Science.gov

Sample records for active volcanic vents

  1. Use of High Temporal Resolution Thermal Imagery of Karymsky's Volcanic Plume to Constrain Volcanic Activity and Elucidate Vent Processes

    NASA Astrophysics Data System (ADS)

    Lopez, T. M.; Dehn, J.; Belousov, A.; Fee, D.; Buurman, H.; Grapenthin, R.; Ushakov, S.

    2011-12-01

    Analysis of high temporal resolution thermal imagery of the volcanic plume from Karymsky volcano, Kamchatka, Russia, was performed to characterize the activity and elucidate vent processes observed during a field campaign from 21 through 26 July 2008. Observed emission styles ranged from explosive eruptions, gas jetting, gas puffing, passive degassing, to absent degassing. These styles can be broadly categorized according to the thermal data. Specifically, we interpret: (1) apparent temperatures in excess of 120°C to indicate eruption of juvenile material; (2) exponential trends between maximum apparent temperature and radiation above background values to indicate degassing or explosive eruptions; (3) flat and/or flat-exponential hybrid trends between maximum apparent temperature and radiation to indicate absent degassing and/or gas puffing, or a transition between degassing and absent degassing; and (4) strong periodicity identified by inspection or through power spectral density analysis of timeseries data to indicate gas puffing. Based on our thermal observations we propose that these styles of volcanic emissions are primarily controlled by shallow vent processes, with the range of emission styles reflecting a continuum between open and closed vent activity. Specifically, we propose that (1) periods of absent degassing indicate vent sealing; (2) periods of gas puffing indicate cyclic behavior between partial vent sealing and vent fracturing; and (3) passive degassing, gas jetting, and continuous eruption all indicate open vent conditions. We suggest that secondary influences by magma recharge and gas exsolution processes may contribute to variations in degassing style under open vent conditions. These results suggest that trends in thermal timeseries data, such as maximum apparent temperature and radiation, can be used to quantitatively characterize volcanic activity and may help constrain vent processes at active volcanoes.

  2. 40Ar/39Ar dating of tuff vents in the Campi Flegrei caldera (southern Italy): Toward a new chronostratigraphic reconstruction of the Holocene volcanic activity

    USGS Publications Warehouse

    Fedele, L.; Insinga, D.D.; Calvert, A.T.; Morra, V.; Perrotta, A.; Scarpati, C.

    2011-01-01

    The Campi Flegrei hosts numerous monogenetic vents inferred to be younger than the 15 ka Neapolitan Yellow Tuff. Sanidine crystals from the three young Campi Flegrei vents of Fondi di Baia, Bacoli and Nisida were dated using 40Ar/39Ar geochronology. These vents, together with several other young edifices, occur roughly along the inner border of the Campi Flegrei caldera, suggesting that the volcanic conduits are controlled by caldera-bounding faults. Plateau ages of ∼9.6 ka (Fondi di Baia), ∼8.6 ka (Bacoli) and ∼3.9 ka (Nisida) indicate eruptive activity during intervals previously interpreted as quiescent. A critical revision, involving calendar age correction of literature 14C data and available 40Ar/39Ar age data, is presented. A new reference chronostratigraphic framework for Holocene Phlegrean activity, which significantly differs from the previously adopted ones, is proposed. This has important implications for understanding the Campi Flegrei eruptive history and, ultimately, for the evaluation of related volcanic risk and hazard, for which the inferred history of its recent activity is generally taken into account.

  3. Hydrothermal activity on the southern Mid-Atlantic Ridge: Tectonically- and volcanically-controlled venting at 4 5°S

    NASA Astrophysics Data System (ADS)

    German, C. R.; Bennett, S. A.; Connelly, D. P.; Evans, A. J.; Murton, B. J.; Parson, L. M.; Prien, R. D.; Ramirez-Llodra, E.; Jakuba, M.; Shank, T. M.; Yoerger, D. R.; Baker, E. T.; Walker, S. L.; Nakamura, K.

    2008-09-01

    We report results from an investigation of the geologic processes controlling hydrothermal activity along the previously-unstudied southern Mid-Atlantic Ridge (3-7°S). Our study employed the NOC (UK) deep-tow sidescan sonar instrument, TOBI, in concert with the WHOI (USA) autonomous underwater vehicle, ABE, to collect information concerning hydrothermal plume distributions in the water column co-registered with geologic investigations of the underlying seafloor. Two areas of high-temperature hydrothermal venting were identified. The first was situated in a non-transform discontinuity (NTD) between two adjacent second-order ridge-segments near 4°02'S, distant from any neovolcanic activity. This geologic setting is very similar to that of the ultramafic-hosted and tectonically-controlled Rainbow vent-site on the northern Mid-Atlantic Ridge. The second site was located at 4°48'S at the axial-summit centre of a second-order ridge-segment. There, high-temperature venting is hosted in an ˜ 18 km 2 area of young lava flows which in some cases are observed to have flowed over and engulfed pre-existing chemosynthetic vent-fauna. In both appearance and extent, these lava flows are directly reminiscent of those emplaced in Winter 2005-06 at the East Pacific Rise, 9°50'N and reference to global seismic catalogues reveals that a swarm of large (M 4.6-5.6) seismic events was centred on the 5°S segment over a ˜ 24 h period in late June 2002, perhaps indicating the precise timing of this volcanic eruptive episode. Temperature measurements at one of the vents found directly adjacent to the fresh lava flows at 5°S MAR (Turtle Pits) have subsequently revealed vent-fluids that are actively phase separating under conditions very close to the Critical Point for seawater, at ˜ 3000 m depth and 407 °C: the hottest vent-fluids yet reported from anywhere along the global ridge crest.

  4. Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse

    2010-01-01

    Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.

  5. Spatial Compilation of Holocene Volcanic Vents in the Western Conterminous United States

    NASA Astrophysics Data System (ADS)

    Ramsey, D. W.; Siebert, L.

    2015-12-01

    A spatial compilation of all known Holocene volcanic vents in the western conterminous United States has been assembled. This compilation records volcanic vent location (latitude/longitude coordinates), vent type (cinder cone, dome, etc.), geologic map unit description, rock type, age, numeric age and reference (if dated), geographic feature name, mapping source, and, where available, spatial database source. Primary data sources include: USGS geologic maps, USGS Data Series, the Smithsonian Global Volcanism Program (GVP) catalog, and published journal articles. A total of 726 volcanic vents have been identified from 45 volcanoes or volcanic fields spanning ten states. These vents are found along the length of the Cascade arc in the Pacific Northwest, widely around the Basin and Range province, and at the southern margin of the Colorado Plateau into New Mexico. The U.S. Geological Survey (USGS) National Volcano Early Warning System (NVEWS) identifies 28 volcanoes and volcanic centers in the western conterminous U.S. that pose moderate, high, or very high threats to surrounding communities based on their recent eruptive histories and their proximity to vulnerable people, property, and infrastructure. This compilation enhances the understanding of volcano hazards that could threaten people and property by providing the context of where Holocene eruptions have occurred and where future eruptions may occur. Locations in this compilation can be spatially compared to located earthquakes, used as generation points for numerical hazard models or hazard zonation buffering, and analyzed for recent trends in regional volcanism and localized eruptive activity.

  6. Emplacement of volcanic vents and geodynamics of Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Dhont, D.; Chorowicz, J.; Yürür, T.; Froger, J.-L.; Köse, O.; Gündogdu, N.

    1998-10-01

    Observations on Synthetic Aperture Radar (SAR) scenes of the European Remote Sensing (ERS) satellite and Digital Elevation Models (DEMs), complemented by field structural analysis permit a new understanding of relationships between tectonics and volcanism since the late Miocene (10 Ma) in Central Anatolia. Volcanic edifices form elongate stratovolcanoes, linear clusters and volcanic ridges. They indicate emplacement on tension fractures and tail-crack or horsetail features. For instance, the Kara Dag volcano is rooted on a tail-crack which accommodates a horizontal left-lateral throw component at a fault termination. Caldera complexes of Cappadocia are associated with horsetail fault patterns. The emplacement of volcanoes also benefits from larger-scale tectonic structures: the Erciyes Dag volcano is localized by the Sultan Saz releasing bend which opens along the sinistral strike-slip Ecemis fault. Deformation has been analysed from tension fractures—which are perpendicular to the direction of extension—and from field structural analysis. On a regional scale, the tectonic regime responsible for the distribution of volcanic vents in this area of convergence and lateral extrusion, is not compression but extension. The Central Taurus range is the thermally uplifted shoulder of the Adana-Cilicia basin, which is related to lithosphere thinning. Westward movements in the northwestern part of the studied area are influenced by the active back-arc Aegean extension situated to the west. Farther to the south, the direction of motion turns southwest and south, under the influence of the opening of the Adana-Cilicia basin. We interpreted that extension in the Central Anatolian plateau is related to crustal blocks moving above sub-horizontal detachment surfaces located in the lower crust. This is based on several facts: the Tuz Gölü fault zone is a within-crust detachment; the Tuz Gölü basin does not affect the whole lithosphere because otherwise it would have been

  7. Methanocaldococcus bathoardescens sp. nov., a hyperthermophilic methanogen isolated from a volcanically active deep-sea hydrothermal vent.

    PubMed

    Stewart, Lucy C; Jung, Jong-Hyun; Kim, You-Tae; Kwon, Soon-Wo; Park, Cheon-Seok; Holden, James F

    2015-04-01

    A hyperthermophilic methanogen, strain JH146(T), was isolated from 26 °C hydrothermal vent fluid emanating from a crack in basaltic rock at Marker 113 vent, Axial Seamount in the northeastern Pacific Ocean. It was identified as an obligate anaerobe that uses only H2 and CO2 for growth. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain is more than 97% similar to other species of the genus Methanocaldococcus . Therefore, overall genome relatedness index analyses were performed to establish that strain JH146(T) represents a novel species. For each analysis, strain JH146(T) was most similar to Methanocaldococcus sp. FS406-22, which can fix N2 and also comes from Marker 113 vent. However, strain JH146(T) differs from strain FS406-22 in that it cannot fix N2. The average nucleotide identity score for strain JH146(T) was 87%, the genome-to-genome direct comparison score was 33-55% and the species identification score was 93%. For each analysis, strain JH146(T) was below the species delineation cut-off. Full-genome gene synteny analysis showed that strain JH146(T) and strain FS406-22 have 97% genome synteny, but strain JH146(T) was missing the operons necessary for N2 fixation and assimilatory nitrate reduction that are present in strain FS406-22. Based on its whole genome sequence, strain JH146(T) is suggested to represent a novel species of the genus Methanocaldococcus for which the name Methanocaldococcus bathoardescens is proposed. The type strain is JH146(T) ( = DSM 27223(T) = KACC 18232(T)). PMID:25634941

  8. In Brief: Volcanic vents found in deep Caribbean waters

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-04-01

    Scientists surveying the Cayman Trough in the Caribbean Sea have discovered the world's deepest undersea volcanic vents, or “black smokers,” the National Oceanography Center (NOC) in Southampton, UK, announced on 11 April. The vents were found at a depth of 5000 meters, about 800 meters deeper than any previously discovered. Jon Copley, a marine biologist at the University of Southampton's School of Ocean and Earth Science, said, “Seeing the world's deepest black-smoker vents looming out of the darkness was awe-inspiring.” Geochemist Doug Connelly of NOC, principal scientist of the expedition, noted, “We hope our discovery will yield new insights into biogeochemically important elements in one of the most extreme naturally occurring environments on our planet.” Researchers used an NOC-developed Autosub6000 robot submarine, which was remotely controlled from the Royal Research Ship James Cook. For more information, visit http://www.thesearethevoyages.net/.

  9. Evidence of young volcanic vents in the lunar maria

    NASA Astrophysics Data System (ADS)

    Braden, S.; Robinson, M. S.; Stopar, J. D.

    2013-12-01

    from broad areas of mare basalt flows. Changes in extrusion rate and temperature commonly occur at vents, which could explain the IMPs' unique morphology. Furthermore, IMPs are often spatially associated with volcanic features such as mare domes (e.g., Cauchy 5), collapse calderas (e.g., Hyginus crater), and large pyroclastic deposits (e.g., Mare Vaporum). Multispectral analysis on a subset of the largest IMPs using combined Clementine UV-VIS data (950/750 nm ratio) and LROC Wide Angle Camera images (320/415 nm ratio) show that the uneven unit is consistent with a mare basalt composition. The multispectral data also suggest the presence of pyroclastic material in the area directly surrounding some of the IMPs, which is consistent with a vent hypothesis. Thus, the morphology, composition, and distribution of IMPs imply that lunar volcanic activity may be much younger than generally recognized. References: [1] Whitaker E. (1972) NASA SP-289. [2] Schultz P. H. (1976) Moon Morphology, 626 pp., Univ. of Texas. [3] Stooke P. J. (2012) LPSC 43, abst 1011. [4] Braden S. E. et al. (2013) LPSC 44, abst. 2843. [5] El-Baz, F. (1973) NASA SP-330. [6] Strain P. L. and El-Baz F. (1980) PLPSC 11, 2437-2446. [7] Schultz P. H. (2006) Nature, 444, 184-186. [8] Staid M. et al. (2011) LPSC 42, abst. 2499. [9] Garry W. B. et al. (2012) JGR, 117, E00H31. [10] Robinson M. S. et al. (2010) LPSC 41, abst. 2592.

  10. Fake ballistics and real explosions: field-scale experiments on the ejection and emplacement of volcanic bombs during vent-clearing explosive activity

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Valentine, G.; Gaudin, D.; Graettinger, A. H.; Lube, G.; Kueppers, U.; Sonder, I.; White, J. D.; Ross, P.; Bowman, D. C.

    2013-12-01

    Ballistics - bomb-sized pyroclasts that travel from volcanic source to final emplacement position along ballistic trajectories - represent a prime source of volcanic hazard, but their emplacement range, size, and density is useful to inverse model key eruption parameters related to their initial ejection velocity. Models and theory, however, have so far focused on the trajectory of ballistics after leaving the vent, neglecting the complex dynamics of their initial acceleration phase in the vent/conduit. Here, we use field-scale buried explosion experiments to study the ground-to-ground ballistic emplacement of particles through their entire acceleration-deceleration cycle. Twelve blasts were performed at the University at Buffalo Large Scale Experimental Facility with a range of scaled depths (burial depth divided by the cubic root of the energy of the explosive charge) and crater configurations. In all runs, ballistic analogs were placed on the ground surface at variable distance from the vertical projection of the buried charge, resulting in variable ejection angle. The chosen analogs are tennis and ping-pong balls filled with different materials, covering a limited range of sizes and densities. The analogs are tracked in multiple high-speed and high-definition videos, while Particle Image Velocimetry is used to detail ground motion in response to the buried blasts. In addition, after each blast the emplacement position of all analog ballistics was mapped with respect to the blast location. Preliminary results show the acceleration history of ballistics to be quite variable, from very short and relatively simple acceleration coupled with ground motion, to more complex, multi-stage accelerations possibly affected not only by the initial ground motion but also by variable coupling with the gas-particle mixture generated by the blasts. Further analysis of the experimental results is expected to provide new interpretative tools for ballistic deposits and better

  11. Insight into vent opening probability in volcanic calderas

    NASA Astrophysics Data System (ADS)

    Giudicepietro, Flora; Macedonio, Giovanni; D'Auria, Luca; Martini, Marcello

    2016-04-01

    This study provides insight into the possible behavior of volcanic calderas in pre-eruptive phase and into the most probable location of the areas prone to vent opening hazard, for cases where sill emplacement is an important element of the shallow magma transport system. We consider that the evolution of the stress field is the main factor that controls the vent opening processes in volcanic calderas and we think that the intrusion of sills is one of the most common mechanism governing caldera unrest. Therefore, we have investigated the spatial and temporal evolution of the stress field due to the emplacement of a sill at shallow depth to provide insight on vent opening probability. We carried out several numerical experiments by using a physical model, to assess the role of the magma properties (viscosity), host rock characteristics (Young's modulus and thickness), and dynamics of the intrusion process (mass flow rate) in controlling the stress field. Results show that that high magma viscosity produces larger stress values, while low magma viscosity leads to lower stresses and favors the radial spreading of the sill. Also high-rock Young's modulus gives high stress intensity, whereas low values of Young's modulus produce a dramatic reduction of the stress associated with the intrusive process. The maximum intensity of tensile stress is concentrated at the front of the sill and propagates radially with it, over time. In our simulations, we find that maximum values of tensile stress occur in ring-shaped areas with radius ranging between 350m and 2500m from the injection point, depending on the model parameters. We infer that the probability of vent opening is higher in these areas.

  12. Volcanic field elongation, vent distribution and tectonic evolution of continental rift: The Main Ethiopian Rift example

    NASA Astrophysics Data System (ADS)

    Mazzarini, Francesco; Le Corvec, Nicolas; Isola, Ilaria; Favalli, Massimiliano

    2015-04-01

    Magmatism and faulting operate in continental rifts and interact at a variety of scales, however their relationship is complex. The African rift, being the best example for both active continental rifting and magmatism, provides the ideal location to study the interplay between the two mechanisms. The Main Ethiopian Rift (MER), which connects the Afar depression in the north with the Turkana depression and Kenya Rift to the south, consists of two distinct systems of normal faults and its floor is scattered with volcanic fields formed by tens to several hundreds monogenetic, generally basaltic, small volcanoes and composite volcanoes and small calderas. The distribution of vents defines the overall shape of the volcanic field. Previous work has shown that the distribution of volcanic vents and the shape of a field are linked to its tectonic environment and its magmatic system. In order to distinguish the impact of each mechanism, we analyzed four volcanic fields located at the boundary between the central and northern MER, three of them (Debre Zeyit, Wonji and Kone) grew in the rift valley and one (Akaki) on the western rift shoulder. The elongation and shape of the fields were analyzed based on their vent distribution using the Principal Component Analysis (PCA), the Vent-to-Vent Distance (VVD), and the two dimensional symmetric Gaussian kernel density estimate methods. We extracted from these methods several parameters characterizing the spatial distribution of points (e.g., eccentricity (e), eigenvector index (evi), angular dispersion (Da)). These parameters allow to define at least three types of shape for volcanic fields: strong elongate (line and ellipse), bimodal/medium elongate (ellipse) and dispersed (circle) shapes. Applied to the natural example, these methods well differentiate each volcanic field. For example, the elongation of the field increases from shoulder to rift axis inversely to the angular dispersion. In addition, the results show that none of

  13. Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents

    NASA Astrophysics Data System (ADS)

    Lauritano, C.; Ruocco, M.; Dattolo, E.; Buia, M. C.; Silva, J.; Santos, R.; Olivé, I.; Costa, M. M.; Procaccini, G.

    2015-03-01

    Submarine volcanic vents are being used as natural laboratories to assess the effects of CO2 on marine organisms and communities, as this gas is the main component of emissions. Seagrasses should positively react to increased dissolved carbon, but in vicinity of volcanic vents there may be toxic substances, that can have indirect effects on seagrasses. Here we analysed the expression of 35 stress-related genes in the Mediterranean keystone seagrass species P. oceanica in the vicinity of submerged volcanic vents located in the Islands of Ischia and Panarea, Italy, and compared them with those from control sites away from the influence of vents. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR) was used to characterize the expression levels of genes. Fifty one per cent of genes analysed showed significant expression changes. Metal detoxification genes were mostly down-regulated in relation to controls both in Ischia and Panarea locations, indicating that P. oceanica does not increase the synthesis of heavy metal detoxification proteins in response to the environmental conditions present at the two vents. The expression levels of genes involved in free radical detoxification indicate that, in contrast with Ischia, P. oceanica at the Panarea vent face stressors that result in the production of reactive oxygen species triggering antioxidant responses. In addition, heat shock proteins were also activated at Panarea and not at Ischia. Overall, our study reveals that P. oceanica is generally under higher stress in the vicinity of the vents at Panarea than at Ischia, possibly resulting from environmental and evolutionary differences existing between the two volcanic sites. This is the first study analysing gene responses in marine plants living near natural CO2 vents and our results call for a careful consideration of factors, other than CO2 and acidification, that can cause stress to seagrasses and other organisms near volcanic vents.

  14. An authoritative global database for active submarine hydrothermal vent fields

    NASA Astrophysics Data System (ADS)

    Beaulieu, Stace E.; Baker, Edward T.; German, Christopher R.; Maffei, Andrew

    2013-11-01

    The InterRidge Vents Database is available online as the authoritative reference for locations of active submarine hydrothermal vent fields. Here we describe the revision of the database to an open source content management system and conduct a meta-analysis of the global distribution of known active vent fields. The number of known active vent fields has almost doubled in the past decade (521 as of year 2009), with about half visually confirmed and others inferred active from physical and chemical clues. Although previously known mainly from mid-ocean ridges (MORs), active vent fields at MORs now comprise only half of the total known, with about a quarter each now known at volcanic arcs and back-arc spreading centers. Discoveries in arc and back-arc settings resulted in an increase in known vent fields within exclusive economic zones, consequently reducing the proportion known in high seas to one third. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. The purpose of the database now extends beyond academic research and education and into marine policy and management, with at least 18% of known vent fields in areas granted or pending applications for mineral prospecting and 8% in marine protected areas.

  15. Vents to events: determining an eruption event record from volcanic vent structures for the Harrat Rahat, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Runge, Melody G.; Bebbington, Mark S.; Cronin, Shane J.; Lindsay, Jan M.; Kenedi, Catherine L.; Moufti, Mohammed Rashad H.

    2014-03-01

    Distributed "monogenetic" volcanic eruptions commonly occur in continental settings without obvious structural alignments or rifting/extensional structures. Nevertheless, these may develop as fissures, representing the surface expression of dykes with a range of orientations, especially when stress regimes vary over time and/or older crustal features and faults are exploited by rising magmas. Dykes reaching the surface as fissures can last hours to months and produce groups of closely aligned vents, hiding the true extent of the source fissure. Grouped or aligned vents in a distributed volcanic environment add complexity to hazard modelling where the majority of eruptions are single-vent, point-source features, represented by cones, craters or domes; i.e. vent groups may represent fissure events, or single eruptions coincidently located but erupted hundreds to tens of thousands of years apart. It is common practice in hazard estimation for intraplate monogenetic volcanism to assume that a single eruption cone or crater represents an individual eruptive event, but this could lead to a significant overestimate of temporal recurrence rates if multiple-site and fissure eruptions were common. For accurate recurrence rate estimates and hazard-event scenarios, a fissure eruption, with its multiple cones, must be considered as a single multi-dimensional eruptive event alongside the single-vent eruptions. We present a statistical method to objectively determine eruptive events from visible vents, and illustrate this using the 968 vents of the 10 Ma to 0.6 ka volcanic field of Harrat Rahat, Saudi Arabia. A further method is presented to estimate the number of hidden vents in a thick volcanic pile. By combining these two methods for Harrat Rahat, we determined an updated spatial recurrence rate estimate, and an average temporal recurrence rate of 7.5 × 10-5 events/year. This new analysis highlights more concentrated regions of higher temporal hazard in parts of Harrat Rahat

  16. Investigating the role of small vent volcanism during the development of Tharsis Province, Mars

    NASA Astrophysics Data System (ADS)

    Richardson, J. A.; Bleacher, J. E.; Connor, C.; Connor, L.; Glaze, L. S.

    2014-12-01

    Clusters of tens to hundreds of small volcanic vents have recently been recognized as a major component of Tharsis Province volcanism. These volcanic fields are formed from distributed-style, possibly monogenetic, volcanism and are composed of low sloped edifices with diameters of tens of kilometers and heights of tens to hundreds of meters. We report a new catalog of these small volcanic vents, now available through the USGS Astrogeology Science Center. This catalog was created with the use of gridded topographic data from the Mars Orbiter Laser Altimeter (MOLA) and images from the Thermal Emission Imaging System (THEMIS) and the High Resolution Stereo Camera (HRSC). We are now investigating isolated clusters of distributed volcanism in Tharsis with this dataset. We hypothesize that these clusters are formed from significant magmatic events that played a large role in the development of Tharsis. Currently, the catalog contains 1075 unique volcanic vents in the Tharsis Province. With the catalog, potentially isolated volcano clusters are identified with vent density estimation. Vent intensity for clusters is found to be 1 vent per 1000 sq km or less. Crater retention rates for one such cluster, Syria Planum, indicates that these distributed volcanic systems might continue as long as 700 Ma, or that monogenetic volcanic systems overprint older systems. Using a modified basal outlining algorithm with MOLA gridded data, shield volumes are found to be between 1-20 cubic km. Current results show distributed-style volcanism occuring in Tharsis orders of magnitude more dispersed than analogous volcano clusers on Earth, while individual edifices are found to be an order of magnitude larger than volcanoes in Earth clusters. Proof of concept results are reported for three identified clusters: Arsia Mons Caldera, Syria Planum, and Southern Pavonis Mons.

  17. Distribution of late Cenozoic volcanic vents in the Cascade Range: volcanic arc segmentation and regional tectonic considerations ( USA).

    USGS Publications Warehouse

    Guffanti, M.; Weaver, C.S.

    1988-01-01

    Spatial, temporal, and compositional distributions of c4000 volcanic vents formed since 16 Ma in Washington, Oregon, N California, and NW Nevada illustrate the evolution of volcanism related to subduction of the Juan de Fuca plate system and extension of the Basin and Range province. Vent data were obtained from published map compilations and include monogenetic and small polygenetic volcanoes in addition to major composite centers. On the basis of the distribution of 2821 vents formed since 5 Ma, the Cascade Range is divided into 5 segments, with vents of the High Lava Plains along the northern margin of the Basin and Range province in Oregon forming a sixth segment. Some aspects of the Cascade Range segmentation can be related to gross structural features of the subducting Juan de Fuca plate.-from Authors

  18. Spatial and Alignment Analyses for a field of Small Volcanic Vents South of Pavonis Mons Mars

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Glaze, L. S.; Greeley, R.; Hauber, E.; Baloga, S. M.; Sakimoto, S. E. H.; Williams, D. A.; Glotch, T. D.

    2008-01-01

    The Tharsis province of Mars displays a variety of small volcanic vent (10s krn in diameter) morphologies. These features were identified in Mariner and Viking images [1-4], and Mars Orbiter Laser Altimeter (MOLA) data show them to be more abundant than originally observed [5,6]. Recent studies are classifying their diverse morphologies [7-9]. Building on this work, we are mapping the location of small volcanic vents (small-vents) in the Tharsis province using MOLA, Thermal Emission Imaging System, and High Resolution Stereo Camera data [10]. Here we report on a preliminary study of the spatial and alignment relationships between small-vents south of Pavonis Mons, as determined by nearest neighbor and two-point azimuth statistical analyses. Terrestrial monogenetic volcanic fields display four fundamental characteristics: 1) recurrence rates of eruptions,2 ) vent abundance, 3) vent distribution, and 4) tectonic relationships [11]. While understanding recurrence rates typically requires field measurements, insight into vent abundance, distribution, and tectonic relationships can be established by mapping of remotely sensed data, and subsequent application of spatial statistical studies [11,12], the goal of which is to link the distribution of vents to causal processes.

