VT fault-plane solutions may be used to make intermediate-term assessments of the likelihood of future eruptive activity.
Recurrence rate and magma effusion rate for the latest volcanism on Arsia Mons, Mars
NASA Astrophysics Data System (ADS)
Richardson, Jacob A.; Wilson, James A.; Connor, Charles B.; Bleacher, Jacob E.; Kiyosugi, Koji
2017-01-01
Magmatism and volcanism have evolved the Martian lithosphere, surface, and climate throughout the history of Mars. Constraining the rates of magma generation and timing of volcanism on the surface clarifies the ways in which magma and volcanic activity have shaped these Martian systems. The ages of lava flows on other planets are often estimated using impact crater counts, assuming that the number and size-distribution of impact craters per unit area reflect the time the lava flow has been on the surface and exposed to potential impacts. Here we show that impact crater age model uncertainty is reduced by adding stratigraphic information observed at locations where neighboring lavas abut each other, and demonstrate the significance of this reduction in age uncertainty for understanding the history of a volcanic field comprising 29 vents in the 110-km-diameter caldera of Arsia Mons, Mars. Each vent within this caldera produced lava flows several to tens of kilometers in length; these vents are likely among the youngest on Mars, since no impact craters in their lava flows are larger than 1 km in diameter. First, we modeled the age of each vent with impact crater counts performed on their corresponding lava flows and found very large age uncertainties for the ages of individual vents, often spanning the estimated age for the entire volcanic field. The age model derived from impact crater counts alone is broad and unimodal, with estimated peak activity in the field around 130 Ma. Next we applied our volcano event age model (VEAM), which uses a directed graph of stratigraphic relationships and random sampling of the impact crater age determinations to create alternative age models. Monte Carlo simulation was used to create 10,000 possible vent age sets. The recurrence rate of volcanism is calculated for each possible age set, and these rates are combined to calculate the median recurrence rate of all simulations. Applying this approach to the 29 volcanic vents, volcanism likely began around 200-300 Ma then first peaked around 150 Ma, with an average production rate of 0.4 vents per Myr. The recurrence rate estimated including stratigraphic data is distinctly bimodal, with a second, lower peak in activity around 100 Ma. Volcanism then waned until the final vents were produced 10-90 Ma. Based on this model, volume flux is also bimodal, reached a peak rate of 1-8 km3 Myr-1 by 150 Ma and remained above half this rate until about 90 Ma, after which the volume flux diminished greatly. The onset of effusive volcanism from 200-150 Ma might be due to a transition of volcanic style away from explosive volcanism that emplaced tephra on the western flank of Arsia Mons, while the waning of volcanism after the 150 Ma peak might represent a larger-scale diminishing of volcanic activity at Arsia Mons related to the emplacement of flank apron lavas.
Recurrence Rate and Magma Effusion Rate for the Latest Volcanism on Arsia Mons, Mars
NASA Technical Reports Server (NTRS)
Richardson, Jacob A.; Wilson, James A.; Connor, Charles B.; Bleacher, Jacob E.; Kiyosugi, Koji
2016-01-01
Magmatism and volcanism have evolved the Martian lithosphere, surface, and climate throughout the history of Mars. Constraining the rates of magma generation and timing of volcanism on the surface clarifies the ways in which magma and volcanic activity have shaped these Martian systems. The ages of lava flows on other planets are often estimated using impact crater counts, assuming that the number and size-distribution of impact craters per unit area reflect the time the lava flow has been on the surface and exposed to potential impacts. Here we show that impact crater age model uncertainty is reduced by adding stratigraphic information observed at locations where neighboring lavas abut each other, and demonstrate the significance of this reduction in age uncertainty for understanding the history of a volcanic field comprising 29 vents in the 110-kilometer-diameter caldera of Arsia Mons, Mars. Each vent within this caldera produced lava flows several to tens of kilometers in length; these vents are likely among the youngest on Mars, since no impact craters in their lava flows are larger than 1 kilometer in diameter. First, we modeled the age of each vent with impact crater counts performed on their corresponding lava flows and found very large age uncertainties for the ages of individual vents, often spanning the estimated age for the entire volcanic field. The age model derived from impact crater counts alone is broad and unimodal, with estimated peak activity in the field around 130Ma (megaannum, 1 million years). Next we applied our volcano event age model (VEAM), which uses a directed graph of stratigraphic relationships and random sampling of the impact crater age determinations to create alternative age models. Monte Carlo simulation was used to create 10,000 possible vent age sets. The recurrence rate of volcanism is calculated for each possible age set, and these rates are combined to calculate the median recurrence rate of all simulations. Applying this approach to the 29 volcanic vents, volcanism likely began around 200-300Ma then first peaked around 150Ma, with an average production rate of 0.4 vents per Myr (million years). The recurrence rate estimated including stratigraphic data is distinctly bimodal, with a second, lower peak in activity around 100Ma. Volcanism then waned until the final vents were produced 10-90Ma. Based on this model, volume flux is also bimodal, reached a peak rate of 1-8 cubic kilometers per million years by 150Ma and remained above half this rate until about 90Ma, after which the volume flux diminished greatly. The onset of effusive volcanism from 200-150Ma might be due to a transition of volcanic style away from explosive volcanism that emplaced tephra on the western flank of Arsia Mons, while the waning of volcanism after the 150Ma peak might represent a larger-scale diminishing of volcanic activity at Arsia Mons related to the emplacement of flank apron lavas.
Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim
2014-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
NASA Astrophysics Data System (ADS)
Faria, B.; Fonseca, J. F. B. D.
2014-02-01
We describe a new geophysical network deployed in the Cape Verde Archipelago for the assessment and monitoring of volcanic hazards as well as the first results from the network. Across the archipelago, the ages of volcanic activity range from ca. 20 Ma to present. In general, older islands are in the east and younger ones are in the west, but there is no clear age progression of eruptive activity as widely separated islands have erupted contemporaneously on geological timescales. The overall magmatic rate is low, and there are indications that eruptive activity is episodic, with intervals between episodes of intense activity ranging from 1 to 4 Ma. Although only Fogo Island has experienced eruptions (mainly effusive) in the historic period (last 550 yr), Brava and Santo Antão have experienced numerous geologically recent eruptions, including violent explosive eruptions, and show felt seismic activity and geothermal activity. Evidence for recent volcanism in the other islands is more limited and the emphasis has therefore been on monitoring of the three critical islands of Fogo, Brava and Santo Antão, where volcanic hazard levels are highest. Geophysical monitoring of all three islands is now in operation. The first results show that on Fogo, the seismic activity is dominated by hydrothermal events and volcano-tectonic events that may be related to settling of the edifice after the 1995 eruption; in Brava by volcano-tectonic events (mostly offshore), and in Santo Antão by volcano-tectonic events, medium-frequency events and harmonic tremor. Both in Brava and in Santo Antão, the recorded seismicity indicates that relatively shallow magmatic systems are present and causing deformation of the edifices that may include episodes of dike intrusion.
NASA Astrophysics Data System (ADS)
Pałgan, Dominik; Devey, Colin W.; Yeo, Isobel A.
2017-12-01
Current estimates indicate that the number of high-temperature vents (one of the primary pathways for the heat extraction from the Earth's mantle) - at least 1 per 100 km of axial length - scales with spreading rate and should scale with crustal thickness. But up to present, shallow ridge axes underlain by thick crust show anomalously low incidences of high-temperature activity. Here we compare the Reykjanes Ridge, an abnormally shallow ridge with thick crust and only one high-temperature vent known over 900 km axial length, to the adjacent subaerial Reykjanes Peninsula (RP), which is characterized by high-temperature geothermal sites confined to four volcanic systems transected by fissure swarms with young (Holocene) volcanic activity, multiple faults, cracks and fissures, and continuous seismic activity. New high-resolution bathymetry (gridded at 60 m) of the Reykjanes Ridge between 62°30‧N and 63°30‧N shows seven Axial Volcanic Ridges (AVR) that, based on their morphology, geometry and tectonic regime, are analogues for the volcanic systems and fissure swarms on land. We investigate in detail the volcano-tectonic features of all mapped AVRs and show that they do not fit with the previously suggested 4-stage evolution model for AVR construction. Instead, we suggest that AVR morphology reflects the robust or weak melt supply to the system and two (or more) eruption mechanisms may co-exist on one AVR (in contrast to 4-stage evolution model). Our interpretations indicate that, unlike on the Reykjanes Peninsula, faults on and around AVRs do not cluster in orientation domains but all are subparallel to the overall strike of AVRs (orthogonal to spreading direction). High abundance of seamounts shows that the region centered at 62°47‧N and 25°04‧W (between AVR-5 and -6) is volcanically robust while the highest fault density implies that AVR-1 and southern part of AVR-6 rather undergo period of melt starvation. Based on our observations and interpretations we expect all of the AVRs on Reykjanes Ridge to be hydrothermally active but morphological and hydrographic settings of this ridge may cause hydrothermal plumes to be quickly dispersed and diluted due to exposure to strong bottom currents. Therefore, combined CTD and autonomous vehicles surveys are probably the most efficient methods for hydrothermal exploration along the Reykjanes Ridge.
Extreme Worlds of the Outer Solar System: Dynamic Processes on Uranus & Io
NASA Astrophysics Data System (ADS)
Kleer, Katherine Rebecca de
A central goal of planetary science is the creation of a framework within which the properties of each solar system body can be understood as the product of initial conditions acted on by fundamental physical processes. The solar system's extreme worlds -- those objects that lie at the far ends of the spectrum in terms of planetary environment -- bring to light our misconceptions and present us with opportunities to expand and generalize this framework. Unraveling the processes at work in diverse planetary environments contextualizes our understanding of Earth, and provides a basis for interpreting specific signatures from planets beyond our own solar system. Uranus and Io, with their unusual planetary environments, present two examples of such worlds in the outer solar system. Uranus, one of the outer solar system's ice giants, produces an anomalously low heat flow and orbits the sun on its side. Its relative lack of bright storm features and its bizarre multi-decadal seasons provide insight into the relative effects of internal heat flow and time- varying solar insolation on atmospheric dynamics, while its narrow rings composed of dark, macroscopic particles encode the history of bombardment and satellite disruption within the system. Jupiter's moon Io hosts the most extreme volcanic activity anywhere in the solar system. Its tidally-powered geological activity provides a window into this satellite's interior, permitting rare and valuable investigations into the exchange of heat and materials between interiors and surfaces. In particular, Io provides a laboratory for studying the process of tidal heating, which shapes planets and satellites in our solar system and beyond. A comparison between Earth and Io contextualizes the volcanism at work on our home planet, revealing the effects of planetary size, atmospheric density, and plate tectonics on the style and mechanisms of geological activity. This dissertation investigates the processes at work on these solar system outliers through studies of Uranus' atmosphere and rings and of Io's thermal activity. I show that Uranus' rings are spectrally flat in the near-infrared, setting them apart from all other ring systems in the solar system. I investigate the vertical profile of species in Uranus' atmosphere, and demonstrate evidence for seasonal trends in the upper atmosphere on decadal timescales. Based on a large high-cadence dataset of Io's volcanism obtained with adaptive optics over 100 nights, I show that the thermal timelines of Io's volcanoes indicate at least two distinct classes of eruption. The asymmetric spatial distribution of Io's volcanic heat flow suggests additional mechanisms at work modulating the effects of tidal heating. I present the detection of one of the most powerful eruptions ever seen on Io, which I use to derive a eruption temperature of >1300 K, consistent with a highly mafic magma composition. Geophysical modeling of the thermal timeline of Loki Patera, a distinctive volcanic feature on Io, indicates low lava thermal conductivities also consistent with a highly-mafic silicate composition. Ultra-high-resolution thermal mapping of this patera reveals a multi-phase volcanic resurfacing process that hints at the plumbing system underlying this massive volcanic feature. The results presented here are founded on near-infrared observations of unprecedented resolution in the spatial, spectral, and temporal domains. The interpretation of the data utilizes rigorous statistical techniques to draw meaningful conclusions. In addition to the scientific impact of the findings, this work therefore also pioneers specific ground-based telescope capabilities and analysis tools, and demonstrates their utility to solar system science. Chapter 2 presents the first high-resolution spectra of Uranus' rings. Chapter 3 introduces Markov Chain Monte Carlo simulations into ice giant atmospheric radiative transfer model- ing, permitting a rigorous analysis of parameter uncertainties and correlations. Chapters 4-7 present results from the first multi-year, high-cadence ground-based observing campaign to study Io's volcanism with sufficient spatial resolution to directly resolve individual volcanoes. The thermal timelines of these volcanoes provide unprecedented insight into the variability and distribution of Io's volcanism over a wide range of timescales. Chapter 7 uses geometric arguments to deduce topography of a volcanic feature on Io based on observations at a range of viewing angles. Finally, Chapter 8 presents the first ground-based observations to map a thermal feature on Io at a spatial resolution of ˜10 km on Io's surface, derived from the first mutual satellite occultation event to be observed with adaptive optics on a dual-telescope interferometric system. These techniques can all be expanded and applied to these and other targets in future near-infrared studies.
Bryan, C.J.; Sherburn, S.
2003-01-01
Broadband seismic data collected on Ruapehu volcano, New Zealand, in 1994 and 1998 show that the 1995-1996 eruptions of Ruapehu resulted in a significant change in the frequency content of tremor and volcanic earthquakes at the volcano. The pre-eruption volcanic seismicity was characterized by several independent dominant frequencies, with a 2 Hz spectral peak dominating the strongest tremor and volcanic earthquakes and higher frequencies forming the background signal. The post-eruption volcanic seismicity was dominated by a 0.8-1.4 Hz spectral peak not seen before the eruptions. The 2 Hz and higher frequency signals remained, but were subordinate to the 0.8-1.4 Hz energy. That the dominant frequencies of volcanic tremor and volcanic earthquakes were identical during the individual time periods prior to and following the 1995-1996 eruptions suggests that during each of these time periods the volcanic tremor and earthquakes were generated by the same source process. The overall change in the frequency content, which occurred during the 1995-1996 eruptions and remains as of the time of the writing of this paper, most likely resulted from changes in the volcanic plumbing system and has significant implications for forecasting and real-time assessment of future eruptive activity at Ruapehu.
NASA Technical Reports Server (NTRS)
Lipman, Peter W.
1988-01-01
Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.
A regime shift in the Sun-Climate connection with the end of the Medieval Climate Anomaly.
Smirnov, D A; Breitenbach, S F M; Feulner, G; Lechleitner, F A; Prufer, K M; Baldini, J U L; Marwan, N; Kurths, J
2017-09-11
Understanding the influence of changes in solar activity on Earth's climate and distinguishing it from other forcings, such as volcanic activity, remains a major challenge for palaeoclimatology. This problem is best approached by investigating how these variables influenced past climate conditions as recorded in high precision paleoclimate archives. In particular, determining if the climate system response to these forcings changes through time is critical. Here we use the Wiener-Granger causality approach along with well-established cross-correlation analysis to investigate the causal relationship between solar activity, volcanic forcing, and climate as reflected in well-established Intertropical Convergence Zone (ITCZ) rainfall proxy records from Yok Balum Cave, southern Belize. Our analysis reveals a consistent influence of volcanic activity on regional Central American climate over the last two millennia. However, the coupling between solar variability and local climate varied with time, with a regime shift around 1000-1300 CE after which the solar-climate coupling weakened considerably.
NASA Astrophysics Data System (ADS)
Barde-Cabusson, S.; Gottsmann, J.; Martí, J.; Bolós, X.; Camacho, A. G.; Geyer, A.; Planagumà, Ll.; Ronchin, E.; Sánchez, A.
2014-01-01
We report new geophysical observations on the distribution of subsurface structures associated with monogenetic volcanism in the Garrotxa volcanic field (Northern Spain). As part of the Catalan Volcanic Zone, this Quaternary volcanic field is associated with the European rifts system. It contains the most recent and best preserved volcanic edifices of the Catalan Volcanic Zone with 38 monogenetic volcanoes identified in the Garrotxa Natural Park. We conducted new gravimetric and self-potential surveys to enhance our understanding of the relationship between the local geology and the spatial distribution of the monogenetic volcanoes. The main finding of this study is that the central part of the volcanic field is dominated by a broad negative Bouguer anomaly of around -0.5 mGal, within which a series of gravity minima are found with amplitudes of up to -2.3 mGal. Inverse modelling of the Bouguer data suggests that surficial low-density material dominates the volcanic field, most likely associated with effusive and explosive surface deposits. In contrast, an arcuate cluster of gravity minima to the NW of the Croscat volcano, the youngest volcano of this zone, is modelled by vertically extended low-density bodies, which we interpret as a complex ensemble of fault damage zones and the roots of young scoria cones. A ground-water infiltration zone identified by a self-potential anomaly is associated with a steep horizontal Bouguer gravity gradient and interpreted as a fault zone and/or magmatic fissure, which fed the most recent volcanic activity in the Garrotxa. Gravimetric and self-potential data are well correlated and indicate a control on the locations of scoria cones by NNE-SSW and NNW-SSE striking tectonic features, which intersect the main structural boundaries of the study area to the north and south. Our interpretation of the data is that faults facilitated magma ascent to the surface. Our findings have major implications for understanding the relationship between subsurface structures and potential future volcanic activity in the Garrotxa volcanic field.
NASA Astrophysics Data System (ADS)
Guardo, R.; De Siena, L.
2017-11-01
The timely estimation of short- and long-term volcanic hazard relies on the availability of detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers, while particularly challenging to obtain, provide important data to locate feasible eruptive centres and forecast flank collapses and lava ascending paths. Here, we model the volcanic structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spectral Ratio method, generally applied to industrial and engineering settings. The integration of this technique with Web-based Geographic Information System improves precision during the acquisition phase. It also integrates geological and geophysical visualization of 3D surface and subsurface structures in a queryable environment representing their exact three-dimensional geographic position, enhancing interpretation. The results show high-resolution 3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seismic tomography imaging and (2) the results of recent remote sensing imaging. The study recovers a vertical structure that divides the pre-existing volcanic complexes of Ellittico and Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A comparison with recent remote sensing and geological results, however, shows that anomalies are generally related to volcano-tectonic structures active during the last 17 years. We infer that seismic noise measurements from miniaturized instruments, when combined with remote sensing techniques, represent an important resource to monitor volcanoes in unrest, reducing the risk of loss of human lives and instrumentation.
Gish Bar Patera, Io: Geology and Volcanic Activity, 1996-2001
NASA Technical Reports Server (NTRS)
Perry, Jason; Radebaugh, Jani; Lopes, Rosaly; McEwen, Alfred; Keszthelyi, Laszlo
2003-01-01
Since the two Voyagers passed by Jupiter in 1979, it has been known that volcanic activity is ubiquitous on the surface of Io. With over 400 volcanic centers, Io is even more volcanically active than the earth with massive flood basalt-style eruptions and komatitite lavas a common occurrence. Additionally, some volcanoes appear to be giant lava lakes, with violent activity churning the crust of the lake for periods of 20 years or more. Finally, sulfur is believed to play a large role in Io's volcanism, be it as a primary lava or as a secondary product of large, high-temperature eruptions. By studying one volcano in particular, Gish Bar Patera, one can observe many of these characteristics in one volcanic center.
Calabrese, S; D'Alessandro, W
2015-01-01
Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.
Io’s volcanoes at high spatial, spectral, and temporal resolution from ground-based observations
NASA Astrophysics Data System (ADS)
de Kleer, Katherine R.; de Pater, Imke
2017-10-01
Io’s dynamic volcanic eruptions provide a laboratory for studying large-scale volcanism on a body vastly different from Earth, and for unraveling the connections between tidal heating and the geological activity it powers. Ground-based near-infrared observatories allow for high-cadence, long-time-baseline observing programs using diverse instrumentation, and yield new information into the nature and variability of this activity. I will summarize results from four years of ground-based observations of Io’s volcanism, including: (1) A multi-year cadence observing campaign using adaptive optics on 8-10 meter telescopes, which places constraints on tidal heating models through sampling the spatial distribution of Io’s volcanic heat flow, and provides estimates of the occurrence rate of Io’s most energetic eruptions; (2) High-spectral-resolution (R~25,000) studies of Io’s volcanic SO gas emission at 1.7 microns, which resolves this rovibronic line into its different branches, and thus contains detailed information on the temperature and thermal state of the gas; and (3) The highest-spatial-resolution map ever produced of the entire Loki Patera, a 20,000 km2 volcanic feature on Io, derived from adaptive-optics observations of an occultation of Io by Europa. The map achieves a spatial resolution of ~10 km and indicates compositional differences across the patera. These datasets both reveal specific characteristics of Io’s individual eruptions, and provide clues into the sub-surface systems connecting Io’s tidally-heated interior to its surface expressions of volcanism.
Reconstructing the Vulcano Island evolution from 3D modeling of magnetic signatures
NASA Astrophysics Data System (ADS)
Napoli, Rosalba; Currenti, Gilda
2016-06-01
High-resolution ground and marine magnetic data are exploited for a detailed definition of a 3D model of the Vulcano Island volcanic complex. The resulting 3D magnetic imaging, obtained by 3-D inverse modeling technique, has delivered useful constraints both to reconstruct the Vulcano Island evolution and to be used as input data for volcanic hazard assessment models. Our results constrained the depth and geometry of the main geo-structural features revealing more subsurface volcanic structures than exposed ones and allowing to elucidate the relationships between them. The recognition of two different magnetization sectors, approximatively coincident with the structural depressions of Piano caldera, in the southern half of the island, and La Fossa caldera at the north, suggests a complex structural and volcanic evolution. Magnetic highs identified across the southern half of the island reflect the main crystallized feeding systems, intrusions and buried vents, whose NNW-SSE preferential alignment highlights the role of the NNW-SSE Tindari-Letojanni regional system from the initial activity of the submarine edifice, to the more recent activity of the Vulcano complex. The low magnetization area, in the middle part of the island may result from hydrothermally altered rocks. Their presence not only in the central part of the volcano edifice but also in other peripheral areas, is a sign of a more diffuse historical hydrothermal activity than in present days. Moreover, the high magnetization heterogeneity within the upper flanks of La Fossa cone edifice is an imprint of a composite distribution of unaltered and altered rocks with different mechanical properties, which poses in this area a high risk level for failure processes especially during volcanic or hydrothermal crisis.
NASA Astrophysics Data System (ADS)
Lindhorst, Katja; Krastel, Sebastian; Wagner, Bernd; Schuerer, Anke
2017-06-01
The Bolsena caldera that formed between 0.6 and 0.2 Ma has a well preserved structural rim, which makes it an ideal site to study the tectonic and volcanic evolution of calderas. However, the main area is covered by a 150 m deep lake which makes it rather difficult to investigate the subsurface structure directly. To overcome this problem new high resolution hydro-acoustic surveys using a multichannel reflection seismic system and a sediment echo-sounder system were conducted in September 2012. As space was limited we used a rowing boat towed by a rubber boat to handle a 36 m long and 24 channel streamer to receive seismic reflections produced using a Mini GI-Gun (0.25 l). The subsurface structure of Lake Bolsena was imaged up to a sediment depth of 190 m, which is estimated to have filled over a period of 333 kyrs. However, massive pyroclastic flow deposits found in the deeper parts of the basin indicate an initial infill of volcanic deposits from two adjacent younger calderas, the Latera (W) and Montefiascone (SE) calderas. Our data suggest that the caldera has a long history of active volcanism, because the lacustrine sediments show post-sedimentary influences of geothermal fluids. We mapped several mound structures at various stratigraphic depths. Two volcanic structures outcrop at the modern lake surface implying recent activity. One of these structures is hardly covered by sediments and has a crater-like feature in its summit. The other structure shows a pockmark-like depression on top. Another observable feature is a partially sediment filled crater located in the western part of the lake which further implies the existence of a magma chamber located beneath the Bolsena caldera. Since the late Pleistocene and Holocene, the sedimentation was mainly hemipelagic evidenced by a sediment drape of up to 10 m thick sediment drape on the uppermost sediments. Beneath the drape we found evidence for a distal tephra layer likely related to an explosive eruption from the Campanian Volcanic Province occurring as the Neapolitan Yellow Tuff. Our new geophysical data set is a valuable record with a potential to constrain the sedimentary and volcanic evolution of the Vulsini Volcanic District in areas that have not been assessed previously due to logistical challenges of conducting surveys in water-filled settings.
Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system
Rizzo, Andrea Luca; Caracausi, Antonio; Chavagnac, Valèrie; Nomikou, Paraskevi; Polymenakou, Paraskevi N.; Mandalakis, Manolis; Kotoulas, Georgios; Magoulas, Antonios; Castillo, Alain; Lampridou, Danai
2016-01-01
Submarine volcanism represents ~80% of the volcanic activity on Earth and is an important source of mantle-derived gases. These gases are of basic importance for the comprehension of mantle characteristics in areas where subaerial volcanism is missing or strongly modified by the presence of crustal/atmospheric components. Though, the study of submarine volcanism remains a challenge due to their hazardousness and sea-depth. Here, we report 3He/4He measurements in CO2–dominated gases discharged at 500 m below sea level from the high-temperature (~220 °C) hydrothermal system of the Kolumbo submarine volcano (Greece), located 7 km northeast off Santorini Island in the central part of the Hellenic Volcanic Arc (HVA). We highlight that the mantle below Kolumbo and Santorini has a 3He/4He signature of at least 7.0 Ra (being Ra the 3He/4He ratio of atmospheric He equal to 1.39×10−6), 3 Ra units higher than actually known for gases-rocks from Santorini. This ratio is also the highest measured across the HVA and is indicative of the direct degassing of a Mid-Ocean-Ridge-Basalts (MORB)-like mantle through lithospheric faults. We finally highlight that the degassing of high-temperature fluids with a MORB-like 3He/4He ratio corroborates a vigorous outgassing of mantle-derived volatiles with potential hazard at the Kolumbo submarine volcano. PMID:27311383
NASA Astrophysics Data System (ADS)
Liaudat, Dario Trombotto; Penas, Pablo; Aloy, Gustavo
2014-03-01
Soil temperatures of the active Volcanic Complex Peteroa situated in the Cordillera Principal between Chile and Argentina at 35°15‧ S and 70°35‧ W (approximately) were monitored in the area, and local geomorphology (periglacial geomorphology, presence of permafrost, and cryoforms) was studied. The present contribution also resulted in a comparison of two consecutive analyses of the volcano peak carried out with special thermocameras (AGEMA TVH 550, FUR P660) in order to study the thermal range of different hot and cold sites selected in 2009. The thermocameras were used ascending by foot and also during flights with a Cessna 180. A night expedition to the volcanic avalanche caldera, at up to 3900 m asl (approximately), completed the monitoring activity of 2010. Hot zones were associated to present volcanism and cold zones to the presence of glacier ice and shadowy slopes with possible presence of permafrost. Identifying and mapping uncovered and covered ice was possible with the help of monitoring and geomorphological interpretation related to the upper englacement, which is severely affected by volcanism. Glaciers are retreating toward the north or approaching the rims of the volcanic avalanche caldera leaving islands of ice associated with superficial permafrost. The cryogenic area with slope permafrost was identified through active protalus and sedimentary cryogenic slopes. Craters have undergone considerable thermal changes in comparison to the year 2009; and new, much more vigorous fumaroles have appeared in hot areas detected in 2009 following a tendency toward the west. New subaquatic heat columns that appeared in crater 3, crater walls, and glaciated areas vanished, supplying cold water and thus contributing to the formation of a new lake in crater 4. A possible post-seismic shift of the volcanic activity may provide geodynamical evidence of the changes registered in other areas after the earthquake of 27 February 2010.
Volcanology: Lessons learned from Synthetic Aperture Radar imagery
Pinel, Virginie; Poland, Michael P.; Hooper, Andy
2014-01-01
Twenty years of continuous Earth observation by satellite SAR have resulted in numerous new insights into active volcanism, including a better understanding of subsurface magma storage and transport, deposition of volcanic materials on the surface, and the structure and development of volcanic edifices. This massive archive of data has resulted in fundamental leaps in our understanding of how volcanoes work – for example, identifying magma accumulation at supposedly quiescent volcanoes, even in remote areas or in the absence of ground-based data. In addition, global compilations of volcanic activity facilitate comparison of deformation behavior between different volcanic arcs and statistical evaluation of the strong link between deformation and eruption. SAR data are also increasingly used in timely hazard evaluation thanks to decreases in data latency and growth in processing and analysis techniques. The existing archive of SAR imagery is on the cusp of being enhanced by a new generation of satellite SAR missions, in addition to ground-based and airborne SAR systems, which will provide enhanced temporal and spatial resolution, broader geographic coverage, and improved availability of data to the scientific community. Now is therefore an opportune time to review the contributions of SAR imagery to volcano science, monitoring, and hazard mitigation, and to explore the future potential for SAR in volcanology. Provided that the ever-growing volume of SAR data can be managed effectively, we expect the future application of SAR data to expand from being a research tool for analyzing volcanic activity after the fact, to being a monitoring and research tool capable of imaging a wide variety of processes on different temporal and spatial scales as those processes are occurring. These data can then be used to develop new models of how volcanoes work and to improve quantitative forecasts of volcanic activity as a means of mitigating risk from future eruptions.
Volcano Gas Measurements from UAS - Customization of Sensors and Platforms
NASA Astrophysics Data System (ADS)
Werner, C. A.; Dahlgren, R. P.; Kern, C.; Kelly, P. J.; Fladeland, M. M.; Norton, K.; Johnson, M. S.; Sutton, A. J.; Elias, T.
2015-12-01
Volcanic eruptions threaten not only the lives and property of local populations, but also aviation worldwide. Volcanic gas release is a key driving force in eruptive activity, and monitoring gas emissions is critical to assessing volcanic hazards, yet most volcanoes are not monitored for volcanic gas emission. Measuring volcanic gas emissions with manned aircraft has been standard practice for many years during eruptive crises, but such measurements are quite costly. As a result, measurements are typically only made every week or two at most during periods of unrest or eruption, whereas eruption dynamics change much more rapidly. Furthermore, very few measurements are made between eruptions to establish baseline emissions. Unmanned aerial system (UAS) measurements of volcanic plumes hold great promise for both improving temporal resolution of measurements during volcanic unrest, and for reducing the exposure of personnel to potentially hazardous conditions. Here we present the results of a new collaborative effort between the US Geological Survey and NASA Ames Research Center to develop a UAS specific for volcano gas monitoring using miniaturized gas sensing systems and a custom airframe. Two miniaturized sensing systems are being built and tested: a microDOAS system to quantify SO2 emission rates, and a miniature MultiGAS system for measuring in-situ concentrations of CO2, SO2, and H2S. The instruments are being built into pods that will be flown on a custom airframe built from surplus Raven RQ-11. The Raven is one of the smallest UAS (a SUAS), and has the potential to support global rapid response when eruptions occur because they require less crew for operations. A test mission is planned for fall 2015 or spring 2016 at the Crows Landing Airfield in central California. Future measurement locations might include Kilauea Volcano in Hawaii, or Pagan Volcano in the Marianas.
Diverse long Period tremors and their implications on degassing and heating inside Aso volcano
NASA Astrophysics Data System (ADS)
Niu, Jieming; Song, Teh-Ru Alex
2017-04-01
Long-period tremors (LPTs) are frequently observed and documented in many active volcanoes around the world, Typically, LPTs are in the period range of 2-100 seconds and total duration of 300 seconds or less. In many instances, LPTs in different volcanic settings are repetitive, but time-invariant in their location, frequency content and waveform shape, suggesting a nondestructive source and providing critical insights into the fluid-dynamic processes operating inside a volcanic system. However, the diversities of LPTs in a single volcanic system are not necessarily well understood and they could potentially provide a clue on the interplay between volcanic degassing, magmatic heating and the style of upcoming eruption. To explore possible diverse LPT behavior in a volcanic system, we investigate LPTs in Aso-san, one of the most well studied and active volcanoes in the southwest Kyushu, Japan. We carry out systematic analysis of continuous seismic data (2010-2016) operated at V-net by NIED and Japan Meterogeolgical Agency (JMA) Volcanic Seismic Network, covering the interval where Aso-san experiences diverse behaviors, including long period of quiescence (2010-2013), phreatic eruption (2013-2014), Strombolian-type eruption (2014-2015) and phreatomagmatic eruption (2016). We use LPT waveforms identified in previous studies as templates and cross-correlate them against the entire dataset in the wavelet domain to construct LPTs catalog. However, LPTs with different phase, but similar frequency content and location are also retained to examine possible temporal changes in the characteristics of LPTs. Through waveform cross-correlation and stacking, we identify four types of LPTs that are located in close proximity as those identified in prior studies, but they display diverse waveform polarity and shape. We will present waveform semblance analysis and moment tensor inversion of these LPTs and discuss how their frequency, amplitude and energetics may be indicative of the state of degassing and magmatic heating inside the Aso volcano.
NASA Astrophysics Data System (ADS)
Strehlow, Karen; Gottsmann, Jo
2014-05-01
Aquifers respond to and modify the surface expressions of magmatic activity, and they can also become agents of unrest themselves. Therefore, monitoring the hydrology can provide a valuable window into subsurface processes in volcanic areas. Interpretations of unrest signals as groundwater responses to changes in the magmatic system can be found for many volcanoes. Changes in temperature and strain conditions, seismic excitation or the injection of magmatic fluids into hydrothermal systems are just a few of the proposed processes induced by magmatic activity that affect the local hydrology. Aquifer responses are described to include changes in water table levels, changes in temperature or composition of hydrothermal waters and pore pressure-induced ground deformation. We can observe these effects at the surface via geophysical and geochemical signals. To fully to utilise these indicators as monitoring and forecasting tools, however, it is necessary to improve our still poor understanding of the ongoing mechanisms in the interactions of hydrological and magmatic systems. An extensive literature research provided an overview on reported effects, which we investigate in detail using numerical modelling. The hydrogeophysical study uses finite element analysis to quantitatively test proposed mechanisms of aquifer excitation and the resultant geophysical signals. We present a set of generic models for two typical volcanic landforms - a stratovolcano and a caldera - that simulate the interaction between deeper magmatic systems with shallow-seated aquifers, focusing on strain and temperature effects. They predict pore pressure induced hydraulic head changes in the aquifer as well as changing groundwater temperatures and strain induced fluid migration. Volcano observatories can track these hydrological effects for example with potential field investigations or the monitoring of wells. The models allow us to explore the parameter space, contributing to a better understanding of the coupling of these two highly complex systems. Our results provide further insight into the subsurface processes at volcanic systems and will aid the evaluation of unrest signals with potential for improved eruption forecasting.
The Mediterranean Supersite Volcanoes (MED-SUV) Project: an overview
NASA Astrophysics Data System (ADS)
Puglisi, G.
2013-12-01
The EC FP7 MEDiterranean SUpersite Volcanoes (MED-SUV) EC-FP7 Project, which started on June 2013, aims to improve the capacity of the scientific institutions, end users and SME forming the project consortium to assess the volcanic hazards at Italian Supersites, i.e. Mt. Etna and Campi Flegrei/Vesuvius. The Project activities will focus on the optimisation and integration of ground and space monitoring systems, the breakthrough in understanding of volcanic processes, and on the increase of the effectiveness of the coordination between the scientific and end-user communities in the hazard management. The overall goal of the project is to apply the rationale of the Supersites GEO initiative to Mt. Etna and Campi Flegrei/Vesuvius, considered as cluster of Supersites. For the purpose MED-SUV will integrate long-term observations of ground-based multidisciplinary data available for these volcanoes, i.e. geophysical, geochemical, and volcanological datasets, with Earth Observation (EO) data. Merging of different parameters over a long period will provide better understanding of the volcanic processes. In particular, given the variety of styles and intensities of the volcanic activity observed at these volcanoes, and which make them sort of archetypes for 'closed conduit '; and ';open conduit' volcanic systems, the combination of different data will allow discrimination between peculiar volcano behaviours associated with pre-, syn- and post-eruptive phases. Indeed, recognition of specific volcano patterns will allow broadening of the spectrum of knowledge of geo-hazards, as well as better parameterisation and modelling of the eruptive phenomena and of the processes occurring in the volcano supply system; thus improving the capability of carrying out volcano surveillance activities. Important impacts on the European industrial sector, arising from a partnership integrating the scientific community and SMEs to implement together new observation/monitoring sensors/systems, are also expected. MED-SUV proposes the development and implementation of a state-of-the-art e-infrastructure for the data integration and sharing and for volcanic risk management life-cycle, from observation to people preparedness. Experiments and studies will be devoted to better understanding of the internal structures and related dynamics of the case study volcanoes, as well as to recognition of signals associated with to impending unrest or eruptive phases. Hazard quantitative assessment will benefit by the outcomes of these studies and by their integration into the cutting edge monitoring approaches, thus leading to a step-change in hazard awareness and preparedness, and leveraging the close relationship between scientists, SMEs, and end-users. The applicability of the project outcomes will be tested on the cluster of Supersite itself during a Pilot phase, as well as on other volcanic systems with similar behaviours like Piton de la Fournaise (Reunion Island) and Azores.
The Mediterranean Supersite Volcanoes (MED-SUV) Project: an overview
NASA Astrophysics Data System (ADS)
Puglisi, Giuseppe
2014-05-01
The EC FP7 MEDiterranean SUpersite Volcanoes (MED-SUV) EC-FP7 Project, which started on June 2013, aims to improve the capacity of the scientific institutions, end users and SME forming the project consortium to assess the volcanic hazards at Italian Supersites, i.e. Mt. Etna and Campi Flegrei/Vesuvius. The Project activities will focus on the optimisation and integration of ground and space monitoring systems, the breakthrough in understanding of volcanic processes, and on the increase of the effectiveness of the coordination between the scientific and end-user communities in the hazard management. The overall goal of the project is to apply the rationale of the Supersites GEO initiative to Mt. Etna and Campi Flegrei/Vesuvius, considered as cluster of Supersites. For the purpose MED-SUV will integrate long-term observations of ground-based multidisciplinary data available for these volcanoes, i.e. geophysical, geochemical, and volcanological datasets, with Earth Observation (EO) data. Merging of different parameters over a long period will provide better understanding of the volcanic processes. In particular, given the variety of styles and intensities of the volcanic activity observed at these volcanoes, and which make them sort of archetypes for 'closed conduit ' and 'open conduit' volcanic systems, the combination of different data will allow discrimination between peculiar volcano behaviours associated with pre-, syn- and post-eruptive phases. Indeed, recognition of specific volcano patterns will allow broadening of the spectrum of knowledge of geo-hazards, as well as better parameterisation and modelling of the eruptive phenomena and of the processes occurring in the volcano supply system; thus improving the capability of carrying out volcano surveillance activities. Important impacts on the European industrial sector, arising from a partnership integrating the scientific community and SMEs to implement together new observation/monitoring sensors/systems, are also expected. MED-SUV proposes the development and implementation of a state-of-the-art e-infrastructure for the data integration and sharing and for volcanic risk management life-cycle, from observation to people preparedness. Experiments and studies will be devoted to better understanding of the internal structures and related dynamics of the case study volcanoes, as well as to recognition of signals associated with to impending unrest or eruptive phases. Hazard quantitative assessment will benefit by the outcomes of these studies and by their integration into the cutting edge monitoring approaches, thus leading to a step-change in hazard awareness and preparedness, and leveraging the close relationship between scientists, SMEs, and end-users. The applicability of the project outcomes will be tested on the cluster of Supersite itself during a Pilot phase, as well as on other volcanic systems with similar behaviours like Piton de la Fournaise (Reunion Island) and Azores.
Initiation and Along-Axis Segmentation of Seaward-Dipping Volcanic Sequences Captured in Afar
NASA Astrophysics Data System (ADS)
Ebinger, C.; Wolfenden, E.; Yirgu, G.; Keir, D.
2003-12-01
The Afar triple junction zone provides a unique opportunity to examine the early development of magmatic margins, as respective limbs of the triple junction capture different stages of the breakup process. Initial rifting in the southernmost Red Sea occurred concurrent with, or soon after flood basaltic magmatism at ~31 Ma in the Ethiopia-Yemen plume province, whereas the northern part of the Main Ethiopian rift initiated after 12 Ma. Both rift systems initiated with the development of high-angle border fault systems bounding broad basins, but 8-10 My after rifting we see riftward migration of strain from the western border fault to narrow zones of increasingly more basaltic magmatism. These localised zones of faulting and volcanism (magmatic segments) show a segmentation independent of the border fault segmentation. The much older, more evolved magmatic segments in the southern Red Sea, where not onlapped by Pliocene-Recent sedimentary strata, dip steeply riftward and define a regional eastward flexure into transitional oceanic crust, as indicated by gravity models constrained by seismic refraction and receiver function data. The southern Red Sea magmatic segments have been abandoned in Pliocene-Recent triple junction reorganisations, whereas the process of seaward-dipping volcanic sequence emplacement is ongoing in the seismically and volcanically active Main Ethiopian rift. Field, remote sensing, gravity, and seismicity data from the Main Ethiopian and southern Red Sea rifts indicate that seaward-dipping volcanic sequences initiate in moderately stretched continental crust above a narrow zone of dike-intrusion. Our comparison of active and ancient magmatic segments show that they are the precursors to seaward-dipping volcanic sequences analogous to those seen on passive continental margins, and provides insights into the initiation of along-axis segmentation of seafloor-spreading centers.
Volcano hazards program in the United States
Tilling, R.I.; Bailey, R.A.
1985-01-01
Volcano monitoring and volcanic-hazards studies have received greatly increased attention in the United States in the past few years. Before 1980, the Volcanic Hazards Program was primarily focused on the active volcanoes of Kilauea and Mauna Loa, Hawaii, which have been monitored continuously since 1912 by the Hawaiian Volcano Observatory. After the reawakening and catastrophic eruption of Mount St. Helens in 1980, the program was substantially expanded as the government and general public became aware of the potential for eruptions and associated hazards within the conterminous United States. Integrated components of the expanded program include: volcanic-hazards assessment; volcano monitoring; fundamental research; and, in concert with federal, state, and local authorities, emergency-response planning. In 1980 the David A. Johnston Cascades Volcano Observatory was established in Vancouver, Washington, to systematically monitor the continuing activity of Mount St. Helens, and to acquire baseline data for monitoring the other, presently quiescent, but potentially dangerous Cascade volcanoes in the Pacific Northwest. Since June 1980, all of the eruptions of Mount St. Helens have been predicted successfully on the basis of seismic and geodetic monitoring. The largest volcanic eruptions, but the least probable statistically, that pose a threat to western conterminous United States are those from the large Pleistocene-Holocene volcanic systems, such as Long Valley caldera (California) and Yellowstone caldera (Wyoming), which are underlain by large magma chambers still potentially capable of producing catastrophic caldera-forming eruptions. In order to become better prepared for possible future hazards associated with such historically unpecedented events, detailed studies of these, and similar, large volcanic systems should be intensified to gain better insight into caldera-forming processes and to recognize, if possible, the precursors of caldera-forming eruptions. ?? 1985.
NASA Astrophysics Data System (ADS)
Bolós, X.; Cifuentes-Nava, G.; Macias, J. L.; Sosa-Ceballos, G.; García-Tenorio, F.; Albor, M., III; Juarez, M.; Gamez, V.
2017-12-01
Hydrothermal activity in volcanic calderas is the consequence of energy transfer between deep magmatic chambers and subsurface layers saturated in water. This hydrothermal system is generated by convection of the groundwater supplied by meteoric water recharged and the ascent of hot volcanic gasses exsolved from deep magma reservoirs. Calderas are heterogeneous geological structures that due to their formation and evolution produced a complex stratigraphy. All of these heterogeneities can be affected by deformation and also by the presence of fractures and faults which constitute the main pathways whereby hydrothermal fluids can move easily through the surface as spring discharges and fumarolic activity. Geophysical methods have been used in the last decades to investigate the relationship between structural geology and hydrothermal systems in different volcanic areas around the world. In this work, we have focused on the role of subsurface structures to understand and localize the pathways of fluids related to the hydrothermal system of the Cerritos Colorados geothermal field. We focused in the central area of the caldera (P12 well and Cerritos Colorados graben), where active hydrothermal activity is evidenced by fumaroles, thermal anomalies, CO2 diffuse emission, and sulfur precipitation. We have applied a self-potential method (SP) that combined with temperature measurements that allowed to identify the main infiltration and ascending fluid zones in the area, and their specific surface temperature coinciding with fumarolic activity. From this data we an applied Electrical Resistivity Tomography (ERT) survey in two selected places. One ERT profile (1.2 km in length) was located in the P12 well area. A 3D resistivity model used with the equatorial method was carried out on the Cerritos Colorados graben area. Combining the results of the SP, TºC, and ERT data with a detailed structural map we identified the main degassing zones (i.e. fumaroles) that correspond to higher permeability zones located along normal and strike-slip faults. In conclusion, a strong structural control of the surface manifestation of these hydrothermal systems is deduced from our new data. Then, our results emphasize the importance of old structural boundaries that are controlled by intra-caldera tectonic structures.
McGimsey, R.G.; Neal, C.A.; Dixon, J.P.; Ushakov, Sergey
2008-01-01
The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity at or near 16 volcanoes in Alaska during 2005, including the high profile precursory activity associated with the 2005?06 eruption of Augustine Volcano. AVO continues to participate in distributing information about eruptive activity on the Kamchatka Peninsula, Russia, and in the Kurile Islands of the Russian Far East, in conjunction with the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Volcanic Eruption Response Team (SVERT), respectively. In 2005, AVO helped broadcast alerts about activity at 8 Russian volcanoes. The most serious hazard posed from volcanic eruptions in Alaska, Kamchatka, or the Kurile Islands is the placement of ash into the atmosphere at altitudes traversed by jet aircraft along the North Pacific and Russian Trans East air routes. AVO, KVERT, and SVERT work collaboratively with the National Weather Service, Federal Aviation Administration, and the Volcanic Ash Advisory Centers to provide timely warnings of volcanic eruptions and the production and movement of ash clouds.
Breathing modes of Kolumbo submarine volcano (Santorini, Greece).
Bakalis, Evangelos; Mertzimekis, Theo J; Nomikou, Paraskevi; Zerbetto, Francesco
2017-04-13
Submarine volcanoes, such as Kolumbo (Santorini, Greece) are natural laboratories for fostering multidisciplinary studies. Their investigation requires the most innovative marine technology together with advanced data analysis. Conductivity and temperature of seawater were recorded directly above Kolumbo's hydrothermal vent system. The respective time series have been analyzed in terms of non-equilibrium techniques. The energy dissipation of the volcanic activity is monitored by the temperature variations of seawater. The venting dynamics of chemical products is monitored by water conductivity. The analysis of the time series in terms of stochastic processes delivers scaling exponents with turning points between consecutive regimes for both conductivity and temperature. Changes of conductivity are shown to behave as a universal multifractal and their variance is subdiffusive as the scaling exponents indicate. Temperature is constant over volcanic rest periods and a universal multifractal behavior describes its changes in line with a subdiffusive character otherwise. The universal multifractal description illustrates the presence of non-conservative conductivity and temperature fields showing that the system never retains a real equilibrium state. The existence of a repeated pattern of the combined effect of both seawater and volcanic activity is predicted. The findings can shed light on the dynamics of chemical products emitted from the vents and point to the presence of underlying mechanisms that govern potentially hazardous, underwater volcanic environments.
Breathing modes of Kolumbo submarine volcano (Santorini, Greece)
NASA Astrophysics Data System (ADS)
Bakalis, Evangelos; Mertzimekis, Theo J.; Nomikou, Paraskevi; Zerbetto, Francesco
2017-04-01
Submarine volcanoes, such as Kolumbo (Santorini, Greece) are natural laboratories for fostering multidisciplinary studies. Their investigation requires the most innovative marine technology together with advanced data analysis. Conductivity and temperature of seawater were recorded directly above Kolumbo’s hydrothermal vent system. The respective time series have been analyzed in terms of non-equilibrium techniques. The energy dissipation of the volcanic activity is monitored by the temperature variations of seawater. The venting dynamics of chemical products is monitored by water conductivity. The analysis of the time series in terms of stochastic processes delivers scaling exponents with turning points between consecutive regimes for both conductivity and temperature. Changes of conductivity are shown to behave as a universal multifractal and their variance is subdiffusive as the scaling exponents indicate. Temperature is constant over volcanic rest periods and a universal multifractal behavior describes its changes in line with a subdiffusive character otherwise. The universal multifractal description illustrates the presence of non-conservative conductivity and temperature fields showing that the system never retains a real equilibrium state. The existence of a repeated pattern of the combined effect of both seawater and volcanic activity is predicted. The findings can shed light on the dynamics of chemical products emitted from the vents and point to the presence of underlying mechanisms that govern potentially hazardous, underwater volcanic environments.
NASA Astrophysics Data System (ADS)
Faria, B.; Fonseca, J. F. B. D.
2013-09-01
We describe a new geophysical network deployed in the Cape Verde archipelago for the assessment and monitoring of volcanic hazards, and the first results from the network. Across the archipelago, the ages of volcanic activity range from ca. 20 Ma to present. In general, older islands are in the east and younger ones are in the west, but there is no clear age progression and widely-separated islands have erupted contemporaneously on geological time scales. The overall magmatic rate is low, and there are indications that eruptive activity is episodic, with intervals between episodes of intense activity ranging from 1 to 4 Ma. Although only Fogo island has experienced eruptions (mainly effusive) in the historic period (last 550 yr), Brava and Santo Antão have experienced numerous geologically recent eruptions including violent explosive eruptions, and show felt seismic activity and geothermal activity. Evidence for recent volcanism in the other islands is more limited and the emphasis has therefore been on monitoring of the three critical islands of Fogo, Brava and Santo Antão, where volcanic hazard levels are highest. Geophysical monitoring of all three islands is now in operation. The first results show that in Fogo the seismic activity is dominated by hydrothermal events and volcano-tectonic events that may be related to settling of the edifice after the 1995 eruption; in Brava by volcano-tectonic events (mostly offshore), and in Santo Antão by volcano-tectonic events, medium frequency events and harmonic tremor. Both in Brava and in Santo Antão, the recorded seismicity indicates that relatively shallow magmatic systems are present and causing deformation of the edifices that may include episodes of dike intrusion.
NASA Astrophysics Data System (ADS)
van Otterloo, Jozua; Cas, Raymond A. F.; Sheard, Malcolm J.
2013-08-01
The ˜5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin-medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water-magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a "magmatic horizon" of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW-SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.
NASA Astrophysics Data System (ADS)
Silvestri, M.; Musacchio, M.; Buongiorno, M. F.; Dini, L.
2009-04-01
The Project called Sistema Rischio Vulcanico (SRV) is funded by the Italian Space Agency (ASI) in the frame of the National Space Plan 2003-2005 under the Earth Observations section for natural risks management. The SRV Project is coordinated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) which is responsible at national level for the volcanic monitoring. The project philosophy is to implement, by incremental versions, specific modules which allow to process, store and visualize through Web GIS tools geophysical parameters suitable for volcanic risk management. The ASI-SRV is devoted to the development of an integrated system based on Earth Observation (EO) data to respond to specific needs of the Italian Civil Protection Department (DPC) and improve the monitoring of Italian active volcanoes during all the risk phases (Pre Crisis, Crisis and Post Crisis). The ASI-SRV system provides support to risk managers during the different volcanic activity phases and its results are addressed to the Italian Civil Protection Department (DPC). SRV provides the capability to manage the import many different EO data into the system, it maintains a repository where the acquired data have to be stored and generates selected volcanic products. The processing modules for EO Optical sensors data are based on procedures jointly developed by INGV and University of Modena. This procedures allow to estimate a number of parameters such as: surface thermal proprieties, gas, aerosol and ash emissions and to characterize the volcanic products in terms of composition and geometry. For the analysis of the surface thermal characteristics, the available algorithms allow to extract information during the prevention phase and during the Warning and Crisis phase. In the prevention phase the thermal analysis is directed to the identification of temperature variation on volcanic structure which may indicate a change in the volcanic activity state. At the moment the only sensor that shows good technical characteristics for the prevention phase is the ASTER sensor (90 m pixel) on NASA satellite TERRA. The product regarding the Crisis phase is mainly finalized to the estimation of the effusion rate for active lava flows, the algorithms for this product are well consolidated and could be applied to the low spatial resolution space sensors (eg. AVHRR, MODIS) and to high spatial resolution space sensors (eg. Hyperion, ASTER). A further class of products regards the analysis of degassing plumes and eruptive clouds. The analysis of the emitted gas species from degassing plume is usually performed trough ground networks of instruments based on the spectral behaviour of the gas species, although many volcanoes in the world do not have such permanent networks. The SRV system will produce information on the concentration and flux of sulphur dioxide (SO2) water vapour and volcanic aerosol optical thickness by means of ASTER, MODIS and HYPERION data on Etna test site. The analysis of ash clouds will be made by means of already consolidated procedures which uses low spatial resolution sensors with an high revisit time (eg. AVHRR, MSG, MODIS). For the Post Crisis phase the required products will be obtained through classification algorithms and spectral analysis operated by the scientific personnel of INGV and introduced in the system repository after the use of modules. The processing modules for EO RADAR sensors data for ground deformation measurement via Differential Interferometric SAR (DInSAR) techniques is performed by IREA-CNR. The selected test sites are Etna, Vesuvius and Campi Flegrei caldera. In particular, ground deformation time series will be generated by using ERS and ENVISAT SAR data and via the application of the Small BAeline Subset (SBAS) technique. This algorithm has the advantage of being both simple and very effective; moreover, it allows an easy combination of multiplatform data, provided that the acquisition geometries of both platform are compatible. In this paper the first results obtained by means of modules developed within the ASI-SRV project and dedicated to the processing of EO historical series are presented.
NASA Astrophysics Data System (ADS)
Alonso, Mar; Ingman, Dylan; Alexander, Scott; Barrancos, José; Rodríguez, Fátima; Melián, Gladys; Pérez, Nemesio M.
2016-04-01
Tenerife is the largest of the Canary Islands and, together with Gran Canaria Island, is the only one with a central volcanic complex that started to grow at about 3.5 Ma. Nowadays the central complex is formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and was partially filled by post-caldera volcanic products. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 Ma (Dóniz et al., 2008). Most of the monogenetic cones are aligned following a triple junction-shaped rift system, as result of inflation produced by the concentration of emission vents and dykes in bands at 120o to one another as a result of minimum stress fracturing of the crust by a mantle upwelling. The main structural characteristic of the southern volcanic rift (N-S) of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Four main volcanic successions in the southern volcanic rift zone of Tenerife, temporally separated by longer periods (˜70 - 250 ka) without volcanic activity, have been identified (Kröchert and Buchner, 2008). Since there are currently no visible gas emissions at the N-S rift, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. We report here the last results of diffuse CO2 efflux survey at the N-S rift of Tenerife, performed using the accumulation chamber method in the summer period of 2015. The objectives of the surveys were: (i) to constrain the total CO2 output from the studied area and (ii) to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for the N-S rift of Tenerife. Soil CO2 efflux values ranged from non-detectable up to 31.7 g m-2 d-1. A spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, did not show an apparent relation between higher diffuse CO2 emission values and the main N-S axis of the rift. The total CO2 output released to the atmosphere in a diffuse way has been estimated at 707 t d-1, which represents a value three times higher than the average of the three studies conducted previously. This observed increase suggests the occurrence of an episodic enhanced magmatic (endogenous) contribution. This also confirms the need of periodic diffuse emission surveys in the area as a powerful volcanic surveillance tool, mainly in volcanic systems where visible gas emanations are absent. References: Dóniz et al., 2008. J. Volcanol. Geotherm. Res. 173, 185. Kröchert and Buchner, 2008. Geol. Mag. 146, 161.
NASA Astrophysics Data System (ADS)
Lee, G.; Jee, Y.; Kim, J.
2013-12-01
Korea is regarded as a safety area from the volcanic disaster, however, the countermeasures for Mt. Baekdu volcanic eruption has been discussed because the possibility of the volcanic eruption had been heightened and various experimental results show risk of Mt. Baekdu volcanic eruption. The purpose of study is to establish management standards and manual for water supply system through the analysis of the volcanic ash effect to the water supply systems. In this study, similar case study for the water supply system to the volcanic ash damage had been investigated. Present status of water supply system and response manual for water supply systems also had been investigated. And then problems of present response manual using had been estimated. As the result, damage according to Mt. Baekdu volcanic eruption on the water supply system could be forecasted. And the direction of management standard and response manual has been established. Acknowledgments This research was supported by a grant [NEMA-BAEKDUSAN-2012-2-2] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea.
Leg 197 synthesis: Southward motion and geochemical variability of the Hawaiian hotspot
Duncan, Robert A.; Tarduno, John A.; Scholl, David W.; Duncan, Robert A.; Tarduno, John A.; Davies, Thomas A.; Scholl, David W.
2006-01-01
The bend in the Hawaiian-Emperor volcanic chain is an often-cited example of a change in plate motion with respect to a stationary hotspot. Growing evidence, however, suggests that the bend might instead record variable drift of the Hawaiian hotspot within a convecting mantle. Paleomagnetic and radiometric age data from samples recovered during Ocean Drilling Program (ODP) Leg 197 define an age-progressive paleolatitude history, indicating that the Emperor Seamounts volcanic trend was formed principally by rapid (4–5 cm/yr) southward motion of the Hawaiian hotspot during Late Cretaceous to early Tertiary time (81–47 Ma). Paleointensity data derived from Leg 197 suggest an inverse relationship between field strength and reversal frequency, consistent with an active lower mantle that controls the efficiency of the geodynamo. Petrochemical data and observations of volcanic products (lava flows and volcaniclastic sediments) from Detroit, Nintoku, and Koko Seamounts provide records of the evolution of these volcanic systems for comparison with recent activity in the Hawaiian Islands. We find that the Emperor Seamounts formed from similar mantle sources for melting (plume components and lithosphere) and in much the same stages of volcanic activity and time span as the Hawaiian volcanoes. Changes in major and trace element and Sr isotopic compositions of shield lavas along the lineament can be related to variations in thickness of the lithosphere overlying the hotspot that control the depth and extent of partial melting. Other geochemical tracers, such as He, Pb, and Hf isotopic compositions, indicate persistent contributions to melting from the plume throughout the volcanic chain.
NASA Astrophysics Data System (ADS)
Patlan, E.; Velasco, A.; Konter, J. G.
2010-12-01
The San Miguel volcano lies near the city of San Miguel, El Salvador (13.43N and - 88.26W). San Miguel volcano, an active stratovolcano, presents a significant natural hazard for the city of San Miguel. In general, the internal state and activity of volcanoes remains an important component to understanding volcanic hazard. The main technology for addressing volcanic hazards and processes is through the analysis of data collected from the deployment of seismic sensors that record ground motion. Six UTEP seismic stations were deployed around San Miguel volcano from 2007-2008 to define the magma chamber and assess the seismic and volcanic hazard. We utilize these data to develop images of the earth structure beneath the volcano, studying the volcanic processes by identifying different sources, and investigating the role of earthquakes and faults in controlling the volcanic processes. We initially locate events using automated routines and focus on analyzing local events. We then relocate each seismic event by hand-picking P-wave arrivals, and later refine these picks using waveform cross correlation. Using a double difference earthquake location algorithm (HypoDD), we identify a set of earthquakes that vertically align beneath the edifice of the volcano, suggesting that we have identified a magma conduit feeding the volcano. We also apply a double-difference earthquake tomography approach (tomoDD) to investigate the volcano’s plumbing system. Our preliminary results show the extent of the magma chamber that also aligns with some horizontal seismicity. Overall, this volcano is very active and presents a significant hazard to the region.
Lowenstern, Jacob B; Smith, Robert B; Hill, David P
2006-08-15
Earth's largest calderas form as the ground collapses during immense volcanic eruptions, when hundreds to thousands of cubic kilometres of magma are explosively withdrawn from the Earth's crust over a period of days to weeks. Continuing long after such great eruptions, the resulting calderas often exhibit pronounced unrest, with frequent earthquakes, alternating uplift and subsidence of the ground, and considerable heat and mass flux. Because many active and extinct calderas show evidence for repetition of large eruptions, such systems demand detailed scientific study and monitoring. Two calderas in North America, Yellowstone (Wyoming) and Long Valley (California), are in areas of youthful tectonic complexity. Scientists strive to understand the signals generated when tectonic, volcanic and hydrothermal (hot ground water) processes intersect. One obstacle to accurate forecasting of large volcanic events is humanity's lack of familiarity with the signals leading up to the largest class of volcanic eruptions. Accordingly, it may be difficult to recognize the difference between smaller and larger eruptions. To prepare ourselves and society, scientists must scrutinize a spectrum of volcanic signals and assess the many factors contributing to unrest and toward diverse modes of eruption.
NASA Astrophysics Data System (ADS)
Di Giuseppe, M. G.; Troiano, A.; Carlino, S.
2017-12-01
The island of Ischia (located in the Bay of Naples, Italy) represents a peculiar case of a well-exposed caldera that has experienced a large (>800 m) and rapid resurgence, accompanied by volcanic activity. What drives the resurgence of calderas is a crucial issue to investigate, because this process is associated with potential eruptions and high risk to people living within and around such large active volcanic systems. To improve the knowledge of volcano-tectonic processes affecting the caldera of Ischia, electromagnetic imaging of the structures associated with its resurgence was performed and integrated with available geological information. A magnetotelluric (MT) survey of the island was carried out along two main profiles through the central-western sector, providing an electrical resistivity map to a depth of 3 km. These resistivity cross sections allowed us to identify the presence of a very shallow magmatic intrusion, possibly a laccolith, at a depth of about 1 km, which was responsible for both the resurgence and the volcanic activity. Furthermore, the tectonic structures bordering the resurgent area and the occurrence of a large thermal anomaly in the western sector of the caldera also provided a signature in the resistivity cross sections, with the magma intrusion producing advection of hot fluids with high geothermal gradients (>150 °C km-1) in the southern and western sectors. All of these data are fundamental for the assessment of the island's volcano-tectonic dynamics and their associated hazards. The structure and activity of the island have been controlled by the process of resurgence associated with the arrival of new magma and the progressive intrusion of a laccolith at a shallow depth. The reactivation of such a shallow system may imply imminent eruption which would pose a major volcanic hazard.
NASA Technical Reports Server (NTRS)
Farmer, J. D.; Farmer, M. C.; Berger, R.
1993-01-01
Extensive eruptions of alkalic basalt from low-elevation fissures and vents on the southern flank of the dormant volcano, Cerro Evermann, accompanied the most recent phase of volcanic activity on Socorro Island, and created the Lomas Coloradas, a broad, gently sloping terrain comprising the southern part of the island. We obtained 14C ages of 4690 +/- 270 BP (5000-5700 cal BP) and 5040 +/- 460 BP (5300-6300 cal BP) from lacustrine deposits that occur within volcanic sequences of the lower Lomas Coloradas. Apparently, the sediments accumulated within a topographic depression between two scoria cones shortly after they formed. The lacrustine environment was destroyed when the cones were breached by headward erosion of adjacent stream drainages. This was followed by the eruption of a thin basaltic flow from fissures near the base of the northernmost cone. The flow moved downslope for a short distance and into the drainages that presently bound the study area on the east and west. The flow postdates development of the present drainage system and may be very recent. Our 14C data, along with historical accounts of volcanic activity over the last century, including submarine eruptions that occurred a few km west of Socorro in early 1993, underscore the high risk for explosive volcanism in this region and the need for a detailed volcanic hazards plan and seismic monitoring.
NASA Astrophysics Data System (ADS)
Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas
2016-12-01
Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.
Barboni, Mélanie; Boehnke, Patrick; Schmitt, Axel K; Harrison, T Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas
2016-12-06
Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the "cold storage" model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes.
Barboni, Mélanie; Schmitt, Axel K.; Harrison, T. Mark; Shane, Phil; Bouvier, Anne-Sophie; Baumgartner, Lukas
2016-01-01
Felsic magmatic systems represent the vast majority of volcanic activity that poses a threat to human life. The tempo and magnitude of these eruptions depends on the physical conditions under which magmas are retained within the crust. Recently the case has been made that volcanic reservoirs are rarely molten and only capable of eruption for durations as brief as 1,000 years following magma recharge. If the “cold storage” model is generally applicable, then geophysical detection of melt beneath volcanoes is likely a sign of imminent eruption. However, some arc volcanic centers have been active for tens of thousands of years and show evidence for the continual presence of melt. To address this seeming paradox, zircon geochronology and geochemistry from both the frozen lava and the cogenetic enclaves they host from the Soufrière Volcanic Center (SVC), a long-lived volcanic complex in the Lesser Antilles arc, were integrated to track the preeruptive thermal and chemical history of the magma reservoir. Our results show that the SVC reservoir was likely eruptible for periods of several tens of thousands of years or more with punctuated eruptions during these periods. These conclusions are consistent with results from other arc volcanic reservoirs and suggest that arc magmas are generally stored warm. Thus, the presence of intracrustal melt alone is insufficient as an indicator of imminent eruption, but instead represents the normal state of magma storage underneath dormant volcanoes. PMID:27799558
NASA Astrophysics Data System (ADS)
Matthews, Zoe; Manning, Christina J.