  19. Retrieving eruptive vent conditions from dynamical properties of unsteady volcanic plume using high-speed imagery and numerical simulations

    NASA Astrophysics Data System (ADS)

    Tournigand, Pierre-Yves; Taddeucci, Jacopo; José Peña Fernandez, Juan; Gaudin, Damien; Sesterhenn, Jörn; Scarlato, Piergiorgio; Del Bello, Elisabetta

    2016-04-01

    Vent conditions are key parameters controlling volcanic plume dynamics and the ensuing different hazards, such as human health issues, infrastructure damages, and air traffic disruption. Indeed, for a given magma and vent geometry, plume development and stability over time mainly depend on the mass eruption rate, function of the velocity and density of the eruptive mixture at the vent, where direct measurements are impossible. High-speed imaging of eruptive plumes and numerical jet simulations were here non-dimensionally coupled to retrieve eruptive vent conditions starting from measurable plume parameters. High-speed videos of unsteady, momentum-driven volcanic plumes (jets) from Strombolian to Vulcanian activity from three different volcanoes (Sakurajima, Japan, Stromboli, Italy, and Fuego, Guatemala) were recorded in the visible and the thermal spectral ranges by using an Optronis CR600x2 (1280x1024 pixels definition, 500 Hz frame rate) and a FLIR SC655 (640x480 pixels definition, 50 Hz frame rate) cameras. Atmospheric effects correction and pre-processing of the thermal videos were performed to increase measurement accuracy. Pre-processing consists of the extraction of the plume temperature gradient over time, combined with a temperature threshold in order to remove the image background. The velocity and the apparent surface temperature fields of the plumes, and their changes over timescales of tenths of seconds, were then measured by particle image velocimetry and thermal image analysis, respectively, of the pre-processed videos. The parameters thus obtained are representative of the outer plume surface, corresponding to its boundary shear layer at the interface with the atmosphere, and may significantly differ from conditions in the plume interior. To retrieve information on the interior of the plume, and possibly extrapolate it even at the eruptive vent level, video-derived plume parameters were non-dimensionally compared to the results of numerical

  20. Differences in recovery between deep-sea hydrothermal vent and vent-proximate communities after a volcanic eruption

    NASA Astrophysics Data System (ADS)

    Gollner, Sabine; Govenar, Breea; Arbizu, Pedro Martinez; Mills, Susan; Le Bris, Nadine; Weinbauer, Markus; Shank, Timothy M.; Bright, Monika

    2015-12-01

    Deep-sea hydrothermal vents and the surrounding basalt seafloor are subject to major natural disturbance events such as volcanic eruptions. In the near future, anthropogenic disturbance in the form of deep-sea mining could also significantly affect the faunal communities of hydrothermal vents. In this study, we monitor and compare the recovery of insular, highly productive vent communities and vent-proximate basalt communities following a volcanic eruption that destroyed almost all existing communities at the East Pacific Rise, 9°50‧N in 2006. To study the recovery patterns of the benthic communities, we placed settlement substrates at vent sites and their proximate basalt areas and measured the prokaryotic abundance and compared the meio- and macrofaunal species richness and composition at one, two and four years after the eruption. In addition, we collected samples from the overlying water column with a pelagic pump, at one and two years after the volcanic eruption, to determine the abundance of potential meiofauna colonisers. One year after eruption, mean meio- and macrofaunal abundances were not significantly different from pre-eruption values in vent habitats (meio: 8-1838 ind. 64 cm-2 in 2006; 3-6246 ind. 64 cm-2 in 2001/02; macro: 95-1600 ind. 64 cm-2 in 2006; 205-4577 ind. 64 cm-2 in 2001/02) and on non-vent basalt habitats (meio: 10-1922 ind. 64 cm-2 in 2006; 8-328 ind. 64 cm-2 in 2003/04; macro: 14-3351 ind. 64 cm-2 in 2006; 2-63 ind. 64 cm-2 in 2003/04), but species recovery patterns differed between the two habitat types. In the vent habitat, the initial community recovery was relatively quick but incomplete four years after eruption, which may be due to the good dispersal capabilities of vent endemic macrofauna and vent endemic dirivultid copepods. At vents, 42% of the pre-eruption meio- and 39% of macrofaunal species had returned. In addition, some new species not evident prior to the eruption were found. At the tubeworm site Tica, a total of 26

  1. Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents

    NASA Astrophysics Data System (ADS)

    Lauritano, C.; Ruocco, M.; Dattolo, E.; Buia, M. C.; Silva, J.; Santos, R.; Olivé, I.; Costa, M. M.; Procaccini, G.

    2015-07-01

    Submarine volcanic vents are being used as natural laboratories to assess the effects of increased ocean acidity and carbon dioxide (CO2) concentration on marine organisms and communities. However, in the vicinity of volcanic vents other factors in addition to CO2, which is the main gaseous component of the emissions, may directly or indirectly confound the biota responses to high CO2. Here we used for the first time the expression of antioxidant and stress-related genes of the seagrass Posidonia oceanica to assess the stress levels of the species. Our hypothesis is that unknown factors are causing metabolic stress that may confound the putative effects attributed to CO2 enrichment only. We analyzed the expression of 35 antioxidant and stress-related genes of P. oceanica in the vicinity of submerged volcanic vents located in the islands of Ischia and Panarea, Italy, and compared them with those from control sites away from the influence of vents. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was used to characterize gene expression patterns. Fifty-one percent of genes analyzed showed significant expression changes. Metal detoxification genes were mostly down-regulated in relation to controls at both Ischia and Panarea, indicating that P. oceanica does not increase the synthesis of heavy metal detoxification proteins in response to the environmental conditions present at the two vents. The up-regulation of genes involved in the free radical detoxification response (e.g., CAPX, SODCP and GR) indicates that, in contrast with Ischia, P. oceanica at the Panarea site faces stressors that result in the production of reactive oxygen species, triggering antioxidant responses. In addition, heat shock proteins were also activated at Panarea and not at Ischia. These proteins are activated to adjust stress-accumulated misfolded proteins and prevent their aggregation as a response to some stressors, not necessarily high temperature. This is the first

  2. Subsurface magma pathways inferred from statistical analysis of volcanic vent distribution and numerical model of magma ascent

    NASA Astrophysics Data System (ADS)

    Germa, Aurelie; Connor, Laura; Connor, Chuck; Malservisi, Rocco

    2015-04-01

    One challenge of volcanic hazard assessment in distributed volcanic fields (large number of small-volume basaltic volcanoes along with one or more silicic central volcanoes) is to constrain the location of future activity. Although the extent of the source of melts at depth can be known using geophysical methods or the location of past eruptive vents, the location of preferential pathways and zones of higher magma flux are still unobserved. How does the spatial distribution of eruptive vents at the surface reveal the location of magma sources or focusing? When this distribution is investigated, the location of central polygenetic edifices as well as clusters of monogenetic volcanoes denote zones of high magma flux and recurrence rate, whereas areas of dispersed monogenetic vents represent zones of lower flux. Additionally, central polygenetic edifices, acting as magma filters, prevent dense mafic magmas from reaching the surface close to their central silicic system. Subsequently, the spatial distribution of mafic monogenetic vents may provide clues to the subsurface structure of a volcanic field, such as the location of magma sources, preferential magma pathways, and flux distribution across the field. Gathering such data is of highly importance in improving the assessment of volcanic hazards. We are developing a modeling framework that compares output of statistical models of vent distribution with outputs form numerical models of subsurface magma transport. Geologic data observed at the Earth's surface are used to develop statistical models of spatial intensity (vents per unit area), volume intensity (erupted volume per unit area) and volume-flux intensity (erupted volume per unit time and area). Outputs are in the form of probability density functions assumed to represent volcanic flow output at the surface. These are then compared to outputs from conceptual models of the subsurface processes of magma storage and transport. These models are using Darcy's law

  3. Near Vent Volcanic Plume Measurement by a Portable Multi-Gas-Sensor System to Estimate Volcanic Gas Composition

    NASA Astrophysics Data System (ADS)

    Shinohara, H.

    2006-12-01

    Near vent plume measurement technique by the use of the Portable Multi-Gas-Sensor System was developed to obtain volcanic gas composition of the major components including H2O, CO2, SO2, H2S and H2. By the combination with the Alkaline Filter Technique, the near vent plume measurement can provide almost full set of the volcanic gas composition including also HCl and HF. The Portable Multi-Gas-Sensor System measures concentration of the volcanic gas species by pumping the atmosphere (plume) through IR H2O-CO2 gas analyzer, SO2, H2S and H2 chemical sensors. The full system weight including battery and data logger is about 5 kg and can be easily carried in a backpack to the volcano summit. Among the various advantages and disadvantages of this techniques to other techniques such as the FT-IR measurements and the air-borne plume measurements with various gas analyzers, the most important advantage of the Portable Multi-Gas-Sensor System is the ability of the near vent measurement which enables the quantitative estimate of the H2O content in the volcanic gas. Since H2O content in the atmosphere is large and variable, a large mixing ratio of the volcanic gas in the plume is necessary to quantify the H2O excess over the atmospheric content. The atmospheric H2O content commonly ranges 5,000-20,000 ppm often with about 10% fluctuation whereas the CO2 content is about 370 ppm with minor (1 ppm) changes. Therefore we can quantify the excess CO2 content even at <1 ppm level, but we need at least 500 times larger excess H2O content derived from the volcanic gas for the quantification. By the near vent plume measurements, we could obtain the volcanic gas compositions of various volcanoes including Miyakejima, Asama and Villarrica as well as Etna whose gas composition is quite H2O-poor of H2O/CO2=1. Since H2O is commonly the most abundant volatile components both in the volcanic gases and magmas, and its solubility is quantitatively well constrained, the measured composition can

  4. Influence of hydrothermal venting on water column properties in the crater of the Kolumbo submarine volcano, Santorini volcanic field (Greece)

    NASA Astrophysics Data System (ADS)

    Christopoulou, Maria E.; Mertzimekis, Theo J.; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steven; Mandalakis, Manolis

    2016-02-01

    The Kolumbo submarine volcano, located 7 km northeast of the island of Santorini, is part of Santorini's volcanic complex in the south Aegean Sea, Greece. Kolumbo's last eruption was in 1650 AD. However, a unique and active hydrothermal vent field has been revealed in the northern part of its crater floor during an oceanographic survey by remotely operated vehicles (ROVs) in 2006. In the present study, conductivity-temperature-depth (CTD) data collected by ROV Hercules during three oceanographic surveys onboard E/V Nautilus in 2010 and 2011 have served to investigate the distribution of physicochemical properties in the water column, as well as their behavior directly over the hydrothermal field. Additional CTD measurements were carried out in volcanic cone 3 (VC3) along the same volcanic chain but located 3 km northeast of Kolumbo where no hydrothermal activity has been detected to date. CTD profiles exhibit pronounced anomalies directly above the active vents on Kolumbo's crater floor. In contrast, VC3 data revealed no such anomalies, essentially resembling open-sea (background) conditions. Steep increases of temperature (e.g., from 16 to 19 °C) and conductivity near the maximum depth (504 m) inside Kolumbo's cone show marked spatiotemporal correlation. Vertical distributions of CTD signatures suggest a strong connection to Kolumbo's morphology, with four distinct zones identified (open sea, turbid flow, invariable state, hydrothermal vent field). Additionally, overlaying the near-seafloor temperature measurements on an X-Y coordinate grid generates a detailed 2D distribution of the hydrothermal vent field and clarifies the influence of fluid discharges in its formation.

  5. The NOAA/PMEL Vents Program - 1983 to 2013: A History of Deep-Sea Volcanic and Hydrothermal Exploration and Research

    NASA Astrophysics Data System (ADS)

    Hammond, S. R.; Baker, E. T.; Embley, R. W.

    2015-12-01

    Inspiration for the Vents program arose from two serendipitous events: the discovery of seafloor spreading-center hydrothermal venting on the Galápagos Rift in 1977, and NOAA's deployment of the first US civilian research multibeam bathymetric sonar on the NOAA Ship Surveyor in 1979. Multibeam mapping in the NE Pacific revealed an unprecedented and revolutionary perspective of the Gorda and Juan de Fuca spreading centers, thus stimulating a successful exploration for volcanic and hydrothermal activity at numerous locations along both. After the 1986 discovery of the first "megaplume,", quickly recognized as the water column manifestation of a deep submarine volcanic eruption, the Vents program embarked on a multi-decadal effort to discover and understand local-, regional-, and, ultimately, global-scale physical, chemical, and biological ocean environmental impacts of submarine volcanism and hydrothermal venting. The Vents program made scores of scientific discoveries, many of which owed their success to the program's equally innovative and productive technological prowess. These discoveries were documented in hundreds of peer-reviewed papers by Vents researchers and their colleagues around the world. An emblematic success was the internationally recognized, first-ever detection, location, and study of an active deep volcanic eruption in 1993. To continue the Vents mission and further enhance its effectiveness in marine science and technology innovation, the program was reorganized in 2014 into two distinct, but closely linked, programs: Earth-Oceans Interactions and Acoustics. Both are currently engaged in expeditions and projects that maintain the Vents tradition of pioneering ocean exploration and research.

  6. Hydrothermal fluids vented at shallow depths at the Aeolian islands: relationships with volcanic and geothermal systems.

    NASA Astrophysics Data System (ADS)

    Italiano, Francesco; Caracausi, Antonio; Longo, Manfredi; Maugeri, Roberto; Paonita, Antonio

    2010-05-01

    Scuba diving investigations carried out over the last two decades at the Aeolian islands revealed the existence of submarine magmatic and late-magmatic hydrothermalism at all the islands, despite the absence of on-shore activity at some of the islands. The results gained by diving activities provided useful information to evaluate the volcanic and geothermal activity and to manage the volcanic crisis occurred on November 2002 off the island of Panarea. Scuba diving investigations carried out from middle 80's, had shown that despite the absence of on shore volcanic manifestations, submarine hydrothermal activity is recognizable at shallow depth around all the Aeolian islands related either to volcanic and geothermal activity. The sampled gases are CO2-dominated with low amounts of oxygen and reactive gases (H2, CO, CH4 and H2S) with concentrations ranging from a few ppm to some mole percent. Sometimes significant N2 amount are detectable together with high helium contents. Samples having low CO2 content, besides relevant N2 and He amounts, are the consequence of CO2 dissolution in sea-water due to gas-water interactions (GWI) occurred before the sample collection. The high CO2 solubility (878 ml/l, T=20°C, P=1bar) may, in fact, decrease the CO2 content in the venting gases thus increasing the concentrations of the less soluble species (e.g. He 8 ml/l, CO 23 ml/l and CH4 33.8 ml/l) in the gas mixture. Such a process might occur at any level, however, because of the slow water circulation in deep sediments, CO2 is able to saturate the circulating sea-water. The isotopic composition of carbon displays a small range of values while helium isotopes are in the range of 4.1active and extinct Volcanoes, their chemical composition is similar. Contrastingly the isotope composition of helium shows a large heterogeneity with the highest isotopic ratios surprisingly measured at the extinct volcanic islands in the western sector, and much

  7. Active Volcanic Plumes on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles).

    The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images.

    North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page

  8. Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand

    NASA Astrophysics Data System (ADS)

    Thompson, Mary Anne; Lindsay, Jan M.; Sandri, Laura; Biass, Sébastien; Bonadonna, Costanza; Jolly, Gill; Marzocchi, Warner

    2015-05-01

    Uncertainties in modelling volcanic hazards are often amplified in geographically large systems which have a diverse eruption history that comprises variable eruption styles from many different vent locations. The ~700 km2 Okataina Volcanic Centre (OVC) is a caldera complex in New Zealand which has displayed a range of eruption styles and compositions over its current phase of activity (26 ka-present), including one basaltic maar-forming eruption, one basaltic Plinian eruption and nine rhyolitic Plinian eruptions. All three of these eruption styles occurred within the past 3.5 ky, and any of these styles could occur in the event of a future eruption. The location of a future eruption is also unknown. Future vents could potentially open in one of three different areas which have been activated in the past 26 ky at the OVC: the Tarawera linear vent zone (LVZ) (five eruptions), the Haroharo LVZ (five eruptions) or outside of these LVZs (one eruption). A future rhyolitic or basaltic Plinian eruption from the OVC is likely to generate widespread tephra fall in loads that will cause significant disruption and have severe socio-economic impacts. Past OVC tephra hazard studies have focused on evaluating hazard from a rhyolitic Plinian eruption at select vent locations in the OVC's Tarawera LVZ. Here, we expand upon past studies by evaluating tephra hazard for all possible OVC eruption vent areas and for both rhyolitic and basaltic Plinian eruption styles, and explore how these parameters influence tephra hazard forecasts. Probabilistic volcanic hazard model BET_VH and advection-diffusion model TEPHRA2 were used to assess the hazard of accumulating ≥10 kg m-2 of tephra from both basaltic Plinian and rhyolitic Plinian eruption styles, occurring from within the Tarawera LVZ, the Haroharo LVZ or other potential vent areas within the caldera. Our results highlight the importance of considering all the potential vent locations of a volcanic system, in order to capture the full

  9. Volcanic activity: a review for health professionals

    SciTech Connect

    Newhall, C.G.; Fruchter, J.S.

    1986-03-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace element composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); mudflows (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity.

  10. Volcanic activity: a review for health professionals.

    PubMed Central

    Newhall, C G; Fruchter, J S

    1986-01-01

    Volcanoes erupt magma (molten rock containing variable amounts of solid crystals, dissolved volatiles, and gas bubbles) along with pulverized pre-existing rock (ripped from the walls of the vent and conduit). The resulting volcanic rocks vary in their physical and chemical characteristics, e.g., degree of fragmentation, sizes and shapes of fragments, minerals present, ratio of crystals to glass, and major and trace elements composition. Variability in the properties of magma, and in the relative roles of magmatic volatiles and groundwater in driving an eruption, determine to a great extent the type of an eruption; variability in the type of an eruption in turn influences the physical characteristics and distribution of the eruption products. The principal volcanic hazards are: ash and larger fragments that rain down from an explosion cloud (airfall tephra and ballistic fragments); flows of hot ash, blocks, and gases down the slopes of a volcano (pyroclastic flows); "mudflows" (debris flows); lava flows; and concentrations of volcanic gases in topographic depressions. Progress in volcanology is bringing improved long- and short-range forecasts of volcanic activity, and thus more options for mitigation of hazards. Collaboration between health professionals and volcanologists helps to mitigate health hazards of volcanic activity. Images FIGURE 1 FIGURE 2 FIGURE 6a-6e FIGURE 6a-6e FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 PMID:3946726

  11. Comparisons of volcanic eruptions from linear and central vents on Earth, Venus, and Mars (Invited)

    NASA Astrophysics Data System (ADS)

    Glaze, L. S.; Baloga, S. M.

    2010-12-01

    Vent geometry (linear versus central) plays a significant role in the ability of an explosive eruption to sustain a buoyant, convective plume. This has important implications for the injection and dispersal of particulates into planetary atmospheres and the ability to interpret the geologic record of planetary volcanism. The approach to modeling linear volcanic vents builds on the original work by Stothers [1], and takes advantage of substantial improvements that have been made in volcanic plume modeling over the last 20 years [e.g., 2,3]. A complete system of equations describing buoyant plume rise requires at least a half dozen differential equations and another half dozen equations for the parameters and constraints within the plume and ambient atmosphere. For the cylindrically axisymmetric system of differential equations given in [2], the control volume is defined as V = πr2dz. The area through which ambient atmosphere is entrained is Ae = 2πr dz, where r is the plume radius and z is vertical distance. The analogous linear vent system has a corresponding control volume, V = 2bLdz and entrainment area, Ae ≈ 2Ldz, where L is the length of the linear plume, 2b is the width of the linear plume, and it is assumed that L >> b. For typical terrestrial boundary conditions (temperature, velocity, gas mass fraction), buoyant plumes from circular vents can be maintained with substantial maximum heights over a wide range of vent sizes. However, linear vent plumes are much more sensitive to vent size, and can maintain a convective plume only over a much more narrow range of half widths. As L increases, linear plumes become more capable of establishing a convective regime over a broad range of bo, similar to the circular vents. This is primarily because as L increases, the entrainment area of the linear plumes increases, relative to the control volume. The ability of a plume to become buoyant is driven by whether or not sufficient air can be entrained (and warmed) to

  12. Tellurium in active volcanic environments: Preliminary results

    NASA Astrophysics Data System (ADS)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco

    2014-05-01

    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First

  13. A cone on Mercury: Analysis of a residual central peak encircled by an explosive volcanic vent

    NASA Astrophysics Data System (ADS)

    Thomas, Rebecca J.; Lucchetti, Alice; Cremonese, Gabriele; Rothery, David A.; Massironi, Matteo; Re, Cristina; Conway, Susan J.; Anand, Mahesh

    2015-04-01

    We analyse a seemingly-unique landform on Mercury: a conical structure, encircled by a trough, and surrounded by a 23,000 km2 relatively bright and red anomaly of a type interpreted elsewhere on the planet as a pyroclastic deposit. At first glance, this could be interpreted as a volcanically-constructed cone, but if so, it would be the only example of such a landform on Mercury. We make and test the alternative hypothesis that the cone is the intrinsic central peak of an impact crater, the rim crest of which is visible beyond the cone-encircling trough, and that the trough is a vent formed through explosive volcanism that also produced the surrounding bright, red spectral anomaly. We test this hypothesis by comparing the morphology of the cone and the associated landform assemblage with morphologically-fresh impact craters of the same diameter as the putative host crater, and additionally, by modelling the original morphology of such a crater using a hydrocode model. We show that the present topography can be explained by formation of a vent completely encircling the crater's central peak and also make the observation that explosive volcanic vents frequently occur circumferential to the central peaks of impact craters on Mercury. This indicates that, although this cone initially appears unique, it is in fact an unusually well-developed example of a common process by which impact-related faults localize magma ascent near the centre of impact craters on Mercury, and represents an extreme end-member of the resulting landforms.

  14. Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent.

    PubMed

    Apostolaki, Eugenia T; Vizzini, Salvatrice; Hendriks, Iris E; Olsen, Ylva S

    2014-08-01

    We examined the long-term effect of naturally acidified water on a Cymodocea nodosa meadow growing at a shallow volcanic CO2 vent in Vulcano Island (Italy). Seagrass and adjacent unvegetated habitats growing at a low pH station (pH = 7.65 ± 0.02) were compared with corresponding habitats at a control station (pH = 8.01 ± 0.01). Density and biomass showed a clear decreasing trend at the low pH station and the below- to above-ground biomass ratio was more than 10 times lower compared to the control. C content and δ(13)C of leaves and epiphytes were significantly lower at the low pH station. Photosynthetic activity of C. nodosa was stimulated by low pH as seen by the significant increase in Chla content of leaves, maximum electron transport rate and compensation irradiance. Seagrass community metabolism was intense at the low pH station, with significantly higher net community production, respiration and gross primary production than the control community, whereas metabolism of the unvegetated community did not differ between stations. Productivity was promoted by the low pH, but this was not translated into biomass, probably due to nutrient limitation, grazing or poor environmental conditions. The results indicate that seagrass response in naturally acidified conditions is dependable upon species and geochemical characteristics of the site and highlight the need for a better understanding of complex interactions in these environments. PMID:25081848

  15. Volcanic Lightning, Pyroclastic Density Currents, Ballistic Fall, Vent Tremor, and One Very Loud Blast: Acoustic Analysis of the 14 July 2013 Vulcanian Eruption at Tungurahua, Ecuador.

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Johnson, J. B.; Steele, A. L.; Anzieta, J. C.; Ortiz, H. D.; Hall, M. L.; Ruiz, M. C.

    2014-12-01

    Acoustic recordings reveal a variety of volcanic activities during an exceptionally loud vulcanian eruption at Tungurahua. A period of several months of mild surface activity came to an abrupt end with the emission of a powerful blast wave heard at least 180 km away. Sensors 2080 m from the vent recorded a stepped rise to its maximum overpressure of 1220 Pa (corresponding to a sound pressure level of 156 dB) and its unusually long dominant period of 5.6 s. We discuss source processes that produced the blast wave, considering that wave propagation could be nonlinear near the vent because of high overpressures. More than an hour of acoustic activity was recorded after the blast wave, including sound from falling ballistics, reflections of the blast wave from nearby mountains, pyroclastic density currents, and acoustic tremor at the vent. Glitches in the acoustic records related to plume lightning were also serendipitously observed, although thunder could not be unambiguously identified. We discuss acoustic signatures of falling ballistics and pyroclastic density currents and how array-style deployments and analytic methods can be used to reveal them. Placement of sensors high on the volcano's slopes facilitated resolving these distinct processes. This study demonstrates that near-vent, array-style acoustic installations can be used to monitor various types of volcanic activity.

  16. Io. [theories concerning volcanic activity

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Soderblom, L. A.

    1983-01-01

    A report on the continuing investigation of Io is presented. Gravitational resonance is discussed as the cause of Io's volcanism, and the volcanic activity is explained in terms of sulfur chemistry. Theories concerning the reasons for the two main types of volcanic eruptions on Io are advanced and correlated with geographical features of the satellite. The sulfur and silicate models of the calderas are presented, citing the strengths and weaknesses of each. Problems of the gravitational resonance theory of Io's heat source are then described. Finally, observations of Io planned for the Galileo mission are summarized.

  17. Volcanic and magmatic evolution of a small trachytic vent complex, north Burro Mesa, Big Bend National Park, Texas

    USGS Publications Warehouse

    Morgan, Lisa A.; Shanks, Pat

    2009-01-01

    Volcanic rocks exposed on the northern end of Burro Mesa in Big Bend National Park portray the evolution of an Oligocene central volcanic vent complex that produced two generations of welded block and ash deposits associated with 1) initial dome collapse and 2) subsequent central spine collapse. Peripheral to the vent complex, isolated breccia deposit exposures overlie ignimbrites, tephras, and lavas. These blocks are a few meters to several hundred meters long and 30 m high and consist of monolithic angular and welded trachytic lava clasts in finer-grained matrix. Rheomorphic structures in the breccia deposit show ductile deformation and suggest it formed while above the glass transition temperature.

  18. Insight into Vent Opening Probability in Volcanic Calderas in the Light of a Sill Intrusion Model

    NASA Astrophysics Data System (ADS)

    Giudicepietro, Flora; Macedonio, G.; D'Auria, L.; Martini, M.

    2016-05-01

    The aim of this paper is to discuss a novel approach to provide insights on the probability of vent opening in calderas, using a dynamic model of sill intrusion. The evolution of the stress field is the main factor that controls the vent opening processes in volcanic calderas. On the basis of previous studies, we think that the intrusion of sills is one of the most common mechanism governing caldera unrest. Therefore, we have investigated the spatial and temporal evolution of the stress field due to the emplacement of a sill at shallow depth to provide insight on vent opening probability. We carried out several numerical experiments by using a physical model, to assess the role of the magma properties (viscosity), host rock characteristics (Young's modulus and thickness), and dynamics of the intrusion process (mass flow rate) in controlling the stress field. Our experiments highlight that high magma viscosity produces larger stress values, while low magma viscosity leads to lower stresses and favors the radial spreading of the sill. Also high-rock Young's modulus gives high stress intensity, whereas low values of Young's modulus produce a dramatic reduction of the stress associated with the intrusive process. The maximum intensity of tensile stress is concentrated at the front of the sill and propagates radially with it, over time. In our simulations, we find that maximum values of tensile stress occur in ring-shaped areas with radius ranging between 350 m and 2500 m from the injection point, depending on the model parameters. The probability of vent opening is higher in these areas.

  19. Carbon fluxes from hydrothermal vents off Milos, Aegean Volcanic Arc, and the influence of venting on the surrounding ecosystem.

    NASA Astrophysics Data System (ADS)

    Dando, Paul; Aliani, Stefano; Bianchi, Nike; Kennedy, Hilary; Linke, Peter; Morri, Carla

    2014-05-01

    The island of Milos, in the Aegean Sea, has extensive hydrothermal fields to the east and southeast of the island with additional venting areas near the entrance to and within the central caldera. A calculation of the total area of the vent fields, based on ship and aerial surveys, suggested that the hydrothermal fields occupy 70 km2, twice the area previously estimated. The vents ranged in water depth from the intertidal to 300 m. As a result of the low depths there was abundant free gas release: in places water boiled on the seabed. The stream of gas bubbles rising through the sandy seabed drove a shallow re-circulation of bottom seawater. The majority of the water released with the gas, with a mean pH of 5.5, was re-circulated bottom water that had become acidified in contact with CO2 gas and was often diluted by admixture with the vapour phase from the deeper fluids. The major component of the free gas, 80%, was CO2, with an estimated total flux of 1.5-7.5 x 1012 g a-1. The methane flux, by comparison, was of the order of 1010 g a.-1 Using methane as a tracer it was shown that the major gas export from the vents was below the thermocline towards the southwest, in agreement with the prevailing currents. Areas of hydrothermal brine seepage occurred between the gas vents and occasional brine pools were observed in seabed depressions. Under relatively calm conditions, many of the brine seeps were covered by thick minero-bacterial mats consisting of silica and sulphur and surrounded by mats of diatoms and cyanobacteria. The minerals were not deposited in the absence of bacteria. Storms disrupted the mats, leading to an export of material to the surrounding area. Stable isotope data from sediments and sediment trap material suggested that exported POM was processed by zooplankton. The combined effects of the geothermal heating of the seabed, the large gas flux, variation in the venting and the effect of the brine seeps had a dramatic effect on the surrounding

  20. Volcanic plume vent conditions retrieved from infrared images: A forward and inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Cerminara, Matteo; Esposti Ongaro, Tomaso; Valade, Sébastien; Harris, Andrew J. L.

    2015-07-01

    We present a coupled fluid-dynamic and electromagnetic model for volcanic ash plumes. In a forward approach, the model is able to simulate the plume dynamics from prescribed input flow conditions and generate the corresponding synthetic thermal infrared (TIR) image, allowing a comparison with field-based observations. An inversion procedure is then developed to retrieve vent conditions from TIR images, and to independently estimate the mass eruption rate. The adopted fluid-dynamic model is based on a one-dimensional, stationary description of a self-similar turbulent plume, for which an asymptotic analytical solution is obtained. The electromagnetic emission/absorption model is based on Schwarzschild's equation and on Mie's theory for disperse particles, and we assume that particles are coarser than the radiation wavelength (about 10 μm) and that scattering is negligible. In the inversion procedure, model parameter space is sampled to find the optimal set of input conditions which minimizes the difference between the experimental and the synthetic image. Application of the inversion procedure to an ash plume at Santiaguito (Santa Maria volcano, Guatemala) has allowed us to retrieve the main plume input parameters, namely mass flow rate, initial radius, velocity, temperature, gas mass ratio, entrainment coefficient and their related uncertainty. Moreover, by coupling with the electromagnetic model we have been able to obtain a reliable estimate of the equivalent Sauter diameter of the total particle size distribution. The presented method is general and, in principle, can be applied to the spatial distribution of particle concentration and temperature obtained by any fluid-dynamic model, either integral or multidimensional, stationary or time-dependent, single or multiphase. The method discussed here is fast and robust, thus indicating potential for applications to real-time estimation of ash mass flux and particle size distribution, which is crucial for model

  1. Open-Vent Degassing of CO2 from Typical Andesitic Volcanoes in the Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Robidoux, P.; Aiuppa, A.; Rotolo, S.; Giudice, G.; Moretti, R.; Conde, V.; Galle, B.; Tamburello, G.

    2014-12-01

    The collection of H2O-CO2-SO2 volcanic gas datasets at open-vent basaltic volcanoes has increased since the introduction of electrochemical/NDIR (Multi-GAS) instruments in the field. An open problem remains to understand the degassing regime of volcanoes of intermediate compositions, which is complicated by wide range of eruption styles. We propose here to initiate the study of the degassing regime of Telica and San Cristobal (Nicaragua), two constantly monitored volcanoes in the Central American Volcanic Arc (CAVA). We calculated the CO2 flux sustained by summit plume degassing at Telica and San Cristobal as the product of the CO2/SO2 ratio of Multi-GAS technique with parallel SO2 flux measurements, made by using scanning UV-DOAS instruments in 2013. At Telica, the CO2 flux was evaluated at 166±76 t/d and at San Cristobal we measured 520±260 t/d. Degassing activity at Telica volcano consists in surface gas discharges dominated by H2O (70-98 mol%; mean of 92 mol%), and by CO2 (1-23 mol%; mean of 6 mol%) and SO2 (0.5-7.4 mol%; mean of 2.9 mol%). San Cristobal gas is dominated by H2O (85-97 mol%; mean of 92 mol%), and by CO2 (2-12 mol%; mean of 6 mol%) and SO2 (3-5 mol%; mean of 3.8 mol%). These values are typical of volcanic arc regions and the volcanoes were in a stage of quiescent degassing without excess of CO2 output relatively to the other major gases. By interpreting our recent gas measurements in tandem with preliminary melt inclusion records of pre-eruptive dissolved volatile abundances, we hope to build a conceptual degassing model taking into account the active degassing regimes during past volcanic eruptions. Finally, we hope to refine the CO2 budget estimates along the CAVA.

  2. Morphology and Distribution of Volcanic Vents in the Orientale Basin from Chandrayaan-1 Moon Mineralogy Mapper (M3) Data

    NASA Technical Reports Server (NTRS)

    Head, James; Pieters, C.; Staid, M.; Mustard, J.; Taylor, L.; McCord, T.; Isaacson, P.; Klima, R.; Petro, N.; Clark, R.; Nettles, J.; Whitten, J.

    2010-01-01

    One of the most fundamental questions in the geological and thermal evolution of the Moon is the nature and history of mantle melting and its relationship to the formation and evolution of lunar multi-ringed basins. Mare volcanic deposits provide evidence for the nature, magnitude and composition of mantle melting as a function of space and time [1]. Many argue that mantle partial melts are derived from depths well below the influence of multiringed basin impact events [1], while others postulate that the formation of these basins can cause mantle perturbations that are more directly linked to the generation ascent and eruption of mare basalts [2,3]. In any case, longer-term basin evolution will considerably influence the state and orientation of stress in the lithosphere, and the location of mare volcanic vents in basins as a function of time [4]. Thus, the location, nature and ages of volcanic vents and deposits in relation to multi-ringed impact basins provides evidence for the role that these basins played in the generation of volcanism or in the influence of the basins on surface volcanic eruption and deposit concentration. Unfortunately, most lunar multi-ringed impact basins have been eroded by impacts or filled with lunar mare deposits [5-8], with estimates of the thickness of mare fill extending up to more than six km in the central part of some basins [9-11]. The interior of most basins (e.g., Crisium, Serenitatis, Imbrium, Humorum) are almost completely covered and obscured. Although much is known about the lava filling of multi-ringed basins, and particularly the most recent deposits [5-8], little is known about initial stages of mare volcanism and its relationship to the impact event. One multi-ringed basin, Orientale, offers substantial clues to the relationships of basin interiors and mare basalt volcanism.

  3. Planetary volcanism - A study of volcanic activity in the solar system

    NASA Technical Reports Server (NTRS)

    Cattermole, Peter

    1989-01-01

    The nature of volcanic activity, theoretical models of its role in planetary evolution, and the evidence for volcanism on the planets and planetary satellites are examined in an introductory overview for advanced undergraduate and graduate students. Chapters are devoted to volcanism as a planetary process, the generation and evolution of magmas, magma ascent and eruption, the properties and behavior of volcanic flows, volcanic landforms, the distribution of volcanic rocks in the solar system, and volcanic plains and their development. Consideration is given to lunar volcanism, shield volcanoes and paterae, volcanism on Io, volcanism on icy satellites, and the rheological analysis of volcanic flows.

  4. Discovery of Nascent Vents and Recent Colonization Associated with(Re)activated Hydrothermal Vent Fields by the GALREX 2011 Expedition on the Galápagos Rift

    NASA Astrophysics Data System (ADS)

    Shank, T. M.; Holden, J. F.; Herrera, S.; Munro, C.; Muric, T.; Lin, J.; Stuart, L.

    2011-12-01

    GALREX 2011 was a NOAA OER telepresence cruise that explored the diverse habitats and geologic settings of the deep Galápagos region. The expedition made12 Little Hercules ROV dives in July 2011.Abundant corals and a strong depth zonation of species (including deepwater coral communities) were found near 500 m depth on Paramount Seamount, likely influenced by past low sea level states, wave-cut terrace processes, and the historical presence of shallow reef structures. At fresh lava flows with associated (flocculent) hydrothermal venting near 88° W, now known as Uka Pacha and Pegasus Vent Fields, rocks were coated with white microbial mat and lacked sessile fauna, with few mobile fauna (e.g., bythograeid crabs, alvinocarid shrimp, polynoid worms, zoarcid fish, and dirivultid copepods). This suggests a recent creation of hydrothermal habitats through volcanic eruptions and/or diking events, which may have taken place over a 15 km span separating the two vent fields. The Rosebud vent field at 86°W was not observed and may have been covered with lava since last visited in 2005. A hydrothermal vent field near 86°W was discovered that is one of the largest vent fields known on the Rift (120m by 40m). Low-temperature vent habitats were colonized by low numbers of tubeworms including Riftia, Oasisia, and a potential Tevnia species (the latter not previously observed on the Galapagos Rift). Patches of tubeworms were observed with individuals less than 2cm in length, and the relatively few large Riftia had tube lengths near 70cm long. Large numbers of small (< 3cm long) bathymodiolin mussels lined cracks and crevices throughout the active part of the field. Live clams, at least four species of gastropod limpets, three species of polynoid polychaetes, juvenile and adult alvinocarid shrimp, actinostolid anemones, and white microbial communities were observed on the underside and vertical surfaces of basalt rock surfaces. There were at least 13 species of vent-endemic fauna

  5. Volcanically Active Regions on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Shown here is a portion of one of the highest-resolution images of Io (Latitude: +10 to +60 degrees, Longitude: 180 to 225 degrees) acquired by the Galileo spacecraft, revealing immense lava flows and other volcanic landforms. Several high-temperature volcanic hot spots have been detected in this region by both the Near Infrared Mapping Spectrometer and the imaging system of Galileo. The temperatures are consistent with active silicate volcanism in lava flows or lava lakes (which reside inside irregular depressions called calderas). The large dark lava flow in the upper left region of the image is more than 400 km long, similar to ancient flood basalts on Earth and mare lavas on the Moon.

    North is to the top of the picture and the sun illuminates the surface from the left. The image covers an area 1230 kilometers wide and the smallest features that can be discerned are 2.5 kilometers in size. This image was taken on November 6th, 1996, at a range of 245,719 kilometers by the Solid State Imaging (CCD) system on the Galileo Spacecraft.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  6. Ancient Tectonic and Volcanic Activity in the Tharsis Region

    NASA Astrophysics Data System (ADS)

    Werner, S. C.; Kronberg, P.; Hauber, E.; Grott, M.; Steinberger, B.; Torsvik, T. H.; Neukum, G.

    The two topographically dominating volcanic provinces on Mars are the Tharsis and the Elysium regions, situated close to the equator on the dichotomy boundary between the heavily cratered (older) highlands and the northern lowlands (about 100 degrees apart). The regions are characterized by volcanoes whose morphologies are analogous to volcanic landforms on Earth, and the huge volcanoes in the Tharsis region (Olympus Mons and Tharsis Montes) are prime examples resembling many characteristics of Hawaiian shield volcanoes. The main difference between the Martian and terrestrial volcanoes are their size and the length of the flows, possibly due to higher eruption rates, the "stationary" character of the source (no plate tectonics) and the lower gravity. The Tharsis plateau is the topographically most prominent region on Mars, and associated with an areoid high. On Earth, large geoid highs are related to longlived heterogeneities near the core-mantle boundary that are sources for large igneous provinces. The Tharsis' volcanic vent structures were active at least episodically over the past 4 billion years (based on crater count statistics), which indicates long-lived volcanic and magmatic activity. Two major groups of tectonic features are related to the Tharsis bulge: a concentric set of wrinkle ridges indicating compression radial to Tharsis,and several sets of extensional structures that radiate outward from different centers within Tharsis, indicating tension circumferential to Tharsis. No landforms imply ancient plate tectonics. Here, we present surface ages associated with volcanic and tectonic landforms with a special focus on the ancient magma-tectonic environment (see Grott et al. 2006, this volume). We will examine the long-lived volcanism and tectonic surface expressions and discuss whether Mars volcanism could represent deep mantle plumes.

  7. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 2--morphological and mineralogical features.

    PubMed

    Calabrese, S; D'Alessandro, W

    2015-01-01

    Volcanic emissions were studied at Mount Etna (Italy) by using moss-bags technique. Mosses were exposed around the volcano at different distances from the active vents to evaluate the impact of volcanic emissions in the atmosphere. Morphology and mineralogy of volcanic particulate intercepted by mosses were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS). Particles emitted during passive degassing activity from the two active vents, Bocca Nuova and North East Crater (BNC and NEC), were identified as silicates, sulfates and halide compounds. In addition to volcanic particles, we found evidences also of geogenic, anthropogenic and marine spray input. The study has shown the robustness of this active biomonitoring technique to collect particles, very useful in active volcanic areas characterized by continuous degassing and often not easily accessible to apply conventional sampling techniques. PMID:25311770

  8. Active Volcanism on Io as Seen by Galileo SSI

    NASA Astrophysics Data System (ADS)

    McEwen, Alfred S.; Keszthelyi, Laszlo; Geissler, Paul; Simonelli, Damon P.; Carr, Michael H.; Johnson, Torrence V.; Klaasen, Kenneth P.; Breneman, H. Herbert; Jones, Todd J.; Kaufman, James M.; Magee, Kari P.; Senske, David A.; Belton, Michael J. S.; Schubert, Gerald

    1998-09-01

    Active volcanism on Io has been monitored during the nominal Galileo satellite tour from mid 1996 through late 1997. The Solid State Imaging (SSI) experiment was able to observe many manifestations of this active volcanism, including (1) changes in the color and albedo of the surface, (2) active airborne plumes, and (3) glowing vents seen in eclipse. About 30 large-scale (tens of kilometers) surface changes are obvious from comparison of the SSI images to those acquired by Voyager in 1979. These include new pyroclastic deposits of several colors, bright and dark flows, and caldera-floor materials. There have also been significant surface changes on Io during the Galileo mission itself, such as a new 400-km-diameter dark pyroclastic deposit around Pillan Patera. While these surface changes are impressive, the number of large-scale changes observed in the four months between the Voyager 1 and Voyager 2 flybys in 1979 suggested that over 17 years the cumulative changes would have been much more impressive. There are two reasons why this was not actually the case. First, it appears that the most widespread plume deposits are ephemeral and seem to disappear within a few years. Second, it appears that a large fraction of the volcanic activity is confined to repeated resurfacing of dark calderas and flow fields that cover only a few percent of Io's surface. The plume monitoring has revealed 10 active plumes, comparable to the 9 plumes observed by Voyager. One of these plumes was visible only in the first orbit and three became active in the later orbits. Only the Prometheus plume has been consistently active and easy to detect. Observations of the Pele plume have been particularly intriguing since it was detected only once by SSI, despite repeated attempts, but has been detected several times by the Hubble Space Telescope at 255 nm. Pele's plume is much taller (460 km) than during Voyager 1 (300 km) and much fainter at visible wavelengths. Prometheus-type plumes (50

  9. Active Volcanism on Io as Seen by Galileo SSI

    USGS Publications Warehouse

    McEwen, A.S.; Keszthelyi, L.; Geissler, P.; Simonelli, D.P.; Carr, M.H.; Johnson, T.V.; Klaasen, K.P.; Breneman, H.H.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Senske, D.A.; Belton, M.J.S.; Schubert, G.

    1998-01-01

    Active volcanism on Io has been monitored during the nominal Galileo satellite tour from mid 1996 through late 1997. The Solid State Imaging (SSI) experiment was able to observe many manifestations of this active volcanism, including (1) changes in the color and albedo of the surface, (2) active airborne plumes, and (3) glowing vents seen in eclipse. About 30 large-scale (tens of kilometers) surface changes are obvious from comparison of the SSI images to those acquired by Voyager in 1979. These include new pyroclastic deposits of several colors, bright and dark flows, and caldera-floor materials. There have also been significant surface changes on Io during the Galileo mission itself, such as a new 400-km-diameter dark pyroclastic deposit around Pillan Patera. While these surface changes are impressive, the number of large-scale changes observed in the four months between the Voyager 1 and Voyager 2 flybys in 1979 suggested that over 17 years the cumulative changes would have been much more impressive. There are two reasons why this was not actually the case. First, it appears that the most widespread plume deposits are ephemeral and seem to disappear within a few years. Second, it appears that a large fraction of the volcanic activity is confined to repeated resurfacing of dark calderas and flow fields that cover only a few percent of Io's surface. The plume monitoring has revealed 10 active plumes, comparable to the 9 plumes observed by Voyager. One of these plumes was visible only in the first orbit and three became active in the later orbits. Only the Prometheus plume has been consistently active and easy to detect. Observations of the Pele plume have been particularly intriguing since it was detected only once by SSI, despite repeated attempts, but has been detected several times by the Hubble Space Telescope at 255 nm. Pele's plume is much taller (460 km) than during Voyager 1 (300 km) and much fainter at visible wavelengths. Prometheus-type plumes (50

  10. A bestiary of ordinary vent activities at Stromboli (and what it tells us about vent conditions)

    NASA Astrophysics Data System (ADS)

    Gaudin, Damien; Taddeucci, Jacopo; Scarlato, Piergiorgio

    2015-04-01

    Normal active degassing at Stromboli (Aeolian Islands, Italy) is traditionally divided in two classes. Puffing correspond to the frequent (~1 Hz) release of small gas pockets (0.5 - 1 m of diameter) at low exit velocities (5 - 15 m/s). Whereas, Strombolian explosions occur at a frequency of 1 - 10 per hour, and are characterized the ejection of bombs and/or ash at high velocities (50 - 400 m/s). In order to get a broader overview of two types of degassing, we used a thermal high speed FLIR SC655 camera to monitor the temperature anomalies generated by the expelled gas, ash, and/or bombs. The enhanced time and spatial resolutions of the camera (200 frames per second, 15 cm wide pixels) enables to use numerical algorithms to distinguish and characterize individual ejection events. In particular, for each explosion and puff, we compute the temperature, the volume, the exit point and the rise velocities of the expelled material. These values, as well as the frequency of the release events, are used to portray a total of 12 vent activities, observed during three field campaigns in 2012, 2013 and 2014. Sustained puffing was visible on 7 cases, with an intensity ranging on at least two orders of magnitude. Although the released gas volume is sometimes highly variable, on some cases, constant sized puffs allows to define a typical discharge frequency ranging between 0.4 and 1.5 Hz. Regular Strombolian explosions, with various duration, intensity and ash contents, are reported in 6 cases, 2 of them simultaneously presenting a puffing activity. In some cases, we noticed modifications of the vent activity just before the explosions. These precursors, usually lasting about 1 second but occasionally reaching 10 seconds, can be sorted into 1) increase of the puffing activity ; 2) emission of gas plumes ; 3) inflation of the visible vent surface. Finally, one vent activity was hybrid between puffing and Strombolian explosions, with frequent explosions (1 Hz) ejecting numerous

  11. Spatial and Alignment Analyses for a Field of Small Volcanic Vents South of Pavonis Mons and Implications for the Tharsis Province, Mars

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob E.; Glaze, Lori S.; Greeley, Ronald; Hauber, Ernst; Baloga, Stephen; Sakimoto, Susan E. H.; Williams, David A.; Glotch, Timothy D.

    2009-01-01

    A field of small volcanic vents south of Pavonis Mons was mapped with each vent assigned a two-dimensional data point. Nearest neighbor and two-point azimuth analyses were applied to the resulting location data. Nearest neighbor results show that vents within this field are spatially random in a Poisson sense, suggesting that the vents formed independently of each other without sharing a centralized magma source at shallow depth. Two-point azimuth results show that the vents display north-trending alignment relationships between one another. This trend corresponds to the trends of faults and fractures of the Noachian-aged Claritas Fossae, which might extend into our study area buried beneath more recently emplaced lava flows. However, individual elongate vent summit structures do not consistently display the same trend. The development of the volcanic field appears to display tectonic control from buried Noachian-aged structural patterns on small, ascending magma bodies while the surface orientations of the linear vents might reflect different, younger tectonic patterns. These results suggest a complex interaction between magma ascension through the crust, and multiple, older, buried Tharsis-related tectonic structures.

  12. Volcanic eruptions and solar activity

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  13. Prediction and monitoring of volcanic activities

    SciTech Connect

    Sudradjat, A.

    1986-07-01

    This paper summarizes the state of the art for predicting and monitoring volcanic activities, and it emphasizes the experience obtained by the Volcanological Survey Indonesia for active volcanoes. The limited available funds, the large number of active volcanoes to monitor, and the high population density of the volcanic area are the main problems encountered. Seven methods of volcano monitoring are applied to the active volcanoes of Indonesia: seismicity, ground deformation, gravity and magnetic studies, self-potential studies, petrochemistry, gas monitoring, and visual observation. Seismic monitoring augmented by gas monitoring has proven to be effective, particularly for predicting individual eruptions at the after-initial phase. However, the success of the prediction depends on the characteristics of each volcano. In general, the initial eruption phase is the most difficult phenomenon to predict. The preparation of hazard maps and the continuous awareness of the volcanic eruption are the most practical ways to mitigate volcanic danger.

  14. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    NASA Astrophysics Data System (ADS)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  15. Neotectonic activity at the Giant Gjallar Vent (Norwegian Sea) indicates a future phase of active fluid venting

    NASA Astrophysics Data System (ADS)

    Dumke, Ines; Berndt, Christian; Crutchley, Gareth; Couillard, Mélanie; Gay, Aurélien

    2013-04-01

    The Giant Gjallar Vent (GGV) is a hydrothermal vent complex that formed during the opening of the North Atlantic at about 55 Ma. Sill intrusions into Cretaceous organic-rich sediments led to the production and subsequent vigorous seafloor venting of methane. A later phase of fluid escape occurred in mid-Oligocene times. The GGV is characterised by two pipes of 440 m and 480 m in diameter that reach up to the Base Late Pliocene Unconformity (BLPU) between the Kai and Naust formations. The unconformity is strongly deformed over an area of c. 18,000 km² across the vent, with a positive relief of up to 38 m above the surrounding paleo-seafloor. The overlying sediments of the Naust Formation conformally drape this deformation, smoothing its relief to a maximum of 15 m at the modern seafloor. The sediment drape indicates present inactivity of the vent system, as does the absence of indicators of active fluid escape in the water column during RV METEOR cruise M87-2 in 2012. However, high-resolution 2D seismic and Parasound data from the same cruise, and exploration-type 3D seismic data acquired by Norsk Hydro, show several indications for recent to ongoing activity at the GGV. Beneath the BLPU, strong frequency attenuation and chaotic reflections indicate the presence of free gas. At the edges of the extent of chaotic reflections, subvertical faults cut the unconformity as well as horizons of the lower and middle Naust Formation, suggesting tectonic activity after deposition of these horizons. Neotectonic activity is further indicated by the extensive occurrence of shallow faults apparent in Parasound records in the immediate vicinity of the vent and up to 16 km away. Some of these faults reach the seafloor. The observed deformation and faults may be the result of fluids accumulating beneath the BLPU due to increased loading of the oozy Kai Formation by denser glacigenic Naust sediments. Because of the lower permeability of the Naust Formation, the unconformity acts as a

  16. Active Volcanic Eruptions on Io

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.

    The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the

  17. Mafic monogenetic vents at the Descabezado Grande volcanic field (35.5°S-70.8°W): the northernmost evidence of regional primitive volcanism in the Southern Volcanic Zone of Chile

    NASA Astrophysics Data System (ADS)

    Salas, Pablo A.; Rabbia, Osvaldo M.; Hernández, Laura B.; Ruprecht, Philipp

    2016-06-01

    In the Andean Southern Volcanic Zone (SVZ), the broad distribution of mafic compositions along the recent volcanic arc occurs mainly south of 37°S, above a comparatively thin continental crust (≤~35 km) and mostly associated with the dextral strike-slip regime of the Liquiñe-Ofqui Fault Zone (LOFZ). North of 36°S, mafic compositions are scarce. This would be in part related to the effect resulting from protracted periods of trapping of less evolved ascending magmas beneath a thick Meso-Cenozoic volcano-sedimentary cover that lead to more evolved compositions in volcanic rocks erupted at the surface. Here, we present whole-rock and olivine mineral chemistry data for mafic rocks from four monogenetic vents developed above a SVZ segment of thick crust (~45 km) in the Descabezado Grande volcanic field (~35.5°S). Whole-rock chemistry (MgO > 8 wt%) and compositional variations in olivine (92 ≥ Fo ≥ 88 and Ni up to ~3650 ppm) indicate that some of the basaltic products erupted through these vents (e.g., Los Hornitos monogenetic cones) represent primitive arc magmas reaching high crustal levels. The combined use of satellite images, regional data analysis and field observations allow to recognize at least 38 mafic monogenetic volcanoes dispersed over an area of about 5000 km2 between 35.5° and 36.5°S. A link between ancient structures inherited from pre-Andean tectonics and the emplacement and distribution of this mafic volcanism is suggested as a first-order structural control that may explain the widespread occurrence of mafic volcanism in this Andean arc segment with thick crust.

  18. Amazonian volcanic activity at the Syrtis volcanic province, Mars

    NASA Astrophysics Data System (ADS)

    Platz, Thomas; Jodlowski, Piotr; Fawdon, Peter; Michael, Greg; Tanaka, Kenneth

    2014-05-01

    The Syrtis Major volcanic province, including the entire Syrtis Major Planum, is located near the Martian highland/lowland transitional zone west of Isidis Planitia. It covers ≡7.4×105 km2 and contains two low-shield volcanic edifices with N-S elongated calderas named Nili and Meroe Paterae. The estimated thickness of erupted material in the province ranges from approximately 0.5 km to 1.0 km with a total volume of about 1.6-3.2×105 km3 [1]. The timing of volcanic activity in the Syrtis Major volcanic province has been suggested to be restricted to the Hesperian Period [1-4]. In the geological map of Greeley and Guest [2], volcanic material of Syrtis Major was assigned an Hesperian age based on the density of observed craters larger than 5 km in diameter. Using the same crater density range, recent studies of Hiesinger et al. [1] and Tanaka et al. [3] and Tanaka et al. [4] assigned an Early Hesperian and Early to Late Hesperian age, respectively, for the entire province. In this study we mapped lava flows, lava channels, and major lava-flow margins and report model ages for lava-flow formation and caldera segments of Nili and Meroe Paterae. The objective of this ongoing survey is to better understand the eruption frequency of this volcanic province. In total, we mapped 67 lava flows, caldera segments, and intra-crater fillings of which 55 were dated. Crater size-frequency distributions (CSFD) were mapped on HRSC and CTX imagery using CraterTools [5]. CSFDs were analyzed and model ages determined in Craterstats [6] using the production and chronology functions of Ivanov [7] and Hartmann and Neukum [8], respectively. A detailed description of the utilization of the crater-counting technique and its limitations with respect to small-scale mapping is given in Platz et al. [9]. Model ages range between 838 Ma (Middle Amazonian) to 3.6 Ga (Late Hesperian). In our survey, a broad age peak occurs between 2 to 2.6 Ga, continuously declining thereafter. We note that

  19. Mount St. Helens' volcanic ash: hemolytic activity.

    PubMed

    Vallyathan, V; Mentnech, M S; Stettler, L E; Dollberg, D D; Green, F H

    1983-04-01

    Volcanic ash samples from four Mount St. Helens' volcanic eruptions were subjected to mineralogical, analytical, and hemolytic studies in order to evaluate their potential for cytotoxicity and fibrogenicity. Plagioclase minerals constituted the major component of the ash with free crystalline silica concentrations ranging from 1.5 to 7.2%. The in vitro hemolytic activity of the volcanic ash was compared to similar concentrations of cytotoxic and inert minerals. The ash was markedly hemolytic, exhibiting an activity similar to chrysotile asbestos, a known fibrogenic agent. The hemolysis of the different ash samples varied with particle size but not with crystalline silica concentration. The results of these studies taken in conjunction with the results of our animal studies indicate a fibrogenic potential of volcanic ash in heavily exposed humans. PMID:6832120

  20. Enhancing commerical aircraft explosion survivability via active venting

    NASA Astrophysics Data System (ADS)

    Veldman, Roger Lee

    2001-10-01

    A new technique for enhancing aircraft safety in the event of an on-board explosion was studied. The method under study employs deployable vent panels located on the fuselage which are activated by an array of pressure sensors in the aircraft interior. In the event that an explosion is detected, appropriate vent panels are rapidly released from the aircraft. This approach seeks to provide timely relief of explosive pressures within an aircraft to prevent catastrophic structural failure. In this study, the approximate time scale of an explosive detonation and the subsequent sensing and electronic processing was determined. Then, the actuation response times of several vent panel systems were determined through analytical modeling and scale-model experimental testing with good correlation achieved. A scale-model experimental analysis was also conducted to determine the decompression venting time of an aircraft fuselage under a variety of conditions. Two different sized pressure vessels were used in the experimental work and the results correlated quite favorably with an analytical model for decompression times. Finally, a dynamic finite element analysis was conducted to determine the response of a portion of a typical commercial aircraft fuselage subjected to explosive pressure loading. It was determined from this analysis that the pre-stressing of the fuselage from cabin pressurization increases the damage vulnerability of a commercial aircraft fuselage to internal explosions. It was also learned from the structural analysis that the peak fuselage strains due to blast loading occur quickly (within approximately 2 milliseconds) while it was conservatively estimated that approximately 5 to 7 milliseconds would be required to sense the explosion, to actuate selected vent panels, and to initiate the release of cabin pressure from the aircraft. Additionally, since it was determined that predicted fuselage strains for both pressurized and unpressurized load cases remained

  1. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge

    PubMed Central

    Pedersen, Rolf B.; Rapp, Hans Tore; Thorseth, Ingunn H.; Lilley, Marvin D.; Barriga, Fernando J. A. S.; Baumberger, Tamara; Flesland, Kristin; Fonseca, Rita; Früh-Green, Gretchen L.; Jorgensen, Steffen L.

    2010-01-01

    The Arctic Mid-Ocean Ridge (AMOR) represents one of the most slow-spreading ridge systems on Earth. Previous attempts to locate hydrothermal vent fields and unravel the nature of venting, as well as the provenance of vent fauna at this northern and insular termination of the global ridge system, have been unsuccessful. Here, we report the first discovery of a black smoker vent field at the AMOR. The field is located on the crest of an axial volcanic ridge (AVR) and is associated with an unusually large hydrothermal deposit, which documents that extensive venting and long-lived hydrothermal systems exist at ultraslow-spreading ridges, despite their strongly reduced volcanic activity. The vent field hosts a distinct vent fauna that differs from the fauna to the south along the Mid-Atlantic Ridge. The novel vent fauna seems to have developed by local specialization and by migration of fauna from cold seeps and the Pacific. PMID:21119639

  2. Large phreatomagmatic vent complex at Coombs Hills, Antarctica: Wet, explosive initiation of flood basalt volcanism in the Ferrar-Karoo LIP

    NASA Astrophysics Data System (ADS)

    McClintock, Murray; White, James D. L.