2017-04-01
The Geghama Volcanic highland in central Armenia is an ideal setting to study the young ( 750-25 ka [1]) volcanism that characterises the Lesser Caucasus region. The volcanism in the area is bimodal in composition: the eastern highlands are dominated by numerous monogenetic scoria cones, whilst the west shows more evolved volcanism centered on two obsidian bearing, polygenetic domes (Hatis and Gutanasar) [2]. Activity at Hatis and Gutanasar is thought to have spanned 550ka-200ka [3] and produced a range of products including obsidian flows, ignimbrites and basaltic scoria cones, consistent with long lived and complex magma storage systems. During a similar time period there is evidence for the presence of hominin groups in the surrounding region [3] and it is likely that at least some of the volcanic activity at Hatis and Gutanasar impacted on their distribution [4]. A better understanding of the eruptive behaviour of these volcanoes during this period could therefore shed light on the effect of volcanic activity on the dispersal of man through this period. Whilst large regional studies have striven to better understand the timing and source of volcanism in Armenia, there have been few detailed studies on single volcanoes. Obsidian is ubiquitous within the volcanic material of both Gutanasar and Hatis as lava flows, dome deposits and within ignimbrites. This study aims to better understand the eruptive history of Gutanasar, with specific focus upon the determination of the petrogenetic history of obsidian lenses observed within the ignimbrite deposits. Identification of these obsidians as the result of welding or in-situ melting will help constrain eruptive volumes and flow thickness, important for the reconstruction of palaeo-volcanic hazards. In order to interpret how this obsidian was deposited, macro textural analysis is combined with micro textural measurements of microlite crystals. Quantitative measurements of microlites in obsidian can provide significant insight into the eruptive dynamics and emplacement history [5]. In particular, microlite number density, volume and alignment represent the summation of degassing, conduit flow and emplacement [6]. As such, there is great significance in the quantification of these parameters for the determination of eruption dynamics. Analysis of these obsidians will establish patterns of textural heterogeneity as a signature for the distinction of volcanic glasses formed by different mechanisms and allow for identification of patterns in microlite number density, volume, alignment and plunge that characterise differing modes of emplacement. Together, these measurements will aid interpretation and improve understanding of this volcanic system, with applicability to the determination of the impact of these volcanic episodes on the distribution of early man in Armenia as well as assessment of the potential for future events. [1] Lebedev et al (2013) JVS, 7, 204-229 [2] Arutyunyan et al (2007) Dokl Earth Sci, 416, 1042-1046 [3] Alder et al (2014) Science, 345, 1609-1613 [4] Hutchison et al (2016) Nat. Commun, 7 [5] Manga (1998) JVGR, 86, 107-115 [6] Befus et al (2015) Bull. Volcanol, 77, 88
NASA Astrophysics Data System (ADS)
Roverato, Matteo; Juliani, Caetano; Capra, Lucia; Dias Fernandes, Carlos Marcelo
2016-04-01
Precambrian volcanism played an important role in geological evolution and formation of new crust. Most of the literature on Precambrian volcanic rocks describes settings belonging to subaqueous volcanic systems. This is likely because subaerial volcanic rocks in Proterozoic and Archean volcano-sedimentary succession are poorly preserved due to erosive/weathering processes. The late Paleoproterozoic Sobreiro Formation (SF) here described, seems to be one of the rare exceptions to the rule and deserves particular attention. SF represents the subaerial expression of an andesitic magmatism that, linked with the upper felsic Santa Rosa F., composes the Uatumã Group. Uatumã Group is an extensive magmatic event located in the Xingú region, southwestern of Pará state, Amazonian Craton (northern Brazil). The Sobreiro volcanism is thought to be related to an ocean-continent convergent margin. It is characterized by ~1880 Ma well-preserved calc-alkaline basaltic/andesitic to andesitic lava flows, pyroclastic rocks and associated reworked successions. The superb preservation of its rock-textures allowed us to describe in detail a large variety of volcaniclastic deposits. We divided them into primary and secondary, depending if they result from a direct volcanic activity (pyroclastic) or reworked processes. Our study reinforces the importance of ancient volcanic arcs and rocks contribution to the terrestrial volcaniclastic sedimentation and evolution of plate tectonics. The volcanic activity that produced pyroclastic rocks influenced the amount of detritus shed into sedimentary basins and played a major role in the control of sedimentary dispersal patterns. This study aims to provide, for the first time, an analysis of the physical volcanic processes for the subaerial SF, based in field observation, lithofacies analysis, thin section petrography and less geochemical data. The modern volcanological approach here used can serve as a model about the evolution of Precambrian volcano-sedimentary basins. Our approach permits to better identify different processes operating on volcanic edifices and to constrain the depositional environment and thus geodynamic setting of Precambrian continental volcanic belts. Acknowledgments: We acknowledge CAPES/CNPq project n° 402564/2012-0 (Programa Ciências sem Fronteiras), CNPq/CT-Mineral (Proc. 550.342/2011-7) and INCT-Geociam (573733/2008-2) - CNPq/MCT/FAPESPA/PETROBRAS.
NASA Astrophysics Data System (ADS)
Liegler, A.; Bakkar Hindeleh, H.; Deering, C. D.; Fentress, S. E.
2015-12-01
Volcanic gas emissions are a key component for monitoring volcanic activity, magmatic input of volatiles to the atmosphere and the assessment of geothermal potential in volcanic regions. Diffuse soil degassing has been shown to represent a major part of volcanic gas emissions. However, this type of gas emission has not yet been quantified in the Guanacaste province of Costa Rica; a region of the country with several large, active or dormant volcanoes. We conducted the first study of diffuse CO2 degassing at Rincón de la Vieja and Miravalles volcanoes, both located in Guanacaste. Diffuse degassing was measured using the accumulation chamber method to quantify CO2 flux in regions where hydrothermal surface features indicate anomalous activity. The total diffuse carbon dioxide flux estimated at Miravalles in two areas, together roughly 2 km2 in size, was 135 t/day and in several areas at Rincón de la Vieja a minimum of 4 t/day. Comparatively low flux values and a very local concentration (few m2) of CO2 flux were observed at the active Rincón de la Vieja volcano, compared to the dormant Miravalles volcano, where significant soil flux was found over extended areas, not only around vents. Our assessment of the origin of these differences leads to two possibilities depending on if the surface features on the two volcanoes are fed by a common hydrothermal system or two separate ones. In the former case, the different intensity of diffuse CO2 flux could indicate a different degassing behavior and stronger concentration of gas emissions at the active vent areas at Rincon de la Vieja. In the latter case, where the hydrothermal systems are not linked, the amount of CO2 degassed through the flanks of the volcanoes could indicate that different physical and chemical conditions are governing the degassing of the two systems.
Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993
Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.
1996-01-01
During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).
NASA Technical Reports Server (NTRS)
1979-01-01
This photo of a volcanic eruption on Jupiter's satellite Io (dark fountain-like feature near the limb) was taken March 4, 1979, about 12 hours before Voyager 1's closest approach to Jupiter. This and the accompanying photo present the evidence for the first active volcanic eruption ever observed on another body in the solar system. This photo taken from a distance of 310,000 miles (499,000 kilometers), shows a plume-like structure rising more than 60 miles (100 kilometers) above the surface, a cloud of material being produced by an active eruption. At least four eruptions have been identified on Voyager 1 pictures and many more may yet be discovered on closer analysis. On a nearly airless body like Io, particulate material thrown out of a volcano follows a ballistic trajectory, accounting for the dome-like shape of the top of the cloud, formed as particles reach the top of their flight path and begin to fall back. Spherical expansion of outflowing gas forms an even larger cloud surrounding the dust. Several regions have been identified by the infrared instrument on Voyager 1 as being several hundred degrees Fahrenheit warmer than surrounding terrain, and correlated with the eruptions. The fact that several eruptions appear to be going on simultaneously makes Io the most active surface in the solar system and suggests to scientists that Io is undergoing continuous volcanism, revising downward the age of Io's surface once again. JPL manages and controls the Voyager Project for NASA's Office of Space Science.
DECADE Web Portal: Integrating MaGa, EarthChem and GVP Will Further Our Knowledge on Earth Degassing
NASA Astrophysics Data System (ADS)
Cardellini, C.; Frigeri, A.; Lehnert, K. A.; Ash, J.; McCormick, B.; Chiodini, G.; Fischer, T. P.; Cottrell, E.
2014-12-01
The release of gases from the Earth's interior to the exosphere takes place in both volcanic and non-volcanic areas of the planet. Fully understanding this complex process requires the integration of geochemical, petrological and volcanological data. At present, major online data repositories relevant to studies of degassing are not linked and interoperable. We are developing interoperability between three of those, which will support more powerful synoptic studies of degassing. The three data systems that will make their data accessible via the DECADE portal are: (1) the Smithsonian Institution's Global Volcanism Program database (GVP) of volcanic activity data, (2) EarthChem databases for geochemical and geochronological data of rocks and melt inclusions, and (3) the MaGa database (Mapping Gas emissions) which contains compositional and flux data of gases released at volcanic and non-volcanic degassing sites. These databases are developed and maintained by institutions or groups of experts in a specific field, and data are archived in formats specific to these databases. In the framework of the Deep Earth Carbon Degassing (DECADE) initiative of the Deep Carbon Observatory (DCO), we are developing a web portal that will create a powerful search engine of these databases from a single entry point. The portal will return comprehensive multi-component datasets, based on the search criteria selected by the user. For example, a single geographic or temporal search will return data relating to compositions of emitted gases and erupted products, the age of the erupted products, and coincident activity at the volcano. The development of this level of capability for the DECADE Portal requires complete synergy between these databases, including availability of standard-based web services (WMS, WFS) at all data systems. Data and metadata can thus be extracted from each system without interfering with each database's local schema or being replicated to achieve integration at the DECADE web portal. The DECADE portal will enable new synoptic perspectives on the Earth degassing process. Other data systems can be easily plugged in using the existing framework. Our vision is to explore Earth degassing related datasets over previously unexplored spatial or temporal ranges.
Elemental characterization of Mt. Sinabung volcanic ash, Indonesia by Neutron Activation Analysis
NASA Astrophysics Data System (ADS)
Kusmartini, I.; Syahfitri, W. Y. N.; Kurniawati, S.; Lestiani, D. D.; Santoso, M.
2017-06-01
Mount Sinabung is a volcano located in North Sumatera, Indonesia which has been recorded not erupted since 1600. However in 2013 it has been erupted and cause of black thick smog, rain sand and volcanic ash. Volcanic ash containing trace elements material that can be utilized in various applications but still has potential danger of heavy metals. In order to obtain an elemental composition data of volcanic ash, the characterization of volcanic ash were carried out using Neutron Activation Analysis. The volcanic ash was taken from Mt. Sinabung eruption. Samples were irradiated at the rabbit system in the reactor G.A Siwabessy facilities with neutron flux ˜ 1013 n.cm-2.s-1 and then counted using HPGe detector. Method validation was carried out by SRM NIST Coal Fly Ash 1633b and NIST 2711a Montana II Soil with recovery values were in the range of 96-108% and 95-106% respectively. The results showed that major elements; Al, Na, Ca and Fe, concentrations were 8.7, 1.05, 2.98 and 7.44 %, respectively, minor elements K, Mg, Mn, Ti, V and Zn were 0.87%, 0.78%, 0.18%, 0.62%, 197.13 ppm and 109.35 ppm, respectively, heavy metals; As, Cr, Co and Sb, contents were 4.48, 11.75, 17.13 and 0.35 ppm, respectively while rare earth elements such as Ce, Eu, La, Nd, Sm, Yb were 45.33, 1.22, 19.63, 20.34, 3.86, and 2.57 ppm respectively. The results of the elemental contents of volcanic ash that has been obtained can be used as the scientific based data for volcanic material utilization by considering the economic potential of elements contained and also the danger of the heavy metals content.
Climatic Impacts of a Volcanic Double Event: 536/540 CE
NASA Astrophysics Data System (ADS)
Toohey, M.; Krüger, K.; Sigl, M.; Stordal, F.; Svensen, H.
2015-12-01
Volcanic activity in and around the year 536 CE led to the coldest decade of the Common Era, and has been speculatively linked to large-scale societal crises around the world. Using a coupled aerosol-climate model, with eruption parameters constrained by recently re-dated ice core records and historical observations of the aerosol cloud, we reconstruct the radiative forcing resulting from a sequence of two major volcanic eruptions in 536 and 540 CE. Comparing with a reconstruction of volcanic forcing over the past 1200 years, we estimate that the decadal-scale Northern Hemisphere (NH) extra-tropical radiative forcing from this volcanic "double event" was larger than that of any known period. Earth system model simulations including the volcanic forcing are used to explore the temperature and precipitation anomalies associated with the eruptions, and compared to available proxy records, including maximum latewood density (MXD) temperature reconstructions. Special attention is placed on the decadal persistence of the cooling signal in tree rings, and whether the climate model simulations reproduce such long-term climate anomalies. Finally, the climate model results will be used to explore the probability of socioeconomic crisis resulting directly from the volcanic radiative forcing in different regions of the world.
NASA Astrophysics Data System (ADS)
Medialdea, T.; Somoza, L.; González, F. J.; Vázquez, J. T.; de Ignacio, C.; Sumino, H.; Sánchez-Guillamón, O.; Orihashi, Y.; León, R.; Palomino, D.
2017-08-01
New seismic profiles, bathymetric data, and sediment-rock sampling document for the first time the discovery of hydrothermal vent complexes and volcanic cones at 4800-5200 m depth related to recent volcanic and intrusive activity in an unexplored area of the Canary Basin (Eastern Atlantic Ocean, 500 km west of the Canary Islands). A complex of sill intrusions is imaged on seismic profiles showing saucer-shaped, parallel, or inclined geometries. Three main types of structures are related to these intrusions. Type I consists of cone-shaped depressions developed above inclined sills interpreted as hydrothermal vents. Type II is the most abundant and is represented by isolated or clustered hydrothermal domes bounded by faults rooted at the tips of saucer-shaped sills. Domes are interpreted as seabed expressions of reservoirs of CH4 and CO2-rich fluids formed by degassing and contact metamorphism of organic-rich sediments around sill intrusions. Type III are hydrothermal-volcanic complexes originated above stratified or branched inclined sills connected by a chimney to the seabed volcanic edifice. Parallel sills sourced from the magmatic chimney formed also domes surrounding the volcanic cones. Core and dredges revealed that these volcanoes, which must be among the deepest in the world, are constituted by OIB-type, basanites with an outer ring of blue-green hydrothermal Al-rich smectite muds. Magmatic activity is dated, based on lava samples, at 0.78 ± 0.05 and 1.61 ± 0.09 Ma (K/Ar methods) and on tephra layers within cores at 25-237 ky. The Subvent hydrothermal-volcanic complex constitutes the first modern system reported in deep water oceanic basins related to intraplate hotspot activity.
NASA Astrophysics Data System (ADS)
Buongiorno, M. F.; Amici, S.; Doumaz, F.; Diaz, J. A.; Silvestri, M.; Musacchio, M.; Pieri, D. C.; Marotta, E.; Wright, K. C.; Sansivero, F.; Caliro, S.; Falcone, S.; Giulietti, F.
2016-12-01
Monitoring natural hazards such as active volcanoes requires specific instruments to measure many parameters (gas emissions, surface temperatures, surface deformation etc.) to determine the activity level of the volcano. Volcanoes in most cases present difficult and dangerous environment for scientists who need to take in situ measurements but also for manned aircrafts. Remote Sensing systems on board of satellite permit to measure a large number of parameters especially during the eruptive events but still show large limits to monitor volcanic precursors and phenomena at local scale (gas species emitted by fumarole or summit craters degassing plumes and surface thermal changes of few degrees). Since 2004 INGV started the analysis of unmanned Aerial Systems (UAV) to explore the operational aspects of UAV deployments. In 2006, INGV in partnership with department of Aerospace Division at University of Bologna, stared the development of a UAV system named RAVEN-INGV. The project was anticipated by a flight test on 2004. In the last years the large diffusion of smaller UAVS and drones opened new opportunities to perform the monitoring of volcanic areas. INGV teams developed strong collaboration with Jet Propulsion Laboratory (JPL) and University of Costa Rica (UCR) to cooperate in testing both UAV and miniaturized instruments to measures gas species and surface temperatures in volcanic environment. Between 2014 and 2015 specific campaigns has been performed in the active volcanoes in Italy (Campi Flegrei and Vulcano Island). The field and airborne acquisitions have also permitted the calibration and validation of Satellite data as ASTER and LANDSAT8 (in collaboration with USGS). We hope that the rapid increasing of technology developments will permit the use UAV systems to integrate geophysical measurements and contribute to the necessary calibration and validation of current and future satellite missions dedicated to the measurements of surface temperatures and gas emissions in volcanic areas.
Hydrothermal Solute Flux from Ebeko Volcanic Center, Paramushir, Kuril Islands
NASA Astrophysics Data System (ADS)
Taran, Y.; Kalacheva, E.; Kotenko, T.; Chaplygin, I.
2014-12-01
Ebeko volcano on the northern part of Paramushir Island, Northern Kurils, is characterized by frequent phreatic eruptions, a strong low-temperature fumarolic activity at the summit and was the object of comprehensive volcanological and geochemical studies during the last half a century. The volcanic center is composed of several Pleistocene volcanic structures aadjacent to Ebeko and hosts a hydrothermal system with a high outflow rate of hot SO4-Cl acidic water (Upper Yurieva springs) with the current maximum temperature of ~85oC, pH 1.3 and TDS ~ 10 g/L. All discharging thermal waters are drained by the Yurieva River to the Sea of Okhotsk. The hot springs have been changing in time, generally decreasing their activity from near boiling in 1960s, with TDS ~ 20 g/L and the presence of a small steaming field at the upper part of the ~ 700 m long discharging area, to a much lower discharge rate of main vents, lower temperature and the absence of the steaming ground. The spring chemistry did not react to the Ebeko volcanic activity (14 strong phreato-magmatic events during the last 60 years).The total measured outputs of chloride and sulfur from the system last time (2006-2010) were estimated on average as 730 g/s and 980 g/s, respectively, which corresponds to the equivalent fluxes of 64 t/d of HCl and 169 t/d of SO2. These values are higher than the fumarolic volatile output from Ebeko. The estimated discharge rate of hot (85oC) water from the system with ~ 3500 ppm of chloride is about 0.3 m3/s which is much higher than the thermal water discharge from El Chichon or Copahue volcano-hydrothermal systems and among the highest hot water natural outputs ever measured for a volcano-hydrothermal system. We also report the chemical composition (major and ~ 60 trace elements including REE) of water from the main hot spring vents and the Yurieva river mouth.
Chronology of volcanic events in the eastern Philippine Sea
NASA Astrophysics Data System (ADS)
Meijer, Arend; Reagan, Mark; Ellis, Howard; Shafiqullah, Muhammad; Sutter, John; Damon, Paul; Kling, Stanley
Radiometric and paleontologic ages of samples from chiefly volcanic sections exposed on Guam, Saipan, and in the Palau Islands were determined to provide an improved temporal framework for tectonic and petrologic models for the evolution of the eastern Philippine Sea. The oldest arc related volcanic rocks found in this area are from the Facpi formation on Guam dated at 43.8±1.6 m.y. B.P. (late middle Eocene). Evidence for late Eocene, early Oligocene, and middle Miocene arc volcanism was also found in the Mariana fore arc. The Palau Islands contain volcanic units of late Eocene(?), early Oligocene and early Miocene age. A minimum age of 1.3±0.2 m.y. has been established for the Mariana active arc. Overall, the new data are consistent with Karig's (1971) model for the tectonic evolution of the eastern Philippine Sea. Whether or not arc volcanism and interarc basin spreading can take place at the same time has not been resolved, although no evidence of synchroneity has been found for at least the Parece Vela Basin—South Honshu Ridge arc system.
Evarts, Russell C.; Conrey, Richard M.; Fleck, Robert J.; Hagstrum, Jonathan T.; O'Connor, Jim; Dorsey, Rebecca; Madin, Ian P.
2009-01-01
More than 80 small volcanoes are scattered throughout the Portland-Vancouver metropolitan area of northwestern Oregon and southwestern Washington. These volcanoes constitute the Boring Volcanic Field, which is centered in the Neogene Portland Basin and merges to the east with coeval volcanic centers of the High Cascade volcanic arc. Although the character of volcanic activity is typical of many monogenetic volcanic fields, its tectonic setting is not, being located in the forearc of the Cascadia subduction system well trenchward of the volcanic-arc axis. The history and petrology of this anomalous volcanic field have been elucidated by a comprehensive program of geologic mapping, geochemistry, 40Ar/39Ar geochronology, and paleomag-netic studies. Volcanism began at 2.6 Ma with eruption of low-K tholeiite and related lavas in the southern part of the Portland Basin. At 1.6 Ma, following a hiatus of ~0.8 m.y., similar lavas erupted a few kilometers to the north, after which volcanism became widely dispersed, compositionally variable, and more or less continuous, with an average recurrence interval of 15,000 yr. The youngest centers, 50–130 ka, are found in the northern part of the field. Boring centers are generally monogenetic and mafic but a few larger edifices, ranging from basalt to low-SiO2 andesite, were also constructed. Low-K to high-K calc-alkaline compositions similar to those of the nearby volcanic arc dominate the field, but many centers erupted magmas that exhibit little influence of fluids derived from the subducting slab. The timing and compositional characteristics of Boring volcanism suggest a genetic relationship with late Neogene intra-arc rifting.
NASA Astrophysics Data System (ADS)
Zhan, Yan; Gregg, Patricia M.; Chaussard, Estelle; Aoki, Yosuke
2017-12-01
Quantifying the eruption potential of a restless volcano requires the ability to model parameters such as overpressure and calculate the host rock stress state as the system evolves. A critical challenge is developing a model-data fusion framework to take advantage of observational data and provide updates of the volcanic system through time. The Ensemble Kalman Filter (EnKF) uses a Monte Carlo approach to assimilate volcanic monitoring data and update models of volcanic unrest, providing time-varying estimates of overpressure and stress. Although the EnKF has been proven effective to forecast volcanic deformation using synthetic InSAR and GPS data, until now, it has not been applied to assimilate data from an active volcanic system. In this investigation, the EnKF is used to provide a “hindcast” of the 2009 explosive eruption of Kerinci volcano, Indonesia. A two-sources analytical model is used to simulate the surface deformation of Kerinci volcano observed by InSAR time-series data and to predict the system evolution. A deep, deflating dike-like source reproduces the subsiding signal on the flanks of the volcano, and a shallow spherical McTigue source reproduces the central uplift. EnKF predicted parameters are used in finite element models to calculate the host-rock stress state prior to the 2009 eruption. Mohr-Coulomb failure models reveal that the shallow magma reservoir is trending towards tensile failure prior to 2009, which may be the catalyst for the 2009 eruption. Our results illustrate that the EnKF shows significant promise for future applications to forecasting the eruption potential of restless volcanoes and hind-cast the triggering mechanisms of observed eruptions.
NASA Astrophysics Data System (ADS)
Tassi, F.; Vaselli, O.; Capaccioni, B.; Giolito, C.; Duarte, E.; Fernandez, E.; Minissale, A.; Magro, G.
2005-12-01
In the period 1998-2002 thermal spring discharges of Rincon de la Vieja volcano (NW Costa Rica) have been sampled and analyzed for major, trace and isotopic ( 18O/ 16O and D/H in waters and 3He/ 4He and 13C/ 12C in CO 2 in gases) composition. The boiling pools hosted inside the summit crater (Active Crater) are characterized by high contents of magmatic-related compounds (SO 2, HCl and HF) that strongly affect the chemistry of the crater lake. These chemical features are not shown by the thermal discharges seeping out in the surrounding area of the volcano. Here, the shallow aquifer apparently masks any possible clues related to the magmatic system. This suggests that the fluid vents located inside the Active Crater are likely to represent the most appropriate sampling sites for geochemical surveillance purposes, although the high gas discharge rate from the lake may occasionally prevent any fluid sampling. Alternatively, as already suggested by recent studies on the behavior of light hydrocarbons in different volcanic environments, the compositional features of the organic gas fraction in the more accessible outer flank thermal discharges could usefully be utilized, at least, to assess the thermodynamic conditions of the volcanic-hydrothermal system, since these compounds are affected by secondary processes only at limited extent.
Io Shown in Lambertian Equal Area Projection and in Approximately Natural Color
1998-06-04
NASA's Voyager 1 computer color mosaics, shown in approximately natural color and in Lambertian equal-area projections, show the Eastern (left) and Western (right) hemispheres of Io. This innermost of Jupiter's 4 major satellites is the most volcanically active object in the solar system. Io is 2263 mi (3640 km) in diameter, making it a little bigger than Earth's moon. Almost all the features visible here have volcanic origins, including several calderas and eruption plumes that were active at the time of the Voyager 1 encounter. http://photojournal.jpl.nasa.gov/catalog/PIA00318
Long-term Acoustic Real-Time Sensor for Polar Areas (LARA)
2014-09-30
volcanic eruptions forecast for the near future, and the LARA moorings will allow us to observe the accuracy of these models in real-time. TRANSITIONS...systems at AUTEC and SCORE. In addition LARA technology will be useful for real-time monitoring of deep-ocean seismic and volcanic activity (e.g...M.J., Matsumoto, H., and Butterfield, D.A. (2012): Seismic precursors and magma ascent before the April 2011 eruption at Axial Seamount. Nature
Behrendt, John C.
2013-01-01
The West Antarctic Ice Sheet (WAIS) flows through the volcanically active West Antarctic Rift System (WARS). The aeromagnetic method has been the most useful geophysical tool for identification of subglacial volcanic rocks, since 1959–64 surveys, particularly combined with 1978 radar ice-sounding. The unique 1991–97 Central West Antarctica (CWA) aerogeophysical survey covering 354,000 km2 over the WAIS, (5-km line-spaced, orthogonal lines of aeromagnetic, radar ice-sounding, and aerogravity measurements), still provides invaluable information on subglacial volcanic rocks, particularly combined with the older aeromagnetic profiles. These data indicate numerous 100–>1000 nT, 5–50-km width, shallow-source, magnetic anomalies over an area greater than 1.2 × 106 km2, mostly from subglacial volcanic sources. I interpreted the CWA anomalies as defining about 1000 “volcanic centers” requiring high remanent normal magnetizations in the present field direction. About 400 anomaly sources correlate with bed topography. At least 80% of these sources have less than 200 m relief at the WAIS bed. They appear modified by moving ice, requiring a younger age than the WAIS (about 25 Ma). Exposed volcanoes in the WARS are The present rapid changes resulting from global warming, could be accelerated by subglacial volcanism.
NASA Astrophysics Data System (ADS)
Barsotti, Sara; Duncan, Melanie; Loughlin, Susan; Gísladóttir, Bryndis; Roberts, Matthew; Karlsdóttir, Sigrún; Scollo, Simona; Salerno, Giuseppe; Corsaro, Rosa Anna; Charalampakis, Marinos; Papadopoulos, Gerassimos
2017-04-01
The demand for timely analysis and advice on global volcanic activity from scientists is growing. At the same time, decision-makers require more than an understanding of hazards; they need to know what impacts to expect from ongoing and future events. ARISTOTLE (All Risk Integrated System TOwards Trans-boundary hoListic Early-warning) is a two-year EC funded pilot project designed to do just that. The Emergency Response Coordination Centre (ERCC) works to support and coordinate response to disasters both inside and outside Europe using resources from the countries participating in the European Union Civil Protection Mechanism. Led by INGV and ZAMG, the ARISTOTLE consortium comprises 15 institutions across Europe and aims to deliver multi-hazard advice on natural events, including their potential interactions and impact, both inside and outside of Europe to the ERCC. Where possible, the ERCC would like a pro-active provision of scientific advice by the scientific group. Iceland Met Office leads the volcanic hazards work, with BGS, INGV and NOA comprising the volcano observatory team. At this stage, the volcanology component of the project comprises mainly volcanic ash and gas dispersal and potential impact on population and ground-based critical infrastructures. We approach it by relying upon available and official volcano monitoring institutions' reporting of activity, existing assessments and global databases of past events, modelling tools, remote-sensing observational systems and official VAAC advisories. We also make use of global assessments of volcanic hazards, country profiles, exposure and proxy indicators of threat to livelihoods, infrastructure and economic assets (e.g. Global Volcano Model outputs). Volcanic ash fall remains the only hazard modelled at the global scale. Volcanic risk assessments remain in their infancy, owing to challenges related to the multitude of hazards, data availability and model representation. We therefore face a number of challenges in delivering pro-active scientific advice to ARISTOTLE, in addition to the main challenge of working within a multi-hazard framework. Here we present our methods for analysis and advice, along with the challenges we face, and hope to stimulate interesting discussion and receive constructive feedback, as well as explore how the global community can address the demand for scientific advice at the international level. The role of international networks and collaboration is clear; as is the critical role of volcano observatories, which are embedded in local communities and connected to the international community. We aim to enhance our approaches through the Global Volcano Model network (including IAVCEI, WOVO, GVP and VHub) and directly with volcano observatories, VAACs and civil protection agencies.
Unusual Volcanic Products From the 2008 Eruption at Volcan Llaima, Chile
NASA Astrophysics Data System (ADS)
Sweeney, D. C.; Hughes, M.; Calder, E. S.; Cortes, J.; Valentine, G.; Whelley, P.; Lara, L.
2009-05-01
Volcan Llaima, a snow-covered basaltic andesite stratocone in southern Chile (38 41' S, 71 44' W, 3179 m a.s.l.), erupted on 1 January 2008 with a fire fountain display lasting 14 hours. Elevated activity continues to date with mild to moderate strombolian activity occurring from two nested scoria cones in the summit crater and with occasional lava flows from crater overflow. The eruption displayed contrasting styles of activity emanating from different parts of the edifice that may provide some unique insight into the upper level plumbing system. Furthermore, the activity has provided an excellent chance to study the transition of a normally passive degassing system into a violent eruptive cycle. A field study of the eruptive products from this eruption was completed in January 2009, where sampling was carried out from the tephra fall, lava flows, lahar deposits and even small pyroclastic flow deposits. The scoria samples collected suggest a mixture of two magmas involved in the initial violent, fire fountaining activity from the summit. Additionally, they exhibit a variety of unusual textures, including rapidly-quenched, dense lava 'balls' - generated at the front of the lava flows traveling through ice, as well as cauliflower-textured tephra from explosive eruptions though ice. This presentation comprises our observations and preliminary interpretations concerning the processes that occurred during this unique eruption.
Airborne EM survey in volcanoes : Application to a volcanic hazards assessment
NASA Astrophysics Data System (ADS)
Mogi, T.
2010-12-01
Airborne electromagnetics (AEM) is a useful tool for investigating subsurface structures of volcanoes because it can survey large areas involving inaccessible areas. Disadvantages include lower accuracy and limited depth of investigation. AEM has been widely used in mineral exploration in frontier areas, and have been applying to engineering and environmental fields, particularly in studies involving active volcanoes. AEM systems typically comprise a transmitter and a receiver on an aircraft or in a towed bird, and although effective for surveying large areas, their penetration depth is limited because the distance between the transmitter and receiver is small and higher-frequency signals are used. To explore deeper structures using AEM, a semi-airborne system called GRounded Electrical source Airborne Transient ElectroMagnetics (GREATEM) has been developed. The system uses a grounded-electrical-dipole as the transmitter and generates horizontal electric fields. The GREATEM technology, first proposed by Mogi et al. (1998), has recently been improved and used in practical surveys (Mogi et al., 2009). The GREATEM survey system was developed to increase the depth of investigation possible using AEM. The method was tested in some volcanoes at 2004-2005. Here I will talk about some results of typical AEM surveys and GREATEM surveys in some volcanoes in Japan to mitigate hazards associated with volcano eruption. Geologic hazards caused by volcanic eruptions can be mitigated by a combination of prediction, preparedness and land-use control. Risk management depends on the identification of hazard zones and forecasting of eruptions. Hazard zoning involves the mapping of deposits which have formed during particular phases of volcanic activity and their extrapolation to identify the area which would be likely to suffer a similar hazard at some future time. The mapping is usually performed by surface geological surveys of volcanic deposits. Resistivity mapping by AEM is useful tool to identify each volcanic deposit on the surface and at shallower depth as well. This suggests that more efficient hazard map involving subsurface information can be supplied by AEM resistivity mapping.
NASA Astrophysics Data System (ADS)
Patlan, E.; Wamalwa, A. M.; Kaip, G.; Velasco, A. A.
2015-12-01
The Geothermal Development Company (GDC) in Kenya actively seeks to produce geothermal energy, which lies within the East African Rift System (EARS). The EARS, an active continental rift zone, appears to be a developing tectonic plate boundary and thus, has a number of active as well as dormant volcanoes throughout its extent. These volcanic centers can be used as potential sources for geothermal energy. The University of Texas at El Paso (UTEP) and the GDC deployed seismic sensors to monitor several volcanic centers: Menengai, Silali, and Paka, and Korosi. We identify microseismic, local events, and tilt like events using automatic detection algorithms and manual review to identify potential local earthquakes within our seismic network. We then perform the double-difference location method of local magnitude less than two to image the boundary of the magma chamber and the conduit feeding the volcanoes. In the process of locating local seismicity, we also identify long-period, explosion, and tremor signals that we interpret as magma passing through conduits of the magma chamber and/or fluid being transported as a function of magma movement or hydrothermal activity. We used waveform inversion and S-wave shear wave splitting to approximate the orientation of the local stresses from the vent or fissure-like conduit of the volcano. The microseismic events and long period events will help us interpret the activity of the volcanoes. Our goal is to investigate basement structures beneath the volcanoes and identify the extent of magmatic modifications of the crust. Overall, these seismic techniques will help us understand magma movement and volcanic processes in the region.
A seismic network to investigate the sedimentary hosted hydrothermal Lusi system
NASA Astrophysics Data System (ADS)
Javad Fallahi, Mohammad; Mazzini, Adriano; Lupi, Matteo; Obermann, Anne; Karyono, Karyono
2016-04-01
The 29th of May 2006 marked the beginning of the sedimentary hosted hydrothermal Lusi system. During the last 10 years we witnessed numerous alterations of the Lusi system behavior that coincide with the frequent seismic and volcanic activity occurring in the region. In order to monitor the effect that the seismicity and the activity of the volcanic arc have on Lusi, we deployed a ad hoc seismic network. This temporary network consist of 10 broadband and 21 short period stations and is currently operating around the Arjuno-Welirang volcanic complex, along the Watukosek fault system and around Lusi, in the East Java basin since January 2015. We exploit this dataset to investigate surface wave and shear wave velocity structure of the upper-crust beneath the Arjuno-Welirang-Lusi complex in the framework of the Lusi Lab project (ERC grant n° 308126). Rayleigh and Love waves travelling between each station-pair are extracted by cross-correlating long time series of ambient noise data recorded at the stations. Group and phase velocity dispersion curves are obtained by time-frequency analysis of cross-correlation functions, and are tomographically inverted to provide 2D velocity maps corresponding to different sampling depths. 3D shear wave velocity structure is then acquired by inverting the group velocity maps.
Berberich, Gabriele; Schreiber, Ulrich
2013-01-01
Simple Summary In a 1.140 km² study area of the volcanic West Eifel, approx. 3,000 Red Wood Ant (RWA; Formica rufa-group) mounds had been identified and correlated with tectonically active gas-permeable faults, mostly strike-slip faults. Linear alignment of RWA mounds and soil gas anomalies distinctly indicate the course of these faults, while clusters of mounds indicate crosscut zones of fault systems, which can be correlated with voids caused by crustal block rotation. This demonstrates that RWA are bioindicators for identifying active fault systems and useful where information on the active regime is incomplete or the resolution by technical means is insufficient. Abstract In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO2, Helium, Radon and H2S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H2S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel. PMID:26487413
The Eruption Forecasting Information System (EFIS) database project
NASA Astrophysics Data System (ADS)
Ogburn, Sarah; Harpel, Chris; Pesicek, Jeremy; Wellik, Jay; Pallister, John; Wright, Heather
2016-04-01
The Eruption Forecasting Information System (EFIS) project is a new initiative of the U.S. Geological Survey-USAID Volcano Disaster Assistance Program (VDAP) with the goal of enhancing VDAP's ability to forecast the outcome of volcanic unrest. The EFIS project seeks to: (1) Move away from relying on the collective memory to probability estimation using databases (2) Create databases useful for pattern recognition and for answering common VDAP questions; e.g. how commonly does unrest lead to eruption? how commonly do phreatic eruptions portend magmatic eruptions and what is the range of antecedence times? (3) Create generic probabilistic event trees using global data for different volcano 'types' (4) Create background, volcano-specific, probabilistic event trees for frequently active or particularly hazardous volcanoes in advance of a crisis (5) Quantify and communicate uncertainty in probabilities A major component of the project is the global EFIS relational database, which contains multiple modules designed to aid in the construction of probabilistic event trees and to answer common questions that arise during volcanic crises. The primary module contains chronologies of volcanic unrest, including the timing of phreatic eruptions, column heights, eruptive products, etc. and will be initially populated using chronicles of eruptive activity from Alaskan volcanic eruptions in the GeoDIVA database (Cameron et al. 2013). This database module allows us to query across other global databases such as the WOVOdat database of monitoring data and the Smithsonian Institution's Global Volcanism Program (GVP) database of eruptive histories and volcano information. The EFIS database is in the early stages of development and population; thus, this contribution also serves as a request for feedback from the community.
Modern volcanic activity on the Moon
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.
2018-05-01
Volcanic activity on the Moon began when its surface cooled, and the nucleus and mantle were clearly separated inside. Fragments of volcanic eruptions were discovered in the lunar soil, which was delivered to the Earth by "Apollo" spacecrafts. As shown by the analysis of some lunar meteorites, the first eruptions occurred 4.35 billion years ago. This is evidenced by the unique composition of the oxygen atoms for the Moon and on the radiocarbon analysis data. Well-visible on its surface, the dark "seas", which emerged shortly after the formation of the Moon, when the lowlands and large old craters were filled by liquid basaltic magma, rich in iron. The lunar "seas" are mostly on the visible side of the Moon, and cover almost a third of it; on the reverse side-the seas occupy less than 2%. Smooth surfaces of the seas mean that the lunar lava was very liquid. Therefore, at low gravity, it easily spread over a large area, almost without creating large cone-shaped peaks, but forming many small cone volcanic systems with an age of 3-4 billion years ago. On the images of the visible side of the Moon obtained with the help of the LRO, evidence is provided that volcanic eruptions on its surface were possible even a few million years ago.
NASA Astrophysics Data System (ADS)
Kaneko, K.; Iwahori, K.; Ito, K.; Sagi, H.
2016-12-01
Unmanned robots are useful to observe volcanic phenomena near active volcanic vents, to learn symptoms and transitions of eruptions, and to mitigate volcanic disasters. We have been trying to develop a practical UGV robot for flexible observation of active volcanic vents. We named this system "Homura". In this presentation, we report results of test campaigns of Homura for observation in a volcanic field. We have developed a prototype of Homura, which is a small robot vehicle with six wheels (75 x 43 x 31 cm and a weight of about 12 kg). It is remotely controlled with mobile phone radio waves; it can move in volcanic fields and send real time data of sensors (camera and gas sensors) equipped in the vehicle to the base station. Homura has a small solar panel (4 W). Power consumption of Homura is about 4 W in operation of sensors and less than 0.1 W in idle state, so that Homura can work outdoors for a long time by intermittent operation.We carried out two test campaigns of Homura at Iwo-yama to examine if Homura can work for a few month in natural volcanic fields (however, it had no solar panel in these campaigns). Iwo-yama is one of craters in the Kirishima volcanic field, SW Japan; the area within 1 km from the crater was an off-limit area from Oct., 2014 to May, 2015 and from Feb. to Mar., 2016 because of strong volcanic seismicity. On Feb. 19th, 2015 and Mar. 7th, 2016, we carried and put Homura at the rim of the crater. Unfortunately, mobile phone connectivity was not entirely stable around Iwo-yama. Then, we did not move Homura and only obtain real time data of the sensors. In the two campaigns, we operated Homura at our office for a few hours every day for 49 and 37 days, respectively. Although the weather was often bad (rain, fog, or cold temperature) during the campaigns, Homura perfectly worked. The results of these campaigns indicate that Homura is useful as s simple monitoring station in volcanic fields where mobile phone connection is available.
Behrendt, John C.
1999-01-01
The active West Antarctic Rift System, which extends from the continental shelf of the Ross Sea, beneath the Ross Ice Shelf and the West Antarctic Ice Sheet, is comparable in size to the Basin and Range in North America, or the East African rift systems. Geophysical surveys (primarily marine seismic and aeromagnetic combined with radar ice sounding) have extended the information provided by sparse geologic exposures and a few drill holes over the ice and sea covered area. Rift basins developed in the early Cretaceous accompanied by the major extension of the region. Tectonic activity has continued episodically in the Cenozoic to the present, including major uplift of the Transantarctic Mountains. The West Antarctic ice sheet, and the late Cenozoic volcanic activity in the West Antarctic Rift System, through which it flows, have been coeval since at least Miocene time. The rift is characterized by sparse exposures of late Cenozoic alkaline volcanic rocks extending from northern Victoria Land throughout Marie Byrd Land. The aeromagnetic interpretations indicate the presence of > 5 x 105 km2 (> 106 km3) of probable late Cenozoic volcanic rocks (and associated subvolcanic intrusions) in the West Antarctic rift. This great volume with such limited exposures is explained by glacial removal of the associated late Cenozoic volcanic edifices (probably hyaloclastite debris) concomitantly with their subglacial eruption. Large offset seismic investigations in the Ross Sea and on the Ross Ice Shelf indicate a ~ 17-24-km-thick, extended continental crust. Gravity data suggest that this extended crust of similar thickness probably underlies the Ross Ice Shelf and Byrd Subglacial Basin. Various authors have estimated maximum late Cretaceous-present crustal extension in the West Antarctic rift area from 255-350 km based on balancing crustal thickness. Plate reconstruction allowed < 50 km of Tertiary extension. However, paleomagnetic measurements suggested about 1000 km of post-middle Cretaceous translation between East Antarctica and Pacific West Antarctica. Because a great amount of crustal extension in late Cenozoic time is unlikely, alternate mechanisms have been proposed for the late Cenozoic volcanism. Its vast volume and the ocean island basalt chemistry of the exposed late Cenozoic alkaline volcanic rocks were interpreted as evidence for a mantle plume head. An alternative or supplemental explanation to the mantle plume hypothesis is significantly greater lower lithosphere (mantle) stretching resulting in greater decompression melting than the limited Cenozoic crustal extension allows. Because of very slow rates of late Cenozoic extension in the West Antarctic Rift System, the amount of advected heat is small compared with the conductive heat. Therefore, phase transition probably would not explain the large subsidence with low extension observed in the West Antarctic Rift System. (C) 1999 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Drouin, V.; Sigmundsson, F.; Hreinsdottir, S.; Ofeigsson, B.; Sturkell, E.; Einarsson, P.
2015-12-01
The Northern Volcanic Zone (NVZ) of Iceland is a subaerial part of the divergent boundary between the North-American and Eurasian Plates. At this latitude, the full spreading between the plates is accommodated by the NVZ. We derived the plate boundary velocity field from GPS campaign and continuous measurements between 2008 and 2014, a time period free of any magma intrusion. Average velocities were estimated in the ITRF08 reference frame. The overall extension is consistent with 18 mm/yr in the 104°N direction spreading, in accordance with the MORVEL2010 plate motion model. We find that a 40km-wide band along the plate boundary accommodates about 75% of the full plate velocities. Within this zone, the average strain rate is approximately 0.35 μstrain/yr. The deformation field and the strain rate are, however, much affected by other sources of deformations in the NVZ. These include magmatic sources at the most active volcanic centers, glacial rebound near the ice-caps and geothermal power-plant water extraction. Magmatic sources include a shallow magma chamber deflation under Askja caldera, as well as under Þeistareykir and eventual deep magma inflation north of Krafla volcano. Vatnajökull ice cap melting causes large uplift and outward displacements in the southern part of the NVZ. The two geothermal power-plants near Krafla are inducing local deflations. Our GPS velocities show a 35° change in the direction of the plate boundary axis north of Askja volcano that we infer to be linked to the geometric arrangement of volcanic systems within the NVZ.We use a simple arctangent model to describe the plate spreading to provide constraints on the location and the locking depth of the spreading axis. For that purpose we divided the area in short overlapping segments having the same amount of GPS points along the plate spreading direction and inverted for the location of the center of the spreading axis and locking depth. With this simple model we can account for most of the plate spreading related deformation in the NVZ. It appears that the locking depth is not uniform all along the length of the plate boundary, with a deeper locking depth in the low activity volcanic systems and a shallower locking depth in the more active volcanic systems of Krafla and Askja.
NASA Technical Reports Server (NTRS)
Flower, Verity J. B.; Kahn, Ralph A.
2017-01-01
Volcanic eruptions represent a significant source of atmospheric aerosols and can display local, regional and global effects, impacting earth systems and human populations. In order to assess the relative impacts of these events, accurate plume injection altitude measurements are needed. In this work, volcanic plumes generated from seven Kamchatka Peninsula volcanoes (Shiveluch, Kliuchevskoi, Bezymianny, Tolbachik, Kizimen, Karymsky and Zhupanovsky), were identified using over 16 years of Multi-angle Imaging SpectroRadimeter (MISR) measurements. Eighty-eight volcanic plumes were observed by MISR, capturing 3-25% of reported events at individual volcanoes. Retrievals were most successful where high intensity events persisted over a period of weeks to months. Compared with existing ground and airborne observations, and alternative satellite-based reports compiled by the Global Volcanism Program (GVP), MISR plume height retrievals showed general consistency; the comparison reports appear to be skewed towards the region of highest concentration observed in MISR-constrained vertical plume extent. The report observations display less discrepancy with MISR toward the end of the analysis period, with improvements in the suborbital data likely the result of the deployment of new instrumentation. Conversely, the general consistency of MISR plume heights with conventionally reported observations supports the use of MISR in the ongoing assessment of volcanic activity globally, especially where other types of volcanic plume observations are unavailable. Differences between the northern (Shiveluch, Kliuchevskoi, Bezymianny and Tolbachik) and southern (Kizimen, Karymsky and Zhupanovsky) volcanoes broadly correspond to the Central Kamchatka Depression (CKD) and Eastern Volcanic Front (EVF), respectively, geological sub-regions of Kamchatka distinguished by varying magma composition. For example, by comparison with reanalysis-model simulations of local meteorological conditions, CKD plumes generally were less constrained by mid-tropospheric (< 6 km) layers of vertical stability above the boundary layer, suggesting that these eruptions were more energetic than those in the EVF
NASA Astrophysics Data System (ADS)
Sparks, S. R.
2008-12-01
Volcanic eruptions in arcs are complex natural phenomena, involving the movement of magma to the Earth's surface and interactions with the surrounding crust during ascent and with the surface environment during eruption, resulting in secondary hazards. Magma changes its properties profoundly during ascent and eruption and many of the underlying processes of heat and mass transfer and physical property changes that govern volcanic flows and magmatic interactions with the environment are highly non-linear. Major direct hazards include tephra fall, pyroclastic flows from explosions and dome collapse, volcanic blasts, lahars, debris avalanches and tsunamis. There are also health hazards related to emissions of gases and very fine volcanic ash. These hazards and progress in their assessment are illustrated mainly from the ongoing eruption of the Soufriere Hills volcano. Montserrat. There are both epistemic and aleatory uncertainties in the assessment of volcanic hazards, which can be large, making precise prediction a formidable objective. Indeed in certain respects volcanic systems and hazardous phenomena may be intrinsically unpredictable. As with other natural phenomena, predictions and hazards inevitably have to be expressed in probabilistic terms that take account of these uncertainties. Despite these limitations significant progress is being made in the ability to anticipate volcanic activity in volcanic arcs and, in favourable circumstances, make robust hazards assessments and predictions. Improvements in monitoring ground deformation, gas emissions and seismicity are being combined with more advanced models of volcanic flows and their interactions with the environment. In addition more structured and systematic methods for assessing hazards and risk are emerging that allow impartial advice to be given to authorities during volcanic crises. There remain significant issues of how scientific advice and associated uncertainties are communicated to provide effective mitigation during volcanic crises.
Current and future trends of Volcanology in Italy and abroad
NASA Astrophysics Data System (ADS)
Papale, P.
2010-12-01
Volcanology in Italy and in the world has rapidly developed during last decades. In the Seventies, stratigraphy and petrology provided the basic knowledge on the volcanic activities that still forms the root for modern volcano research. During the Eighties and Nineties the interest was more on the quantitative description of the volcanic processes, with enormous progresses in different but complementary fields including laboratory measurements and experiments, physico-mathematical modeling and numerical simulations, geophysical surveys and inverse analysis, and volcano monitoring and surveillance. In year 2000 a large number of magma properties and magmatic and volcanic processes was characterized at a first or higher order. Volcano research in Italy during the first decade of the new millennium has further developed along those lines. To-date, the very high risk Campi Flegrei and Vesuvius volcanoes, and the less risky but permanently active Etna and Stromboli volcanoes, are among the best monitored and more deeply investigated worldwide. The last decade has also seen coordinated efforts aimed at exploring exploitation of knowledge and skills for the benefit of the society. A series of projects focused on volcanic hazard and risk have joined >1000 researchers from Italian and foreign (Europe, US, Japan) Universities and Research Centers, on themes and objectives jointly defined by scientists from INGV and end-users from the national Civil Protection Department. These projects provide a global picture of volcano research in year 2010, that appears to be evolving through i) further rapid developments in the fields of investigation listed above, ii) their merging into effective multidisciplinary approaches, and iii) the full inclusion of the concepts of uncertainty and probabilities in volcanic scenario predictions and hazard forecast. The latter reflects the large inaccessibility of the volcanic systems, the extreme non-linear behaviour of volcanic processes put in light by the numerical studies, and the need of communicating in a formal and structured way the uncertain nature of volcanic predictions to emergency management authorities. Projections to year 2020 suggest a progressive relevance of structured volcano databases, that will provide large-scale sharing of basic knowledge and data for statistical analyses as for epidemiological databases in medicine; full coverage of the frequency range of geophysical and geochemical signals at active volcanoes, today not yet fully achieved; the development of standard volcano models and of global volcano simulator resources and tools, allowing separate sets of observations to be organized in a consistent global picture of the volcano dynamics; the further development of methods for the evaluation of probabilistic scenarios and their organization in event tree systems and hazard forecasting tools; the creation of large-scale volcano infrastructures for sharing of laboratory and computational resources; and the definition of international best practices for volcanic hazard and risk evaluation and for emergency preparedness and response activities. Recent initiatives in Italy and Europe (e.g., EPOS, DIVO, INGV-DPC, Exploris, and others) are developing largely along those lines, providing a view of the expected progresses in volcanology in the next decade.
Mode switching in volcanic seismicity: El Hierro 2011-2013
NASA Astrophysics Data System (ADS)
Roberts, Nick S.; Bell, Andrew F.; Main, Ian G.
2016-05-01
The Gutenberg-Richter b value is commonly used in volcanic eruption forecasting to infer material or mechanical properties from earthquake distributions. Such studies typically analyze discrete time windows or phases, but the choice of such windows is subjective and can introduce significant bias. Here we minimize this sample bias by iteratively sampling catalogs with randomly chosen windows and then stack the resulting probability density functions for the estimated b>˜ value to determine a net probability density function. We examine data from the El Hierro seismic catalog during a period of unrest in 2011-2013 and demonstrate clear multimodal behavior. Individual modes are relatively stable in time, but the most probable b>˜ value intermittently switches between modes, one of which is similar to that of tectonic seismicity. Multimodality is primarily associated with intermittent activation and cessation of activity in different parts of the volcanic system rather than with respect to any systematic inferred underlying process.
Kasei Vallis of Mars: Dating the Interplay of Tectonics and Geomorphology
NASA Technical Reports Server (NTRS)
Wise, D. U.
1985-01-01
Crater density age dates on more than 250 small geomorphic surfaces in the Kasei Region of Mars show clusterings indicative of times of peak geomorphic and tectonic activity. Kasei Vallis is part of a 300 km wide channel system breaching a N-S trending ancient basement high (+50,000 crater age) separating the Chryse Basin from the Tharsis Volcanic Province of Mars. The basement high was covered by a least 3 groups of probable volcanic deposits. Major regional fracturing took place at age 4,000 to 5,000 and was immediately followed by deposition of regional volcanics of the Fesenkov Plains (age 3,000 to 4,200). Younger clusterings of dates in the 900 to 1,500 and 500 to 700 range represent only minor modification of the basic tectonic geomorphic landform. The data suggest that Kasei gap is a structurally controlled breach of a buried ridge by a rather brief episode of fluvial activity.
ALVIN investigation of an active propagating rift system, Galapagos 95.5° W
Hey, R.N.; Sinton, J.M.; Kleinrock, M.C.; Yonover, R.N.; MacDonald, K.C.; Miller, S.P.; Searle, R.C.; Christie, D.M.; Atwater, T.M.; Sleep, Norman H.; Johnson, H. Paul; Neal, C.A.
1992-01-01
ALVIN investigations have defined the fine-scale structural and volcanic patterns produced by active rift and spreading center propagation and failure near 95.5° W on the Galapagos spreading center. Behind the initial lithospheric rifting, which is propagating nearly due west at about 50 km m.y.−1, a triangular block of preexisting lithosphere is being stretched and fractured, with some recent volcanism along curving fissures. A well-organized seafloor spreading center, an extensively faulted and fissured volcanic ridge, develops ~ 10 km (~ 200,000 years) behind the tectonic rift tip. Regional variations in the chemical compositions of the youngest lavas collected during this program contrast with those encompassing the entire 3 m.y. of propagation history for this region. A maximum in degree of magmatic differentiation occurs about 9 km behind the propagating rift tip, in a region of diffuse rifting. The propagating spreading center shows a gentle gradient in magmatic differentiation culminating at the SW-curving spreading center tip. Except for the doomed rift, which is in a constructional phase, tectonic activity also dominates over volcanic activity along the failing spreading system. In contrast to the propagating rift, failing rift lavas show a highly restricted range of compositions consistent with derivation from a declining upwelling zone accompanying rift failure. The lithosphere transferred from the Cocos to the Nazca plate by this propagator is extensively faulted and characterized by ubiquitous talus in one of the most tectonically disrupted areas of seafloor known. The pseudofault scarps, where the preexisting lithosphere was rifted apart, appear to include both normal and propagator lavas and are thus more lithologically complex than previously thought. Biological communities, probably vestimentiferan tubeworms, occur near the top of the outer pseudofault scarp, although no hydrothermal venting was observed.
NASA Astrophysics Data System (ADS)
Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel
2014-05-01
Improving knowledge of the shallowest part of the feeding system of monogenetic volcanoes and the relationship with the subsurface geology is an important task. We applied high-precision geophysical techniques that are self-potential and electrical resistivity tomography, for the exploration of the uppermost part of the substrate of La Garrotxa Volcanic Field, which is part of the European Cenozoic Rift System. Previous geophysical studies carried out in the same area at a less detailed scale were aimed at identifying deeper structures, and together constitute the basis to establish volcanic susceptibility in La Garrotxa. Self-potential study allowed identifying key areas where electrical resistivity tomography could be conducted. Dykes and faults associated with several monogenetic cones were identified through the generation of resistivity models. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These studies show that previous alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Furthermore, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area can be controlled by shallow stratigraphical, structural, and hydrogeological features underneath these monogenetic volcanoes. This study was partially funded by the Beca Ciutat d'Olot en Ciències Naturals and the European Commission (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO").
The Volcanism Ontology (VO): a model of the volcanic system
NASA Astrophysics Data System (ADS)
Myer, J.; Babaie, H. A.
2017-12-01
We have modeled a part of the complex material and process entities and properties of the volcanic system in the Volcanism Ontology (VO) applying several top-level ontologies such as Basic Formal Ontology (BFO), SWEET, and Ontology of Physics for Biology (OPB) within a single framework. The continuant concepts in BFO describe features with instances that persist as wholes through time and have qualities (attributes) that may change (e.g., state, composition, and location). In VO, the continuants include lava, volcanic rock, and volcano. The occurrent concepts in BFO include processes, their temporal boundaries, and the spatio-temporal regions within which they occur. In VO, these include eruption (process), the onset of pyroclastic flow (temporal boundary), and the space and time span of the crystallization of lava in a lava tube (spatio-temporal region). These processes can be of physical (e.g., debris flow, crystallization, injection), atmospheric (e.g., vapor emission, ash particles blocking solar radiation), hydrological (e.g., diffusion of water vapor, hot spring), thermal (e.g., cooling of lava) and other types. The properties (predicates) relate continuants to other continuants, occurrents to continuants, and occurrents to occurrents. The ontology also models other concepts such as laboratory and field procedures by volcanologists, sampling by sensors, and the type of instruments applied in monitoring volcanic activity. When deployed on the web, VO will be used to explicitly and formally annotate data and information collected by volcanologists based on domain knowledge. This will enable the integration of global volcanic data and improve the interoperability of software that deal with such data.
Carrillo, Uara; Díaz-Villanueva, Verónica; Modenutti, Beatriz
2018-04-15
Volcanic eruptions are extreme perturbations that affect ecosystems. These events can also produce persistent effects in the environment for several years after the eruption, with increased concentrations of suspended particles and the introduction of elements in the water column. On 4th June 2011, the Puyehue-Cordón Caulle Volcanic Complex (40.59°S-72.11°W, 2200m.a.s.l.) erupted explosively in southern Chile. The area affected by the volcano was devastated; a thick layer of volcanic ash (up to 30cm) was deposited in areas 50 km east of the volcano towards Argentina. The aim of the present study was to evaluate the effect of volcanic ash deposits on stream ecosystems four years after the eruption, comparing biofilm stoichiometry, alkaline phosphatase activity, and primary producer's assemblage in streams which were severely affected by the volcano with unaffected streams. We confirmed in the laboratory that ash deposited in the catchment of affected streams still leach phosphorus (P) into the water four years after eruption. Results indicate that affected streams still receive volcanic particles and that these particles release P, thus stream water exhibits high P concentration. Biofilm P content was higher and the C:P ratio lower in affected streams compared to unaffected streams. As a consequence of less P in unaffected streams, the alkaline phosphatase activity was higher compared to affected streams. Cyanobacteria increased their abundances (99.9% of total algal biovolume) in the affected streams suggesting that the increase in P may positively affect this group. On the contrary, unaffected streams contained a diatom dominant biofilm. In this way, local heterogeneity was created between sub-catchments located within 30 km of each other. These types of events should be seen as opportunities to gather valuable ecological information about how severe disturbances, like volcanic eruptions, shape landscapes and lotic systems for several years after the event. Copyright © 2017 Elsevier B.V. All rights reserved.
Young Volcanism on 20 Million Year Old Seafloor: The DISCOL Area, Nazca Plate.
NASA Astrophysics Data System (ADS)
Devey, C. W.; Boetius, A.; Kwasnitschka, T.; Augustin, N.; Yeo, I. A.; Greinert, J.
2016-12-01
Volcanism in the ocean basins is traditionally assumed to occur only at the plate margins (mid-ocean ridges, subduction zones, possibly also transform boundaries) and areas of intraplate hotspot activity related to thermal plumes in the mantle. As a result, abyssal areas away from hotspots are seldom explored systematically for signs of volcanism and are generally regarded as volcanically "dead". Here we present serendipitous results from the Peru Basin, a site of Mn-nodule accumulation which was targetted in 1989 for a large-scale disturbance experiment (the DISCOL experiment) to simulate the effects of seabed nodule mining. The area is truly intraplate - it is 700 km from the south American subduction zone or the Galapagos Islands and 2000 km from the East Pacific Rise. A return trip to DISCOL in 2015 to assess the extent of environmental recovery also included a remotely-operated underwater vehicle (ROV) dive on a small (300m high) seamount adjacent to the Mn-nodule field. ROV video records show the seamount is generally heavily sedimented but has a small (100x150m) pillow mound and an area of indurated calcareous sediments apparently cut by basaltic dykes near its summit. The summit is also cut by N-S and E-W-trending faults, some with up to 20m of throw, whose scarps expose thick sedimentary sequences. The virtual absence of sediment covering the pillows or dyke outcrops suggest that they are very recent - the thick sediment pile exposed on the fault scarps suggests that they were erupted on top of an old seamount. Regionally, acoustic data (bathymetry and backscatter from the ship-mounted multibeam system) shows several other seamounts in the region which may have experienced recent volcanic activity, although no sign of a linear volcanic chain is seen. Taken together, these observations suggest that, even at age 20Ma, the Nazca Plate is volcanically active.
Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history
NASA Astrophysics Data System (ADS)
Thordarson, T.; Larsen, G.
2007-01-01
The large-scale volcanic lineaments in Iceland are an axial zone, which is delineated by the Reykjanes, West and North Volcanic Zones (RVZ, WVZ, NVZ) and the East Volcanic Zone (EVZ), which is growing in length by propagation to the southwest through pre-existing crust. These zones are connected across central Iceland by the Mid-Iceland Belt (MIB). Other volcanically active areas are the two intraplate belts of Öræfajökull (ÖVB) and Snæfellsnes (SVB). The principal structure of the volcanic zones are the 30 volcanic systems, where 12 are comprised of a fissure swarm and a central volcano, 7 of a central volcano, 9 of a fissure swarm and a central domain, and 2 are typified by a central domain alone. Volcanism in Iceland is unusually diverse for an oceanic island because of special geological and climatological circumstances. It features nearly all volcano types and eruption styles known on Earth. The first order grouping of volcanoes is in accordance with recurrence of eruptions on the same vent system and is divided into central volcanoes (polygenetic) and basalt volcanoes (monogenetic). The basalt volcanoes are categorized further in accordance with vent geometry (circular or linear), type of vent accumulation, characteristic style of eruption and volcanic environment (i.e. subaerial, subglacial, submarine). Eruptions are broadly grouped into effusive eruptions where >95% of the erupted magma is lava, explosive eruptions if >95% of the erupted magma is tephra (volume calculated as dense rock equivalent, DRE), and mixed eruptions if the ratio of lava to tephra occupy the range in between these two end-members. Although basaltic volcanism dominates, the activity in historical time (i.e. last 11 centuries) features expulsion of basalt, andesite, dacite and rhyolite magmas that have produced effusive eruptions of Hawaiian and flood lava magnitudes, mixed eruptions featuring phases of Strombolian to Plinian intensities, and explosive phreatomagmatic and magmatic eruptions spanning almost the entire intensity scale; from Surtseyan to Phreatoplinian in case of "wet" eruptions and Strombolian to Plinian in terms of "dry" eruptions. In historical time the magma volume extruded by individual eruptions ranges from ˜1 m 3 to ˜20 km 3 DRE, reflecting variable magma compositions, effusion rates and eruption durations. All together 205 eruptive events have been identified in historical time by detailed mapping and dating of events along with extensive research on documentation of eruptions in historical chronicles. Of these 205 events, 192 represent individual eruptions and 13 are classified as "Fires", which include two or more eruptions defining an episode of volcanic activity that lasts for months to years. Of the 159 eruptions verified by identification of their products 124 are explosive, effusive eruptions are 14 and mixed eruptions are 21. Eruptions listed as reported-only are 33. Eight of the Fires are predominantly effusive and the remaining five include explosive activity that produced extensive tephra layers. The record indicates an average of 20-25 eruptions per century in Iceland, but eruption frequency has varied on time scale of decades. An apparent stepwise increase in eruption frequency is observed over the last 1100 years that reflects improved documentation of eruptive events with time. About 80% of the verified eruptions took place on the EVZ where the four most active volcanic systems (Grímsvötn, Bárdarbunga-Veidivötn, Hekla and Katla) are located and 9%, 5%, 1% and 0.5% on the RVZ-WVZ, NVZ, ÖVB, and SVB, respectively. Source volcano for ˜4.5% of the eruptions is not known. Magma productivity over 1100 years equals about 87 km 3 DRE with basaltic magma accounting for about 79% and intermediate and acid magma accounting for 16% and 5%, respectively. Productivity is by far highest on the EVZ where 71 km 3 (˜82%) were erupted, with three flood lava eruptions accounting for more than one half of that volume. RVZ-WVZ accounts for 13% of the magma and the NWZ and the intraplate belts for 2.5% each. Collectively the axial zone (RVZ, WVZ, NVZ) has only erupted 15-16% of total magma volume in the last 1130 years.
NASA Astrophysics Data System (ADS)
Padilla, Germán D.; Evans, Bethany J.; Provis, Aaron R.; Asensio, María; Alonso, Mar; Calvo, David; Hernández, Pedro; Pérez, Nemesio M.
2017-04-01
Tenerife together and Gran Canaria are the central islands of the Canarian archipelago, which have developed a central volcanic complex characterized by the eruption of differentiated magmas. Tenerife is the largest of the Canary Islands (2100 km2) and at present, the North-West Rift-Zone (NWRZ) is one of the most active volcanic structures of the three volcanic rift-zone of the island, which has hosted two historical eruptions (Arenas Negras in 1706 and Chinyero in 1909). In order to monitor the volcanic activity of NWRZ, since the year 2000, 49 soil CO2 efflux surveys have been performed at NWRZ (more than 300 observation sites each one) to evaluate the temporal an spatial variations of CO2 efflux and their relationships with the volcanic-seismic activity. Measurements were performed in accordance with the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. To quantify the total CO2 emission from the studied area, 100 simulations for each survey have been performed. We report herein the results of the last diffuse CO2 efflux surveys at the NWRZ undertaken in July and October 2016 to constrain the total CO2 output from the studied area. During July and October 2016 surveys, soil CO2 efflux values ranged from non-detectable up to 32.4 and 53.7 g m-2 d-1, respectively. The total diffuse CO2 output released to atmosphere were estimated at 255 ± 9 and 338 ± 18 t d-1, respectively, values higher than the background CO2 emission estimated on 144 t d-1. Since 2000, soil CO2 efflux values have ranged from non-detectable up to 141 g m-2 d-1, with the highest values measured in May 2005 whereas total CO2 output ranged between 52 and 867 t d-1. Long-term variations in the total CO2 output have shown a temporal correlation with the onsets of seismic activity at Tenerife, supporting unrest of the volcanic system, as is also suggested by anomalous seismic activity recorded in the studied area during April 22-29, 2004 and also during October 2-3, 2016. Spatial distribution of soil CO2 efflux values also showed changes in magnitude and amplitude, with higher CO2 efflux values measured along a trending WNW-ESE zone. Subsurface magma movement is proposed as a cause for the observed changes in the total output of diffuse CO2 emission as well as for the spatial distribution of soil CO2 efflux. The increasing trend of total CO2 output suggests increasing pressurization of the volcanic-hydrothermal system, a mechanism capable of triggering dyke intrusion along the NWRZ of Tenerife in the near future or futures changes in the seismicity. This study demonstrates the importance of performing soil CO2 efflux surveys as an effective surveillance volcanic tool.
Dome growth at Mount Cleveland, Aleutian Arc, quantified by time-series TerraSAR-X imagery
Wang, Teng; Poland, Michael; Lu, Zhong
2016-01-01
Synthetic aperture radar imagery is widely used to study surface deformation induced by volcanic activity; however, it is rarely applied to quantify the evolution of lava domes, which is important for understanding hazards and magmatic system characteristics. We studied dome formation associated with eruptive activity at Mount Cleveland, Aleutian Volcanic Arc, in 2011–2012 using TerraSAR-X imagery. Interferometry and offset tracking show no consistent deformation and only motion of the crater rim, suggesting that ascending magma may pass through a preexisting conduit system without causing appreciable surface deformation. Amplitude imagery has proven useful for quantifying rates of vertical and areal growth of the lava dome within the crater from formation to removal by explosive activity to rebirth. We expect that this approach can be applied at other volcanoes that host growing lava domes and where hazards are highly dependent on dome geometry and growth rates.
Interactions and interconnectivity of neighboring volcanic systems in southern Japan (Kyūshū)
NASA Astrophysics Data System (ADS)
Brothelande, E.; Amelung, F.; Zhang, Y.
2016-12-01
The global volcanic eruption record contains about 60 volcano pairs that erupted the same day and 30 pairs that erupted within 3 days. However, neighboring volcano interactions are still poorly understood, in mafic as well as in felsic systems. Here, we use GPS time series of Japan's Aira caldera and Kirishima volcanic system (andesitic systems) to search for interactions between the two neighboring plumbing systems. Aira caldera (17 km x 23 km), also known as Kagoshima Bay, was formed by a massive eruption about 22,000 years ago and is often considered as the world's most active caldera volcano. The center of the caldera is occupied by Sakurajima volcano, a volcanic island that emerged about 13,000 years ago. Today, the caldera hosts more than 1 million people living along the shore and in the city of Kagoshima. The Kirishima volcanoes are a group of 18 eruption cones located 20 km north of Aira caldera. An eruption, the largest in more than 50 years, occurred in 2011 at Shinmoe-dake volcano. The magmatic system of Kirishima volcano was considered to be independent of Aira caldera, but our preliminary results suggest that this may not be the case: it seems that subtle uplift of the Aira caldera occurring during at least the first decade of this century ceased with the 2011 eruption of the Kirishima system. Using deformation data and finite element modeling, we explore possible interactions between magma reservoirs at depth.
The Keelung Submarine volcanoes and gas plumes in the nearshore of northern Taiwan
NASA Astrophysics Data System (ADS)
Huang, J. C.; Tsia, C. H.; Hsu, S. K.; Lin, S. S.