    2006-01-01

    The Mawson Formation and correlatives in the Transantarctic Mountains and South Africa record an early eruption episode related to the onset of Ferrar-Karoo flood basalt volcanism. Mawson Formation rocks at Coombs Hills comprise mainly (≥80% vol) structureless tuff breccia and coarse lapilli tuff cut by irregular dikes and sills, within a large vent complex (>30 km2). Quenched juvenile fragments of generally low but variable vesicularity, accretionary lapilli and country rock clasts within vent-fill, and pyroclastic density current deposits point to explosive interaction of basalt with groundwater in porous country rock and wet vent filling debris. Metre-scale dikes and pods of coherent basalt in places merge imperceptibly into peperite and then into surrounding breccia. Steeply dipping to sub-vertical depositional contacts juxtapose volcaniclastic rocks of contrasting componentry and grainsize. These sub-vertical tuff breccia zones are inferred to have formed when jets of debris + steam + water passed through unconsolidated vent-filling deposits. These jets of debris may have sometimes breached the surface to form subaerial tephra jets which fed subaerial pyroclastic density currents and fall deposits. Others, however, probably died out within vent fill before reaching the surface, allowing mixing and recycling of clasts which never reached the atmosphere. Most of the ejecta that did escape the debris-filled vents was rapidly recycled as vents broadened via lateral quarrying of country rock and bedded pyroclastic vent-rim deposits, which collapsed along the margins into individual vents. The unstratified, poorly sorted deposits comprising most of the complex are capped by tuff, lapilli tuff and tuff breccia beds inferred to have been deposited on the floor of the vent complex by pyroclastic density currents. Development of the extensive Coombs Hills vent-complex involved interaction of large volumes of magma and water. We infer that recycling of water, as well

  3. Rapid response of a hydrologic system to volcanic activity: Masaya volcano, Nicaragua

    USGS Publications Warehouse

    Pearson, S.C.P.; Connor, C.B.; Sanford, W.E.

    2008-01-01

    Hydrologic systems change in response to volcanic activity, and in turn may be sensitive indicators of volcanic activity. Here we investigate the coupled nature of magmatic and hydrologic systems using continuous multichannel time series of soil temperature collected on the flanks of Masaya volcano, Nicaragua, one of the most active volcanoes in Central America. The soil temperatures were measured in a low-temperature fumarole field located 3.5 km down the flanks of the volcano. Analysis of these time series reveals that they respond extremely rapidly, on a time scale of minutes, to changes in volcanic activity also manifested at the summit vent. These rapid temperature changes are caused by increased flow of water vapor through flank fumaroles during volcanism. The soil temperature response, ~5 °C, is repetitive and complex, with as many as 13 pulses during a single volcanic episode. Analysis of the frequency spectrum of these temperature time series shows that these anomalies are characterized by broad frequency content during volcanic activity. They are thus easily distinguished from seasonal trends, diurnal variations, or individual rainfall events, which triggered rapid transient increases in temperature during 5% of events. We suggest that the mechanism responsible for the distinctive temperature signals is rapid change in pore pressure in response to magmatism, a response that can be enhanced by meteoric water infiltration. Monitoring of distal fumaroles can therefore provide insight into coupled volcanic-hydrologic-meteorologic systems, and has potential as an inexpensive monitoring tool.

  4. Active Volcanic and Hydrothermal Processes at NW Rota-1 Submarine Volcano: Mariana Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Baker, E. T.; Butterfield, D. A.; Chadwick, W. W.; de Ronde, C.; Dower, J.; Evans, L.; Hein, J.; Juniper, K.; Lebon, G.; Lupton, J. E.; Merle, S.; Metaxas, A.; Nakamura, K.; Resing, J. E.; Roe, K.; Stern, R.; Tunnicliffe, V.

    2004-12-01

    Dives with the remotely operated vehicle ROPOS in March/April 2004 documented a volcanic eruption at NW Rota-1, a submarine volcano of basaltic composition located at 14\\deg 36.0'N, 144\\deg 46.5'E lying 65 km northwest of Rota Island in the Commonwealth of the Northern Mariana Islands. The site was chosen as a dive target because of the of the high concentrations of H2S and alunite in the hydrothermal plume overlying its summit in February 2003. The summit of the volcano is composed of curvilinear volcanic ridge oriented NW-SE bounded by NE-SW trending normal faults. Lavas collected on the upper part of the edifice are primitive to moderately fractionated basalts (Mg# = 51-66). The eruptive activity is occurring within a small crater (Brimstone Pit) located on the upper south flank of the volcano at 550 m, about 30 m below the summit. The crater is approximately 15 m wide and at least 20 meters deep. The ROPOS's cameras observed billowing clouds of sulfur-rich fluid rising out of the crater, punctuated by frequent bursts of several minutes duration that entrained glassy volcanic ejecta up to at least 2 cm in diameter. ROPOS recorded a temperature of 38\\degC within the plume. The volcanic activity had substantial temporal variability on the scale of minutes. ROPOS was sometimes completely enveloped by the plume while on the rim of the crater, and its surfaces were coated with large sulfur droplets. Black glassy fragments were entrained in the plume up to least 50 m above the crater and deposits of this material were on ledges and tops of outcrops up to several hundred meters from Brimstone Pit. The pit crater fluids have an extremely high content of particulate sulfur and extremely acidic, with pH around 2.0. This strongly implicates magmatic degassing of SO2 and disproportionation into elemental S and sulfuric acid. Diffuse venting of clear fluids was also present on the summit of the volcano, with temperatures exceeding 100\\degC in volcaniclastic sands

  5. Helium-3 emission related to volcanic activity

    SciTech Connect

    Sano, Y.; Nakamura, Y.; Wakita, H.; Urabe, A.; Tominaga, T.

    1984-04-13

    The helium-3/helium-4 ratio in bubbling gases from ten hot springs located around Mount Ontake, an active volcano in central Japan, ranges from 1.71 R/sub atm/ (1.71 times the atmospheric ratio of 1.40 x 10/sup -6/) to 6.15 R/sub atm/. The value of the ratio decreases with distance from the central cone of the volcano. Such a tendency may be a characteristic of helium-3 emission in volcanic areas and suggests more primitive helium-3 is carried with fluid flowing through a conduit during volcanic activity. 6 references, 1 figure, 1 table.

  6. Sill intrusion driven fluid flow and vent formation in volcanic basins: Modeling rates of volatile release and paleoclimate effects

    NASA Astrophysics Data System (ADS)

    Iyer, Karthik; Schmid, Daniel

    2016-04-01

    Evidence of mass extinction events in conjunction with climate change occur throughout the geological record and may be accompanied by pronounced negative carbon isotope excursions. The processes that trigger such globally destructive changes are still under considerable debate. These include mechanisms such as poisoning from trace metals released during large volcanic eruptions (Vogt, 1972), CO2 released from lava degassing during the formation of Large Igneous Provinces (LIPs) (Courtillot and Renne, 2003) and CH4 release during the destabilization of sub-seafloor methane (Dickens et al., 1995), to name a few. Thermogenic methane derived from contact metamorphism associated with magma emplacement and cooling in sedimentary basins has been recently gaining considerable attention as a potential mechanism that may have triggered global climate events in the past (e.g. Svensen and Jamtveit, 2010). The discovery of hydrothermal vent complexes that are spatially associated with such basins also supports the discharge of greenhouse gases into the atmosphere (e.g. Jamtveit et al., 2004; Planke et al., 2005; Svensen et al., 2006). A previous study that investigated this process using a fluid flow model (Iyer et al., 2013) suggested that although hydrothermal plume formation resulting from sill emplacement may indeed release large quantities of methane at the surface, the rate at which this methane is released into the atmosphere is too slow to trigger, by itself, some of the negative δ13C excursions observed in the fossil record over short time scales observed in the fossil record. Here, we reinvestigate the rates of gas release during sill emplacement in a case study from the Harstad Basin off-shore Norway with a special emphasis on vent formation. The presented study is based on a seismic line that crosses multiple sill structures emplaced around 55 Ma within the Lower Cretaceous sediments. A single well-defined vent complex is interpreted above the termination of the

  7. Characterization of volcanic activity using observations of infrasound, volcanic emissions, and thermal imagery at Karymsky Volcano, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Lopez, T.; Fee, D.; Prata, F.

    2012-04-01

    Karymsky Volcano is one of the most active and dynamic volcanoes in Kamchatka, with activity ranging from vigorous degassing, frequent ash emissions, and apparent vent sealing, all punctuated by daily to weekly explosive magmatic eruptions. Recent studies have highlighted the strengths in using complementary infrasound measurements and remote volcanic emission measurements to characterize volcanic activity, with the potential to discriminate emission-type, approximate ash-cloud height, and estimate SO2 emission mass. Here we use coincident measurements of infrasound, SO2, ash, and thermal radiation collected over a ten day period at Karymsky Volcano in August 2011 to characterize the observed activity and elucidate vent processes. The ultimate goal of this project is to enable different types of volcanic activity to be identified using only infrasound data, which would significantly improve our ability to continuously monitor remote volcanoes. Four types of activity were observed. Type 1 activity is characterized by discrete ash emissions occurring every 1 - 5 minutes that either jet or roil out of the vent, by plumes from 500 - 1500 m (above vent) altitudes, and by impulsive infrasonic onsets. Type 2 activity is characterized by periodic pulses of gas emission, little or no ash, low altitude (100 - 200 m) plumes, and strong audible jetting or roaring. Type 3 activity is characterized by sustained emissions of ash and gas, with multiple pulses lasting from ~1 - 3 minutes, and by plumes from 300 - 1500 m. Type 4 activity is characterized by periods of relatively long duration (~30 minutes to >1 hour) quiescence, no visible plume and weak SO2 emissions at or near the detection limit, followed by an explosive, magmatic eruption, producing ash-rich plumes to >2000 m, and centimeter to meter (or greater) sized pyroclastic bombs that roll down the flanks of the edifice. Eruption onset is accompanied by high-amplitude infrasound and occasionally visible shock

  8. Three thousand years of flank and central vent eruptions of the San Salvador volcanic complex (El Salvador) and their effects on El Cambio archeological site: a review based on tephrostratigraphy

    NASA Astrophysics Data System (ADS)

    Ferrés, D.; Delgado Granados, H.; Hernández, W.; Pullinger, C.; Chávez, H.; Castillo Taracena, C. R.; Cañas-Dinarte, C.

    2011-09-01

    The volcanic events of the last 3,000 years at San Salvador volcanic complex are reviewed using detailed stratigraphic records exposed in new excavations between 2005 and 2007, at El Cambio archeological site (Zapotitán Valley, El Salvador), and in other outcrops on the northern and northwestern sectors of the complex. The sequences that overlie Tierra Blanca Joven (cal. 429 ± 107 ad), from the Ilopango caldera, comprise the Loma Caldera (cal. 590 ± 90 ad) and El Playón (1658-1671) deposits and the San Andrés Tuff (cal. 1031 ± 29 ad), related to El Boquerón Volcano. The surge deposits within the El Playón, San Andrés Tuff and overlying Talpetate II sequences indicate the significance of phreatomagmatic phases in both central vent and flank eruptions during the last 1,600 years. Newly identified volcanic deposits underlying Tierra Blanca Joven at El Cambio extend the stratigraphic record of the area to 3,000 years bp. Paleosols interstratified with those deposits contain cultural artifacts which could be associated with the Middle Preclassic period (900-400 bc). If correct, human occupation of the site during the Preclassic period was more intense than previously known and volcanic eruptions must have affected prehistoric settlements. The archeological findings provide information on how prehistoric populations dealt with volcanic hazards, thousands of years ago in the eastern Zapotitán Valley, where several housing projects are currently being developed. The new stratigraphic and volcanological data can be used as a basis for local and regional hazard assessment related to future secondary vent activity in the San Salvador Volcanic Complex.

  9. Kawah Ijen volcanic activity: a review

    NASA Astrophysics Data System (ADS)

    Caudron, Corentin; Syahbana, Devy Kamil; Lecocq, Thomas; Van Hinsberg, Vincent; McCausland, Wendy; Triantafyllou, Antoine; Camelbeeck, Thierry; Bernard, Alain; Surono

    2015-03-01

    Kawah Ijen is a composite volcano located at the easternmost part of Java island in Indonesia and hosts the largest natural acidic lake in the world. We have gathered all available historical reports on Kawah Ijen's activity since 1770 with the purpose of reviewing the temporal evolution of its activity. Most of these observations and studies have been conducted from a geochemical perspective and in punctuated scientific campaigns. Starting in 1991, the seismic activity and a set of volcanic lake parameters began to be weekly available. We present a database of those measurements that, combined with historical reports, allow us to review each eruption/unrest that occurred during the last two centuries. As of 2010, the volcanic activity is monitored by a new multi-disciplinary network, including digital seismic stations, and lake level and temperature measurements. This detailed monitoring provides an opportunity for better classifying seismic events and forecasting volcanic unrest at Kawah Ijen, but only with the understanding of the characteristics of this volcanic system gained from the historical review presented here.

  10. Near-vent measurements of volcanic gases and aerosols with multiple small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Pieri, D. C.; Diaz, J. A.; Bland, G.; Fladeland, M. M.; Schumann, J. M.

    2013-12-01

    Dynamic phenomena occurring on the earth's surface and in the atmosphere are almost always distributed over a volume or area that changes progressively over time (e.g., explosive eruption plumes, lava flows, floods, toxic materials releases, wildfires). 'Snapshot' views of such phenomena traditionally capture a small part of the area or volume of the event in successive time slices. Such time series are fundamentally limited in providing accurate boundary conditions for models of such processes, or even to create descriptions or observations at spatial scales relevant to the characteristic dimensions of the process. High spatial resolution (e.g., ~1-3m/pixel) imaging views of such spatially extended phenomena that capture the entire extent of the event are not usually possible with a single low altitude aircraft, for instance. Synoptic satellite and high altitude airborne views are often at spatial resolutions that an order of magnitude coarser. Airborne in situ sampling faces a similar problem in that point measurements are acquired along a flight line in a time-series. Source conditions changing at timescales shorter than an airborne sortie interval (typical for most dynamic phenomena) render such flight line observations incomplete. The ability to capture hi-spatial resolution, synchronous, full volume or area data over dynamically evolving (possibly hazardous) features (e.g., volcanic plumes, air pollution layers, oil slicks, wildfires) requires a distributed 2D or 3D mesh of observation platforms. Small (e.g., <25kg) unmanned aerial vehicles (UAVs) are an emerging technology that can provide distributed formations or networks of observation platforms that can be dynamically reconfigured to encompass areas or volumes of interest for imaging or other kinds of in situ observations (e.g., SO2 or CO2 sampling of volcanic gas emissions). Such data are crucial for the calibration and validation of remotely sensed concentration retrievals (e.g., from multi

  11. A quaternary monogenetic volcanic field in the Xalapa region, eastern Trans-Mexican volcanic belt: Geology, distribution and morphology of the volcanic vents

    NASA Astrophysics Data System (ADS)

    Rodríguez, S. R.; Morales-Barrera, W.; Layer, P.; González-Mercado, E.

    2010-11-01

    The most abundant volcanic manifestations along the east-west trending Trans-Mexican Volcanic Belt (TMVB) are the scoria cones. These have been grouped by other authors in extended monogenetic volcanic fields such as Michoacán-Guanajuato, Chichinautzin, Apan and Los Tuxtlas. Here we present geological and morphological data of a relatively unknown group of monogenetic volcanoes located on the east flank of the Cofre de Perote volcano (CP), around the city of Xalapa in the state of Veracruz, Mexico. Within an area of about 2400 km 2, the "Xalapa Monogenetic Volcanic Field" (XMVF) contains over 50 late Quaternary volcanoes. Most of them are scoria cones, but small shield volcanoes and tuff rings also occur. The lava flows produced by these volcanoes are constrained by an abrupt topography and cover a great percentage of the surface on the eastern and northeastern flanks of CP, between 3000 and 500 m a.s.l. The representative rocks of the different volcanic centers include olivine basalt, basaltic andesite with phenocrysts of plagioclase, pyroxene and minor olivine, and andesite with phenocrysts of plagioclase and pyroxene. SiO 2 and Al 2O 3 contents of the rocks vary between 45 and 62 wt% and 15 to 18 wt%, respectively. Most of the basaltic rocks have MgO contents between 4.2 and 9 wt%, Ni and Cr concentrations between 23 and 180 and 10 to 380 ppm, respectively, with a typical calc-alkaline behavior. Trace elements suggest two types of magmas; the most abundant are characterized by an enrichment of LILE and LREE with negative anomalies of Nb and Ti, which denote a calc-alkaline affinity. Others are LILE depleted and show high concentrations of MgO, Cr, and Ni, which is typical of primary calc-alkaline magmas. The mean scoria cone morphological values are: cone height (Hco) = 90.8 m, cone diameter (Wco) = 686.38 m, crater diameter (Wcr) = 208.49 m and 0.12 km 3 for the cone volume. We dated twelve different scoria cones using the 40Ar/ 39Ar method; for the other

  12. Investigating Late Amazonian Volcanotectonic Activity on Olympus Mons, Mars using Flank Vents and Arcuate Graben

    NASA Astrophysics Data System (ADS)

    Peters, S.; Christensen, P. R.

    2015-12-01

    Volcanism, a fundamental process in shaping the Martian surface, is crucial to understanding its evolution. Olympus Mons, the largest volcano on Mars, is one of several large shield volcanoes. Previous studies were technologically limited to large features associated with these constructs. With the advent of high resolution datasets, we are now able to investigate smaller features, such as flank vents and arcuate graben. Flank vents, common on polygenetic volcanoes, indicate that magma has propagated away from the main conduit and/or magma chamber. Vent morphology allows for the characterization of magma properties and eruption rates. Graben indicate extensional deformation. The distribution of graben provides information on stresses that acted on the volcano. In lieu of geophysical, spectral and in-situ data, morphology, morphometry and spatial relationships are powerful tools. We utilized high resolution image data (CTX, HiRISE and THEMIS IR) and topographic data (HRSC DTM, MOLA) to identify and characterize flank vents and graben. We observed 60 flank vents and 84 arcuate graben on Olympus Mons. Flank vents display varying morphologies and morphometries, suggesting different eruption styles and variable magma volatility. Vents occur primarily on the lower flank. This suggests magma has propagated substantial distances from the magma chamber. Observed clustering of vents may also indicate shallow magma sources. Similarly, graben are observed on the lower flank crosscutting young lava flows that have mantled portions of the escarpment. This indicates either gravitational spreading of Olympus Mons or flexure of the lithosphere in response to the load of the edifice. Collectively, the distribution of flank vents and arcuate graben suggests a similar development to that proposed for Ascraeus Mons. Based on superposition relationships and dates from previous studies, the flank vents and graben formed in the Late Amazonian (≤500 Ma).

  13. Post-drilling hydrothermal vent and associated biological activities seen through artificial hydrothermal vents in the Iheya North field, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Takai, K.; Kawagucci, S.; Miyazaki, J.; Watsuji, T.; Ishibashi, J.; Yamamoto, H.; Nozaki, T.; Kashiwabara, T.; Shibuya, T.

    2012-12-01

    In 2010, IODP Expedition 331 was conducted in the Iheya North Field, the Okinawa Trough and drilled several sites in hydrothermally active subseafloor. In addition, during the IODP Expedition 331, four new hydrothermal vents were created. These post-drilling artificial hydrothermal vents provide excellent opportunities to investigate the physical, chemical and microbiological characteristics of the previously unexplored subseafloor hydrothermal fluid reservoirs, and to monitor and estimate how the anthropogenic drilling behaviors affect the deep-sea hydrothermal vent ecosystem. We were very much interested in the difference of hydrothermal fluid chemistry between the natural hydrothermal vents and the artificial hydrothermal vents. The IODP porewater chemistry of the cores pointed to the density-driven stratification of the phase-separated hydrothermal fluids and the natural vent fluids were likely derived only from the shallower vapor-enriched phases. However, the artificial hydrothermal vents had deeper fluid sources in the subseafloor hydrothermal fluid reservoirs composed of vapor-lost (Cl-enriched) phases. The fluids from the artificial hydrothermal vents were sampled by ROV at 5, 12 and 18 months after the IODP expedition. The artificial hydrothermal vent fluids were slightly enriched with Cl as compared to the natural hydrothermal vent fluids. Thus, the artificial hydrothermal vents successfully entrained the previously unexplored subseafloor hydrothermal fluids. The newly created hydrothermal vents also hosted the very quickly grown, enormous chimney structures, of which mineral compositions were highly variable among the vents. However, the quickly grown C0016B and C0016D vent chimneys were found to be typical Kuroko ore even though the chimney growth rates in the artificial vents were extremely faster than those in the natural vents. In addition, the IODP drilling operation not only created new hydrothermal vents by deep drilling but also induced the

  14. Turning Off Entrainment: The Role of Particle Size Distributions and Vent GeometryIn The Collapse of Volcanic Jets

    NASA Astrophysics Data System (ADS)

    Jessop, D.; Jellinek, M.; Roche, O.

    2014-12-01

    Volcanic jets can undergo gravitational collapse to produce pyroclastic density currents (PDCs), or loft material several tens of kilometres and spread out as an ash cloud. The key ingredient that determines which of these two phenomena will occur is the turbulent entrainment of atmospheric air, which adds buoyancy to the jet. Classical models of eruption columns assume that the rate of entrainment is fixed and ~10% of the upflow rate of the jet. In particular, the efficiency of entrainment is assumed to be independent of the vent shape as well as the physical properties of the pyroclastic mixture. However, we show that the presence of particles of certain particle-size distributions (PSDs) in the jet can have a significant effect on the entrainment rate owing to their buoyancy and inertia. As a consequence, the conditions for collapse as previously identified must be revisited. In particular, there is a possibility for an eruption to produce both a buoyant column and a collapsing fountain. Using scaled analogue experiments, we test the likelyhood of collapse and the production of pyroclastic flows according to the source geometry and particle-size distributions.

  15. Multiple episodes of hydrothermal activity and epithermal mineralization in the southwestern Nevada volcanic field and their relations to magmatic activity, volcanism and regional extension

    SciTech Connect

    Weiss, S.I.; Noble, D.C.; Jackson, M.C.

    1994-12-31

    Volcanic rocks of middle Miocene age and underlying pre-Mesozoic sedimentary rocks host widely distributed zones of hydrothermal alteration and epithermal precious metal, fluorite and mercury deposits within and peripheral to major volcanic and intrusive centers of the southwestern Nevada volcanic field (SWNVF) in southern Nevada, near the southwestern margin of the Great Basin of the western United States. Radiometric ages indicate that episodes of hydrothermal activity mainly coincided with and closely followed major magmatic pulses during the development of the field and together spanned more than 4.5 m.y. Rocks of the SWNVF consist largely of rhyolitic ash-flow sheets and intercalated silicic lava domes, flows and near-vent pyroclastic deposits erupted between 15.2 and 10 Ma from vent areas in the vicinity of the Timber Mountain calderas, and between about 9.5 and 7 Ma from the outlying Black Mountain and Stonewall Mountain centers. Three magmatic stages can be recognized: the main magmatic stage, Mountain magmatic stage (11.7 to 10.0 Ma), and the late magmatic stage (9.4 to 7.5 Ma).

  16. Echinometra sea urchins acclimatized to elevated pCO2 at volcanic vents outperform those under present-day pCO2 conditions.

    PubMed

    Uthicke, Sven; Ebert, Thomas; Liddy, Michelle; Johansson, Charlotte; Fabricius, Katharina E; Lamare, Miles

    2016-07-01

    Rising atmospheric CO2 concentrations will significantly reduce ocean pH during the 21st century (ocean acidification, OA). This may hamper calcification in marine organisms such as corals and echinoderms, as shown in many laboratory-based experiments. Sea urchins are considered highly vulnerable to OA. We studied an Echinometra species on natural volcanic CO2 vents in Papua New Guinea, where they are CO2 -acclimatized and also subjected to secondary ecological changes from elevated CO2 . Near the vent site, the urchins experienced large daily variations in pH (>1 unit) and pCO2 (>2000 ppm) and average pH values (pHT 7.73) much below those expected under the most pessimistic future emission scenarios. Growth was measured over a 17-month period using tetracycline tagging of the calcareous feeding lanterns. Average-sized urchins grew more than twice as fast at the vent compared with those at an adjacent control site and assumed larger sizes at the vent compared to the control site and two other sites at another reef near-by. A small reduction in gonad weight was detected at the vents, but no differences in mortality, respiration, or degree of test calcification were detected between urchins from vent and control populations. Thus, urchins did not only persist but actually 'thrived' under extreme CO2 conditions. We suggest an ecological basis for this response: Increased algal productivity under increased pCO2 provided more food at the vent, resulting in higher growth rates. The wider implication of our observation is that laboratory studies on non-acclimatized specimens, which typically do not consider ecological changes, can lead to erroneous conclusions on responses to global change. PMID:26762613

  17. Active Volcanism on IO: Global Distribution and Variations in Activity

    NASA Technical Reports Server (NTRS)

    Lopes-Gautier, R.; McEwen, A.; Smythe, W.; Geissler, P.; Kamp, L.; Davies, A.; Spencer, J.; Keszthelyi, L.; Carlson, R.; Leader, F.; Mehlman, R.; Soderblom, L.

    1999-01-01

    Io's volcanic activity has been monitored by instruments aboard the Galileo spacecraft since June 28, 1996. We present results from observations by the Near-Infrared Mapping Spectrometer (NIM) for the first ten orbits of Galileo, correlate them with results from the Solid State Imaging System (SSI)and from ground-based observations, and compare them to what was known about Io's volcanic activity from observations made during the two Voyager fly-bys in 1979.

  18. A decade's overview of Io's volcanic activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Veeder, G. J.; Johnson, T. V.; Blaney, D. L.; Goguen, J. D.

    1993-01-01

    Over the past decade some aspects of Io's volcanic activity have changed greatly, while others have essentially remained constant. This contrast has emerged from our study of multi-wavelength, infrared, observations of Io's thermal emission. From 1983 to 1992 we observed the disk integrated flux density of Io from the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. Our spectral coverage allows us to separate out the emission components due to volcanic thermal anomalies which are warmer than the background emission caused by solar heating. Our temporal coverage allows us to resolve individual eruptions and also to obtain the disk-integrated flux density as a function of longitude (or, equivalently, orbital phase angle). Characteristics that persisted over the decade involve Loki's location and intensity of emission, the leading hemisphere emission, and the average heat flow. The variable aspects of Io over the decade include Loki's hotter area(s) and the outbursts in the leading hemisphere.

  19. Triggering of volcanic activity by large earthquakes

    NASA Astrophysics Data System (ADS)

    Avouris, D.; Carn, S. A.; Waite, G. P.

    2011-12-01

    Statistical analysis of temporal relationships between large earthquakes and volcanic eruptions suggests seismic waves may trigger eruptions even over great distances, although the causative mechanism is not well constrained. In this study the relationship between large earthquakes and subtle changes in volcanic activity was investigated in order to gain greater insight into the relationship between dynamic stress and volcanic response. Daily measurements from the Ozone Monitoring Instrument (OMI), onboard the Aura satellite, provide constraints on volcanic sulfur dioxide (SO2) emission rates as a measure of subtle changes in activity. An SO2 timeseries was produced from OMI data for thirteen persistently active volcanoes. Seismic surface-wave amplitudes were modeled from the source mechanisms of moment magnitude (Mw) ≥7 earthquakes, and peak dynamic stress (PDS) was calculated. The SO2 timeseries for each volcano was used to calculate a baseline threshold for comparison with post-earthquake emission. Delay times for an SO2 response following each earthquake at each volcano were analyzed and compared to a random catalog. The delay time analysis was inconclusive. However, an analysis based on the occurrence of large earthquakes showed a response at most volcanoes. Using the PDS calculations as a filtering criterion for the earthquake catalog, the SO2 mass for each volcano was analyzed in 28-day windows centered on the earthquake origin time. If the average SO2 mass after the earthquake was greater than an arbitrary percentage of pre-earthquake mass, we identified the volcano as having a response to the event. This window analysis provided insight on what type of volcanic activity is more susceptible to triggering by dynamic stress. The volcanoes with lava lakes included in this study, Ambrym, Gaua, Villarrica, and Erta Ale, showed a clear response to dynamic stress while the volcanoes with lava domes, Merapi, Semeru, and Bagana showed no response at all. Perhaps

  20. Explosive volcanic activity on Venus: The roles of volatile contribution, degassing, and external environment

    NASA Astrophysics Data System (ADS)

    Airey, M. W.; Mather, T. A.; Pyle, D. M.; Glaze, L. S.; Ghail, R. C.; Wilson, C. F.

    2015-08-01

    We investigate the conditions that will promote explosive volcanic activity on Venus. Conduit processes were simulated using a steady-state, isothermal, homogeneous flow model in tandem with a degassing model. The response of exit pressure, exit velocity, and degree of volatile exsolution was explored over a range of volatile concentrations (H2O and CO2), magma temperatures, vent altitudes, and conduit geometries relevant to the Venusian environment. We find that the addition of CO2 to an H2O-driven eruption increases the final pressure, velocity, and volume fraction gas. Increasing vent elevation leads to a greater degree of magma fragmentation, due to the decrease in the final pressure at the vent, resulting in a greater likelihood of explosive activity. Increasing the magmatic temperature generates higher final pressures, greater velocities, and lower final volume fraction gas values with a correspondingly lower chance of explosive volcanism. Cross-sectionally smaller, and/or deeper, conduits were more conducive to explosive activity. Model runs show that for an explosive eruption to occur at Scathach Fluctus, at Venus' mean planetary radius (MPR), 4.5% H2O or 3% H2O with 3% CO2 (from a 25 m radius conduit) would be required to initiate fragmentation; at Ma'at Mons (~9 km above MPR) only ~2% H2O is required. A buoyant plume model was used to investigate plume behaviour. It was found that it was not possible to achieve a buoyant column from a 25 m radius conduit at Scathach Fluctus, but a buoyant column reaching up to ~20 km above the vent could be generated at Ma'at Mons with an H2O concentration of 4.7% (at 1300 K) or a mixed volatile concentration of 3% H2O with 3% CO2 (at 1200 K). We also estimate the flux of volcanic gases to the lower atmosphere of Venus, should explosive volcanism occur. Model results suggest explosive activity at Scathach Fluctus would result in an H2O flux of ~107 kg s-1. Were Scathach Fluctus emplaced in a single event, our model

  1. Submarine, silicic, syn-eruptive pyroclastic units in the Mount Read Volcanics, western Tasmania: Influence of vent setting and proximity on lithofacies characteristics

    NASA Astrophysics Data System (ADS)

    McPhie, Jocelyn; Allen, Rodney L.

    Lithofacies characteristics of submarine, silicic, syn-eruptive pyroclastic units in the Cambrian Mount Read Volcanics, western Tasmania, have been used to infer the source vent setting and proximity. The submarine, syn-eruptive pyroclastic units typically consist of one or more, massive to graded, very thick (a few metres to >100 m) beds and are laterally extensive (>10 km along strike). They are composed of variable proportions of rhyolitic or dacitic pumice, crystals (mainly quartz and feldspar), shards, volcanic lithic clasts and non-volcanic sedimentary clasts. Although the dominant components are juvenile pyroclasts and the units are very thick, there is no textural evidence for hot emplacement. In some cases, pumice clasts define a bedding-parallel foliation formed during diagenetic compaction. Three types of units can be defined on the basis of lithofacies characteristics: (1) graded pumice-lithic breccia-shard-rich sandstone, probably generated by submarine explosive eruptions and deposited in relatively deep water at medial to distal sites; (2) very thick, graded to massive pumice brecciashard-rich sandstone, considered to be the proximal, mainly below-wave-base submarine record of a large-magnitude (>10 cubic km), explosive eruption from an intrabasinal submarine vent; (3) very thick, crystal-rich volcanic sandstone; the high crystal abundance in this facies is attributed to interaction between subaerial pyroclastic flows and seawater, and formation of crystal-enriched, submarine, water-supported, gravity currents; in this case, it is most likely that the source vent was subaerial, and that deposition took place at proximal to medial locations in relatively shallow water (probably <200 m).

  2. Volcanic hazard management in dispersed volcanism areas

    NASA Astrophysics Data System (ADS)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  3. Monogenetic volcanic hazards and assessment

    NASA Astrophysics Data System (ADS)

    Connor, C.; Connor, L. J.; Richardson, J. A.

    2012-12-01

    Many of the Earth's major cities are build on the products of monogenetic volcanic eruptions and within geologically active basaltic volcanic fields. These cities include Mexico City (Mexico), Auckland (New Zealand), Melbourne (Australia), and Portland (USA) to name a few. Volcanic hazards in these areas are complex, and involve the potential formation of new volcanic vents and associated hazards, such as lava flows, tephra fallout, and ballistic hazards. Hazard assessment is complicated by the low recurrence rate of volcanism in most volcanic fields. We have developed a two-stage process for probabilistic modeling monogenetic volcanic hazards. The first step is an estimation of the possible locations of future eruptive vents based on kernel density estimation and recurrence rate of volcanism using Monte Carlo simulation and accounting for uncertainties in age determinations. The second step is convolution of this spatial density / recurrence rate model with hazard codes for modeling lava inundation, tephra fallout, and ballistic impacts. A methodology is presented using this two-stage approach to estimate lava flow hazard in several monogenetic volcanic fields, including at a nuclear power plant site near the Shamiram Plateau, a Quaternary volcanic field in Armenia. The location of possible future vents is determined by estimating spatial density from a distribution of 18 mapped vents using a 2-D elliptical Gaussian kernel function. The SAMSE method, a modified asymptotic mean squared error approach, uses the distribution of known eruptive vents to optimally determine a smoothing bandwidth for the Gaussian kernel function. The result is a probability map of vent density. A large random sample (N=10000) of vent locations is drawn from this probability map. For each randomly sampled vent location, a lava flow inundation model is executed. Lava flow input parameters (volume and average thickness) are determined from distributions fit to field observations of the low

  4. Active Volcanism on Io: Global Distribution and Variations in Activity

    USGS Publications Warehouse

    Lopes-Gautier, R.; McEwen, A.S.; Smythe, W.B.; Geissler, P.E.; Kamp, L.; Davies, A.G.; Spencer, J.R.; Keszthelyi, L.; Carlson, R.; Leader, F.E.; Mehlman, R.; Soderblom, L.

    1999-01-01

    Io's volcanic activity has been monitored by instruments aboard the Galileo spacecraft since June 28, 1996. We present results from observations by the near-infrared mapping spectrometer (NIMS) for the first 10 orbits of Galileo, correlate them with results from the Solid State Imaging System (SSI) and from groundbased observations, and compare them to what was known about Io's volcanic activity from observations made during the two Voyager flybys in 1979. A total of 61 active volcanic centers have been identified from Voyager, groundbased, and Galileo observations. Of these, 41 are hot spots detected by NIMS and/or SSI. Another 25 locations were identified as possible active volcanic centers, mostly on the basis of observed surface changes. Hot spots are correlated with surface colors, particularly dark and red deposits, and generally anti-correlated with white, SO2-rich areas. Surface features corresponding to the hot spots, mostly calderas or flows, were identified from Galileo and Voyager images. Hot spot temperatures obtained from both NIMS and SSI are consistent with silicate volcanism, which appears to be widespread on Io. Two types of hot spot activity are present: persistent-type activity, lasting from months to years, and sporadic events, which may represent either short-lived activity or low-level activity that occasionally flares up. Sporadic events are not often detected, but may make an important contribution to Io's heat flow and resurfacing. The distribution of active volcanic centers on the surface does not show any clear correlation with latitude, longitude, Voyager-derived global topography, or heat flow patterns predicted by the asthenosphere and deep mantle tidal dissipation models. However, persistent hot spots and active plumes are concentrated toward lower latitudes, and this distribution favors the asthenosphere rather than the deep mantle tidal dissipation model. ?? 1999 Academic Press.

  5. Vent 7504 of the San Francisco Volcanic Field (SFVF), Arizona: Sample Geochemistry and Implications for Cone Formation

    NASA Astrophysics Data System (ADS)

    Needham, D. H.; Eppler, D. B.; Bleacher, J. E.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Whitson, P. A.; Janoiko, B. A.; Mertzman, S. A.

    2015-12-01

    Vent 7504 is a complex structure in the SFVF that has 3 unit classes: a central cone with exposed dikes and cinder-covered rheomorphic facies; a SE/NW-trending ridge north of the cone with cinder-covered rheomorphic facies; and three discrete lava flows that emanate to the N from the ridge and to the SW and NW from the cone. Field observations suggest the ridge was the northern crest of an initial, larger cone. The NW portion of this cone was most likely disrupted during a catastrophic breach of lava that had accumulated within the cone; this third of three lava flows carried rafted packages of the rheomorphic cone facies to the NW, forming the linear N ridge. The final phase of pyroclastic activity was concentrated in the SW portion of the original cone, covering the top of the cone with cinders and forming the more traditional conic-shaped construct observed today. This study describes the geochemistry of 9 samples collected from the mapped units (2 from the cone, 1 from the N ridge, 1 from the N lava flow, 2 from the SW lava flow, and 3 from the NW lava flow) to further constrain the formation of Vent 7504. Geochemical analyses including back-scatter electron scanning electron microscopy and laboratory X-ray fluorescence spectroscopy were conducted on the 9 collected samples to measure bulk rock and olivine phenocryst compositions. Major element concentrations in the bulk rock and olivine compositions are strongly clustered in all samples, indicating they likely originated from a single magmatic source. Bulk rock SiO2 (~47.5 wt%) and alkali (Na2O + K2O, ~2.7 wt% + 0.71 wt%) concentrations are consistent with a basaltic classification for these samples. Trends in major elements relative to MgO are observed for the olivine phenocrysts: SiO2, Al2O3, Na2O, and TiO2 remain constant relative to MgO, but strong linear trends are observed in MnO, FeO, and NiO relative to MgO. These linear trends are expected given the potential for bivalent cation exchanges in the

  6. Volcanic Activity at Tvashtar Catena, Io

    NASA Technical Reports Server (NTRS)

    Milazzo, M. P.; Keszthelyi, L. P.; Radebaugh, J.; Davies, A. G.; McEwen, A. S.

    2004-01-01

    Tvashtar Catena (63 N, 120 W) is one of the most interesting features on Io. This chain of large paterae (caldera-like depressions) has exhibited highly variable volcanic activity in a series of observations. Tvashtar is the type example of a style of volcanism seen only at high latitudes, with short-lived Pele-type plumes and short-lived by intense thermal events. Evidence for a hot spot at Tvashtar was first detected in an eclipse observation in April 1997 (orbit G7) by the Solid State Imager (SSI) on the Galileo Spacecraft. Tvashtar was originally targeted for observation at higher resolution in the close flyby in November 1999 (I25) because of its interesting large-scale topography. There are relatively few but generally larger paterae at high latitudes on Io. I25 images revealed a 25 km long, 1-2 km high lava curtain via a pattern of saturation and bleeding in the CCD image, which requires very high temperatures.

  7. A spaceborne inventory of volcanic activity in Antarctica and southern oceans, 2000-10

    USGS Publications Warehouse

    Patrick, Matthew R.; Smellie, John L.

    2015-01-01

    Of the more than twenty historically active volcanoes in Antarctica and the sub-Antarctic region only two, to our knowledge, host any ground-based monitoring instruments. Moreover, because of their remoteness, most of the volcanoes are seldom visited, thus relegating the monitoring of volcanism in this region almost entirely to satellites. In this study, high temporal resolution satellite data from the Hawaii Institute of Geophysics and Planetology's MODVOLC system using MODIS (Moderate Resolution Imaging Spectroradiometer) are complemented with high spatial resolution data (ASTER, or Advanced Spaceborne Thermal Emission and Reflection Radiometer, and similar sensors) to document volcanic activity throughout the region during the period 2000–10. Five volcanoes were observed in eruption (Mount Erebus, Mount Belinda, Mount Michael, Heard Island and McDonald Island), which were predominantly low-level and effusive in nature. Mount Belinda produced tephra, building a cinder cone in addition to an extensive lava field. Five volcanoes exhibited detectable thermal, and presumed fumarolic, activity (Deception, Zavodovski, Candlemas, Bristol, and Bellingshausen islands). A minor eruption reported at Marion Island was not detected in our survey due to its small size. This study also discovered a new active vent on Mount Michael, tracked dramatic vent enlargement on Heard Island, and provides an improved picture of the morphology of some of the volcanoes.

  8. The Online GVP/USGS Weekly Volcanic Activity Report: Providing Timely Information About Worldwide Volcanism

    NASA Astrophysics Data System (ADS)

    Mayberry, G. C.; Guffanti, M. C.; Luhr, J. F.; Venzke, E. A.; Wunderman, R. L.

    2001-12-01

    The awesome power and intricate inner workings of volcanoes have made them a popular subject with scientists and the general public alike. About 1500 known volcanoes have been active on Earth during the Holocene, approximately 50 of which erupt per year. With so much activity occurring around the world, often in remote locations, it can be difficult to find up-to-date information about current volcanism from a reliable source. To satisfy the desire for timely volcano-related information the Smithsonian Institution and US Geological Survey combined their strengths to create the Weekly Volcanic Activity Report. The Smithsonian's Global Volcanism Program (GVP) has developed a network of correspondents while reporting worldwide volcanism for over 30 years in their monthly Bulletin of the Global Volcanism Network. The US Geological Survey's Volcano Hazards Program studies and monitors volcanoes in the United States and responds (upon invitation) to selected volcanic crises in other countries. The Weekly Volcanic Activity Report is one of the most popular sites on both organization's websites. The core of the Weekly Volcanic Activity Report is the brief summaries of current volcanic activity around the world. In addition to discussing various types of volcanism, the summaries also describe precursory activity (e.g. volcanic seismicity, deformation, and gas emissions), secondary activity (e.g. debris flows, mass wasting, and rockfalls), volcanic ash hazards to aviation, and preventative measures. The summaries are supplemented by links to definitions of technical terms found in the USGS photoglossary of volcano terms, links to information sources, and background information about reported volcanoes. The site also includes maps that highlight the location of reported volcanoes, an archive of weekly reports sorted by volcano and date, and links to commonly used acronyms. Since the Weekly Volcanic Activity Report's inception in November 2000, activity has been reported at

  9. Integrating Multiple Space Ground Sensors to Track Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Davies, Ashley; Doubleday, Joshua; Tran, Daniel; Jones, Samuel; Kjartansson, Einar; Thorsteinsson, Hrobjartur; Vogfjord, Kristin; Guomundsson, Magnus; Thordarson, Thor; Mandl, Daniel

    2011-01-01

    Volcanic activity can occur with little or no warning. Increasing numbers of space borne assets can enable coordinated measurements of volcanic events to enhance both scientific study and hazard response. We describe the use of space and ground measurements to target further measurements as part of a worldwide volcano monitoring system. We utilize a number of alert systems including the MODVOLC, GOESVOLC, US Air Force Weather Advisory, and Volcanic Ash Advisory Center (VAAC) alert systems. Additionally we use in-situ data from ground instrumentation at a number of volcanic sites, including Iceland.

  10. Characterizing active volcanic processes at Kilauea volcano using LiDAR scanning

    NASA Astrophysics Data System (ADS)

    LeWinter, A. L.; Finnegan, D. C.; Patrick, M. R.; Anderson, S. W.; Orr, T. R.

    2012-12-01

    Active craters and lava lakes evolve in response to a variety of volcanic processes. Quantifying those changes can be difficult or even impossible, for safety reasons, due to the technical limitations of sensors that require a minimum standoff distance. In recent years, advancements in ground-based Light Detection and Ranging (LiDAR) scanners and accessibility to these systems have enhanced our ability to capture data in a diversity of volcanic settings at the highest spatial and temporal resolutions yet seen. Moreover, advancements in full-waveform digitization have significantly improved the ability to acquire data in environments where ash, steam, and sulfur dioxide emissions have historically hampered efforts. Kilauea's ongoing summit eruption, which began in March 2008, has been characterized in part by the evolution of its vent into a 160-meter diameter collapse crater holding an active lava lake. This process has been documented in detail by field and webcam observations, but has not been accurately quantified. Our research focuses on acquiring repeat, high-resolution full-waveform LiDAR data throughout 2012 to monitor changes in the geometry of Kilauea's active lava lake and the crater to which it is confined. We collected LiDAR data in February and July 2012, with plans for an additional survey in October 2012. Our results show changes in the shape of the vent walls and the shape and level of the confined lava lake. Specifically, the LiDAR data has revealed 1) changes in the lava lake level, corresponding to tiltmeter observations of pressure fluctuations in the summit magma reservoir, 2) enlargement of the vent cavity, due to frequent rock falls, and 3) modifications to the lake size and surrounding lava ledges due to competing processes of accretion and collapse. The rapid acquisition of repeat, high-resolution topographic data enables researchers to more accurately characterize shape and volume changes involved in a range of eruptive systems, while

  11. 40Ar/39Ar geochronology of the Neogene-Quaternary Harrat Al-Madinah intercontinental volcanic field, Saudi Arabia: Implications for duration and migration of volcanic activity

    NASA Astrophysics Data System (ADS)

    Moufti, M. R.; Moghazi, A. M.; Ali, K. A.

    2013-01-01

    New 40Ar/39Ar ages, based on incremental heating techniques for groundmass separates of 25 samples, are presented for the Harrat Al-Madinah volcanic field, part of Harrat Rahat in the north western part of the Arabian plate. This area is an active volcanic field characterized by the occurrence of two historical eruptions approximately in 641 and 1256 AD. Field investigations of the main volcanic landforms indicate dominantly monogenetic strombolian eruptions, in addition to local more explosive eruptions. The lavas consist mainly of olivine basalt and hawaiite flows with minor evolved rocks of mugearite, benmoreite, and trachyte that occur mainly as domes, tuff cones and occasionally as lava flows. Previous K/Ar dating shows that the Harrat Al-Madinah lava flows and associated domes comprise seven units spanning an age range of ca. 1.7 Ma-Recent. The new 40Ar/39Ar age determinations confirm, to a great extent, the previously obtained K/Ar ages in the sense that no major systematic biases were found in the general stratigraphy of the different flow units. However, the 40Ar/39Ar plateau ages show that volcanism in this area began in the Neogene (˜10 Ma) and continued to Recent, with the most voluminous eruptions occurring in the Quaternary. Neogene volcanism occurred in at least three pulses around 10, 5 and 2 Ma, whereas Quaternary volcanism produced at least seven units reflecting lava flow emplacement in the time period of 1.90 Ma-Recent. Thus, the whole duration of volcanic activity in the Harrat Al-Madinah (10 Ma-Recent) appears much longer than that previously identified. The longevity of volcanism in the same part of the moving Arabian plate and absence of evidence for uni-directional migration of volcanic activity indicate that there is no fixed plume beneath this region. The NNW-trending distribution of the volcanic vents is parallel to the Red Sea, and suggests their origin is related to periodic extensional episodes along the reactivated Red Sea fault

  12. Volcanic activity at Tvashtar Catena, Io

    USGS Publications Warehouse

    Milazzo, M.P.; Keszthelyi, L.P.; Radebaugh, J.; Davies, A.G.; Turtle, E.P.; Geissler, P.; Klaasen, K.P.; Rathbun, J.A.; McEwen, A.S.

    2005-01-01

    Galileo's Solid State Imager (SSI) observed Tvashtar Catena four times between November 1999 and October 2001, providing a unique look at a distinctive high latitude volcanic complex on Io. The first observation (orbit I25, November 1999) resolved, for the first time, an active extraterrestrial fissure eruption; the brightness temperature was at least 1300 K. The second observation (orbit I27, February 2000) showed a large (??? 500 km 2) region with many, small, hot, regions of active lava. The third observation was taken in conjunction with Cassini imaging in December 2000 and showed a Pele-like, annular plume deposit. The Cassini images revealed an ???400 km high Pele-type plume above Tvashtar Catena. The final Galileo SSI observation of Tvashtar (orbit I32, October 2001), revealed that obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. In this paper, we primarily analyze the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of simple advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping eruptions. The highest reliable color temperature is ???1300 K. Although higher temperatures cannot be ruled out, they do not need to be invoked to fit the observed data. The total power output from the active lavas in February 2000 was at least 1011 W. ?? 2005 Elsevier Inc. All rights reserved.

  13. International Collaboration on Building Local Technical Capacities for Monitoring Volcanic Activity at Pacaya Volcano, Guatemala.

    NASA Astrophysics Data System (ADS)

    Escobar-Wolf, R. P.; Chigna, G.; Morales, H.; Waite, G. P.; Oommen, T.; Lechner, H. N.

    2015-12-01

    Pacaya volcano is a frequently active and potentially dangerous volcano situated in the Guatemalan volcanic arc. It is also a National Park and a major touristic attraction, constituting an important economic resource for local municipality and the nearby communities. Recent eruptions have caused fatalities and extensive damage to nearby communities, highlighting the need for risk management and loss reduction from the volcanic activity. Volcanic monitoring at Pacaya is done by the Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia (INSIVUMEH), instrumentally through one short period seismic station, and visually by the Parque Nacional Volcan de Pacaya y Laguna de Calderas (PNVPLC) personnel. We carry out a project to increase the local technical capacities for monitoring volcanic activity at Pacaya. Funding for the project comes from the Society of Exploration Geophysicists through the Geoscientists Without Borders program. Three seismic and continuous GPS stations will be installed at locations within 5 km from the main vent at Pacaya, and one webcam will aid in the visual monitoring tasks. Local educational and outreach components of the project include technical workshops on data monitoring use, and short thesis projects with the San Carlos University in Guatemala. A small permanent exhibit at the PNVPLC museum or visitor center, focusing on the volcano's history, hazards and resources, will also be established as part of the project. The strategy to involve a diverse group of local collaborators in Guatemala aims to increase the chances for long term sustainability of the project, and relies not only on transferring technology but also the "know-how" to make that technology useful. Although not a primary research project, it builds on a relationship of years of joint research projects at Pacaya between the participants, and could be a model of how to increase the broader impacts of such long term collaboration partnerships.

  14. Evidence of volcanic and glacial activity in Chryse and Acidalia Planitiae, Mars

    USGS Publications Warehouse

    Martinez-Alonso, Sara; Mellon, Michael T.; Banks, Maria E.; Keszthelyi, Laszlo P.; McEwen, Alfred S.

    2011-01-01

    Chryse and Acidalia Planitiae show numerous examples of enigmatic landforms previously interpreted to have been influenced by a water/ice-rich geologic history. These landforms include giant polygons bounded by kilometer-scale arcuate troughs, bright pitted mounds, and mesa-like features. To investigate the significance of the last we have analyzed in detail the region between 60°N, 290°E and 10°N, 360°E utilizing HiRISE (High Resolution Imaging Science Experiment) images as well as regional-scale data for context. The mesas may be analogous to terrestrial tuyas (emergent sub-ice volcanoes), although definitive proof has not been identified. We also report on a blocky unit and associated landforms (drumlins, eskers, inverted valleys, kettle holes) consistent with ice-emplaced volcanic or volcano-sedimentary flows. The spatial association between tuya-like mesas, ice-emplaced flows, and further possible evidence of volcanism (deflated flow fronts, volcanic vents, columnar jointing, rootless cones), and an extensive fluid-rich substratum (giant polygons, bright mounds, rampart craters), allows for the possibility of glaciovolcanic activity in the region.Landforms indicative of glacial activity on Chryse/Acidalia suggest a paleoclimatic environment remarkably different from today's. Climate changes on Mars (driven by orbital/obliquity changes) or giant outflow channel activity could have resulted in ice-sheet-related landforms far from the current polar caps.

  15. Mud Volcanism and Fluid Venting In The Eastern Mediterranean Sea: Observations From Sidescan Sonar and Submersible Surveys

    NASA Astrophysics Data System (ADS)

    Zitter, T. A. C.; Huguen, C.; Woodside, J. M.; Mascle, J.; Scientific Party, Medineth/Medinaut

    Mud volcanoes in the eastern Mediterranean Sea have been identified by their distinctive acoustic signature as well as their morphology and sedimentology. They appear as circular regions of high backscatter believed to be caused principally by the clast content of the mud flows forming the mud volcano. Both the MEDINAUT and MEDINETH expeditions, conducted in 1998 and 1999 over two mud fields, the Olimpi field and the Anaximander Mountains area, in Eastern Mediterranean Sea, studied mud volcanism using a multidisciplinary approach in order to determine the relationships between the activity of the mud volcanoes (importance of degassing, associated fauna) and their geophysical signature. Mud volcanoes in Eastern Mediterranean Sea vary from conical and dome-shaped reliefs from 500m to 2km wide and 100 to 200m high to large "mud pie" types up to 6km wide. Sidescan sonar records give a very high resolution of the acoustic response, enabling to distinguish several mud flows, often flowing along tectonic lineations. A clear relationship between the occurrence of mud volcanism and cold seeps and both thrust and transcurrent faulting has been observed in both mud fields, although the tectonic settings vary from purely compressional to a more transpressional stress field. The faults are inferred to provide pathways for over- pressured fluids, and secondary faulting (transcurrent and extensional faults) may facilitate mud ascension. On the basis of sidescan sonar interpretation, other typical features have been inferred such as main feeder channels, eruptive cone centers, or brine pools. The in situ observations have been used to characterize the seafloor over numerous mud volcanoes and ground-truth the sonar data. They reveal an abundance of fluid seeps, mainly methane and methane-rich brines, as well as associated specific fauna such as tube worms, clams and chemosynthetic bacteria, and specific diagenetic phenomenon i.e. carbonate crusts. Video observations proved that

  16. Carson Lecture: Seafloor Hydrothermal Vents and Their Impact on the Composition of the Ocean Crust, Ocean Chemistry, and Biological Activity in the Deep Sea

    NASA Astrophysics Data System (ADS)

    Tivey, M. K.

    2005-05-01

    February 1977 marked the discovery of seafloor hydrothermal vents along mid-ocean ridges, and a beginning to studies of their impact on ocean chemistry and biological activity in the deep sea. Evidence for these systems was known from heat flow anomalies and from the rock record in the form of volcanic-associated massive sulfide deposits. The discovery provided a first chance to analyze the hydrothermal fluids, infer the consequences of high temperature water-rock reaction within the ocean crust, and observe interactions of vent fluids with seawater at, beneath, and above the seafloor. Ocean chemists compared vent fluid and river inputs to the oceans and estimated contributions from hydrothermal activity to global chemical fluxes. Study of the vent deposits and their unusual biological communities, however, is not straightforward, requiring consideration of the complex interactions during mixing of two compositionally distinct fluids. The mixing processes are in some ways analogous to those occurring within estuaries, though at vent sites fluids differ not just in salinity but in temperature, pH, and redox state. As in estuaries, mixing is complicated by non-conservative processes. These studies have required more sophisticated geochemical modeling efforts that consider reactions at elevated temperatures and pressures, and diffusion and advection in environments characterized by steep chemical and thermal gradients. In situ measurements are still needed to test the accuracy of these calculations, especially in the temperature and pressure region close to the critical point of water that is typical of many vents systems. The presence of novel organisms that thrive off the chemical energy created by mixing processes has added to the drive to develop in situ sensors capable of making measurements in hostile vent environments. As we approach the end of the third decade of study of seafloor hydrothermal systems, we have only just scratched the surface in our quest to

  17. Measuring volcanic gases at Taal Volcano Main Crater for monitoring volcanic activity and possible gas hazard

    NASA Astrophysics Data System (ADS)

    Arpa, M.; Hernandez Perez, P. A.; Reniva, P.; Bariso, E.; Padilla, G.; Melian Rodriguez, G.; Barrancos, J.; Calvo, D.; Nolasco, D.; Padron, E.; Garduque, R.; Villacorte, E.; Fajiculay, E.; Perez, N.; Solidum, R.

    2012-12-01

    were made using a multigas sensor. In terms of volcanic gas hazard, CO2 in air near a fumarole vent can be as high as 25,000 ppm, while the highest H2S recorded was at 14 ppm (March, 2011). Without a multigas sensor, we measured the concentrations of only CO2 and H2S in air near the fumaroles using the Westsystem fluxmeter. During the latest survey last July 2012, the highest measured CO2 in air was 13,000 ppm and for H2S it was 28 ppm to above detection limit. The campaign-type CO2 efflux surveys in the MCL and measurements of the fumaroles are done at least once or twice a year with increased frequency of surveys when signs of unrest are detected. These measurements are important because Taal Volcano Island, although designated as a permanent danger zone, is permanently inhabited.

  18. Effects of temperature, particle features and vent geometry on volcanic jet dynamics, a shock-tube investigation.

    NASA Astrophysics Data System (ADS)

    Cigala, Valeria; Kueppers, Ulrich; Dingwell, Donald B.