2016-12-01
Taiwan is located in the collision zone between Philippine Sea Plate and Eurasian Plate. The Philippine Sea Plate subducts northward beneath the Ryukyu arc system while the Eurasian Plate subducts eastward beneath the Luzon arc system. The Taiwan mountain building started at 9 My ago and the most active collision has migrated to middle Taiwan. In consequence, the northern Taiwan has changed its stress pattern from forms a series of thrust faults to normal faults. The stress pattern change has probably induced the post-collisional extension and volcanism in and off northern Taiwan. Under such a tectonic environment, the volcanism and gas plumes are widespread in northern Taiwan and its offshore area. Among the volcanoes of the northern Taiwan volcanic zone, the Tatun Volcano Group is the most obvious one. In this study, we use sub-bottom profiler, EK500 echo sounder, and multibeam echo sounder to study the geophysical structure of a submarine volcano in the nearshore of northern Taiwan. We have analyzed the shallow structures and identified the locations of the gas plumes. The identification of the gas plumes can help us understand the nature of the submarine volcano. Our results show that the gas plumes appear near the Kanchiao Fault and Keelung islet. Some intrusive volcanoes can be observed in the subbottom profiler data. Finally, according to the observations, we found that the Keelung Submarine Volcano is still active. We need the monitor of the active Keelung Submarine Volcano to avoid the volcanic hazard. Additionally, we need to pay attention to the earthquakes related to the Keelung Submarine Volcano.
NASA Astrophysics Data System (ADS)
Silvestri, Malvina; Musacchio, Massimo; Fabrizia Buongiorno, Maria; Doumaz, Fawzi; Andres Diaz, Jorge
2017-04-01
Monitoring natural hazards such as active volcanoes requires specific instruments to measure many parameters (gas emissions, surface temperatures, surface deformation etc.) to determine the activity level of a volcano. Volcanoes in most cases present difficult and dangerous environment for scientists who need to take in situ measurements. Remote Sensing systems on board of satellite permit to measure a large number of parameters especially during the eruptive events but still show large limits to monitor volcanic precursors and phenomena at local scale (gas species emitted by fumarole or summit craters degassing plumes and surface thermal changes of few degrees) for their specific risk. For such reason unmanned aircraft systems (UAS) mounting a variety of multigas sensors instruments (such as miniature mass spectrometer) or single specie sensors (such as electrochemical and IR sensors) allow a safe monitoring of volcanic activities. With this technology, it is possible to perform monitoring measurements of volcanic activity without risking the lives of scientists and personnel performing analysis during the field campaigns in areas of high volcanic activity and supporting the calibration and validation of satellite data measurements. These systems allowed the acquisition of real-time information such as temperature, pressure, relative humidity, SO2, H2S, CO2 contained in degassing plume and fumaroles, with GPS geolocation. The acquired data are both stored in the sensor and transmitted to a computer for real time viewing information. Information in the form of 3D concentration maps can be returned. The equipment used during the campaigns at Solfatara Volcano (in 2014, 2015 and 2016) was miniaturized instruments allowed measurements conducted either by flying drones over the fumarolic sites and by hand carrying into the fumaroles. We present the results of the field campaign held in different years at the Solfatara of Pozzuoli, near Naples, concerning measurements of CO2, H2S and SO2. The campaigns were carried out in collaboration with the University of Costa Rica and Jet Propulsion Laboratory of the California Institute of Technology (Pasadena, California) and has allowed the acquisition of a number of measures through scientific miniaturized multi-gas, thermal cameras and spectro-radiometer. The acquired measurements have also permitted the calibration and validation of satellite data as ASTER and LANDSAT8 (in collaboration with USGS). We believe that the rapid increasing of technology developments will permit the use UAS to integrate geophysical measurements and contribute to the necessary calibration and validation of current and future satellite missions dedicated to the measurements of surface temperatures and gas emissions in volcanic areas.
NASA Astrophysics Data System (ADS)
Haproff, P. J.; Yin, A.
2014-12-01
Bimodal volcanism is common in continental rift zones. Structural controls to the emplacement and compositions of magmas, however, are not well understood. To address this issue, we examine the location, age, and geochemistry of active volcanic centers, and geometry and kinematics of rift-related faults across the active transtensional Owens Valley rift zone. Building on existing studies, we postulate that the spatial distribution and geochemical composition of volcanism are controlled by motion along rift-bounding fault systems. Along-strike variation in fault geometry and characteristics of active volcanism allow us to divide Owens Valley into three segments: southern, northern, and central. The southern segment of Owens Valley is a simple shear, asymmetric rift bounded to the west by the east-dipping Sierra Nevada frontal fault (SNFF). Active vents of Coso volcanic field are distributed along the eastern rift shoulder and characterized by the eruption of bimodal lavas. The SNFF within this segment is low-angle and penetrates through the lithosphere and into the ductile asthenosphere, allowing for mantle-derived magma to migrate across the weakest part of the fault zone beneath the eastern rift shoulder. Magma thermally weakens wall rocks and eventually stalls in the crust where the melt develops a greater felsic component prior to eruption. The northern segment of Owens Valley displays similar structural geometry, as the west-dipping White Mountains fault (WMF) is listric at depth and offsets the crust and mantle lithosphere, allowing for vertical transport of magma and reservoir emplacement within the crust. Bimodal lavas periodically erupted in the Long Valley Caldera region along the western rift shoulder. The central segment of Owens Valley is a pure shear, symmetric graben generated by motion along the SNFF and WMF. The subvertical, right-slip Owens Valley fault (OVF) strikes along the axis of the valley and penetrates through the lithosphere into the asthenosphere. Volcanic centers of Big Pine volcanic field are located along the trace of the OVF and characterized by mafic eruptions. The OVF is interpreted to provide a subvertical conduit for asthenospheric magma to migrate across the LAB and Moho and erupt on the rift surface without significant contamination with felsic crust.
Do Periodic Plate Reorganisations Control Late-stage Volcanism across a Broad Galápagos Hotspot?
NASA Astrophysics Data System (ADS)
O'Connor, J. M.; Hoernle, K.; Wijbrans, J. R.; Werner, R.; Hauff, S. F.; Stoffers, P.
2010-12-01
Much of the Galápagos Volcanic Province (GVP), consisting of the Cocos, Carnegie, Coiba and Malpelo aseismic ridges and related seamount provinces, remains poorly understood due to a lack of direct age and geochemical data. In recent years reconnaissance dredge/grab sampling of these submerged regions of the GVP provides some new insights that can be re-evaluated in the context of the three new cruises to the region in 2010. The distribution of 40Ar/39Ar basement ages [1-3] suggest that volcanism migrated time-progressively across GVP in broad regions of long-lived, possible concurrent, hotspot volcanism. Development of the GVP via such broad zones of overlapping volcanism leads to multiple phases of volcanism post-dating the onset of hotspot volcanism, similar to rejuvenescent volcanism that occurs million years after the main shield-building phase of mid-plate oceanic volcano, most notably along the Hawaiian-Emperor Seamount Chain. Evidence for rejuvenescent volcanism across the GVP provides an opportunity to evaluate this poorly understood process in a very different physical setting compared to the Hawaiian-Emperor Chain (mid-plate versus on/near spreading axis). Widespread episodes of coeval GVP volcanism show that the Galápagos hotspot influences broad regions of the lithosphere implying relative motion between the Cocos and Nazca plates and a broad Galápagos hotspot. The complex spreading history of the Cocos-Nazca spreading centre likely controlled the relative distribution of GVP volcanism between the Cocos and Nazca plates while creating lithosphere of variable age/thickness across the region [3]. But recent age and geochemical studies of other hotspot systems show that lithosphere influenced in the past by hotspot activity is more likely to generate late-stage volcanism in response to changing patterns of stress in the lithosphere. Late stage volcanism across a broad Galápagos hotspot might therefore reflect periodic reorganisations of the Galápagos spreading centre. [1] Werner, D.R. et al., 1999. A drowned 14-m.y.-old Galápagos Archipelago off the coast of Costa Rica: implications for tectonic and evolutionary models. Geology 27. [2] Werner, D.R. et al., 2003. Geodynamic evolution of the Galápagos hot spot system (Central East Pacific) over the past 20 m.y. Constraints from morphology, geochemistry, and magnetic anomalies. Geochem. Geophys. Geosyst. 4, 1108. [3] O’Connor et al., 2007. Migration of widespread long-lived volcanism across the Galápagos Volcanic Province: Evidence for a broad hotspot melting anomaly? Earth Planet. Sci. Letts. 263.
Venus lives!. [evidence for active volcanoes
NASA Technical Reports Server (NTRS)
Wood, Charles A.; Francis, Peter W.
1988-01-01
Observational evidence which supports the contention that Venus is a volcanically and tectonically active planet is discussed. It is argued that, although there are no observations to date that would prove that Venus has been volcanically active during the last decade, planetological studies presented evidence for youthful volcanic mountains on Venus: the surface of the northern quarter of Venus is considered to be younger than 1 Gy, and some units are likely to be much younger. Because of the small sizes of likely volcanic manifestations and the long intervals expected between eruptions, it is unlikely that any direct evidence of eruptions will be detected with existing and planned spacecraft. It is suggested that future studies of the dynamics and the chemical mixing of the Venusian atmosphere might supply an unequivocal evidence for active volcanism on this planet.
Status of volcanism studies for the Yucca Mountain Site Characterization Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, B.; Perry, F.; Murrell, M.
1995-02-01
Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detailmore » because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.« less
NASA Astrophysics Data System (ADS)
Gutmann, Alexandra; Rüdiger, Julian; Bobrowski, Nicole; Hoffmann, Thorsten
2017-04-01
Volcanoes emit large amounts of gases into the atmosphere. The gas composition in volcanic plumes vary, driven by subsurface processes (such as magma rising) as well as by chemical reactions within the plume after mixing with ambient air. The knowledge of the gas composition can be a useful tool to monitor volcanic activity changes. However, to use the plume composition as a monitoring parameter, it is essential to understand the chemical reactions inside volcanic plumes, in particular when interpretation of volcanic activity changes is based on reactive gas species, such as bromine monoxide or molecular halogens. Changes in BrO/SO2-ratios, measured by UV spectrometers, have already been interpreted in connection with increasing volcanic activity prior to eruptions. But the abundance of BrO changes as a function of the reaction time, and therefore with distance from the vent, as well as the spatial position in the plume. Actually model and field studies assume a non-direct emission of BrO, but its formation due to photochemical and multiphase reactions involving gas and particle phase of volcanic emission mixed with the surrounding atmosphere. However, same models presume HBr as initially emitted species. Therefore, HBr is an important species linking BrO to geophysical processes in volcanic systems. Due to the lack of analytical methods for the accurate speciation of certain halogens (HBr, Br2, Br, BrCl, HOBr, etc.) there are still large uncertainties about the magnitude of volcanic halogen emissions, and in the understanding of the bromine chemistry in volcanic plumes. Since the concentrations of hydrogen halides are not directly accesable by remote sensing techniques, an in situ method with coated gas diffusion denuder was developed. The method uses selective derivatization reaction of gaseous hydrogen halides with an organic compound for the enrichment and immobilization. For this task 5,6-Epoxy-5,6-dihydro-1,10-phenanthrolin was identified as a suitable derivatization agent. The reaction with HBr results in the formation of 5-Bromo-5,6-dihydro-6-hydroxy-1,10-phenanthrolin. Other hydrogen halides give corresponding products. Using a denuder based sampling system with in situ derivatization it is also possible to differentiate even between gaseous and particulate hydrogen bromine. The derivatized analytes were analyzed with high pressure liquid chromatography-mass spectrometry. We applied this approach to measure hydrogen halide mixing ratios (ppt to ppb range depending on plume age) in the plumes of different volcanoes: Stromboli, Italy; Masaya, Nicaragua; Turrialba, Costa Rica. The results of this measurements will be presented. Samples were taken at various distances to the emission source and have been compared with complementary data (e.g. SO2 from alkaline traps or gas sensors). Furthermore, the sampling method has been applied on an unmanned aerial vehicle for downwind sample collection.
Volcanic CO2 Abundance of Kilauea Plume Retrieved by Meand of AVIRIS Data
NASA Technical Reports Server (NTRS)
Spinetti, C.; Carrere, V.; Buongiorno, M. F.; Pieri, D.
2004-01-01
Absorbing the electromagnetic radiation in several regions of the solar spectrum, CO2 plays an important role in the Earth radiation budget since it produces the greenhouse effect. Many natural processes in the Earth s system add and remove carbon dioxide. Overall, measurements of atmospheric carbon dioxide at different sites around the world show an increased carbon dioxide concentration in the atmosphere. At Mauna Loa Observatory (Hawaii) the measured carbon dioxide increased from 315 to 365 ppm, in the period 1958 2000 [Keeling et al., 2001]. While at the large scale, the relationship between CO2 increase and global warming is established [IPCC, 1996], at the local scale, many studies are still needed to understand regional and local sources of carbon dioxide, such as volcanoes. The volcanic areas are particularly rich in carbon dioxide; this is due to magma degassing in the summit craters region of active volcanoes, and to the presence of fractures and active faults [Giammanco et al., 1998]. Several studies estimate a global flux of volcanic CO2 (34+/-24)10(exp 6) tons/day from effusive volcanic emissions, such as the tropospheric volcanic plume (Table 1) [McClelland et al., 1989]. Plumes are a turbulent mixture of gases, solid particles and liquid droplets, emitted continuously at high temperature from summit craters, fumarolic fields or during eruptive episodes. Inside the plume, water vapour represents 70 90% of the volcanic gases. The main gaseous components are CO2, SO2, HCl, H2, H2S, HF, CO, N2 and CH4. Other plume components are volcanic ash, aqueous and acid droplets and solid sulphur-derived particles [Sparks et al., 1997]. Volcanic gases and aerosols are evidences of volcanic activity [Spinetti et al., 2003] and they have important climatic and environmental effects [Fiocco et al., 1994]. For example, Etna volcano is one of the world s major volcanic gas sources [Allard et al., 1991]. New studies on volcanic gaseous emissions have pointed out that a variation of the gas ratio CO2/SO2 is related to eruptive episodes [Caltabiano et al., 1994]. However, measurements and monitoring of volcanic carbon dioxide are difficult and often hazardous, due to the high background presence of atmospheric CO2 and the inaccessibility of volcanic sites. Hyperspectral remote sensing is a suitable technique to overcome the difficulties of ground measurement. It permits a rapid, comprehensive view of volcanic plumes and their evolution over time, detection of all gases with absorption molecular lines within the sensor s multispectral range and, in general, measurement of all the volatile components evolving from craters. The molecular and particle plume components scatter and absorb incident solar radiation. The integral of the radiation difference composes the signal measured by the remote spectrometer. The inversion technique consists of retrieving the plume component concentrations, hence decomposing the signal into the different contributions. The accuracy of remote sensing techniques depends primarily on the sensor capability and sensitivity.
Stratigraphic development and hydrothermal activity in the central western Cascade Range, Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummings, M.L.; Bull, M.K.; Pollock, J.M.
1990-11-10
Two volcanic sequences bounded by erosional unconformities compose the stratigraphy of the North Santiam mining district, Western Cascade Range, Oregon. Diorite, grandodiorite, and leucocratic quartz porphyry dikes, stocks, and sills intrude the breccias, flows, and tuffs of a volcanic center in the older Sardine Formation. Tourmaline-bearing breccia pipes are associated with the porphyritic granodiorite intrusions. An erosional unconformity separates the Sardine Formation from the overlying Elk Lake formation. The alteration patterns in the two formations are consistent with the development of hydrothermal systems during the eruption of each formation. However, the development of the two hydrothermal systems is separated bymore » a period of erosion of the older volcanic pile. Early formation of mineralization that resembles porphyry copper deposits occurred within the Sardine Formation, and later, after eruption of the Elk Lake formation, epithermal veins and alteration developed along faults, fractures, and the margins of dikes in the Sardine Formation.« less
NASA Astrophysics Data System (ADS)
Rodríguez, Fátima; McCollum, John J. K.; Orland, Elijah D. M.; Barrancos, José; Padilla, Germán D.; Calvo, David; Amonte, Cecilia; Pérez, Nemesio M.
2017-04-01
Subaerial volcanic activity on Tenerife (2034 km2), the largest island of the Canary archipelago, started 14 My ago and 4 volcanic eruptions have occurred in historical times during the last 300 years. The main volcano-structural and geomorphological features of Tenerife are (i) the central volcanic complex, nowadays formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and partially filled by post-caldera volcanic products and (ii) the triple junction-shaped rift system, formed by numerous aligned monogenetic cones. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 My (Dóniz et al., 2008). The North-South Rift Zone (NSRZ) of Tenerife comprises at least 139 cones. The main structural characteristic of the NSRZ of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Since there are currently no visible gas emissions at the NSRZ, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. Five diffuse CO2 degassing surveys have been carried out at NSRZ of Tenerife since 2002, the last one in the summer period of 2016, to evaluate the spatio-temporal variations of CO2 degassing as a volcanic surveillance tool for the NSRZ of Tenerife. At each survey, around 600 sampling sites were selected to cover homogenously the study area (325 km2) using the accumulation chamber method. The diffuse CO2 output ranged from 78 to 707 t/d in the study period, with the highest emission rate measured in 2015. The backgroung emission rate was estimated in 300 t/d. The last results the soil CO2 efflux values ranged from non-detectable up to 24.7 g m-2 d-1. The spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, showed the highest CO2 values as multiple isolated anomalies and did not show a clear relation with the main volcano-structural features of the area. The CO2 output released to the atmosphere in a diffuse way has been estimated at 524 t d-1, which represents a value lower than the previous one (707 t d-1 at summer of 2015) but higher than the background emission rate. These changes in the temporal series confirm the need of periodic diffuse emission surveys in the area as a powerful volcanic surveillance tool in volcanic systems where visible gas emanations are absent. References: Dóniz et al., 2008. J. Volcanol. Geotherm. Res. 173, 185.
Volcanic Activity at Shiveluch and Plosky Tolbachik
2017-12-08
On March 7, 2013 the Terra satellite passed over eastern Russia, allowing the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard to capture volcanic activity at Shiveluch and Plosky Tolbachik, on the Kamchatka Peninsula, in eastern Russia. This image was captured at 0050 UTC. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Xu, Yi; Li, Xuelei; Wang, Sheng
2018-05-01
Tengchong is a young volcanic area on the collision boundary between the Indian and Euro-Asian plates of the southeastern Tibetan margin. Holocene volcanoes are concentrated in the Tengchong basin, where they align an N-S trending string-like cluster. To study the magma activity and its relation with the volcanoes, we deployed a passive seismic observation across the volcanic area in northern Tengchong. Using tele-seismic data and receiver function technique, we determined the S-wave velocity structure beneath nine temporary stations. Results show that the Tengchong basin is underlain by prominent low-velocity zones that are associated with the magma chambers of the volcanoes. In the north, a small and less pronounced magma chamber lies beneath two crater lakes, with a depth range of 9-16 km and a lateral width of <8 km. To the south, an interconnected magma chamber is found between the Dayingshan (DYS) volcano and the Dakongshan (DKS) volcanic cluster, with a depth range of 6-15 km and a lateral width of <12 km. In the south, the Laoguipo (LGP) volcano is characterized by anomalous low velocities throughout the upper-mid crust. Combined with other studies, we infer that the DYS volcano shares the same magma chamber with the DKS volcanic cluster, whereas the heat flow beneath the LGP volcano belongs to another thermal system, probably relating to the magma activity beneath the Rehai geothermal field in the south or affected by the intersection between the Tengchong volcanic fault zone and the Dayingjiang fault zone. In addition, mantle intrusion has resulted in the Moho elevation beneath the DKS volcanic cluster, and the thick transition zones on the crust-mantle boundary imply a possible penetration of the heat flow from the uppermost mantle into the lower crust.
Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.
1986-01-01
Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns ofmore » basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs.« less
First evidence of epithermal gold occurrences in the SE Afar Rift, Republic of Djibouti
NASA Astrophysics Data System (ADS)
Moussa, N.; Fouquet, Y.; Le Gall, B.; Caminiti, A. M.; Rolet, J.; Bohn, M.; Etoubleau, J.; Delacourt, C.; Jalludin, M.
2012-06-01
The geology of the Republic of Djibouti, in the SE Afar Triangle, is characterized by intense tectonic and bimodal volcanic activity that began as early as 25-30 Ma. Each magmatic event was accompanied by hydrothermal activity. Mineralization generally occurs as gold-silver bearing chalcedony veins and is associated with felsic volcanism. Eighty samples from mineralized hydrothermal chalcedony, quartz ± carbonate veins and breccias were studied from ten sites representing four major volcanic events that range in age from early Miocene to the present. The most recent veins are controlled by fractures at the edges of grabens established during the last 4 Myr. Gold in excess of 200 ppb is present in 30% of the samples, with values up to 16 ppm. Mineralogical compositions allowed us to identify different types of mineralization corresponding to different depths in the hydrothermal system: (1) surface and subsurface mineralization characterized by carbonate chimneys, gypsum, silica cap and quartz ± carbonate veins that are depleted in metals and Au; (2) shallow banded chalcedony ± adularia veins related to boiling that contain up to 16 ppm Au, occurring as native gold and electrum with pyrite, and tetradymite; (3) quartz veins with sulfides, and (4) epidote alteration in the deepest hydrothermal zones. Samples in which pyrite is enriched in As tend to have a high Au content. The association with bimodal volcanism, the occurrence of adularia and the native Au and electrum in banded chalcedony veins are typical of epithermal systems and confirm that this type of mineralization can occur in a young intracontinental rift system.
Eberhart-Phillips, D.; Christensen, D.H.; Brocher, T.M.; Hansen, R.; Ruppert, N.A.; Haeussler, Peter J.; Abers, G.A.
2006-01-01
In southern and central Alaska the subduction and active volcanism of the Aleutian subduction zone give way to a broad plate boundary zone with mountain building and strike-slip faulting, where the Yakutat terrane joins the subducting Pacific plate. The interplay of these tectonic elements can be best understood by considering the entire region in three dimensions. We image three-dimensional seismic velocity using abundant local earthquakes, supplemented by active source data. Crustal low-velocity correlates with basins. The Denali fault zone is a dominant feature with a change in crustal thickness across the fault. A relatively high-velocity subducted slab and a low-velocity mantle wedge are observed, and high Vp/Vs beneath the active volcanic systems, which indicates focusing of partial melt. North of Cook Inlet, the subducted Yakutat slab is characterized by a thick low-velocity, high-Vp/Vs, crust. High-velocity material above the Yakutat slab may represent a residual older slab, which inhibits vertical flow of Yakutat subduction fluids. Alternate lateral flow allows Yakutat subduction fluids to contribute to Cook Inlet volcanism and the Wrangell volcanic field. The apparent northeast edge of the subducted Yakutat slab is southwest of the Wrangell volcanics, which have adakitic composition consistent with melting of this Yakutat slab edge. In the mantle, the Yakutat slab is subducting with the Pacific plate, while at shallower depths the Yakutat slab overthrusts the shallow Pacific plate along the Transition fault. This region of crustal doubling within the shallow slab is associated with extremely strong plate coupling and the primary asperity of the Mw 9.2 great 1964 earthquake. Copyright 2006 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Coussement, C.; Gente, P.; Rolet, J.; Tiercelin, J.-J.; Wafula, M.; Buku, S.
1994-10-01
The two branches of the East African Rift system include numerous hydrothermal fields, which are closely related to the present fault motion and to volcanic and seismic activity. In this study structural data from Pemba and Cape Banza hydrothermal fields (western branch, North Tanganyika, Zaire) are discussed in terms of neotectonic phenomena. Different types of records, such as fieldwork (onshore and underwater) and LANDSAT and SPOT imagery, are used to explain structural controls on active and fossil hydrothermal systems and their significance. The Pemba site is located at the intersection of 000-020°-trending normal faults belonging to the Uvira Border Fault System and a 120-130°-trending transtensional fault zone and is an area of high seismicity, with events of relatively large magnitude ( Ms < 6.5). The Cape Banza site occurs at the northern end of the Ubawari Peninsula horst. It is bounded by two fault systems trending 015° and is characterized seismically by events of small magnitude ( Ms < 4). The hydrothermal area itself is tectonically controlled by structures striking 170-180° and 080°. The analysis of both hydrothermal areas demonstrates the rejuvenation of older Proterozoic structures during Recent rift faulting and the location of the hydrothermal activity at the junctions of submeridian and transverse faults. The fault motion is compatible with a regional direction of extension of 090-110°. The Cape Banza and Pemba hydrothermal fields may testify to magma chambers existing below the junctions of the faults. They appear to form at structural nodes and may represent a future volcanic province. Together with the four surface volcanic provinces existing along the western branch, they possibly indicate an incipient rift segmentation related to 'valley-valley' or 'transverse fault-valley' junctions, contrasting with the spacing of the volcanoes measured in the eastern branch. These spacings appear to express the different elastic thicknesses between the eastern and western branches of the East African Rift system, perhaps related to a difference in stage of evolution of the two branches.
Cenozoic volcanic rocks of Saudi Arabia
Coleman, R.G.; Gregory, R.T.; Brown, G.F.
2016-01-01
The historical record of volcanic activity in Saudi Arabia suggests that volcanism is dormant. The harrats should be evaluated for their potential as volcanic hazards and as sources of geothermal energy. The volcanic rocks are natural traps for groundwater; thus water resources for agriculture may be significant and should be investigated.
2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory
Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.
2017-09-07
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.
Resolving the architecture of monogenetic feeder systems from exposures of extinct volcanic fields
NASA Astrophysics Data System (ADS)
Muirhead, J.; Van Eaton, A. R.; Re, G.; White, J. D. L.; Ort, M. H.
2016-12-01
Monogenetic volcanic fields pose hazards to a number of major cities worldwide. During an eruption, the evolution of the intrusive feeder network modulates eruption behavior and location, as well as the warning signs of impending activity. However, historical examples of monogenetic eruptions are rare, particularly those monitored with the modern tools required to constrain the geometry and interconnectivity of subsurface intrusive feeders (e.g., InSAR, GPS). Geologic exposures in extinct fields around the Colorado Plateau provide clues to the geometry of shallow intrusions (<1000 m depth) that feed monogenetic volcanoes. We present field- and satellite-based observations of exposed intrusions in the Hopi Buttes volcanic field (Arizona), which reveal that many eruptions were fed by interconnected dike-sill systems. Results from the Hopi Buttes show that volcanic cone alignment studies are biased to the identification of dike intrusions, and thereby neglect the important contributions of sills to shallow feeder systems. For example, estimates of intruded volumes in fields exhumed by uplift and erosion in Utah and Arizona show that sills make up 30 - 92% of the shallow intruded volume within 1000 m of the paleosurface. By transporting magma toward and away from eruptive conduits, these sills likely played a role in modulating eruption styles (e.g., explosive vs effusive) and controlling lateral vent migrations. Sill transitions at Hopi Buttes would have produced detectable surface uplifts, and illustrate the importance of geological studies for informing interpretations of geodetic and seismological data during volcanic crises.
The Plumbing System Feeding the Lusi Eruption Revealed by Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Fallahi, Mohammad Javad; Obermann, Anne; Lupi, Matteo; Karyono, Karyono; Mazzini, Adriano
2017-10-01
Lusi is a sediment-hosted hydrothermal system featuring clastic-dominated geyser-like eruption behavior in East Java, Indonesia. We use 10 months of ambient seismic noise cross correlations from 30 temporary seismic stations to obtain a 3-D model of shear wave velocity anomalies beneath Lusi, the neighboring Arjuno-Welirang volcanic complex, and the Watukosek fault system connecting the two. Our work reveals a hydrothermal plume, rooted at a minimum 6 km depth that reaches the surface at the Lusi site. Furthermore, the inversion shows that this vertical anomaly is connected to the adjacent volcanic complex through a narrow ( 3 km wide) low velocity corridor slicing the survey area at a depth of 4-6 km. The NE-SW direction of this elongated zone matches the strike of the Watukosek fault system. Distinct magmatic chambers are also inferred below the active volcanoes. The large-scale tomography features an exceptional example of a subsurface connection between a volcanic complex and a solitary erupting hydrothermal system hosted in a hydrocarbon-rich back-arc sedimentary basin. These results are consistent with a scenario where deep-seated fluids (e.g., magmas and released hydrothermal fluids) flow along a region of enhanced transmissivity (i.e., the Watukosek fault system damage zone) from the volcanic arc toward the back arc basin where Lusi resides. The triggered metamorphic reactions occurring at depth in the organic-rich sediments generated significant overpressure and fluid upwelling that is today released at the spectacular Lusi eruption site.
NASA Astrophysics Data System (ADS)
Bertolini, G.; Marques, J. C.; Hartley, A. J.; Scherer, C.; Macdonald, D.; Hole, M.; Stipp Basei, M. A. A. S.; Frantz, J. C.; Rosa, A. A. S.
2017-12-01
Large desert basins (>1.000.000 km²) are likely to contain sediment derived from different sources due to variations in factors such as wind direction, sand availability, and sediment influx. Provenance analysis is key to determining sediment sources and to constrain the nature of the sediment fill in desert basins. The Cretaceous Botucatu Desert dunefield extended across a large area of the interior of the SW Gondwana and was then buried by extensive lava flows that covered the active erg. The onset of volcanic activity triggered climatic and topographic variations that changed the depositional setting, however, the aeolian system remained active during this time period. Twenty samples were collected along the southern border of the basin (Brazil and Uruguay). Heavy mineral (HM) and petrographic analyses indicate very mature sediment, with a high ZTR index and quartz dominated sandstones. Despite the regularity of high ZTR index, garnet input occurs in eastern samples. Ten samples were selected for MC-LA-ICP-MS zircon dating with the aim of comparing pre- and syn-volcanic sandstones. More than 800 detrital zircons (DZ) were analyzed and the results allowed the identification of 5 relevant peaks interpreted as: 1) Choiyoi volcanism; 2) Famatian Cycle; 3) Brazilian Cycle (BC); 4) Grenvillian Cycle (GC); 5) Transamazonic Cycle. The DZ ages from the pre and syn-volcanic sandstones show no significant variation. However, when comparing the provenance between the eastern and western areas, samples from the eastern border show a major BC contribution (61%), while the western samples contain 40%. The GC contribution is more significant in the western part of the basin (>18%), contrasting with 6% in eastern samples. The main conclusions are: 1) the DZ record reveals a distinct signature for sedimentary sources; 2) climatic and topographic changes caused by the onset of volcanic activity had no impact on DZ populations; 3) heavy mineral types are very similar in all samples, but the local presence of garnet suggests a more restricted contribution in eastern samples; 4) eastern samples also show differences in the DZ population with a more significant BC contribution. HM and DZ results show that proximal sources can modify sediment input character and changing provenance signatures in desert aeolian systems.
Toward an Integrated Solution to Mitigate the Impact of Volcanic Ash to Aviation
NASA Technical Reports Server (NTRS)
Murray, John J.; Dezitter, Fabien; Fairlie, T. Duncan; Krotkov, Nickolay; Lekki, John; Lindsay, Francis; Pavolonis, Mike; Pieri, David; Prata, Fred; Vernier, Jean-Paul
2015-01-01
The science community is making a concerted effort to improve the reliability of dispersion models for the forecasting of volcanic ash plumes. Toward this end, it has been observed that the assimilation of diverse, accurate and frequent surface, airborne and satellite observations of the source and distal ash plumes may hold the key. Various international research organizations and operational agencies make these observations using a variety of active and passive remote sensing systems and use them to initialize atmospheric trajectory and dispersion models. These observation systems range from surface LIDAR and ceilometers, to airborne radiometers and nephelometers, to satellite radiometers, multi-spectral imagers, LIDAR and UV-photometers. None of these systems alone is a panacea, however, their synergistic application holds great promise toward solving this complex problem. Additionally, the aeronautical and science communities are working to better understand the quantitative thresholds and tolerances of aviation systems to volcanic ash to better inform scientists of the accuracy requirements for dispersion model forecasts. A number of the most recent and promising efforts in all of these area are discussed in this presentation.
Late Miocene (Proto-Gulf) Extension and Magmatism on the Sonoran Margin
NASA Astrophysics Data System (ADS)
Gans, P.; MacMillan, I.; Roldan-Quintana, J.
2003-12-01
Constraints on the magnitude and character of late Miocene (Proto-Gulf) deformation on the Sonoran margin of the Gulf of California extensional province are key to understanding how and when Baja California was captured by the Pacific plate and how strain was partitioned during the early stages of this transtensional rift system. Our new geologic mapping in southwestern Sonora and 40Ar/39Ar dating of pre-, syn-, and post-tectonic volcanic units indicate that late Miocene deformation and volcanic activity were largely restricted to a NW-trending, 100-120 km wide belt adjacent to the coast. Inboard of this belt, NW-SE extension is mainly older (>15 Ma) and occurred in an intra-arc or back-arc setting. Proto-Gulf deformation within the coastal belt was profoundly transtensional, with NW-striking, dextral strike slip faults operating in concert with N-S and NNE-striking normal and oblique slip faults to produce an inferred NW or NNW tectonic transport direction. The total amount of late Miocene NW directed dextral shear within the coastal belt is still poorly constrained, but may exceed 100 km. The locus of deformation and volcanic activity migrated westward or northwestward within the Sonoran coastal belt. in the eastern portion (Sierra Libre and Sierra El Bacatete) major volcanic activity commenced at ˜13.0 Ma and peaked at 12.0 Ma, and major faulting and tilting is bracketed between 12.0 and 10.6 Ma. Further west in the Sierra El Aguaje/San Carlos region, major volcanic activity commenced at 11.5 Ma and peaked at 10.5 Ma, and most faulting and tilting is bracketed between 10.7 and 9.3 Ma. On the coastal mountains northwest of San Carlos, rift related faulting and tilting continued after 8.5 Ma. Voluminous late Miocene (13-8 Ma) volcanic rocks within the Sonoran coastal belt were erupted from numerous centers (e.g. Sierra Libre, Guaymas, Sierra El Aguaje). These thick volcanic sections are compositionally diverse (basalt to rhyolite, with abundant dacite and andesite), and are intimately associated in space and time with tectonic activity. Overall, the Sonoran coastal belt provides a spectacular example of distributed transtension and associated magmatism that ultimately led to rupturing of the continental lithosphere.
NASA Astrophysics Data System (ADS)
Flechsig, C.; Heinicke, J.; Kaempf, H. W.; Nickschick, T.; Mrlina, J.
2013-12-01
The Eger rift (Central Europe) belongs to the European Cenozoic rift system and represents an approximately 50 km wide and 300 km long ENE-WSW striking continental rift that formed during the Upper Cretaceous-Tertiary transition. This rift zone is one of the most active seismic regions in Central Europe. Especially, the western part of the Eger rift area is dominated by ongoing hidden magmatic processes in the intra-continental lithospheric mantle. Besides of known quaternary volcanoes, these processes take place in absence of any presently active volcanism at the surface. However, they are expressed by a series of phenomena distributed over a relatively large area, like occurrence of repeated earthquake swarms, surface exhalation of mantle-derived and CO2-enriched fluids at mofettes and mineral springs, and enhanced heat flow. At present this is the only known intra-continental region where such deep-seated, active lithospheric processes currently occur. The aim of the project is to investigate the tectonic/geologic near surface structure and the degassing processes of the mofette field of Hartousov, where soil gas measurements (concentration and flux rate) in an area of appr. 3x2 km traced a permeable NS extended segment of a fault zone and revealed highly permeable Diffuse Degassing Structures (DDS). The second target is volcanic environment of the Quaternary volcanic complex Mytina maar and the cinder cone Zelezna hurka/Eisenbühl. The investigations are intended to clarify: a) the spatio-temporal reconstruction of the maar complex, and the palaeo volcanic scenario (geological model, tectonic settings, distribution of pyroclastica, b) the geological structure and the tectonic control of the recent degassing zone, and c) the comperative interpretation of both regions in the consideration of potential future volcanic risk assessment in sub-regions of the western Eger Rift. To investigate both regions the following methods are used: geoelectrics, geomagnetics, shallow seismics, gravity and CO2-soil gas measurements, petrographic/petrophysical and remote sensing data. The results will be serve as for better understanding of geologic, volcanic and tectonic settings of the two regions as well as for the preparation of the ICDP drilling project 'Drilling the Eger rift' with a multidisciplinary approach consisting of geophysical, geochemical and other disciplines to understand the role of crustal fluid activity for swarm earthquake generation.
NASA Astrophysics Data System (ADS)
García-Merino, Marta; García-Hernández, Rubén; Montrond, Eurico; Dionis, Samara; Fernandes, Paulo; Silva, Sonia V.; Alfama, Vera; Cabral, Jeremías; Pereira, Jose M.; Padrón, Eleazar; Pérez, Nemesio M.
2017-04-01
Brava (67 km2) is the southwestern most and the smallest inhabited island of the Cape Verde archipelago. It is located 18 km west of Fogo Island and rises 976 m from the sea level. Brava has not any documented historical eruptions, but its Holocene volcanism and relatively high seismic activity clearly indicate that it is an active volcanic island. Since there have been no historic eruptions in Brava, volcanic hazard awareness among the population and the authorities is very low; therefore, its volcano monitoring program is scarce. With the aim of helping to provide a multidisciplinary monitoring program for the volcanic surveillance of the island, diffuse CO2 emission surveys have been carried out since 2010; approximately every 2 years. Soil CO2 efflux measurements are periodically performed at ˜ 275 observation sites all over the island and after taking into consideration their accessibility and the island volcano-structural characteristics. At each sampling site, soil CO2 efflux measurement was performed by means of a portable NDIR sensor according to the accumulation chamber method. To quantify the total diffuse CO2 emission from Brava volcanic system, soil CO2 efflux maps were constructed using sequential Gaussian simulations (sGs). An increase trend of diffuse CO2 emission rate from 42 to 681 t d-1at Brava was observed; just one year prior the 2014-2015 Fogo eruption and almost three years before the anomalous seismic activity recorded on August 2016 with more than 1000 seismic events registered by the INMG on August 1st, 2016 (Bruno Faria, personal communication). Due to this anomalous seismic activity, a diffuse CO2 emission survey at Brava was performed from August 2 to 10, 2016, and the estimated degassing rate yield a value about 72 t d-1; typical background values. An additional survey was carried out from October 22 to November 6, 2016. For this last survey, the estimated diffuse CO2 emission from Brava showed the highest observed value with a degassing rate about 1.700 t d-1. These observed changes on diffuse CO2 emission are geochemical evidences which seem to support a volcanic unrest for the recent anomalous seismic activity registered at Brava.
NASA Astrophysics Data System (ADS)
D'Aniello, Elena; di Fiore, Vincenzo; Sacchi, Marco; Rapolla, Antonio
2010-05-01
During the cruise CAFE_07 - Leg 3 conducted in the Gulf of Naples and Pozzuoli in January 2008, on board of the R/V URANIA of the CNR it was carried out the acquisition of a grid of ca. 800 km of high-resolution multichannel reflection seismic profiles (Sacchi et al., 2009; Di Fiore et al., 2009). The aim of the cruise was the understanding of the stratigraphic-structural setting of the Pozzuoli Bay area, with specific reference to the major offshore volcanic features, such as Nisida Bank, Pentapalummo Bank, M.Dolce-Pampano Bank and Miseno Bank and others. The Gulf of Pozzuoli is placed in the Volcanic district of Campi Flegrei, an area of active volcanism located at North West of Naples city, along the Tyrrhenian margin, in an extensional collapsed area called Campanian Plain, filled by siliciclastic, epiclastic and volcaniclastic sediments, deposited during Late Pliocene and Quaternary. Several studies present in literature suggest a relation between volcanic system of Campi Flegrei and faults system; in particular, at the Gulf of Pozzuoli we can observe some volcanic banks and submarine volcanic edifices, as Pentapalummo, Nisida and Miseno Banks, are aligned along the NE-SW trending Magnaghi-Sebeto fault line, that separates the Bay of Naples into two sectors: the first, at NW of the Bay, characterized by volcanism activity and magnetic anomalies and the second, at SE of the bay, involved only by sedimentary activity, with the exceptions of the circular anomalies in the offshore of Torre del Greco city (Bruno et al., 2003; Secomandi et al., 2003); other volcanic hights are instead positioned along NW-SE structural discontinuities (Bruno, 2004). The magnetic and gravimetric analysis of the Bay of Naples confirms the tectonic control of the Campanian volcanism: we can observe a good correspondence of high magnetic anomalies with the main volcanic structures at the North-Western side of the bay, just the Gulf of Pozzuoli, where both NE-SW and NW-SE normal faults were recognized. The correspondence between magnetic structures, interpreted as volcanic bodies, and the faults NE-SW and NW-SE trending, supports the hypothesis that the magma rises along normal faults cutting the carbonate platform. We here present two significant seismic profiles: their interpretation reveals a complex stratigraphic and structural setting, dominated by the occurrence of volcanic bodies and siliciclastic depositional units, mostly deriving from the dismantling of the adjacent vents and volcaniclastic units. The results of this preliminary research include the recognition of volcanic features and structures not yet described in the literature that may represent a relevant contribute to the understanding of the Late Quaternary evolution of the Campi Flegrei area. References: Bruno P.P., Rapolla A., Di Fiore V., 2003. Structural setting of the Bay of Naples (Italy) seismic reflection data: implications for Campanian volcanism. Tectonophysics, 372, 193-213. Bruno P.P., 2004. Structure and evolution of the Bay of Pozzuoli (Italy) using marine seismic reflection data: implication for collapse of the Campi Flegrei caldera. Bull. Volcanol., 66, 342-355. Di Fiore V., D'Aniello E., Rapolla A., Sacchi M., Secomandi M., Spiess V., 2009. Multichannel seismic survey in coastal Campania area by two different resolution sources. EGU General Assembly 2009, vol.11. Sacchi M., Alessio G., Aquino I., Esposito E., Molisso F., Nappi R., Porfido S., Violante C., 2008. Risultati preliminari della campagna oceanografica CAFE_07 - Leg 3 nei Golfi di Napoli e Pozzuoli, Mar Tirreno Orientale. Quaderni di Geofisica, n. 64. Secomandi M., Paoletti V., Aiello G., Fedi M., Marsella E., Ruggieri S., D'Argenio B., Rapolla A., 2003. Analysis of the magnetic anomaly field of the volcanic district of the Bay of Naples, Italy. Marine Geophysical Researches. 24: 207-221.
NASA Astrophysics Data System (ADS)
Cronin, Shane J.; Gaylord, David R.; Charley, Douglas; Alloway, Brent V.; Wallez, Sandrine; Esau, Job W.
2004-10-01
Ambae Island is the largest of Vanuatu’s active volcanoes. It is also one of the nation’s potentially most dangerous, with 60 million m3 of lake-water perched at over 1340 m in the summit caldera and over the active vent. In 1995, small phreatic explosions, earthquake swarms and heightened gas release led to calls for evacuation preparation and community volcanic hazard awareness programs for the ~9500 inhabitants. Differences in perspective or world-view between the island dwellers adhering to traditional beliefs (Kastom) and external scientists and emergency managers led to a climate of distrust following this crisis. In an attempt to address these issues, rebuild dialogue and respect between communities, outside scientists and administrators, and move forward in volcanic hazard education and planning for Ambae, we adapted and applied Participatory Rural Appraisal (PRA) approaches. Initial gender-segregated PRA exercises from two representative communities provided a mechanism for cataloguing local traditional viewpoints and hazard perceptions. Ultimately, by combining elements of these viewpoints and perceptions with science-based management structures, we derived volcanic hazard management guidelines, supported by an alert system and map that were more readily accepted by the test communities than the earlier “top-down” plans imposed by outside governmental and scientific agencies. The strength of PRA approaches is that they permit scientists to understand important local perspective issues, including visualisations of volcanic hazards, weaknesses in internal and external communication systems, and gender and hierarchy conflicts, all of which can hinder community emergency management. The approach we describe has much to offer both developing and industrialised communities that wish to improve their awareness programs and mitigative planning. This approach should also enhance communication and understanding between volcanologists and the communities they serve.
SO2 on Venus: IUE, HST and ground-based measurements, and the active volcanism connection
NASA Technical Reports Server (NTRS)
Na, C. Y.; Barker, E. S.; Stern, S. A.; Esposito, L. W.
1993-01-01
Magellan images have shown that the volcanic features are widespread over the surface of Venus. The question of whether there is active volcanism is important for understanding both the atmospheric and the geological processes on Venus. The thick cloud cover of Venus precludes any direct observation of active volcanoes even if they exist. The only means of monitoring the active volcanism on Venus at present seems to be remote sensing from Earth. Continuous monitoring of SO2 is important to establish the long term trend of SO2 abundance and to understand the physical mechanism responsible for the change.
NASA Astrophysics Data System (ADS)
Arellano-Baeza, A. A.; Garcia, R. V.; Trejo-Soto, M.; Molina-Sauceda, E.
Mexico is one of the most volcanically active regions in North America Volcanic activity in central Mexico is associated with the subduction of the Cocos and Rivera plates beneath the North American plate Periods of enhanced microseismic activity associated with the volcanic activity of the Colima and Popocapetl volcanoes are compared to some periods of low microseismic activity We detected changes in the number and orientation of lineaments associated with the microseismic activity due to lineament analysis of a temporal sequence of high resolution satellite images of both volcanoes 15 m resolution multispectral images provided by the ASTER VNIR instrument were used The Lineament Extraction and Stripes Statistic Analysis LESSA software package was employed for the lineament extraction
NASA Astrophysics Data System (ADS)
De Vivo, B.
2017-12-01
In the Campania region (Southern Italy) major active volcanic systems occur in the greater metropolitan area of Naples: Mt. Somma-Vesuvius (SV) and the Campi Flegrei (CF). These volcanic systems have been studied for centuries, yet significant differences of opinions exist about their origins and behaviors. Here, I present some alternative views on issues based on more than 25 years of research, focusing the attention on role played by fluids and magmas based on fluid inclusions (FI) and melt inclusions (MI). In particular, FI and MI data from the Neapolitan volcanoes provide valuable information on the nature of fluid and melt phases trapped during the late evolutionary stages of the alkaline magmatic rocks; such data from past eruptions might be applied to predict the imminence of volcanic eruptions and help protect the population from such hazards. In my and my collaborator studies, FI and MI data have been also used to address the problem of bradyseism in the CF. Using FI and MI, to explain the bradyseism phenomena at CF, my collaborators and I described a new model that involves only hydrothermal fluids of magmatic or meteoric/marine origin with no direct involvement of the magma, other than as a heat source to explain the ground deformation. My collaborators and I explain the bradyseism as a purely hydrothermal model, using processes in porphyry systems as an analogue to those of the CF. SV activity is characterized by cyclic events, and in terms of volcanic risk assessment, a crucial aspect to understand is when a potential next explosive eruption might occur. Evaluating volcanic hazards requires knowledge of the processes that trigger eruptions and the nature and timing of geophysical/geochemical signals related to these processes. One approach to addressing this need is to link observable signals to pre-eruptive magmatic events deduced from studies of erupted magmas. I believe that a way to work in this direction is to determine the residence time, through MI diffusion profiles, of crystals in the magma chamber before an explosive event. I think that working on the crystals residence time of the many plinian eruptions we know to have occurred in SV history, could help us to understand better the relationships between tectonic, regional, event and explosive eruptions.
WOVOdat: A New Tool for Managing and Accessing Data of Worldwide Volcanic Unrest
NASA Astrophysics Data System (ADS)
Venezky, D. Y.; Malone, S. D.; Newhall, C. G.
2002-12-01
WOVOdat (World Organization of Volcano Observatories database of volcanic unrest) will for the first time bring together data of worldwide volcanic seismicity, ground deformation, fumarolic activity, and other changes within or adjacent to a volcanic system. Although a large body of data and experience has been built over the past century, currently, we have no means of accessing that collective experience for use during crises and for research. WOVOdat will be the central resource of a data management system; other components will include utilities for data input and archiving, structured data retrieval, and data mining; educational modules; and links to institutional databases such as IRIS (global seismicity), UNAVCO (global GPS coordinates and strain vectors), and Smithsonian's Global Volcanism Program (historical eruptions). Data will be geospatially and time-referenced, to provide four dimensional images of how volcanic systems respond to magma intrusion, regional strain, and other disturbances prior to and during eruption. As part of the design phase, a small WOVOdat team is currently collecting information from observatories about their data types, formats, and local data management. The database schema is being designed such that responses to common, yet complex, queries are rapid (e.g., where else has similar unrest occurred and what was the outcome?) while also allowing for more detailed research analysis of relationships between various parameters (e.g., what do temporal relations between long-period earthquakes, transient deformation, and spikes in gas emission tell us about the geometry and physical properties of magma and a volcanic edifice?). We are excited by the potential of WOVOdat, and we invite participation in its design and development. Next steps involve formalizing and testing the design, and, developing utilities for translating data of various formats into common formats. The large job of populating the database will follow, and eventually we will have a great new tool for eruption forecasting and research.
Regional Triggering of Volcanic Activity Following Large Magnitude Earthquakes
NASA Astrophysics Data System (ADS)
Hill-Butler, Charley; Blackett, Matthew; Wright, Robert
2015-04-01
There are numerous reports of a spatial and temporal link between volcanic activity and high magnitude seismic events. In fact, since 1950, all large magnitude earthquakes have been followed by volcanic eruptions in the following year - 1952 Kamchatka M9.2, 1960 Chile M9.5, 1964 Alaska M9.2, 2004 & 2005 Sumatra-Andaman M9.3 & M8.7 and 2011 Japan M9.0. While at a global scale, 56% of all large earthquakes (M≥8.0) in the 21st century were followed by increases in thermal activity. The most significant change in volcanic activity occurred between December 2004 and April 2005 following the M9.1 December 2004 earthquake after which new eruptions were detected at 10 volcanoes and global volcanic flux doubled over 52 days (Hill-Butler et al. 2014). The ability to determine a volcano's activity or 'response', however, has resulted in a number of disparities with <50% of all volcanoes being monitored by ground-based instruments. The advent of satellite remote sensing for volcanology has, therefore, provided researchers with an opportunity to quantify the timing, magnitude and character of volcanic events. Using data acquired from the MODVOLC algorithm, this research examines a globally comparable database of satellite-derived radiant flux alongside USGS NEIC data to identify changes in volcanic activity following an earthquake, February 2000 - December 2012. Using an estimate of background temperature obtained from the MODIS Land Surface Temperature (LST) product (Wright et al. 2014), thermal radiance was converted to radiant flux following the method of Kaufman et al. (1998). The resulting heat flux inventory was then compared to all seismic events (M≥6.0) within 1000 km of each volcano to evaluate if changes in volcanic heat flux correlate with regional earthquakes. This presentation will first identify relationships at the temporal and spatial scale, more complex relationships obtained by machine learning algorithms will then be examined to establish favourable conditions for response and gauge the effect of each variable on the relationship between earthquakes and volcanic activity. Finally, a volcanic forecast model will be assessed to evaluate the use of earthquakes as a precursory indicator to volcanic activity. If proven, the relationship between earthquakes and volcanic activity has the potential to aid our understanding of the conditions that influence triggering following an earthquake and provide vital clues for volcanic activity prediction and the identification of precursors. Hill-Butler, C.; Blackett, M.; Wright, R. and Trodd, N. (2014) Global Heat Flux Response to Large Earthquakes in the 21st Century. Geology in preparation. Kaufman, Y. J.; Justice, C.; Flynn, L.; Kendall, J.; Prins, E.; Ward, D. E.; Menzel, P. and Setzer, A. (1998) Monitoring Global Fires from EOS-MODIS. Journal of Geophysical Research 103, 32,215-32,238 Wright, R.; Blackett, M. and Hill-Butler, C. (2014) Some observations regarding the thermal flux from Earth's erupting volcanoes for the period 2000 to 2014. Geophysical Research Letters in review.
Estimation of age of Dali-Ganis rifting and associated volcanic activity, Venus
NASA Technical Reports Server (NTRS)
Basilevsky, A. T.
1993-01-01
This paper deals with the estimation of age for the Dali and Ganis Chasma rift zones and their associated volcanism based on photogeologic analysis of stratigraphic relations of rift-associated features with impact craters which have associated features indicative of their age. The features are radar-dark and parabolic, and they are believed to be mantles of debris derived from fallout of the craters' ejecta. They are thought to be among the youngest features on the Venusian surface, so their 'parent' craters must also be very young, evidently among the youngest 10 percent of Venus' crater population. Dali Chasma and Ganis Chasma are a part of a system of rift zones contained within eastern Aphrodite and Atla Regio which is a significant component of Venus tectonics. The rifts of this system are fracture belts which dissect typical Venusian plains with rare islands of tessera terrain. The rift zone system consists of several segments following each other (Diane, Dali, Ganis) and forming the major rift zone line, about 10,000 km long, which has junctions with several other rift zones, including Parga Chasma Rift. The junctions are usually locations of rift-associated volcanism in the form of volcanic edifices (Maat and Ozza Montes) or plain-forming flows flooding some areas within the rift zones and the adjacent plains.
Volcanism on Jupiter's moon Io and its relation to interior processes
NASA Astrophysics Data System (ADS)
Hamilton, Christopher
2013-04-01
Jupiter's moon Io is the most volcanically active body in the Solar System and offers insight into processes of tidal heating, melt generation, and magma ascent. Investigating these processes contributes to a better understanding of Io's geologic history, internal structure, and tidal dissipation mechanisms, as well as to understanding similar processes operating on other tidally-heated worlds (e.g., Europa, Enceladus, and some exoplanets). Four recent developments provide new observational constraints that prompt re-examination of the relationships between Io's surficial geology and interior structure. These developments include: (1) completion of the first 1:15,000,000 scale geologic map of Io based on a synthesis of Voyager and Galileo data; (2) re-interpretation of Galileo magnetometer data, which suggests that Io has a globally continuous subsurface magma ocean; (3) new global surveys of the power output from volcanic centers on Io; and (4) identification of an offset between volcano concentrations and surface heat flux maxima predicted by solid body tidal heating models. In this study, the spatial distributions of volcanic hotspots and paterae on Io are characterized using distance-based clustering techniques and nearest neighbor statistics. Distance-based clustering results support a dominant role for asthenospheric heating within Io, but show a 30-60° eastward offset in volcano concentrations relative to locations of predicted surface heat flux maxima. The observed asymmetry in volcano concentrations, with respect to the tidal axis, cannot be explained by existing solid body tidal heating models. However, identification of a global magma ocean within Io raises the intriguing possibility that a fluid tidal response—analogous to the heating of icy satellites by fluid tidal dissipation in their liquid oceans—may modify Io's thermal budget and locations of enhanced volcanism. The population density of volcanoes is greatest near the equator, which also agrees with predictions from asthensopheric-dominated tidal heating models, but the nearest neighbor analysis of hotspots (i.e., sites of active volcanism) and paterae (i.e., caldera-like volcano-tectonic depressions) reveals a random to uniform spatial organization. This suggests that Io may have an extensive subsurface magma reservoir with vigorous mantle convection, and/or a deep-mantle heating component, which reduces the amplitude of surface heat flux variations that would otherwise favor clustering. The tendency toward uniformity among volcanic systems may reflect their interaction through a process of magmatic lensing that focuses rising magma and inhibits volcanism in the surrounding capture zone. In summary, the distribution of volcanism on Io generally supports the presence of a globally extensive asthenosphere with local interactions occurring between volcanic systems, but a 30-60° eastward offset in the location of enhanced volcanism relative to predicted surface heat flux maxima cannot be explained by existing solid body tidal heating models. This may imply faster than synchronous rotation, state of stress controls on the locations of magma ascent, and/or a missing component in models of Io's interior, such as fluid tides generated within a globally extensive layer of interconnected partial melt.
NASA Astrophysics Data System (ADS)
García-Hernández, Rubén; Melián, Gladys; D'Auria, Luca; Asensio-Ramos, María; Alonso, Mar; Padilla, Germán D.; Rodríguez, Fátima; Padrón, Eleazar; Barrancos, José; García-Merino, Marta; Amonte, Cecilia; Pérez, Aarón; Calvo, David; Hernández, Pedro A.; Pérez, Nemesio M.
2017-04-01
Tenerife (2034 km2) is the largest of the Canary Islands and hosts four main active volcanic edifices: three volcanic rifts and a central volcanic complex, Las Cañadas, which is characterized by the eruption of differentiated magmas. Laying inside Las Cañadas a twin stratovolcanoes system, Pico Viejo and Teide, has been developed. Although there are no visible gas emanations along the volcanic rifts of Tenerife, the existence of a volcanic-hydrothermal system beneath Teide volcano is suggested by the occurrence of a weak fumarolic system, steamy ground and high rates of diffuse CO2 degassing all around the summit cone of Teide. Soil CO2 efflux surveys have been performed at the summit crater of Teide volcano since 1999, to determine the diffuse CO2 emission from the summit crater and to evaluate the temporal variations of CO2 efflux and their relationships with seismic-volcanic activity. Soil CO2 efflux and soil temperature have been always measured at the same 38 observation sites homogeneously distributed within an area of about 6,972 m2 inside the summit crater. Soil CO2 diffuse effluxes were estimated according to the accumulation chamber method by means of a non-dispersive infrared (NDIR) LICOR-820 CO2 analyzer. Historical seismic activity in Tenerife has been characterized by low- to moderate-magnitude events (M <2.5), and most of the earthquake's epicenters have been clustered in an offshore area SE of Tenerife. However, very few earthquakes have occurred in other areas, including Teide volcano. At 12:18 of January 6, 2017, the Canary Seismic Network belonged to the Instituto Volcanológico de Canarias (INVOLCAN) registered an earthquake of M 2.5 located in the vertical of Teide volcano with a depth of 6.6 km. It was the strongest earthquake located inside Cañadas caldera since 2004. Between October 11 and December 13, 2016, a continuous increase on the diffuse CO2 emission was registered, from 21.3 ± 2.0 to 101.7 ± 20.7 t d-1, suggesting the occurrence of future increase in the seismic-volcanic activity. In fact, this precursory signal preceded the occurrence of the 2.5 seismic event and no significant horizontal and vertical displacements were registered by the Canary GPS network belonged to INVOLCAN. This seismic event was probably due to the increase of fluid pressure in the hydrothermal-magmatic system of Tenerife. With the aim of investigate the relationship of the observed temporal variation on diffuse CO2 emission and the seismic event occurred beneath Teide volcano in January 6, 2016, the anomalous peak of diffuse CO2 emission was tested following the Material Failure Forecast Method (FFM). To do so, a Geochemical Window Precursory Signal (GWPS) was selected between October 11 and December 13, 2016. Plotting the inverse of diffuse CO2 emission rate versus time, the interception of the linear fit of the data with the time axis indicates the theoretical moment when seismicity is most likely to occur. Surprisingly, interception of the linear fit occurred for a time window between January 6 and 9, 2017, showing an excellent correlation with the occurrence of the M 2.5 earthquake registered at Teide in January 6, 2017.
White, Donald Edward; Hutchinson, Roderick A.; Keith, Terry E.C.
1988-01-01
Norris Geyser Basin, normally shortened to Norris Basin, is adjacent to the north rim of the Yellowstone caldera at the common intersection of the caldera rim and the Norris-Mammoth Corridor, a zone of faults, volcanic vents, and thermal activity that strikes north from the caldera rim to Mammoth Hot Springs. An east-west fault zone terminates the Gallatin Range at its southern end and extends from Hebgen Lake, west of the park, to Norris Basin. No local evidence exists at the surface in Norris Basin for the two oldest Yellowstone volcanic caldera cycles (~2.0 and 1.3 m.y.B.P.). The third and youngest cycle formed the Yellowstone caldera, which erupted the 600,000-year-old Lava Creek Tuff. No evidence is preserved of hydrothermal activity near Norris Basin during the first 300,000.years after the caldera collapse. Glaciation probably removed most of the early evidence, but erratics of hot-spring sinter that had been converted diagenetically to extremely hard, resistant chalcedonic sinter are present as cobbles in and on some moraines and till from the last two glacial stages, here correlated with the early and late stages of the Pinedale glaciation <150,000 years B.P.). Indirect evidence for the oldest hydrothermal system at Norris Basin indicates an age probably older than both stages of Pinedale glaciation. Stream deposits consisting mainly of rounded quartz phenocrysts of the Lava Creek Tuff were subaerial, perhaps in part windblown and redeposited by streams. A few small rounded pebbles are interpreted as chalcedonic sinter of a still older cycle. None of these are precisely dated but are unlikely to be more than 150,000 to 200,000 years old. ...Most studies of active hydrothermal areas have noted chemical differences in fluids and alteration products but have given little attention to differences and models to explain evolution in types. This report, in contrast, emphasizes the kinds of changes in vents and their changing chemical types of waters and then provides models for explaining these differences. Norris Basin is probably not an independent volcanic-hydrothermal system. The basin and nearby acid-leached areas (from oxidation of H2S-enriched vapor) are best considered as parts of the same system, extending from Norris Basin to Roaring Mountain and possibly to Mammoth. If so, are they parts of a single large system centered within the Yellowstone caldera, or are Norris Basin and the nearby altered areas both parts of one or more young independent corridor systems confined, at least in the shallow crust, to the Norris-Mammoth Corridor? Tentatively, we favor the latter relation, probably having evolved in the past ~300,000 years. A model for large, long-lived, volcanic-hydrothermal activity is also suggested, involving all of the crust and upper mantle and using much recent geophysical data bearing on crust-mantle interrelations. Our model for large systems is much superior to previous suggestions for explaining continuing hydrothermal activity over hundreds of thousands of years, but is less attractive for the smaller nonhomogenized volcanic system actually favored here for the Norris-Mammoth Corridor.
NASA Astrophysics Data System (ADS)
Ford, Anabel; Rose, William I.
1995-07-01
In the spirit of collaborative research, Glicken and Ford embarked on the problem of identifying the source of volcanic ash used as temper in prehistoric Maya ceramics. Verification of the presence of glass shards and associated volcanic mineralogy in thin sections of Maya ceramics was straightforward and pointed to the Guatemala Highland volcanic chain. Considering seasonal wind rose patterns, target volcanoes include those from the area west of and including Guatemala City. Joint field research conducted in 1983 by Glicken and Ford in the limestone lowlands of Belize and neighboring Guatemala, 300 km north of the volcanic zone and 150 km from the nearest identified ash deposits, was unsuccessful in discovering local volcanic ash deposits. The abundance of the ash in common Maya ceramic vessels coupled with the difficulties of long-distance procurement without draft animals lead Glicken to suggest that ashfall into the lowlands would most parsimoniously explain prehistoric procurement; it literally dropped into their hands. A major archaeological problem with this explanation is that the use of volcanic ash occurring over several centuries of the Late Classic Period (ca. 600-900 AD). To accept the ashfall hypothesis for ancient Maya volcanic ash procurement, one would have to demonstrate a long span of consistent volcanic activity in the Guatemala Highlands for the last half of the first millennium AD. Should this be documented through careful petrographic, microprobe and tephrachronological studies, a number of related archaeological phenomena would be explained. In addition, the proposed model of volcanic activity has implications for understanding volcanism and potential volcanic hazards in Central America over a significantly longer time span than the historic period. These avenues are explored and a call for further collaborative research of this interdisciplinary problem is extended in this paper.
Amazonian volcanism inside Valles Marineris on Mars
NASA Astrophysics Data System (ADS)
Brož, Petr; Hauber, Ernst; Wray, James J.; Michael, Gregory
2017-09-01
The giant trough system of Valles Marineris is one of the most spectacular landforms on Mars, yet its origin is still unclear. Although often referred to as a rift, it also shows some characteristics that are indicative of collapse processes. For decades, one of the major open questions was whether volcanism was active inside the Valles Marineris. Here we present evidence for a volcanic field on the floor of the deepest trough of Valles Marineris, Coprates Chasma. More than 130 individual edifices resemble scoria and tuff cones, and are associated with units that are interpreted as lava flows. Crater counts indicate that the volcanic field was emplaced sometime between ∼0.4 Ga and ∼0.2 Ga. The spatial distribution of the cones displays a control by trough-parallel subsurface structures, suggesting magma ascent in feeder dikes along trough-bounding normal faults. Spectral data reveal an opaline-silica-rich unit associated with at least one of the cones, indicative of hydrothermal processes. Our results point to magma-water interaction, an environment of astrobiological interest, perhaps associated with late-stage activity in the evolution of Valles Marineris, and suggest that the floor of Coprates Chasma is promising target for the in situ exploration of Mars.
NASA Astrophysics Data System (ADS)
Sugden, P.; Savov, I. P.; Wilson, M.; Meliksetian, K.; Navasardyan, G.
2017-12-01
Continental collision zones remain the most enigmatic tectonic setting for volcanic activity on earth. The Lesser Caucasus Mts are host to widespread and unique intraplate volcanism, associated with the active Arabia-Eurasia continental collision. Volcanic products range from alkali basalts to rhyolites (including extensive ignimbrites), and occur as basaltic lava flow fields, large composite and shield volcanoes, and regions of distributed (mostly monogenetic) volcanism. Geomorphology, archaeology, and historical accounts suggest volcanic activity has extended in to the Holocene-historical period. The high quality of the exposures and the diversity of unaltered rock types makes Armenia an ideal natural laboratory for studying the sources of magmatism in an active continental collision zone. For the first time, we will present the mineral chemistry (ol, px, amph), whole rock major and trace element, and Sr-Nd isotope compositions of volcanic rocks from southernmost Armenia- namely the Gegham, Vardenis and Syunik volcanic highlands. We compare our dataset with the composition of post-collisional volcanic rocks elsewhere in the Arabia-Eurasia collision zone. Samples from S. Armenia are more mafic, more alkaline and more K2O rich. All volcanic rocks show negative HFSE anomalies and LILE and LREE enrichments reminiscent of continental volcanic arc settings. However, volcanic rocks in Southern Armenia are further enriched in some of the most incompatible trace elements, most notably LREE, Sr and P, and have higher La/Yb, Th/Yb, Ta/Yb, and more variable Th/Nb. Volcanic rocks from Eastern Anatolia and N. Armenia have Sr-Nd isotope compositions similar to those of the Mesozoic volcanic arc (87Sr/86Sr 0.7034-0.7045; 143Nd/144Nd 0.5128-0.5129), whereas samples from S. Armenia deviate towards more enriched compositions resembling a typical EM-I type reservoir (87Sr/86Sr 0.7041- 0.7047; 143Nd/144Nd 0.5127-0.5128). We argue that these distinctive geochemical characteristics result from the addition of an enriched lithospheric component to a ubiquitous subduction-modified baseline asthenospheric mantle. This EM-I like component may be characteristic for not only intraplate hotspot volcanoes but also to collisional and arc settings.
NASA Astrophysics Data System (ADS)
Roman, D. C.; Rodgers, M.; Mather, T. A.; Power, J. A.; Pyle, D. M.
2014-12-01
Observations of volcanically induced seismicity are essential for eruption forecasting and for real-time and near-real-time warnings of hazardous volcanic activity. Studies of volcanic seismicity and of seismic wave propagation also provide critical understanding of subsurface magmatic systems and the physical processes associated with magma genesis, transport, and eruption. However, desipite significant advances in recent years, our ability to successfully forecast volcanic eruptions and fully understand subsurface volcanic processes is limited by our current understanding of the source processes of volcano-seismic events, the effects on seismic wave propagation within volcanic structures, limited data, and even the non-standardized terminology used to describe seismic waveforms. Progress in volcano seismology is further hampered by inconsistent data formats and standards, lack of state-of-the-art hardware and professional technical staff, as well as a lack of widely adopted analysis techniques and software. Addressing these challenges will not only advance scientific understanding of volcanoes, but also will lead to more accurate forecasts and warnings of hazardous volcanic eruptions that would ultimately save lives and property world-wide. Two recent workshops held in Anchorage, Alaska, and Oxford, UK, represent important steps towards developing a relationship among members of the academic community and government agencies, focused around a shared, long-term vision for volcano seismology. Recommendations arising from the two workshops fall into six categories: 1) Ongoing and enhanced community-wide discussions, 2) data and code curation and dissemination, 3) code development, 4) development of resources for more comprehensive data mining, 5) enhanced strategic seismic data collection, and 6) enhanced integration of multiple datasets (including seismicity) to understand all states of volcano activity through space and time. As presented sequentially above, these steps can be regarded as a road map for galvanizing and strengthening the volcano seismological community to drive new scientific and technical progress over the next 5-10 years.
A multidisciplinary system for monitoring and forecasting Etna volcanic plumes
NASA Astrophysics Data System (ADS)
Coltelli, Mauro; Prestifilippo, Michele; Spata, Gaetano; Scollo, Simona; Andronico, Daniele
2010-05-01
One of the most active volcanoes in the world is Mt. Etna, in Italy, characterized by frequent explosive activity from the central craters and from fractures opened along the volcano flanks which, during the last years, caused several damages to aviation and forced the closure of the Catania International Airport. To give precise warning to the aviation authorities and air traffic controller and to assist the work of VAACs, a novel system for monitoring and forecasting Etna volcanic plumes, was developed at the Istituto Nazionale di Geofisica e Vulcanologia, sezione di Catania, the managing institution for the surveillance of Etna volcano. Monitoring is carried out using multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation geosynchronous satellite able to track the volcanic plume with a high time resolution, visual and thermal cameras used to monitor the explosive activity, three continuous wave X-band disdrometers which detect ash dispersal and fallout, sounding balloons used to evaluate the atmospheric fields, and finally field data collected after the end of the eruptive event needed to extrapolate important features of explosive activity. Forecasting is carried out daily using automatic procedures which download weather forecast data obtained by meteorological mesoscale models from the Italian Air Force national Meteorological Office and from the hydrometeorological service of ARPA-SIM; run four different tephra dispersal models using input parameters obtained by the analysis of the deposits collected after few hours since the eruptive event similar to 22 July 1998, 21-24 July 2001 and 2002-03 Etna eruptions; plot hazard maps on ground and in air and finally publish them on a web-site dedicated to the Italian Civil Protection. The system has been already tested successfully during several explosive events occurring at Etna in 2006, 2007 and 2008. These events produced eruption columns high up to several kilometers above sea level and, on the basis of parameters such as mass eruption rate and total grain-size distributions, showed different explosive style. The monitoring and forecasting system is going on developing through the installation of new instruments able to detect different features of the volcanic plumes (e.g. the dispersal and sedimentation processes) in order to reduce the uncertainty of the input parameters used in the modeling. This is crucial to perform a reliable forecasting. We show that multidisciplinary approaches can really give useful information on the presence of volcanic ash and consequently to prevent damages and airport disruptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoyama, I.
One may assume a center of volcanic activities beneath the edifice of an active volcano, which is here called the focus of the volcano. Sometimes it may be a ''magma reservoir''. Its depth may differ with types of magma and change with time. In this paper, foci of volcanoes are discussed from the viewpoints of four items: (1) Geomagnetic changes related with volcanic activities; (2) Crustal deformations related with volcanic activities; (3) Magma transfer through volcanoes; and (4) Subsurface structure of calderas.
2003-03-31
KENNEDY SPACE CENTER, FLA. - Dr. Richard Arkin records data as the hazardous gas detection system AVEMS is used to analyze the toxic gases produced by active vents, called fumaroles, in the Turrialba volcano in Costa Rica. He is using the Aircraft-based Volcanic Emission Mass Spectrometer (AVEMS) that determines the presence and concentration of various chemicals. The AVEMS system has been developed for use in the Space Shuttle program, to detect toxic gas leaks and emissions in the Shuttle’s aft compartment and the crew compartment.
Monitoring Kilauea Volcano Using Non-Telemetered Time-Lapse Camera Systems
NASA Astrophysics Data System (ADS)
Orr, T. R.; Hoblitt, R. P.
2006-12-01
Systematic visual observations are an essential component of monitoring volcanic activity. At the Hawaiian Volcano Observatory, the development and deployment of a new generation of high-resolution, non- telemetered, time-lapse camera systems provides periodic visual observations in inaccessible and hazardous environments. The camera systems combine a hand-held digital camera, programmable shutter-release, and other off-the-shelf components in a package that is inexpensive, easy to deploy, and ideal for situations in which the probability of equipment loss due to volcanic activity or theft is substantial. The camera systems have proven invaluable in correlating eruptive activity with deformation and seismic data streams. For example, in late 2005 and much of 2006, Pu`u `O`o, the active vent on Kilauea Volcano`s East Rift Zone, experienced 10--20-hour cycles of inflation and deflation that correlated with increases in seismic energy release. A time-lapse camera looking into a skylight above the main lava tube about 1 km south of the vent showed an increase in lava level---an indicator of increased lava flux---during periods of deflation, and a decrease in lava level during periods of inflation. A second time-lapse camera, with a broad view of the upper part of the active flow field, allowed us to correlate the same cyclic tilt and seismicity with lava breakouts from the tube. The breakouts were accompanied by rapid uplift and subsidence of shatter rings over the tube. The shatter rings---concentric rings of broken rock---rose and subsided by as much as 6 m in less than an hour during periods of varying flux. Time-lapse imagery also permits improved assessment of volcanic hazards, and is invaluable in illustrating the hazards to the public. In collaboration with Hawaii Volcanoes National Park, camera systems have been used to monitor the growth of lava deltas at the entry point of lava into the ocean to determine the potential for catastrophic collapse.
NASA Technical Reports Server (NTRS)
Hurwitz, D. M.; Head, J. W.
2010-01-01
Geologic mapping of Snegurochka Planitia (V-1) reveals a complex stratigraphy of tectonic and volcanic features that can provide insight into the geologic history of Venus and Archean Earth [1,2], including 1) episodes of both localized crustal uplift and mantle downwelling, 2) shifts from local to regional volcanic activity, and 3) a shift back to local volcanic activity. We present our interpretations of the volcanic history of the region surrounding the north pole of Venus and explore how analysis of new data support our interpretations
Volcanic monitoring techniques applied to controlled fragmentation experiments
NASA Astrophysics Data System (ADS)
Kueppers, Ulrich; Alatorre-Ibarguengoitia, Miguel; Hort, Matthias; Kremers, Simon; Meier, Kristina; Scharff, Lea; Scheu, Bettina; Taddeucci, Jacopo; Dingwell, Donald B.
2010-05-01
A rapidly growing number of people is threatened by natural hazards such as volcanic eruptions, earthquakes, floods, or storms. Volcanic eruptions not only have an impact on their direct neighbourhood but may also affect aviation, infrastructure and climate, regionally as well as globally. In respect to several other natural threats, volcanoes exhibit the advantage of a usually known location of the pending threat, allowing the deployment of sophisticated monitoring networks. Such networks deliver information about volcanic systems and the correct interpretation of monitoring data is a viable key to a successful hazard mitigation strategy. Today a large number of volcanoes is equipped with a variety of scientific instruments that help elucidate the secrets of volcanic phenomena. However, our mechanistic understanding of the processes behind recorded signals or a solid interpretation of the state of a volcano is poor. Experimental volcanology is a chief source of mechanistic understanding of volcanic systems. Here, we bring volcanic monitoring and experimental volcanology together in a campaign of well-monitored, field-based, experimental volcanology. We present results from a multi-parametric combination of well-controlled experiments and several tools commonly used for monitoring active volcanoes. We performed rapid decompression experiments with natural rock samples from Colima volcano (Mexico) to simulate explosive volcanic eruptions. We used 2 sample varieties of approx. 25 and 35 vol.% open porosity. Sample size was 60 mm height and 25 mm and 60 mm diameter, respectively. Applied pressure ranges from 4 to 18 MPa. The pressurised volume above the samples ranges from 60 - 170 cm³. The experiments have been thoroughly monitored with 1) Doppler-Radar, 2) High-speed and video camera, 3) acoustic and infrasonic sensors, 4) pressure transducers, and 5) electrically conducting wires to shed light on fragmentation, ejection, and ejection speed of volcanic pyroclasts. Although the involved volumes of pressurised sample and gas were small, we were able to record the experimental eruption. Thereby, we could validate in parallel the applicability of two independent methods (1 and 2) currently used to estimate the ejection velocity of erupted pyroclasts, an essential factor in ballistic hazard evaluation and eruption energy estimation. Additionally, infrasound measurements could be correlated with autoclave volume and applied pressure. We are positive that this link of experimental volcanology and monitoring techniques will profoundly enlarge our understanding of the behaviour of active volcanoes in general. If applied to a single volcano, a more refined knowledge of the state of the art will allow an adequate hazard assessment and risk mitigation.
Linking Plagioclase Zoning Patterns to Active Magma Processes
NASA Astrophysics Data System (ADS)
Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Plechov, P.; Eichelberger, J. C.
2015-12-01
Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, Augustine and Cleveland Volcanoes in Alaska, as well as from the drilling into an active magma body at Krafla, Iceland.
McGimsey, Robert G.; Wallace, Kristi L.
1999-01-01
The Alaska Volcano Observatory (AVO) monitors over 40 historically active volcanoes along the Aleutian Arc. Twenty are seismically monitored and for the rest, the AVO monitoring program relies mainly on pilot reports, observations of local residents and ship crews, and daily analysis of satellite images. In 1997, AVO responded to eruptive activity or suspect volcanic activity at 11 volcanic centers: Wrangell, Sanford, Shrub mud volcano, Iliamna, the Katmai group (Martin, Mageik, Snowy, and Kukak volcanoes), Chiginagak, Pavlof, Shishaldin, Okmok, Cleveland, and Amukta. Of these, AVO has real-time, continuously recording seismic networks at Iliamna, the Katmai group, and Pavlof. The phrase “suspect volcanic activity” (SVA), used to characterize several responses, is an eruption report or report of unusual activity that is subsequently determined to be normal or enhanced fumarolic activity, weather-related phenomena, or a non-volcanic event. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) about the 1997 activity of 5 Russian volcanoes--Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Alaid (SVA). This report summarizes volcanic activity and SVA in Alaska during 1997 and the AVO response, as well as information on the reported activity at the Russian volcanoes. Only those reports or inquiries that resulted in a “significant” investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of reports throughout the year of steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1997 response record.
Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.
2009-01-01
Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies, Tungurahua in Ecuador, Mt. Etna in Italy, Rabaul caldera in Papua New Guinea, Mt. Spurr and Mt. St. Helens in the USA, Ruapehu in New Zealand, Mt. Pinatubo in the Philippines, and Anatahan in the Commonwealth of the Northern Mariana Islands (part of the USA). Ten countries - USA, Indonesia, Ecuador, Papua New Guinea, Italy, New Zealand, Philippines, Mexico, Japan, and United Kingdom - have the highest volcanic hazard and/or vulnerability measures for airports. The adverse impacts of volcanic eruptions on airports can be mitigated by preparedness and forewarning. Methods that have been used to forewarn airports of volcanic activity include real-time detection of explosive volcanic activity, forecasts of ash dispersion and deposition, and detection of approaching ash clouds using ground-based Doppler radar. Given the demonstrated vulnerability of airports to disruption from volcanic activity, at-risk airports should develop operational plans for ashfall events, and volcano-monitoring agencies should provide timely forewarning of imminent volcanic-ash hazards directly to airport operators. ?? Springer Science+Business Media B.V. 2008.
Episodic Cenozoic volcanism and tectonism in the Andes of Peru
Noble, D.C.; McKee, E.H.; Farrar, E.; Petersen, U.
1974-01-01
Radiometric and geologic information indicate a complex history of Cenozoic volcanism and tectonism in the central Andes. K-Ar ages on silicic pyroclastic rocks demonstrate major volcanic activity in central and southern Peru, northern Chile, and adjacent areas during the Early and Middle Miocene, and provide additional evidence for volcanism during the Late Eocene. A provisional outline of tectonic and volcanic events in the Peruvian Andes during the Cenozoic includes: one or more pulses of igneous activity and intense deformation during the Paleocene and Eocene; a period of quiescence, lasting most of Oligocene time; reinception of tectonism and volcanism at the beginning of the Miocene; and a major pulse of deformation in the Middle Miocene accompanied and followed through the Pliocene by intense volcanism and plutonism. Reinception of igneous activity and tectonism at about the Oligocene-Miocene boundary, a feature recognized in other circum-Pacific regions, may reflect an increase in the rate of rotation of the Pacific plate relative to fixed or quasifixed mantle coordinates. Middle Miocene tectonism and latest Tertiary volcanism correlates with and probably is genetically related to the beginning of very rapid spreading at the East Pacific Rise. ?? 1974.
An Overview of Geodetic Volcano Research in the Canary Islands
NASA Astrophysics Data System (ADS)
Fernández, José; González, Pablo J.; Camacho, Antonio G.; Prieto, Juan F.; Brú, Guadalupe
2015-11-01
The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide-Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011-2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.
1979-07-04
P-21739 BW Range: 4.7 million kilometers (2.9 million miles) This picture of Io was taken as Voyager 2 closes in on the Jovian system. Scientists are studying these distant views of Io for evidences of changes since Voyager 1 observations in March of 79. Voyager 1 discovered that Io, the innermost of the Galilean satellites, is the most volcanically active body yet seen in the solar system, surpassing even earth. In this picture, the first volcano discovered by Voyager 1 is again visible in the lower left portion of the disk as a dark oval with a dark spot in the center. In March, this volcano appeared as a heart-shaped marking, not a symmetrical oval. Scientists believe that the non-symmetric markings earlier resulted from a constriction in the mouth of the volcanic vent causing erupting material to extrude preferentially in certain directions. Apparently, the volcanic eruptive activity, which sends material to altitudes of 280 kilometers (175 miles) or more above this volcano, has changed the vent geometry or dislodged an obstruction. Such changes in the form of eruptive fountains are common in terrestial volcanos, although on a much smaller scale than on Io.
Is there a geochemical link between volcanic and plutonic rocks in the Organ Mountains caldera?
NASA Astrophysics Data System (ADS)
Memeti, V.; Davidson, J.
2013-12-01
Results from separate volcanic and plutonic studies have led to inconsistent conclusions regarding the origins and thus links between volcanic and plutonic systems in continental arcs and the magmatic processes and time scales responsible for their compositional variations. Some have suggested that there is a geochemical and geochronological disconnect between volcanic and plutonic rocks and hence have questioned the existence of magma mush columns beneath active volcanoes. Investigating contemporary volcanic and plutonic rocks that are spatially connected is thus critical in exploring these issues. The ca. 36 Ma Organ Mountains caldera in New Mexico, USA, represents such a system exposing contemporaneous volcanic and plutonic rocks juxtaposed at the surface due to tilting during extensional tectonics along the Rio Grande Rift. Detailed geologic and structural mapping [1] and 40Ar/39Ar ages of both volcanics and plutons [2] demonstrate the spatial and temporal connection of both rock types with active magmatism over >2.5 myr. Three caldera-forming ignimbrites erupted within 600 kyr [2] from this system with a total erupted volume of 500-1,000 km3 as well as less voluminous pre- and post-caldera trachyte and andesite lavas. The ignimbrite sequence ranges from a crystal-poor, high-SiO2 rhyolite at the base to a more crystal-rich, low-SiO2 rhyolite at the top. Compositional zoning with quartz-monzonite at the base grading to syenite and alaskite at the top is also found in the Organ Needle pluton, the main intrusion, which is interpreted to be the source for the ignimbrites [1]. Other contemporaneous and slightly younger plutons have dioritic to leucogranitic compositions. We examined both volcanic and plutonic rocks with petrography and their textural variations with color cathodoluminescence, and used whole rock element and Sr, Nd and Pb isotope geochemistry to constrain magma compositions and origins. Electron microprobe analyses on feldspars have been completed to determine within-crystal geochemical variations. Our current conclusions and working hypotheses are: 1) All igneous rocks from the Organ Mountains are crustal-mantle melt mixtures indicating two component mixing; 2) the caldera-forming ignimbrites are likely derived from a fractionating Organ Needle pluton; 3) pre- and post-caldera lavas are isotopically similar to the post-caldera Sugarloaf Peak quartz-monzonite; 4) K-feldspar cumulate textures in the structurally top 0.5-1 km of the Organ Needle pluton indicate that interstitial melt was lost from the magma mush, which likely fed the ignimbrite eruptions. 5) Plutonic feldspar textures are complex compared to rather simple zoned volcanic feldspars including K-feldspar rimmed plagioclase, plagioclase rimmed K-feldspar and unrimmed feldspars occurring over a range of grain sizes at thin section scale. Some volcanic feldspar phenocrysts have any previous zonation erased due to late stage albitization. Although the single mineral studies are still work in progress and details need resolving, our data so far suggest a geochemical link between volcanic and plutonic rocks of the Organ Mountains caldera, albeit a complex one; and greater complexity in plutonic versus volcanic minerals. [1] Seager (1980), NM Bureau of Mines and Min. Res. Memoir 36, 97 p. [2] Zimmerer & McIntosh (2013) Journal of Geophysical Research, v. 93, p. 4421-4433
NASA Astrophysics Data System (ADS)
Ferrés, D.; Reyes Pimentel, T. A.; Espinasa-Pereña, R.; Nieto, A.; Sobradelo, R.; Flores, X.; González Huesca, A. E.; Ramirez, A.
2013-05-01
Popocatépetl volcano is one of the most active in Latin America. During its last cycle of activity, beginning at the end of 1994, more than 40 episodes of dome construction and destruction have occurred inside the summit crater. Most of these episodes finished with eruptions of VEI 1-2. Eruptions of higher intensity were also registered in 1997, 2001 and 2009, of VEI≥3, which produced eruptive columns up to 8 km high and abundant and frequent ash falls on the villages at the eastern sector of the volcano. The January 22nd 2001 eruption also produced pyroclastic flows that followed several streams on the volcanic cone, reaching 4 to 6 km, and transforming to mudflows with ranges up to 15 km. The capital, Mexico City, is within the radius of 80 km from Popocatépetl volcano and can be affected by ash fall during the first months of the rainy season (May to July). Other important cities, such as Puebla and Atlixco, are located 15 to 30 km from the crater. Several villages of the states of México, Puebla and Morelos, which have a total population of 40,000 people, are inside the radius of 12 to 15 km, where the impacts of any of the products of an eruption, including pyroclastic flows, are possible. This high exposure of people and infrastructure around Popocatépetl volcano emphasizes the need of tools for early warning and the development of preventive actions to protect the population from volcanic phenomena. The diagnosis of the volcanic activity, based on the information provided by the monitoring systems, and the prognosis of the evolution of the volcano in the short-term is made by the Scientific Advisory Committee, formed by volcanologists of the National Autonomous University of Mexico, and by CENAPRED staff. From this prognosis, the alert level for the people is determined and it is spread by the code of the traffic light of volcanic alert. A volcanic event tree was constructed with the advisory of the scientific committee in the recent seismic-eruptive crisis of April-May 2012, in order to identify the most probable processes in which this unrest could have developed and to contribute to the diagnosis task. In this research, we propose a comparison between the processes identified in this preliminary volcanic event tree and another elaborated using a Hazard Assessment Event Tree probability tool (HASSET), built on a bayesian event tree structure, using mainly the information of the known eruptive history of Popocatépetl. The HASSET method is based on Bayesian Inference and is used to assess volcanic hazard of future eruptive scenarios, by evaluating the most relevant sources of uncertainty that play a role in estimating the future probability of occurrence of a specific volcanic event. The final goal is to find the most useful tools to make the diagnosis and prognosis of the Popocatépetl volcanic activity, integrating the known eruptive history of the volcano, the experience of the scientific committee and the information provided by the monitoring systems, in an interactive and user-friendly way.
California's Vulnerability to Volcanic Hazards: What's at Risk?
NASA Astrophysics Data System (ADS)
Mangan, M.; Wood, N. J.; Dinitz, L.
2015-12-01
California is a leader in comprehensive planning for devastating earthquakes, landslides, floods, and tsunamis. Far less attention, however, has focused on the potentially devastating impact of volcanic eruptions, despite the fact that they occur in the State about as frequently as the largest earthquakes on the San Andreas Fault Zone. At least 10 eruptions have occurred in the past 1,000 years—most recently in northern California (Lassen Peak 1914 to 1917)—and future volcanic eruptions are inevitable. The likelihood of renewed volcanism in California is about one in a few hundred to one in a few thousand annually. Eight young volcanoes, ranked as Moderate to Very High Threat [1] are dispersed throughout the State. Partially molten rock (magma) resides beneath at least seven of these—Medicine Lake Volcano, Mount Shasta, Lassen Volcanic Center, Clear Lake Volcanic Field, Long Valley Volcanic Region, Coso Volcanic Field, and Salton Buttes— causing earthquakes, toxic gas emissions, hydrothermal activity, and (or) ground deformation. Understanding the hazards and identifying what is at risk are the first steps in building community resilience to volcanic disasters. This study, prepared in collaboration with the State of California Governor's Office of Emergency Management and the California Geological Survey, provides a broad perspective on the State's exposure to volcano hazards by integrating mapped volcano hazard zones with geospatial data on at-risk populations, infrastructure, and resources. The study reveals that ~ 16 million acres fall within California's volcano hazard zones, along with ~ 190 thousand permanent and 22 million transitory populations. Additionally, far-field disruption to key water delivery systems, agriculture, utilities, and air traffic is likely. Further site- and sector-specific analyses will lead to improved hazard mitigation efforts and more effective disaster response and recovery. [1] "Volcanic Threat and Monitoring Capabilities in the United States," http://pubs.usgs.gov/of/2005/1164/
NASA Astrophysics Data System (ADS)
Galle, B.; Arellano, S.; Norman, P.; Conde, V.
2012-04-01
NOVAC, the Network for Observation of Volcanic and Atmospheric Change, was initiated in 2005 as a 5-year-long project financed by the European Union. Its main purpose is to create a global network for the monitoring and research of volcanic atmospheric plumes and related geophysical phenomena by using state-of-the-art spectroscopic remote sensing technology. Up to 2012, 64 instruments have been installed at 24 volcanoes in 13 countries of Latin America, Italy, Democratic Republic of Congo, Reunion, Iceland, and Philippines, and efforts are being done to expand the network to other active volcanic zones. NOVAC has been a pioneer initiative in the community of volcanologists and embraces the objectives of the Word Organization of Volcano Observatories (WOVO) and the Global Earth Observation System of Systems (GEOSS). In this contribution, we present the results of the measurements of SO2 gas fluxes carried out within NOVAC, which for some volcanoes represent a record of more than 7 years of continuous monitoring. The network comprises some of the most strongly degassing volcanoes in the world, covering a broad range of tectonic settings, levels of unrest, and potential risk. We show a global perspective of the output of volcanic gas from the covered regions, specific trends of degassing for a few selected volcanoes, and the significance of the database for further studies in volcanology and other geosciences.
NASA Astrophysics Data System (ADS)
Hill, D. P.
1984-06-01
Recent patterns of geologic unrest in long Valley caldera in east-central California emphasize that this large, silicic volcanic system and the adjacent, geologically youthful Inyo-Mono Craters volcanic chain are still active and capable of producing locally hazardous volcanic eruptions. A series of four magnitude -6 earthquakes in May 1980 called attention to this current episode of unrest, and subsequent activity has included numerous earthquake swarms in the south moat of the caldera accompanied by inflation of the resurgent dome by more than 50 cm over the last five years. The seismicity associated with this unrest is currently monitored by a network of 31 telemetered seismic stations with an automatic processing system that yelds hypocentral locations and earthquake magnitudes in near-real time. Deformation of the ground is monitored by a) a series of overlapping trilateration networks that provide coverage ranging from annual measurements of regional deformation to daily measurements of deformation local to the active, southern section of the caldera, b) a regional network of level lines surveyed annually, c) a regional network of precise gravity stations occupied annually, d) local, L-shaped level figures surveyed every few months, and e) a network of fourteen borehole tiltmeter clusters (two instruments in each cluster) and a borehole dilatometer, the telemetered signals from which provide continuous data on deformation rates. Additional telemetered data provide continuous information on fluctuations in the local magnetic field, hydrogen gas emission rates at three sites, and water level and temperatures in three wells. Continuous data on disharge rates and temperatures from hot springs and fumaroles are collected by several on-site recorders within the caldera, and samples for liquid and gas chemistry are collected several times per year from selected hot springs and fumaroles.
The Potential for Volcanism and Tectonics on Extrasolar Terrestrial Planets
NASA Astrophysics Data System (ADS)
Quick, Lynnae C.; Roberge, Aki
2018-01-01
JWST and other next-generation space telescopes (e.g., LUVOIR, HabEx, & OST) will usher in a new era of exoplanet characterization that may lead to the identification of habitable, Earth-like worlds. Like the planets and moons in our solar system, the surfaces and interiors of terrestrial exoplanets may be shaped by volcanism and tectonics (Fu et al., 2010; van Summeren et al., 2011; Henning and Hurford, 2014). The magnitude and rate of occurrence of these dynamic processes can either facilitate or preclude the existence of habitable environments. Likewise, it has been suggested that detections of cryovolcanism on icy exoplanets, in the form of geyser-like plumes, could indicate the presence of subsurface oceans (Quick et al., 2017).The presence of volcanic and tectonic activity on solid exoplanets will be intimately linked to planet size and heat output in the form of radiogenic and/or tidal heating. In order to place bounds on the potential for such activity, we estimated the heat output of a variety of exoplanets observed by Kepler. We considered planets whose masses and radii range from 0.067 ME (super-Ganymede) to 8 ME (super-Earth), and 0.5 to 1.8 RE, respectively. These heat output estimates were then compared to those of planets, moons, and dwarf planets in our solar system for which we have direct evidence for the presence/absence of volcanic and tectonic activity. After exoplanet heating rates were estimated, depths to putative molten layers in their interiors were also calculated. For planets such as TRAPPIST-1h, whose densities, orbital parameters, and effective temperatures are consistent with the presence of significant amounts of H2O (Luger et al., 2017), these calculations reveal the depths to internal oceans which may serve as habitable niches beneath surface ice layers.
Transient Volcano Deformation Event Detection over Variable Spatial Scales in Alaska
NASA Astrophysics Data System (ADS)
Li, J. D.; Rude, C. M.; Gowanlock, M.; Herring, T.; Pankratius, V.
2016-12-01
Transient deformation events driven by volcanic activity can be monitored using increasingly dense networks of continuous Global Positioning System (GPS) ground stations. The wide spatial extent of GPS networks, the large number of GPS stations, and the spatially and temporally varying scale of deformation events result in the mixing of signals from multiple sources. Typical analysis then necessitates manual identification of times and regions of volcanic activity for further study and the careful tuning of algorithmic parameters to extract possible transient events. Here we present a computer-aided discovery system that facilitates the discovery of potential transient deformation events at volcanoes by providing a framework for selecting varying spatial regions of interest and for tuning the analysis parameters. This site specification step in the framework reduces the spatial mixing of signals from different volcanic sources before applying filters to remove interfering signals originating from other geophysical processes. We analyze GPS data recorded by the Plate Boundary Observatory network and volcanic activity logs from the Alaska Volcano Observatory to search for and characterize transient inflation events in Alaska. We find 3 transient inflation events between 2008 and 2015 at the Akutan, Westdahl, and Shishaldin volcanoes in the Aleutian Islands. The inflation event detected in the first half of 2008 at Akutan is validated other studies, while the inflation events observed in early 2011 at Westdahl and in early 2013 at Shishaldin are previously unreported. Our analysis framework also incorporates modelling of the transient inflation events and enables a comparison of different magma chamber inversion models. Here, we also estimate the magma sources that best describe the deformation observed by the GPS stations at Akutan, Westdahl, and Shishaldin. We acknowledge support from NASA AIST-NNX15AG84G (PI: V. Pankratius).
A 150-ka-long record for the volcano-tectonic deformation of Central Anatolian Volcanic Province
NASA Astrophysics Data System (ADS)
Karabacak, Volkan; Tonguç Uysal, I.; Ünal-İmer, Ezgi; Mutlu, Halim; Zhao, Jian-xin
2017-04-01
The Anatolian Block represents one of the most outstanding examples of intra-plate deformation related to continental collision. Deformation related to the convergence of the Afro-Arabian continent toward north gives rise to widespread and intense arc volcanism in the Central Anatolia. All the usual studies on dating the volcano-tectonic deformation of the region are performed entirely on volcanic events of the geological record resulted in eruptions. However, without volcanic eruption, magma migration and related fluid pressurization also generate crustal deformation. In the current study has been funded by the Scientific and Technological Research Council of Turkey with the project no. 115Y497, we focused on fracture systems and their carbonate veins around the Ihlara Valley (Cappadocia) surrounded by well-known volcanic centers with latest activities of the southern Central Anatolian Volcanic Province. We dated 37 samples using the Uranium-series technique and analyzed their isotope systematics from fissure veins, which are thought to be controlled by the young volcanism in the region. Our detailed fracture analyses in the field show that there is a regional dilatation as a result of a NW-SE striking extension which is consistent with the results of recent GPS studies. The Uranium-series results indicate that fracture development and associated carbonate vein deposition occurred in the last 150 ka. Carbon and oxygen isotope systematics have almost remained unchanged in the studied time interval. Although veins in the region were precipitated from fluids primarily of meteoric origin, fluids originating from water-rock interaction also contribute for the deposition of carbonate veins. The age distribution indicates that the crustal deformation intensified during 7 different period at about 4.7, 34, 44, 52, 83, 91, 149 ka BP. Four of these periods (4.7, 34, 91, 149 ka BP) correspond to the volcanic activities suggested in the previous studies. The three crustal deformation periods occurred at 44, 52, and 83 ka BP were dated in addition to the known. They are interpreted to have possibly occurred without any eruption in the late Pleistocene and were controlled by magma movements and/or associated fluid pressure. Such crustal deformation controlled by volcanism is dated for the first time in the literature with a sampling other than extrusive material. The obtained age data revealed that crustal deformation linked to the young volcanism in the Central Anatolian Volcanic Province was repeated in short-term strain cycles of 8-10 ka and that the duration of activity lasted approximately 1100 ± 1000 years in each period, possibly triggered fracture development without any eruption in some periods.
Gravity is the Key Experiment to Address the Habitability of the Ocean in Jupiter's Moon Europa
NASA Astrophysics Data System (ADS)
Sessa, A. M.; Dombard, A. J.
2013-12-01
Life requires three constituents: a liquid solvent (i.e., water), a chemical system that can form large molecules to record genetic information (e.g., carbon based) as well as chemical nutrients (e.g., nitrogen, phosphorous), and a chemical disequilibrium system that can provide metabolic energy. While it is believed that there is a saline water layer located between the rock and ice layers in Jupiter's moon Europa, which would satisfy the first requirement, it is unknown if the other conditions are currently met. The likelihood that Europa is a haven for life in our Solar System skyrockets, however, if there is currently active volcanism at the rock-water interface, much the same that volcanic processes enable the chemosynthetic life that forms the basis of deep sea-vent communities at the bottom of Earth's oceans. Exploring the volcanic activity on this interface is challenging, as direct observation via a submersible or high-resolution indirect observations via a dense global seismic network on the surface is at present technically (and fiscally!) untenable. Thus, gravity studies are the best way to explore currently the structure of this all-important interface. Though mostly a silicate body with only a relatively thin (~100 km) layer of water, Europa is different from the terrestrial planets in that this rock-water interface, and not the surface, represents the largest density contrast across the moon's near-surface layers, and thus topography on this interface could conceivably dominate the gravity. Here, we calculate the potential anomalies that arise from topography on the surface, the water-ice interface (at 20 km depth), and the rock-water interface, finding that the latter dominates the free-air gravity at the longest wavelengths (spherical harmonic degrees < 10) and the Bouguer gravity at intermediate wavelengths (degrees ~10-50), and only for the shortest wavelengths (degrees > 50) does the water-ice interface (and presumably mass-density anomalies within the ice shell) dominate the Bouguer gravity. Thus, gravity can be used to explore this interface. To test whether active volcanism can be detected, we scale gravity models for the terrestrial planets down to a body the size of Europa's silicate core and with a density contrast consistent with a rock-water interface. Here, Venus and Earth serve as proxies for volcanically active bodies, while the Moon and Mars are proxies for inactive bodies. Additionally, we create gravity from synthetic topography on the base of the ice shell. Maps of the Bouguer-gravity and geoid anomalies reveal that active volcanism is characterized by small amplitudes (a few mGal and a few meters). Large-scale topography on the base of the ice shell adds larger geoid anomalies (tens of meters) but still small gravity anomalies. The absence of volcanic activity on the rock-water interface is likely characterized by larger anomalies (tens of mGal and tens of meters), plausibly because the cooler thermal structure permits the rocky lithosphere to support larger mass-density anomalies. Thus, study of the gravity may illuminate the habitability of Europa, and gravity and topography experiments on any future mission (e.g., the Europa Clipper) should be given the highest scientific priority.
NASA Astrophysics Data System (ADS)
Perez, N. M.; Melián, G.; Asensio-Ramos, M.; Padrón, E.; Alonso Cótchico, M.; Hernández, P. A.; Rodríguez, F.; D'Auria, L.; García-Merino, M.; Padilla, G. D.; Burns, F.; Amonte, C.; García, E.; García-Hernández, R.; Barrancos, J.; Morales-Ocaña, C.; Calvo, D.; Vela, V.; Pérez, A.
2017-12-01
Tenerife (2034 km2) is the largest of the Canary Islands and hosts a central volcanic complex, Las Cañadas, which is characterized by the eruption of differentiated magmas. Laying inside Las Cañadas a twin stratovolcanoes system Pico Viejo and Teide, has been developed. Although Teide volcano shows weak fumarolic system, volcanic gas emissions observed in the summit area are mainly controlled by high rates of diffuse CO2 degassing. Soil CO2 efflux surveys have been performed at the summit crater of Teide volcano since 1999 according to the accumulation chamber method to monitor changes of volcanic activity. Soil CO2 efflux and soil temperature have been measured in sites homogeneously distributed within an area of about 6,972 m2 inside the summit crater. Historical seismic activity in Tenerife has been mainly characterized by low- to moderate-magnitude events (M <2.5), and most of epicenters clustered in an offshore area SE of Tenerife. Very few earthquakes have occurred in other areas, including Teide volcano. Since November 2016 more than 100 small magnitude earthquakes, with typical features of the microseismicity of hydrothermal systems, at depths usually ranging between 5 and 15 km located beneath Teide volcano have been recorded. On January 6th 2017 a M=2.5 earthquake was recorded in the area, being one of the strongest events recorded since 2004. Between October 11 and December 13, 2016, a continuous increase on the diffuse CO2 emission was registered preceding the occurrence of the 2.5 seismic event, from 21.3±2.0 to 101.7±20.7 t d-1. In Febraury 2017, the diffuse CO2 emission rate showed a maximum value (176±35 t/d) and has remained at relatively high values in the range 67-176 t/d. The observed increase on the diffuse CO2 emission, likely due to the increase of fluid pressure in the hydrothermal-magmatic system of Tenerife, might be a geochemical evidence of a future volcanic unrest at Tenerife Island.
Monitoring the Sumatra volcanic arc with InSAR
NASA Astrophysics Data System (ADS)
Chaussard, E.; Hong, S.; Amelung, F.
2009-12-01
The Sumatra volcanic arc is the result of the subduction of the Indo-Australian plate under the Sunda plate. The arc consists of 35 known volcanic centers, subaerials on the west coast of the Sumatra and Andaman Islands and submarines between these islands. Six active centers are known in the Sumatra volcanic arc. Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Here we present a satellite-based Interferometric synthetic aperture radar (InSAR) survey of the Sumatra volcanic arc using ALOS data. Spanning the years 2007 to beginning of 2009, our survey reveals the background level of activity of the 35 volcanoes. We processed data from 40 tracks (24 in descending orbit and 16 in ascending orbit) to cover the whole Sumatra arc. In the first results five of these six known active centers show no sign of activity: Dempo, Kaba, Marapi, Talang and Peuet. The remaining active volcano, Mount Kerinci, has an ambiguous signal. We used pair-wise logic and InSAR time series of the available ALOS data to determine if the observed InSAR signal is caused by ground deformation or by atmospheric delays.
Potentially harmful elements released by volcanic ashes: Examples from the Mediterranean area
NASA Astrophysics Data System (ADS)
Cangemi, Marianna; Speziale, Sergio; Madonia, Paolo; D'Alessandro, Walter; Andronico, Daniele; Bellomo, Sergio; Brusca, Lorenzo; Kyriakopoulos, Konstantinos
2017-05-01
We have performed leaching experiments on the fine (< 2 mm) particulate sampled in seven active and quiescent volcanic systems in the Mediterranean area. We reacted the particulate both in pure water and in a synthetic gastric solution. The amount of As, Mn, Pb, Ba, U and Ni leached by pure water exceeded the MAC limits for drinking water in all the materials under investigation. We defined a tolerable ash intake index (TAI) to evaluate the impact of ash ingestion, and we find that 0.2 g and 12 g of ingested fine ash from Vesuvius and Vulcano are enough to exceed the safety limits for Pb and As. Six grams of fine ashes from Stromboli are sufficient to overstep the safety limits for As. Based on our mineralogical characterisation of the particulate, we expect that the submillimetric ash fraction, with a higher surface/volume ratio, releases a greater relative amount of trace metals, which are concentrated in the thin surface layer produced by the reaction of the pristine volcanic particles with coexisting volcanic gases. This means that our measurements represent lower bounds to the actual amount of metal released in aqueous solutions by the volcanic ashes from the locations under investigation. Our results place the first constraints on the mobilisation of toxic elements from volcanic ash, which are necessary to assess the associated potential health risk of volcanic areas.
Volcanism and associated hazards: the Andean perspective
NASA Astrophysics Data System (ADS)
Tilling, R. I.
2009-12-01
Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km3) in 1985 of Nevado del Ruiz (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.
Volcanism and associated hazards: The Andean perspective
Tilling, R.I.
2009-01-01
Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene.
The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km 3) in 1985 of Nevado del Ruiz (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.
Praetorius, Summer; Mix, Alan; Jensen, Britta; Froese, Duane; Milne, Glenn A.; Wolhowe, Matthew; Addison, Jason A.; Prahl, Fred
2016-01-01
Observations of enhanced volcanic frequency during the last deglaciation have led to the hypothesis that ice unloading in glaciated volcanic terrains can promote volcanism through decompression melting in the shallow mantle or a reduction in crustal magma storage time. However, a direct link between regional climate change, isostatic adjustment, and the initiation of volcanism remains to be demonstrated due to the difficulty of obtaining high-resolution well-dated records that capture short-term climate and volcanic variability traced to a particular source region. Here we present an exceptionally resolved record of 19 tephra layers paired with foraminiferal oxygen isotopes and alkenone paleotemperatures from marine sediment cores along the Southeast Alaska margin spanning the last deglacial transition. Major element compositions of the tephras indicate a predominant source from the nearby Mt. Edgecumbe Volcanic Field (MEVF). We constrain the timing of this regional eruptive sequence to 14.6–13.1 ka. The sudden increase in volcanic activity from the MEVF coincides with the onset of Bølling–Allerød interstadial warmth, the disappearance of ice-rafted detritus, and rapid vertical land motion associated with modeled regional isostatic rebound in response to glacier retreat. These data support the hypothesis that regional deglaciation can rapidly trigger volcanic activity. Rapid sea surface temperature fluctuations and an increase in local salinity (i.e., δ18Osw) variability are associated with the interval of intense volcanic activity, consistent with a two-way interaction between climate and volcanism in which rapid volcanic response to ice unloading may in turn enhance short-term melting of the glaciers, plausibly via albedo effects on glacier ablation zones.
Sensitivity to volcanic field boundary
NASA Astrophysics Data System (ADS)
Runge, Melody; Bebbington, Mark; Cronin, Shane; Lindsay, Jan; Rashad Moufti, Mohammed
2016-04-01
Volcanic hazard analyses are desirable where there is potential for future volcanic activity to affect a proximal population. This is frequently the case for volcanic fields (regions of distributed volcanism) where low eruption rates, fertile soil, and attractive landscapes draw populations to live close by. Forecasting future activity in volcanic fields almost invariably uses spatial or spatio-temporal point processes with model selection and development based on exploratory analyses of previous eruption data. For identifiability reasons, spatio-temporal processes, and practically also spatial processes, the definition of a spatial region is required to which volcanism is confined. However, due to the complex and predominantly unknown sub-surface processes driving volcanic eruptions, definition of a region based solely on geological information is currently impossible. Thus, the current approach is to fit a shape to the known previous eruption sites. The class of boundary shape is an unavoidable subjective decision taken by the forecaster that is often overlooked during subsequent analysis of results. This study shows the substantial effect that this choice may have on even the simplest exploratory methods for hazard forecasting, illustrated using four commonly used exploratory statistical methods and two very different regions: the Auckland Volcanic Field, New Zealand, and Harrat Rahat, Kingdom of Saudi Arabia. For Harrat Rahat, sensitivity of results to boundary definition is substantial. For the Auckland Volcanic Field, the range of options resulted in similar shapes, nevertheless, some of the statistical tests still showed substantial variation in results. This work highlights the fact that when carrying out any hazard analysis on volcanic fields, it is vital to specify how the volcanic field boundary has been defined, assess the sensitivity of boundary choice, and to carry these assumptions and related uncertainties through to estimates of future activity and hazard analyses.
NASA Astrophysics Data System (ADS)
Foutrakis, Panagiotis M.; Anastasakis, George
2018-05-01
Methana peninsula shows the longest recorded volcanic history at the western end of the South Aegean Active Volcanic Arc, including volcanic products from the Upper Pliocene to recent times. The volcanic rocks comprise widespread dacite domes and andesite lava flows from several small volcanic centers and are only imprecisely dated. In this paper, the integrated analysis of swath bathymetry, side scan sonar data, and high resolution seismic reflection profiles correlated with core samples, has allowed detailed mapping, characterization and precise chronological identification of the Pausanias submarine volcanic field activity offshore northern Methana. Six volcanic cones or domes are recognized, typically 1-3 km in diameter, some elongated NE-SW and some with a small central crater. On their flanks, the acoustically reflective volcanic rocks pass laterally into incoherent transparent seismic facies interpreted as volcaniclastic deposits, possibly including hyaloclastites, that interfinger with the regional basin sediments. A sea-bottom hummocky field, is interpreted as volcanic avalanche and appears to be the submarine continuation of the volcaniclastic apron of northern Methana peninsula. A robust chronostratigraphic framework has been established, based on the recognition of shoreline progradational units and their connection with Quaternary eustatic sea level cycles. Relative dating of the different phases of submarine volcanic activity during the Upper Quaternary has been achieved by correlating the imaged volcaniclastic flows, interlayered within the chronostratigraphically dated sediments. Dating by stratigraphic position, relative to 2D imaged eustatic sea level clinoform wedges appears to be more precise than radiometric methods on land. Three main submarine Volcanic Events (VE) are recognized: VE3 at 450 ka, a less precisely dated interval at 200-130 ka (VE2), and VE1 at 14 ka. Based on chronostratigraphic constraints, subsidence rates of 0.16 (±0.008) m/ka in-between Marine Isotopic Stages 6 and 12 and 0.19 (±0.009) m/ka in-between Marine Isotopic Stages 12 and 16 were estimated for the marine basin north of Methana. The morphological similarity to the onshore volcanoes of Methana Peninsula implies that magmatic constructive processes were dominant, regardless of whether in air or in water. The Upper Quaternary submarine volcanic rocks of Methana differ from those known from stratovolcanoes elsewhere in the Mediterranean, (e.g. Kos-Nisyros, Stromboli) and in other volcanic arcs (e.g., Montserrat, St Vincent), in the submarine development of domes or small cones, the paucity of volcano flank failure deposits and the lack of explosive events. Pausanias volcanic products date the onset of NE-SW faulting as well as the following tectonic phase of E-W striking faults, possibly related to basin inversion, caused by a major rifting phase that also affected most of the South Aegean Arc and the adjacent Gulfs of Corinth and Argolikos.
NASA Astrophysics Data System (ADS)
Ortiz, R.; Falsaperla, S.; Marrero, J. M.; Messina, A.
2009-04-01
The existence of a relationship between regional seismicity and changes in volcanic activity has been the subject of several studies in the last years. Generally, activity in basaltic volcanoes such as Villarica (Chile) and Tungurahua (Ecuador) shows very little changes after the occurrence of regional earthquakes. In a few cases volcanic activity has changed before the occurrence of regional earthquakes, such as observed at Teide, Tenerife, in 2004 and 2005 (Tárraga et al., 2006). In this paper we explore the possible link between regional seismicity and changes in volcanic activity at Mt. Etna in 2006 and 2007. On 24 November, 2006 at 4:37:40 GMT an earthquake of magnitude 4.7 stroke the eastern coast of Sicily. The epicenter was localized 50 km SE of the south coast of the island, and at about 160 km from the summit craters of Mt. Etna. The SSEM (Spectral Seismic Energy Measurement) of the seismic signal at stations at 1 km and 6 km from the craters highlights that four hours before this earthquake the energy associated with volcanic tremor increased, reached a maximum, and finally became steady when the earthquake occurred. Conversely, neither before nor after the earthquake, the SSEM of stations located between 80 km and 120 km from the epicentre and outside the volcano edifice showed changes. On 5 September, 2007 at 21:24:13 GMT an earthquake of magnitude 3.2 and 7.9 km depth stroke the Lipari Island, at the north of Sicily. About 38 hours before the earthquake occurrence, there was an episode of lava fountain lasting 20 hours at Etna volcano. The SSEM of the seismic signal recorded during the lava fountain at a station located at 6 km from the craters highlights changes heralding this earthquake ten hours before its occurrence using the FFM method (e.g., Voight, 1988; Ortiz et al., 2003). A change in volcanic activity - with the onset of ash emission and Strombolian explosions - was observed a couple of hours before the occurrence of the regional earthquakes. It can be interpreted as the magmatic response to a change of the distribution of tectonic stress in the edifice before the earthquake. In the light of this hypothesis, we surmise that the magmatic system behaved similar to a dilatometer and promise news lines to forecasting the volcano activity. References M. Tárraga, R. Carniel, R. Ortiz, J. M. Marrero, and A. García, 2006. On the predictability of volcano.tectonic events by low frequency seismic noise analysis at Teide-Pico Viejo volcanic complex, Canary Islands. Nat. Hazards Earth Syst. Sci., 6, 365-376. Ortiz, R., H. Moreno, A. García, G. Fuentealba, M. Astiz, P. Peña, N. Sánchez, M. Tárraga, 2003. Villarrica volcano (Chile): characteristics of the volcanic tremor and forecasting of small explosions by means of a material failure method. J. Volcanol. Geotherm. Res. 128: 247-259. B. Voight, 1988. A method for prediction of volcanic eruptions. Nature 332, 10:125-130.
McGimsey, Robert G.; Neal, Christina A.
1996-01-01
The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity (SVA) at 6 volcanic centers in 1995: Mount Martin (Katmai Group), Mount Veniaminof, Shishaldin, Makushin, Kliuchef/Korovin, and Kanaga. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) on the 1995 eruptions of 2 Russian volcanoes: Bezymianny and Karymsky. This report summarizes volcanic activity in Alaska during 1995 and the AVO response, as well as information on the 2 Kamchatkan eruptions. Only those reports or inquiries that resulted in a "significant" investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of phone calls throughout the year reporting steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1995 response record.
NASA Astrophysics Data System (ADS)
Kaneko, K.; Ito, K.; Iwahori, K.; Anbe, Y.
2015-12-01
Monitoring volcanoes near active craters is important to know symptoms and transitions of volcanic eruptions. In order to observe volcanic phenomena near craters according to the circumstance, monitoring system with unmanned robots are useful. We have been trying to develop a practical UGV-type robot, and have completed a prototype, which we named "Homura". Homura is a small-sized, vehicle-type robot with six wheels (750 x 430 x 310 mm in dimensions and a weight of about 12 kg). Homura is remotely controlled with mobile phone radio waves; it can move in volcanic fields and send real time data of sensors equipped in the vehicle to the base station. We carried out a test campaign of Homura from Feb. 19th to Apr. 8th, 2015 at Iwo-yama to examine if Homura can work for a few month in natural volcanic fields. Iwo-yama is one of craters in the Kirishima volcanic field, SW Japan; the area within 1 km from the crater was an off-limit area from Oct. 24th, 2014 to May 5th, 2015 because volcanic seismicity there was active and eruption might occur. On Feb. 19th, we carried and put Homura at the rim of the crater. Unfortunately, mobile phone connectivity was not entirely stable around Iwo-yama. Then, we decided not to move Homura and only to obtain real time data of the sensors (a camera, CO2 gas sensor, and thermometer). After we returned to our office, we operated Homura for one to two hours every day until Apr. 8th. Although the weather was often bad (rain, fog, or cold temperature) during the test campaign, we could completely operate Homura without any trouble. On Apr. 8th, the battery in Homura ran down. After we collected Homura from Iwo-yama and recharged the battery, Homura perfectly worked again. The results of this campaign indicate that Homura stably operates for a long time in volcanic field. Homura is useful as simple monitoring station in volcanic fields where mobile phone connection is available.
Monitoring volcanic threats using ASTER satellite data
Duda, K.A.; Wessels, R.; Ramsey, M.; Dehn, J.
2008-01-01
This document summarizes ongoing activities associated with a research project funded by the National Aeronautics and Space Administration (NASA) focusing on volcanic change detection through the use of satellite imagery. This work includes systems development as well as improvements in data analysis methods. Participating organizations include the NASA Land Processes Distributed Active Archive Center (LP DAAC) at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS), the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team, the Alaska Volcano Observatory (AVO) at the USGS Alaska Science Center, the Jet Propulsion Laboratory/California Institute of Technology (JPL/CalTech), the University of Pittsburgh, and the University of Alaska Fairbanks. ?? 2007 IEEE.
NASA Astrophysics Data System (ADS)
Behrendt, J. C.
2012-12-01
Radar ice sounding and aeromagnetic surveys reported over the West Antarctic Ice Sheet (WAIS) have been interpreted as evidence of subglacial volcanic eruptions over a very extensive area (>500,000 km2 ) of the volcanically active West Antarctic rift system interpreted as caused by subglacial volcanic rocks. Several active volcanoes have shown evidence of eruption through the WAIS and several other active volcanoes are present beneath the WAIS reported from radar and aeromagnetic data. Five-kilometer spaced coincident aeromagnetic and radar ice sounding surveys since 1990 provide three dimensional characterization of the magnetic field and bed topography beneath the ice sheet. These 5-50-km-width, semicircular magnetic anomalies range from 100->1000 nT as observed ~1 km over the 2-3 km thick ice have been interpreted as evidence of subglacial eruptions. Comparison of a carefully selected subset of ~400 of the >1000 high-amplitude anomalies in the CWA survey having topographic expression at the glacier bed, showed >80% had less than 200-m relief. About 18 high-amplitude subglacial magnetic sources also have high topography and bed relief (>600 m) interpreted as subaerially erupted volcanic peaks when the WAIS was absent, whose competent lava flows protected their edifices from erosion. All of these would have high elevation above sea-level, were the ice removed and glacial rebound to have occurred. Nine of these subaerially erupted volcanoes are concentrated in the WAIS divide area. Behrendt et al., 1998 interpreted a circular ring of positive magnetic anomalies overlying the WAIS divide as caused by a volcanic caldera. The area is characterized by high elevation bed topography. The negative regional magnetic anomaly surrounding the caldera anomalies was interpreted as the result of a shallow Curie isotherm. High heat flow inferred from temperature logging in the WAISCORE (G. Clow 2012, personal communication; Conway, 2011) and a prominent volcanic ash layer in the core (Dunbar, 2011) are consistent with the magnetic data. A prominent subaerially-erupted subglacial volcano, here named Mt Thiel, about 100 km distant to the NE, at approximately 78o 25' S, 111o 20' W, may be the source of the ash layer. This peak is characterized by a ~400-nT positive magnetic anomaly which Behrendt el, 2004, modeled as having apparent susceptibility contrasts of .034 and .15 SI. From its appearance (and the moat surrounding it), Mt. Thiel has subsided somewhat since initial eruption as is the case for Mt. Erebus and the Hawaiian Island chain. I suggest that Mt Thiel, about 100 km distance from the WAISCORE, may be the source of the ash layer. The present rapid changes in the WAIS resulting from global warming, could be accelerated by subglacial volcanism
Formation of magmatic brine lenses via focussed fluid-flow beneath volcanoes
NASA Astrophysics Data System (ADS)
Afanasyev, Andrey; Blundy, Jon; Melnik, Oleg; Sparks, Steve
2018-03-01
Many active or dormant volcanoes show regions of high electrical conductivity at depths of a few kilometres beneath the edifice. We explore the possibility that these regions represent lenses of high-salinity brine separated from a single-phase magmatic fluid containing H2O and NaCl. Since chloride-bearing fluids are highly conductive and have an exceptional capacity to transport metals, these regions can be an indication of an active hydrothermal ore-formation beneath volcanoes. To investigate this possibility we have performed hydrodynamic simulations of magma degassing into permeable rock. In our models the magma source is located at 7 km depth and the fluid salinity approximates that expected for fluids released from typical arc magmas. Our model differs from previous models of a similar process because it is (a) axisymmetric and (b) includes a static high-permeability pathway that links the magma source to the surface. This pathway simulates the presence of a volcanic conduit and/or plexus of feeder dykes that are typical of most volcanic systems. The presence of the conduit leads to a number of important hydrodynamic consequences, not observed in previous models. Importantly, we show that an annular brine lens capped by crystallised halite is likely to form above an actively degassing sub-volcanic magma body and can persist for more than 250 kyr after degassing ceases. Parametric analysis shows that brine lenses are more prevalent when the fluid is released at temperatures above the wet granite solidus, when magmatic fluid salinity is high, and when the high-permeability pathway is narrow. The calculated depth, form and electrical conductivity of our modelled system shares many features with published magnetotelluric images of volcano subsurfaces. The formation and persistence of sub-volcanic brine lenses has implications for geothermal systems and hydrothermal ore formation, although these features are not explored in the presented model.
Earthquake swarms on the Mid-Atlantic Ridge - Products of magmatism or extensional tectonics?
NASA Technical Reports Server (NTRS)
Bergman, Eric A.; Solomon, Sean C.
1990-01-01
The spatial and temporal patterns and other characteristics of earthquakes in 34 earthquake swarms on the Mid-Atlantic Ridge were compared with those of well-studied earthquake swarms which accompany terrestrial volcanic eruptions, to test the assumption that the teleseismically observed earthquake swarms along mid-ocean ridges are indicators of volcanism. Improved resolution of these patterns for the mid-ocean ridge events was achieved by a multiple-event relocation technique. It was found that the teleseismically located earthquake swarms on the mid-ocean ridge system have few features in common with swarms directly associated with active magmatism in terrestrial volcanic rift zones such as Hawaii and Iceland. While the possibility that some of the mid-ocean earthquake swarms might be directly associated with a current episode of eruptive activity on the Mid-Atlantic Ridge cannot be excluded, none of the 34 swarms studied in this work was found to be a conspicuously attractive candidate for such a role.
[Effects of volcanic eruptions on environment and health].
Zuskin, Eugenija; Mustajbegović, Jadranka; Doko Jelinić, Jagoda; Pucarin-Cvetković, Jasna; Milosević, Milan
2007-12-01
Volcanoes pose a threat to almost half a billion people; today there are approximately 500 active volcanoes on Earth, and every year there are 10 to 40 volcanic eruptions. Volcanic eruptions produce hazardous effects for the environment, climate, and the health of the exposed persons, and are associated with the deterioration of social and economic conditions. Along with magma and steam (H2O), the following gases surface in the environment: carbon dioxide (CO2) and sulphur dioxide (SO2), carbon monoxide (CO), hydrogen sulphide (H2S), carbon sulphide (CS), carbon disulfide (CS2), hydrogen chloride (HCl), hydrogen (H2), methane (CH4), hydrogen fluoride (HF), hydrogen bromide (HBr) and various organic compounds, as well as heavy metals (mercury, lead, gold).Their unfavourable effects depend on the distance from a volcano, on magma viscosity, and on gas concentrations. The hazards closer to the volcano include pyroclastic flows, flows of mud, gases and steam, earthquakes, blasts of air, and tsunamis. Among the hazards in distant areas are the effects of toxic volcanic ashes and problems of the respiratory system, eyes and skin, as well as psychological effects, injuries, transport and communication problems, waste disposal and water supplies issues, collapse of buildings and power outage. Further effects are the deterioration of water quality, fewer periods of rain, crop damages, and the destruction of vegetation. During volcanic eruptions and their immediate aftermath, increased respiratory system morbidity has been observed as well as mortality among those affected by volcanic eruptions. Unfavourable health effects could partly be prevented by timely application of safety measures.
NASA Technical Reports Server (NTRS)
Hurwitz, D. M.; Head, J. W.
2009-01-01
Geologic mapping of Snegurochka Planitia (V-1) reveals a complex stratigraphy of tectonic and volcanic features that can provide insight into the geologic history of Venus and Archean Earth [1,2], including 1) episodes of both localized crustal uplift and mantle downwelling, 2) shifts from local to regional volcanic activity, and 3) a shift back to local volcanic activity. We present our progress in mapping the spatial and stratigraphic relationships of material units and our initial interpretations of the tectonic and volcanic history of the region surrounding the north pole of Venus
NASA Technical Reports Server (NTRS)
Crumpler, L. S.; Aubele, Jayne C.; Head, James W.; Guest, J.; Saunders, R. S.
1992-01-01
As part of the analysis of data from the Magellan Mission, we have compiled a global survey of the location, dimensions, and subsidiary notes of all identified volcanic features on Venus. More than 90 percent of the surface area was examined and the final catalog comprehensively identifies 1548 individual volcanic features larger than approximately 20 km in diameter. Volcanic features included are large volcanoes, intermediate volcanoes, fields of small shield volcanoes, calderas, large lava channels, and lava floods as well as unusual features first noted on Venus such as coronae, arachnoids, and novae.
NASA Astrophysics Data System (ADS)
Marti, Joan; Geyer, Adelina
2016-04-01
The quantification of hazard in volcanic systems characterised by long repose period is difficult because the lack of knowledge of the past volcanic history and also because in many cases volcanism is not perceived as a potential problem, being only regarded as an attraction for tourism or a source of economic benefit, thus hiding the need to conduct hazard assessment. Teide, in the island of Tenerife (Canary Islands), is not an exception to this general rule and, despite being one of the largest composite volcanoes in the World, it is generally considered as a non-active volcano by population, visitors and even by some scientists. However, geological and geophysical evidence, including a large diversity of monitoring signals recorded during last decades, as well as a simple comparison with similar volcanoes that have erupted in recent times after hundreds or even thousands of years of quiescence, recommend to consider Teide as an active volcano and to take the necessary precaution in an island with nearly one million of permanent inhabitants and nearly 5 millions of visitors per year. What is the potential of Teide to erupt again? is the question that relies behind the fact of considering it as active, and that needs to be answered first. Based on the current volcanological, petrological and geophysical knowledge We propose a conceptual model on the magma recharge mechanisms, structure of the plumbing system, and eruption triggers and dynamics of Teide volcano that helps to understand its behaviour and to anticipate future activity. Ramón y Cajal contract (RYC-2012-11024)
Impact of volcanic ash on anammox communities in deep sea sediments.
Song, Bongkeun; Buckner, Caroline T; Hembury, Deborah J; Mills, Rachel A; Palmer, Martin R
2014-04-01
Subaerial explosive volcanism contributes substantial amounts of material to the oceans, but little is known about the impact of volcanic ash on sedimentary microbial activity. We have studied anammox communities in deep sea sediments near the volcanically active island of Montserrat, Lesser Antilles. The rates of anammox and denitrification in the sediments were measured using (15)N isotope pairing incubation experiments, while 16S rRNA genes were used to examine anammox community structures. The higher anammox rates were measured in sediment containing the lower accumulation of volcanic ash in the surface sediments, while the lowest activities were found in sediments with the highest ash deposit. 16S rRNA gene analysis revealed the presence of 'Candidatus Scalindua spp.' in the sediments. The lowest diversity of anammox bacteria was observed in the sediments with the highest ash deposit. Overall, this study demonstrates that the deposition of volcanic material in deep sea sediments has negative impacts on activity and diversity of the anammox community. Since anammox may account for up to 79% of N2 production in marine ecosystems, periods of extensive explosive volcanism in Earth history may have had a hitherto unrecognized negative impact on the sedimentary nitrogen removal processes. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
A spaceborne inventory of volcanic activity in Antarctica and southern oceans, 2000-10
Patrick, Matthew R.; Smellie, John L.
2015-01-01
Of the more than twenty historically active volcanoes in Antarctica and the sub-Antarctic region only two, to our knowledge, host any ground-based monitoring instruments. Moreover, because of their remoteness, most of the volcanoes are seldom visited, thus relegating the monitoring of volcanism in this region almost entirely to satellites. In this study, high temporal resolution satellite data from the Hawaii Institute of Geophysics and Planetology's MODVOLC system using MODIS (Moderate Resolution Imaging Spectroradiometer) are complemented with high spatial resolution data (ASTER, or Advanced Spaceborne Thermal Emission and Reflection Radiometer, and similar sensors) to document volcanic activity throughout the region during the period 2000–10. Five volcanoes were observed in eruption (Mount Erebus, Mount Belinda, Mount Michael, Heard Island and McDonald Island), which were predominantly low-level and effusive in nature. Mount Belinda produced tephra, building a cinder cone in addition to an extensive lava field. Five volcanoes exhibited detectable thermal, and presumed fumarolic, activity (Deception, Zavodovski, Candlemas, Bristol, and Bellingshausen islands). A minor eruption reported at Marion Island was not detected in our survey due to its small size. This study also discovered a new active vent on Mount Michael, tracked dramatic vent enlargement on Heard Island, and provides an improved picture of the morphology of some of the volcanoes.
3-D modeling of magnetotelluric data in the Paniri-Toconce volcanic chain, Central Andes.
NASA Astrophysics Data System (ADS)
Mancini, R.; Brasse, H.; Diaz, D.
2017-12-01
The research is located in the San Pedro-Toconce volcanic chain in the central volcanic zone of the Andes, North Chile. This area is interesting because of its proximity to several active volcanic centers, the geysers field of El Tatio and the recently opened geothermal plant Cerro Pabellon. Thermobarometry studies made in the area point to magma accumulated at 8 km below Lavas de Chao, and depths greater than 24 km below Toconce and Cerro de Leon. Regional geophysical studies show a distribution of conductive bodies around the complex, but the resolution of these studies at shallow depths are not conclusive. Data from wells show the possible presence of a large geothermal system in the southwest part of the complex, with depths of 2 km. Twenty broadband magnetotelluric (MT) stations were measured in the vicinity of the complex and combined with 15 long period MT stations measured in the 1990s, aiming at characterizing the deep conductive structures previously observed in the area, with magmatic bodies associated with the adjacent volcanic system. The results of a 3-D inversion show several conductive anomalies around the complex. Analyses of conductivity together with the 3-D models obtained indicate the presence of a geothermal system to the southwest of the complex with maximum depths of about 5 km, and two possible magmatic chambers below Paniri volcano and between Paniri and San Pedro volcanoes. In addition, the presence of a highly conductive structure to the east is obtained, associated with the Altiplano-Puna magma body (APMB).
Satellite Derived Volcanic Ash Product Inter-Comparison in Support to SCOPE-Nowcasting
NASA Astrophysics Data System (ADS)
Siddans, Richard; Thomas, Gareth; Pavolonis, Mike; Bojinski, Stephan
2016-04-01
In support of aeronautical meteorological services, WMO organized a satellite-based volcanic ash retrieval algorithm inter-comparison activity, to improve the consistency of quantitative volcanic ash products from satellites, under the Sustained, Coordinated Processing of Environmental Satellite Data for Nowcasting (SCOPEe Nowcasting) initiative (http:/ jwww.wmo.int/pagesjprogjsatjscopee nowcasting_en.php). The aims of the intercomparison were as follows: 1. Select cases (Sarychev Peak 2009, Eyjafyallajökull 2010, Grimsvötn 2011, Puyehue-Cordón Caulle 2011, Kirishimayama 2011, Kelut 2014), and quantify the differences between satellite-derived volcanic ash cloud properties derived from different techniques and sensors; 2. Establish a basic validation protocol for satellite-derived volcanic ash cloud properties; 3. Document the strengths and weaknesses of different remote sensing approaches as a function of satellite sensor; 4. Standardize the units and quality flags associated with volcanic cloud geophysical parameters; 5. Provide recommendations to Volcanic Ash Advisory Centers (VAACs) and other users on how to best to utilize quantitative satellite products in operations; 6. Create a "road map" for future volcanic ash related scientific developments and inter-comparison/validation activities that can also be applied to SO2 clouds and emergent volcanic clouds. Volcanic ash satellite remote sensing experts from operational and research organizations were encouraged to participate in the inter-comparison activity, to establish the plans for the inter-comparison and to submit data sets. RAL was contracted by EUMETSAT to perform a systematic inter-comparison of all submitted datasets and results were reported at the WMO International Volcanic Ash Inter-comparison Meeting to held on 29 June - 2 July 2015 in Madison, WI, USA (http:/ /cimss.ssec.wisc.edujmeetings/vol_ash14). 26 different data sets were submitted, from a range of passive imagers and spectrometers and these were inter-compared against each other and against validation data such as CALIPSO lidar, ground-based lidar and aircraft observations. Results of the comparison exercise will be presented together with the conclusions and recommendations arising from the activity.
Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity
NASA Technical Reports Server (NTRS)
Davies, Ashley G.; Doubleday, Joshua R.; Tran, Daniel Q.