    2016-04-01

    The lowermost part of an eruptive plume commonly shows characteristics of an underexpanded jet. The dynamics of this gas-thrust region are likely to be a direct consequence of intrinsic (magma properties, overpressure) and extrinsic (vent geometry, weather) eruption conditions. Additionally, they affect the subsequent evolution of the eruptive column and have, therefore, important hazard assessment implications for both near- and far-field. Direct observation of eruptive events is possible, but often insufficient for complete characterization. Important complementary data can be achieved using controlled and calibrated laboratory experiments. Loose natural particles were ejected from a shock-tube while controlling temperature (25° and 500°C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), density (basaltic and phonolitic), gas-particle ratio and vent geometry (nozzle, cylindrical, funnel with a flaring of 15° and 30°, respectively). For each experiment, we quantified the velocity of individual particles, the jet spreading angle, the presence of electric discharges and the production of fines and analysed their dynamic evolution. Data shows velocity of up to 296 m/s and deceleration patterns following nonlinear paths. Gas spreading angles range between 21° and 41° while the particle spreading angles between 3° and 32°. Electric discharges, in the form of lightning, are observed, quantified and described. Moreover, a variation in the production of fines is recognized during the course of single experiments. This experimental investigation, which mechanistically mimics the process of pyroclast ejection, is shown to be capable of constraining the effects of input parameters and conduit/vent geometry on pyroclastic plumes. Therefore, the results should greatly enhance the ability of numerically model explosive ejecta in nature.

  19. Recent volcanic activity on Venus - Evidence from radiothermal emissivity measurements

    NASA Technical Reports Server (NTRS)

    Robinson, Cordula A.; Wood, John A.

    1993-01-01

    Radiothermal emissivity measurements are analyzed in order to study large volcanic constructs on Venus and to correlate details of the reflectivity/emissivity patterns with geological landforms and stratigraphy visible in corresponding SAR images. There appears to be a correlation between locations on Venus where high emissivity at high altitudes and low emissivity at low altitudes are observed. These phenomena are attributed here to relatively recent volcanic activity: the former to summit eruptions that have not had time to weather to the low-emissivity state, the latter to continuing emission of volcanic gases from neighboring small plains volcanoes. The pattern of reflectivity and emissivity on Maat Mons is examined in the light of these findings. It is concluded that Maat Mons has undergone the most recent episode of volcanic activity of all the volcanoes studied here.

  20. First hydrothermal active vent discovered on the Galapagos Microplate

    NASA Astrophysics Data System (ADS)

    Tao, C.; Li, H.; Wu, G.; Su, X.; Zhang, G.; Chinese DY115-21 Leg 3 Scientific Party

    2011-12-01

    The Galapagos Microplate (GM) lies on the western Gaplapagos Spreading Center (GSC), representing one of the classic Ridge-Ridge-Ridge (R-R-R) plate boundaries of the Nazca, Cocos, and Pacific plates. The presence of the 'black smoke' and hydrothermal vent community were firstly confirmed on the GSC. Lots of hydrothermal fields were discovered on the center and eastern GSC, while the western GSC has not been well investigated. During 17th Oct. to 9th Nov. 2009, the 3rd leg of Chinese DY115-21 cruise with R/V Dayangyihao has been launched along 2°N-5°S near equatorial East Pacific Rise (EPR). Two new hydrothermal fields were confirmed. One is named 'Precious Stone Mountain', which is the first hydrothermal field on the GM. The other is found at 101.47°W, 0.84°S EPR. The 'Precious Stone Mountain' hydrothermal field (at 101.49°W, 1.22°N) is located at an off-axial seamount on the southern GM boundary, with a depth from 1,450 to 1,700m. Hydrothermal fluids emitting from the fissures and hydrothermal fauna were captured by deep-tow video. Few mineral clasts of pyrite and chalcopyrite were separated from one sediment sample, but no sulfide chimney was found yet. Hydrothermal fauna such as alive mussels, crabs, shrimps, tubeworms, giant clams, as well as rock samples were collected by TV-Grab. The study of the seafloor classification with Simrad EM120 multi-beam echosounder has been conducted on the 'Precious Stone Mountain' hydrothermal field. The result indicates that seafloor materials around the hydrothermal field can be characterized into three types, such as the fresh lava, hydrothermal sediment, and altered rock.

  1. Lake-floor sediment texture and composition of a hydrothermally-active, volcanic lake, Lake Rotomahana

    NASA Astrophysics Data System (ADS)

    Pittari, A.; Muir, S. L.; Hendy, C. H.

    2016-03-01

    Young volcanic lakes undergo a transition from rapid, post-eruptive accumulation of volcaniclastic sediment to slower pelagic settling under stable lake conditions, and may also be influenced by sublacustrine hydrothermal systems. Lake Rotomahana is a young (129 year-old), hydrothermally-active, volcanic lake formed after the 1886 Tarawera eruption, and provides a unique insight into the early evolution of volcanic lake systems. Lake-bottom sediment cores, 20-46 cm in length, were taken along a transect across the lake and characterised with respect to stratigraphy, facies characteristics (i.e., grain size, componentry) and pore water silica concentrations. The sediments generally comprise two widespread facies: (i) a lower facies of light grey to grey, very fine lacustrine silt derived from the unconsolidated pyroclastic deposits that mantled the catchment area immediately after the eruption, which were rapidly reworked and redeposited into the lake basin; and (ii) an upper facies of dark, fine-sandy diatomaceous silt, that settled from the pelagic zone of the physically stable lake. Adjacent to sublacustrine hydrothermal vents, the upper dark facies is absent, and the upper part of the light grey to grey silt is replaced by a third localised facies comprised of hydrothermally altered pale yellow to yellowish brown, laminated silt with surface iron-rich encrustations. Microspheres, which are thought to be composed of amorphous silica, although some may be halloysite, have precipitated from pore water onto sediment grains, and are associated with a decrease in pore water silicon concentration. Lake Rotomahana is an example of a recently-stabilised volcanic lake, with respect to sedimentation, that shows signs of early sediment silicification in the presence of hydrothermal activity.

  2. Craters in the Seabed of the Gulf of California Caused by Volcanic Explosion? Volcanic Subsidence? Meteoroid Impact? Hydrocarbon Venting? or Dissolution?

    NASA Astrophysics Data System (ADS)

    Lonsdale, P.; Eakins, B.; Castillo, P.

    2004-12-01

    Several circular enclosed depressions were mapped at depths of 500 to 2500m during a multibeam sonar survey of the Gulf of California. Those on the summits and flanks of volcanic seamounts were caused by volcanic explosions or by subsidence following magma withdrawal, but the origins of the others, in both oceanic and continental crust, are more problematic. Multiple working hypotheses are being tested with geophysical data and rock-sample analysis. A fresh circular crater similar in size to Meteor Crater, Arizona but deeper (2km diameter, with a flat floor at 2185m below sea-level, 500m deeper than parts of its rim) indents young, faulted oceanic crust in rift mountains just 6km from the North Pescadero spreading axis. This axis, believed to spread a half-rate of 24km/Myr, accretes mainly a sediment-sill complex, with very localized eruptions of tholeiitic lava. Dredging of the steep (30 to 45° ) crater walls and rim recovered mudstone and angular boulders of basalt, and destroyed one dredge that grabbed a boulder too large to lift. The faulted rift walls 2km from the crater yielded mudstone and basalt fragments, plus rounded boulders (crater ejecta?) composed mainly of fresh tholeiitic glass. The most plausible, perhaps equally improbable, genetic hypotheses are (i) volcanic explosion when magma intruded off-axis into the sediment-sill complex and interacted with pore water, and (ii) meteoroid impact. Craters of a different type dissect the thick deformed sediment on the 1700 to 400m-deep crest of a transform ridge along the Guaymas Basin margin. Shallow pockmarks around discharges of hydrothermally generated hydrocarbons have been explored with submersibles on the deeper part of the ridge. The larger craters (0.5 to 2km diameter, 100 to 400m deep) that we found where the crest is 600 to 500m deep probably have the same origin (explosive release through a near-surface clathrate horizon of hydrocarbons that migrated up-dip from Guaymas Basin); a possible

  3. The Physics of a Volcanic System: What is the Actual Role Played by Tectonic Setting in Controlling Volcanic Activity?

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.

    2005-12-01

    Modern text-books commonly explain volcanic activity as a direct consequence of plate tectonics, overlooking the different scales characteristic of both types of processes. By acknowledging such differences, however, it is possible to envisage a model of a volcanic system that is based in the same principles of hydrostatics established by Blaise Pascal over 300 yrs ago. Such principles allow us to estimate the local conditions required for the occurrence of volcanism at a given location highlighting the importance of the rock strength and the density difference between melt and its surroundings. This model shows that the minimum thickness of the zone of partial melting in the mantle (or seismically defined Low Velocity Zone) that is required to feed volcanic activity might range from 5 to over 100 km, but also that under certain circumstances a rock strength < 200 MPa may suffice to keep magma trapped at depth whereas in other cases a strength > 600 MPa will not suffice to stop magma ascent resulting in volcanic activity at the surface. Consequently, the model of volcanism developed here explains why is that a given LVZ may lead to volcanic activity in some places whereas a completely identical LVZ may not result in volcanic activity in a different location. Consequently, this model provides a general framework that allows us to better understand the actual role played by tectonic setting in controlling volcanism at a planetary scale.

  4. Morphology and dynamics of explosive vents through cohesive rock formations

    NASA Astrophysics Data System (ADS)

    Galland, Olivier; Gisler, Galen R.; Haug, Øystein T.

    2015-04-01

    Shallow explosive volcanic processes, such as kimberlite volcanism, phreatomagmatic and phreatic activity, produce volcanic vents exhibiting a wide variety of morphologies, including vertical pipes and V-shaped vents. In this study we report on experimental and numerical models designed to capture a range of vent morphologies in an eruptive system (Galland et al., 2014). Using dimensional analysis, we identified key governing dimensionless parameters, in particular the gravitational stress-to-fluid pressure ratio (Π2=P/rho.g.h), and the fluid pressure-to-host rock strength ratio (Π3=P/C). We used combined experimental and numerical models to test the effects of these parameters. The experiments were used to test the effect of Π2 on vent morphology and dynamics. A phase diagram demonstrates a separation between two distinct morphologies, with vertical structures occurring at high values of Π2, and diagonal ones at low values of Π2. The numerical simulations were used to test the effect of Π3 on vent morphology and dynamics. In the numerical models we see three distinct morphologies: vertical pipes are produced at high values of Π3, diagonal pipes at low values of Π3, while horizontal sills are produced for intermediate values of Π3. Our results show that vertical pipes form by plasticity-dominated yielding for high-energy systems (high Π2 and Π3), whereas diagonal and horizontal vents dominantly form by fracturing for lower-energy systems (low Π2 and Π3). Although our models are 2-dimensionnal, they suggest that circular pipes result from plastic yielding of the host rock in a high-energy regime, whereas V-shaped volcanic vents result from fracturing of the host rock in lower-energy systems. Galland, O., Gisler, G.R., Haug, Ø.T., 2014. Morphology and dynamics of explosive vents through cohesive rock formations. J. Geophys. Res. 119, 10.1002/2014JB011050.

  5. Regional Triggering of Volcanic Activity Following Large Magnitude Earthquakes

    NASA Astrophysics Data System (ADS)

    Hill-Butler, Charley; Blackett, Matthew; Wright, Robert

    2015-04-01

    There are numerous reports of a spatial and temporal link between volcanic activity and high magnitude seismic events. In fact, since 1950, all large magnitude earthquakes have been followed by volcanic eruptions in the following year - 1952 Kamchatka M9.2, 1960 Chile M9.5, 1964 Alaska M9.2, 2004 & 2005 Sumatra-Andaman M9.3 & M8.7 and 2011 Japan M9.0. While at a global scale, 56% of all large earthquakes (M≥8.0) in the 21st century were followed by increases in thermal activity. The most significant change in volcanic activity occurred between December 2004 and April 2005 following the M9.1 December 2004 earthquake after which new eruptions were detected at 10 volcanoes and global volcanic flux doubled over 52 days (Hill-Butler et al. 2014). The ability to determine a volcano's activity or 'response', however, has resulted in a number of disparities with <50% of all volcanoes being monitored by ground-based instruments. The advent of satellite remote sensing for volcanology has, therefore, provided researchers with an opportunity to quantify the timing, magnitude and character of volcanic events. Using data acquired from the MODVOLC algorithm, this research examines a globally comparable database of satellite-derived radiant flux alongside USGS NEIC data to identify changes in volcanic activity following an earthquake, February 2000 - December 2012. Using an estimate of background temperature obtained from the MODIS Land Surface Temperature (LST) product (Wright et al. 2014), thermal radiance was converted to radiant flux following the method of Kaufman et al. (1998). The resulting heat flux inventory was then compared to all seismic events (M≥6.0) within 1000 km of each volcano to evaluate if changes in volcanic heat flux correlate with regional earthquakes. This presentation will first identify relationships at the temporal and spatial scale, more complex relationships obtained by machine learning algorithms will then be examined to establish favourable

  6. Changes in microbial communities in coastal sediments along natural CO2 gradients at a volcanic vent in Papua New Guinea.

    PubMed

    Raulf, Felix F; Fabricius, Katharina; Uthicke, Sven; de Beer, Dirk; Abed, Raeid M M; Ramette, Alban

    2015-10-01

    Natural CO2 venting systems can mimic conditions that resemble intermediate to high pCO2 levels as predicted for our future oceans. They represent ideal sites to investigate potential long-term effects of ocean acidification on marine life. To test whether microbes are affected by prolonged exposure to pCO2 levels, we examined the composition and diversity of microbial communities in oxic sandy sediments along a natural CO2 gradient. Increasing pCO2 was accompanied by higher bacterial richness and by a strong increase in rare members in both bacterial and archaeal communities. Microbial communities from sites with CO2 concentrations close to today's conditions had different structures than those of sites with elevated CO2 levels. We also observed increasing sequence abundance of several organic matter degrading types of Flavobacteriaceae and Rhodobacteraceae, which paralleled concurrent shifts in benthic cover and enhanced primary productivity. With increasing pCO2 , sequences related to bacterial nitrifying organisms such as Nitrosococcus and Nitrospirales decreased, and sequences affiliated to the archaeal ammonia-oxidizing Thaumarchaeota Nitrosopumilus maritimus increased. Our study suggests that microbial community structure and diversity, and likely key ecosystem functions, may be altered in coastal sediments by long-term CO2 exposure to levels predicted for the end of the century. PMID:25471738

  7. Exploring for Volcanic and Hydrothermal Activity Above Off-axis Melt Lenses near the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    West, A. J.; Torres, M. A.; Nealson, K. H.

    2014-12-01

    Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active

  8. Exploring for Volcanic and Hydrothermal Activity Above Off-axis Melt Lenses near the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    White, S. M.; Lee, A. J.; Rubin, K. H.

    2015-12-01

    Two Alvin dives (AL 4771 and 4774) transected the seafloor directly above the two largest Off-Axis Melt Lenses (O-AML) east of the East Pacific Rise (EPR) axis at 9 39'N and 9 54'N. In 2008, a 3D high-resolution seismic reflection survey (MGL-0812) discovered O-AMLs 3-7 km from the EPR at 2-3 km below the seafloor. Several other O-AML in the crust have been subsequently detected in several locations up to 20 km from the spreading axis at fast and intermediate spreading ridges; understanding their impacts is increasingly important. During the dives, no currently active hydrothermal venting or fresh lava was seen, suggesting that these features do not constantly power off-axis geological activity. However, the seafloor appears much younger at small volcanic seamounts in the 9 39'N than at the 9 54'N site. At 9 39'N, we used Alvin to explore the off-axis volcanic mound complex, reaching the summit of the three largest mounds. Although no evidence for on-going hydrothermal or volcanic activity was detected, the seafloor wore a thin sediment layer of ~10cm and thin Mn-coatings on 9 rock samples, suggesting volcanism more recently than would be expected based on the spreading-rate age of the crust. At 9 54'N, the Alvin trackline started south of a prominent abyssal hill, which has an unusual D-shape over 1 km wide in the center, crossed the abyssal hill, visited two local hummocks on top, and then attempted to find volcanic activity on the near slope of EPR axis by going as far west was possible during the dive. Heavy sediment everywhere on the abyssal hill, to the depth of push cores (~30 cm) and probably much deeper in many areas and 4 rock samples from the abyssal hill were quite weathered with little glass intact, suggest that this site is unaffected by the underlying O-AML. Upslope toward the EPR west of the abyssal hill, 4 rocks collected appear somewhat younger, and sediment became thinner. In addition, 3 CTD tow-yos over each O-AML found no evidence of active

  9. Classifying Volcanic Activity Using an Empirical Decision Making Algorithm

    NASA Astrophysics Data System (ADS)

    Junek, W. N.; Jones, W. L.; Woods, M. T.

    2012-12-01

    Detection and classification of developing volcanic activity is vital to eruption forecasting. Timely information regarding an impending eruption would aid civil authorities in determining the proper response to a developing crisis. In this presentation, volcanic activity is characterized using an event tree classifier and a suite of empirical statistical models derived through logistic regression. Forecasts are reported in terms of the United States Geological Survey (USGS) volcano alert level system. The algorithm employs multidisciplinary data (e.g., seismic, GPS, InSAR) acquired by various volcano monitoring systems and source modeling information to forecast the likelihood that an eruption, with a volcanic explosivity index (VEI) > 1, will occur within a quantitatively constrained area. Logistic models are constructed from a sparse and geographically diverse dataset assembled from a collection of historic volcanic unrest episodes. Bootstrapping techniques are applied to the training data to allow for the estimation of robust logistic model coefficients. Cross validation produced a series of receiver operating characteristic (ROC) curves with areas ranging between 0.78-0.81, which indicates the algorithm has good predictive capabilities. The ROC curves also allowed for the determination of a false positive rate and optimum detection for each stage of the algorithm. Forecasts for historic volcanic unrest episodes in North America and Iceland were computed and are consistent with the actual outcome of the events.

  10. Active Submarine Hotspot Volcanism on the Kerguelen Plateau

    NASA Astrophysics Data System (ADS)

    Coffin, M. F.; Leser, T. E.

    2012-12-01

    Heard and McDonald Islands on the Kerguelen Plateau, southern Indian Ocean, are active intraplate hotspot volcanoes. Heard Island is approximately 43 km long, and encompasses an area of approximately 368 square km. It is dominated by Big Ben, a roughly circular volcano with a base diameter of 18-20 km, and a maximum elevation of 2745 m. The McDonald Islands have an area of approximately 2.5 square km. Due to a lack of human habitation and no geoscientific monitoring, and cloud cover precluding satellite remote sensing for geoscientific purposes, the level of volcanic activity of the islands is unknown, but observers on passing ships frequently report eruptions, including molten lava, volcanic plumes, and tephra, and active fumaroles. Bathymetric, seismic reflection, magnetic, and gravity data acquired around Heard and McDonald Islands suggest that submarine magmatism affects a broad region of surrounding Kerguelen Plateau seafloor. In this region, we have identified six distinct fields of sea knolls that we interpret to be volcanic in origin. Individual fields contain from approximately 14 to approximately 140 sea knolls, and are not uniformly distributed around Heard and McDonald Islands. Given that Heard and McDonald Islands are volcanically active, it is likely that at least some of the interpreted submarine volcanoes are active and drive hydrothermal circulation.

  11. Cinnabar, arsenian pyrite and thallium-enrichment in active shallow submarine hydrothermal vents at Paleochori Bay, Milos Island, Greece

    NASA Astrophysics Data System (ADS)

    Kati, Marianna; Voudouris, Panagiotis; Valsami-Jones, Eugenia; Magganas, Andreas; Baltatzis, Emmanouil; Kanellopoulos, Christos; Mavrogonatos, Constantinos

    2015-04-01

    We herein report the discovery of active cinnabar-depositing hydrothermal vents in a submarine setting at Paleochori Bay, within the offshore southeastern extension of the Milos Island Geothermal Field, South Aegean Active Volcanic Arc. Active, low temperature (up to 115 °C) hydrothermal venting through volcaniclastic material has led to a varied assemblage of sulfide and alteration mineral phases in an area of approximately 1 km2. Our samples recovered from Paleochori Bay are hydrothermal edifices composed of volcaniclastic detrital material cemented by pyrite, or pure sulfide (mainly massive pyrite) mounts. Besides pyrite and minor marcasite, the hydrothermal minerals include cinnabar, amorphous silica, hydrous ferric oxides, carbonates (aragonite and calcite), alunite-jarosite solid solution and Sr-rich barite. Among others, growth textures, sieve-textured pyrite associated with barite, alunite-jarosite solid solution and hydrous ferric oxides rims colloform-banded pyrite layers. Overgrowths of arsenian pyrite layers (up to 3.2 wt. % As and/or up to 1.1 wt. % Mn) onto As-free pyrite indicate fluctuation in As content of the hydrothermal fluid. Mercury, in the form of cinnabar, occurs in up to 5 μm grains within arsenian pyrite layers, usually forming distinct cinnabar-enriched micro-layers. Hydrothermal Sr-rich barite (barite-celestine solid solution), pseudocubic alunite-jarosite solid solution and Mn- and Sr-enriched carbonates occur in various amounts and closely associated with pyrite and/or hydrous ferric oxides. Thallium-bearing sulfides and/or sulfosalts were not detected during our study; however, hydrous ferric oxides show thallium content of up to 0.5 wt. % Tl. The following scenarios may have played a role in pyrite precipitation at Paleochori: (a) H2S originally dissolved in the deep fluid but separated upon boiling could have reacted with oxygenated seawater under production of sulphuric acid, thus causing leaching and dissolution of primary iron

  12. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial

  13. First Active Hydrothermal Vent Fields Discovered at the Equatorial Southern East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Tao, C.; Lin, J.; Wu, G.; German, C. R.; Yoerger, D. R.; Chen, Y. J.; Guo, S.; Zeng, Z.; Han, X.; Zhou, N.; Li, J.; Xia, S.; Wang, H.; Ding, T.; Gao, S.; Qian, X.; Cui, R.; Zhou, J.; Ye, D.; Zhang8, Y.; Zhang, D.; Li, L.; Zhang, X.; Li, Y.; Wu, X.; Li, S.; He, Y.; Huang, W.; Wang, Y.; Wang, T.; Li, X.; Wang, K.; Gai, Y.; Science Party, D.; Baker, E. T.; Nakamura14, K.

    2008-12-01

    The third leg of the 2008 Chinese DY115-20 expedition on board R/V Dayangyihao has successfully discovered, for the first time, active hydrothermal vent fields on the fast-spreading Southern East Pacific Rise (SEPR) near the equator. This expedition follows the work of a 2005 expedition by R/V Dayangyihao, during which water column turbidity anomalies were measured in the region. The newly discovered vent fields are located along a 22-km-long ridge segment of the SEPR at 102.655°W/2.22°S, 102.646°W/2.152°S, 102.619°W/2.078°S, and 102.62°W/2.02°S, respectively, as well as on an off-axial volcano near 102.456°W/1.369°S. A significant portion of the activity appears to be concentrated along the edges of a seafloor fissure system. Furthermore, water column turbidity anomalies were observed over off-axis volcanoes near 102.827°W/2.084°S and 102.58°W/2.019°S. Video footage of the vent fields and water column turbidity, temperature, and methane anomalies were recorded by a deep-towed integrated system consisting of video, still camera, CTD, and ADCP, and MAPR and METS sensors. Two active hydrothermal fields at 2.217°S and 2.023°S were then extensively photographed and surveyed using the autonomous underwater vehicle ABE of the Woods Hole Oceanographic Institution (WHOI). Four samples of hydrothermal chimneys were successfully obtained by a TV-guided grab in three locations, showing evidence of high-temperature hydrothermal venting.

  14. Shallow vent architecture during hybrid explosive-effusive activity at Cordón Caulle (Chile, 2011-12): Evidence from direct observations and pyroclast textures

    NASA Astrophysics Data System (ADS)

    Schipper, C. Ian; Castro, Jonathan M.; Tuffen, Hugh; James, Mike R.; How, Penelope

    2013-07-01

    In June 2011, an eruption of rhyolite magma began at the Puyehue-Cordón Caulle volcanic complex, southern Chile. By January 2012, explosive activity had declined from sustained pyroclastic (Plinian to sub-Plinian) fountaining to mixed gas and ash jetting punctuated by Vulcanian blasts. This explosive activity was accompanied by synchronous effusion of obsidian lava in a hybrid explosive-effusive eruption. Fortuitous climatic conditions permitted ground-based observation and video recording of transient vent dynamics as well as real-time collection of proximal juvenile ash as it sedimented from the active plume. The main eruptive vent complex and site of lava effusion were represented by two loci of Vulcanian blasts within a single tephra cone containing a pancake-shaped proto-lava dome. These blast loci each consisted of clusters of sub-vents that expressed correlated shifts in eruption intensity, indicating the presence of partially connected and/or branching zones of high permeability within the upper conduit. Pyroclast textures were examined by X-ray computed microtomography and their permeability was modelled by lattice Boltzmann simulations. The porosity (39 to 67%) and Darcian permeability (3.1 × 10- 15 m2 perpendicular to fabric to 3.8 × 10- 11 m2 parallel to fabric) of fine ash emitted during ash jetting indicate that the permeable zones comprised highly sheared, tube-like bubbly magma, and contrast with the low porosity (~ 17%) and nul permeability of bombs ejected to hundreds of metres from the vent in Vulcanian blasts. Residual H2O content of ash (0.14 wt.%) and two bombs (0.2-0.25 wt.%), determined by Karl-Fischer titration indicate degassing of this pyroclastic material to near-atmospheric pressures. Ash textures and simple degassing/vesiculation models indicate the onset of permeability by ductile processes of shear-enhanced bubble coalescence in the upper 1 to 1.5 km of the conduit. Repeated ash jetting and Vulcanian blasts indicate that such

  15. Application Of Recent (2008-2013) Lunar Probe Instrumentation To The Exploration For Precambrian Protolife In Volcanic Vents

    NASA Astrophysics Data System (ADS)

    Green, Jack

    2009-12-01

    Selected recent and future lunar probes have instruments suitable for the exploration of Precambrian protolife. Fumaroles contain the ingredients for protolife. With available energy including flow charging and charge separation, amino acids and related compounds could evolve into ATP. Fischer-Tropsch reactions in hydrothermal clay could create lipid micelles as reaction chambers. Fumarolic polyphosphates and tungsten catalysts could contribute to precambrian protolife evolution . The floors of Alphonsus and Lavoisier M exhibit dark mounds which could be buried fumaroles at fracture intersections. Chang'e-1 could define regolith thickness at these mounds with microwave radiometry. The MoonLITE penetrometer could likely identify hydrothermal products in these mounds using X-ray fluorescence spectrometry. Regarding polar craters which may host volcanic ices, intermittent illumination of selected crater floors warmed to 220 K may create a transient tenuous atmosphere of COS, H2S, CO2, CO, HCl and CH4 which could be analyzed by near infrared spectrometry (NIMS) of SELENE or Chandrayaan-1. Prior to the 2009 impact of a polar crater by LCROSS (of the LRO mission), the Soviet LEND mission may detect water using epithermal neutrons. The impact plume proposed in the LCROSS mission at a polar crater could be analyzed by NIMS for fumarolic fluids similar the the NIMS analyses of Callisto and Ganymede moons of Jupiter. The possible identification of cyanogen in the LCROSS impact plume would support the CN2 spectrogram at Aristarchus by Kozyrev in 1969. In the Aristarchus region, lunar dawn during periods of maximum orbital flexing may accentuate release of Rn, Ar and protolife gases. These gases could possibly by identified by the Chang'e-1 gamma/x ray spectrometer, NIMS and the neutral mass spectrometer of the LADEE mission. Microwave spectrometry and radar on the LEO mission as well as LROC (LRO mission) could also be directed at verified lunar transient sites.

  16. Frequency Based Volcanic Activity Detection through Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Worden, A. K.; Dehn, J.; Webley, P. W.

    2015-12-01

    Satellite remote sensing has proved to offer a useful and relatively inexpensive method for monitoring large areas where field work is logistically unrealistic, and potentially dangerous. Current sensors are able to detect the majority of explosive volcanic activity; those that tend to effect and represent larger scale changes in the volcanic systems, eventually relating to ash producing periods of extended eruptive activity, and effusive activity. As new spaceborne sensors are developed, the ability to detect activity improves so that a system to gauge the frequency of volcanic activity can be used as a useful monitoring tool. Four volcanoes were chosen for development and testing of a method to monitor explosive activity: Stromboli (Italy); Shishaldin and Cleveland (Alaska, USA); and Karymsky (Kamchatka, Russia). Each volcano studied had similar but unique signatures of pre-cursory and eruptive activity. This study has shown that this monitoring tool could be applied to a wide range of volcanoes and still produce useful and robust data. Our method deals specifically with the detection of small scale explosive activity. The method described here could be useful in an operational setting, especially at remote volcanoes that have the potential to impact populations, infrastructure, and the aviation community. A number of important factors will affect the validity of application of this method. They are: (1) the availability of a continuous and continually populated dataset; (2) appropriate and reasonable sensor resolutions; (3) a recorded history of the volcano's previous activity; and, if available, (4) some ground-based monitoring system. We aim to develop the method further to be able to capture and evaluate the frequency of other volcanic processes such as lava flows, phreatomagmatic eruptions and dome growth and collapse. The work shown here has served to illustrate the capability of this method and monitoring tool for use at remote, un-instrumented volcanoes.