2014-01-01
The study of volcanoes is important for both purely scientific and human survival reasons. From a scientific standpoint, volcanic gas and ash emissions contribute significantly to the terrestrial atmosphere. Ash depositions and lava flows can also greatly affect local environments. From a human survival standpoint, many people live within the reach of active volcanoes, and therefore can be endangered by both atmospheric (ash, debris) toxicity and lava flow. There are many potential information sources that can be used to determine how to best monitor volcanic activity worldwide. These are of varying temporal frequency, spatial regard, method of access, and reliability. The problem is how to incorporate all of these inputs in a general framework to assign/task/reconfigure assets to monitor events in a timely fashion. In situ sensing can provide a valuable range of complementary information such as seismographic, discharge, acoustic, and other data. However, many volcanoes are not instrumented with in situ sensors, and those that have sensor networks are restricted to a relatively small numbers of point sensors. Consequently, ideal volcanic study synergistically combines space and in situ measurements. This work demonstrates an effort to integrate spaceborne sensing from MODIS (Terra and Aqua), ALI (EO-1), Worldview-2, and in situ sensing in an automated scheme to improve global volcano monitoring. Specifically, it is a "sensor web" concept in which a number of volcano monitoring systems are linked together to monitor volcanic activity more accurately, and this activity measurement automatically tasks space assets to acquire further satellite imagery of ongoing volcanic activity. A general framework was developed for evidence combination that accounts for multiple information sources in a scientist-directed fashion to weigh inputs and allocate observations based on the confidence of an events occurrence, rarity of the event at that location, and other scientists' inputs. The software framework uses multiple source languages and is a general framework for combining inputs and incrementally submitting observation requests/reconfigurations, accounting for prior requests. The autonomous aspect of operations is unique, especially in the context of the wide range of inputs that includes manually inputted electronic reports (such as the Air Force Weather Advisories), automated satellite-based detection methods (such as MODVOLC and GOESVOLC), and in situ sensor networks.
Identification of geothermal system using 2D audio magnetotelluric method in Telomoyo volcanic area
NASA Astrophysics Data System (ADS)
Romadlon, Arriqo'Fauqi; Niasari, Sintia Windhi
2017-07-01
Geothermal area of Candi Umbul Telomoyo is one of geothermal fields in Indonesia. This geothermal field is located in the Grabag district, Magelang, Central Java. This geothermal field was formed in a volcanic quarter. The main aim in this study is to identify geothermal system at Telomoyo volcanic area through synthetic model analysis. There are surface manifestations such as warm springs and altered rocks. Results of geochemistry study showed reservoir's temperature was 230°C. The Warm spring in Candi Umbul was the outflow zone of the Telomoyo geothermal system. The Telomoyo geothermal system was indicated chloride-bicarbonate type of warm spring. In addition, the results of geological mapping indicate that the dominant fault structure has southwest-northeast orientation. The fault was caused by the volcanic activity of mount Telomoyo. In this research conducted data analysis from synthetics model. It aims to estimate the response of magnetotelluric methods in various models of geothermal systems. In this study, we assumed three models of geothermal system in Candi Umbul-Telomoyo area. From the data analysis it was known that the model 1 and model 2 can be distinguished if the measurements were conducted in a frequency range of 0.01 Hz to 1000 Hz. In response of tipper (Hz) had a small value on all models at all measurement points, so the tipper cannot distinguish between model 1, model 2 and model 3. From this analysis was known that TM mode is more sensitive than TE mode at the resistivity and phase responses.
Chronology and References of Volcanic Eruptions and Selected Unrest in the United States, 1980-2008
Diefenbach, Angela K.; Guffanti, Marianne; Ewert, John W.
2009-01-01
The United States ranks as one of the top countries in the world in the number of young, active volcanoes within its borders. The United States, including the Commonwealth of the Northern Mariana Islands, is home to approximately 170 geologically active (age <10,000 years) volcanoes. As our review of the record shows, 30 of these volcanoes have erupted since 1980, many repeatedly. In addition to producing eruptions, many U.S. volcanoes exhibit periods of anomalous activity, unrest, that do not culminate in eruptions. Monitoring volcanic activity in the United States is the responsibility of the U.S. Geological Survey (USGS) Volcano Hazards Program (VHP) and is accomplished with academic, Federal, and State partners. The VHP supports five Volcano Observatories - the Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Yellowstone Volcano Observatory (YVO), Long Valley Observatory (LVO), and Hawaiian Volcano Observatory (HVO). With the exception of HVO, which was established in 1912, the U.S. Volcano Observatories have been established in the past 27 years in response to specific volcanic eruptions or sustained levels of unrest. As understanding of volcanic activity and hazards has grown over the years, so have the extent and types of monitoring networks and techniques available to detect early signs of anomalous volcanic behavior. This increased capability is providing us with a more accurate gauge of volcanic activity in the United States. The purpose of this report is to (1) document the range of volcanic activity that U.S. Volcano Observatories have dealt with, beginning with the 1980 eruption of Mount St. Helens, (2) describe some overall characteristics of the activity, and (3) serve as a quick reference to pertinent published literature on the eruptions and unrest documented in this report.
Volcanic Eruptions and Climate
NASA Technical Reports Server (NTRS)
LeGrande, Allegra N.; Anchukaitis, Kevin J.
2015-01-01
Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.
NASA Astrophysics Data System (ADS)
Maerker, Michael; Vogel, Sebastian; Hoelzmann, Phillip; Rellini, Ivano
2014-05-01
In this study we carried out a detailed lithostratigraphic, pedological and micromorphological analysis at a stratigraphic sequence close to Scafati, about 3 km east of ancient Pompeii. It consists of a multilayered succession of repeated volcanic deposition and pedogenesis caused by several phases of volcanic activity of Somma-Vesuvius and volcanic quiescence. This comprises, at least, the last 10,000 years of sedimentation history, on one hand, reflecting the entire spectrum of eruption types of Somma-Vesuvius from Plinian, sub-Plinian, rather small eruptions to effusive volcanic events and, on the other hand, soil formations of different durations, intensities and soil-forming environments. Furthermore, the paleosols repeatedly reveal clear evidence of anthropogenic activity by means of agriculture. Hence, a landscape evolution model was developed trying to reconstruct the last 10,000 years of volcanic activity, soil formation and land use in the hinterland of Pompeii.
2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory
McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.
2014-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.
Infrared speckle interferometry and spectroscopy of Io
NASA Technical Reports Server (NTRS)
Howell, Robert R.
1991-01-01
The goal during the last year was to continue the speckle monitoring of volcanic hot spots on Io, and to begin observations of the 1991 series of mutual events between Io and Europa. The former provide a time history of the volcanic activity, while the latter give the highest spatial resolution and the best sensitivity to faint spots. A minor component of the program is lunar occultation observations of young T Tauri stars. The occultations provide milliarcsecond resolution which let us search for circumstellar material and determine which systems are multiple.
Volcanic Ash Activates the NLRP3 Inflammasome in Murine and Human Macrophages.
Damby, David E; Horwell, Claire J; Baxter, Peter J; Kueppers, Ulrich; Schnurr, Max; Dingwell, Donald B; Duewell, Peter
2017-01-01
Volcanic ash is a heterogeneous mineral dust that is typically composed of a mixture of amorphous (glass) and crystalline (mineral) fragments. It commonly contains an abundance of the crystalline silica (SiO 2 ) polymorph cristobalite. Inhalation of crystalline silica can induce inflammation by stimulating the NLRP3 inflammasome, a cytosolic receptor complex that plays a critical role in driving inflammatory immune responses. Ingested material results in the assembly of NLRP3, ASC, and caspase-1 with subsequent secretion of the interleukin-1 family cytokine IL-1β. Previous toxicology work suggests that cristobalite-bearing volcanic ash is minimally reactive, calling into question the reactivity of volcanically derived crystalline silica, in general. In this study, we target the NLRP3 inflammasome as a crystalline silica responsive element to clarify volcanic cristobalite reactivity. We expose immortalized bone marrow-derived macrophages of genetically engineered mice and primary human peripheral blood mononuclear cells (PBMCs) to ash from the Soufrière Hills volcano as well as representative, pure-phase samples of its primary componentry (volcanic glass, feldspar, cristobalite) and measure NLRP3 inflammasome activation. We demonstrate that respirable Soufrière Hills volcanic ash induces the activation of caspase-1 with subsequent release of mature IL-1β in a NLRP3 inflammasome-dependent manner. Macrophages deficient in NLRP3 inflammasome components are incapable of secreting IL-1β in response to volcanic ash ingestion. Cellular uptake induces lysosomal destabilization involving cysteine proteases. Furthermore, the response involves activation of mitochondrial stress pathways leading to the generation of reactive oxygen species. Considering ash componentry, cristobalite is the most reactive pure-phase with other components inducing only low-level IL-1β secretion. Inflammasome activation mediated by inhaled ash and its potential relevance in chronic pulmonary disease was further evidenced in PBMC using the NLRP3 small-molecule inhibitor CP-456,773 (CRID3, MCC950). Our data indicate the functional activation of the NLRP3 inflammasome by volcanic ash in murine and human macrophages in vitro . Cristobalite is identified as the apparent driver, thereby contesting previous assertions that chemical and structural imperfections may be sufficient to abrogate the reactivity of volcanically derived cristobalite. This is a novel mechanism for the stimulation of a pro-inflammatory response by volcanic particulate and provides new insight regarding chronic exposure to environmentally occurring particles.
Volcanic ash activates the NLRP3 inflammasome in murine and human macrophages
Damby, David; Horwell, Claire J.; Baxter, Peter J.; Kueppers, Ulrich; Schnurr, Max; Dingwell, Donald B.; Duewell, Peter
2018-01-01
Volcanic ash is a heterogeneous mineral dust that is typically composed of a mixture of amorphous (glass) and crystalline (mineral) fragments. It commonly contains an abundance of the crystalline silica (SiO2) polymorph cristobalite. Inhalation of crystalline silica can induce inflammation by stimulating the NLRP3 inflammasome, a cytosolic receptor complex that plays a critical role in driving inflammatory immune responses. Ingested material results in the assembly of NLRP3, ASC, and caspase-1 with subsequent secretion of the interleukin-1 family cytokine IL-1β. Previous toxicology work suggests that cristobalite-bearing volcanic ash is minimally reactive, calling into question the reactivity of volcanically derived crystalline silica, in general. In this study, we target the NLRP3 inflammasome as a crystalline silica responsive element to clarify volcanic cristobalite reactivity. We expose immortalized bone marrow-derived macrophages of genetically engineered mice and primary human peripheral blood mononuclear cells (PBMCs) to ash from the Soufrière Hills volcano as well as representative, pure-phase samples of its primary componentry (volcanic glass, feldspar, cristobalite) and measure NLRP3 inflammasome activation. We demonstrate that respirable Soufrière Hills volcanic ash induces the activation of caspase-1 with subsequent release of mature IL-1β in a NLRP3 inflammasome-dependent manner. Macrophages deficient in NLRP3 inflammasome components are incapable of secreting IL-1β in response to volcanic ash ingestion. Cellular uptake induces lysosomal destabilization involving cysteine proteases. Furthermore, the response involves activation of mitochondrial stress pathways leading to the generation of reactive oxygen species. Considering ash componentry, cristobalite is the most reactive pure-phase with other components inducing only low-level IL-1β secretion. Inflammasome activation mediated by inhaled ash and its potential relevance in chronic pulmonary disease was further evidenced in PBMC using the NLRP3 small-molecule inhibitor CP-456,773 (CRID3, MCC950). Our data indicate the functional activation of the NLRP3 inflammasome by volcanic ash in murine and human macrophages in vitro. Cristobalite is identified as the apparent driver, thereby contesting previous assertions that chemical and structural imperfections may be sufficient to abrogate the reactivity of volcanically derived cristobalite. This is a novel mechanism for the stimulation of a pro-inflammatory response by volcanic particulate and provides new insight regarding chronic exposure to environmentally occurring particles.
Volcanic Ash Activates the NLRP3 Inflammasome in Murine and Human Macrophages
Damby, David E.; Horwell, Claire J.; Baxter, Peter J.; Kueppers, Ulrich; Schnurr, Max; Dingwell, Donald B.; Duewell, Peter
2018-01-01
Volcanic ash is a heterogeneous mineral dust that is typically composed of a mixture of amorphous (glass) and crystalline (mineral) fragments. It commonly contains an abundance of the crystalline silica (SiO2) polymorph cristobalite. Inhalation of crystalline silica can induce inflammation by stimulating the NLRP3 inflammasome, a cytosolic receptor complex that plays a critical role in driving inflammatory immune responses. Ingested material results in the assembly of NLRP3, ASC, and caspase-1 with subsequent secretion of the interleukin-1 family cytokine IL-1β. Previous toxicology work suggests that cristobalite-bearing volcanic ash is minimally reactive, calling into question the reactivity of volcanically derived crystalline silica, in general. In this study, we target the NLRP3 inflammasome as a crystalline silica responsive element to clarify volcanic cristobalite reactivity. We expose immortalized bone marrow-derived macrophages of genetically engineered mice and primary human peripheral blood mononuclear cells (PBMCs) to ash from the Soufrière Hills volcano as well as representative, pure-phase samples of its primary componentry (volcanic glass, feldspar, cristobalite) and measure NLRP3 inflammasome activation. We demonstrate that respirable Soufrière Hills volcanic ash induces the activation of caspase-1 with subsequent release of mature IL-1β in a NLRP3 inflammasome-dependent manner. Macrophages deficient in NLRP3 inflammasome components are incapable of secreting IL-1β in response to volcanic ash ingestion. Cellular uptake induces lysosomal destabilization involving cysteine proteases. Furthermore, the response involves activation of mitochondrial stress pathways leading to the generation of reactive oxygen species. Considering ash componentry, cristobalite is the most reactive pure-phase with other components inducing only low-level IL-1β secretion. Inflammasome activation mediated by inhaled ash and its potential relevance in chronic pulmonary disease was further evidenced in PBMC using the NLRP3 small-molecule inhibitor CP-456,773 (CRID3, MCC950). Our data indicate the functional activation of the NLRP3 inflammasome by volcanic ash in murine and human macrophages in vitro. Cristobalite is identified as the apparent driver, thereby contesting previous assertions that chemical and structural imperfections may be sufficient to abrogate the reactivity of volcanically derived cristobalite. This is a novel mechanism for the stimulation of a pro-inflammatory response by volcanic particulate and provides new insight regarding chronic exposure to environmentally occurring particles. PMID:29403480
Conduits and dike distribution analysis in San Rafael Swell, Utah
NASA Astrophysics Data System (ADS)
Kiyosugi, K.; Connor, C.; Wetmore, P. H.; Ferwerda, B. P.; Germa, A.
2011-12-01
Volcanic fields generally consist of scattered monogenetic volcanoes, such as cinder cones and maars. The temporal and spatial distribution of monogenetic volcanoes and probability of future activity within volcanic fields is studied with the goals of understanding the origins of these volcano groups, and forecasting potential future volcanic hazards. The subsurface magmatic plumbing systems associated with volcanic fields, however, are rarely observed or studied. Therefore, we investigated a highly eroded and exposed magmatic plumbing system on the San Rafael Swell (UT) that consists of dikes, volcano conduits and sills. San Rafael Swell is part of the Colorado Plateau and is located east of the Rocky Mountain seismic belt and the Basin and Range. The overburden thickness at the time of mafic magma intrusion (Pliocene; ca. 4 Ma) into Jurassic sandstone is estimated to be ~800 m based on paleotopographical reconstructions. Based on a geologic map by P. Delaney and colleagues, and new field research, a total of 63 conduits are mapped in this former volcanic field. The conduits each reveal features of root zone and / or lower diatremes, including rapid dike expansion, peperite and brecciated intrusive and host rocks. Recrystallized baked zone of host rock is also observed around many conduits. Most conduits are basaltic or shonkinitic with thickness of >10 m and associated with feeder dikes intruded along N-S trend joints in the host rock, whereas two conduits are syenitic and suggesting development from underlying cognate sills. Conduit distribution, which is analyzed by a kernel function method with elliptical bandwidth, illustrates a N-S elongate higher conduit density area regardless of the azimuth of closely distributed conduits alignment (nearest neighbor distance <200 m). In addition, dike density was calculated as total dike length in unit area (km/km^2). Conduit and sill distribution is concordant with the high dike density area. Especially, the distribution of conduits is not random with respect to the dike distribution with greater than 99% confidence on the basis of the Kolmogorov-Smirnov test. On the other hand, dike density at each conduits location also suggests that there is no threshold of dike density for conduit formation. In other words, conduits may be possible to develop from even short mapped dikes in low dike density areas. These results show effectiveness of studying volcanic vent distribution to infer the size of magmatic system below volcanic fields and highlight the uncertainty of forecasting the location of new monogenetic volcanoes in active fields, which may be associated with a single dike intrusion.
Day, Warren C.; Slack, John F.; Ayuso, Robert A.; Seeger, Cheryl M.
2016-01-01
This paper provides an overview on the genesis of Mesoproterozoic igneous rocks and associated iron oxide ± apatite (IOA) ± rare earth element, iron oxide-copper-gold (IOCG), and iron-rich sedimentary deposits in the St. Francois Mountains terrane of southeast Missouri, USA. The St. Francois Mountains terrane lies along the southeastern margin of Laurentia as part of the eastern granite-rhyolite province. The province formed during two major pulses of igneous activity: (1) an older early Mesoproterozoic (ca. 1.50–1.44 Ga) episode of volcanism and granite plutonism, and (2) a younger middle Mesoproterozoic (ca. 1.33–1.30 Ga) episode of bimodal gabbro and granite plutonism. The volcanic rocks are predominantly high-silica rhyolite pyroclastic flows, volcanogenic breccias, and associated volcanogenic sediments with lesser amounts of basaltic to andesitic volcanic and associated subvolcanic intrusive rocks. The iron oxide deposits are all hosted in the early Mesoproterozoic volcanic and volcaniclastic sequences. Previous studies have characterized the St. Francois Mountains terrane as a classic, A-type within-plate granitic terrane. However, our new whole-rock geochemical data indicate that the felsic volcanic rocks are effusive derivatives from multicomponent source types, having compositional similarities to A-type within-plate granites as well as to S- and I-type granites generated in an arc setting. In addition, the volcanic-hosted IOA and IOCG deposits occur within bimodal volcanic sequences, some of which have volcanic arc geochemical affinities, suggesting an extensional tectonic setting during volcanism prior to emplacement of the ore-forming systems.The Missouri iron orebodies are magmatic-related hydrothermal deposits that, when considered in aggregate, display a vertical zonation from high-temperature, magmatic ± hydrothermal IOA deposits emplaced at moderate depths (~1–2 km), to magnetite-dominant IOA veins and IOCG deposits emplaced at shallow subvolcanic depths. The shallowest parts of these systems include near-surface, iron oxide-only replacement deposits, surficial epithermal sediment-hosted replacement deposits, synsedimentary ironstone deposits, and Mn-rich exhalite deposits. Alteration associated with the IOA and IOCG mineralizing systems of the host volcanic rocks dominantly produced potassic with lesser amounts of calcic- and sodic-rich mineral assemblages. No deposits are known to be hosted in granite, implying that the mineralizing systems were operative during a relatively short, postvolcanic period yet prior to intrusion of the granitoids.Companion studies in this special issue on mineral chemistry, stable isotopes, and iron isotopes suggest that the magnetite within the IOA deposits formed from high-temperature fluids of magmatic or magmatic-hydrothermal origin. However, the data do not discriminate between a magmatic-hydrothermal source fluid exsolved from an Fe-rich immiscible liquid or an Fe-rich silicate magma. Mineral chemical, fluid inclusion, and stable isotope data from these new studies record the effects of metasomatic fluids that interacted with crustal reservoirs such as volcanic rocks or seawater.
Role of Social Media and Networking in Volcanic Crises and Communication
NASA Astrophysics Data System (ADS)
Sennert, S.; Klemetti, E. W.; Bird, D. K.
2016-12-01
The growth of social media as a primary and often preferred news source has led to the rapid dissemination of information about volcanic eruptions and potential volcanic crises as they begin, evolve, and end. This information comes from a variety of sources: news organisations, emergency management personnel, individuals (both members of the public and official representatives), and volcano monitoring agencies. Once posted, this information is easily shared, increasing the reach to a much broader population than more traditional forms of media, such as radio and newspapers. The onset and popularity of social media as a vehicle for dissemination of eruption information points toward the need to systematically incorporate social media into the official channels that volcano observatories use to distribute activity statements, forecasts, and images. We explore two examples of projects that collect/disseminate information regarding volcanic crises and eruptive activity via social media sources; the Smithsonian/USGS Weekly Volcanic Activity Report (WVAR), which summarizes new and on-going volcanic activity globally and on a weekly basis, and Eruptions, a blog that discusses eruptions as well as other volcanic topics. Based on these experiences, recommendations are made to volcanic observatories in relation to the use of social media as a communication tool. These recommendations include: using social media as a two-way dialogue to communicate and receive information directly from the public and other sources; stating that the social media account is from an official source; and posting types of information that users want to see such as images, videos, and figures.
NASA Astrophysics Data System (ADS)
Jerram, D. A.
2015-12-01
The volcanic margin along Angola is relatively poorly constrained. This study uses new petrographic, geochronological and geochemical observations on a new sample set collected along the margin to help understand the various types and relative timings of volcanic events along the margin. This new study has identified 3 main volcanic events that occur at ~100Ma (Sumbe event 1), 90-92Ma (Serra de Neve (SDN)-Elefantes event 2) and 80-81Ma (Namibe event 3), with the oldest event in the north of the margin and younging southwards. This is contrasting with the main Etendeka pulse in Namibia at around 130 Ma. There is a marked variety of igneous rocks along the margin with a grouping of evolved alkaline rocks in the central SDN-Elefantes section, basic submarine volcanics in the north, and basanite eruptions in the southern section. There is some overlap with geochemical types along the margin. The Sumbe event contains predominantly submarine volcanics and shallow Intrusions. SDN-Elefantes rocks have a mixed type but with a distinctive feldspar rich evolved alkali suite of rocks (nepheline syenites and variations around this composition) which occur as lava flows and shallow intrusions as well as making up the core of the SDN complex. The SDN complex itself is analogous in size to the main volcanic centres in Namibia (such as Messum, Brandberg etc.) and suggests that large volcanic feeding centres are still active along the margin as young as 90ma. These in turn will form large volcano-topographic features. In the south the Ponta Negra and Canico sites mainly contain basanites in the form of lava flows, invasive flows and shallow intrusions. At Canico one intrusive plug was sampled with a similar composition to the evolved SDN-Elefantes suite. In all three events it is clear that the volcanic systems have interacted with the sedimentary systems, in some cases dynamically, in others with regional implications for volcano-tectonic uplift. Specific thanks is given for Statoil and Sonangol for sponsorship and support in the field, and the Geological Survey of Namibia.
NASA Astrophysics Data System (ADS)
Hernández, Pedro A.; Norrie, Janice; Withoos, Yannick; García-Merino, Marta; Melián, Gladys; Padrón, Eleazar; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Pérez, Nemesio M.
2017-04-01
Even during repose periods, volcanoes release large amounts of gases from both visible (fumaroles, solfataras, plumes) and non-visible emanations (diffuse degassing). In the last 20 years, there has been considerable interest in the study of diffuse degassing as a powerful tool in volcano monitoring programs, particularly in those volcanic areas where there are no visible volcanic-hydrothermal gas emissions. Historically, soil gas and diffuse degassing surveys in volcanic environments have focused mainly on CO2 because it is, after water vapor, the most abundant gas dissolved in magma. As CO2 travels upward by advective-diffusive transport mechanisms and manifests itself at the surface, changes in its flux pattern over time provide important information for monitoring volcanic and seismic activity. Since 1998, diffuse CO2 emission has been monitored at El Hierro Island, the smallest and south westernmost island of the Canarian archipelago with an area of 278 km2. As no visible emanations occur at the surface environment of El Hierro, diffuse degassing studies have become the most useful geochemical tool to monitor the volcanic activity in this volcanic island. The island experienced a volcano-seismic unrest that began in July 2011, characterized by the location of a large number of relatively small earthquakes (M<2.5) beneath El Hierro at depths between 8 and 15 km. On October 12, 2011, a submarine eruption was confirmed during the afternoon of October 12, 2011 by visual observations off the coast of El Hierro, about 2 km south of the small village of La Restinga in the southernmost part of the island. During the pre-eruptive and eruptive periods, the time series of the diffuse CO2 emission released by the whole island experienced two significant increases. The first started almost 2 weeks before the onset of the submarine eruption, reflecting a clear geochemical anomaly in CO2 emission, most likely due to increasing release of deep seated magmatic gases to the surface. The second one, between October 24 and November 27, 2011, before the most energetic seismic events of the volcanic-seismic unrest (Melián et al., 2014. J. Geophys. Res. Solid Earth, 119, 6976-6991). The highest CO2 degassing rate measured in the last three years (1684 t/d) was observed during a seismo-volcanic unrest. This value decreased until close to background value (˜422 t/d, Melián et al., 2014) contemporaneously with the decline of the seismic activity during the first half of 2013. The last diffuse CO2 degassing survey was carried out in the summer of 2016, showing a emission rate of 854 t/d. Discrete surveys of diffuse CO2 emission have provided important information to optimize the early warning system in the volcano monitoring programs of El Hierro and to monitor the evolution of an ongoing volcanic eruption, even though is a submarine eruption.
Recent volcanic activity on Venus - Evidence from radiothermal emissivity measurements
NASA Technical Reports Server (NTRS)
Robinson, Cordula A.; Wood, John A.
1993-01-01
Radiothermal emissivity measurements are analyzed in order to study large volcanic constructs on Venus and to correlate details of the reflectivity/emissivity patterns with geological landforms and stratigraphy visible in corresponding SAR images. There appears to be a correlation between locations on Venus where high emissivity at high altitudes and low emissivity at low altitudes are observed. These phenomena are attributed here to relatively recent volcanic activity: the former to summit eruptions that have not had time to weather to the low-emissivity state, the latter to continuing emission of volcanic gases from neighboring small plains volcanoes. The pattern of reflectivity and emissivity on Maat Mons is examined in the light of these findings. It is concluded that Maat Mons has undergone the most recent episode of volcanic activity of all the volcanoes studied here.
NASA Astrophysics Data System (ADS)
Gauthier, P.-J.; Le Cloarec, M.-F.; Condomines, M.
2000-10-01
Volcanic aerosols and gases released by three active craters at Stromboli volcano have been regularly collected since 1985. In this paper, we present new evidence of the high volatility of some nuclides among radon daughters (210Pb, 210Bi and 210Po), which are strongly fractionated, leading to significant radioactive disequilibria in volcanic exhalations. The very low volcanic activity in October 1996 allowed a separate sampling of each crater plume for the first time; remote sampling of the bulk plume were also performed. These data show that the chemical composition of volcanic aerosols remains constant within the first few hundred meters from their source vents, ensuring the validity of remote sampling when the activity does not allow one to approach the active craters. Moreover, it appears that there is no differentiation of gases from one crater to another suggesting that the geometry of the upper plumbing system of the volcano is rather simple, gases being directly emitted from a shallow magma chamber without significant cooling inside the edifice. On the basis of the assumption of a continuously replenished shallow magma reservoir in steady state, we propose a dynamic model of degassing accounting for the variations of radionuclide contents and ratios observed in the gas phase since 1985. This model allows us to relate these variations to changes in the magma chamber dynamics, namely the magma residence time inside the chamber and the escape time of gases from it, both parameters being closely linked to the volcanic activity. While gases are always emitted within a few hours after bubble nucleation, suggesting that the chamber is no deeper than a few hundred meters, magma residence time varies from less than 20 days during eruptive periods (highly explosive or effusive periods) to more than 200 days before the 1985 eruption. The latter figure is explained by the storage at shallow depth of a poorly renewed magma batch that fed the eruption. The variations of the residence time observed over the studied period suggest that the steady-state dynamics of the Stromboli magma chamber is sustained for rather short periods of a few months at most. On basis of the knowledge of the deep undegassed magma supply and the magma residence time, we estimate the volume of the shallow magma chamber at about 7±2×105 m3. The good agreement of our results with previous estimates based on both geochemical and geophysical studies suggests that the measurement of radioactive disequilibria in the gas phase provides a robust tool for a deeper understanding of the volcanic activity and the magma dynamics beneath active volcanoes.
NASA Astrophysics Data System (ADS)
Caudron, Corentin; Taisne, Benoit; Whelley, Patrick; Garces, Milton; Le Pichon, Alexis
2014-05-01
Violent volcanic eruptions are common in the Southeast Asia which is bordered by active subduction zones with hundreds of active volcanoes. The physical conditions at the eruptive vent are difficult to estimate, especially when there are only a few sensors distributed around the volcano. New methods are therefore required to tackle this problem. Among them, satellite imagery and infrasound may rapidly provide information on strong eruptions triggered at volcanoes which are not closely monitored by on-site instruments. The deployment of an infrasonic array located at Singapore will increase the detection capability of the existing IMS network. In addition, the location of Singapore with respect to those volcanoes makes it the perfect site to identify erupting blasts based on the wavefront characteristics of the recorded signal. There are ~750 active or potentially active volcanoes within 4000 kilometers of Singapore. They have been combined into 23 volcanic zones that have clear azimuth with respect to Singapore. Each of those zones has been assessed for probabilities of eruptive styles, from moderate (Volcanic Explosivity Index of 3) to cataclysmic (VEI 8) based on remote morphologic analysis. Ash dispersal models have been run using wind velocity profiles from 2010 to 2012 and hypothetical eruption scenarios for a range of eruption explosivities. Results can be used to estimate the likelihood of volcanic ash at any location in SE Asia. Seasonal changes in atmospheric conditions will strongly affect the potential to detect small volcanic eruptions with infrasound and clouds can hide eruption plumes from satellites. We use the average cloud cover for each zone to estimate the probability of eruption detection from space, and atmospheric models to estimate the probability of eruption detection with infrasound. Using remote sensing in conjunction with infrasound improves detection capabilities as each method is capable of detecting eruptions when the other is 'blind' or 'defened' by adverse atmospheric conditions. According to its location, each volcanic zone will be associated with a threshold value (minimum VEI detectable) depending on the seasonality of the wind velocity profile in the region and the cloud cover.
Volcano-tectonic evolution of the Western Afar margin: new geochronological and structural data
NASA Astrophysics Data System (ADS)
Stab, Martin; Pik, Raphael; Bellahsen, Nicolas; Leroy, Sylvie; Ayalew, Dereje; Denèle, Yoann
2013-04-01
The rift system in NW-Afar (Ethiopia) is part of the Nubia-Somalia-Arabia triple junction located above the Afar hot spot active mainly since Oligocene times. It represents a unique natural laboratory for field study of superficial and deep lithospheric structure and process interactions during the transition between rifting and oceanic spreading in magma-rich setting. Most past field studies in Afar focused on the recognition and correlation of Afar's volcano-stratigraphic record and led to models of margin development that stress out the major trends of volcanic structures and give accordingly the following chronological "big picture". (1) 2km-thick flood basalt province emplaced at ca. 30 Ma due to hot spot activity over Jurassic to Permian sedimentary rocks and basement. (2) Rifting started around 25-20 Ma with half graben and great escarpment formation along with localization of volcanic activity in highly faulted narrower basins followed by lithospheric flexure. (3) The deformation migrated toward the rift centre with the emplacement around 8-5 Ma of bi-modal volcanics later faulted. (4) A second pulse of flood-basalt, the so-called Stratoid series, started at 4 Ma, until 1 Ma. In this contribution, we present new structural field data and lavas (U-Th/He) datings along a cross-section from the marginal graben to the Manda-Hararo active rift axis. In the newly explored Sullu Adu ranges, which were previously thought to be made of 8 Ma Dahla Basalts Fm., we mapped normal faults arrays affecting a complex magmatic series. We dated highly tilted 30 Ma pre-rift basic and silicic volcanic rocks that are unconformably overlain by syn-rift volcanics (25 to 8 Ma). This pattern is in some places either masked by unconformable thick stratoid cover or strongly eroded by dense river drainage. However, it is preserved enough to suggest a lower-than-expected extension ratio and/or the presence of major normal faults controlling seaward-dipping reflectors (SDR) emplacement such as the one observed on seismic reflection profiles in North and South Atlantic volcanic margins.
Magma beneath Yellowstone National Park
Eaton, G.P.; Christiansen, R.L.; Iyer, H.M.; Pitt, A.M.; Mabey, D.R.; Blank, H.R.; Zietz, I.; Gettings, M.E.
1975-01-01
The Yellowstone plateau volcanic field is less than 2 million years old, lies in a region of intense tectonic and hydrothermal activity, and probably has the potential for further volcanic activity. The youngest of three volcanic cycles in the field climaxed 600,000 years ago with a voluminous ashflow eruption and the collapse of two contiguous cauldron blocks. Doming 150,000 years ago, followed by voluminous rhyolitic extrusions as recently as 70,000 years ago, and high convective heat flow at present indicate that the latest phase of volcanism may represent a new magmatic insurgence. These observations, coupled with (i) localized postglacial arcuate faulting beyond the northeast margin of the Yellowstone caldera, (ii) a major gravity low with steep bounding gradients and an amplitude regionally atypical for the elevation of the plateau, (iii) an aeromagnetic low reflecting extensive hydrothermal alteration and possibly indicating the presence of shallow material above its Curie temperature, (iv) only minor shallow seismicity within the caldera (in contrast to a high level of activity in some areas immediately outside), (v) attenuation and change of character of seismic waves crossing the caldera area, and (vi) a strong azimuthal pattern of teleseismic P-wave delays, strongly suggest that a body composed at least partly of magma underlies the region of the rhyolite plateau, including the Tertiary volcanics immediately to its northeast. The Yellowstone field represents the active end of a system of similar volcanic foci that has migrated progressively northeastward for 15 million years along the trace of the eastern Snake River Plain (8). Regional aeromagnetic patterns suggest that this course was guided by the structure of the Precambrian basement. If, as suggested by several investigators (24), the Yellowstone magma body marks a contemporary deep mantle plume, this plume, in its motion relative to the North American plate, would appear to be "navigating" along a fundamental structure in the relatively shallow and brittle lithosphere overhead. The concept that a northeastward-propagating major crustal fracture controls the migration path of the major foci of volcanisim is at least equally favored by existing data, as Smith et al. (19) noted.
2013-06-11
ISS036-E-007165 (11 June 2013) --- Nevados de Chillan, Chile is featured in this image photographed by an Expedition 36 crew member on the International Space Station. This photograph highlights a large volcanic area located near the Chile-Argentina border. Like other historically active volcanoes in the central Andes ranges, the Nevados de Chillan were created by upwelling magma generated by eastward subduction of the dense oceanic crust of the Pacific basin beneath the less dense continental crust of South America. Rising magmas associated with this type of tectonic environment frequently erupt explosively, forming widespread ash and ignimbrite layers. They can also produce less explosive eruptions that form voluminous lava flows – layering together with explosively erupted deposits to build the classic cone-shaped edifice of a stratovolcano over geologic time. The Nevados de Chillan includes three distinct volcanic structures, built within three overlapping calderas that extend along a north-northwest to south-southeast line. The snow-capped volcanic complex sits within the glaciated terrain of the central Andes – glacial valleys are visible at upper left, upper right, and lower right. The northwestern end of the chain is occupied by the 3,212-meter-high Cerro Blanco (also known as Volcan Nevado). The 3,089-meter-high Volcan Viejo (also known as Volcan Chillan) sits at the southeastern end; this volcano was active during the 17th-19th centuries. A group of lava domes known as Volcan Nuevo formed to the northwest of Volcan Viejo between 1906-1945, followed by an even younger dome complex that formed between 1973-1986 (Volcan Arrau; not indicated on the image). The last reported volcanic activity at Nevados de Chillan took place in 2009 (according to the Smithsonian Institution’s Global Volcanism Network).
Field-trip guides to selected volcanoes and volcanic landscapes of the western United States
,
2017-06-23
The North American Cordillera is home to a greater diversity of volcanic provinces than any comparably sized region in the world. The interplay between changing plate-margin interactions, tectonic complexity, intra-crustal magma differentiation, and mantle melting have resulted in a wealth of volcanic landscapes. Field trips in this guide book collection (published as USGS Scientific Investigations Report 2017–5022) visit many of these landscapes, including (1) active subduction-related arc volcanoes in the Cascade Range; (2) flood basalts of the Columbia Plateau; (3) bimodal volcanism of the Snake River Plain-Yellowstone volcanic system; (4) some of the world’s largest known ignimbrites from southern Utah, central Colorado, and northern Nevada; (5) extension-related volcanism in the Rio Grande Rift and Basin and Range Province; and (6) the eastern Sierra Nevada featuring Long Valley Caldera and the iconic Bishop Tuff. Some of the field trips focus on volcanic eruptive and emplacement processes, calling attention to the fact that the western United States provides opportunities to examine a wide range of volcanological phenomena at many scales.The 2017 Scientific Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) in Portland, Oregon, was the impetus to update field guides for many of the volcanoes in the Cascades Arc, as well as publish new guides for numerous volcanic provinces and features of the North American Cordillera. This collection of guidebooks summarizes decades of advances in understanding of magmatic and tectonic processes of volcanic western North America. These field guides are intended for future generations of scientists and the general public as introductions to these fascinating areas; the hope is that the general public will be enticed toward further exploration and that scientists will pursue further field-based research.
Integration and Testing of Miniaturized Volcanic Gas-Sensing Instruments on UAS Platforms
NASA Astrophysics Data System (ADS)
Lopez, T. M.; Kern, C.; Diaz, J. A.; Vanderwaal, S. J.; Levy, A.
2015-12-01
Volcanologists measure the concentrations and emission rates of gases emitted from active volcanoes to understand magmatic processes, which aids in eruption forecasting, and to evaluate air quality for human and environmental health. Both of these applications become particularly important during periods of unusually high volcanic unrest when it is typically hazardous to approach a given volcano. Unmanned aerial systems (UASs) represent a promising platform for continued gas measurements during unrest, while reducing the risk to volcanologists. Two miniature gas-sensing instruments have been developed specifically for integration onto small UAS platforms. Both instruments weigh 1 kg or less, including integrated power. The microDOAS instrument is an upward-looking UV/vis spectrometer that measures the spectral absorption signature of SO2 and certain halogen oxides in scattered solar radiation. By flying beneath a volcanic plume, the instrument can measure the SO2 content in the plume cross-section which can be used to determine the SO2 emission rate. The miniGas instrument is flown within the volcanic plume and records in situ concentrations of CO2, SO2 and H2S, as well as atmospheric temperature, pressure, relative humidity and GPS location. All data are telemetered back to the base station to immediately alert the operator of potentially hazardous conditions. Both instruments have been successfully tested at active volcanoes in Alaska and Costa Rica and were integrated onto small ACUASI Ptarmigan hexacopters. A test mission was conducted at the Poker Flat Research Range in Alaska. During this experiment both instruments were successfully flown in flight patterns typical of manned volcanic gas measurements and new UAV-specific measurement strategies were developed. Here we describe the instruments and platforms employed, our experimental results and observations, and make recommendations for application to volcanic settings.
NASA Astrophysics Data System (ADS)
Stebel, Kerstin; Prata, Fred; Theys, Nicolas; Tampellini, Lucia; Kamstra, Martijn; Zehner, Claus
2014-05-01
Over the last few years there has been a recognition of the utility of satellite measurements to identify and track volcanic emissions that present a natural hazard to human populations. Mitigation of the volcanic hazard to life and the environment requires understanding of the properties of volcanic emissions, identifying the hazard in near real-time and being able to provide timely and accurate forecasts to affected areas. Amongst the many ways to measure volcanic emissions, satellite remote sensing is capable of providing global quantitative retrievals of important microphysical parameters such as ash mass loading, ash particle effective radius, infrared optical depth, SO2 partial and total column abundance, plume altitude, aerosol optical depth and aerosol absorbing index. The eruption of Eyjafjallajökull in April May, 2010 led to increased research and measurement programs to better characterize properties of volcanic ash and the need to establish a data-base in which to store and access these data was confirmed. The European Space Agency (ESA) has recognized the importance of having a quality controlled data-base of satellite retrievals and has funded an activity called Volcanic Ash Strategic Initiative Team VAST (vast.nilu.no) to develop novel remote sensing retrieval schemes and a data-base, initially focused on several recent hazardous volcanic eruptions. In addition, the data-base will host satellite and validation data sets provided from the ESA projects Support to Aviation Control Service SACS (sacs.aeronomie.be) and Study on an end-to-end system for volcanic ash plume monitoring and prediction SMASH. Starting with data for the eruptions of Eyjafjallajökull, Grímsvötn, and Kasatochi, satellite retrievals for Puyhue-Cordon Caulle, Nabro, Merapi, Okmok, Kasatochi and Sarychev Peak will eventually be ingested. Dispersion model simulations are also being included in the data-base. Several atmospheric dispersion models (FLEXPART, SILAM and WRF-Chem) are used in VAST to simulate the dispersion of volcanic ash and SO2 emitted during an eruption. Source terms and dispersion model results will be given. In time, data from conventional in situ sampling instruments, airborne and ground-based remote sensing platforms and other meta-data (bulk ash and gas properties, volcanic setting, volcanic eruption chronologies, potential impacts etc.) will be added. Important applications of the data-base are illustrated related to the ash/aviation problem and to estimating SO2 fluxes from active volcanoes-as a means to diagnose future unrest. The data-base has the potential to provide the natural hazards community with a dynamic atmospheric volcanic hazards map and will be a valuable tool particularly for aviation.
GPS Signal Feature Analysis to Detect Volcanic Plume on Mount Etna
NASA Astrophysics Data System (ADS)
Cannavo', Flavio; Aranzulla, Massimo; Scollo, Simona; Puglisi, Giuseppe; Imme', Giuseppina
2014-05-01
Volcanic ash produced during explosive eruptions can cause disruptions to aviation operations and to population living around active volcanoes. Thus, detection of volcanic plume becomes a crucial issue to reduce troubles connected to its presence. Nowadays, the volcanic plume detection is carried out by using different approaches such as satellites, radars and lidars. Recently, the capability of GPS to retrieve volcanic plumes has been also investigated and some tests applied to explosive activity of Etna have demonstrated that also the GPS may give useful information. In this work, we use the permanent and continuous GPS network of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (Italy) that consists of 35 stations located all around volcano flanks. Data are processed by the GAMIT package developed by Massachusetts Institute of Technology. Here we investigate the possibility to quantify the volcanic plume through the GPS signal features and to estimate its spatial distribution by means of a tomographic inversion algorithm. The method is tested on volcanic plumes produced during the lava fountain of 4-5 September 2007, already used to confirm if weak explosive activity may or may not affect the GPS signals.
NASA Astrophysics Data System (ADS)
Vicente, Gilberto A.
An efficient iterative method has been developed to estimate the vertical profile of SO2 and ash clouds from volcanic eruptions by comparing near real-time satellite observations with numerical modeling outputs. The approach uses UV based SO2 concentration and IR based ash cloud images, the volcanic ash transport model PUFF and wind speed, height and directional information to find the best match between the simulated and the observed displays. The method is computationally fast and is being implemented for operational use at the NOAA Volcanic Ash Advisory Centers (VAACs) in Washington, DC, USA, to support the Federal Aviation Administration (FAA) effort to detect, track and measure volcanic ash cloud heights for air traffic safety and management. The presentation will show the methodology, results, statistical analysis and SO2 and Aerosol Index input products derived from the Ozone Monitoring Instrument (OMI) onboard the NASA EOS/Aura research satellite and from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument in the MetOp-A. The volcanic ash products are derived from AVHRR instruments in the NOAA POES-16, 17, 18, 19 as well as MetOp-A. The presentation will also show how a VAAC volcanic ash analyst interacts with the system providing initial condition inputs such as location and time of the volcanic eruption, followed by the automatic real-time tracking of all the satellite data available, subsequent activation of the iterative approach and the data/product delivery process in numerical and graphical format for operational applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, B.
1980-12-31
This document summarizes an oral presentation that described the potential for volcanic activity at the proposed Yucca Mountain, Texas repository site. Yucca Mountain is located in a broad zone of volcanic activity known as the Death Valley-Pancake Ridge volcanic zone. The probability estimate for the likelihood that some future volcanic event will intersect a buried repository at Yucca Mountain is low. Additionally, the radiological consequences of penetration of a repository by basaltic magma followed by eruption of the magma at the surface are limited. The combination of low probability and limited consequence suggests that the risk posed by waste storagemore » at this site is low. (TEM)« less
Nature's refineries — Metals and metalloids in arc volcanoes
Henley, R.W.; Berger, Byron R.
2013-01-01
Chemical data for fumaroles and for atmospheric gas and ash plumes from active arc volcanoes provide glimpses of the rates of release of metal and metalloids, such as Tl and Cd, from shallow and mid-crust magmas. Data from copper deposits formed in ancient volcanoes at depths of up to about 1500 m in the fractures below paleo-fumaroles, and at around 2000–4000 m in association with sub-volcanic intrusions (porphyry copper deposits) provide evidence of sub-surface deposition of Cu–Au–Ag–Mo and a range of other minor elements including Te, Se, As and Sb. These deposits, or ‘sinks’, of metals consistently record sustained histories of magmatic gas streaming through volcanic systems interspersed by continuing intrusive and eruptive activity. Here we integrate data from ancient and modern volcanic systems and show that the fluxes of metals and metalloids are controlled by a) the maintenance of fracture permeability in the stressed crust below volcanoes and b) the chemical processes that are triggered as magmatic gas, initially undersaturated with metals and metalloids, expands from lithostatic to very low pressure conditions through fracture arrays. The recognition of gas streaming may also account for the phenomenon of ‘excess degassing’, and defines an integral, but generally understated, component of active volcanic systems – a volcanic gas core – that is likely to be integral to the progression of eruptions to Plinean state.Destabilization of solvated molecular metal and metalloid species in magmatic gas mixtures and changes in their redox state are triggered, as it expands to the surface by abrupt pressure drops, or throttles' in the fracture array that guides expansion to the surface. The electronically harder, low electronegativity metals, such as copper and iron, deposit rapidly in response to expansion followed more slowly by arsenic with antimony as sulfosalts. Heavy, large radius, softer elements such as bismuth, lead, and thallium along with cadmium are strongly fractionated along the way, eventually venting their excess along with SO2, CO2, and other components of the carrier gas, into the atmosphere. These elements, many of which are toxic, may also be dispersed by mixing with groundwater in the permeable crust below volcanoes and generate potential health risks due to Hg, As, and Se contamination of drinking water resources.
NASA Astrophysics Data System (ADS)
Domínguez Cerdeña, Itahiza; Villasante-Marcos, Victor; Meletlidis, Stavros; Sainz-Maza, Sergio; Abella, Rafael; Torres, Pedro A.; Sánchez, Nieves; Luengo-Oroz, Natividad; José Blanco, María; García-Cañada, Laura; Pereda de Pablo, Jorge; Lamolda, Héctor; Moure, David; Del Fresno, Carmen; Finizola, Anthony; Felepto, Alicia
2017-04-01
Teide-Pico Viejo complex stands for one of the major natural volcanic hazards in the Canary Islands, due to the expected types of eruptions in the area and the high number of inhabitants in Tenerife Island. Therefore, it is necessary to have a volcanic alert system able to afford a precise assessment of the current state of the complex. For this purpose, the knowledge of the expected signals at each volcanic activity level is required. Moreover, the external effects that can affect the measurements shall be distinguished, external influences as the atmosphere are qualitatively known but have not been quantified yet. The objective of the project is to collect, analyze and jointly and continuously evaluate over time geophysical, geodetic, geochemical and meteorological data from the Teide-Pico Viejo complex and its surroundings. A continuous multiparametric network have been deployed in the area, which, together with the data provided by the Volcano Monitoring Network of the Instituto Geográfico Nacional (IGN) and data from other institutions will provide a comprehensive set of data with high resolution in both space and time. This multiparametric network includes a seismic array, two self-potential lines for continuous measurements, five magnetometers and two weather stations. The network will be complemented with 8 CGPS stations, one tiltmeter, 10 seismic stations, and four thermometric stations on the fumaroles of Teide volcano that IGN already manage in Tenerife. The data will be completed with the results from different repeated surveys of self potential, soil temperature and CO2 diffuse flux in several pre-established areas on top of Teide throughout the entire duration of project. During the project, new computation tools will be developed to study the correlation between the different parameters analyzed. The results obtained will characterize the possible seasonal fluctuations of each parameter and the variations related to meteorological phenomena. In addition, they will allow identifying the response of all the analyzed parameters to specific events that are traditionally studied with a single technique, such as short episodes of tremor (sporadically registered in Teide-Pico Viejo surroundings) or changes in activity of the hydrothermal system of the volcanic complex. We present here the first multiparametric results obtained from the project, including locations with the seismic array, CO2 and temperature maps of Teide fumaroles zones and magnetometric measurements.
NASA Astrophysics Data System (ADS)
Olmos, R.; Barahona, F.; Cartagena, R.; Soriano, T.; Salazar, J.; Hernandez, P.; Perez, N.; Notsu, K.; Lopez, D.
2001-12-01
Santa Ana volcanic complex (0.22 Ma), located 40 Km west of San Salvador, comprises Santa Ana, Izalco, and Cerro Verde stratovolcanoes, the Coatepeque collapse caldera, as well as several cinder cones and explosion craters. Most recent activity has occurred at Izalco (1966) and Santa Ana which shows a permanent acidic crater lake with an intense fumarolic activity. In addition, Santa Ana exhibits a SO2-rich rising plume though no local seismicity has been reported. Weak fumarolic activity is also present at two locations within the Santa Ana volcanic complex: the summit crater of Izalco and Cerro Pacho at Coatepeque caldera. Other important structural features of this volcanic complex are two fault/fissure systems running NNW-SSE that can be identified by the alignment of the stratovolcanoes and numerous cinder cones and explosion craters. In January 2001, a 7.6 magnitude earthquake occurred about 150 Km SE of Santa Ana volcano. A soil gas and CO2 efflux survey was performed to evaluate the impact of this seismic event upon the diffuse degassing rates in Santa Ana volcanic complex in March 2001. A total of 450 soil gas and diffuse CO2 efflux measurements were carried out covering an area of 209.5 Km2. CO2 efflux ranged from non-detectable values to 293 gm-2d-1, with a median of 8.9 gm-2d-1 and an upper quartile of 5.2 gm-2d-1. The CO2 efflux spatial distribution reveals the existence of areas with CO2 efflux higher than 60 gm-2d-1 associated to the fault/fissure systems of NNW-SSE orientation. One of these areas, Cerro Pacho, was selected for the continuous monitoring of diffuse CO2 efflux in late May 2001. Secular variations of diffuse CO2 efflux ranged from 27.4 to 329 gm-2d-1 with a median of 130 gm-2d-1 and a quartile range of 59.3 gm-2d-1. An increasing trend of 43 gm-2d-1 was observed between May and August 2001 overlapped to high-frequency minor fluctuations related to meteorological variables' changes. However, a larger observation time-span is needed to understand the influence of the rainy-season and meteorological parameters in the observed CO2 efflux time series.
NASA Astrophysics Data System (ADS)
Glikson, Andrew Y.
2008-03-01
The role of asteroid and comet impacts as triggers of mantle-crust processes poses one of the fundamental questions in Earth science. I present direct field evidence for close associations between impact ejecta/fallout units, major unconformities and lithostratigraphic boundaries in Archaean and early Proterozoic terrains, including abrupt changes in the composition of volcanic and sedimentary assemblages across stratigraphic impact boundaries, with implications for the nature and composition of their provenance terrains. As originally observed by D.R. Lowe and G.R. Byerly, in the Barberton Greenstone Belt, eastern Kaapvaal Craton, South Africa, 3.26-3.24 Ga asteroid mega-impact units are closely associated with the abrupt break between an underlying simatic mafic-ultramafic volcanic crust and an overlying association of turbidites, banded iron formations, felsic tuff and conglomerates of continental affinities. Contemporaneous stratigraphic relationships are identified in the Pilbara Craton, Western Australia. Evidence for enrichment of seawater in ferrous iron in the wake of major asteroid impacts reflects emergence of new source terrains, likely dominated by mafic compositions, attributed to impact-triggered oceanic volcanic activity. Relationships between impact and volcanic activity are supported by the onset of major mafic dyke systems associated with ~ 2.48 Ga and possibly the 2.56 Ga mega-impact events.
Linking Plagioclase Zoning Patterns to Active Magma Processes
NASA Astrophysics Data System (ADS)
Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Eichelberger, J. C.; Plechov, P.
2016-12-01
Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Augustine and Cleveland Volcanoes in Alaska, Sakurajima Volcano in Japan, Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, as well as from the drilling into an active magma body at Krafla, Iceland.
Volcanic hazard management in dispersed volcanism areas
NASA Astrophysics Data System (ADS)
Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon
2014-05-01
Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.
Calabrese, S; D'Alessandro, W; Bellomo, S; Brusca, L; Martin, R S; Saiano, F; Parello, F
2015-01-01
Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Poppe, Sam; Smets, Benoît; Fontijn, Karen; Rukeza, Montfort Bagalwa; De Marie Fikiri Migabo, Antoine; Milungu, Albert Kyambikwa; Namogo, Didier Birimwiragi; Kervyn, François; Kervyn, Matthieu
2016-11-01
The Virunga Volcanic Province (VVP) represents the most active zone of volcanism in the western branch of the East African Rift System. While the VVP's two historically active volcanoes, Nyamulagira and Nyiragongo, have built scoria cones and lava flows in the adjacent lava fields, several small phreatomagmatic eruptive centers lie along Lake Kivu's northern shoreline, highlighting the potential for explosive magma-water interaction. Their presence in the densely urbanized Sake-Goma-Gisenyi area necessitates an assessment of their eruptive mechanisms and chronology. Some of these eruptive centers possess multiple vents, and depositional contacts suggest distinct eruptive phases within a single structure. Depositional facies range from polymict tuff breccia to tuff and loose lapilli, often impacted by blocks and volcanic bombs. Along with the presence of dilute pyroclastic density current (PDC) deposits, indicators of magma-water interaction include the presence of fine palagonitized ash, ash aggregates, cross-bedding, and ballistic impact sags. We estimate that at least 15 phreatomagmatic eruptions occurred in the Holocene, during which Lake Kivu rose to its current water level. Radiocarbon dates of five paleosols in the top of volcanic tuff deposits range between ˜2500 and ˜150 cal. year bp and suggest centennial- to millennial-scale recurrence of phreatomagmatic activity. A vast part of the currently urbanized zone on the northern shoreline of Lake Kivu was most likely impacted by products from phreatomagmatic activity, including PDC events, during the Late Holocene, highlighting the need to consider explosive magma-water interaction as a potential scenario in future risk assessments.
Sorey, M.L.; Suemnicht, G.A.; Sturchio, N.C.; Nordquist, G.A.
1991-01-01
Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer definition of the hydrothermal system in Long Valley caldera than was previously available. This information confirms the existence of high-temperature (> 200??C) reservoirs within the volcanic fill in parts of the west moat. These reservoirs contain fluids which are chemically similar to thermal fluids encountered in the central and eastern parts of the caldera. The roots of the present-day hydrothermal system (the source reservoir, principal zones of upflow, and the magmatic heat source) most likely occur within metamorphic basement rocks beneath the western part of the caldera. Geothermometer-temperature estimates for the source reservoir range from 214 to 248??C. Zones of upflow of hot water could exist beneath the plateau of moat rhyolite located west of the resurgent dome or beneath Mammoth Mountain. Lateral flow of thermal water away from such upflow zones through reservoirs in the Bishop Tuff and early rhyolite accounts for temperature reversals encountered in most existing wells. Dating of hot-spring deposits from active and inactive thermal areas confirms previous interpretations of the evolution of hydrothermal activity that suggest two periods of extensive hot-spring discharge, one peaking about 300 ka and another extending from about 40 ka to the present. The onset of hydrothermal activity around 40 ka coincides with the initiation of rhyolitic volcanism along the Mono-Inyo Craters volcanic chain that extends beneath the caldera's west moat. ?? 1991.
NASA Astrophysics Data System (ADS)
Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia
2015-04-01
Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same soil sample and quantified spectrophotometrically using a Nanodrop ND-1000. Analysis of variance (ANOVA) was carried out in order to evaluate the significant differences in SMCs activity between all soil matrices. To associate the SMCs responses to the tracers of distinct agricultural farming systems, data were further explored under Principal Component Analysis (PCA). Biomarkers responses were combined into a stress index (IBR), described by Beliaeff & Burgeot (2002). Results/Discussion: All SMCs parameters displayed significant differences between agricultural soils and reference soils, except for metabolic quotient and RNA to DNA ratio (p<0.05), revealing that SMCs are suitable bioindicators of agricultural soil quality in volcanic soils. No significant differences were found for the soil basal respiration and acid phosphatase among the farming systems, suggesting that soils amendments (a cross farming practice) are a stressing factor disrupting local SMCs activities. The PCA analysis revealed that lithium is the priority metal affecting the SMCs responses in conventional farming systems. The IBR values indicated that soils ecosystem health between farming systems are ranked as: organic (4.96) > traditional (12.94) > conventional (17.28) (the higher the value, the worse the soil health status). Conclusion: Results support the soil microbial toolbox as suitable bioindicators of metal pollution in agricultural volcanic soils, highlighting the importance of integrated biomarker-based strategies for the development of the "Trace Metal Footprint" in Andosols.
Active and Recent Volcanism and Hydrogeothermal Activity on Mars
NASA Astrophysics Data System (ADS)
Edgett, Kenneth S.; Cantor, B. A.; Harrison, T. N.; Kennedy, M. R.; Lipkaman, L. J.; Malin, M. C.; Posiolova, L. V.; Shean, D. E.
2010-10-01
There are no active volcanoes or geysers on Mars today, nor in the very recent past. Since 1997, we have sought evidence from targeted narrow angle camera images and daily, global wide angle images for active or very recent (decades to < 10 Ma) volcanism or hydrogeothermal events on Mars. Despite > 11 years of daily global imaging and coverage of > 60% of Mars at ≤ 6 m/pixel (with the remaining < 40% largely outside of volcanic regions), we have found no such evidence, although one lava field in Aeolis (5°N, 220°W) stands out as possibly the site of the most recent volcanism. Authors of impact crater size-frequency studies suggest some volcanic landforms on Mars are as young as tens to hundreds of Ma. This interpreted youth has implications for understanding the internal geophysical state of Mars and has encouraged those seeking sources for trace gases (methane) in the atmosphere and those seeking "warm havens for life” (Jakosky 1996, New Scientist 150, 38-42). We targeted thousands of Mars Global Surveyor (MGS) MOC and Mars Reconnaissance Orbiter (MRO) CTX (and HiRISE) images to examine volcanic regions; we also studied every MGS MOC and MRO MARCI wide angle image. For evidence of active volcanism, we sought eruption plumes, new vents, new tephra deposits, and new volcanogenic flows not observed in earlier images. For recent volcanism, we sought volcanogenic flows with zero or few superposed impact craters and minimal regolith development or superposed eolian sediment. Targets included all volcanic landforms identified in research papers as "recent” as well as areas speculated to have exhibited eruptive plumes. An independent search for endogenic heat sources, a key Mars Odyssey THEMIS objective, has also not produced a positive result (Christensen et al. 2005, P24A-01, Eos, Trans. Am. Geophys. Union 86/52).
McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander
2014-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
Holocene volcanism of the upper McKenzie River catchment, central Oregon Cascades, USA
Deligne, Natalia I.; Conrey, Richard M.; Cashman, Katharine V.; Champion, Duane E.; Amidon, William H.
2016-01-01
To assess the complexity of eruptive activity within mafic volcanic fields, we present a detailed geologic investigation of Holocene volcanism in the upper McKenzie River catchment in the central Oregon Cascades, United States. We focus on the Sand Mountain volcanic field, which covers 76 km2 and consists of 23 vents, associated tephra deposits, and lava fields. We find that the Sand Mountain volcanic field was active for a few decades around 3 ka and involved at least 13 eruptive units. Despite the small total volume erupted (∼1 km3 dense rock equivalent [DRE]), Sand Mountain volcanic field lava geochemistry indicates that erupted magmas were derived from at least two, and likely three, different magma sources. Single units erupted from one or more vents, and field data provide evidence of both vent migration and reoccupation. Overall, our study shows that mafic volcanism was clustered in space and time, involved both explosive and effusive behavior, and tapped several magma sources. These observations provide important insights on possible future hazards from mafic volcanism in the central Oregon Cascades.
NASA Astrophysics Data System (ADS)
Dadd, K. A.
1992-11-01
The Middle to Late Devonian Yalwal Volcanics, Comerong Volcanics, Boyd Volcanic Complex and associated gabbroic and A-type granitic plutons form part of a continental volcano-tectonic belt, the Eden-Comerong-Yalwal Volcanic Zone (EVZ), located parallel to the coast of southeastern Australia. The EVZ is characterised by an elongate outcrop pattern, bimodal basalt-rhyolite volcanism, and a paucity of sedimentary rocks. Volcanic centres were located along the length of the volcanic zone at positions indicated by subvolcanic plutons, dykes, rhyolite lavas and other proximal vent indicators including surge bedforms in tuff rings, and hydrothermal alteration. Previous interpretations that suggested the volcanic zone was a fault bounded rift are rejected in favour of a volcano-tectonic belt. The Yellowstone-Snake River Plain region (Y-SRP) in the USA is an appropriate analogue. Both regions have basalt lavas which range in composition from olivine tholeiite to ferrobasalt, alkalic rhyolitic rocks enriched in Y, Zr and Th, large rhyolite lava flows, plains-type basalt lava flows, and a paucity of sedimentary rocks. The Y-SRP is inferred to have developed by migration of the American plate over a fixed hot spot leading to a northeast temporal progression of the focus of volcanic activity. Application of a similar hot spot model to the EVZ (using a length of 300 km and a time range for volcanic activity of 5-10 Ma), suggests that during the Middle to Late Devonian the Australian plate was moving at a rate of between 3 and 6 cm/yr relative to the hot spot and that the northern extent of the volcanic zone at any time was a topographically high region with rhyolitic activity, similar to present day Yellowstone. As the focus of activity moved northward, the high region subsided and the depression was flooded by basalt. The EVZ was much wider (up to 70 km) and much longer than the belt defined by present-day outcrop and was of comparable scale to the Y-SRP. The main difference between the two volcanic belts is the lack of large pyroclastic flows and identifiable caldera complexes in the EVZ.
Volcanic Seismicity - The Power of the b-value
NASA Astrophysics Data System (ADS)
Main, I. G.; Roberts, N.; Bell, A. F.
2016-12-01
The Gutenberg-Richter `b-value' is commonly used in volcanic eruption forecasting to infer material or mechanical properties from earthquake distributions. It is `well known' that the b-value tends to be high or very high for volcanic earthquake populations relative to b = 1 for those of tectonic earthquakes, and that b varies significantly with time during periods of unrest. Subject to suitable calibration the b-value also allows us to quantify and characterise earthquake distributions of both ancient and currently-active populations, as a measure of the frequency-size distribution of source rupture area or length. Using a new iterative sampling method (Roberts et al. 2016), we examine data from the El Hierro seismic catalogue during a period of unrest in 2011-2013, and quantify the resulting uncertainties. The results demonstrate commonly-applied methods of assessing uncertainty in b-value significantly underestimate the total uncertainty, particularly when b is high. They also show clear multi-modal behaviour in the evolution of the b-value. Individual modes are relatively stable in time, but the most probable b-value intermittently switches between modes, one of which is similar to that of tectonic seismicity, and some are genuinely higher within the total error. A key benefit of this approach is that it is able to resolve different b-values associated with contemporaneous processes, even in the case where some generate high rates of events for short durations and others low rates for longer durations. These characteristics that are typical for many volcanic processes. Secondly, we use a range field observations from the exhumed extinct magma chamber on the Isle of Rum, NW Scotland, to infer an equivalent a b-value for the `frozen' fracture system that would have been active at the time of volcanism 65Ma ago. Using measurements from millimetre-scale fractures to lineation's on satellite imagery over 100m in length, we estimate b=1.8, significantly greater than the typical tectonic value, and in line with the present-day observations at El Hierro and other volcanic systems.
Health hazards and disaster potential of ground gas emissions at Furnas volcano, São Miguel, Azores
NASA Astrophysics Data System (ADS)
Baxter, Peter J.; Baubron, Jean-Claude; Coutinho, Rui
1999-09-01
A health hazard assessment of exposure to soil gases (carbon dioxide and radon) was undertaken in the village of Furnas, located in the caldera of an active volcano. A soil survey to map the area of soil gas flow was undertaken, gas emissions were monitored at fumaroles and in eight houses, and a preliminary radon survey of 23 houses in the main anomaly area was performed. Potential volcanic sources of toxic contamination of air, food, and water were also investigated, and ambient air quality was evaluated. About one-third (41 ha) of the houses were located in areas of elevated carbon dioxide soil degassing. Unventilated, confined spaces in some houses contained levels of carbon dioxide which could cause asphyxiation. Mean indoor radon levels exceeded UK and US action levels in the winter months. A tenfold increase in radon levels in one house over 2 h indicated that large and potentially lethal surges of carbon dioxide could occur without warning. Toxic exposures from the gaseous emissions and from contamination of soil and water were minimal, but sulphur dioxide levels were mildly elevated close to fumaroles. In contrast, evidence of dental fluorosis was manifested in the population of the nearby fishing village of Ribeira Quente where drinking water in the past had contained elevated levels of fluoride. The disaster potential of volcanic carbon dioxide in the area could also be associated with the hydrothermal system storing dissolved carbon dioxide beneath the village. Felt, or unfelt, seismic activity, or magma unrest, especially with a reawakening of explosive volcanic activity (30% probability in the next 100 years) could result in an increase in gas flow or even a gas burst from the hydrothermal system. A survey of all houses in Furnas is advised as structural measures to prevent the ingress of soil gases, including radon, were needed in some of the study houses. Evaluations of the human hazards of volcanic gases should be undertaken in all settlements in volcanic and hydrothermal areas associated with soil gas emissions.
NASA Astrophysics Data System (ADS)
Capaccioni, B.; Cinelli, G.; Mostacci, D.; Tositti, L.
2012-12-01
Volcanic rocks in the Vulsini Volcanic District (Central Italy) contain high concentrations of 238U, 232Th and 40K due to subduction-related metasomatic enrichment of incompatible elements in the mantle source coupled with magma differentiation within the upper crust. Due to their favorable mechanical properties they have been extensively used for construction since the Etruscan age. In the old buildings of the Bolsena village, one of the most populated ancient village in the area, the major source of indoor radioactivity is 222Rn, a radioactive noble gas descendant of 238U. Direct 222Rn indoor measurements have detected extremely high values in the old center due to the combined effect of building materials, radon fluxes from the volcanic basement and low air exchange rates. In these cases the evaluated risk of developing lung cancer within a 75 year lifetime reaches up to 40% for ever smokers. Simulations of "standard rooms" built with different tuffs and lavas collected from the Vulsini Volcanic District have also provided estimations of the effective doses and lifetime risk for radiogenic cancer. Other than by the method adopted for calculation, the total evaluated risk for each volcanic rock depends on different parameters, such as: radionuclide content, radon emanation power, occupancy factor and air exchange rate. Occupancy factor and air exchange rate appear as the only controlling parameters able to mitigate the indoor radiological risk.
Future volcanic lake research: revealing secrets from poorly studied lakes
NASA Astrophysics Data System (ADS)
Rouwet, D.; Tassi, F.; Mora-Amador, R. A.
2012-04-01
Volcanic lake research boosted after the 1986 Lake Nyos lethal gas burst, a limnic rather than volcanic event. This led to the formation of the IAVCEI-Commission on Volcanic Lakes, which grew out into a multi-disciplinary scientific community since the 1990's. At Lake Nyos, a degassing pipe is functional since 2001, and two additional pipes were added in 2011, aimed to prevent further limnic eruption events. There are between 150 and 200 volcanic lakes on Earth. Some acidic crater lakes topping active magmatic-hydrothermal systems are monitored continuously or discontinuously. Such detailed studies have shown their usefulness in volcanic surveillance (e.g. Ruapehu, Yugama-Kusatsu-Shiran, Poás). Others are "Nyos-type" lakes, with possible gas accumulation in bottom waters and thus potentially hazardous. "Nyos-type" lakes tend to remain stably stratified in tropical and sub-tropical climates (meromictic), leading to long-term gas build-up and thus higher potential risk. In temperate climates, such lakes tend to turn over in winter (monomictic), and thus liberating its gas charge yearly. We line out research strategies for the different types of lakes. We believe a complementary, multi-disciplinary approach (geochemistry, geophysics, limnology, biology, statistics, etc.) will lead to new insights and ideas, which can be the base for future following-up and monitoring. After 25 years of pioneering studies on rather few lakes, the scientific community should be challenged to study the many poorly studied volcanic lakes, in order to better constrain the related hazard, based on probabilistic approaches.
NASA Astrophysics Data System (ADS)
Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel
2014-11-01
We applied self-potential (SP) and electrical resistivity tomography (ERT) to the exploration of the uppermost part of the substrate geology and shallow structure of La Garrotxa monogenetic volcanic field, part of the European Neogene-Quaternary volcanic province. The aim of the study was to improve knowledge of the shallowest part of the feeding system of these monogenetic volcanoes and of its relationship with the subsurface geology. This study complements previous geophysical studies carried out at a less detailed scale and aimed at identifying deeper structures, and together will constitute the basis to establish volcanic susceptibility in La Garrotxa. SP study complemented previous smaller-scale studies and targeted key areas where ERT could be conducted. The main new results include the generation of resistivity models identifying dykes and faults associated with several monogenetic cones. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These structures coincide with the deeper ones identified in previous studies, and show that previous Alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Moreover, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area are controlled by shallow stratigraphical, structural and hydrogeological differences underneath these monogenetic volcanoes.
NASA Astrophysics Data System (ADS)
Barnoud, Anne; Coutant, Olivier; Bouligand, Claire; Gunawan, Hendra; Deroussi, Sébastien
2016-04-01
We use a Bayesian formalism combined with a grid node discretization for the linear inversion of gravimetric data in terms of 3-D density distribution. The forward modelling and the inversion method are derived from seismological inversion techniques in order to facilitate joint inversion or interpretation of density and seismic velocity models. The Bayesian formulation introduces covariance matrices on model parameters to regularize the ill-posed problem and reduce the non-uniqueness of the solution. This formalism favours smooth solutions and allows us to specify a spatial correlation length and to perform inversions at multiple scales. We also extract resolution parameters from the resolution matrix to discuss how well our density models are resolved. This method is applied to the inversion of data from the volcanic island of Basse-Terre in Guadeloupe, Lesser Antilles. A series of synthetic tests are performed to investigate advantages and limitations of the methodology in this context. This study results in the first 3-D density models of the island of Basse-Terre for which we identify: (i) a southward decrease of densities parallel to the migration of volcanic activity within the island, (ii) three dense anomalies beneath Petite Plaine Valley, Beaugendre Valley and the Grande-Découverte-Carmichaël-Soufrière Complex that may reflect the trace of former major volcanic feeding systems, (iii) shallow low-density anomalies in the southern part of Basse-Terre, especially around La Soufrière active volcano, Piton de Bouillante edifice and along the western coast, reflecting the presence of hydrothermal systems and fractured and altered rocks.
Resuspended volcanic ash from Katmai, Alaska
2017-12-08
The Valley of Ten Thousand Smokes, located in Katmai National Park, forms a unique and ashen landscape. Encircled by volcanoes – both active and inactive – it has served as a perfect collection area for huge amounts of volcanic ash. According to the Alaska Historical Society (AHS), 2012 marked the centennial anniversary of the volcanic eruption that formed the valley, and led to the establishment, in 1918, of Katmai National Park. A massive eruption rocked the region on June 6, 1912 as the then-unknown volcano, Novarupta, became suddenly and violently active. According to the AHS, it erupted with “such force that mountains collapsed, ash darkened summer skies, earthquakes rocked population centers and were recorded as far away as Washington, D.C.” Glowing hot ash was reported to have smothered an area covering 40 square miles, and up to 700 feet deep. While the active volcanoes surrounding the valley - Novarupta, Mt. Mageik, Trident Volcano, Mt. Griggs, Mt. Martin and Mt. Katmai - have remained relatively quiescent, their ashen legacy continues to affect the landscape – and air traffic - even a century after it was laid down. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image on September 29, 2014. Volcanic ash from the Katmai region has been lifted aloft by strong winds, and is blowing to the southeast, over Shelikof Strait, Kodiak Island, and the Gulf of Alaska. Although such clouds are not from active volcanoes, the remobilized volcanic ash still provides a potential hazard to aircraft flying through the region. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Ebmeier, S.K.; Sayer, Andrew M.; Grainger, R. G.; Mather, T. A.; Carboni, E.
2014-01-01
The impact of volcanic emissions, especially from passive degassing and minor explosions, is a source of uncertainty in estimations of aerosol indirect effects. Observations of the impact of volcanic aerosol on clouds contribute to our understanding of both present-day atmospheric properties and of the pre-industrial baseline necessary to assess aerosol radiative forcing. We present systematic measurements over several years at multiple active and inactive volcanic islands in regions of low present-day aerosol burden. The timeaveraged indirect aerosol effects within 200 kilometers downwind of island volcanoes are observed using Moderate Resolution Imaging Spectroradiometer (MODIS, 2002-2013) and Advanced Along-Track Scanning Radiometer (AATSR, 2002- 2008) data. Retrievals of aerosol and cloud properties at Kilauea (Hawaii), Yasur (Vanuatu) and Piton de la Fournaise (la Reunion) are rotated about the volcanic vent to be parallel to wind direction, so that upwind and downwind retrievals can be compared. The emissions from all three volcanoes - including those from passive degassing, Strombolian activity and minor explosions - lead to measurably increased aerosol optical depth downwind of the active vent. Average cloud droplet effective radius is lower downwind of the volcano in all cases, with the peak difference ranging from 2 - 8 micrometers at the different volcanoes in different seasons. Estimations of the difference in Top of Atmosphere upward Short Wave flux upwind and downwind of the active volcanoes from NASA's Clouds and the Earth's Radiant Energy System (CERES) suggest a downwind elevation of between 10 and 45 Watts per square meter at distances of 150 - 400 kilometers from the volcano, with much greater local (less than 80 kilometers) effects. Comparison of these observations with cloud properties at isolated islands without degassing or erupting volcanoes suggests that these patterns are not purely orographic in origin. Our observations of unpolluted, isolated marine settings may capture processes similar to those in the pre-industrial marine atmosphere.
NASA Astrophysics Data System (ADS)
Morgan, G. A.; Campbell, B. A.; Carter, L. M.; Plaut, J. J.
2011-12-01
Situated between the equator and 12°N and extending from 130° to 180°E, Elysium Planitia is considered to be the youngest volcanic plain on Mars. Recent crater counts on individual lava units argue for multiple phases of activity over the last 230 Myrs, with the most recent volcanic features dating to just ~2 Ma. The region also contains the youngest outflow channels on the planet. Multiple channel systems which are present across the region are interpreted to have been carved by the release of deep ground water (>1 km) from the broadly east-west trending Cerberus Fossae graben system. Elysium Planitia is therefore a region of high scientific interest, as it represents an ideal site to investigate the interaction of lava and water both below and on the surface of Mars. Extensive geologic mapping of Elysium Planitia has provided detailed information concerning the stratigraphy of the major volcanic units in addition to the classification of other landforms attributed to volcanic (e.g. small shields), fluvial (e.g. outflow channels) and aeolian (e.g. yardangs) activity. Orbital sounding radar provides a means to take this work to the next level through the mapping of buried surfaces associated with a contrast in dielectric permittivity and thus can be used to investigate the 3-D structure of the subsurface. Previous studies using the SHARAD radar sounder onboard the Mars Reconnaissance Orbiter have identified multiple subsurface reflectors below the plains of Elysium Planitia. We will present our investigation of SHARAD data covering the eastern portion of this region of Mars - an area that includes the upstream reaches of Marte Vallis and the eastern extent of Cerberus Fossae. Our subsurface mapping shows remarkable correlations with published geologic maps produced using visible orbital datasets. These similarities allow us to use SHARAD data to make estimates of the average permittivity values and imply density measurements of the volcanic units. We will present these estimates and compare them to values derived over other young volcanic regions on Mars. Sounding radar provides the only type of orbital instrument to derive bulk estimates of geochemical properties of martian volcanic materials. Additionally we have identified the original fluvial eroded bed of Marte Vallis, prior to burial by younger lava flows. Through the mapping of the associated fluvial features we are able to tie the origin of Marte Vallis to Cerberus Fossae and provide further support for the recent (Late Amazonian) deep subsurface release of water on the surface of Mars. Our work will provide valuable constraints on the influence of recent volcanism on martian subsurface reservoirs of water.
NASA Astrophysics Data System (ADS)
Suckale, J.; Qin, Z.; Picchi, D.; Keller, T.
2017-12-01
Many active volcanoes erupt significantly less magma than they degas, implying that large quantities of magma must descend back into the plumbing system after degassing. The resulting bidirectional flow field in the volcanic conduit is fundamentally unstable. These instabilities are important to understand, because they likely control the episodicity of eruptive behavior observed at persistently degassing volcanoes. Laboratory experiments have provided invaluable insights into the flow regimes that may arise in volcanic conduits, but are not straightforward to scale up to volcanic systems. The goal of this study is to use direct numerical simulations to virtually reproduce the analogue experiments by Stevenson and Blake, 1998, compare them to simple analytical models and gain insights into the different flow regimes and interface instabilities observed in actual volcanic conduits. Direct numerical simulations provide a compelling complement to analogue experiments, because they are not constrained by the scales or flow properties achievable in a laboratory setting. By linking virtual and analogue experiments, we show that the interface between ascending and descending fluid is not usually stationary in volcanic conduits (see fig). The intuition that buoyant, volatile-rich magma moves up while heavy, degassed magma moves down is hence not generally true in bidirectional conduit flow. Instead, our results show that a potentially significant portion of the volatile-rich magma flows downwards despite its positive buoyancy - a process commonly referred to as backflow. The existence of backflow in volcanic conduits has potentially important ramifications for understanding melt-inclusion trends, because it affects exsolved and dissolved volatile components differently. Our preliminary results suggest that carbon dioxide bubbles exsolved at depth tend to decouple from the backflow and escape into the upward moving portion of the fluid, while dissolved water is recycled back to depth. The ascending magma, which is likely sampled by eruptive products, is hence enriched in carbon dioxide but deprived of water, which could be reflected in the common observation that melt inclusions from persistently degassing volcanic systems appear to be shifted to higher carbon dioxide contents for a given amount of water.
SO2 flux and the thermal power of volcanic eruptions
NASA Astrophysics Data System (ADS)
Henley, Richard W.; Hughes, Graham O.
2016-09-01
A description of the dynamics, chemistry and energetics governing a volcanic system can be greatly simplified if the expansion of magmatic gas can be assumed to be adiabatic as it rises towards the surface. The conditions under which this assumption is valid are clarified by analysis of the transfer of thermal energy into the low conductivity wallrocks traversed by fractures and vents from a gas phase expanding over a range of mass flux rates. Adiabatic behavior is predicted to be approached typically within a month after perturbations in the release of source gas have stabilized, this timescale being dependent upon only the characteristic length scale on which the host rock is fractured and the thermal diffusivity of the rock. This analysis then enables the thermal energy transport due to gas release from volcanoes to be evaluated using observations of SO2 flux with reference values for the H2O:SO2 ratio of volcanic gas mixtures discharging through high temperature fumaroles in arc and mantle-related volcanic systems. Thermal power estimates for gas discharge are 101.8 to 104.1 MWH during quiescent, continuous degassing of arc volcanoes and 103.7 to 107.3 MWH for their eruptive stages, the higher value being the Plinean Pinatubo eruption in 1991. Fewer data are available for quiescent stage mantle-related volcanoes (Kilauea 102.1 MWH) but for eruptive events power estimates range from 102.8 MWH to 105.5 MWH. These estimates of thermal power and mass of gas discharges are commensurate with power estimates based on the total mass of gas ejected during eruptions. The sustained discharge of volcanic gas during quiescent and short-lived eruptive stages can be related to the hydrodynamic structure of volcanic systems with large scale gaseous mass transfer from deep in the crust coupled with episodes of high level intrusive activity and gas release.
Earthquake swarms and local crustal spreading along major strike-slip faults in California
Weaver, C.S.; Hill, D.P.
1978-01-01
Earthquake swarms in California are often localized to areas within dextral offsets in the linear trend in active fault strands, suggesting a relation between earthquake swarms and local crustal spreading. Local crustal spereading is required by the geometry of dextral offsets when, as in the San Andreas system, faults have dominantly strike-slip motion with right-lateral displacement. Three clear examples of this relation occur in the Imperial Valley, Coso Hot Springs, and the Danville region, all in California. The first two of these areas are known for their Holocene volcanism and geothermal potential, which is consistent with crustal spreading and magmatic intrusion. The third example, however, shows no evidence for volcanism or geothermal activity at the surface. ?? 1978 Birkha??user Verlag.
Technical-Information Products for a National Volcano Early Warning System
Guffanti, Marianne; Brantley, Steven R.; Cervelli, Peter F.; Nye, Christopher J.; Serafino, George N.; Siebert, Lee; Venezky, Dina Y.; Wald, Lisa
2007-01-01
Introduction Technical outreach - distinct from general-interest and K-12 educational outreach - for volcanic hazards is aimed at providing usable scientific information about potential or ongoing volcanic activity to public officials, businesses, and individuals in support of their response, preparedness, and mitigation efforts. Within the context of a National Volcano Early Warning System (NVEWS) (Ewert et al., 2005), technical outreach is a critical process, transferring the benefits of enhanced monitoring and hazards research to key constituents who have to initiate actions or make policy decisions to lessen the hazardous impact of volcanic activity. This report discusses recommendations of the Technical-Information Products Working Group convened in 2006 as part of the NVEWS planning process. The basic charge to the Working Group was to identify a web-based, volcanological 'product line' for NVEWS to meet the specific hazard-information needs of technical users. Members of the Working Group were: *Marianne Guffanti (Chair), USGS, Reston VA *Steve Brantley, USGS, Hawaiian Volcano Observatory HI *Peter Cervelli, USGS, Alaska Volcano Observatory, Anchorage AK *Chris Nye, Division of Geological and Geophysical Surveys and Alaska Volcano Observatory, Fairbanks AK *George Serafino, National Oceanic and Atmospheric Administration, Camp Springs MD *Lee Siebert, Smithsonian Institution, Washington DC *Dina Venezky, USGS, Volcano Hazards Team, Menlo Park CA *Lisa Wald, USGS, Earthquake Hazards Program, Golden CO
NASA Astrophysics Data System (ADS)
Buongiorno, Maria Fabrizia; Musacchio, Massimo; Silvestri, Malvina; Spinetti, Claudia; Corradini, Stefano; Lombardo, Valerio; Merucci, Luca; Sansosti, Eugenio; Pugnagli, Sergio; Teggi, Sergio; Pace, Gaetano; Fermi, Marco; Zoffoli, Simona
2007-10-01
The Project called Sistema Rischio Vulcanico (SRV) is funded by the Italian Space Agency (ASI) in the frame of the National Space Plan 2003-2005 under the Earth Observations section for natural risks management. The SRV Project is coordinated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) which is responsible at national level for the volcanic monitoring. The objective of the project is to develop a pre-operative system based on EO data and ground measurements integration to support the volcanic risk monitoring of the Italian Civil Protection Department which requirements and need are well integrated in the GMES Emergency Core Services program. The project philosophy is to implement, by incremental versions, specific modules which allow to process, store and visualize through Web GIS tools EO derived parameters considering three activity phases: 1) knowledge and prevention; 2) crisis; 3) post crisis. In order to combine effectively the EO data and the ground networks measurements the system will implement a multi-parametric analysis tool, which represents and unique tool to analyze contemporaneously a large data set of data in "near real time". The SRV project will be tested his operational capabilities on three Italian Volcanoes: Etna,Vesuvio and Campi Flegrei.
A viscous-to-brittle transition in eruptions through clay suspensions
NASA Astrophysics Data System (ADS)
Schmid, Diana; Scheu, Bettina; Wadsworth, Fabian B.; Kennedy, Ben M.; Jolly, Arthur; Dingwell, Donald B.
2017-05-01
Volcanic lakes are often associated with active geothermal circulation, mineral alteration, and precipitation, each of which can complicate the analysis of shallow magma physics, geophysical signals, and chemical signals. The rheology of the lake and associated hydrothermal system affects the eruptive activity as bubbles ascend and burst through the lake producing distinct ejection behavior. We investigate such phenomena by conducting scaled experiments in which heated water-clay suspensions are decompressed rapidly from relevant pressures. After a jet phase of expanding vapor, the suspensions break up into ejecta that are either angular or droplet geometry. We parameterize these regimes and find a universal clay volume fraction of 0.28 below which the ejecta are form droplets and above which the ejecta are angular. We propose a regime diagram for optical observations of active lakes, which allows rheological characterization and informs volcanic monitoring.
Preble, Duane M.; Friedman, Jules D.; Frank, David
1976-01-01
Five Data Collection Platforms (DCP) were integrated electronically with thermall sensing systems, emplaced and operated in an analog mode at selected thermally significant volcanic and geothermal sites. The DCP's transmitted 3260 messages comprising 26,080 ambient, surface, and near-surface temperature records at an accuracy of ±1.15 °C for 1121 instrument days between November 14, 1972 and April 17, 1974. In harsh, windy, high-altitude volcanic environments the DCP functioned best with a small dipole antenna. Sixteen kg of alkaline batteries provided a viable power supply for the DCP systems, operated at a low-duty cycle, for 5 to 8 months. A proposed solar power supply system would lengthen the period of unattended operation of the system considerably. Special methods of data handling such as data storage via a proposed memory system would increase the significance of the twice-daily data reception enabling the DCP's to record full diurnal-temperature cycles at volcanic or geothermal sites. Refinements in the temperature-monitoring system designed and operated in experiment SR 251 included a backup system consisting of a multipoint temperature scanner, a servo mechanism and an analog-to-digital recorder. Improvements were made in temperature-probe design and in construction of corrosion-resistant seals by use of a hydrofluoric-acid-etching technique.
NASA Astrophysics Data System (ADS)
Lourenço, N.; Miranda, J. M.; Luis, J.; Silva, I.; Goslin, J.; Ligi, M.
2003-04-01
The Terceira rift is a oblique ultra-slow spreading system where a transtensive regime results from differential movement between Eurasian and African plates. So far no classical ridge segmentation pattern has here been observed. The predominant morphological features are fault controlled rhombic shaped basins and volcanism related morphologies like circular seamounts and volcanic ridges. We present SIMRAD EM300 (bathymetry + backscatter) images acquired over one of these ridges located SE of Terceira Island, during the SIRENA cruise (PI J. Goslin), which complements previous TOBI mosaics performed over the same area during the AZZORRE99 cruise (PI M. Ligi). The ridge presents a NW-SE orientation, it is seismically active (a seismic crisis was documented in 1997) and corresponds to the southern branch of a V shape bathymetric feature enclosing the Terceira Island and which tip is located west of the Island near the 1998 Serreta ridge eruption site. NE of the ridge, the core of the V, corresponds to the North Hirondelle basin. All this area corresponds mainly to Brunhes magnetic epoch. The new bathymetry maps reveal a partition between tectonic processes, centred in the ridge, and volcanism present at the bottom of the North Hirondelle basin. The ridge high backscatter surface is cut by a set of sub-parallel anastomosed normal faults striking between N130º and N150º. Some faults present horse-tail terminations. Fault splays sometimes link to neighbour faults defining extensional duplexes and fault wedge basins and highs of rhombic shape. The faulting geometry suggests that a left-lateral strike slip component should be present. The top of the ridge consists on an arched demi-.horst, and it is probably a volcanic structure remnant (caldera system?), existing prior to onset of the tectonic stage in the ridge. Both ridge flanks display gullies and mass wasting fans at the base of the slope. The ridge vicinities are almost exclusively composed of a grayish homogeneous acoustic facies interpreted as pelagic and volcanic sediment. The numerous untectonized volcanic cones present to NE, in the northern flank of the North Hirondelle basin, align-up with the three volcanic systems of the Terceira Island (progressively less eroded towards west) and the Serreta ridge, thus suggesting propagation of a melt/thermal anomaly westwards through time. This volcanic area contrasts strongly with the highly fractured pattern observed in the ridge.
Investigating the role of small vent volcanism during the development of Tharsis Province, Mars
NASA Astrophysics Data System (ADS)
Richardson, J. A.; Bleacher, J. E.; Connor, C.; Connor, L.; Glaze, L. S.
2014-12-01
Clusters of tens to hundreds of small volcanic vents have recently been recognized as a major component of Tharsis Province volcanism. These volcanic fields are formed from distributed-style, possibly monogenetic, volcanism and are composed of low sloped edifices with diameters of tens of kilometers and heights of tens to hundreds of meters. We report a new catalog of these small volcanic vents, now available through the USGS Astrogeology Science Center. This catalog was created with the use of gridded topographic data from the Mars Orbiter Laser Altimeter (MOLA) and images from the Thermal Emission Imaging System (THEMIS) and the High Resolution Stereo Camera (HRSC). We are now investigating isolated clusters of distributed volcanism in Tharsis with this dataset. We hypothesize that these clusters are formed from significant magmatic events that played a large role in the development of Tharsis. Currently, the catalog contains 1075 unique volcanic vents in the Tharsis Province. With the catalog, potentially isolated volcano clusters are identified with vent density estimation. Vent intensity for clusters is found to be 1 vent per 1000 sq km or less. Crater retention rates for one such cluster, Syria Planum, indicates that these distributed volcanic systems might continue as long as 700 Ma, or that monogenetic volcanic systems overprint older systems. Using a modified basal outlining algorithm with MOLA gridded data, shield volumes are found to be between 1-20 cubic km. Current results show distributed-style volcanism occuring in Tharsis orders of magnitude more dispersed than analogous volcano clusers on Earth, while individual edifices are found to be an order of magnitude larger than volcanoes in Earth clusters. Proof of concept results are reported for three identified clusters: Arsia Mons Caldera, Syria Planum, and Southern Pavonis Mons.
Submarine Volcanic Morphology of Santorini Caldera, Greece
NASA Astrophysics Data System (ADS)
Nomikou, P.; Croff Bell, K.; Carey, S.; Bejelou, K.; Parks, M.; Antoniou, V.
2012-04-01
Santorini volcanic group form the central part of the modern Aegean volcanic arc, developed within the Hellenic arc and trench system, because of the ongoing subduction of the African plate beneath the European margin throughout Cenozoic. It comprises three distinct volcanic structures occurring along a NE-SW direction: Christianna form the southwestern part of the group, Santorini occupies the middle part and Koloumbo volcanic rift zone extends towards the northeastern part. The geology of the Santorini volcano has been described by a large number of researchers with petrological as well as geochronological data. The offshore area of the Santorini volcanic field has only recently been investigated with emphasis mainly inside the Santorini caldera and the submarine volcano of Kolumbo. In September 2011, cruise NA-014 on the E/V Nautilus carried out new surveys on the submarine volcanism of the study area, investigating the seafloor morphology with high-definition video imaging. Submarine hydrothermal vents were found on the seafloor of the northern basin of the Santorini caldera with no evidence of high temperature fluid discharges or massive sulphide formations, but only low temperature seeps characterized by meter-high mounds of bacteria-rich sediment. This vent field is located in line with the normal fault system of the Kolumbo rift, and also near the margin of a shallow intrusion that occurs within the sediments of the North Basin. Push cores have been collected and they will provide insights for their geochemical characteristics and their relationship to the active vents of the Kolumbo underwater volcano. Similar vent mounds occur in the South Basin, at shallow depths around the islets of Nea and Palaia Kameni. ROV exploration at the northern slopes of Nea Kameni revealed a fascinating underwater landscape of lava flows, lava spines and fractured lava blocks that have been formed as a result of 1707-1711 and 1925-1928 AD eruptions. A hummocky topography at the area that lies between the town of Fira on the main island of Santorini and Nea Kammeni has been revealed. The lower slopes were covered with landslide debris which consisted of lava blocks mostly mantled with soft sediment. At the upper slopes an abrupt cliff face was exposed that was highly indurated by biologic material. At the top of a volcanic dome, a crater with its deepest part at 43m, its rim at about 34m with an approximately 8m diameter was also found. Shimmery water with temperatures as much as 25°C above ambient was observed there but the source of venting has not yet been found. The combination of ROV video footage and multibeam data provide new information about the main morphological characteristics of Santorini Caldera which demonstrates the intense geodynamic processes occurring at the central part of the active Hellenic volcanic arc. These results will be useful for the interpretation of understanding the offshore volcanic area and its linkage with the onshore structures.
NASA Astrophysics Data System (ADS)
Ramsey, M.; Wessels, R.; Dehn, J.; Duda, K.; Harris, A.; Watson, M.
2008-12-01
From soon after its launch in December 1999, the ASTER sensor on the NASA Terra satellite has been acquiring data of volcanic eruptions and other natural disasters around the world. ASTER has the capability to acquire high spatial resolution data from the visible to thermal infrared wavelength region. Those data, in conjunction with its ability to generate digital elevation models (DEMs), makes ASTER particularly useful for numerous aspects of volcanic remote sensing. However, the nature of the ASTER scheduling/data collection/calibration pathway makes rapid observations of hazard locations nearly impossible. The sensor's acquisitions are scheduled in advance and the data are processed and calibrated in Japan prior to archiving in the United States. This can produce a lag of at least several days from the initial request to data scheduling and another several days after acquisition until the data are available. However, there exists a manual "rapid response" mode that provides faster data scheduling, processing and availability. This mode has now been semi-automated and linked to larger-scale and more rapid monitoring alert system. The first phase has been to integrate with the Alaska Volcano Observatory's current near-real-time satellite monitoring system, which relies on high temporal/low spatial resolution orbital data. This phase of the project has focused on eruptions in the north Pacific region, and in particular over Kamchatka, Russia. Several beneficial factors have combined that resulted in over 1350 ASTER images being acquired for the five most thermally-active Kamchatka volcanoes (Bezymianny, Karimsky, Kluichevskoi, Sheveluch and Tolbachik). These factors include the orbital alignment of Terra, the high latitude of the peninsula, and the many eruptions and volcanic activity in Kamchatka. From the inception of the automated rapid response program in 2003, an additional 350 scenes have been acquired over the Kamchatka volcanoes, which have targeted both small-scale activity and larger eruptions for science and hazard response. Numerous eruptions have been observed that displayed varying volcanic styles including basaltic lava flow emplacement, silicic lava dome growth, pyroclastic flow production, volcanic ash plume production, fumarolic activity, and geothermal emission. The focus of this presentation is to summarize the current ASTER rapid response program in Kamchatka, focus on two specific eruptions of Sheveluch volcano, and discuss the future expansion plans for global hazard response.
How wide is the East African Rift system?
NASA Astrophysics Data System (ADS)
Pierre, S.; Ebinger, C.; Naum, J.
2017-12-01
There has been a longstanding observation that earthquakes and volcanoes occur mostly at the edges of rigid tectonic plates, but that pattern changes during continental rifting where new plate boundaries are forming. The seismically and volcanically active East African rift system provides an opportunity to evaluate rigid plate tectonic models. The objective of this research is to evaluate the geographic spread of earthquakes and volcanoes across the African plate, including areas interpreted as smaller microplates in East Africa. The National Earthquake Information Center catalog of earthquakes spanning the time period 1976 to July 2017 and the Smithsonian Institution Global Volcanism Program catalogue of Holocene volcanoes were displayed using the open source Geographic Information System package GMT, using command line scripts. Earthquake moment tensors from the Global CMT project were also displayed with locations of earthquakes and volcanoes. We converted all of the earthquake magnitudes to moment magnitude (Mw) for comparison of energy release in different rift sectors. A first-order observation is that earthquakes and volcanoes occur across most of the continental region, and in parts of the oceanic region offshore East Africa. The pattern of earthquakes and volcanoes suggests that the African plate is breaking into smaller plates surrounding by zones of earthquakes and volcanoes, such as the Comoros-Davie Ridge-Madagascar seismo-volcanic zone, and the Southwestern rift zone. A comparison of the geographic distribution of earthquakes and volcanoes from places such as the Malawi rift, which has only one isolated volcanic province, and the Eastern rift, which has volcanoes along its length showed differences in the magnitude frequency distributions, which appear to correlate with the presence or absence of volcanism.
NASA Astrophysics Data System (ADS)
Boissier, Patrice; Di Muro, Andrea; Henriette, Laura; Rivière, Audrey; Roult, Geneviève; Agrinier, Pierre; Beauducel, François; Davoine, Paule-Annick; Dyon, Joël; Ferrazzini, Valérie; Kowalski, Philippe; Lemarchand, Arnaud; Nercessian, Alexandre; Peltier, Aline; Shapiro, Nikolai; Staudacher, Thomas; Villeneuve, Nicolas
2014-05-01
Piton de la Fournaise is one of the most active volcano in the world with an average of one eruption every 9 months, and rest periods of short duration (only 2 periods exceeded 5 years during the last 50 years). Even if 97 percent of the recent volcanic activity took place within the uninhabited Enclos Fouque caldera; only 3 eruptions occurred outside of the caldera, threatening inhabited areas. The distal 1977 eruption (NE rift), the lave flows of which passed through Piton Sainte-Rose village, destroying houses and forced the evacuation of part of the population, triggered an awareness of volcanic risk at Piton de la Fournaise and led to the creation of the Piton de la Fournaise Volcano Observatory (OVPF - IPGP) in 1979. During thirty-five years, the continuous monitoring networks (geophysical and geochemical), measurements campaigns and phenomenological observation (e.g. imaging and films in the visible and infrared) have built an extraordinary amount of heterogeneous data in terms of format (digital and analog) and storage supports (paper, magnetic tape, floppy disk, etc.). With the aim to structure and distribute the data acquired since its establishment the OVPF conceived an innovative project for "Acquisition, capitalization, modeling and sharing of volcanic and seismic monitoring data at La Reunion Island". The project is funded by the European Regional Development Fund - Convergence (2007-2013) and supported by the local government (Region Reunion). The project is structured around two main parts : - Action 1: acquisition, digitizing and data backup, - Action 2: development of an Information System. On one hand, the project has the ultimate goal to facilitate the distribution of high quality data and long time series to the largest number of beneficiaries of the local, national and international scientific community and of the public and private sectors through IPGP Internet portals (IPGP Data Center and VOLOBSIS). On the other hand, the information system will allow a complete and modern analysis of all the datasets acquired by the OVPF (notably through the WebObs system), and thus improve the understanding of volcanism and seismicity at La Reunion Island.
NASA Astrophysics Data System (ADS)
Polacci, M.; Baker, D. R.; Mancini, L.
2009-04-01
Volcanoes are complex systems that require the integration of many different geoscience disciplines to understand their behaviour and to monitor and forecast their activity. In the last two decades an increasing amount of information on volcanic processes has been obtained by studying the textures and compositions of volcanic rocks. Five years ago we started a continuing collaboration with the SYRMEP beamline of Elettra Sincrotrone, a third generation synchrotron light source near Trieste, Italy, with the goal of performing high-resolution, phase-contrast X-ray tomographic scans and reconstructing 3-D digital volumes of volcanic specimens. These volumes have been then used for the visualization of the internal structure of rocks and for the quantification of rock textures (i.e., vesicle and crystal volume fraction, individual vesicle volumes and shapes, vesicle connectivity, vesicle volume distributions, permeability simulations etc.). We performed tomographic experiments on volcanic products erupted from different hazardous volcanic systems in Italy and around the world: Campi Flegrei, Stromboli, Etna (Southern Italy), Villarrica (Chile), Yasur and Ambrym (Vanuatu Islands). As an example, we used the results of these studies to constrain the dynamics of vesiculation and degassing in basaltic (Polacci et al., 2006; Burton et al., 2007; Colò et al., 2007; Andronico et al., 2008; Polacci et al., 2008a) and trachytic (Piochi et al., 2008) magmas. A better knowledge of how gas is transported and lost from magmas has led us in turn to draw new implications on the eruptive style of these active, hazardous volcanoes (Polacci et al., 2008b). Work in progress consists of optimizing our procedure by establishing a precise protocol that will enable us to quantitatively study the 3-D texture and composition of rocks in a statistically representative way. Future work will concentrate on the study of the spatial relations between phases (crystals, vesicles and glass) in rocks and their implications on the rheological properties of magmas and on the intensity of explosive activity at volcanoes. Andronico, D., R. A. Corsaro, A. Cristaldi, and M. Polacci (2008), Characterizing high energy explosive eruptions at Stromboli volcano using multidisciplinary data: An example from the 9 January 2005 explosion, J. Volcanol. Geotherm. Res., 176, 541-550. Burton, M. R., H. M. Mader, and M. Polacci (2007), The role of gas percolation in quiescent degassing of persistently active volcanoes, E. Planet. Sci. Lett., 264, 46-60. Colò, L., D. R. Baker, M. Polacci, and M. Ripepe (2007), Magma vesiculation and infrasonic activity in open conduit volcanoes, abstract presented at the AGU 2007 Fall meeting, 10-14 December, San Francisco, California, USA. Piochi, M., M. Polacci, G. De Astis, R. Zanetti, A. Mangiacapra, R. Vannucci, and D. Giordano (2008), Texture and composition of pumices and scoriae from the Campi Flegrei caldera (Italy): implications on the dynamics of explosive eruptions, G-cubed, doi:10.1029/2007GC001746. Polacci, M., D. R. Baker, L. Mancini, G. Tromba, F. Zanini (2006), Three-dimensional investigation of volcanic textures by X-ray microtomography and implications for conduit processes, Geophys. Res. Lett., 33, L13312, doi:10.1029/2006GL026241. Polacci, M., D. R. Baker, L. Bai, and L. Mancini (2008a), Large vesicles record pathways of degassing at basaltic volcanoes, Bull. Volcanol., 70, 1023-1029, doi:10.1007/s00445-007-0184-8. Polacci, M., D. R. Baker, L. Mancini, S. Favretto, and R. Hill (2008b), Vesiculation in magmas from Stromboli (Aeolian Archipelago, Italy) and implications for normal Strombolian activity and paroxysmal explosions in basaltic systems, J. Geophys. Res., doi:10.1029/2008JB005802
NASA Astrophysics Data System (ADS)
Grunder, A. L.; Harris, R. N.; Walker, B. A.; Giles, D.; Klemetti, E. W.
2008-12-01
Volcanic rocks represent a biased view of magmatism, but provide critical quenched samples and temporal constraints of magmatic evolution obscured in the plutonic record. We here draw on the records from the Aucanquilcha Volcanic Cluster (AVC; 10 to 0 Ma) in northern Chile and from the mid-Tertiary volcanic field in east-central Nevada (ECNVF; ~40-32 Ma) to consider how evolutionary patterns of intermediate composition volcanic systems bear on the magmatic reworking of the continental crust by plutons and batholiths. Despite disparate tectonic setting (subduction vs extension) and volumes (70 km crust for the ~300 km 3 AVC versus and ~40 km crust for the ~3000 km 3 ECNVF) both volcanic systems share a history of early compositionally diverse volcanism, followed by a stage of more centralized and voluminous dacitic volcanism, which in turn is followed by waning of volcanism. The compositional change and the rapid increase in magma output rate after about half the lifetime of the system is a characteristic pattern of long- lived continental volcanic systems based on a compilation of volume-composition data. The middle, voluminous stage corresponds to the hottest upper crustal conditions, deduced from Al-in-amphibole geothermobarometry and Ti-in-zircon thermometry of the AVC. The middle stage rocks also have textures indicating hybridization of mixed magmas. Simple thermal models of heat input via intraplating readily allow for generation of partially molten crust above the sill, but they do not emulate the rapid increase of magma after some incubation time. We propose that there is a feedback in which a critical thickness of partially molten crust, consisting in part of magmatic precursors, can be readily convectively stirred and mixed with magma of the underplating sill, rapidly creating a large, hybrid and relatively hot body of magma. Stirring facilitates separation of a liquid-enriched extract. The volume of liquid extracted may be small relative to residual crystal-liquid mush, so that compositional differences between plutons and eruptives are cryptic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stimac, J.; Goff, F.; Hearn, B.C. Jr.
1992-01-01
The Clear Lake area is well known for anomalous heat flow, thermal springs, hydrothermal mineral deposits, and Quaternary volcanism. These factors, along with the apparent lack of a large reservoir of geothermal fluid north of Collayomi fault make the Clear Lake area an attractive target for hot dry rock (HDR) geothermal development. Petrologic considerations provide some constraints on site selection for HDR development. Spatial and temporal trends in volcanism in the Coast Ranges indicate that magmatism has migrated to the north with time, paralleling passage of the Mendocino triple junction and propagation of the San Andreas fault. Volcanism in themore » region may have resulted from upwelling of hot asthenosphere along the southern margin of the subducted segment of the Gorda plate. Spatial and temporal trends of volcanism within the Clear Lake volcanic field are similar to larger-scale trends of Neogene volcanism in the Cost Ranges. Volcanism (especially for silicic compositions) shows a general migration to the north over the {approximately}2 Ma history of the field, with the youngest two silicic centers located at Mt. Konocti and Borax Lake. The Mt. Konocti system (active from {approximately} 0.6 to 0.3 Ma) was large and long-lived, whereas the Borax Lake system is much smaller but younger (0.09 Ma). Remnants of silicic magma bodies under Mt. Konocti may be in the latter stages of cooling, whereas a magma body centered under Borax Lake may be in the early stages of development. The existence of an upper crustal silicic magma body of under Borax Lake has yet to be demonstrated by passive geophysics, however, subsurface temperatures in the area as high (> 200{degrees}C at 2000 m) as those beneath the Mt. Konocti area. Based on petrologic considerations alone, the Mt. Konocti-Borax Lake area appears to be the most logical choice for HDR geothermal development in the region.« less
A networks-based discrete dynamic systems approach to volcanic seismicity
NASA Astrophysics Data System (ADS)
Suteanu, Mirela
2013-04-01
The detection and relevant description of pattern change concerning earthquake events is an important, but challenging task. In this paper, earthquake events related to volcanic activity are considered manifestations of a dynamic system evolving over time. The system dynamics is seen as a succession of events with point-like appearance both in time and in space. Each event is characterized by a position in three-dimensional space, a moment of occurrence, and an event size (magnitude). A weighted directed network is constructed to capture the effects of earthquakes on subsequent events. Each seismic event represents a node. Relations among events represent edges. Edge directions are given by the temporal succession of the events. Edges are also characterized by weights reflecting the strengths of the relation between the nodes. Weights are calculated as a function of (i) the time interval separating the two events, (ii) the spatial distance between the events, (iii) the magnitude of the earliest event among the two. Different ways of addressing weight components are explored, and their implications for the properties of the produced networks are analyzed. The resulting networks are then characterized in terms of degree- and weight distributions. Subsequently, the distribution of system transitions is determined for all the edges connecting related events in the network. Two- and three-dimensional diagrams are constructed to reflect transition distributions for each set of events. Networks are thus generated for successive temporal windows of different size, and the evolution of (a) network properties and (b) system transition distributions are followed over time and compared to the timeline of documented geologic processes. Applications concerning volcanic seismicity on the Big Island of Hawaii show that this approach is capable of revealing novel aspects of change occurring in the volcanic system on different scales in time and in space.
NASA Astrophysics Data System (ADS)
Inguaggiato, Salvatore; Mazzini, Adriano; Vita, Fabio; Sciarra, Alessandra
2016-04-01
The Java Island is characterized by an intense volcanic activity with more then 100 active volcanoes. Moreover, this island is also known by the presence of many mud volcanoes and hydrothermal springs. In particular, in the 2006 several sudden hot mud eruptions, with fluids around 100° C, occurred in the NE side of the island resulting in a prominent eruption named Lusi (contraction of Lumpur Sidoarjo) located along the major Watukosek strike-slip fault zone. The Watukosek fault system, strikes from the Arjuno-Welirang volcanic complex, intersects Lusi and extends towards the NE of the Java island. Conversely of the normal mud eruptions (cold fluids emitted in a short time period of few days), the Lusi eruption was characterized by a persistent effusive hot fluids emissions for a long-time period of, so far, nearly a decade. Moreover, the isotopic composition of emitted gases like Helium showed a clear magmatic origin. For this reasons we decided to investigate the near Arjuno-Welirang complex located on the same strike-slip fault. Arjuno-Welirang is a twin strato-volcano system located in the East of Java along the Watukosek fault, at about 25 km SW respect to the Lusi volcano system. It features two main peaks: Arjuno (3339 masl) and Welirang (3156 masl). The last recorded eruptive activity took place in August 1950 from the flanks of Kawah Plupuh and in October 1950 from the NW part of the Gunung Welirang. This strato-volcano is characterized by a S-rich area, with high T-vent fumarole at least up to 220° C (and likely higher), located mainly in the Welirang crater. In addition, several hot springs vent from the flanks of the volcano, indicate the presence of a large hydrothermal system. During July 2015, in the framework of the Lusi Lab project (ERC grant n° 308126), we carried out a geochemical field campaign on the Arjuno-Welirang volcano hydrothermal system area, sampling water and dissolved gases from the thermal and cold springs located on the flanks of the volcano and from two high-T fumaroles located on the summit area of Welirang. Hydrothermal springs reveal temperatures up to 53° C and pH between 6.2 and 8.2. The hydrothermal springs show a volatile content (mainly CO2 and He) that is several order of magnitude higher than the Air Saturated Waters values (ASW) indicating a strong gas/water interaction processes between waters of meteoric origin and deep volatiles of volcanic origin. The hydrothermal springs have dissolved helium isotopic values with clear magmatic signature (R/Ra around 7) that is remarkably close to the helium isotope values from the fumaroles (R/Ra= 7.30). The isotopic composition of helium measured in the fluids emitted from the Lusi mud-volcano around 6.5R/Ra is very similar to the Welirang volcanic fluids indicating the presence of magmatic gases in the Lusi emitted fluids. While the isotopic composition of waters in the Welirang and Lusi fluids are markedly different suggesting a different origin and/or recharge areas for these two hydrothermal systems. These data support the hypothesis that the presence of volcanic gases could have triggered and conveyed the hot and persistent mud fluids emissions of Lusi volcano.
A Subduction Factory Laboratory: Tectonics of the Southern Mariana Convergent Margin
NASA Astrophysics Data System (ADS)
Fryer, P.; Martinez, F.; Becker, N.; Appelgate, B.; Hawkins, J.; Ishihara, T.
2001-12-01
Recent MR-1 side-scan sonar mapping, gravity and magnetics surveys, and sea floor sampling of the southernmost portion of the Mariana region reveal a convergent margin subject to complexly interacting stresses. The backarc spreading center and the crust it has produced is inflated as a consequence of proximity of the arc and backarc basin magma sources. The formation of backarc basin crust dates from only 3 m.y. ago based on interpretations of magnetics data. The westward extension of the more recent arc volcanic centers beyond Guam shows a general diminishing of arc volcanic centers and a coalescing with the spreading center in a zone of transition from magmatic to amagmatic extension. Magnetic and gravity data are consistent with this tectonic interpretation. It is possible, however, that newly imaged volcanoes on the West Mariana ridge may be active. They show high-backscatter characteristics on sonar imagery and coincide with the typical depths to slab for magma generation in subduction zones. The distance to trench axis and the level of seismic activity in the region is consistent with volcanic activity on this portion of the "remnant arc." If our hypothesis is correct, then the southern Mariana system preserves the transition from remnant arc through extension and formation of a backarc basin spreading center, to the reestablishment of a new active volcanic arc. It thus provides a natural laboratory for the simultaneous study of all of the fundamental processes of the Subduction Factory. In addition, the forearc is deeply dissected by profound faulting that exposes the structure of the arc massif along faults with throws of up to 4 km. There are several stair-stepping antithetic normal faults in the forearc south of Guam that expose intermediate depth (up to approximately 15 km) plutonics of arc origin, providing a potential record of the most complete crustal section through the arc substructure known to be exposed in an active arc. Finally, the deeply-excised forearc of the southeastern corner of the system is underlain by a subducting plate that has likely been torn, which dips more steeply to the west of the proposed tear, and which may thus provide an excellent location for the study of mantle flow in association with disruption of subducting slabs. Pacific mantle may be leaking westward past the slab, invading the backarc region. The backarc magmas of the Izu-Bonin-Mariana system have been characterized as of Indian Ocean mantle composition. The rapid rate of volcanism along the southern backarc spreading center may make it possible to trace the incursion rate of Pacific mantle across this boundary.
High-Resolution Mapping of Kick`em Jenny Submarine Volcano and Associated Landslides
NASA Astrophysics Data System (ADS)
Ruchala, T. L.; Carey, S.; Hart, L.; Chen, M.; Scott, C.; Tominaga, M.; Dondin, F. J. Y.; Fujii, M.
2016-02-01
To understand the physical and geological processes that drive the volcanism and control the morphology of Kick`em Jenny (KEJ) volcano, the only active submarine volcano in the in the Lesser Antilles volcanic arc, we conducted near-source, high-resolution mapping of KEJ and its subsurface using the Remotely Operated Vehicle (ROV) Hercules during cruise NA054 of the E/V Nautilus (Sept.-Oct. 2014). Shipboard bathymetric data (EM302 system) and slope analysis maps were used to decipher the detailed seafloor morphology surrounding KEJ. Multiple generations of submarine landslides and canyons were observed, suggesting the area has been hosting dynamic sediment transport systems at multiple scales over time. Some of them might have been associated by past eruptions. Clear contacts between partially lithified carbonate sediments and volcanic formations were identified from ROV videos at the middle of the landslide slope face. Detailed observations of facies on these exposures provide constraints on the time intervals between landslide events along the western slope of KEJ. ROV video imagery also identified outcrops of columnar basalts located in the middle of the landslide deposits. These are similar in appearance to those observed in the KEJ crater during previous ROV dives, indicating a possible travel distance of volcanic materials from the crater region along landslide path. High-resolution photo mosaics, bathymetry, and magnetic data acquired by ROV Hercules were used to investigate geological processes and the possible volcanic source of landslide material within the KEJ crater. Mapping in the northwestern part of the crater floor revealed distinctive regions, including (i) microbial mats, (ii) active hydrothermal vent sites; (iii) landforms curved by channelized bottom current where seafloor is outcropped; and (iv) coarse scree the distribution of which may correlate with the distance from the crater rim. Near-bottom magnetic profiles show coherent magnetic signatures with correlatable high amplitude anomalies located in the middle of the KEJ crater.
1998-03-26
This color image, acquired during NASA Galileo ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon, erupting over a caldera volcanic depression named Pillan Patera.
Monitoring Seismo-volcanic and Infrasonic Signals at Volcanoes: Mt. Etna Case Study
NASA Astrophysics Data System (ADS)
Cannata, Andrea; Di Grazia, Giuseppe; Aliotta, Marco; Cassisi, Carmelo; Montalto, Placido; Patanè, Domenico
2013-11-01
Volcanoes generate a broad range of seismo-volcanic and infrasonic signals, whose features and variations are often closely related to volcanic activity. The study of these signals is hence very useful in the monitoring and investigation of volcano dynamics. The analysis of seismo-volcanic and infrasonic signals requires specifically developed techniques due to their unique characteristics, which are generally quite distinct compared with tectonic and volcano-tectonic earthquakes. In this work, we describe analysis methods used to detect and locate seismo-volcanic and infrasonic signals at Mt. Etna. Volcanic tremor sources are located using a method based on spatial seismic amplitude distribution, assuming propagation in a homogeneous medium. The tremor source is found by calculating the goodness of the linear regression fit ( R 2) of the log-linearized equation of the seismic amplitude decay with distance. The location method for long-period events is based on the joint computation of semblance and R 2 values, and the location method of very long-period events is based on the application of radial semblance. Infrasonic events and tremor are located by semblance-brightness- and semblance-based methods, respectively. The techniques described here can also be applied to other volcanoes and do not require particular network geometries (such as arrays) but rather simple sparse networks. Using the source locations of all the considered signals, we were able to reconstruct the shallow plumbing system (above sea level) during 2011.
Spatial Databases for CalVO Volcanoes: Current Status and Future Directions
NASA Astrophysics Data System (ADS)
Ramsey, D. W.
2013-12-01
The U.S. Geological Survey (USGS) California Volcano Observatory (CalVO) aims to advance scientific understanding of volcanic processes and to lessen harmful impacts of volcanic activity in California and Nevada. Within CalVO's area of responsibility, ten volcanoes or volcanic centers have been identified by a national volcanic threat assessment in support of developing the U.S. National Volcano Early Warning System (NVEWS) as posing moderate, high, or very high threats to surrounding communities based on their recent eruptive histories and their proximity to vulnerable people, property, and infrastructure. To better understand the extent of potential hazards at these and other volcanoes and volcanic centers, the USGS Volcano Science Center (VSC) is continually compiling spatial databases of volcano information, including: geologic mapping, hazards assessment maps, locations of geochemical and geochronological samples, and the distribution of volcanic vents. This digital mapping effort has been ongoing for over 15 years and early databases are being converted to match recent datasets compiled with new data models designed for use in: 1) generating hazard zones, 2) evaluating risk to population and infrastructure, 3) numerical hazard modeling, and 4) display and query on the CalVO as well as other VSC and USGS websites. In these capacities, spatial databases of CalVO volcanoes and their derivative map products provide an integrated and readily accessible framework of VSC hazards science to colleagues, emergency managers, and the general public.
Historical activity at Campi Flegrei caldera, southern Italy
Dvorak, J.; Gasparini, P.
1990-01-01
We cannot forecast whether the activity since 968 will culminate in another eruption or whether Campi Flegrei will remain quiet for several hundred more years. This article summarizes the historical recorded of activity in Campi Flegrei, which, with varying degrees of reliability, spans 2,000 years, and emphasizes that further scientific studies of this caldera will improve our understanding of the behavior of longquiescent volcanic system.
NASA Astrophysics Data System (ADS)
Špičák, Aleš; Vaněk, Jiří; Hanuš, Václav
2009-12-01
A detailed spatio-temporal analysis of teleseismic earthquake occurrence (mb > 4.0) along the convergent margin of the Izu-Bonin-Mariana arc system reveals an anomalously high concentration of events between 27° and 30.5°N, beneath a chain of seamounts between Tori-shima and Nishino-shima volcanoes. This seismicity is dominated by the 1985/1986 earthquake swarm represented in the Engdahl—van der Hilst—Buland database by 146 earthquakes in the body wave magnitude range 4.3-5.8 and focal depth range 1-100 km. The epicentral cluster of the swarm is elongated parallel to the volcanic chain. Available focal mechanisms are consistent with an extensional tectonic regime and reveal nodal planes with azimuths close to that of the epicentral cluster. Earthquakes of the 1985/1986 swarm occurred in seven time phases. Seismic activity migrated in space from one phase to the other. Earthquake foci belonging to individual phases of the swarm aligned in vertically disposed seismically active columns. The epicentral zones of the columns are located in the immediate vicinity of seamounts Suiyo and Mokuyo, recently reported by the Japanese Meteorological Agency as volcanically active. The three observations—episodic character of earthquake occurrence, column-like vertically arranged seismicity pattern, and existence of volcanic seamounts at the seafloor above the earthquake foci—led us to interpret the 1985/1986 swarm as a consequence of subduction-related magmatic and/or fluid activity. A modification of the shallow earthquake swarm magmatic model of D. Hill fits earthquake foci distribution, tectonic stress orientation and fault plane solutions. The 1985/1986 deep-rooted earthquake swarm in the Izu-Bonin region represents an uncommon phenomenon of plate tectonics. The portion of the lithospheric wedge that was affected by the swarm should be composed of fractured rigid, brittle material so that the source of magma and/or fluids which might induce the swarm should be situated at a depth of at least 100 km in the aseismic part of the subduction zone.
NASA Astrophysics Data System (ADS)
Špičák, Aleš; Vaněk, Jiří; Hanuš, Václav
2009-12-01
A detailed spatio-temporal analysis of teleseismic earthquake occurrence (mb > 4.0) along the convergent margin of the Izu-Bonin-Mariana arc system reveals an anomalously high concentration of events between 27° and 30.5°N, beneath a chain of seamounts between Tori-shima and Nishino-shima volcanoes. This seismicity is dominated by the 1985/1986 earthquake swarm represented in the Engdahl-van der Hilst-Buland database by 146 earthquakes in the body wave magnitude range 4.3-5.8 and focal depth range 1-100 km. The epicentral cluster of the swarm is elongated parallel to the volcanic chain. Available focal mechanisms are consistent with an extensional tectonic regime and reveal nodal planes with azimuths close to that of the epicentral cluster. Earthquakes of the 1985/1986 swarm occurred in seven time phases. Seismic activity migrated in space from one phase to the other. Earthquake foci belonging to individual phases of the swarm aligned in vertically disposed seismically active columns. The epicentral zones of the columns are located in the immediate vicinity of seamounts Suiyo and Mokuyo, recently reported by the Japanese Meteorological Agency as volcanically active. The three observations-episodic character of earthquake occurrence, column-like vertically arranged seismicity pattern, and existence of volcanic seamounts at the seafloor above the earthquake foci-led us to interpret the 1985/1986 swarm as a consequence of subduction-related magmatic and/or fluid activity. A modification of the shallow earthquake swarm magmatic model of D. Hill fits earthquake foci distribution, tectonic stress orientation and fault plane solutions. The 1985/1986 deep-rooted earthquake swarm in the Izu-Bonin region represents an uncommon phenomenon of plate tectonics. The portion of the lithospheric wedge that was affected by the swarm should be composed of fractured rigid, brittle material so that the source of magma and/or fluids which might induce the swarm should be situated at a depth of at least 100 km in the aseismic part of the subduction zone.
Continuous monitoring of diffuse CO2 degassing at Taal volcano, Philippines
NASA Astrophysics Data System (ADS)
Padron, E.; Hernandez Perez, P. A.; Arcilla, C. A.; Lagmay, A. M. A.; Perez, N. M.; Quina, G.; Padilla, G.; Barrancos, J.; Cótchico, M. A.; Melián, G.
2016-12-01
Observing changes in the composition and discharge rates of volcanic gases is an important part of volcanic monitoring programs, because some gases released by progressive depressurization of magma during ascent are highly mobile and reach the surface well before their parental magma. Among volcanic gases, CO2 is widely used in volcano studies and monitoring because it is one of the earliest released gas species from ascending magma, and it is considered conservative. Taal Volcano in Southwest Luzon, Philippines, lies between a volcanic arc front (facing the subduction zone along the Manila Trench) and a volcanic field formed from extension beyond the arc front. Taal Volcano Island is formed by a main tuff cone surrounded by several smaller tuff cones, tuff rings and scoria cones. This island is located in the center of the 30 km wide Taal Caldera, now filled by Taal Lake. To monitor the volcanic activity of Taal volcano is a priority task in the Philippines, because several million people live within a 20-km radius of Taal's caldera rim. In the period from 2010-2011, during a period of volcanic unrest, the main crater lake of Taal volcano released the highest diffuse CO2 emission rates reported to date by volcanic lakes worldwide. The maximum CO2 emission rate measured in the study period occurred two months before the strongest seismic activity recorded during the unrest period (Arpa et al., 2013, Bull Volcanol 75:747). In the light of the excellent results obtained through diffuse degassing studies, an automatic geochemical station to monitor in a continuous mode the diffuse CO2 degassing in a selected location of Taal, was installed in January 2016 to improve the early warning system at the volcano. The station is located at Daang Kastila, at the northern portion of the main crater rim. It measures hourly the diffuse CO2 efflux, atmospheric CO2 concentration, soil water content and temperature, wind speed and direction, air temperature and humidity, rainfall, and barometric pressure. The first results show a time series of CO2 efflux with values in the range 20-690 gm-2d-1.Soil temperature, heavily influenced by rainfall, ranged between 74 and 96ºC. The detailed analysis of diffuse CO2 degassing measured by this automatic station might be a useful geochemical tool for the seismo-volcanic surveillance of Taal.
NASA Astrophysics Data System (ADS)
Poppe, Sam; Barette, Florian; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu
2016-04-01
The Virunga Volcanic Province (VVP) is situated within the western branch of the East-African Rift. The geochemistry and petrology of its' volcanic products has been studied extensively in a fragmented manner. They represent a unique collection of silica-undersaturated, ultra-alkaline and ultra-potassic compositions, displaying marked geochemical variations over the area occupied by the VVP. We present a novel spatially-explicit database of existing whole-rock geochemical analyses of the VVP volcanics, compiled from international publications, (post-)colonial scientific reports and PhD theses. In the database, a total of 703 geochemical analyses of whole-rock samples collected from the 1950s until recently have been characterised with a geographical location, eruption source location, analytical results and uncertainty estimates for each of these categories. Comparative box plots and Kruskal-Wallis H tests on subsets of analyses with contrasting ages or analytical methods suggest that the overall database accuracy is consistent. We demonstrate how statistical techniques such as Principal Component Analysis (PCA) and subsequent cluster analysis allow the identification of clusters of samples with similar major-element compositions. The spatial patterns represented by the contrasting clusters show that both the historically active volcanoes represent compositional clusters which can be identified based on their contrasted silica and alkali contents. Furthermore, two sample clusters are interpreted to represent the most primitive, deep magma source within the VVP, different from the shallow magma reservoirs that feed the eight dominant large volcanoes. The samples from these two clusters systematically originate from locations which 1. are distal compared to the eight large volcanoes and 2. mostly coincide with the surface expressions of rift faults or NE-SW-oriented inherited Precambrian structures which were reactivated during rifting. The lava from the Mugogo eruption of 1957 belongs to these primitive clusters and is the only known to have erupted outside the current rift valley in historical times. We thus infer there is a distributed hazard of vent opening susceptibility additional to the susceptibility associated with the main Virunga edifices. This study suggests that the statistical analysis of such geochemical database may help to understand complex volcanic plumbing systems and the spatial distribution of volcanic hazards in active and poorly known volcanic areas such as the Virunga Volcanic Province.
NASA Astrophysics Data System (ADS)
Onyeali, M. M. C.; Joseph, E. P.; Frey, H. M.
2017-12-01
Dominica has an abundance of volcanic activity, with nine potentially active volcanoes, many of which have highly active volcanic-hydrothermal systems. The waters are predominantly acid-sulphate in character (SO4=100-4200 mg/L, pH≤4), and likely formed because of dilution of acidic gases in near surface oxygenated groundwater. The waters are of primarily meteoric origin, but are likely affected by evaporation effects at/near the surface, with δ18O ranging from -1.75 to 10.67‰, and δD from -6.1 to 14.5‰. With updated water chemistry and isotopic data from five hydrothermal areas (Boiling Lake, Valley of Desolation, Sulphur Springs, Wotten Waven, Cold Soufriere) for the period 2014 to 2017, we will re-evaluate the characteristics of these systems, which were last reported in 2011. We will present updated reservoir temperatures using a variety of geothermometers and provide insight into water-rock interactions taking place in the reservoirs. Recent changes in chemistry of the waters have indicated that while the origin of the hydrothermal systems are still dominantly meteoric (δ18O = -3 to 8‰ and δD = -5 to 18‰), surface evaporation effects and variable amounts of mixing with shallow ground waters play an important role. Fumaroles appear to reflect a deeper source contribution as compared to thermal waters with differences in acidity, temperature, TDS, δ18O, and δD observed. The general composition of the waters for most of the hydrothermal systems studied indicate no significant changes, with the exception of the Boiling Lake, which experienced a draining event in November 2016 which lasted for 6 weeks. Decreases in temperature, pH, Na, K, and Cl were seen post draining, while SO4 remained relatively low (66 ppm), but showed a small increase. The chemistry of the Boiling Lake appears to show significant changes in response to changes in the groundwater system. Changes in the groundwater system at the lake observed during the 2004/2005 draining, which lasted for 6 months, were attributed to strain release from a nearby regional seismic event. Based on the changes observed during the recent draining events, there are likely other factors affecting the ground water system at the Boiling Lake. Of particular note is the drastic change in SO4 concentrations in the Boiling Lake, which went from 1830 ppm in 2003 to <100 ppm presently.
2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory
Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris
2015-08-14
The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.
NASA Astrophysics Data System (ADS)
Sobradelo, Rosa; Martí, Joan
2015-01-01
One of the most challenging aspects of managing a volcanic crisis is the interpretation of the monitoring data, so as to anticipate to the evolution of the unrest and implement timely mitigation actions. An unrest episode may include different stages or time intervals of increasing activity that may or may not precede a volcanic eruption, depending on the causes of the unrest (magmatic, geothermal or tectonic). Therefore, one of the main goals in monitoring volcanic unrest is to forecast whether or not such increase of activity will end up with an eruption, and if this is the case, how, when, and where this eruption will take place. As an alternative method to expert elicitation for assessing and merging monitoring data and relevant past information, we present a probabilistic method to transform precursory activity into the probability of experiencing a significant variation by the next time interval (i.e. the next step in the unrest), given its preceding evolution, and by further estimating the probability of the occurrence of a particular eruptive scenario combining monitoring and past data. With the 1991 Pinatubo volcanic crisis as a reference, we have developed such a method to assess short-term volcanic hazard using Bayesian inference.
NASA Astrophysics Data System (ADS)
Ruesch, O.; Platz, T.; Schenk, P.; McFadden, L. A.; Castillo-Rogez, J. C.; Quick, L. C.; Byrne, S.; Preusker, F.; O'Brien, D. P.; Schmedemann, N.; Williams, D. A.; Li, J.-Y.; Bland, M. T.; Hiesinger, H.; Kneissl, T.; Neesemann, A.; Schaefer, M.; Pasckert, J. H.; Schmidt, B. E.; Buczkowski, D. L.; Sykes, M. V.; Nathues, A.; Roatsch, T.; Hoffmann, M.; Raymond, C. A.; Russell, C. T.
2016-09-01
Volcanic edifices are abundant on rocky bodies of the inner solar system. In the cold outer solar system, volcanism can occur on solid bodies with a water-ice shell, but derived cryovolcanic constructs have proved elusive. We report the discovery, using Dawn Framing Camera images, of a landform on dwarf planet Ceres that we argue represents a viscous cryovolcanic dome. Parent material of the cryomagma is a mixture of secondary minerals, including salts and water ice. Absolute model ages from impact craters reveal that extrusion of the dome has occurred recently. Ceres’ evolution must have been able to sustain recent interior activity and associated surface expressions. We propose salts with low eutectic temperatures and thermal conductivities as key drivers for Ceres’ long-term internal evolution.
Ruesch, O.; Platz, T.; Schenk, P.; McFadden, L.A.; Castillo-Rogez, J. C.; Quick, L. C.; Byrne, S.; Preusker, F.; O'Brien, D. P.; Schmedemann, N.; Williams, D.A.; Li, Jian-Yang; Bland, M. T.; Hiesinger, H.; Kneissl, T.; Neesemann, A.; Schaefer, M.; Pasckert, J. H.; Schmidt, B.E.; Buczkowski, D.L.; Sykes, M. V.; Nathues, A.; Roatsch, T.; Hoffman, M.; Raymond, C.A.; Russell, C.T.
2016-01-01
Volcanic edifices are abundant on rocky bodies of the inner solar system. In the cold outer solar system, volcanism can occur on solid bodies with a water-ice shell, but derived cryovolcanic constructs have proved elusive. We report the discovery using Dawn Framing Camera images of a landform on dwarf planet Ceres, which we argue represents a viscous cryovolcanic dome. Parent material of the cryomagma is a mixture of secondary minerals, including salts and water ice. Absolute model ages from impact craters reveal that extrusion of the dome has occurred recently. Ceres’ evolution must have been able to sustain recent interior activity and associated surface expressions. We propose salts with low eutectic temperatures and thermal conductivities as key drivers for Ceres’ long-term internal evolution.
The role of magmas in the formation of hydrothermal ore deposits
Hedenquist, Jeffrey W.; Lowenstern, Jacob B.
1994-01-01
Magmatic fluids, both vapour and hypersaline liquid, are a primary source of many components in hydrothermal ore deposits formed in volcanic arcs. These components, including metals and their ligands, become concentrated in magmas in various ways from various sources, including subducted oceanic crust. Leaching of rocks also contributes components to the hydrothermal fluid—a process enhanced where acid magmatic vapours are absorbed by deeply circulating meteoric waters. Advances in understanding the hydrothermal systems that formed these ore deposits have come from the study of their active equivalents, represented at the surface by hot springs and volcanic fumaroles.
A Decade of Volcanic Observations from Aura and the A-Train
NASA Technical Reports Server (NTRS)
Carn, Simon A.; Krotkov, Nickolay Anatoly; Yang, Kai; Krueger, Arlin J.; Hughes, Eric J.; Wang, Jun; Flower, Verity; Telling, Jennifer
2014-01-01
Aura observations have made many seminal contributions to volcanology. Prior to the Aura launch, satellite observations of volcanic degassing (e.g., from TOMS) were mostly restricted to large eruptions. However, the vast majority of volcanic gases are released during quiescent 'passive' degassing between eruptions. The improved sensitivity of Aura OMI permitted the first daily, space-borne measurements of passive volcanic SO2 degassing, providing improved constraints on the source locations and magnitude of global SO2 emissions for input to atmospheric chemistry and climate models. As a result of this unique sensitivity to volcanic activity, OMI data were also the first satellite SO2 measurements to be routinely used for volcano monitoring at several volcano observatories worldwide. Furthermore, the Aura OMI SO2 data also offer unprecedented sensitivity to volcanic clouds in the UTLS, elucidating the transport, fate and lifetime of volcanic SO2 and providing critical input to aviation hazard mitigation efforts. Another major advance has been the improved vertical resolution of volcanic clouds made possible by synergy between Aura and other A-Train instruments (e.g., AIRS, CALIPSO, CloudSat), advanced UV SO2 altitude retrievals, and inverse trajectory modeling of detailed SO2 cloud maps. This altitude information is crucial for climate models and aviation hazards. We will review some of the highlights of a decade of Aura observations of volcanic activity and look ahead to the future of volcanic observations from space.
NASA Technical Reports Server (NTRS)
Puma, Michael J.; Chon, S.; Wada, Y.
2015-01-01
A better understanding of volcanic impacts on crops is urgently needed, as volcanic eruptions and the associated climate anomalies can cause unanticipated shocks to food production. Such shocks are a major concern given the fragility of the global food system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Brendan W.
In aquifers consisting of fractured or porous igneous rocks, as well as conglomerate and sandstone products of volcanic formations, silicate minerals actively dissolve and precipitate (Eby, 2004; Eriksson, 1985; Drever, 1982). Dissolution of hydrated volcanic glass is also known to influence the character of groundwater to which it is exposed (White et al., 1980). Hydrochemical evolution, within saturated zones of volcanic formations, is modeled here as a means to resolve the sources feeding a perched groundwater zone. By observation of solute mass balances in groundwater, together with rock chemistry, this study characterizes the chemical weathering processes active along recharge pathwaysmore » in a mountain front system. Inverse mass balance modeling, which accounts for mass fluxes between solid phases and solution, is used to contrive sets of quantitative reactions that explain chemical variability of water between sampling points. Model results are used, together with chloride mass balance estimation, to evaluate subsurface mixing scenarios generated by further modeling. Final model simulations estimate contributions of mountain block and local recharge to various contaminated zones.« less
NASA Astrophysics Data System (ADS)
Ricci, J.; Quidelleur, X.; Pallares, C.; Lahitte, P.