  17. Integrating science and education during an international, multi-parametric investigation of volcanic activity at Santiaguito volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Johnson, Jeffrey; Andrews, Benjamin; Wolf, Rudiger; Rose, William; Chigna, Gustavo; Pineda, Armand

    2016-04-01

    In January 2016, we held the first scientific/educational Workshops on Volcanoes (WoV). The workshop took place at Santiaguito volcano - the most active volcano in Guatemala. 69 international scientists of all ages participated in this intensive, multi-parametric investigation of the volcanic activity, which included the deployment of seismometers, tiltmeters, infrasound microphones and mini-DOAS as well as optical, thermographic, UV and FTIR cameras around the active vent. These instruments recorded volcanic activity in concert over a period of 3 to 9 days. Here we review the research activities and present some of the spectacular observations made through this interdisciplinary efforts. Observations range from high-resolution drone and IR footage of explosions, monitoring of rock falls and quantification of the erupted mass of different gases and ash, as well as morphological changes in the dome caused by recurring explosions (amongst many other volcanic processes). We will discuss the success of such integrative ventures in furthering science frontiers and developing the next generation of geoscientists.

  18. Morphology and dynamics of explosive vents through cohesive rock formations

    NASA Astrophysics Data System (ADS)

    Galland, O.; Gisler, G. R.; Haug, Ø. T.

    2014-06-01

    Shallow explosive volcanic processes, such as kimberlite volcanism and phreatomagmatic and phreatic activity, produce volcanic vents exhibiting a wide variety of morphologies, including vertical pipes and V-shaped vents. In this study we report on experimental and numerical models designed to capture a range of vent morphologies in an eruptive system. Using dimensional analysis, we identified key governing dimensionless parameters, in particular the gravitational stress-to-fluid pressure ratio (Π2 = P/ρgh) and the fluid pressure-to-host rock strength ratio (Π3 = P/C). We used combined experimental and numerical models to test the effects of these parameters. The experiments were used to test the effect of Π2 on vent morphology and dynamics. A phase diagram demonstrates a separation between two distinct morphologies, with vertical structures occurring at high values of Π2 and diagonal ones at low values of Π2. The numerical simulations were used to test the effect of Π3 on vent morphology and dynamics. In the numerical models we see three distinct morphologies: vertical pipes are produced at high values of Π3, diagonal pipes at low values of Π3, and horizontal sills at intermediate values of Π3. Our results show that vertical pipes form by plasticity-dominated yielding in high-energy systems (high Π2 and Π3), whereas diagonal and horizontal vents dominantly form by fracturing in lower energy systems (low Π2 and Π3). Although our models are two-dimensional, they suggest that circular pipes result from plastic yielding of the host rock in a high-energy regime, whereas V-shaped volcanic vents result from fracturing of the host rock in lower energy systems.

  19. Potential hazards from future volcanic eruptions in California

    SciTech Connect

    Miller, C.D.

    1989-01-01

    More than 500 volcanic vents have been identified in the State of California. At least 76 of these vents have erupted, some repeatedly, during the last 10,000 yr. Past volcanic activity has ranged in scale and type from small rhyolitic and basaltic eruptions through large catastrophic rhyolitic eruptions. Volcanoes in California will erupt again, and they could have serious impacts on the health, safety, and economy of the State's citizens as well as that of neighboring states. The nature and probable distribution of potentially hazardous volcanic phenomena and their threat to people and property is described in this bulletin.

  20. Polymagmatic activity and complex magma evolution at the monogenetic Mt Gambier Volcanic Complex in the Newer Volcanics Province, SE Australia

    NASA Astrophysics Data System (ADS)

    van Otterloo, Jozua; Raveggi, Massimo; Cas, Ray; Maas, Roland

    2015-04-01

    Monogenetic volcanism can produce eruptive suites showing considerable complexity in compositional features and pre-eruptive magma evolution. The ~5 ka Mt Gambier Volcanic Complex (MGVC), a monogenetic volcanic centre in the Newer Volcanics Province (NVP), SE Australia, is a good example. It displays a complex stratigraphy of interbedded deposits related to different eruption styles from a multi-vent system. Formation of the MGVC proceeded through simultaneous eruption of two alkali basaltic magma batches: a more alkaline and light rare earth element enriched basanite batch (Mg# 58-62) in the west and a trachybasalt batch (Mg# 58-64) enriched in SiO2 and CaO in the east. Trace element modelling suggests an origin of both magma batches from a single parental melt formed by 4-5% partial melting of a metasomatised lherzolite source in the asthenospheric mantle (2.2 GPa; ~80 km). At the base of the lithosphere, part of this parental melt interacted with a deep-seated pyroxenite contaminant to form the trachybasaltic suite. Further modification of either magma batch at crustal levels appears to have been negligible. Isotope and trace element signatures are consistent with the inferred asthenospheric magma source; Pb isotopes in particular suggest a source with mixed Indian mid-ocean ridge basalt (MORB)-Enriched Mantle 2 (EM2) affinities, the latter perhaps related to metasomatic overprinting. It is argued that Cainozoic NVP volcanism in SE Australia is not necessarily related to a mantle plume but can be explained by other models involving asthenospheric upwelling. Fast magma ascent rates in the lithosphere evidenced by the presence of mantle xenoliths may reflect reactivation of lithospheric structures that provide magma pathways to the surface.

  1. Volcanic Activities of Hakkoda Volcano after the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Miura, S.

    2014-12-01

    The 2011 Tohoku Earthquake of 11 March 2011 generated large deformation in and around the Japanese islands, and the large crustal deformation raises fear of further disasters including triggered volcanic activities. In this presentation, as an example of such potential triggered volcanic activities, we report the recent seismic activities of Hakkoda volcano, and discuss the relation to the movement of volcanic fluids. Hakkoda volcano is a group of stratovolcanoes at the northern end of Honshu Island, Japan. There are fumaroles and hot springs around the volcano, and phreatic eruptions from Jigoku-numa on the southwestern flank of Odake volcano, which is the highest peak of the volcanic group, were documented in its history. Since just after the occurrence of the Tohokui Earthquake, the seismicity around the volcano became higher, and the migration of hypocenters of volcano-tectonic (VT) earthquakes was observed.In addition to these VT earthquakes, long-period (LP) events started occurring beneath Odake at a depth of about 2-3 km since February, 2013, and subtle crustal deformation caused by deep inflation source was also detected by the GEONET GNSS network around the same time. The spectra of LP events are common between events irrespective of the magnitude of events, and they have several spectral peaks at 6-7 sec, 2-3 sec, 1 sec, and so on. These LP events sometimes occur like a swarm with an interval of several minutes. The characteristics of observed LP events at Hakkoda volcano are similar to those of LP events at other active volcanoes and hydrothermal area in the world, where abundant fluids exist. Our further analysis using far-field Rayleigh radiation pattern observed by NIED Hi-net stations reveals that the source of LP events is most likely to be a nearly vertical tensile crack whose strike is NE-SW direction. The strike is almost perpendicular to the direction of maximum extensional strain estimated from the geodetic analysis, and is almost parallel to

  2. Assessing the volcanic hazard for Rome: 40Ar/39Ar and In-SAR constraints on the most recent eruptive activity and present-day uplift at Colli Albani Volcanic District

    NASA Astrophysics Data System (ADS)

    Marra, F.; Gaeta, M.; Giaccio, B.; Jicha, B. R.; Palladino, D. M.; Polcari, M.; Sottili, G.; Taddeucci, J.; Florindo, F.; Stramondo, S.

    2016-07-01

    We present new 40Ar/39Ar data which allow us to refine the recurrence time for the most recent eruptive activity occurred at Colli Albani Volcanic District (CAVD) and constrain its geographic area. Time elapsed since the last eruption (36 kyr) overruns the recurrence time (31 kyr) in the last 100 kyr. New interferometric synthetic aperture radar data, covering the years 1993-2010, reveal ongoing inflation with maximum uplift rates (>2 mm/yr) in the area hosting the most recent (<200 ka) vents, suggesting that the observed uplift might be caused by magma injection within the youngest plumbing system. Finally, we frame the present deformation within the structural pattern of the area of Rome, characterized by 50 m of regional uplift since 200 ka and by geologic evidence for a recent (<2000 years) switch of the local stress-field, highlighting that the precursors of a new phase of volcanic activity are likely occurring at the CAVD.

  3. Multidimensional analysis and probabilistic model of volcanic and seismic activities

    NASA Astrophysics Data System (ADS)

    Fedorov, V.

    2009-04-01

    A search for space and time regularities in volcanic and seismic events for the purpose of forecast method development seems to be of current concern, both scientifically and practically. The seismic and volcanic processes take place in the Earth's field of gravity which in turn is closely related to gravitational fields of the Moon, the Sun, and the planets of the Solar System. It is mostly gravity and tidal forces that exercise control over the Earth's configuration and relief. Dynamic gravitational interaction between the Earth and other celestial bodies makes itself evident in tidal phenomena and other effects in the geospheres (including the Earth's crust). Dynamics of the tidal and attractive forces is responsible for periodical changes in gravity force, both in value and direction [Darwin, 1965], in the rate of rotation and orbital speed; that implies related changes in the endogenic activity of the Earth. The Earth's rotation in the alternating gravitational field accounts to a considerable extent for regular pattern of crustal deformations and dislocations; it is among principal factors that control the Earth's form and structure, distribution of oceans and continents and, probably, continental drift [Peive, 1969; Khain, 1973; Kosygin, 1983]. The energy of gravitational interaction is transmitted through the tidal energy to planetary spheres and feeds various processes there, including volcanic and seismic ones. To determine degree, character and special features of tidal force contribution to the volcanic and seismic processes is of primary importance for understanding of genetic and dynamic aspects of volcanism and seismicity. Both volcanic and seismic processes are involved in evolution of celestial bodies; they are operative on the planets of the Earth group and many satellites [Essays…, 1981; Lukashov, 1996]. From this standpoint, studies of those processes are essential with a view to development of scenarios of the Earth's evolution as a celestial

  4. Influence of explosive volcanic events on the activation versus de-activation of a modern turbidite system: the example of the Dohrn canyon-fan in the continental slope of the Campania volcanic district (Naples Bay, Italy - Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Roca, M.; Budillon, F.; Pappone, G.; Insinga, D.

    2015-12-01

    The interplay between volcanic activity, volcano-clastic yield and activation/deactivation of a turbidite system can be evaluated along the continental margin of Campania region (Tyrrhenian Sea - Italy), an active volcanic area, where three wide canyon-fans occur at short distances one to another. Actually, the Dohrn, Magnaghi and Cuma canyons cut the continental slope and shelf off Ischia and Procida volcanic islands and off the Campania Plain where Phlegraean Field and Mt. Vesuvius active vents are located. This research, partly supported by the Italian Flagship Project Ritmare, is based on single-channel, high-resolution seismic profiles (Sparker-One 16 kJ, 0.5 s twtt), swath-bathymetry and litho- and tephra-stratigraphy of gravity cores. We focused on the stratigraphic constraint of paleo-thalweg features and channel/levees deposits in seismics, debris flow, turbidites and hemipelagites in cores, to learn more on the activation/deactivation stages of the canyon Dohrn, in the frame of relative eustatic sea level variations over the Middle Pleistocene-Holocene time span.Preliminary outcomes suggest that even major volcanic events occurred in the last 300 ky, such as ignimbrite eruptions or large fallouts, have caused the infilling of the canyon head and the cover of pre-existing seabed morphology. As a consequence, the temporary deactivation of the turbidite system has occurred, despite the volcano-clastic overload in the coastal environment. Phases of renewed activities of the thalweg are observed to be in step with falling stages of sea level, which have driven the re-incision of canyon valleys through continuous volcano-clastic debris and turbidites down-flows. Since Holocene, the quiescence of the Dohrn Canyon has been documented, despite the intense volcano-tectonic activity in the area.

  5. Recurrence rates of volcanism in basaltic volcanic fields: An example from the Springerville volcanic field, Arizona

    SciTech Connect

    Condit, C.D.; Connor, C.B.

    1996-10-01

    A spatio-temporal near-neighbor model is used to identify and map variations in the recurrence rate of volcanism in the Springerville volcanic field, Arizona, a large field on the Colorado Plateau boundary. Detailed mapping of individual lava flows and their associated vents, together with radiometric and paleomagnetic dating, demonstrates that 366 volcanic events have formed the Springerville volcanic field. A near-neighbor spatio-temporal recurrence-rate model using seven near-neighbor volcanoes and a 0.5 m.y. time window reveals that (1) areas of waxing and waning magmatism in the Springerville volcanic field are much more localized and (2) volcanic activity within these areas is much more intense than implied by field-wide temporal trends. Because volcanic activity is spatially and temporally clustered, forecasting subsequent activity is more successful if the spatio-temporal recurrence-rate model is used, rather than the average recurrence rates. This success indicates that spatio-temporal recurrence-rate models are useful tools for the quantification of long-term volcanic hazards in basaltic volcanic fields. 61 refs., 13 figs., 2 tabs.

  6. Antimicrobial Activity of Marine Bacterial Symbionts Retrieved from Shallow Water Hydrothermal Vents.

    PubMed

    Eythorsdottir, Arnheidur; Omarsdottir, Sesselja; Einarsson, Hjorleifur

    2016-06-01

    Marine sponges and other sessile macro-organisms were collected at a shallow water hydrothermal site in Eyjafjörður, Iceland. Bacteria were isolated from the organisms using selective media for actinomycetes, and the isolates were screened for antimicrobial activity. A total of 111 isolates revealed antimicrobial activity displaying different antimicrobial patterns which indicates production of various compounds. Known test strains were grown in the presence of ethyl acetate extracts from one selected isolate, and a clear growth inhibition of Staphylococcus aureus was observed down to 0.1 % extract concentration in the medium. Identification of isolates shows different species of Actinobacteria with Streptomyces sp. playing the largest role, but also members of Bacilli, Alphaproteobacteria and Gammaproteobacteria. Sponges have an excellent record regarding production of bioactive compounds, often involving microbial symbionts. At the hydrothermal vents, however, the majority of active isolates originated from other invertebrates such as sea anemones or algae. The results indicate that antimicrobial assays involving isolates in full growth can detect activity not visible by other methods. The macro-organisms inhabiting the Eyjafjörður hydrothermal vent area host diverse microbial species in the phylum Actinobacteria with antimicrobial activity, and the compounds responsible for the activity will be subject to further research. PMID:27147438

  7. Episodes of fluvial and volcanic activity in Mangala Valles, Mars

    NASA Astrophysics Data System (ADS)

    Keske, Amber L.; Hamilton, Christopher W.; McEwen, Alfred S.; Daubar, Ingrid J.

    2015-01-01

    A new mapping-based study of the 900-km-long Mangala Valles outflow system was motivated by the availability of new high-resolution images and continued debates about the roles of water and lava in outflow channels on Mars. This study uses photogeologic analysis, geomorphic surface mapping, cratering statistics, and relative stratigraphy. Results show that Mangala Valles underwent at least two episodes of fluvial activity and at least three episodes of volcanic activity during the Late Amazonian. The occurrence of scoured bedrock at the base of the mapped stratigraphy, in addition to evidence provided by crater retention ages, suggests that fluvial activity preceded the deposition of two of the volcanic units. Crater counts performed at 30 locations throughout the area have allowed us to construct the following timeline: (1) formation of Noachian Highlands and possible initial flooding event(s) before ∼1 Ga, (2) emplacement of Tharsis lava flows in the valley from ∼700 to 1000 Ma, (3) a megaflooding event at ∼700-800 Ma sourced from Mangala Fossa, (4) valley fill by a sequence of lava flows sourced from Mangala Fossa ∼400-500 Ma, (5) another megaflooding event from ∼400 Ma, (6) a final phase of volcanism sourced from Mangala Fossa ∼300-350 Ma, and (7) emplacement of eolian sedimentary deposits in the northern portion of the valley ∼300 Ma. These results are consistent with alternating episodes of aqueous flooding and volcanism in the valles. This pattern of geologic activity is similar to that of other outflow systems, such as Kasei Valles, suggesting that there is a recurring, and perhaps coupled, nature of these processes on Mars.

  8. First volcanic CO2 budget estimate for three actively degassing volcanoes in the Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Robidoux, Philippe; Aiuppa, Alessandro; Conde, Vladimir; Galle, Bo; Giudice, Gaetano; Avard, Geoffroy; Muñoz, Angélica

    2014-05-01

    CO2 is a key chemical tracer for exploring volcanic degassing mechanisms of basaltic magmatic systems (1). The rate of CO2 release from sub-aerial volcanism is monitored via studies on volcanic plumes and fumaroles, but information is still sparse and incomplete for many regions of the globe, including the majority of the volcanoes in the Central American Volcanic Arc (2). Here, we use a combination of remote sensing techniques and in-situ measurements of volcanic gas plumes to provide a first estimate of the CO2 output from three degassing volcanoes in Central America: Turrialba, in Costa Rica, and Telica and San Cristobal, in Nicaragua. During a field campaign in March-April 2013, we obtained (for the three volcanoes) a simultaneous record of SO2 fluxes (from the NOVAC network (3)) and CO2 vs. SO2 concentrations in the near-vent plumes (obtained via a temporary installed fully-automated Multi-GAS instrument (4)). The Multi-GAS time-series allowed to calculate the plume CO2/SO2 ratios for different intervals of time, showing relatively stable gas compositions. Distinct CO2 - SO2 - H2O proportions were observed at the three volcanoes, but still within the range of volcanic arc gas (5). The CO2/SO2 ratios were then multiplied by the SO2 flux in order to derive the CO2 output. At Turrialba, CO2/SO2 ratios fluctuated, between March 12 and 19, between 1.1 and 5.7, and the CO2flux was evaluated at ~1000-1350 t/d (6). At Telica, between March 23 and April 8, a somewhat higher CO2/SO2 ratio was observed (3.3 ± 1.0), although the CO2 flux was evaluated at only ~100-500 t/d (6). At San Cristobal, where observations were taken between April 11 and 15, the CO2/SO2 ratio ranged between 1.8 and 7.4, with a mean CO2 flux of 753 t/d. These measurements contribute refining the current estimates of the total CO2 output from the Central American Volcanic Arc (7). Symonds, R.B. et al., (2001). J. Volcanol. Geotherm. Res., 108, 303-341 Burton, M. R. et al. (2013). Reviews in

  9. The Variation of Volcanic Tremor During Active Stage in the 1986 Izu-Oshima Eruption

    NASA Astrophysics Data System (ADS)

    Kurokawa, Aika; Kurita, Kei

    2014-05-01

    Izu-Oshima is one of the most active volcanoes in Japan. The latest eruption of Nov. 1986 exhibited a curious eruption sequence; the strombolian type eruption started on 15 Nov. at the central vent and it had continued for 4 days. Then after it ceased, subplinian type fissure eruptions occurred inside and outside the caldera where several hundreds meters to few kilometers away from the central vent. Lava flows were associated with these two eruption episodes. Petrologically compositions of these two kinds of lava are completely dissimilar; magma from the central vent is basaltic with narrow range of chemical composition, which is almost same as that of the previous stages while magma from the fissures is evolved one with wider variations of composition [Aramaki and Fujii, 1988]. This means that two distinct magma sources, which were chemically separated but mechanically coupled, should have existed prior to the eruption. The most important issue concerning this eruption is how the mechanical interaction between two magma sources took place and evolved. Throughout the eruption sequence, remarkable activities of seismic tremor have been observed. In this presentation we report evolution of tremor sources to characterize the interaction based on the recently recovered seismic records and we propose a reinterpretation of the eruption sequence. We analyzed volcanic tremor in Nov. 1986 on digitized seismic records of 7 stations in the Island. The aim of this analysis is to estimate the movement of two kinds of magma associated with the change of the eruption styles. Firstly root mean square amplitudes of the filtered seismic signals and their spectrum were calculated. The tremor style changed from continuous mode to intermittent, sporadic mode at the period between the summit eruption and the fissure eruptions. The dominant frequency also changed around the same time. Secondly to derive the location of tremor source, Amplitude Inversion Method [Battaglia and Aki, 2003

  10. Jovian dust streams: A monitor of Io's volcanic plume activity

    USGS Publications Warehouse

    Kruger, H.; Geissler, P.; Horanyi, M.; Graps, A.L.; Kempf, S.; Srama, R.; Moragas-Klostermeyer, G.; Moissl, R.; Johnson, T.V.; Grun, E.

    2003-01-01

    Streams of high speed dust particles originate from Jupiter's moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter's magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200 km s-1. The Galileo spacecraft has continuously monitored the dust streams during 34 revolutions about Jupiter between 1996 and 2002. The observed dust fluxes exhibit large orbit-to-orbit variability due to systematic and stochastic changes. After removal of the systematic variations, the total dust emission rate of Io has been calculated. It varies between 10-3 and 10 kg s-1, and is typically in the range of 0.1 to 1 kg s-1. We compare the dust emission rate with other markers of volcanic activity on Io like large-area surface changes caused by volcanic deposits and sightings of volcanic plumes. Copyright 2003 by the American Geophysical Union.

  11. Relationship between Jovian Hectometric Attenuation Lanes And Io Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Spencer, J. R.; Stansberry, J. A.

    2001-01-01

    Within the Galileo plasma wave instrument data a narrow (in frequency) attenuation band is seen in the hectometric (HOM) emission that varies in frequency with system III longitude. This attenuation lane is believed to be the result of near-grazing incidence or coherent scattering of radio emission near the outer edge of the Io torus, i.e., when the ray path is nearly tangent to an L shell containing the Io flux tube. Such a process should, therefore, be enhanced when the Io volcanic activity is increased and the Io flux tube has enhanced density. We have performed a systematic study of the existing Galileo radio emission data in an effort to determine the phenomenology and frequency of occurrence of the attenuation lanes and the association, if any, with published volcanic activity of Io. Our results indicate that the attenuation lanes are present almost all of the time but are enhanced on occasion. The best examples of attenuation lanes occur when Galileo is within approximately 65 R(sub J) of Jupiter and thus are probably more apparent because of the increased signal-to-noise ratio of the radio receivers. The lack of continuous monitoring of Io activity and the lack of known activity on the anti-Earthward side of Io are problematic and make detailed correlation with radio emission very difficult at this time. Nevertheless, if the data are displayed for periods when the spacecraft is within 65 R(sub J) (i.e., for each perijove pass), then the highest-contrast lanes occur on most passes when the Io volcanic activity is also high for that pass. These results support our current understanding of attenuation lane formation and suggest that future efforts can be made to better understand the interaction of HOM emission with the Io flux tube.

  12. Volcanic activity and satellite-detected thermal anomalies at Central American volcanoes

    NASA Technical Reports Server (NTRS)

    Stoiber, R. E. (Principal Investigator); Rose, W. I., Jr.

    1973-01-01

    The author has identified the following significant results. A large nuee ardente eruption occurred at Santiaguito volcano, within the test area on 16 September 1973. Through a system of local observers, the eruption has been described, reported to the international scientific community, extent of affected area mapped, and the new ash sampled. A more extensive report on this event will be prepared. The eruption is an excellent example of the kind of volcanic situation in which satellite thermal imagery might be useful. The Santiaguito dome is a complex mass with a whole series of historically active vents. It's location makes access difficult, yet its activity is of great concern to large agricultural populations who live downslope. Santiaguito has produced a number of large eruptions with little apparent warning. In the earlier ground survey large thermal anomalies were identified at Santiaguito. There is no way of knowing whether satellite monitoring could have detected changes in thermal anomaly patterns related to this recent event, but the position of thermal anomalies on Santiaguito and any changes in their character would be relevant information.

  13. The search for active release of volcanic gases on Mars

    NASA Astrophysics Data System (ADS)

    Khayat, Alain; Villanueva, Geronimo; Mumma, Michael; Tokunaga, Alan

    2015-11-01

    The study of planetary atmospheres by means of spectroscopy is important for understanding their origin and evolution. The presence of short-lived trace gases in the martian atmosphere would imply recent production, for example, by ongoing geologic activity. On Earth, sulfur dioxide (SO2), sulfur monoxide (SO) and hydrogen sulfide (H2S) are the main sulfur-bearing gases released during volcanic outgassing. Carbonyl sulfide (OCS), also released from some volcanoes on Earth (e.g., Erebus and Nyiragongo), could be formed by reactions involving SO2 or H2S inside magma chambers. We carried out the first ground-based, semi-simultaneous, multi-band and multi-species search for such gases above the Tharsis and Syrtis volcanic regions on Mars. The submillimeter search extended between 23 November 2011 and 13 May 2012 which corresponded to Mars’ mid Northern Spring and early Northern Summer seasons (Ls = 34-110°). The strong submillimeter rotational transitions of SO2, SO and H2S were targeted using the high-resolution heterodyne receiver (aka Barney) on the Caltech Submillimeter Observatory. We reached sensitivities sufficient to detect a volcanic release on Mars that is 4% of the SO2 released continuously from Kilauea volcano in Hawaii, or 5% that of the Masaya volcano in Nicaragua. The infrared search covered OCS in its combination band (ν2+ν3) at 3.42 μm at two successive Mars years, during Mars’ late Northern Spring and mid Northern Summer seasons, spanning Ls= 43º and Ls= 147º. The targeted volcanic districts were observed during the two intervals, 14 Dec. 2011 to 6 Jan. 2012 in the first year, and 30 May 2014 to 16 June 2014 in the second year, using the high resolution infrared spectrometer (CSHELL) on NASA’s Infrared Telescope Facility (NASA/IRTF). We will present our results and discuss their implications for current volcanic outgassing activity on the red planet. We gratefully acknowledge support from the NASA Planetary Astronomy Program under NASA

  14. Tectonic and magmatic controls on the location of post-subduction monogenetic volcanoes in Baja California, Mexico, revealed through spatial analysis of eruptive vents

    NASA Astrophysics Data System (ADS)

    Germa, Aurélie; Connor, Laura J.; Cañon-Tapia, Edgardo; Le Corvec, Nicolas

    2013-12-01

    Post-subduction (12.5 Ma to less than 1 Ma) monogenetic volcanism on the Baja California peninsula, Mexico, formed one of the densest intra-continental areas of eruptive vents on Earth. It includes about 900 vents within an area ˜700 km long (N-S) and 70 to 150 km wide (W-E). This study shows that post-subduction volcanic activity was distributed along this arc and that modes exist in the volcano distribution, indicating that productivity of the magma source region was not uniform along the length of the arc. Vent clustering, vent alignments, and cone elongations were measured within eight monogenetic volcanic fields located along the peninsula. Results indicate that on a regional scale, vent clustering varies from north to south with denser spatial clustering in the north on the order of 1.9 × 10-1 vents/km2 to less dense clustering in the south on the order of 7.8 × 10-2 vents/km2. San Quintin, San Carlos, Jaraguay, and Santa Clara are spatially distinct volcanic fields with higher eruptive vent densities suggesting the existence of individual melt columns that may have persisted over time. In contrast, the San Borja, Vizcaino, San Ignacio, and La Purisima vent fields show lower degrees of vent clustering and no obvious spatial gaps between fields, thus indicating an area of more distributed volcanism. Insight into the lithospheric stress field can be gained from vent alignments and vent elongation measurements. Within the fields located along the extinct, subduction-related volcanic arc, elongation patterns of cinder cones and fissure-fed spatter cones, vent clusters, and vent alignments trend NW-SE and N-S. Within the Santa Clara field, located more to the west within the forearc, elongation patterns of the same volcanic features trend NE-SW. These patterns suggest that magmatism was more focused in the forearc and in the northern part of Baja California than in its southern region. Within the extinct arc, magma ascent created volcano alignments and elongate

  15. Thyroid cancer incidence in relation to volcanic activity

    SciTech Connect

    Arnbjoernsson, E.A.; Arnbjoernsson, A.O.; Olafsson, A.