2017-10-01
For the first time in the Lesser Antilles volcanic arc, we combine for one island, 123 K-Ar ages, with 133 major and trace elements geochemical analyses, in order to better constrain the volcanic history of Basse-Terre Island. In this study, nine new ages have been obtained from the southern part of the island, and complemented with eighty-three new major and trace element analyses of samples collected across the island. The southern part of Basse-Terre Island has been the loci of volcanic activity since the last 200 kyr. It is characterized by the construction of the Grande-Découverte Volcanic Complex (GDVC) composed by the Grande-Découverte - Soufrière (GDS) and the Trois-Rivières Madeleine Field (TRMF). After the onset of construction at least at 205 ± 28 ka, the GDVC displays strikingly continuous activity between 140 ± 13 and 56 ± 3 ka, followed by a 30 kyr volcanic hiatus, which is coeval with the hiatus also observed for the TRMF activity. Two new ages of 125 ± 14 and 140 ± 13 ka obtained on a lava flow from the Grande-Découverte caldera wall suggest the presence of a depression, resulting of a major flank collapse and/or explosive event, before 140 ka. Finally, a new age of 9 ± 6 ka, obtained from outcrops exposed on the edge of the Class River, in the north of the GDVC, allows us to calculate channel incision rates between 11 and 56 mm/yr. These values are consistent with incision rates determined on other volcanic islands with similar climates. In a broad sense, the petrology and geochemistry of Basse-Terre Island rocks appear fairly homogeneous, with mainly andesite and basaltic-andesite rocks and typical features of volcanic-arc lavas. Nevertheless, in detail, various magmatic processes can be discerned. Most variations are principally controlled by crystal-melt fractionation-accumulation, but major and trace elements also highlight episodic magmatic recharge, involving magma mixing. There are also indications for assimilation of crustal rocks with continental affinity, as well as mantle input of slab-derived fluids. Trace element ratios suggest the presence of at least two different magmatic sources characterized by different partial melting rates and different continental contributions for Basse-Terre Island. Different massifs show a bimodal behavior, with the Basal Complex, the Axial Chain (Piton de Bouillante and Southern Axial Chain), the Monts-Caraïbes volcanoes and the Sans-Toucher volcano in the first group, and the Septentrional Chain, and the Grande-Découverte Volcanic Complex (GDS and TRMF) in the second. Given the unique amount of time-constrained geochemical data, this study provides a complete and detailed investigation of volcanic evolution in the central part of the Lesser Antilles active arc.
NASA Astrophysics Data System (ADS)
Nelson, W. R.; Furman, T.; Elkins-Tanton, L. T.
2015-12-01
The East African Rift System (EARS) is the archetypal active continental rift. The rift branches cut through the elevated Ethiopian and Kenyan domes and are accompanied by a >40 Myr volcanic record. This record is often used to understand changing mantle dynamics, but this approach is complicated by the diversity of spatio-temporally constrained, geochemically unique volcanic provinces. Various sources have been invoked to explain the geochemical variability across the EARS (e.g. mantle plume(s), both enriched and depleted mantle, metasomatized or pyroxenitic lithosphere, continental crust). Mantle contributions are often assessed assuming adiabatic melting of mostly peridotitic material due to extension or an upwelling thermal plume. However, metasomatized lithospheric mantle does not behave like fertile or depleted peridotite mantle, so this model must be modified. Metasomatic lithologies (e.g. pyroxenite) are unstable compared to neighboring peridotite and can founder into the underlying asthenosphere via ductile dripping. As such a drip descends, the easily fusible metasomatized lithospheric mantle heats conductively and melts at increasing T and P; the subsequent volcanic products in turn record this drip magmatism. We re-evaluated existing data of major mafic volcanic episodes throughout the EARS to investigate potential evidence for lithospheric drip foundering that may be an essential part of the rifting process. The data demonstrate clearly that lithospheric drip melting played an important role in pre-flood basalt volcanism in Turkana (>35 Ma), high-Ti "mantle plume-derived" flood basalts and picrites (HT2) from NW Ethiopia (~30 Ma), Miocene shield volcanism on the E Ethiopian Plateau and in Turkana (22-26 Ma), and Quaternary volcanism in Virunga (Western Rift) and Chyulu Hills (Eastern Rift). In contrast, there is no evidence for drip melting in "lithosphere-derived" flood basalts (LT) from NW Ethiopia, Miocene volcanism in S Ethiopia, or Quaternary within-rift lavas in Ethiopia, Turkana or Kivu. The evidence for widespread lithospheric removal across eastern Africa coincides with the timing of dome uplift (e.g. Gani et al., 2007; Wichura et al., 2015) and further demonstrates the controls of lithospheric mantle on volcano-tectonic processes throughout the evolving EARS.
Magma genesis of the acidic volcanism in the intra-arc rift zone of the Izu volcanic arc, Japan
NASA Astrophysics Data System (ADS)
Haraguchi, S.; Tokuyama, H.; Ishii, T.
2010-12-01
The Izu volcanic arc extends over 550 km from the Izu Peninsula, Japan, to the Nishinoshima Trough or Sofugan tectonic line. It is the northernmost segment of the Izu-Bonin-Mariana arc system, which is located at the eastern side of the Philippine Sea Plate. The recent magmatism of the Izu arc is bimodal and characterized by basalt and rhyolite (e.g. Tamura and Tatsumi 2002). In the southern Izu arc, volcanic front from the Aogashima to the Torishima islands is characterized by submarine calderas and acidic volcanisms. The intra-arc rifting, characterized by back-arc depressions, small volcanic knolls and ridges, is active in this region. Volcanic rocks were obtained in 1995 during a research cruise of the R/V MOANA WAVE (Hawaii University, cruise MW9507). Geochemical variation of volcanic rocks and magma genesis was studied by Hochstaedter et al. (2000, 2001), Machida et al (2008), etc. These studies focused magma and mantle dynamics of basaltic volcanism in the wedge mantle. Acidic volcanic rocks were also dredged during the curies MW9507. However, studies of these acidic volcanics were rare. Herein, we present petrographical and chemical analyses of these acidic rocks, and compare these results with those of other acidic rocks in the Izu arc and lab experiments, and propose a model of magma genesis in a context of acidic volcanism. Dredge sites by the cruise MW9507 are 120, and about 50 sites are in the rift zone. Recovered rocks are dominated by the bimodal assemblage of basalt-basaltic andesite and dacite-rhyolite. The most abundant phase is olivine basalt, less than 50 wt% SiO2. Andesites are minor in volume and compositional gap from 56 to 65 wt% SiO2 exists. The across-arc variation of the HFSE contents and ratios, such as Zr/Y and Nb/Zr of rhyolites exhibit depleted in the volcanic front side and enriched in reararc side. This characteristic is similar to basaltic volcanism pointed out by Hochstaedter et al (2000). The petrographical features of rhyolites exhibit massive or flow textures, and aphyric or rare phyric. Phenocrysts are mainly plagioclase and quartz. Colored minerals are rare and observed mainly orthopyroxene. Amphibole and biotite are not observed. The phenocryst and groundmass mineral compositions of rhyolites exhibit felsic characteristics and narrow ranges. These mineral compositions are not overlapped on those of andesites and basalts. Acidic volcanism in the Izu arc is considered to partial melting of arc middle to lower crust (e.g. Tamura and Tatsumi, 2003) because rhyolite exhibits similar composition to melting experimental results of basaltic or andesitic parental material under anhydrous, low pressure and low temperature (e.g. Shukuno et al., 2006). Compare to these experiments, we consider that parent material of acidic volcanics in the rift zone is andesitic middle crust, and this crust exhibits depleted in the front side and enriched in the reararc side caused by across-arc variation of basaltic volcanism. During the rifting activity, rhyolitic magma was produced by melting of this andesitic middle crust by heating from magma and decompression, and produced rhyolites exhibit enriched in reararc side and depleted in front side.
NASA Astrophysics Data System (ADS)
Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo
2014-05-01
The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of the structural features of the studied area. The integration of these structural data with available stratigraphy, geological maps and well logs is used to propose a new model of the caldera and geothermal field. As a result of our study, we interpret the Xaltipan and Zaragoza calderas mainly as trap-door structures. These calderas affected a cone-shaped volcanic sequence, formed mainly by effusive products emitted in the pre-caldera forming phase and now hosting the geothermal reservoir (11-1.5 Ma). The main ring faults of the two calderas are buried and sealed by widespread post-calderas volcanic products, and for this reason probably do not have enough secondary permeability to be main channels for hydrothermal fluid circulation. Active, fast-moving subvertical faults have been identified inside the Zaragoza caldera depression. These structures affect recent post-caldera pyroclastic deposits and probably are related both to active resurgence inside the caldera and to regional faults NW-SE striking. The presence of active faults generating high secondary permeability is the most important structural element shaping the geothermal reservoir. Future plans of expansion of the geothermal field should focus on these active faults, considering their geometry at depth and the whole structural architecture of the Los Humeros volcanic complex.
Assessment of volcanic hazards, vulnerability, risk and uncertainty (Invited)
NASA Astrophysics Data System (ADS)
Sparks, R. S.
2009-12-01
A volcanic hazard is any phenomenon that threatens communities . These hazards include volcanic events like pyroclastic flows, explosions, ash fall and lavas, and secondary effects such as lahars and landslides. Volcanic hazards are described by the physical characteristics of the phenomena, by the assessment of the areas that they are likely to affect and by the magnitude-dependent return period of events. Volcanic hazard maps are generated by mapping past volcanic events and by modelling the hazardous processes. Both these methods have their strengths and limitations and a robust map should use both approaches in combination. Past records, studied through stratigraphy, the distribution of deposits and age dating, are typically incomplete and may be biased. Very significant volcanic hazards, such as surge clouds and volcanic blasts, are not well-preserved in the geological record for example. Models of volcanic processes are very useful to help identify hazardous areas that do not have any geological evidence. They are, however, limited by simplifications and incomplete understanding of the physics. Many practical volcanic hazards mapping tools are also very empirical. Hazards maps are typically abstracted into hazards zones maps, which are some times called threat or risk maps. Their aim is to identify areas at high levels of threat and the boundaries between zones may take account of other factors such as roads, escape routes during evacuation, infrastructure. These boundaries may change with time due to new knowledge on the hazards or changes in volcanic activity levels. Alternatively they may remain static but implications of the zones may change as volcanic activity changes. Zone maps are used for planning purposes and for management of volcanic crises. Volcanic hazards maps are depictions of the likelihood of future volcanic phenomena affecting places and people. Volcanic phenomena are naturally variable, often complex and not fully understood. There are many sources of uncertainty in forecasting the areas that volcanic activity will effect and the severity of the effects. Uncertainties arise from: natural variability, inadequate data, biased data, incomplete data, lack of understanding of the processes, limitations to predictive models, ambiguity, and unknown unknowns. The description of volcanic hazards is thus necessarily probabilistic and requires assessment of the attendant uncertainties. Several issues arise from the probabilistic nature of volcanic hazards and the intrinsic uncertainties. Although zonation maps require well-defined boundaries for administrative pragmatism, such boundaries cannot divide areas that are completely safe from those that are unsafe. Levels of danger or safety need to be defined to decide on and justify boundaries through the concepts of vulnerability and risk. More data, better observations, improved models may reduce uncertainties, but can increase uncertainties and may lead to re-appraisal of zone boundaries. Probabilities inferred by statistical techniques are hard to communicate. Expert elicitation is an emerging methodology for risk assessment and uncertainty evaluation. The method has been applied at one major volcanic crisis (Soufrière Hills Volcano, Montserrat), and is being applied in planning for volcanic crises at Vesuvius.
NASA Astrophysics Data System (ADS)
Pouclet, A.; Bellon, H.; Bram, K.
2016-09-01
The Kivu rift is part of the western branch of the East African Rift system. From Lake Tanganyika to Lake Albert, the Kivu rift is set in a succession of Precambrian zones of weakness trending NW-SE, NNE-SSW and NE-SW. At the NW to NNE turn of the rift direction in the Lake Kivu area, the inherited faults are crosscut by newly born N-S fractures which developed during the late Cenozoic rifting and controlled the volcanic activity. From Lake Kivu to Lake Edward, the N-S faults show a right-lateral en echelon pattern. Development of tension gashes in the Virunga area indicates a clockwise rotation of the constraint linked to dextral oblique motion of crustal blocks. The extensional direction was W-E in the Mio-Pliocene and ENE-WSW in the Pleistocene to present time. The volcanic rocks are assigned to three groups: (1) tholeiites and sodic alkali basalts in the South-Kivu, (2) sodic basalts and nephelinites in the northern Lake Kivu and western Virunga, and (3) potassic basanites and potassic nephelinites in the Virunga area. South-Kivu magmas were generated by melting of spinel + garnet lherzolite from two sources: an enriched lithospheric source and a less enriched mixed lithospheric and asthenospheric source. The latter source was implied in the genesis of the tholeiitic lavas at the beginning of the South-Kivu tectono-volcanic activity, in relationships with asthenosphere upwelling. The ensuing outpouring of alkaline basaltic lavas from the lithospheric source attests for the abortion of the asthenospheric contribution and a change of the rifting process. The sodic nephelinites of the northern Lake Kivu originated from low partial melting of garnet peridotite of the sub-continental mantle due to pressure release during swell initiation. The Virunga potassic magmas resulted from the melting of garnet peridotite with an increasing degree of melting from nephelinite to basanite. They originated from a lithospheric source enriched in both K and Rb, suggesting the presence of phlogopite and the local existence of a metasomatized mantle. A carbonatite contribution is evidenced in the Nyiragongo lavas. New K-Ar ages date around 21 Ma the earliest volcanic activity made of nephelinites. A sodic alkaline volcanism took place between 13 and 9 Ma at the western side of the Virunga during the doming stage of the rift and before the formation of the rift valley. In the South-Kivu area, the first lavas were tholeiitic and dated at 11 Ma. The rift valley subsidence began around 8-7 Ma. The tholeiitic lavas were progressively replaced by alkali basaltic lavas until to 2.6 Ma. Renewal of the basaltic volcanism happened at ca. 1.7 Ma on a western step of the rift. In the Virunga area, the potassic volcanism appeared ca. 2.6 Ma along a NE-SW fault zone and then migrated both to the east and west, in jumping to oblique tension gashes. The uncommon magmatic evolution and the high diversity of volcanic rocks of the Kivu rift are explained by varying transtensional constraints during the rift history.
NASA Astrophysics Data System (ADS)
Mao, X.; Li, J. H.
2012-04-01
We analyse the distribution and characteristics of 145 late Paleozoic volcanoes in north Xinjiang, NW China, including 32 volcanoes on the edge of the Junggar basin. These volcanoes are clustered and can be divided into calderas, volcanic domes, and volcanic necks. There are also 85 volcanoes inside the Junggar basin, which are dominantly distributed in the Ke-Bai fractured zone of the northwestern margin of Junggar Basin, 4 depressions (Dongdaohaizi Depression, Dishuiquan Depression, Sannan Depression and Wucaiwan Depression) and 7 uplifts (Baijiahai uplift, Beisantai uplift, Dibei uplift, Dinan uplift, Sangequan uplift, Shixi uplift and Xiayan uplift). The volcanoes inside the basin are principally controlled by Hercynian Fault Systems, along NE and nearly EW trending faults and most developed in the interjunctions of the faults. The long modification by late-stage weathering and leaching made the volcanoes difficult to identify. Remaining volcanic landforms, changing trends of the volcanic lithofacies and the typical volcanic rock, such as the crypto- explosive breccia, are the typical marks of the late Paleozoic volcanoes in the field; and the concealed volcanic edifices are identified by the techniques of seismic identification, such as seismic slicing, analysis of the attribute and tectonic trend plane. The ages of the volcanic rocks are focused on from 340 Ma to 320Ma and from 300 Ma to 295 Ma, corresponding to the subducting periods of West Junggar and East Junggar. From early Carboniferous to late Carboniferous, the volcanic activities in Junggar Basin and its adjacent areas show a variation trend from undersea to continental, from deep water to shallow water and from continental margin to intracontinental.
NASA Astrophysics Data System (ADS)
Lavallée, Yan; Johnson, Jeffrey; Andrews, Benjamin; Wolf, Rudiger; Rose, William; Chigna, Gustavo; Pineda, Armand
2016-04-01
In January 2016, we held the first scientific/educational Workshops on Volcanoes (WoV). The workshop took place at Santiaguito volcano - the most active volcano in Guatemala. 69 international scientists of all ages participated in this intensive, multi-parametric investigation of the volcanic activity, which included the deployment of seismometers, tiltmeters, infrasound microphones and mini-DOAS as well as optical, thermographic, UV and FTIR cameras around the active vent. These instruments recorded volcanic activity in concert over a period of 3 to 9 days. Here we review the research activities and present some of the spectacular observations made through this interdisciplinary efforts. Observations range from high-resolution drone and IR footage of explosions, monitoring of rock falls and quantification of the erupted mass of different gases and ash, as well as morphological changes in the dome caused by recurring explosions (amongst many other volcanic processes). We will discuss the success of such integrative ventures in furthering science frontiers and developing the next generation of geoscientists.
Late Cenozoic Samtskhe-Javakheti Volcanic Highland, Georgia:The Result of Mantle Plumes Activity
NASA Astrophysics Data System (ADS)
Okrostsvaridze, Avtandil
2017-04-01
Late Cenozoic Samtskhe-Javakheti continental volcanic highland (1500-2500 m a.s.l) is located in the SW part of the Lesser Caucasus. In Georgia the highland occupies more than 4500 km2, however its large part spreads towards the South over the territories of Turkey and Armenia. One can point out three stages of magmatic activity in this volcanic highland: 1. Early Pliocene activity (5.2-2.8 Ma; zircons U-Pb age) - when a large part of the highland was built up. It is formed from volcanic lava-breccias of andesite-dacitic composition, pyroclastic rocks and andesite-basalt lava flow. The evidences of this structure are: a large volume of volcanic material (>1500 km3); big thickness (700-1100 m in average), large-scale of lava flows (length 35 km, width 2.5-3.5 km, thickness 30-80 m), big thickness of volcanic ash horizons (300 cm at some places) and big size of volcanic breccias (diameter >1 m). Based on this data we assume that a source of this structure was a supervolcano (Okrostsvaridze et al., 2016); 2. Early Pleistocene activity (2.4 -1.6 Ma; zircons U-Pb age) - when continental flood basalts of 100-300 m thickness were formed. The flow is fully crystalline, coarse-grained, which mainly consist of olivine and basic labradorite. There 143Nd/144Nd parameter varies in the range of +0.41703 - +0.52304, and 87Sr/88Sr - from 0.7034 to 0.7039; 3. Late Pleistocene activity (0.35-0.021 Ma; zircons U-Pb age) - when intraplate Abul-Samsari linear volcanic ridge of andesite composition was formed stretching to the S-N direction for 40 km with the 8-12 km width and contains more than 20 volcanic edifices. To the South of the Abul-Samsari ridge the oldest (0.35-0.30 Ma; zircons U-Pb age) volcano Didi Abuli (3305 m a.s.l.) is located. To the North ages of volcano edifices gradually increase. Farther North the youngest volcano Tavkvetili (0.021-0. 030 Ma) is located (2583 m a.s.l.). One can see from this description that the Abul-Samsari ridge has all signs characterizing intraplate volcanic ridge. Based on our studies, we assume that the Samtskhe-Javakheti volcanic highland is a result of full cycle mantle plume activity and not of by adiabatic decompression melting of the asthenosphere, as it is considered at present (Keskin, 2007). Therefore, we assume that this volcanic highland is a Northern marginal manifestation of the Eastern Africa-Red Sea -Anatolia mantle plume flow. If we accept this idea, then the Pliocene-Pleistocene Samtskhe-Javakheti volcanic highland is the youngest continental mantle plume formation of the Earth. REFERENCES Keskin M., 2007. Eastern Anatolia: a hotspot in a collision zone without a mantle plume. Geological Society of America, Special Paper 430, pp. 693 - 722. Okrostsavridze A., Popkhadze A., Kirkitadze G., 2016. Megavolcano in the Late Cenozoic Samtckhe-Javakheti Volcanic Province? In procceding of 6th workshop on Collapse Caldera, Hokkaido, Japan. p. 42-43.
Riley, P.; Tikoff, B.; Hildreth, Wes
2012-01-01
The Long Valley region of eastern California (United States) is the site of abundant late Tertiary–present magmatism, including three geochemically distinct stages of magmatism since ca. 3 Ma: Mammoth Mountain, the Mono-Inyo volcanic chain, and Long Valley Caldera. We propose two tectonic models, one explaining the Mammoth Mountain–Mono-Inyo magmatism and the other explaining the presence of Long Valley Caldera. First, the ongoing Mammoth Mountain–Mono-Inyo volcanic chain magmatism is explained by a ridge-transform-ridge system, with the Mono-Inyo volcanic chain acting as one ridge segment and the South Moat fault acting as a transform fault. Implicit in this first model is that this region of eastern California is beginning to act as an incipient plate boundary. Second, the older Long Valley Caldera system is hypothesized to occur in a region of enhanced extension resulting from regional fault block rotation, specifically involving activation of the sinistral faults of the Mina deflection. The tectonic models are consistent with observed spatial and temporal differences in the geochemistry of the regional magmas, and the westward progression of magmatism since ca. 12 Ma.
Coupled geohazards at Southern Andes (Copahue-Lanín volcanoes): Chile's GEO supersite proposal
NASA Astrophysics Data System (ADS)
Lara, Luis E.; Cordova, Loreto
2017-04-01
Southern Andes are a young and active mountain belt where volcanism and tectonic processes (and those related to the hydrometeorological conditions controlled by this geological setting) pose a significant threat to the growing communities nearby. This proposal focus on a ca. 200 km long segment of the Southern Andes where 9 stratovolcanoes and 2 distributed volcanic fields are located, just along a tectonic corridor defined by the northern segment of the Liquiñe-Ofqui Faul System (LOFS), a long-lived active strike-slip fault running for 1200 km. Volcanoes in this area take part of the central province of the Andean Southern Volcanic Zone (37-41°S), particularly the northermost portion that is limited at the south by an Andean tranverse fault (Lanalhue Fault, which define the Villarrica-Lanin volcanic chain) and run along the horse-tail array of the LOFS to the north. Most of the stravolcanoes are atop of the LOFS main branch with only 3 exceptions (Callaqui, Tolhuaca and Lanín) 15-20 km away, but related to transverse faults. Hazards in the segment derive from the activity of some of the most active volcanoes in South America (e.g., Villarrica, Llaima), others with long-lasting weak activity (e.g., Copahue) or some volcanoes with low frequency but high magnitude eruptions in the geological record. Only since the beggining of the 20th century 80 eruptions have been recorded in this area. In addition, activity of the LOFS has been detected prior to some eruptions and coeval with some others (e.g., Lonquimay 1989). A strong two-way coupling between tectonics and volcanism has been proposed for the segment but only recently detected by geophysical techniques or numerical modelling. Tectonic triggered landslides are frequent in this region together with debris flows at erupting ice-covered volcanoes or stream headed at high altitude basins. The latter scenario seems to be worst at present because of global climate change. Ground-based monitoring networks for both volcanism (the so-called Red Nacional de Vigilancia Volcánica at Sernageomin) and tectonics (Centro Sismólogico Nacional at Universidad de Chile) allow a good complement with space-borne data (e.g., we observed deformation by GPS and InSAR at Villarrica volcano related to the March 3, 2015 eruption) in order to promote basic and applied research for a successful national strategy of disaster risk reduction. In addition, at least 3 active national research grants focus in this area and a number of young scientists are working there. Thus, we propose the Copahue-Lanín (37.5-39.5°S) segment of the Southern Volcanic Zone as a Geohazards Supersite and look forward for an enhanced engagement of the scientific community in this area.
Effects of volcanic ash on ocular symptoms: results of a 10-year survey on schoolchildren.
Kimura, Katsuaki; Sakamoto, Taiji; Miyazaki, Miho; Uchino, Eisuke; Kinukawa, Naoko; Isashiki, Makoto
2005-03-01
To study the effects of volcanic ash on the ocular symptoms of schoolchildren ages 6 to 15 residing near Mt. Sakurajima, an active volcano. Retrospective, cross-sectional study. A total of 10,380 children ages 6 to 15, 1175 in a high-exposure area and 9205 in a low-exposure area, were studied. High- and low-exposure areas for volcanic ash were selected. All subjects in both areas were examined annually each September in the decade from 1994 to 2003. The frequency of positive ocular symptoms in years with and without active volcanic eruptions was compared. The association of ocular symptoms with volcanic ash dispersal was assessed with the Mantel-Haenszel test or chi-square test. Subjects in the high-exposure area showed ocular symptoms more often than those in the low-exposure area (P<0.0001). Years of active volcanic eruptions (volcanic ash of 5000 g/m2/year or more) were closely related to years with a high frequency of ocular symptoms in subjects in the high-exposure area (P<0.05) but related conversely in subjects in the low-exposure area (P<0.01). Major ocular symptoms were redness, discharge, foreign body sensation, and itching, all treated effectively with eyedrops. Ocular symptoms in subjects were strongly influenced by volcanic eruptions in the Mt. Sakurajima area, but direct influence was limited to those living in areas very near the volcano (i.e., 4 km from the volcano's crater).
Geological evolution of the Afro-Arabian dome
NASA Astrophysics Data System (ADS)
Almond, D. C.
1986-12-01
The Afro-Arabian dome includes the elevated continental regions enclosing the Red Sea, Gulf of Aden, and the Ethiopian rift system, and extends northwards as far as Jordan. It is more than an order of magnitude larger than other African uplifts. Both the structures and the igneous rocks of the dome appear to be products of the superimposition of two, perhaps three, semi-independent generating systems, initiated at different times but all still active. A strain pattern dominated by NW-trending basins and rifts first became established early in the Cretaceous. By the end of the Oligocene, much of the extensional strain had been taken up along the Red Sea and Gulf of Aden axes, which subsequently developed into an ocean. Palaeogene "trap" volcanism of mildly alkaline to transitional character was related to this horizontal extension rather than to doming. Further west, the East Sahara swell has a history of intermittent alkaline volcanicity which began in the Mesozoic and was independent of magmatism in the Afro-Arabian dome. Volcanicity specifically related to doming began in the Miocene along a N-S zone of uplift extending from Ethiopia to Syria. This elongated swell forms the northern termination of the East African system of domes and rifts, characterized by episodic vertical uplift but very little extension. Superimposition of epeirogenic uplift upon structures formed by horizontal extension took place in the Neogene. Volcanicity related to vertical tectonics is mildly alkaline in character, whereas transitional and tholeiitic magmas are found along the spreading axes.
Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina
2011-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
McGimsey, Robert G.; Neal, Christina A.; Dixon, James P.; Malik, Nataliya; Chibisova, Marina
2011-01-01
The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2007. The year was highlighted by the eruption of Pavlof, one of Alaska's most frequently active volcanoes. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the autumn of 2006 and continued to emit copious amounts of steam and volcanic gas into 2007. Redoubt Volcano showed the first signs of the unrest that would unfold in 2008-09. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.
2010-09-01
The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.
Snow cover correlation between Mt. Villarrica and Mt. Lliama in Chile
NASA Astrophysics Data System (ADS)
Kim, Jeong-Cheol; Park, Sung-Hwan; Jung, Hyung-Sup
2014-11-01
The Southern Volcanic Zone (SVZ) of Chile consists of many volcanoes, and all of the volcanoes are covered with snow at the top of mountain. Monitoring snow cover variations in these regions can give us a key parameter in order to understand the mechanisms of volcanic activity. In this study, we investigate on the volcanic activity and snow cover interaction from snow cover area mapping, snow-line extraction. The study areas cover Mt. Villarrica and Mt. Llaima, Chile. Both of them are most active volcanos in SVZ. Sixty Landsat TM and Landsat ETM+ images are used for observing snow cover variations of Mt. Villarrica and Mt. Llaima, spanning the 25 years from September 1986 to February 2011. Results show that snow cover area between volcanic activity and non-activity are largely changed from 42.84 km2 to 13.41 km2, temporarily decreased 79% at the Mt. Villarrica and from 28.98 km2 to 3.82 km2, temporarily decreased 87% at the Mt. Villarrica. The snow line elevation of snow cover retreated by approximately 260 m from 1,606m to 1,871 m at the Mt. Villarrica, approximately 266m from 1,741m to 2,007m at the Mt. Llaima. The results show that there are definitely correlations between snow cover and volcanic activity.
NASA Astrophysics Data System (ADS)
Harigane, Y.; Ishizuka, O.; Shimoda, G.; Sato, T.
2014-12-01
The Ryukyu Arc occurs between the islands of Kyushu and Taiwan with approximately 1200 km in the full length. This volcanic arc is caused by subduction of the Philippine Sea plate beneath the Eurasia Plate along the Ryukyu trench, and is composed of forearc islands, chains of arc volcanoes, and a back-arc rift called Okinawa Trough. The Ryukyu Arc is commonly divided into three segments (northern, central and southern) that bounded by the Tokara Strait and the Kerama Gap, respectively (e.g., Konishi 1965; Kato et al., 1982). Sato et al. (2014) mentioned that there is no active subaerial volcano in the southwest of Iotori-shima in the Central Ryukyu Arc whereas the Northern Ryukyu Arc (i.e., the Tokara Islands) has active frontal arc volcanoes. Therefore, the existence of volcanoes and volcanotectonic history of active volcanic front in the southwestern part of the Central Ryukyu Arc are still ambiguous. Detailed geophysical and geological survey was mainly conducted using R/V Kaiyou-maru No.7 during GK12 cruise operated by the Geological Survey of Japan/National Institute of Advanced Industrial Science and Technology, Japan. As a result, we have found a new submarine volcanic caldera on the west of Kume-jima island, where located the southwestern part of Central Ryukyu Arc. Here, we present (1) the bathymetrical feature of this new submarine caldera for the first time and (2) the microstructural and petrological observations of volcanic rocks (20 volcanic samples in 13 dredge sites) sampled from the small volcanic cones of this caldera volcano. The dredged samples from the caldera consist of mainly rhyolite pumice with minor andesites, Mn oxides-crust and hydrothermally altered rocks. Andesite has plagioclase, olivine and pyroxene phenocrysts. Key words: volcanic rock, caldera, arc volcanism, active volcanic front, Kume-jima island, Ryukyu Arc
The NASA Applied Sciences Program: Volcanic Ash Observations and Applications
NASA Technical Reports Server (NTRS)
Murray, John J.; Fairlie, Duncan; Green, David; Haynes, John; Krotkov, Nickolai; Meyer, Franz; Pavolonis, Mike; Trepte, Charles; Vernier, Jean-Paul
2016-01-01
Since 2000, the NASA Applied Sciences Program has been actively transitioning observations and research to operations. Particular success has been achieved in developing applications for NASA Earth Observing Satellite (EOS) sensors, integrated observing systems, and operational models for volcanic ash detection, characterization, and transport. These include imager applications for sensors such as the MODerate resolution Imaging SpectroRadiometer (MODIS) on NASA Terra and Aqua satellites, and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite; sounder applications for sensors such as the Atmospheric Infrared Sounder (AIRS) on Aqua, and the Cross-track Infrared Sounder (CrIS) on Suomi NPP; UV applications for the Ozone Mapping Instrument (OMI) on the NASA Aura Satellite and the Ozone Mapping Profiler Suite (OMPS) on Suomi NPP including Direct readout capabilities from OMI and OMPS in Alaska (GINA) and Finland (FMI):; and lidar applications from the Caliop instrument coupled with the imaging IR sensor on the NASA/CNES CALIPSO satellite. Many of these applications are in the process of being transferred to the Washington and Alaska Volcanic Ash Advisory Centers (VAAC) where they support operational monitoring and advisory services. Some have also been accepted, transitioned and adapted for direct, onboard, automated product production in future U.S. operational satellite systems including GOES-R, and in automated volcanic cloud detection, characterization and alerting tools at the VAACs. While other observations and applications remain to be developed for the current constellation of NASA EOS sensors and integrated with observing and forecast systems, future requirements and capabilities for volcanic ash observations and applications are also being developed. Many of these are based on technologies currently being tested on NASA aircraft, Unmanned Aerial Systems (UAS) and balloons. All of these efforts and the potential advances that will be realized by integrating them are shared in this presentation.
NASA Astrophysics Data System (ADS)
Cashman, K. V.; Giordano, G.
2008-10-01
The study of volcanic hazards leads inevitably to questions of how past cultures have lived in volcanically active regions of the world. Here we summarize linkages between volcanological, archaeological and anthropological studies of historic and prehistoric volcanic eruptions, with the goal of evaluating the impact of past eruptions on human populations to better prepare for future events. We use examples from papers collected in this volume to illustrate ways in which volcanological studies aid archaeological investigations by providing basic stratigraphic markers and information about the nature and timing of specific volcanic events. We then turn to archaeological perspectives, which provide physical evidence of the direct impacts of volcanic eruptions, such as site abandonment and human migration, as well as indirect impacts on local cultures as reflected in human artifacts. Finally we review anthropological studies of societal responses to past and recent volcanic eruptions. We pay particular attention to both the psychological impact of catastrophic events and records of these impacts encoded within oral traditions. Taken together these studies record drastic short-term eruption impacts but adaptation to volcanic activity over the longer term, largely through strategies of adaptive land use.
NASA Astrophysics Data System (ADS)
Simicevic, Aleksandra; Bonadonna, Costanza; di Traglia, Federico; Rosi, Mauro
2010-05-01
Volcanic eruptions are accompanied by numerous hazards which pose short- and long-term threats to people and property. Recent experiences have shown that successful responses to hazard events correlate strongly with the degree to which proactive policies of risk reduction are already in place before an eruption occurs. Effective proactive risk-reduction strategies require contributions from numerous disciplines. A volcanic eruption is not a hazard, per se, but rather an event capable of producing a variety of hazards (e.g. earthquakes, pyroclastic density currents, lava flows, tephra fall, lahars, landslides, gas release, and tsunamis) that can affect the built environment in a variety of ways, over different time scales and with different degrees of intensity. Our proposed model for the assessment and mitigation of exposure-based volcanic risk is mainly based on the compilation of three types of maps: hazard maps, hazard-specific vulnerability maps and exposure-based risk maps. Hazard maps identify the spatial distribution of individual volcanic hazard and it includes both event analysis and impact analysis. Hazard-specific vulnerability maps represent the systematic evaluation of physical vulnerability of the built environment to a range of volcanic phenomena, i.e. spatial distribution of buildings vulnerable to a given hazard based on the analysis of selected building elements. Buildings are classified on the basis of their major components that are relevant for different volcanic hazards, their strength, their construction materials and are defined taking into account the potential damage that each group of building elements (e.g. walls, roof, load-bearing structure) will suffer under a volcanic hazard. All those factors are enumerated in a checklist and are used for the building survey. Hazard-specific vulnerability maps are then overlapped with hazard maps in order to compile exposure-based risk maps and so quantify the potential damage. Such quantification is the starting point of the identification of suitable mitigation measures which will be analyzed through a cost-benefit analysis to assess their financial feasibility. Information about public networks is also recorded in order to give an overall idea of the built environment condition of the island. The vulnerability assessment of the technical systems describes the potential damages that could stress systems like electricity supply, water distribution, communication networks or transport systems. These damages can also be described as function disruption of the system. The important aspect is not only the physical capacity of a system to resist, but also its capacity to continue functioning. The model will be tested on the island of Vulcano in southern Italy. Vulcano is characterized by clear signs of volcanic unrest and is the type locality for a deadly style of eruption. The main active system of Vulcano Island (La Fossa cone) is known to produce a variety of eruption styles and intensities, each posing their own hazards and threats. Six different hazard scenarios have been identified based on a detailed stratigraphic work. The urbanization on Vulcano took place in the 1980s with no real planning and its population mostly subsists on tourism. Our preliminary results show that Vulcano is not characterized by a great variability of architectural typologies and construction materials. Three main types of buildings are present (masonry with concrete frame, masonry with manufactured stone units, masonry with hollow clay bricks) and no statistically significant trends were found between physical and morphological characteristics. The recent signs of volcanic unrest combined with a complex vulnerability of the island due to an uncontrolled urban development and a significant seasonal variation of the exposed population in summer months result in a high volcanic risk. As a result, Vulcano represents the ideal environment to test a multi-hazard based risk model and to study the transition between micro (building) and macro (urban environment) scale of analysis, which is still an unexplored field in the study of volcanic risk. Different levels of vulnerability need to be analyzed in order to increase the level of preparedness, plan a potential evacuation, manage a potential volcanic crisis and assess the best mitigation measures to put in place and reduce the volcanic risk.
NASA Astrophysics Data System (ADS)
Lücke, O. H.; Madrigal Quesada, P.
2017-12-01
During the first semester of 2017, Poas Volcano, in the Central American Volcanic Arc (CAVA) initiated a period of volcanic unrest that included high energy phreatomagmatic to magmatic eruptions. The eruptions that occurred on April 14th and April 22nd of 2017 produced abundant ashes and ballistic materials. Here we present results from the morphological and petrographic analyses conducted in the collected material from the largest eruptions of April 2017. Mineral textures observed on the petrographic analyses show evidence of reactivation and fragmentation of a crystal mush in the magma chamber, triggering re-melting episodes, volatile exsolution, and an increase in the pressure of the system, all of which are expected conditions during an eruption episode. Our analyses done on junvenile and non-juvenile material suggest that processes of magma mingling and injections of new batches of material of different compositions have played an important role throughout previous historical eruptions and likely in the current phase of volcanic activity in Poas.
Evidence of recent volcanic activity on the ultraslow-spreading Gakkel ridge.
Edwards, M H; Kurras, G J; Tolstoy, M; Bohnenstiehl, D R; Coakley, B J; Cochran, J R
2001-02-15
Seafloor spreading is accommodated by volcanic and tectonic processes along the global mid-ocean ridge system. As spreading rate decreases the influence of volcanism also decreases, and it is unknown whether significant volcanism occurs at all at ultraslow spreading rates (<1.5 cm yr(-1)). Here we present three-dimensional sonar maps of the Gakkel ridge, Earth's slowest-spreading mid-ocean ridge, located in the Arctic basin under the Arctic Ocean ice canopy. We acquired this data using hull-mounted sonars attached to a nuclear-powered submarine, the USS Hawkbill. Sidescan data for the ultraslow-spreading (approximately 1.0 cm yr(-1)) eastern Gakkel ridge depict two young volcanoes covering approximately 720 km2 of an otherwise heavily sedimented axial valley. The western volcano coincides with the average location of epicentres for more than 250 teleseismic events detected in 1999, suggesting that an axial eruption was imaged shortly after its occurrence. These findings demonstrate that eruptions along the ultraslow-spreading Gakkel ridge are focused at discrete locations and appear to be more voluminous and occur more frequently than was previously thought.
Geothermal and volcanism in west Java
NASA Astrophysics Data System (ADS)
Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah
2018-02-01
Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.
Berberich, Gabriele; Schreiber, Ulrich
2013-05-17
In a 1.140 km² study area of the volcanic West Eifel, a comprehensive investigation established the correlation between red wood ant mound (RWA; Formica rufa-group) sites and active tectonic faults. The current stress field with a NW-SE-trending main stress direction opens pathways for geogenic gases and potential magmas following the same orientation. At the same time, Variscan and Mesozoic fault zones are reactivated. The results showed linear alignments and clusters of approx. 3,000 RWA mounds. While linear mound distribution correlate with strike-slip fault systems documented by quartz and ore veins and fault planes with slickensides, the clusters represent crosscut zones of dominant fault systems. Latter can be correlated with voids caused by crustal block rotation. Gas analyses from soil air, mineral springs and mofettes (CO₂, Helium, Radon and H₂S) reveal limiting concentrations for the spatial distribution of mounds and colonization. Striking is further the almost complete absence of RWA mounds in the core area of the Quaternary volcanic field. A possible cause can be found in occasionally occurring H₂S in the fault systems, which is toxic at miniscule concentrations to the ants. Viewed overall, there is a strong relationship between RWA mounds and active tectonics in the West Eifel.
NASA Astrophysics Data System (ADS)
Rellini, Ivano; Vogel, Sebastian; Märker, Michael
2014-05-01
The stratigraphic sequence of Scafati, about 3 km east of ancient Pompeii, is presented consisting of a multilayered sequence of repeated volcanic deposition and pedogenesis that was caused by several phases of volcanic activity and volcanic quiescence of Somma-Vesuvius, at least, the last 20,000 years. Micromorphological analysis were carried out at the soil material and selected volcanic deposits to establish a chronological succession of different phases of volcanic deposition, pedogenetic transformation but also to highlight the anthropogenic influence. The micromorphological analysis testified furrow irrigation and soil cultivation in the medieval stratigraphy and allowed the identification of very significant antropogenic features in the Bronze Age/Iron Age paleosol, i.e. complex depositional crusts and dusty clay coatings and hypocoatings, which are often used as an indicator for tillage activity. In contrast to the clear macroscopic and chemical evidence of ancient soil cultivation, the Roman paleosol did not exhibit distinct micromorphological signs of soil cultivation.
Using Volcanic Lightning Measurements to Discern Variations in Explosive Volcanic Activity
NASA Astrophysics Data System (ADS)
Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.
2013-12-01
VHF observations of volcanic lightning have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical activity occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The high rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic activity. The fact that vent discharges are observed concurrent with explosive volcanic activity indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed lightning observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic lightning observations in general, are a valuable tool for volcano monitoring, providing a method for rapid detection of volcanic activity in real-time.
(abstract) Survey of Volcanic Hazards in the Trans Mexican Volcanic Belt
NASA Technical Reports Server (NTRS)
Abrams, M.; Siebe, C.; Macias, J.
1997-01-01
A substantial percentage of the world's population lives in areas vulnerable to the negative effects of future volcanic activity. This is especially true in Mexico, where within the Trans Mexican Volcanic Belt (TMVB) one half of the country's 90 million inhabitants live. The TMVB is a 1 000 by 200 km area, dotted with hundreds of volcanoes and volcanic centers. Most of the area has been poorly studied, and the volcanic history is largely unknown. Our approach is to combine interpretations of satellite images, field work and mapping, laboratory analysis, and age dating to elucidate the volcanic history and evaluate the potential eruptive hazards. Hazards evaluations are done in the form of risk maps.
The geologic history of Margaritifer basin, Mars
Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.
2016-01-01
In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.
The geologic history of Margaritifer basin, Mars
NASA Astrophysics Data System (ADS)
Salvatore, M. R.; Kraft, M. D.; Edwards, C. S.; Christensen, P. R.
2016-03-01
In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.
NASA Astrophysics Data System (ADS)
Holden, L.; Cas, R.; Fournier, N.; Ailleres, L.
2017-09-01
The Okataina Volcanic Centre (OVC) is one of two large active rhyolite centres in the modern Taupo Volcanic Zone (TVZ) in the North Island of New Zealand. It is located in a complex section of the Taupo rift, a tectonically active section of the TVZ. The most recent volcanic unrest at the OVC includes the 1315 CE Kaharoa and 1886 Tarawera eruptions. Current monitoring activity at the OVC includes the use of continuous GPS receivers (cGPS), lake levelling and seismographs. The ground deformation patterns preceding volcanic activity the OVC are poorly constrained and restricted to predictions from basic modelling and comparison to other volcanoes worldwide. A better understanding of the deformation patterns preceding renewed volcanic activity is essential to determine if observed deformation is related to volcanic, tectonic or hydrothermal processes. Such an understanding also means that the ability of the present day cGPS network to detect these deformation patterns can also be assessed. The research presented here uses the finite element (FE) modelling technique to investigate ground deformation patterns associated with magma accumulation and diking processes at the OVC in greater detail. A number of FE models are produced and tested using Pylith software and incorporate characteristics of the 1315 CE Kaharoa and 1886 Tarawera eruptions, summarised from the existing body of research literature. The influence of a simple ring fault structure at the OVC on the modelled deformation is evaluated. The ability of the present-day continuous GPS (cGPS) GeoNet monitoring network to detect or observe the modelled deformation is also considered. The results show the modelled horizontal and vertical displacement fields have a number of key features, which include prominent lobe based regions extending northwest and southeast of the OVC. The results also show that the ring fault structure increases the magnitude of the displacements inside the caldera, in particular in the vicinity of the southern margin. As a result, some of the cGPS stations in the vicinity of the OVC are more important for measuring deformation related to volcanic processes than others. The results have important implications for how any future observed deformation at the OVC is observed and interpreted.
NASA Astrophysics Data System (ADS)
La Femina, P. C.; Geirsson, H.; Saballos, A.; Mattioli, G. S.
2017-12-01
A long-standing paradigm in plate tectonics is that oblique convergence results in strain partitioning and the formation of migrating fore-arc terranes accommodated on margin-parallel strike-slip faults within or in close proximity to active volcanic arcs (e.g., the Sumatran fault). Some convergent margins, however, are segmented by margin-normal faults and margin-parallel shear is accommodated by motion on these faults and by vertical axis block rotation. Furthermore, geologic and geophysical observations of active and extinct margins where strain partitioning has occurred, indicate the emplacement of magmas within the shear zones or extensional step-overs. Characterizing the mechanism of accommodation is important for understanding short-term (decadal) seismogenesis, and long-term (millions of years) fore-arc migration, and the formation of continental lithosphere. We investigate the geometry and kinematics of Quaternary faulting and magmatism along the Nicaraguan convergent margin, where historical upper crustal earthquakes have been located on margin-normal, strike-slip faults within the fore arc and arc. Using new GPS time series, other geophysical and geologic data, we: 1) determine the location of the maximum gradient in forearc motion; 2) estimate displacement rates on margin-normal faults; and 3) constrain the geometric moment rate for the fault system. We find that: 1) forearc motion is 11 mm a-1; 2) deformation is accommodated within the active volcanic arc; and 3) that margin-normal faults can have rates of 10 mm a-1 in agreement with geologic estimates from paleoseismology. The minimum geometric moment rate for the margin-normal fault system is 2.62x107 m3 yr-1, whereas the geometric moment rate for historical (1931-2006) earthquakes is 1.01x107 m3/yr. The discrepancy between fore-arc migration and historical seismicity may be due to aseismic accommodation of fore-arc motion by magmatic intrusion along north-trending volcanic alignments within the volcanic arc.
Hill, D.P.
1984-01-01
Recent patterns of geologic unrest in long Valley caldera in east-central California emphasize that this large, silicic volcanic system and the adjacent, geologically youthful Inyo-Mono Craters volcanic chain are still active and capable of producing locally hazardous volcanic eruptions. A series of four magnitude -6 earthquakes in May 1980 called attention to this current episode of unrest, and subsequent activity has included numerous earthquake swarms in the south moat of the caldera accompanied by inflation of the resurgent dome by more than 50 cm over the last five years. The seismicity associated with this unrest is currently monitored by a network of 31 telemetered seismic stations with an automatic processing system that yelds hypocentral locations and earthquake magnitudes in near-real time. Deformation of the ground is monitored by a) a series of overlapping trilateration networks that provide coverage ranging from annual measurements of regional deformation to daily measurements of deformation local to the active, southern section of the caldera, b) a regional network of level lines surveyed annually, c) a regional network of precise gravity stations occupied annually, d) local, L-shaped level figures surveyed every few months, and e) a network of fourteen borehole tiltmeter clusters (two instruments in each cluster) and a borehole dilatometer, the telemetered signals from which provide continuous data on deformation rates. Additional telemetered data provide continuous information on fluctuations in the local magnetic field, hydrogen gas emission rates at three sites, and water level and temperatures in three wells. Continuous data on disharge rates and temperatures from hot springs and fumaroles are collected by several on-site recorders within the caldera, and samples for liquid and gas chemistry are collected several times per year from selected hot springs and fumaroles. ?? 1984 Intern. Association of Volcanology and Chemistry of the Earth's Interior.
NASA Astrophysics Data System (ADS)
Lanagan, K. M.; Richardson, E.
2012-12-01
Although great earthquakes such as the recent moment-magnitude (M) 9 Tohoku-Oki earthquake have been shown to trigger remote seismicity in volcanoes, the extent to which subduction zone earthquakes can trigger shallow seismic swarms at volcanoes is largely unexplored. Unknowns in this relationship include the upper limit of distance, the lower limit of magnitude, the upper time limit between events, and the effects of rupture directivity. We searched the Advanced National Seismic System earthquake catalog from 1989 - 2011 for correlations in space and time between M > 5.0 earthquakes in the south central Alaskan subduction zone (between 58.5°N and 62.5°N, and 150.7°W and 154.7°W) and volcanic activity at Mt. Redoubt, Mt. Iliamna, and Mt. Spurr volcanoes. There are 48 earthquakes M > 5 in this catalog; five of these are M > 6. The depths of the 48 M>5 events range from 49km to 220km, and they are all between 100km and 350km of the three volcanoes. Preliminary analysis of our catalog shows that four of the five M > 6 earthquakes are followed by a volcanic earthquake swarm at either Redoubt or Spurr within 100 days, and three of them are followed by a volcanic earthquake swarm within a month. None of these events correlated in space and time with swarms at Mt. Iliamna. We are also searching for swarms and moderate earthquakes occurring in time windows far removed from each other. The likeliest case of remotely triggered seismicity in our search area to date occurred on January 24 2009, when a magnitude 5.8 earthquake beneath the Kenai Peninsula at 59.4°N, 152.8°W, and 95km depth was immediately followed by an increase of volcanic activity at Mt. Redoubt approximately 153km away. The first swarm began on Jan 25 2009. On Jan 30 2009, volcanologists at the Alaskan Volcano observatory determined the increased volcanic seismicity was indicative of an impending eruption. Mt. Redoubt erupted on March 15 2009. Proposed mechanisms for triggering of volcanoes by earthquakes include dynamic and static stress changes in the magmatic system, which could affect pressure in the magma chamber and overpressure, or affect phenocryst settling and bubble growth inside the chamber. However, these models have generally not been connected to specific events; expanding our catalog will help to refine these models to describe the mechanics of this relationship.
NASA Astrophysics Data System (ADS)
Hamish, A.; Christenson, B. W.; Mazot, A.
2014-12-01
The major volatile species in volcanic plume emissions (i.e., H2O, CO2, SO2, HCl, HF) are all strongly infrared (IR)-active, and lend themselves to infrared spectroscopic analysis. However, physical/optical access to plume gases along pathways which include a suitable natural or active IR radiation source is often difficult or impossible to achieve, particularly for timeframes extending beyond short campaign periods. In this study, we present results from preliminary tests conducted on three volcanic CO2 plume emissions using a tunable diode NIR laser system (TDL, Boreal Laser Inc.). The approach is proving itself as a good candidate for continuous monitoring of volcanic plume CO2, and by default all other IR-active constituents for which lasers of appropriate wavelength are available. The CO2 system is configured with a TDL in a transceiver generating laser light which can be tuned to coincide with one of several absorption lines in the CO2 absorption band between 1575 nm and 1585 nm. This beam propagates through the atmosphere (and plume) to a retro-reflector, which returns the beam to a photodiode detector in the transceiver which processes the signal to report real time CO2 column densities. The CO2 absorption line at 1579.1 nm was used to good effect on Mt Ruapehu (NZ) where volcanic gases emanate through a 100 m deep crater lake, resulting in CO2 concentrations of > 78 ppm above background in the mixing zone varying from 4 to 30 m above the lake surface. Subsequent tests on the main plume at White Island, however, generated only poor results with indicated CO2 amounts being less than atmospheric. We concluded that this was the result of interference from a neighboring but comparatively minor H2O absorption band which in the proximal, higher temperature plume (estimated 50-70 °C), had H2O concentrations some 4-5 times greater than ambient. A change to a less sensitive absorption line further removed from potential H2O band interference (1567.9 nm) appears to have solved this problem, and yielded maximum CO2 concentrations along the 730 m pathway in excess of 500 ppm.This approach holds promise for continuous, real-time monitoring of volcanic plume chemistry, and we will now turn our focus to the detection of SO2, HCl and HF plume species.
The GEOTREF program, a new approach for geothermal investigation
NASA Astrophysics Data System (ADS)
Gérard, Frédéric; Viard, Simon; Garcia, Michel
2017-04-01
The GEOTREF is an R&D program supported by the ADEME, French environmental agency and by the «Investissement d'Avenir », a French government program to found innovative projects. The GEOTREF program aims to develop an integrated analysis of high temperature geothermal reservoir in volcanic context. It is a collaborative program between nine research laboratories and two industrial partners. This program is supported for four years and funds 12 PhDs and 5 post-doctoral grants in various fields: geology, petrography, petrophysics, geophysics, geochemistry, reservoir modelling. The first three years are dedicated to the exploration phases that will lead to the drilling implantation. The project has two main objectives. 1.- Developing innovative and interactive methods and workflows leading to develop prospection and exploration in per volcanic geothermal target. This objective implicates: Optimization of the targeting to mitigate financial risks Adapting oil and gas exploration methods to geothermal energy, especially in peri-volcanic context. 2.- Applying this concept to different prospects in the Caribbean and South America The first target zone is located in Guadeloupe, an island of the active arc of the subduction zone where the Atlantic plate subducts under the Caribbean one. The GEOTREF prospect zone is on the Basse Terre Island in its south part closed to the Soufriere volcano, the active volcanic system. On the same island a geothermal field is exploited in Bouillante, just northward from the GEOTREF targeting area.
NASA Astrophysics Data System (ADS)
Roulleau, Emilie; Bravo, Francisco; Barde-Cabusson, Stephanie; Pizarro, Marcela; Muños, Carlos; Sanchez, Juan; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; de Cal, Federico; Esteban, Carlos
2016-04-01
Geothermal systems represent natural heat transfer engines in a confined volume of rock which are strongly influenced by the regional volcano-tectonic setting controlling the formation of shallow magmatic reservoirs, and by the local faults/fracture network, that permits the development of hydrothermal circulation cells and promote the vertical migration of fluids and heat. In the Southern Volcanic Zone of Chile-Argentina, geothermal resources occur in close spatial relationship with active volcanism along the Cordillera which is primarily controlled by the 1000 km long, NNE Liquiñe-Ofqui Fault Zone (LOFZ), an intra-arc dextral strike-slip fault system, associated with second-order intra-arc anisotropy of overall NE-SW (extensional) and NW-SE orientation (compressional). However there is still a lack of information on how fault network (NE and WNW strinking faults) and lithology control the fluid circulation. In this study, we propose new data of dense self-potential (SP), soil CO2 emanation and temperature (T) measurements within the geothermal area from Caviahue-Copahue Volcanic Complex (CCVC), coupled with helium isotopes ratios measured in fumaroles and thermal springs. We observe that inside the geothermal system the NE-striking faults, characterized by a combination of SP-CO2 and T maxima with high 3He/4He ratios (7.86Ra), promote the formation of high vertical permeability pathways for fluid circulation. Whereas, the WNW-striking faults represent low permeability pathways for hydrothermal fluids ascent associated with moderate 3He/4He ratios (5.34Ra), promoting the infiltration of meteoric water at shallow depth. These active zones are interspersed by SP-CO2- T minima, which represent self-sealed zones (e.g. impermeable altered rocks) at depth, creating a barrier inhibiting fluids rise. The NE-striking faults seem to be associated with the upflow zones of the geothermal system, where the boiling process produces a high vapor-dominated zone close to the surface. The WNW-striking faults seems to limit to the south the Copahue geothermal area.
Temporal evolution of the Roccamonfina volcanic complex (Pleistocene), Central Italy
NASA Astrophysics Data System (ADS)
Rouchon, V.; Gillot, P. Y.; Quidelleur, X.; Chiesa, S.; Floris, B.
2008-10-01
The Roccamonfina volcanic complex (RVC), in southern Italy, is an Early to Middle Pleistocene stratovolcano sharing temporal and morphological characteristics with the Somma-Vesuvius and the Alban Hills; both being associated with high volcanic hazard for the cities of Naples and Rome, respectively. The RVC is important for the understanding of volcanic evolution in the Roman and Campanian volcanic provinces. We report a comprehensive study of its evolution based on morphological, geochemical and K-Ar geochronological data. The RVC was active from c.a. 550 ka to 150 ka. Its evolution is divided into five stages, defining a volcanic pulse recurrence time of c.a. 90-100 kyr. The two initial stages, consisted in the construction of two successive stratovolcanoes of the tephrite-phonolite, namely "High-K series". The first stage was terminated by a major plinian eruption emplacing the trachytic Rio Rava pumices at 439 ± 9 ka. At the end of the second stage, the last High-K series stratovolcano was destroyed by a large sector collapse and the emplacement of the Brown Leucitic Tuff (BLT) at 353 ± 5 ka. The central caldera of the RVC is the result of the overlapping of the Rio Rava and of the BLT explosions. The plinian eruption of the BLT is related to the emptying of a stratified, deep-seated HKS magma chamber during the upwelling of K series (KS) magma, marking a major geochemical transition and plumbing system re-organization. The following stage was responsible for the emplacement of the Lower White Trachytic Tuff at 331 ± 2 ka, and of basaltic-trachytic effusive products erupted through the main vent. The subsequent activity was mainly restricted to the emplacement of basaltic-shoshonitic parasitic cones and lava flows, and of minor subplinian deposits of the Upper White Trachytic Tuff between 275 and 230 ka. The northern crater is most probably a maar that formed by the phreatomagmatic explosion of the Yellow Trachytic Tuff at 230 ka. The latest stage of activity featured the edification of the central shoshonitic domes at c.a. 150 ka.
NASA Astrophysics Data System (ADS)
Tiampo, Kristy; Samsonov, Sergey; González, Pablo; Fernández, Jose; Camacho, Antonio
2014-05-01
Studies identify Campi Flegrei caldera as one of the highest risk volcanic areas in the world because of its close proximity to the city of Naples, the third largest municipality in Italy with population close to 1 million inhabitants, making it one of the most dangerous volcanic areas on Earth (Orsi et al., 2004; De Natale et al., 2006; Isaia et al., 2009). The last major eruption occurred at Monte Nuovo in 1538, following a short term of ground uplift which interrupted a period of secular subsidence that continued after the eruption. Since that time, Campi Flegrei caldera has undergone frequent episodes of ground uplift and subsidence, with uplift phases accompanied by seismic activity (Troise et al., 2007). Well-established volcanic surveillance networks monitor changes in seismicity, gas emissions and active ground deformation occurring in volcanic areas as indicators of renewed volcanic/magmatic activities, potentially culminating in eruption. Since 1988, secular subsidence has continued at the historic rate of approximately 1.5 cm/yr. Surveys revealed significant gravity changes between 1981 and 2001, likely the result of dynamic changes in the subsurface magmatic reservoir (Dvorak & Berrino, 1991; Fernández et al., 2001; Gottsmann et al., 2003), changes within the subsurface hydrothermal systems (Bonafede & Mazzanti, 1998), or a combination (Gottsmann et al., 2005, 2006). In this study we apply the advanced Multidimensional SBAS (MSBAS) InSAR technique to measure ground deformation with high temporal and spatial resolution, and with high precision. We used 2003-2010 ENVISAT and 2009-2013 RADARSAT-2 satellite radar images and produced time series for the vertical and horizontal (east-west) components of deformation. Ground deformation results cover the entire Naples Bay area and, in particular, Campi Flegrei. Starting from June of 2010 we observe a moderate uplift at Campi Flegrei caldera. The rate of uplift substantially increased in 2011 and further accelerated in 2012. Between 2010 and 2013, the maximum cumulative uplift reached about 13 cm. Horizontal motions of up to 7 cm also were observed. We model the observed ground deformation in order to determine source parameters and the implication for volcanic hazard reduction in the Campi Flegrei region.
NASA Astrophysics Data System (ADS)
Pouclet, André; El Hadi, Hassan; Álvaro, J. Javier; Bardintzeff, Jacques-Marie; Benharref, Mohammed; Fekkak, Abdelilah
2018-03-01
Volcanic activities related to the opening of a Cambrian rift in Morocco were widespread from the Fortunian to the Cambrian Epoch 3. Numerous data are available from northwestern volcanic sites, particularly in the western High Atlas, but they are scarce from the southeastern sites. New data are documented here from the volcanic formations exposed in the Jbel Tazoult n'Ouzina of the Tafilalt Province, eastern Anti-Atlas and dated to Cambrian Epoch 2-3. The Cambrian volcanic activities recorded in the High Atlas, Anti-Atlas, and Coastal Meseta are synthesized to refine their stratigraphic setting and to characterize their magmatic affinities and fingerprints. Six volcanic pulses are determined as tholeiitic, transitional, and alkaline suites. The tholeiitic and transitional magmas originated from primitive mantle and E-MORB-type sources with a spinel- and garnet-bearing lherzolite composition. Some of them were modified by assimilation-fractional crystallisation processes during crust-mantle interactions. The alkaline magmas fit with an OIB-type and a garnet-bearing lherzolite source. The palaeogeographic distribution of the magmatic suites was controlled by the lithospheric thinning of the Cambrian Atlas Rift and lithospheric constraints of the Pan-African metacraton and West African craton.
NASA Astrophysics Data System (ADS)
Olivares, L.; Tommasi, P.; Madonia, P.; Moretti, R.
2012-04-01
The stability of steep ( > 40°) slopes in loose or poorly cemented pyroclastic materials mantling some of the Italian mountain areas is guaranteed by the positive effects of matrix suction on shear strength until an increase in saturation (and hence a decrease in suction) occurs. Therefore, unsaturated cohesionless or slightly-bonded pyroclastic steep deposits are relatively stable. Slope instability, initiated by wetting, can occur through different processes, such as vapor condensation and, most typically, rainfall infiltration. The main effect is the decrease in suction up to possible development of positive pore pressures. Here, we examine the peculiar case of a landslide on the flank of the pyroclastic cone of La Fossa volcanic edifice in Vulcano Island (Aeolian Archipelago, Southern Italy). Its initiation is believed to have been influenced by a sharp increase in condensed vapor produced by the degassing of the active volcano. In active volcanoes hydraulic conditions are affected not only by infiltrating rainwater but also by volcanic activity, which produces complex changes in the state variables of pore fluids (i.e. pore fluid pressure). In particular, volcanic activity can modify pore fluid pressure as far as to induce slope instability. At La Fossa crater the phenomenon was evidenced by in situ monitoring of soil suction and soil temperature. In situ observations and measurements indicate that seepage of condensed vapor is appreciable. Simple models based on the geotechnical characterization of pyroclastic materials suggest the hypothesis that variations in suction can be significant to stability of volcano slopes when these are very close to limit conditions and if material hydraulic anisotropy is considered. Noteworthy, at La Fossa at Vulcano Island steam condensation increased and variations of chemical ratios at fumaloles occurred while large slope movements developed on the NE flank of the cone during the most intense well documented volcanic unrest. The validation of this hypothesis requires further monitoring data during periods of intense unrest and more comprehensive models that account for non-isothermal multiphase pore fluid pressure and groundwater circulation, influencing the state of stress and hence stability. Our in-progress approach points toward a correlation between degassing activity of the hydrothermal-magmatic system and slope movements, that may bear significant implications for the definition of the scenarios of joint volcanic-hydrogeological hazard and for the development of monitoring techniques in the frame of volcanic surveillance. However, much more efforts are needed to establish phenomenological relationships with the budgets of volcanic steam condensation. This should include extensive field measurement of CO2 and thermal fluxes from the soil, as well as electrical measurements.
NASA Astrophysics Data System (ADS)
Ji, Lingyun; Izbekov, Pavel; Senyukov, Sergey; Lu, Zhong
2018-02-01
Under a complex geological region influenced by the subduction of the Pacific plate, Kamchatka Peninsula is one of the most active volcanic arcs in the Pacific Rim. Due to logistical difficulty in instrumentation, shallow magma plumbing systems beneath some of the Kamchatkan volcanoes are poorly understood. InSAR offers a safe and quick method for monitoring volcanic deformation with a high spatial resolution. In this study, a group of satellite radar interferograms that span the time interval from 2000 to 2010 shows eruptive and non-eruptive deformation at Karymsky Volcanic Center (KVC), Kamchatka, Russia. All the interferograms provide details of the activity around the KVC during 2000-2010, as follows: (1) from 2000 to 2004, the Karymsky-AN (Akademia Nauk) area deflated and the MS (Maly Semyachik) area inflated, (2) from 2004 to 2006, the Karymsky-AN area deflated with ongoing eruption, while the MS area subsided without eruption, (3) from 2006 to 2008, as with 2000-2004, the Karymsky-AN area deflated and the MS area inflated, (4) from 2008 to 2010, the Karymsky-AN area inflated up to 3 cm, and the MS area subsided. Point source models suggest that two magma reservoirs provide a good fit to the observed deformation. One source is located beneath the area between Karymsky and AN at a depth of approximately 7.0 km, and the other one is situated beneath MS at a depth of around 5.8 km. Synchronous deformation patterns suggest that two magma systems are fed from the same deep magma source and connected by a fracture zone. The InSAR results are consistent with GPS ground deformation measurements, seismic data, and petrological constraints.
NASA Astrophysics Data System (ADS)
Melnick, Daniel; Folguera, Andrés; Ramos, Victor A.
2006-11-01
This paper describes the volcanostratigraphy, structure, and tectonic implications of an arc volcanic complex in an oblique subduction setting: the Caviahue caldera Copahue volcano (CAC) of the Andean margin. The CAC is located in a first-order morphotectonic transitional zone, between the low and narrow Patagonian and the high and broad Central Andes. The evolution of the CAC started at approximately 4-3 Ma with the opening of the 20 × 15 km Caviahue pull-apart caldera; Las Mellizas volcano formed inside the caldera and collapsed at approximately 2.6 Ma; and the Copahue volcano evolved in three stages: (1) 1.2-0.7 Ma formed the approximately 1 km thick andesitic edifice, (2) 0.7-0.01 Ma erupted andesitic-dacitic subglacial pillow lavas, and (3) 0.01-0 Ma erupted basaltic-andesites and pyroclastic flows from fissures, aligned cones, and summit craters. Magma ascent has occurred along planes perpendicular to the least principal horizontal stress, whereas hydrothermal activity and hot springs also occur along parallel planes. At a regional scale, Quaternary volcanism concentrates along the NE-trending, 90 km long Callaqui-Copahue-Mandolegüe lineament, the longest of the southern volcanic zone, which is here interpreted as an inherited crustal-scale transfer zone from a Miocene rift basin. At a local scale within the CAC, effusions are controlled by local structures that formed at the intersection of regional fault systems. The Central to Patagonian Andes transition occurs at the Callaqui-Copahue-Mandolegüe lineament, which decouples active deformation from the intra-arc strike-slip Liquiñe-Ofqui fault zone to the south and the backarc Copahue-Antiñir thrust system.
Geochemical Evolution of Pre-caldera Magmas at Caviahue Caldera, Neuquen Province, Argentina
NASA Astrophysics Data System (ADS)
Todd, E.; Ort, M.
2004-12-01
Caldera subsidence and glacial erosion at Caviahue, an upper Miocene to Pliocene volcanic center located in the Andean Southern Volcanic Zone (SVZ) at 37°50'S, has exposed a detailed cross-section of pre-caldera volcanic activity from the upper Miocene to the Pliocene. Caldera walls expose 500 to 800 m of ignimbrites, cinder cones, volcanic breccias, and lava flows, which range from 1 to nearly 100 m in thickness. Lavas erupted from the monogenetic pre-caldera volcanic field have compositions ranging from evolved basaltic andesites (4% MgO, 10% FeO) to trachytes. Strong Ni-depletion signatures and high Fe/Mg ratios indicate extensive geochemical modification of Caviahue lavas. Petrologic and geochemical analyses of major and trace element abundances in Caviahue lavas indicate cyclic fractionation and recharge in an upper-crustal magma chamber during pre-caldera volcanism. Compatible and incompatible element abundances (especially Ni, MgO, K, and Zr), plotted in stratigraphic succession, show at least six distinct fractionation trends occurred between emplacement of the oldest exposed lava flows and the eruption of the ignimbrite associated with caldera formation. Each fractionation trend is punctuated by the infusion of a volume of new, more primitive magma. Modeling of recharge events indicates that these introduced from less than half to several times the volume of the existing magma body of new, more primitive (but still evolved) magma to the chamber. Geochemical analyses of lavas deposited between intermittent periods of magma residence and volcanic eruptions show strong patterns of plagioclase, olivine, clinopyroxene, and oxide fractionation. Deposits recognized on the caldera floor thought to be associated with caldera collapse are correlated with extra-caldera trachytic ignimbrite deposits dated at 2.02 Ma, providing a late Pliocene age for caldera collapse. Post-caldera volcanism has been active until present, but has shifted to smaller polygenetic volcanic centers on the periphery of the Caviahue Caldera with the majority of volcanic activity at the historically active Volcán Copahue, located on the western rim of the caldera.
NASA Astrophysics Data System (ADS)
Hunt, Jonathan A.; Zafu, Amdemichael; Mather, Tamsin A.; Pyle, David M.; Barry, Peter H.
2017-10-01
Deep carbon emissions from historically inactive volcanoes, hydrothermal, and tectonic structures are among the greatest unknowns in the long-term (˜Myr) carbon cycle. Recent estimates of diffuse CO2 flux from the Eastern Rift of the East African Rift System (EARS) suggest this could equal emissions from the entire mid-ocean ridge system. We report new CO2 surveys from the Main Ethiopian Rift (MER, northernmost EARS), and reassess the rift-related CO2 flux. Since degassing in the MER is concentrated in discrete areas of volcanic and off-edifice activity, characterization of such areas is important for extrapolation to a rift-scale budget. Locations of hot springs and fumaroles along the rift show numerous geothermal areas away from volcanic edifices. With these new data, we estimate total CO2 emissions from the central and northern MER as 0.52-4.36 Mt yr-1. Our extrapolated flux from the Eastern Rift is 3.9-32.7 Mt yr-1 CO2, overlapping with lower end of the range presented in recent estimates. By scaling, we suggest that 6-18 Mt yr-1 CO2 flux can be accounted for by magmatic extension, which implies an important role for volatile-enriched lithosphere, crustal assimilation, and/or additional magmatic intrusion to account for the upper range of flux estimates. Our results also have implications for the nature of volcanism in the MER. Many geothermal areas are found >10 km from the nearest volcanic center, suggesting ongoing hazards associated with regional volcanism.
Volcanic ash as a driver of enhanced organic carbon burial in the Cretaceous.
Lee, Cin-Ty A; Jiang, Hehe; Ronay, Elli; Minisini, Daniel; Stiles, Jackson; Neal, Matthew
2018-03-08
On greater than million year timescales, carbon in the ocean-atmosphere-biosphere system is controlled by geologic inputs of CO 2 through volcanic and metamorphic degassing. High atmospheric CO 2 and warm climates in the Cretaceous have been attributed to enhanced volcanic emissions of CO 2 through more rapid spreading at mid-ocean ridges and, in particular, to a global flare-up in continental arc volcanism. Here, we show that global flare-ups in continental arc magmatism also enhance the global flux of nutrients into the ocean through production of windblown ash. We show that up to 75% of Si, Fe and P is leached from windblown ash during and shortly after deposition, with soluble Si, Fe and P inputs from ash alone in the Cretaceous being higher than the combined input of dust and rivers today. Ash-derived nutrient inputs may have increased the efficiency of biological productivity and organic carbon preservation in the Cretaceous, possibly explaining why the carbon isotopic signature of Cretaceous seawater was high. Variations in volcanic activity, particularly continental arcs, have the potential of profoundly altering carbon cycling at the Earth's surface by increasing inputs of CO 2 and ash-borne nutrients, which together enhance biological productivity and burial of organic carbon, generating an abundance of hydrocarbon source rocks.
NASA Astrophysics Data System (ADS)
Lebas, E.; Le Friant, A.; Deplus, C.; de Voogd, B.
2018-02-01
High-resolution seismic reflection profiles gathered in 2006 on La Réunion submarine flanks and surrounding abyssal plain, enabled characterization of the seismostratigraphy architecture of the volcaniclastic apron. Four seismic units are defined beyond the edifice base: (1) a basal unit, interpreted as pelagic sediment predating La Réunion volcanism; (2) a second unit showing low- to medium-amplitude reflections, related to La Réunion emergence including the submarine explosive phase; (3) a high-amplitude seismic unit, associated with subaerial volcanic activity (i.e., mature island stage); and (4) an acoustically transparent unit, ascribed to erosion that currently affects the volcanic complex. Two prominent horizons delineate the base of the units II and III marking, respectively, the onset of La Réunion seamount explosive activity and the Piton des Neiges volcanic activity. Related isopach maps demonstrate: (1) the existence of a large proto-Piton des Neiges volcano during the first building phase of the volcanic complex, and (2) the central role of the Piton des Neiges volcano during the second phase. Shield growth stage of the Piton de la Fournaise volcano is also captured in the upper part of the volcaniclastic apron, attesting to its recent contribution. Seismic facies identified in the apron highlight a prevalence of sedimentary and reworking processes since the onset of the volcanism compared to catastrophic flank collapses. We present here a new model of evolution for La Réunion volcanic complex since the onset of the volcanism and argue that a major proto Piton des Neiges-Piton des Neiges volcanic complex controls La Réunion present-day morphology.
John, David A.; du Bray, Edward A.; Blakely, Richard J.; Fleck, Robert J.; Vikre, Peter; Box, Stephen E.; Moring, Barry C.
2012-01-01
The Middle to Late Miocene Bodie Hills volcanic field is a >700 km2, long-lived (∼9 Ma) but episodic eruptive center in the southern segment of the ancestral Cascades arc north of Mono Lake (California, U.S.). It consists of ∼20 major eruptive units, including 4 trachyandesite stratovolcanoes emplaced along the margins of the field, and numerous, more centrally located silicic trachyandesite to rhyolite flow dome complexes. Bodie Hills volcanism was episodic with two peak periods of eruptive activity: an early period ca. 14.7–12.9 Ma that mostly formed trachyandesite stratovolcanoes and a later period between ca. 9.2 and 8.0 Ma dominated by large trachyandesite-dacite dome fields. A final period of small silicic dome emplacement occurred ca. 6 Ma. Aeromagnetic and gravity data suggest that many of the Miocene volcanoes have shallow plutonic roots that extend to depths ≥1–2 km below the surface, and much of the Bodie Hills may be underlain by low-density plutons presumably related to Miocene volcanism.Compositions of Bodie Hills volcanic rocks vary from ∼50 to 78 wt% SiO2, although rocks with <55 wt% SiO2 are rare. They form a high-K calc-alkaline series with pronounced negative Ti-P-Nb-Ta anomalies and high Ba/Nb, Ba/Ta, and La/Nb typical of subduction-related continental margin arcs. Most Bodie Hills rocks are porphyritic, commonly containing 15–35 vol% phenocrysts of plagioclase, pyroxene, and hornblende ± biotite. The oldest eruptive units have the most mafic compositions, but volcanic rocks oscillated between mafic and intermediate to felsic compositions through time. Following a 2 Ma hiatus in volcanism, postsubduction rocks of the ca. 3.6–0.1 Ma, bimodal, high-K Aurora volcanic field erupted unconformably onto rocks of the Miocene Bodie Hills volcanic field.At the latitude of the Bodie Hills, subduction of the Farallon plate is inferred to have ended ca. 10 Ma, evolving to a transform plate margin. However, volcanism in the region continued until 8 Ma without an apparent change in rock composition or style of eruption. Equidimensional, polygenetic volcanoes and the absence of dike swarms suggest a low differential horizontal stress regime throughout the lifespan of the Bodie Hills volcanic field. However, kinematic data for veins and faults in mining districts suggest a change in the stress field from transtensional to extensional approximately coincident with the inferred cessation of subduction.Numerous hydrothermal systems were operative in the Bodie Hills during the Miocene. Several large systems caused alteration of volcaniclastic rocks in areas as large as 30 km2, but these altered rocks are mostly devoid of economic mineral concentrations. More structurally focused hydrothermal systems formed large epithermal Au-Ag vein deposits in the Bodie and Aurora mining districts. Economically important hydrothermal systems are temporally related to intermediate to silicic composition domes.Rock types, major and trace element compositions, petrographic characteristics, and volcanic features of the Bodie Hills volcanic field are similar to those of other large Miocene volcanic fields in the southern segment of the ancestral Cascade arc. Relative to other parts of the ancestral arc, especially north of Lake Tahoe in northeastern California, the scarcity of mafic rocks, relatively K-rich calc-alkaline compositions, and abundance of composite dome fields in the Bodie Hills may reflect thicker crust beneath the southern ancestral arc segment. Thicker crust may have inhibited direct ascent and eruption of mafic, mantle-derived magma, instead stalling its ascent in the lower or middle crust, thereby promoting differentiation to silicic compositions and development of porphyritic textures characteristic of the southern ancestral arc segment.
NASA Astrophysics Data System (ADS)
Tomás, Ricardo; Rosas, Filipe M.; Duarte, João C.; Terrinha, Pedro; Kullberg, Maria C.; Almeida, Jaime; Barata, Frederico; Carvalho, Bruno; Almeida, Pedro
2015-04-01
The Gloria Fault (GF) marks the E-W dextral transcurrent plate boundary between Eurasia and Africa in NE Atlantic, displaying complying high magnitude (historical and instrumental) seismic activity (e.g. M=7.1 in 1939 and M=8.4 in 1941, Bufforn et al., 1988), and cutting across a NNE-SSW 1000 km long bathymetric ridge: the so called Tore-Madeira Rise - TMR (rising in average 3km above the abyssal plain). The precise origin and tectono-magmatic evolution of the TMR is still not fully understood, although reported wide-angle refraction data points to a rheological configuration comprising an isostatically compensated thickened oceanic crust, possibly formed during a period of high accretion in the Mid-Atlantic Ridge (Pierce and Barton, 1991). Widespread evidence for volcanic activity has also been recognized, spanning from late Cretaceous to Present (Geldmacher et al. 2006, Merle et al. 2009), noticeably with the most recent volcanism (~500 Ky) occurring as tectonically aligned volcanic plugs, distributed along the E-W tectonic trend of the GF-related structures. To better understand the complex interference at play in this key area between the tectonic structures (essentially determined by the Gloria Fault system), the present and past magmatic activity and the resulting seafloor morphology, a series of dynamically scaled analogue modelling experiments have been conceived and carried out. The main focus of this experimental work was to decipher the potential influence of a rheological vs. morphological anisotropy (accounting for the TMR) on the lateral propagation of a major right-lateral strike-slip fault (representing the GF). The preliminary comparison of the obtained experimental results with the natural morphotectonic pattern in the study area reveals, not only a strong tectonic control of the ongoing volcanism, manifested by the observed preferred directions of aligned volcanic plugs, but also a so far unsuspected deflection/distributed pattern of several faults, and other GF-related structures, here interpreted as resulting from the specific rheological constrains (e.g. crustal soft anomalies) underlying the distributed volcanic activity throughout the TMR. Acknowledgments This work was sponsored by the Fundação para a Ciência e a Tecnologia (FCT) through project MODELINK EXPL/GEO-GEO/0714/2013.
Statistical analyses and characteristics of volcanic tremor on Stromboli Volcano (Italy)
NASA Astrophysics Data System (ADS)
Falsaperla, S.; Langer, H.; Spampinato, S.
A study of volcanic tremor on Stromboli is carried out on the basis of data recorded daily between 1993 and 1995 by a permanent seismic station (STR) located 1.8km away from the active craters. We also consider the signal of a second station (TF1), which operated for a shorter time span. Changes in the spectral tremor characteristics can be related to modifications in volcanic activity, particularly to lava effusions and explosive sequences. Statistical analyses were carried out on a set of spectra calculated daily from seismic signals where explosion quakes were present or excluded. Principal component analysis and cluster analysis were applied to identify different classes of spectra. Three clusters of spectra are associated with two different states of volcanic activity. One cluster corresponds to a state of low to moderate activity, whereas the two other clusters are present during phases with a high magma column as inferred from the occurrence of lava fountains or effusions. We therefore conclude that variations in volcanic activity at Stromboli are usually linked to changes in the spectral characteristics of volcanic tremor. Site effects are evident when comparing the spectra calculated from signals synchronously recorded at STR and TF1. However, some major spectral peaks at both stations may reflect source properties. Statistical considerations and polarization analysis are in favor of a prevailing presence of P-waves in the tremor signal along with a position of the source northwest of the craters and at shallow depth.
Learning to recognize volcanic non-eruptions
Poland, Michael P.
2010-01-01
An important goal of volcanology is to answer the questions of when, where, and how a volcano will erupt—in other words, eruption prediction. Generally, eruption predictions are based on insights from monitoring data combined with the history of the volcano. An outstanding example is the A.D. 1980–1986 lava dome growth at Mount St. Helens, Washington (United States). Recognition of a consistent pattern of precursors revealed by geophysical, geological, and geochemical monitoring enabled successful predictions of more than 12 dome-building episodes (Swanson et al., 1983). At volcanic systems that are more complex or poorly understood, probabilistic forecasts can be useful (e.g., Newhall and Hoblitt, 2002; Marzocchi and Woo, 2009). In such cases, the probabilities of different types of volcanic events are quantified, using historical accounts and geological studies of a volcano's past activity, supplemented by information from similar volcanoes elsewhere, combined with contemporary monitoring information.
Hindcasting the paroxysmal eruption of Villarrica using resonant infrasound tones
NASA Astrophysics Data System (ADS)
Johnson, J. B.; Watson, L. M.; Dunham, E. M.; Anderson, J.; Franco, L.; Cardona, C., Sr.; Palma, J.
2017-12-01
Volcanoes radiate their most intense sounds in the infrasound band (below 20 Hz), which can be well recorded many kilometers from a vent. Open-vent volcanic systems, with active degassing, are particularly effective at producing infrasound, and they characteristically produce resonant tones controlled by the geometry of their crater. Changes in infrasound resonant tones, and their damping coefficient, thus provide a means to infer crater geometry, including crater volume, depth, and profile. This study analyzes the rapidly varying infrasound tone and quality factor of infrasound at Volcan Villarrica (Chile) leading up to its paroxysmal eruption on 3 March 2015. The changes in infrasound reflected a rise in the lava lake surface starting 100 hours prior to the violent and sudden eruption. We suggest that infrasound surveillance of open-vent resonance is a powerful tool with application for forecasting volcanic unrest at open vent volcanoes.
Low-frequency seismic events in a wider volcanological context
NASA Astrophysics Data System (ADS)
Neuberg, J. W.; Collombet, M.
2006-12-01
Low-frequency seismic events have been in the centre of attention for several years, particularly on volcanoes with highly viscous magmas. The ultimate aim is to detect changes in volcanic activity by identifying changes in the seismic behaviour in order to forecast an eruption, or in case of an ongoing eruption, forecast the short and longterm behaviour of the volcanic system. A major boost in recent years arose through several attempts of multi-parameter volcanic monitoring and modelling programs, which allowed multi-disciplinary groups of volcanologists to interpret seismic signals together with, e.g. ground deformation, stress field analysis and petrological information. This talk will give several examples of such multi-disciplinary projects, focussing on the joint modelling of seismic source processes for low-frequency events together with advanced magma flow models, and the signs of magma movement in the deformation and stress field at the surface.
NASA Technical Reports Server (NTRS)
Baltuck, M.; Dixon, T. H.
1984-01-01
The northern Caribbean plate boundary has been undergoing left lateral strike slip motion since middle Tertiary time. The western part of the boundary occurs in a complex tectonic zone in the continental crust of Guatemala and southernmost Mexico, along the Chixoy-Polochic, Motogua and possibly Jocotan-Chamelecon faults. Prominent lineaments visible in radar imagery in the Neogene volcanic belt of southern Guatemala and western El Salvador were mapped and interpreted to suggest southwest extensions of this already broad plate boundary zone. Because these extensions can be traced beneath Quaternary volcanic cover, it is thought that this newly mapped fault zone is active and is accommodating some of the strain related to motion between the North American and Caribbean plates. Onshore exposures of the Motoqua-Polochic fault systems are characterized by abundant, tectonically emplaced ultramafic rocks. A similar mode of emplacement for these off shore ultramafics, is suggested.
NASA Astrophysics Data System (ADS)
Morris, R.; DeBari, S. M.; Busby, C. J.; Medynski, S.
2015-12-01
Exposed paleo-arcs, such as the Rosario segment of the Cretaceous Alisitos Arc in Baja California, Mexico, provide an opportunity to explore the evolution of arc crust through time. Remarkable 3-D exposures of the Rosario segment record crustal generation processes in the volcanic rocks and underlying plutonic rocks. In this study, we explore the physical and geochemical connection between the plutonic and volcanic sections of the extensional Alisitos Arc, and elucidate differentiation processes responsible for generating them. These results provide an outstanding analog for extensional active arc systems, such as the Izu-Bonin-Mariana (IBM) Arc. Upper crustal volcanic rocks have a coherent stratigraphy that is 3-5 km thick and ranges in composition from basalt to dacite. The most felsic compositions (70.9% SiO2) are from a welded ignimbrite unit. The most mafic compositions (51.5% SiO2, 3.2% MgO) are found in basaltic sill-like units. Phenocrysts in the volcanic units include plagioclase +/- amphibole and clinopyroxene. The transition to deeper plutonic rocks is clearly an intrusive boundary, where plutonic units intrude the volcanic units. Plutonic rocks are dominantly a quartz diorite main phase with a more mafic, gabbroic margin. A transitional zone is observed along the contact between the plutonic and volcanic rocks, where volcanics have coarsely recrystallized textures. Mineral assemblages in the plutonic units include plagioclase +/- quartz, biotite, amphibole, clinopyroxene and orthopyroxene. Most, but not all, samples are low K. REE patterns are relatively flat with limited enrichment. Normalization diagrams show LILE enrichment and HFSE depletion, where trends are similar to average IBM values. We interpret plutonic and volcanic units to have similar geochemical relationships, where liquid lines of descent show the evolution of least to most evolved magma types. We provide a model for the formation and magmatic evolution of the Alisitos Arc.
Methods for mapping and monitoring global glaciovolcanism
NASA Astrophysics Data System (ADS)
Curtis, Aaron; Kyle, Philip
2017-03-01
The most deadly (Nevado del Ruiz, 1985) and the most costly (Eyjafjallajökull, 2010) eruptions of the last 100 years were both glaciovolcanic. Considering its great importance to studies of volcanic hazards, global climate, and even astrobiology, the global distribution of glaciovolcanism is insufficiently understood. We present and assess three algorithms for mapping, monitoring, and predicting likely centers of glaciovolcanic activity worldwide. Each algorithm intersects buffer zones representing known Holocene-active volcanic centers with existing datasets of snow, ice, and permafrost. Two detection algorithms, RGGA and PZGA, are simple spatial join operations computed from the Randolph Glacier Inventory and the Permafrost Zonation Index, respectively. The third, MDGA, is an algorithm run on all 15 available years of the MOD10A2 weekly snow cover product from the Terra MODIS satellite radiometer. Shortcomings and advantages of the three methods are discussed, including previously unreported blunders in the MOD10A2 dataset. Comparison of the results leads to an effective approach for integrating the three methods. We show that 20.4% of known Holocene volcanic centers host glaciers or areas of permanent snow. A further 10.9% potentially interact with permafrost. MDGA and PZGA do not rely on any human input, rendering them useful for investigations of change over time. An intermediate step in MDGA involves estimating the snow-covered area at every Holocene volcanic center. These estimations can be updated weekly with no human intervention. To investigate the feasibility of an automatic ice-loss alert system, we consider three examples of glaciovolcanism in the MDGA weekly dataset. We also discuss the potential use of PZGA to model past and future glaciovolcanism based on global circulation model outputs. Combined, the three algorithms provide an automated system for understanding the geographic and temporal patterns of global glaciovolcanism which should be of use for hazard assessment, the search for extreme microbiomes, climate models, and implementation of ice-cover-based volcano monitoring systems.
NASA Astrophysics Data System (ADS)
Grabski, V.; Lemus, V.; Nuñez-Cadena, R.; Aguilar, S.; Menchaca-Rocha, A.; Fucugauchi, J. U.
2013-05-01
Study of volcanic inner density distributions using cosmic muons is an innovative method, which is still in stage of development[1]. The method can be used to determine the average density along the muon track, as well as the density distribution of any volume by measuring the attenuation of cosmic muon flux in it[2]. In this study we present an analysis of using the muon radiography, integrating geophysical data to determine the density distribution of the Popocatepetl volcano. Popocatepelt is a large andesitic stratovolcano built in the Trans-Mexican volcanic arc, which has been active over the past years. The recent activity includes emplacement of a lava dome, with vulcanian explosions and frequent scoria and ash emissions. The study is directed to detect any variations in the dome and magmatic conduit system in some interval of time in the volume of Popocatepetl volcano lava dome. The study forms part of a long-term project of volcanic hazard monitoring that includes the Popocatepetl and Colima volcanoes[3]. The volcanoes are being studied by conventional geophysical techniques, including aerogeophysical surveys directed to determine the internal structure and characterize source characteristics and mechanism. The detector design mostly depends on the volume size to be investigated as well as the image-taking frequency to detect dynamic density variations. In this study we present a detector prototype design and suggestions on data taking, transferring and analyzing systems. We also present the approximate cost estimation of the suggested detector and discussion on a proposal about the creation of a national network for a volcanic alarm system. References [1] eg.H. Tanaka, et al., Nucl. Instr. and Meth. A 507 (2003) 657. [2] V. Grabski et al, NIM A 585 (2008) 128-135. [3] G. Conte, J. Urrutia-Fucugauchi, et al., International Geology Review, Vol. 46, 2004, p. 210-225.
On the use of UAVs at active volcanoes: a case study from Volcan de Fuego, Guatemala
NASA Astrophysics Data System (ADS)
Watson, M.; Chigna, G.; Wood, K.; Richardson, T.; Liu, E.; Schellenberg, B.; Thomas, H.; Naismith, A.
2017-12-01
Volcan de Fuego, Guatemala, is one of Central America's most active systems. More than one hundred thousand people live within ten kilometres of the summit, many of them in profound poverty. Both the summit region and the volcano's steep sided valleys present significant access challenges, mostly associated with unacceptably high risk. Unmanned aerial vehicles (UAVs) offer the opportunity to observe, map and quantify emissions of tephra, gas, lava and heat flux and, using structure from motion algorithms, model dynamic topography. During recent campaigns, the team have completed observations of changes in the summit morphology immediately prior a paroxysmal eruption, mapped the key drainage systems after the fifth of May 2017 eruption and sampled the plume for tephra and gases using a range of onboard instruments. I will present the group's findings within a broader context of hazard mitigation and physical volcanology, and discuss the future of UAVs in volcano monitoring and research.
NASA Astrophysics Data System (ADS)
Jouhari, A.; El-Archi, A.; Aarab, M.; El-Attari, A.; Ennih, N.; Laduron, D.
2001-05-01
Late Neoproterozoic Vendian volcanic and volcaniclastic rocks are widely distributed in the western High Atlas. They are located north of the Tizi n'Test Fault, separating the West African Craton from a northerly adjacent craton. These volcanic rocks overlie a semipelitic formation, which represents the equivalent of the Tidilline and Anzi Formations of the Anti-Atlas. The geochemical characteristics of these volcanic rocks suggest a calc-alkaline active margine environment associated with the post Pan-African tectonics. They differ from those of the Anti-Atlas by their lower content of K 2O. The later rock type was generated by a melting process of the crust subducted beneath the northern craton. A carbonate-shale unit, which contains examples of interstratified calc-alkaline dacite, overlies the volcanic succession, demonstrating that the volcanic activity continued sporadically until Early Cambrian times.
A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans.
Hutchison, William; Fusillo, Raffaella; Pyle, David M; Mather, Tamsin A; Blundy, Jon D; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E; Brooker, Richard A; Barfod, Dan N; Calvert, Andrew T
2016-10-18
The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km 3 ) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations.
A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans
Hutchison, William; Fusillo, Raffaella; Pyle, David M.; Mather, Tamsin A.; Blundy, Jon D.; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E.; Brooker, Richard A.; Barfod, Dan N.; Calvert, Andrew T.
2016-01-01
The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km3) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations. PMID:27754479
NASA Astrophysics Data System (ADS)
Asensio-Ramos, María; Alonso, Mar; Sharp, Emerson; Woods, Hannah; Barrancos, José; Pérez, Nemesio M.
2016-04-01
We report herein the latest results of a diffuse CO2 efflux survey at El Hierro volcanic system carried out during the summer period of 2015 to constrain the total CO2 output from the studied area a during post-eruptive period. El Hierro Island (278 km2) is the youngest and the SW-most of the Canary Islands. On July 16, 2011, a seismic-volcanic crisis started with the occurrence of more than 11,900 seismic events and significant deformation along the island. On October 10, 2011, the dominant character of seismicity changed dramatically from discrete earthquakes to continuous tremor, a clear indication that magma was rapidly approaching the surface immediately before the onset of the eruption, October 12. Eruption was declared over on 5 March, 2012. In order to monitor the volcanic activity of El Hierro Island, from 1998 to 2015 diffuse CO2 emission studies have been performed at El Hierro volcanic system in a yearly basis (˜600 observation sites) according to the accumulation chamber method. Spatial distribution maps were constructed following the sequential Gaussian simulation (sGs) procedure. To quantify the total CO2 emission from the studied area, 100 simulations for each survey have been performed. During the eruption period, soil CO2 efflux values range from non-detectable (˜0.5 g m-2 d-1) up to 457 g m-2 d-1, reaching in November 27, 2011, the maximum CO2 output estimated value of all time series, 2,398 t d-1, just before the episodes of maximum degassing observed as vigorous bubbling at the sea surface and an increment in the amplitude of the tremor signal. During the 2015 survey, soil CO2 efflux values ranged from non-detectable up to 41 g m-2 d-1. The spatial distribution of diffuse CO2 emission values seemed to be controlled by the main volcano structural features of the island. The total diffuse CO2 output released to atmosphere was estimated at 575 ± 24 t d-1, value slightly higher that the background CO2 emission estimated at 422 t d-1 (Melián et al., 2014). The above data demonstrate that discrete surveys of diffuse CO2 emission provide important information to optimize the early warning system in volcano monitoring programs and to monitor the evolution of an ongoing volcanic eruption, even though it is a submarine eruption. References: Melián et al., 2014. J. Geophys. Res. DOI: 10.1002/2014JB011013.
NASA Astrophysics Data System (ADS)
Savov, Ivan; Meliksetian, Khachatur; Connor, Charles; Karakhanian, Arkadi; Sugden, Patrick; Navasardyan, Gevorg; Halama, Ralf; Ishizuka, Osamu; Connor, Laura; Karapetian, Sergei
2016-04-01
Both effusive and highly explosive (VEI>5) and often voluminous caldera volcanism has developed atop the collision zone between the Arabian and the Eurasian plates. Currently what is exposed on the Anatolian-Armenian-Iranian active orogenic plateau is post-Mesozoic felsic to intermediate collision-related plutons, and mostly collision or post-collision related Quaternary volcanic structures. We have studied in detail the volcanism, tectonics and geophysics on the territory of E.Turkey and Armenia, where several large stratovolcanoes (Ararat, Lesser Ararat, Aragats, Tsghuk, Ishkhanasar) are surrounded by distinct monogenetic volcanic fields (distributed volcanism). These large in volume stratovolcanoes and the associated low volume monogenetic cones range from normal calk-alkaline to high-K shoshonitic in affinity, with their products ranging from basanites to high K trachytes and rhyolites. Several volcanic provinces, namely Kechut/Javakheti, Aragats, Gegham, Vardenis and Syunik are recognized in Armenia and each of them has > 100 mapped volcanoes. These have distinct geochemical (mineral chemistry, trace element and Sr-Nd-B isotope systematics) and petrological (melt eruption temperatures and volatile contents) fingerprints that may or may not vary over time. Age determinations and volcano-stratigraphy sections for each of the case studies we aim to present shows that the volcanism includes a continuous record from Pleistocene to Holocene, or even historical eruptions. The excellent volcano exposures and the now complete high resolution database (GIS), geological mapping, and new and improved K-Ar and Ar-Ar geochronology, uniquely allows us to evaluate the driving forces behind the volcanism in this continent-continent collision setting that is uniquely associated with long lasting eruption episodes. We shall compare the now well studied historical/Holocene eruptions with those pre-dating them, with the aim to identify possible geochemical or petrological precursors, on both local and regional scales. Our presentation will include several case studies, new ages, high resolution maps of many volcanoes and their association with young active faulting and often large earthquakes. We will present one particular high resolution case study (on Aragats volcanic complex) where we attempted to quantify the volcanic hazards. This is important as this region hosts the active Metsamor nuclear power plant and the capital city of Yerevan (population > 1.4 million), where people live in area with very low (10^6), yet existing risk for a renewed volcanic activity.
Geochemical monitoring of Taal volcano (Philippines) by means of diffuse CO2 degassing studies
NASA Astrophysics Data System (ADS)
Padrón, Eleazar; Hernández, Pedro A.; Arcilla, Carlo; Pérez, Nemesio M.; Lagmay, Alfredo M.; Rodríguez, Fátima; Quina, Gerald; Alonso, Mar; Padilla, Germán D.; Aurelio, Mario A.
2017-04-01
Observing changes in the discharge rate of CO2 is an important part of volcanic monitoring programs, because it is released by progressive depressurization of magma during ascent and reach the surface well before their parental magma. Taal Volcano in Southwest Luzon, Philippines, lies between a volcanic arc front facing the subduction zone along the Manila Trench and a volcanic field formed from extension beyond the arc front. Taal Volcano Island is formed by a main tuff cone surrounded by several smaller tuff cones, tuff rings and scoria cones. This island is located in the center of the 30 km wide Taal Caldera, now filled by Taal Lake. To monitor the volcanic activity of Taal volcano is a priority task in the Philippines, because several million people live within a 20-km radius of Taal's caldera rim. During the last period of volcanic unrest from 2010 to 2011, the main crater lake of Taal volcano released the highest diffuse CO2 emission rates through the water surface reported to date by volcanic lakes worldwide. The maximum CO2 emission rate measured in the study period occurred two months before the strongest seismic activity recorded during the unrest period (Arpa et al., 2013, Bull Volcanol 75:747). After the unrest period, diffuse CO2 emission has remained in the range 532-860 t/d in the period 2013-2016. In January 2016, an automatic geochemical station to monitor in a continuous mode the diffuse CO2 degassing in a selected location of Taal, was installed in January 2016 to improve the early warning system at the volcano. The station is located at Daang Kastila, at the northern portion of the main crater rim. It measures hourly the diffuse CO2 efflux, atmospheric CO2 concentration, soil water content and temperature, wind speed and direction, air temperature and humidity, rainfall, and barometric pressure. The 2016 time series show CO2 efflux values in the range 20-690 g m-2 d-1.Soil temperature, heavily influenced by rainfall, ranged between 74 and 96oC. Although short-temp fluctuations in the diffuse CO2 emission time series at Daang Kastila were partially driven by meteorological parameters, the main CO2 efflux changes were not driven by fluctuations of meteorological variables such as wind speed or barometric pressure and seem clearly to be associated with fluid pressure fluctuations in the volcanic system. These results showed the potential of applying continuous and discrete monitoring of soil CO2 efflux to improve and optimize the detection of early warning signals of future volcanic unrest at Taal volcano.
Imaging the Magmatic System of Erebus Volcano, Antarctica using the Magnetotelluric Method
NASA Astrophysics Data System (ADS)
Hill, G.; Wannamaker, P. E.; Stodt, J. A.; Unsworth, M. J.; Maris, V.; Bedrosian, P.; Wallin, E.; Kordy, M. A.; Ogawa, Y.; Kyle, P. R.; Uhlmann, D. F.
2017-12-01
Erebus volcano, on Ross Island, Antarctica, in the south west Ross Sea, offers a unique opportunity to understand the magmatic system of an active alkaline volcano, and rifting within the West Antarctica Rift System. Erebus has the world's only persistent phonolite lava lake in its summit crater, and thus provides a window into the heart of a degassing volcano's magmatic system. Phonolite magmas like those at Erebus have been responsible for devastating eruptions (e.g. Pompeii 79 AD; Tambora 1815). Petrologic models suggest that Erebus is undergoing fractional crystallisation of deep mantle-derived parental basanite magma in one or more crustal magma chambers. We are using magnetotelluric (MT) methods and instrumentation, especially developed for use in Antarctica, to image the resistivity structure (magmatic system) of Erebus and the older volcanoes forming Ross Island. In addition, we mapping the rifted crustal structure and examining the mantle source of the magma and the role that the Terror Rift system plays in the active volcanism. Data collection occurred over three field seasons from 2014-2017. Measurements were made at 129 locations on Ross Island and vicinity. A pool of 11 Phoenix Geophysics V5 systems coupled with Numeric Resources high impedance preamplifiers were used. A primary goal of this work is to constrain the distribution of melt within and beneath the volcanic edifice. In addition, we are imaging the interpreted mantle source region for Erebus magmas and investigating the role that the Terror Rift system plays in generating and focusing magmatism. Preliminary modelling suggests that we are able to resolve the crustal residence zones and the path taken by the magma as it ascends from the mantle to the surface. Our work provides new insight into the formation of phonolite magma and has implications for understanding the magmatic process occurring in rift systems globally. It further provides an opportunity to compare volcanic processes in both compressional and extensional tectonics settings.
Volcanic unrest and hazard communication in Long Valley Volcanic Region, California
Hill, David P.; Mangan, Margaret T.; McNutt, Stephen R.
2017-01-01
The onset of volcanic unrest in Long Valley Caldera, California, in 1980 and the subsequent fluctuations in unrest levels through May 2016 illustrate: (1) the evolving relations between scientists monitoring the unrest and studying the underlying tectonic/magmatic processes and their implications for geologic hazards, and (2) the challenges in communicating the significance of the hazards to the public and civil authorities in a mountain resort setting. Circumstances special to this case include (1) the sensitivity of an isolated resort area to media hype of potential high-impact volcanic and earthquake hazards and its impact on potential recreational visitors and the local economy, (2) a small permanent population (~8000), which facilitates face-to-face communication between scientists monitoring the hazard, civil authorities, and the public, and (3) the relatively frequent turnover of people in positions of civil authority, which requires a continuing education effort on the nature of caldera unrest and related hazards. Because of delays associated with communication protocols between the State and Federal governments during the onset of unrest, local civil authorities and the public first learned that the U.S. Geological Survey was about to release a notice of potential volcanic hazards associated with earthquake activity and 25-cm uplift of the resurgent dome in the center of the caldera through an article in the Los Angeles Times published in May 1982. The immediate reaction was outrage and denial. Gradual acceptance that the hazard was real required over a decade of frequent meetings between scientists and civil authorities together with public presentations underscored by frequently felt earthquakes and the onset of magmatic CO2 emissions in 1990 following a 11-month long earthquake swarm beneath Mammoth Mountain on the southwest rim of the caldera. Four fatalities, one on 24 May 1998 and three on 6 April 2006, underscored the hazard posed by the CO2 emissions. Initial response plans developed by county and state agencies in response to the volcanic unrest began with “The Mono County Volcano Contingency Plan” and “Plan Caldera” by the California Office of Emergency Services in 1982–84. They subsequently became integrated in the regularly updated County Emergency Operation Plan. The alert level system employed by the USGS also evolved from the three-level “Notice-Watch-Warning” system of the early 1980s through a five level color-code to the current “Normal-Advisory-Watch-Warning” ground-based system in conjunction with the international 4-level aviation color-code for volcanic ash hazards. Field trips led by the scientists proved to be a particularly effective means of acquainting local residents and officials with the geologically active environment in which they reside. Relative caldera quiescence from 2000 through 2011 required continued efforts to remind an evolving population that the hazards posed by the 1980–2000 unrest persisted. Renewed uplift of the resurgent dome from 2011 to 2014 was accompanied by an increase in low-level earthquake activity in the caldera and beneath Mammoth Mountain and continues through May 2016. As unrest levels continue to wax and wane, so will the communication challenges.
NASA Astrophysics Data System (ADS)
Lerner, A. H.; Karlstrom, L.; Hurwitz, S.; Anderson, K. R.; Ebmeier, S. K.
2016-12-01
Mechanical models of volcanic overpressure and interpretations of volcanic deposits are generally rooted in the classic paradigm of a magma reservoir being located directly beneath the main topographic high and central conduit of a volcano. We test this framework against recent decades of research on volcanic deformation, seismic tomography, earthquake hypocenter locations, and magnetotellurics, which have provided unprecedented geophysical views of volcanic plumbing systems. In a literature survey of Holocene strato- and shield volcanoes in arc, backarc, continental rift, and intraplate settings, we find that shallow to mid-crustal (< 20 km) magma reservoirs are equally likely to be laterally offset from principle volcanic edifices (n = 20) as they are to be centrally located beneath volcanic topographic highs (n = 19). We classify offset reservoirs as having imaged or modeled centroids that are at least 2 km laterally offset from the central volcanic edifice. The scale and geometry of offset magma reservoirs range widely, with a number of systems having discrete reservoirs laterally offset up to 15 km from the main volcanic edifice, at depths of 2 to 15 km. Other systems appear to have inclined magmatic reservoirs and/or fluid transport zones that continuously extend from beneath the main edifice to lateral distances up to 20 km, at depths of 3 to 18 km. Additionally, over a third of the studied systems have small, centrally located shallow magma or fluid reservoirs at depths of 1 to 5 km. Overall, we find that offset magma reservoirs are more common than is classically perceived, and offset reservoirs are more prevalent in intermediate to evolved stratovolcanoes (19 of 28) than in basaltic shield volcanoes (2 of 7). The reason for the formation of long-lived edifices that are offset from their source magma reservoir(s) is an open question; correlation to regional principal stresses or local tectonics, edifice size, lithology, and morphology, and climate may provide insights into this phenomenon. The commonality of offset magma reservoirs warrants reassessing the ways that volcanic systems have been traditionally modeled and monitored, which are principally focused around the topographic edifice, but may be missing critical features associated with lateral offset reservoirs and more complex conduit geometries.
NASA Astrophysics Data System (ADS)
Theys, Nicolas; Barrière, Julien; Oth, Adrien; Brenot, Hugues; Van Roozendael, Michel; Kervyn, François
2017-04-01
The Kivu region is a densely populated area hosting two very active volcanoes, Nyiragongo and Nyamulagira, which require continuous surveillance using the widest means of observation as possible. This study presents a 12-year dataset of satellite observations of SO2 over North Kivu from the OMI instrument. Short- and long-term changes in volcanic SO2 emissions are investigated and satellite data oversampling is used to discriminate the volcanic sources for the full OMI mission. As the same SO2 retrieval algorithm will be applied operationally to the forthcoming TROPOMI instrument (onboard the ESA Sentinel-5 Precursor platform), the observational time series will expand in the future, with enhanced quality. For the years 2014-2016, the satellite SO2 dataset is combined with seismic observations from a 11-stations network that operated continuously during that period. The variations of seismic activity and SO2 degassing display a high-level of consistency and we present a multidisciplinary tracking approach by combining the two types of observational data. This methodology allows for a robust discrimination of magma migration into and out of the shallow plumbing system, improving our ability to interpret signs of volcanic unrest on a daily time scale.
Geologic map of Mount Gareloi, Gareloi Island, Alaska
Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.
2012-01-01
As part of an effort to both monitor and study all historically active volcanoes in Alaska, the Alaska Volcano Observatory (AVO) undertook a field program at Mount Gareloi in the summer of 2003. During a month-long period, seismic networks were installed at Mount Gareloi and the neighboring Tanaga volcanic cluster. During this time, we undertook the first geologic field study of the volcano since Robert Coats visited Gareloi Island for four days in 1946. Understanding the geology of this relatively small island is important from a hazards perspective, because Mount Gareloi lies beneath a heavily trafficked air route between North America and Asia and has frequently erupted airborne ash since 1760. At least two landslides from the island have deposited debris on the sea floor; thus, landslide-generated tsunamis are also a potential hazard. Since seismic instruments were installed in 2003, they have detected small but consistent seismic signals from beneath Mount Gareloi's edifice, suggesting an active hydrothermal system. Mount Gareloi is also important from the standpoint of understanding subduction-related volcanism, because it lies in the western portion of the volcanically active arc, where subduction is oblique to the arc front. Understanding the compositional evolution of Mount Gareloi fills a spatial gap in along-arc studies.
NASA Astrophysics Data System (ADS)
Roache, M. W.; Allen, S. R.; McPhie, J.
2000-12-01
At Menninnie Dam, South Australia, a drilling program has revealed a complete section through the subsurface feeder system and erupted products of a small, hydroexplosive, rhyolitic centre within the Mesoproterozoic Gawler Range Volcanics. Porphyritic rhyolite intruded near-vertical faults in the Palaeoproterozoic basement and at less than a few hundred metres depth, interacted with fault-hosted (hot?) groundwater. Hydrofracturing of the wall rock occurred in advance of and at the margins of the rhyolitic intrusions. The rhyolitic intrusions have peperitic margins and grade into discordant lithic-rich PB facies. The advancing fragmentation front intersected the palaeosurface, triggering phreatic eruptions that deposited a poorly sorted, lithic-rich explosion breccia. Rhyolite then rose to the surface through the intrusive breccias and shallow-seated magma-water interaction occurred in the conduit within <50 m of the surface. As the magma discharge rate increased, ;dry; explosive activity prevailed. A fall deposit, the top of which is welded, was deposited close to the vent, and in more distal locations (>800 m from the inferred source), the products include muddy sandstone and pumice breccia. At the end of the eruption, rhyolitic lava was extruded in the form of a small dome. The presence of contemporaneous Pb-Zn-Ag mineralisation in the wall rocks suggests that an active hydrothermal system may have been involved in the formation of the Menninnie Dam hydroexplosive volcanic centre.
Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism
NASA Astrophysics Data System (ADS)
Karakas, Ozge; Degruyter, Wim; Bachmann, Olivier; Dufek, Josef
2017-06-01
Magmatic processes on Earth govern the mass, energy and chemical transfer between the mantle, crust and atmosphere. To understand magma storage conditions in the crust that ultimately control volcanic activity and growth of continents, an evaluation of the mass and heat budget of the entire crustal column during magmatic episodes is essential. Here we use a numerical model to constrain the physical conditions under which both lower and upper crustal magma bodies form. We find that over long durations of intrusions (greater than 105 to 106 yr), extensive lower crustal mush zones develop, which modify the thermal budget of the upper crust and reduce the flux of magma required to sustain upper crustal magma reservoirs. Our results reconcile physical models of magma reservoir construction and field-based estimates of intrusion rates in numerous volcanic and plutonic localities. Young igneous provinces (less than a few hundred thousand years old) are unlikely to support large upper crustal reservoirs, whereas longer-lived systems (active for longer than 1 million years) can accumulate magma and build reservoirs capable of producing super-eruptions, even with intrusion rates smaller than 10-3 to 10-2 km3 yr-1. Hence, total duration of magmatism should be combined with the magma intrusion rates to assess the capability of volcanic systems to form the largest explosive eruptions on Earth.
NASA Astrophysics Data System (ADS)
Koppers, Anthony A. P.; Staudigel, Hubert; Pringle, Malcolm S.; Wijbrans, Jan R.
2003-10-01
South Pacific intraplate volcanoes have been active since the Early Cretaceous. Their HIMU-EMI-EMII mantle sources can be traced back into the West Pacific Seamount Province (WPSP) using plate tectonic reconstructions, implying that these distinctive components are enduring features within the Earth's mantle for, at least, the last 120 Myr. These correlations are eminent on the scale of the WPSP and the South Pacific Thermal and Isotopic Anomaly (SOPITA), but the evolution of single hot spots emerges notably more complicated. Hot spots in the WPSP and SOPITA mantle regions typically display intermittent volcanic activity, longevities shorter than 40 Myr, superposition of hot spot volcanism, and motion relative to other hot spots. In this review, we use 40Ar/39Ar seamount ages and Sr-Nd-Pb isotopic signatures to map out Cretaceous volcanism in the WPSP and to characterize its evolution with respect to the currently active hot spots in the SOPITA region. Our plate tectonic reconstructions indicate cessation of volcanism during the Cretaceous for the Typhoon and Japanese hot spots; whereas the currently active Samoan, Society, Pitcairn and Marquesas hot spots lack long-lived counterparts in the WPSP. These hot spots may have become active during the last 20 Myr only. The other WPSP seamount trails can be only "indirectly" reconciled with hot spots in the SOPITA region. Complex age distributions in the Magellan, Anewetak, Ralik and Ratak seamount trails would necessitate the superposition of multiple volcanic trails generated by the Macdonald, Rurutu and Rarotonga hot spots during the Cretaceous; whereas HIMU-type seamounts in the Southern Wake seamount trail would require 350-500 km of hot spot motion over the last 100 Myr following its origination along the Mangaia-Rurutu "hotline" in the Cook-Austral Islands. These observations, however, violate all assumptions of the classical Wilson-Morgan hot spot hypothesis, indicating that long-lived, deep and fixed mantle plumes cannot explain the intraplate volcanism of the South Pacific region. We argue that the observed short-lived and discontinuous intraplate volcanism has been produced by another type of hot spot-related volcanism, as opposed to the strong and continuous Hawaiian-type hot spots. Our results also indicate that other geological processes (plate tension, hotlines, faulting, wetspots, self-propagating volcanoes) may act in conjunction with hot spot volcanism in the South Pacific. In all these scenarios, intraplate volcanism has to be controlled by "broad-scale" events giving rise to multiple closely-spaced mantle plumelets, each with a distinct isotopic signature, but only briefly active and stable over geological time. It seems most likely that these plumelets originate and dissipate at very shallow mantle depths, where they may shoot off as thin plumes from the top of a "superplume" that is present in the South Pacific mantle. The absence of clear age progressions in most seamount trails and periodic flare-ups of massive intraplate volcanism in the South Pacific (such as the one in the Cretaceous and one starting 30 Myr ago) show that regional extension (caused by changes in the global plate circuit and/or the rise-and-fall of an oscillating superplume) may be driving the waxing and waning of intraplate volcanism in the South Pacific.
NASA Astrophysics Data System (ADS)
Bonforte, Alessandro; Alparone, Salvatore; Gambino, Salvatore; Guglielmino, Francesco; Obrizzo, Francesco; Velardita, Rosanna
2015-04-01
Vulcano island is a composite volcanic edifice located in the south-central sector of the Aeolian Archipelago (Tyrrhenian Sea, Italy). It is the southernmost tip of the southern branch of the Y-shaped archipelago; in particular, it is part of the bigger Lipari-Vulcano volcanic complex that comprises the two southernmost islands of the archipelago. This branch of the archipelago is NNW-SSE oriented and represent the off-shore prolongation of the Tindari-Letojanni tectonic lineament in the NE Sicily, splitting the Appennine chain on the west, from the Calabrian arc on the East. N-S compression seems to affect the western side of this NNW-SSE lineament, while extension affects the eastern one, with active volcanism and a NW dipping Benioff plane. Historic activity at Vulcano has been characterized by frequent transitions from phereatomagmatic to minor magmatic activity. The last eruption in 1888-90 was characterized by energetic explosive pulses and defines the so-called "vulcanian" type of activity. Since then, volcanic activity has taken the form of fumarolic emanations of variable intensity and temperature, mainly concentrated at "La Fossa" crater, with maximum temperatures ranging between 200° and 300° C; temperature increases and changes in the gas chemistry, were often observed. The most recent episode began in the 80's when fumarole temperature progressively increased to 690°C in May 1993. Vulcano is active and this favoured monitoring and research studies, in particular focussed on the most recent structures. In the frame of DPC-INGV "V3" project, we investigate the dynamics of the island through ca. 40 years of ground deformation and seismicity data collected by the discrete and continuous INGV monitoring networks. We considered levelling, GPS, EDM, seismic and tilt data. EDM and levelling measurements began in the middle 1970s and since the late 1990s the same EDM network has been surveyed by GPS. By combining and comparing geodetic data and seismicity we are able to distinguish three different scales of phenomena: the first one seems to be linked to the regional tectonics, with a general transpressive kinematics; the second one affects the northern half of the island and could be related to the caldera dynamics; the third one affects only the cone of La Fossa. Regional tectonic stress seems to play an important role in the transition of the volcanic system from a phase of stability to a phase of unrest, inducing the heating and the expansion of shallow hydrothermal fluids. Current local ground deformation at Vulcano may be linked to the geothermal system rather than magmatic sources.
Single station monitoring of volcanoes using seismic ambient noise
NASA Astrophysics Data System (ADS)
De Plaen, R. S.; Lecocq, T.; Caudron, C.; Ferrazzini, V.; Francis, O.
2016-12-01
During volcanic eruptions, magma transport causes gas release, pressure perturbations and fracturing in the plumbing system. The potential subsequent surface deformation that can be detected using geodetic techniques and deep mechanical processes associated with magma pressurization and/or migration and their spatial-temporal evolution can be monitored with volcanic seismicity. However, these techniques respectively suffer from limited sensitivity to deep changes and a too short-term temporal distribution to expose early aseismic processes such as magma pressurisation. Seismic ambient noise cross-correlation uses the multiple scattering of seismic vibrations by heterogeneities in the crust to retrieves the Green's function for surface waves between two stations by cross-correlating these diffuse wavefields. Seismic velocity changes are then typically measured from the cross-correlation functions with applications for volcanoes, large magnitude earthquakes in the far field and smaller magnitude earthquakes at smaller distances. This technique is increasingly used as a non-destructive way to continuously monitor small seismic velocity changes ( 0.1%) associated with volcanic activity, although it is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single-station approach may provide a powerful and reliable alternative to the classical "cross-stations" approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multi-disciplinary continuous monitoring. Over the past decade, this volcano was increasingly studied using the traditional cross-station approach and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single 3-component seismometer.
Geothermal surveys in the oceanic volcanic island of Mauritius
NASA Astrophysics Data System (ADS)
Verdoya, Massimo; Chiozzi, Paolo; Pasqua, Claudio
2017-04-01
Oceanic island chains are generally characterised by young volcanic systems that are predominately composed of basaltic lavas and related magmatic products. Although hot springs are occasionally present, the pervasive, massive, recent outpourings of basaltic lavas are the primary manifestation of the existence of geothermal resources. These islands may have, in principle, significant potential for the exploitation of geothermal energy. In this paper, we present results of recent investigations aimed at the evaluation of geothermal resources of the island of Mauritius, that is the emerging portion of a huge submarine, aseismic, volcanic plateau extending in the SW part of the Indian Ocean. The plateau is related to a long-lived hotspot track, whose present-day expression is the active volcano of La Réunion Island, located about 200 km SW of Mauritius. The island does not show at present any volcanic activity, but magmatism is quite recent as it dates from 7.8 to 0.03 Myr. Geochemical data from water samples collected from boreholes do not indicate the presence of mature water, i.e. circulating in high-temperature geothermal reservoirs, and argue for short-term water-rock interaction in shallow hydrogeological circuits. However, this cannot rule out that a deep magmatic heat source, hydraulically insulated from shallow aquifers, may occur. To evaluate the geothermal gradient, a 270-m-deep hole was thus drilled in the island central portion, in which the most recent volcanic activity (0.03 Myr) took place. Temperature-depth profiles, recorded after complete thermal equilibration, revealed a thermal gradient of 40 mK/m. Attempts of extracting additional thermal information were also made by measuring the temperature in a 170-m-deep deep water hole, no longer used. The results were consistent with the gradient hole, i.e. pointing to a weak or null deep-seated thermal anomaly beneath Mauritius and low geothermal potential. The deep thermal process (mantle plume) invoked to occur in the hotspot area thus seems to yield no particular thermal signature.
Contrasting modes of rifting: The Benue Trough and Cameroon Volcanic Line, West Africa
NASA Astrophysics Data System (ADS)
Okereke, C. S.
1988-08-01
The Benue trough of west Africa is commonly believed to be a rift feature that originated in the Cretaceous at about the time that Africa and South America began to separate. Bouguer gravity and available geological data in the trough indicate that its formation was probably the result of regional horizontal stresses in the lithosphere, causing crustal extension and surface subsidence. By contrast, the data for the adjoining Cameroon volcanic line suggests that the associated tensional stresses relate to mantle upwarp causing thinning of the lithosphere and regional crustal uplift similar to that associated with the Kenya rift. Thus the association of passive and active rifts seen in the Afro-Arabia rift system is also a feature of the Cretaceous rift system in west Africa.
GlobVolcano pre-operational services for global monitoring active volcanoes
NASA Astrophysics Data System (ADS)
Tampellini, Lucia; Ratti, Raffaella; Borgström, Sven; Seifert, Frank Martin; Peltier, Aline; Kaminski, Edouard; Bianchi, Marco; Branson, Wendy; Ferrucci, Fabrizio; Hirn, Barbara; van der Voet, Paul; van Geffen, J.
2010-05-01
The GlobVolcano project (2007-2010) is part of the Data User Element programme of the European Space Agency (ESA). The project aims at demonstrating Earth Observation (EO) based integrated services to support the Volcano Observatories and other mandate users (e.g. Civil Protection) in their monitoring activities. The information services are assessed in close cooperation with the user organizations for different types of volcano, from various geographical areas in various climatic zones. In a first phase, a complete information system has been designed, implemented and validated, involving a limited number of test areas and respective user organizations. In the currently on-going second phase, GlobVolcano is delivering pre-operational services over 15 volcanic sites located in three continents and as many user organizations are involved and cooperating with the project team. The set of GlobVolcano offered EO based information products is composed as follows: Deformation Mapping DInSAR (Differential Synthetic Aperture Radar Interferometry) has been used to study a wide range of surface displacements related to different phenomena (e.g. seismic faults, volcanoes, landslides) at a spatial resolution of less than 100 m and cm-level precision. Permanent Scatterers SAR Interferometry method (PSInSARTM) has been introduced by Politecnico of Milano as an advanced InSAR technique capable of measuring millimetre scale displacements of individual radar targets on the ground by using multi-temporal data-sets, estimating and removing the atmospheric components. Other techniques (e.g. CTM) have followed similar strategies and have shown promising results in different scenarios. Different processing approaches have been adopted, according to data availability, characteristic of the area and dynamic characteristics of the volcano. Conventional DInSAR: Colima (Mexico), Nyiragongo (Congo), Pico (Azores), Areanal (Costa Rica) PSInSARTM: Piton de la Fournaise (La Reunion Island), Stromboli and Volcano (Italy), Hilo (Hawai), Mt. St. Helens (United States), CTM (Coherent Target Monitoring): Cumbre Vieja (La Palma) To generate products either Envisat ASAR, Radarsat 1or ALOS PALSAR data have been used. Surface Thermal Anomalies Volcanic hot-spots detection, radiant flux and effusion rate (where applicable) calculation of high temperature surface thermal anomalies such as active lava flow, strombolian activity, lava dome, pyroclastic flow and lava lake can be performed through MODIS (Terra / Aqua) MIR and TIR channels, or ASTER (Terra), HRVIR/HRGT (SPOT4/5) and Landsat family SWIR channels analysis. ASTER and Landsat TIR channels allow relative radiant flux calculation of low temperature anomalies such as lava and pyroclastic flow cooling, crater lake and low temperature fumarolic fields. MODIS, ASTER and SPOT data are processed to detect and measure the following volcanic surface phenomena: Effusive activity Piton de la Fournaise (Reunion Island); Mt Etna (Italy). Lava dome growths, collapses and related pyroclastic flows Soufrière Hills (Montserrat); Arenal - (Costa Rica). Permanent crater lake and ephemeral lava lake Karthala (Comores Islands). Strombolian activity Stromboli (Italy). Low temperature fumarolic fields Nisyros (Greece), Vulcano (Italy), Mauna Loa (Hawaii). Volcanic Emission The Volcanic Emission Service is provided to the users by a link to GSE-PROMOTE - Support to Aviation Control Service (SACS). The aim of the service is to deliver in near-real-time data derived from satellite measurements regarding SO2 emissions (SO2 vertical column density - Dobson Unit [DU]) possibly related to volcanic eruptions and to track the ash injected into the atmosphere during a volcanic eruption. SO2 measurements are derived from different satellite instruments, such as SCIAMACHY, OMI and GOME-2. The tracking of volcanic ash is accomplished by using SEVIRI-MSG data and, in particular, the following channels VIS 0.6 and IR 3.9, and along with IR8.7, IR 10.8 and IR 12.0. The GlobVolcano information system and its current experimentation represent a significant step ahead towards the implementation of an operational, global observatory of volcanoes by the synergetic use of data from available Earth Observation satellites.
NASA Astrophysics Data System (ADS)
Galle, Bo; Arellano, Santiago; Conde, Vladimir
2015-04-01
NOVAC, the Network for Observation of Volcanic and Atmospheric Change, was initiated in 2005 as a 5-years-long project financed by the European Union. Its main purpose is to create a global network for the study of volcanic atmospheric plumes and related geophysical phenomena by using state-of-the-art spectroscopic remote sensing technology. Up to 2014, 67 instruments have been installed at 25 volcanoes in 13 countries of Latin America, Italy, Democratic Republic of Congo, Reunion, Iceland, and Philippines, and efforts are being done to expand the network to other active volcanic zones. NOVAC has been a pioneer initiative in the community of volcanologists and embraces the objectives of the Word Organization of Volcano Observatories (WOVO) and the Global Earth Observation System of Systems (GEOSS). In this contribution, we present the results of the measurements of SO2 gas fluxes carried out within NOVAC, which for some volcanoes represent a record of more than 8 years of semi-continuous monitoring. The network comprises some of the most strongly degassing volcanoes in the world, covering a broad range of tectonic settings, levels of unrest, and potential risk. Examples of correlations with seismicity and other geophysical phenomena, environmental impact studies and comparisons with previous global estimates will be discussed as well as the significance of the database for further studies in volcanology and other geosciences.
Drilling into Rhyolitic Magma at Shallow depth at Krafla Volcanic Complex, NE-Iceland
NASA Astrophysics Data System (ADS)
Mortensen, A. K.; Markússon, S. H.; Gudmundsson, Á.; Pálsson, B.
2017-12-01
Krafla volcanic complex in NE-Iceland is an active volcano but the latest eruption was the Krafla Fires in 1975-1984. Though recent volcanic activity has consisted of basaltic fissure eruptions, then it is rhyolitic magma that has been intercepted on at least two occasions while drilling geothermal production wells in the geothermal field suggesting a layered magma plumbing system beneath the Krafla volcanic complex. In 2008 quenched rhyolitic glass was retrieved from the bottom of well KJ-39, which is 2865 m deep ( 2571 m true vertical depth). In 2009 magma was again encountered at an even shallower depth and in more than 2,5 km distance from the bottom of well KJ-39, but in 2009 well IDDP-1 was drilled into magma three times just below 2100 m depth. Only on the last occasion was quenched glass retrieved to confirm that magma had been encountered. In well KJ-39 the quenched glass was rhyolitic in composition. The glass contained resorbed minerals of plagioclase, clinopyroxene and titanomagnetite, but the composition of the glass resembles magma that has formed by partial melting of hydrated basalt. The melt was encountered among cuttings from impermeable, coarse basaltic intrusives at a depth, where the well was anticipated to penetrate the Hólseldar volcanic fissure. In IDDP-1 the quenched glass was also rhyolitic in composition. The glass contained less than 5% of phenocrysts, but the phenocryst assemblage included andesine plagioclase, augite, pigeonite, and titanomagnetite. At IDDP-1 the melt was encountered below a permeable zone composed of fine to coarse grained felsite and granophyre. The disclosure of magma in two wells at Krafla volcanic complex verify that rhyolitic magma can be encountered at shallow depth across a larger area within the caldera. The encounter of magma at shallow depth conforms with that superheated conditions have been found at >2000 m depth in large parts of Krafla geothermal field.
NASA Astrophysics Data System (ADS)
Flower, Verity J. B.; Carn, Simon A.
2015-10-01
The identification of cyclic volcanic activity can elucidate underlying eruption dynamics and aid volcanic hazard mitigation. Whilst satellite datasets are often analysed individually, here we exploit the multi-platform NASA A-Train satellite constellation to cross-correlate cyclical signals identified using complementary measurement techniques at Soufriere Hills Volcano (SHV), Montserrat. In this paper we present a Multi-taper (MTM) Fast Fourier Transform (FFT) analysis of coincident SO2 and thermal infrared (TIR) satellite measurements at SHV facilitating the identification of cyclical volcanic behaviour. These measurements were collected by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) (respectively) in the A-Train. We identify a correlating cycle in both the OMI and MODIS data (54-58 days), with this multi-week feature attributable to episodes of dome growth. The 50 day cycles were also identified in ground-based SO2 data at SHV, confirming the validity of our analysis and further corroborating the presence of this cycle at the volcano. In addition a 12 day cycle was identified in the OMI data, previously attributed to variable lava effusion rates on shorter timescales. OMI data also display a one week (7-8 days) cycle attributable to cyclical variations in viewing angle resulting from the orbital characteristics of the Aura satellite. Longer period cycles possibly relating to magma intrusion were identified in the OMI record (102-, 121-, and 159 days); in addition to a 238-day cycle identified in the MODIS data corresponding to periodic destabilisation of the lava dome. Through the analysis of reconstructions generated from cycles identified in the OMI and MODIS data, periods of unrest were identified, including the major dome collapse of 20th May 2006 and significant explosive event of 3rd January 2009. Our analysis confirms the potential for identification of cyclical volcanic activity through combined analysis of satellite data, which would be of particular value at poorly monitored volcanic systems.
Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, Jose; White, Randall A.; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú
2015-01-01
After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013–2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014.These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.
Whakaari (White Island volcano, New Zealand): Magma-hydrothermal laboratory
NASA Astrophysics Data System (ADS)
Lavallee, Yan; Heap, Michael J.; Reuschle, Thierry; Mayer, Klaus; Scheu, Bettina; Gilg, H. Albert; Kennedy, Ben M.; Letham-Brake, Mark; Jolly, Arthur; Dingwell, Donald B.
2015-04-01
Whakaari, active andesitic stratovolcano of the Taupo Volcanic Zone (New Zealand), hosts an open, highly reactive hydrothermal system in the amphitheatre of an earlier sector collapse. Its recent volcanic activity is primarily characterized by sequences of steam-driven (phreatic) and phreatomagmatic explosive eruptions, although a lava dome briefly extruded in 2012. The volcano provides a natural laboratory for the study of aggressive fluids on the permeability of the hydrothermal system, on phreatomagmatic volcanism as well as on the volcano edifice structural stability. Here, we present a holistic experimental dataset on the reservoir rocks properties (mineralogy, permeability, seismic velocity) and their response to changes in stress (strength, deformation mechanisms, fragmentation) and temperature (mineralogical breakdown). We show that the advance degree of alteration in the system, nearly replaced all the original rock-forming minerals. This alteration has produced generally weak rocks, which, when subjected to a differential stress, can undergo transition from a dilatant response (brittle) to a compactant response with a mere confining pressure of about 15-20 MPa (corresponding to depth of about 1 km). Thermal stressing experiments reveal that the alteration phases breakdown at 500 °C (alunite) and 700 °C (dehydrated alum and sulphur), generating much weakened skeletal rocks, deteriorated by a mass loss of 20 wt.%, resulting in an increase in porosity and permeability of about 15 vol.% and an order of magnitude, respectively. Novel thermal stressing tests at high-heating rates (<1000 K/min) suggest that the onset of this mineralogical debilitation is pushed to higher temperatures with heating rates, carrying implication for the stability of the reservoir rocks and explosions during magma movement at variable rates in the upper edifice. Rock strength imposes an important control on the stability of volcanic edifices and of the hydrothermal reservoir rocks, especially when considering the high potential energy stored as fluids in these porous rocks. Recent unrest at Whakaari has resulted in the near sudden generation of phreatomagmatic activity. Here, we complete our experimental description of these rocks by discussing the result of rapid decompression experiments on the rocks stoked with supercritical fluids. The results constrain the violence of these steam-driven events and highlight the predisposition of thermally unstable rocks in hydrothermal system to undergo sudden phreatic eruptions.
Catastrophic volcanic collapse: relation to hydrothermal processes.
López, D L; Williams, S N
1993-06-18
Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.
Young flood lavas in the Elysium Region, Mars
NASA Technical Reports Server (NTRS)
Plescia, J. B.
1990-01-01
The nature and origin of a smooth plains unit (the Cerberus Plains) in southeastern Elysium and western Amazonis are reported. The interpretation that the Cerberus Plains resulted from flood plains style volcanism late in martian history is presented which carries implications for martian thermal history and volcanic evolution of a global scale. Although central construct volcanism (e.g., Olympus Mons) has long been recognized as occurring late in time, flood volcanism has not. Flood volcanism has been suggested as the origin of the ridged plains units (e.g., Lunae Planum, Solis, and Sinai Planum). This type of volcanic activity generally occurred early, and in Tharsis, the style of volcanism evolved from flood eruptions into centralized eruptions which built the large Tharsis Montes and Olympus Mons shields. Volcanism in the Elysium region seems to have followed a similar trend from flood eruptions to central construct building. But, the Cerberus Plains indicate that the volcanic style returned to flood eruption again after central constructional volcanism had ended.
Soil radon measurements as a potential tracer of tectonic and volcanic activity.
Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio
2016-04-15
In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.
Soil radon measurements as a potential tracer of tectonic and volcanic activity
NASA Astrophysics Data System (ADS)
Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio
2016-04-01
In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.
Soil radon measurements as a potential tracer of tectonic and volcanic activity
Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio
2016-01-01
In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264
Does Students' Source of Knowledge Affect Their Understanding of Volcanic Systems?
ERIC Educational Resources Information Center
Parham, Thomas L.; Cervato, Cinzia; Gallus, William; Larsen, Michael; Hobbs, Jon; Greenbowe, Thomas
2011-01-01
A recent survey of undergraduates at five schools across the United States indicates that many undergraduates feel that they have learned more about volcanic systems from Hollywood films and the popular media than they learned in the course of their precollegiate formal education. Scores on the Volcanic Concept Survey, an instrument designed to…