    1986-01-01

    Environmental or genetic factors are sought to explain the high incidence of thyroid cancer in Iceland. At present, it is impossible to cite any environmental factor, particularly one related to the volcanic activity in the country, which could explain the high incidence of thyroid cancer in Iceland. However, the thyroid gland in Icelanders is very small due to the high intake of iodine from seafood. It is, therefore, easier for physicians to find thyroid tumors. Furthermore, genetic factors are very likely to be of great importance in the small, isolated island of Iceland.

  16. Intermediate products of sulfur disproportional reaction and their physical role in effusive to explosive submarine volcanic activity

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Takano, B.; Butterfield, D. A.; Resing, J.; Chadwick, W. W.; Embley, R. W.

    2009-12-01

    Recent direct observations of submarine volcanic activity in the Mariana Arc are giving us a chance to examine the role of volcanic gas in submarine volcanic conduits. Unlike subaerial volcanoes, where hydrogeologic conditions have different character from place to place, the overlying water mass above submarine volcanoes gives a uniform hydrographic setting. Currently, the places where we can directly observe submarine volcanic activity are located deeper than 400 m, which raises the boiling point of seawater to over 240 deg C. This situation allows us to examine the interaction of volcanic gases with ambient seawater at a shorter distance from the magma source than at subaerial volcanic settings. Arc volcano settings give us longer and more frequent opportunities to make observations and provide a more diverse range of submarine volcanism than ridge settings. Among the three major components of volcanic gases (i.e., H2O, CO2 and SO2), water follows a two phase boundary below the critical temperature after volatile components leave from the magmatic source. Milky sulfur sol bearing hydrothermal fluid is commonly observed throughout Mariana active sites. Most of the sulfur sol (colloidal elemental sulfur and polysulfides) might be formed by disproportional reaction of sulfur dioxide with seawater when water vapor shrinks to liquid water. The reaction creates not only sulfur sol but also various types of sulfite, which affects the pH of seawater. We detected short-lived sulfite species in the water column above several active Mariana volcanoes such as NW Rota-1, Daikoku and Nikko by on-board HPLC. Because most observations are made on the liquid phase side of H2O boundary, it is very hard to get data to investigate the physical and chemical sulfur sol forming process occurring on the vapor phase side or at the critical state (i.e., near the magma source process). Carbon dioxide behaves as a gas at a wide range of pressures and temperatures and carries heat and

  17. Active seafloor gas vents on the Shelf and upper Slope in Canadian Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Dallimore, S. R.; Hughes Clarke, J. E.; Blasco, S.; Taylor, A. E.; Melling, H.; Vagle, S.; Conway, K.; Riedel, M.; Lundsten, E.; Gwiazda, R.

    2012-12-01

    seafloor topographic features on the continental slope suggests these are also active vent sites. Vigorous degassing of methane and pore water freshening in cores from features suggest the presence of near seafloor gas hydrate accumulations. If correct, a feature at 290m depth hosts the shallowest known marine gas hydrate occurrence. Here a layer of very cold ocean waters (-1.7°C) extends to ~200m depths, below which the temperature increases slowly with depth. A consequence of the exceptionally low upper water column temperatures is that the top of the methane hydrate stability zone is only slightly shallower that the 290m seafloor feature. Thus, gas hydrate harbored within seafloor sediments at 290m is vulnerable to decomposition with even subtle climatically-induced warming of the overlying water. Further geoscience studies are planned for 2012 and 2013 to study geological processes, geohazards and the sensitivity of the shelf / slope setting to climate change in the Arctic.

  18. Galileo SSI Observations of Volcanic Activity at Tvashtar Catena, Io

    NASA Technical Reports Server (NTRS)

    Milazzo, M. P.; Keszthely, L. P.; Radebaugh, J.; Davies, A. G.; Turtle, E. P.; Geissler, P.; Klaasen, K. P.; McEwen, A. S.

    2005-01-01

    Introduction: We report on the analysis of the Galileo SSI's observations of the volcanic activity at Tvashtar Catena, Io as discussed by Milazzo et al. Galileo's Solid State Imager (SSI) observed Tvashtar Catena (63 deg N, 120 deg W) four times between November 1999 and October 2001, providing a unique look at the distinctive high latitude volcanism on Io. The November 1999 observation spatially resolved, for the first time, an active extraterrestrial fissure eruption. The brightness temperature of the lavas at the November 1999 fissure eruption was 1300 K. The second observation (orbit I27, February 2000) showed a large (approx. 500 sq km) region with many, small spots of hot, active lava. The third observation was taken in conjunction with a Cassini observation in December 2000 and showed a Pele-like plume deposition ring, while the Cassini images revealed a 400 km high Pele-type plume above the Catena. The final Galileo SSI observation of Tvashtar was acquired in October 2001, and all obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. We have concentrated on analyzing the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of "simple" advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping (in time and space) eruptions.

  19. Observations of Seafloor Deformation and Methane Venting within an Active Fault Zone Offshore Southern California

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Lundsten, E. M.; Paull, C. K.; Caress, D. W.; Thomas, H. J.; Brewer, P. G.; Vrijenhoek, R.; Lundsten, L.

    2013-12-01

    Detailed mapping surveys of the floor and flanks of the Santa Monica Basin, San Pedro Basin, and San Diego Trough were conducted during the past seven years using an Autonomous Underwater Vehicle (AUV) built and operated by MBARI specifically for seafloor mapping. The AUV collected data provide up to 1 m resolution multibeam bathymetric grids with a vertical precision of 0.15 m. Along with high-resolution multibeam, the AUV also collects chirp seismic reflection profiles. Structures within the uppermost 10-20 m of the seafloor, which in the surveys presented here is composed of recent sediment drape, can typically be resolved in the sub-bottom reflectors. Remotely operated vehicle (ROV) dives allowed for ground-truth observations and sampling within the surveyed areas. The objectives of these dives included finding evidence of recent seafloor deformation and locating areas where chemosynthetic biological communities are supported by fluid venting. Distinctive seafloor features within an active fault zone are revealed in unprecedented detail in the AUV generated maps and seismic reflection profiles. Evidence for recent fault displacements include linear scarps which can be as small as 20 cm high but traceable for several km, right lateral offsets within submarine channels and topographic ridges, and abrupt discontinuities in sub-bottom reflectors, which in places appear to displace seafloor sediments. Several topographic highs that occur within the fault zone appear to be anticlines related to step-overs in these faults. These topographic highs are, in places, topped with circular mounds that are up to 15 m high and have ~30° sloping sides. The crests of the topographic highs and the mounds both have distinctive rough morphologies produced by broken pavements of irregular blocks of methane-derived authigenic carbonates, and by topographic depressions, commonly more than 2 m deep. These areas of distinctive rough topography are commonly associated with living

  20. Nondestructive neutron activation analysis of volcanic samples: Hawaii

    SciTech Connect

    Zoller, W.H.; Finnegan, D.L.; Crowe, B.

    1986-01-01

    Samples of volcanic emissions have been collected between and during eruptions of both Kilauea and Mauna Loa volcanoes during the last three years. Airborne particles have been collected on Teflon filters and acidic gases on base-impregnated cellulose filters. Chemically neutral gas-phase species are collected on charcoal-coated cellulose filters. The primary analytical technique used is nondestructive neutron activation analysis, which has been used to determine the quantities of up to 35 elements on the different filters. The use of neutron activation analysis makes it possible to analyze for a wide range of elements in the different matrices used for the collection and to learn about the distribution between particles and gas phases for each of the elements.

  1. Active seismic sources as a proxy for seismic surface processes: An example from the 2012 Tongariro volcanic eruptions, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, A. D.; Lokmer, I.; Kennedy, B.; Keys, H. J. R.; Proctor, J.; Lyons, J. J.; Jolly, G. E.

    2014-10-01

    The 6 August 2012 eruption from Tongariro volcano's Te Maari vent comprised a complex sequence of events including at least 4 eruption pulses, a large chasm collapse, and a debris avalanche (volume of ~ 7 × 105 m3) that propagated ~ 2 km beyond the eruptive vent. The eruption was poorly observed, being obscured by night time darkness, and the eruption timing must be unravelled instead from a complex seismic record that includes discrete volcanic earthquakes, a sequence of low to moderate level spasmodic tremor and an intense burst of seismic and infrasound activity that marked the eruption onset. We have discriminated the evolution of the complex surface activity by comparing active seismic source data to the seismic sequence in a new cross correlation source location approach. We dropped 11 high impact masses from helicopter to generate a range of active seismic sources in the vicinity of the eruption vent, chasm, and debris avalanche areas. We obtained 8 successful drops having an impact energy ranging from 3 to 9 × 106 Nm producing observable seismic signals to a distance of 5 to 10 km and having good signal to noise characteristics in the 3-12 Hz range. For the 8 drops, we picked first-P arrival times and calculated amplitude spectra for a uniform set of four stations. We then compared these proxy source excitations to the natural eruption and pre-eruption data using a moving window cross correlation approach. From the correlation processing, we obtain a best matched source position in the near vent region for the eruption period and significant down channel excitations during both the pre and post eruption periods. The total seismic energy release calculated from the new method is ~ 8 × 1011 Nm, similar to an independently estimated calculation based on the radiated seismic energy. The new energy estimate may be more robust than those calculated from standard seismic radiation equations, which may include uncertainties about the path and site effects. The

  2. A comparison of active seismic source data to seismic excitations from the 2012 Tongariro volcanic eruptions, New Zealand

    NASA Astrophysics Data System (ADS)

    Jolly, Arthur; Kennedy, Ben; Keys, Harry; Lokmer, Ivan; Proctor, Jon; Lyons, John; Jolly, Gillian

    2014-05-01

    The 6 August 2012 eruption from Tongariro volcano's Te Maari vent comprised a complex sequence of events including at least 4 eruption jets, a large chasm collapse, and a debris avalanche (volume of ~7x105 m3) that propagated ~2 km beyond the eruptive vent. The eruption was poorly observed, being obscured by night time darkness, and the eruption chronology must be unravelled instead from a complex seismic record that includes discrete volcanic earthquakes, a sequence of low to moderate level spasmodic tremor and an intense burst of seismic and infrasound activity starting at 11:52:18 UTC that marked the eruption onset. We have discriminated the timing of the complex surface activity by comparing active seismic source data to the eruptive sequence. We dropped 11 high impact masses from helicopter to generate a range of active seismic sources in the vicinity of the eruption vent, chasm, and debris avalanche areas. We obtained 8 successful drops having an impact energy ranging from 3 to 9x106 joules producing seismic signals to a distance of 5 to 10 km and having good signal to noise characteristics in the 3-12 Hz range. For the 8 drops, we picked first-P arrival times and calculated amplitude spectra for a uniform set of four 3-component stations. From these, we obtained a distribution of amplitudes across the network for each drop position which varied systematically from the eruption vent and avalanche scar to the debris avalanche toe. We then compared these proxy source excitations to the natural eruption and pre-eruption data using a moving window cross-correlation approach. From the correlation processing, we found evidence for the debris avalanche a few minutes prior to the eruption in both the broad spectrum and narrow frequency (5-10 Hz) analysis. The total seismic energy release calculated from the new method is ~8x1011 joules, similar to an independently estimated calculation based on the radiated seismic energy. The inferred seismic energy release for the

  3. Active Venting Sites On The Gas-Hydrate-Bearing Hikurangi Margin, Off New Zealand: ROV Measurements And Observations

    NASA Astrophysics Data System (ADS)

    Naudts, L.; Poort, J.; Boone, D.; Linke, P.; Greinert, J.; de Batist, M.; Henriet, J.

    2007-12-01

    During R.V. Sonne cruise SO191-3, part of the "New (Zealand Cold) Vents" expedition, RCMG deployed a CHEROKEE ROV "Genesis" on the Hikurangi Margin. This accretionary margin, on the east coast of New Zealand, is related to the subduction of the Pacific Plate under the Australian Plate. Several cold vent locations as well as an extensive BSR, indicating the presence of gas hydrates, have been found at this margin. The aims of the ROV-work were to precisely localize active methane vents, to conduct detailed visual observations of the vent structures and activity, and to perform measurements of physical properties and collect samples at and around the vent locations. The three investigated areas generally have a flat to moderate undulating sea floor with soft sediments alternating with carbonate platforms. The different sites were sometimes covered with dense fields of live clams or shell debris, often in association with tube worms, sponges and/or soft tissue corals. Active bubble- releasing seeps were observed at Faure's site and LM-3 site. Bubble-releasing activity was very variable in time, with periods of almost non-activity alternating with periods of violent outbursts. Bubble release occurred mainly from prominent depressions in soft-sediment sea floor. Bottom-water sampling revealed sometimes high concentrations of methane. Sediment-temperature measurements were largely comparable with the bottom- water temperature except for a "raindrop site" (with dense populations of polychaetes), where anomalous low sediment-temperature was measured. Further analysis of the ROV data together with the integration of other datasets will enable us to produce a model characterizing seep structure and environment.

  4. GRID based Thermal Images Processing for volcanic activity monitoring

    NASA Astrophysics Data System (ADS)

    Mangiagli, S.; Coco, S.; Drago, L.; Laudani, A.,; Lodato, L.; Pollicino, G.; Torrisi, O.

    2009-04-01

    Since 2001, the Catania Section of the National Institute of Geophysics and Volcanology (INGV) has been running the video stations recording the volcanic activity of Mount Etna, Stromboli and the Fossa Crater of Vulcano island. The video signals of 11 video cameras (seven operating in the visible band and four in infrared) are sent in real time to INGV Control Centre where they are visualized on monitors and archived on a dedicated NAS storage. The video surveillance of the Sicilian volcanoes, situated near to densely populated areas, helps the volcanologists providing the Civil Protection authorities with updates in real time on the on-going volcanic activity. In particular, five video cameras are operating on Mt. Etna and they record the volcano from the south and east sides 24 hours a day. During emergencies, mobile video stations may also be used to better film the most important phases of the activity. Single shots are published on the Catania Section intranet and internet websites. On June 2006 a A 40 thermal camera was installed in Vulcano La Fossa Crater. The location was in the internal and opposite crater flank (S1), 400 m distant from the fumarole field. The first two-year of data on temperature distribution frequency were recorded with this new methodology of acquisition, and automatically elaborated by software at INGV Catania Section. In fact a dedicated software developed in IDL, denominated Volcano Thermo Analysis (VTA), was appositely developed in order to extract a set of important features, able to characterize with a good approssimation the volcanic activity. In particular the program first load and opportunely convert the thermal images, then according to the Region Of Interest (ROI) and the temperature ranges defined by the user provide to automatic spatial and statistic analysis. In addition the VTA is able to analysis all the temporal series of images available in order to achieve the time-event analysis and the dynamic of the volcanic

  5. Post-Arterial Filter Gaseous Microemboli Activity of Five Integral Cardiotomy Reservoirs during Venting: An In Vitro Study

    PubMed Central

    Myers, Gerard J.; Voorhees, Cheri; Haynes, Rob; Eke, Bob

    2009-01-01

    Abstract: During a previously published study on gaseous micro-emboli (GMEs) and perfusionist interventions, it was noted that emboli could be detected after the arterial filter when blood/air challenges entered the membrane oxygenator’s integral cardiotomy. The findings indicated that further study into the oxygenator’s integral cardiotomy reservoir was warranted. This is the first know published report that connects the vent return to GME activity after the arterial filter. To study the air handling ability of the membranes integral cardiotomy, an in vitro study was conducted on five hard shell coated membrane oxygenators (Terumo Capiox SX25, X coated; Sorin Synthesis, phosphorylcholine coated; Gish Vision, GBS coated; Medtronic Affinity NT, trillium coated; Maquet Quadrox, bioline coated). The oxygenators were matched with their own manufacturer’s coated arterial filters (Medtronic 351T Arterial Filter, Sorin Synthesis Integrated Arterial Filter, Terumo CXAF200X Arterial Filter, Gish GAF40GBS-2 Arterial Filter, and Maquet Quart HBF140 Arterial Filter). There were three arms to the study, and three separate oxygenator/filter combinations were used in each arm. The first arm consisted of a pump flow of 4.0 L/min with only the filter purge blood entering the integral cardiotomy. In the second arm, 500 mL/min of simulated vent blood was added to the filter purge blood entering the integral cardiotomy. During the final arm, 200 mL/min of air was added to the vent blood as it entered the integral cardiotomy, to more closely simulate vent return during cardiopulmonary bypass. All GME activity in the oxygenator/filter combinations was examined using the Hatteland CMD20 Microemboli Counter. Placement of the Hatteland probes was 4 in after the hard shell reservoir outlet (PRO) and 12 in after the arterial filter (PAF). When vent blood flow was turned on, there was a significant increase in the PRO microemboli activity detected in all reservoirs. In the PAF position

  6. Using Spatial Density to Characterize Volcanic Fields on Mars

    NASA Technical Reports Server (NTRS)

    Richardson, J. A.; Bleacher, J. E.; Connor, C. B.; Connor, L. J.

    2012-01-01

    We introduce a new tool to planetary geology for quantifying the spatial arrangement of vent fields and volcanic provinces using non parametric kernel density estimation. Unlike parametricmethods where spatial density, and thus the spatial arrangement of volcanic vents, is simplified to fit a standard statistical distribution, non parametric methods offer more objective and data driven techniques to characterize volcanic vent fields. This method is applied to Syria Planum volcanic vent catalog data as well as catalog data for a vent field south of Pavonis Mons. The spatial densities are compared to terrestrial volcanic fields.

  7. Evidence from acoustic imaging for submarine volcanic activity in 2012 off the west coast of El Hierro (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Somoza, Luis; Hernández, Pedro A.; de Vallejo, Luis González; León, Ricardo; Sagiya, Takeshi; Biain, Ander; González, Francisco J.; Medialdea, Teresa; Barrancos, José; Ibáñez, Jesús; Sumino, Hirochika; Nogami, Kenji; Romero, Carmen

    2014-12-01

    We report precursory geophysical, geodetic, and geochemical signatures of a new submarine volcanic activity observed off the western coast of El Hierro, Canary Islands. Submarine manifestation of this activity has been revealed through acoustic imaging of submarine plumes detected on the 20-kHz chirp parasound subbottom profiler (TOPAS PS18) mounted aboard the Spanish RV Hespérides on June 28, 2012. Five distinct "filament-shaped" acoustic plumes emanating from the flanks of mounds have been recognized at water depth between 64 and 88 m on a submarine platform located NW El Hierro. These plumes were well imaged on TOPAS profiles as "flares" of high acoustic contrast of impedance within the water column. Moreover, visible plumes composed of white rafts floating on the sea surface and sourcing from the location of the submarine plumes were reported by aerial photographs on July 3, 2012, 5 days after acoustic plumes were recorded. In addition, several geophysical and geochemical data support the fact that these submarine vents were preceded by several precursory signatures: (i) a sharp increase of the seismic energy release and the number of daily earthquakes of magnitude ≥2.5 on June 25, 2012, (ii) significant vertical and horizontal displacements observed at the Canary Islands GPS network (Nagoya University-ITER-GRAFCAN) with uplifts up to 3 cm from June 25 to 26, 2012, (iii) an anomalous increase of the soil gas radon activity, from the end of April until the beginning of June reaching peak values of 2.7 kBq/m3 on June 3, 2012, and (iv) observed positive peak in the air-corrected value of 3He/4He ratio monitored in ground waters (8.5 atmospheric 3He/4He ratio ( R A)) at the northwestern El Hierro on June 16, 2012. Combining these submarine and subaerial information, we suggest these plumes are the consequence of submarine vents exhaling volcanic gas mixed with fine ash as consequence of an event of rapid rise of volatile-rich magma beneath the NW submarine ridge

  8. Crustal deformation and volcanism at active plate boundaries

    NASA Astrophysics Data System (ADS)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and

  9. Vented transmission

    SciTech Connect

    Nguyen, T.H.

    1990-01-29

    This patent describes a vented transmission. It comprises: a housing; a rotary input to the housing; a rotary output from the housing; transmission means within the housing interconnecting the input and the output and including a hollow, rotary shaft journaled within the housing; a vent tube having a first end extending into one end of the hollow shaft and a second end in fluid communication with the exterior of the housing; a shoulder within the hollow shaft and intermediate the ends of the vent tube and defining of relatively smaller diameter section near the first end of the vent tube that is within the hollow shaft and a relatively large diameter section nearer the second end of the vent tube; at least one aperture extending through the hollow shaft from the large diameter section immediately adjacent the shoulder; and a labyrinth seal at the interface of the vent tube and the large diameter section at a location between the aperture (s) and the second end of the vent tube.

  10. Near-bottom water column anomalies associated with active hydrothermal venting at Aeolian arc volcanoes, Tyrrhenian Sea, Italy

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Carey, S.; Bell, K. L.; Baker, E. T.; Faure, K.; Rosi, M.; Marani, M.; Nomikou, P.

    2012-12-01

    Hydrothermal deposits such as metalliferous sediments, Fe-Mn crusts, and massive sulfides are common on the submarine volcanoes of the Aeolian arc (Tyrrhenian Sea, Italy), but the extent and style of active hydrothermal venting is less well known. A systematic water column survey in 2007 found helium isotope ratios indicative of active venting at 6 of the 9 submarine volcanoes surveyed plus the Marsili back-arc spreading center (Lupton et al., 2011). Other plume indicators, such as turbidity and temperature anomalies were weak or not detected. In September 2011, we conducted five ROV Hercules dives at Eolo, Enarete, and Palinuro volcanoes during an E/V Nautilus expedition. Additionally, two dives explored the Casoni seamount on the southern flank of Stromboli where a dredge returned apparently warm lava in 2002 (Gamberi, 2006). Four PMEL MAPRs, with temperature, optical backscatter (particles), and oxidation-reduction potential (ORP) sensors, were arrayed along the lowermost 50 m of the Hercules/Argus cable during the dives to assess the relationship between seafloor observations and water column anomalies. Active venting was observed at each of the volcanoes visited. Particle anomalies were weak or absent, consistent with the 2007 CTD surveys, but ORP anomalies were common. Venting at Eolo volcano was characterized by small, localized patches of yellow-orange bacteria; living tubeworms were observed at one location. ORP anomalies (-1 to -22 mv) were measured at several locations, primarily along the walls of the crescent-shaped collapse area (or possible caldera) east of the Eolo summit. At Enarete volcano, we found venting fluids with temperatures up to 5°C above ambient as well as small, fragile iron-oxide chimneys. The most intense ORP anomaly (-140 mv) occurred at a depth of about 495 m on the southeast side of the volcano, with smaller anomalies (-10 to -20 mv) more common as the ROV moved upslope to the summit. At Palinuro volcano, multiple dives located

  11. Relationship between normal faulting and volcanic activity in the Taranaki backarc basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Giba, M.; Walsh, J. J.; Nicol, A.

    2009-04-01

    Volcanoes and normal faults are, by definition, both present within volcanic rifts. Despite this association the causal relationships between volcanism and normal faulting can be unclear and are poorly understood. One of the principal challenges for investigations of the links between faulting and volcanic activity, is the definition of the detailed temporal relationships between these two processes. The northern Taranaki Basin, which benefits from excellent seismic (2D and 3D) and drillhole coverage, provides the basis for a detailed study of volcanism and faulting over the last ca 15 Myr. Most of the basin is characterised by sedimentation rates which exceed fault displacement rates, a condition which permits displacement backstripping of these syn-sedimentary growth faults. The timing of a suite of mostly andesitic submarine volcanoes has been constrained by interdigitation of the volcanic cones with basinal sedimentary rocks. Eleven dated horizons within the ca 15 Myr and younger stratigraphy together with mapping provide a means of examining the temporal and spatial links between fault and volcanic activity within the basin. The northern Taranaki Basin has a multiphase deformation history, with extension during the Late Cretaceous to Mid Eocene (ca 80-45 Ma), followed by contraction in the Late Eocene to Early Miocene (ca 40-18 Ma) and then by Mid Miocene to recent back arc extension (ca 15-0 Ma). The youngest phase of extensional faulting initiated in the north and west of the basin and migrated to the southeast where present activity is focused. Volcanic activity also commenced in the north during the Mid Miocene and migrated towards the south and east. Volcanism and backarc extension are driven by subduction of the Pacific plate along the Hikurangi margin. The southward and eastward migration of both faulting and volcanic activity is attributed to the steepening and rotation of the subducting slab beneath the Taranaki Basin. Despite the common origin of

  12. A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lin, Jian; Chen, Yongshun J.; Tao, Chunhui; German, Christopher R.; Yoerger, Dana R.; Tivey, Maurice A.

    2010-09-01

    Inversion of near-bottom magnetic data reveals a well-defined low crustal magnetization zone (LMZ) near a local topographic high (37°47‧S, 49°39‧E) on the ultraslow-spreading Southwest Indian Ridge (SWIR). The magnetic data were collected by the autonomous underwater vehicle ABE on board R/V DaYangYiHao in February-March 2007. The first active hydrothermal vent field observed on the SWIR is located in Area A within and adjacent to the LMZ at the local topographic high, implying that this LMZ may be the result of hydrothermal alteration of magnetic minerals. The maximum reduction in crustal magnetization is 3 A/M. The spatial extent of the LMZ is estimated to be at least 6.7 × 104 m2, which is larger than that of the LMZs at the TAG vent field on the Mid-Atlantic Ridge (MAR), as well as the Relict Field, Bastille, Dante-Grotto, and New Field vent-sites on the Juan de Fuca Ridge (JdF). The calculated magnetic moment, i.e., the product of the spatial extent and amplitude of crustal magnetization reduction is at least -3 × 107 Am2 for the LMZ on the SWIR, while that for the TAG field on the MAR is -8 × 107 Am2 and that for the four individual vent fields on the JdF range from -5 × 107 to -3 × 107 Am2. Together these results indicate that crustal demagnetization is a common feature of basalt-hosted hydrothermal vent fields at mid-ocean ridges of all spreading rates. Furthermore, the crustal demagnetization of the Area A on the ultraslow-spreading SWIR is comparable in strength to that of the TAG area on the slow-spreading MAR.

  13. Immunostimulant activity of n-butanol fraction of root bark of Oroxylum indicum, vent.

    PubMed

    Zaveri, Maitreyi; Gohil, Priyanshee; Jain, Sunita

    2006-07-01

    In the present study, the immunomodulatory activity and the mechanism of action of the n-butanol fraction (100 mg/kg body weight, per os, once daily for 22 consecutive days) of the root bark of Oroxylum indicum, vent. (Bignoniaceae) was evaluated in rats using measures of immune responses to sheep red blood cells (SRBC haemagglutinating antibody [HA] titer) and delayed-type hypersensitivity (DTH) reactions. In response to SRBC, treatment with the n-butanol fraction caused a significant rise in circulating HA titers during secondary antibody responses, indicating a potentiation of certain aspects of the humoral response. The treatment also resulted in a significant rise in paw edema formation, indicating increased host DTH response. Additionally, the antioxidant potential of the drug was exhibited by significant reductions in whole blood malondialdehyde (MDA) content along with a rise in the activities/levels of superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH). Furthermore, histopathologic analysis of lymphoid tissues showed an increase in cellularity, e.g., T-lymphocytes and sinusoids, in the treatment group. In contrast, dexamethasone treatment caused significant reduction in the HA titer, DTH responses, and antioxidant potential. In a triple antigen-mediated immunological edema model, the extent of edema raised in drug-treated rats was greater compared to that in control rats, thus confirming enhanced DTH reactions in response to the drug treatment. Based on the above findings, the reported immunomodulatory activity of an active fraction of O. indicum might be attributed to its ability to enhance specific immune responses (both humoral and cell-mediated) as well as its antioxidant potential. PMID:18958688

  14. Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity

    NASA Astrophysics Data System (ADS)

    Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.

    2012-12-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.

  15. Gish Bar Patera, Io: Geology and Volcanic Activity, 1996-2001

    NASA Technical Reports Server (NTRS)

    Perry, Jason; Radebaugh, Jani; Lopes, Rosaly; McEwen, Alfred; Keszthelyi, Laszlo

    2003-01-01

    Since the two Voyagers passed by Jupiter in 1979, it has been known that volcanic activity is ubiquitous on the surface of Io. With over 400 volcanic centers, Io is even more volcanically active than the earth with massive flood basalt-style eruptions and komatitite lavas a common occurrence. Additionally, some volcanoes appear to be giant lava lakes, with violent activity churning the crust of the lake for periods of 20 years or more. Finally, sulfur is believed to play a large role in Io's volcanism, be it as a primary lava or as a secondary product of large, high-temperature eruptions. By studying one volcano in particular, Gish Bar Patera, one can observe many of these characteristics in one volcanic center.

  16. 2011 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Maharrey, J. Zebulon; Neal, Christina A.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near three separate volcanic centers in Alaska during 2011. The year was highlighted by the unrest and eruption of Cleveland Volcano in the central Aleutian Islands. AVO annual summaries no longer report on activity at Russian volcanoes.

  17. Evidence for late tertiary volcanic activity in the northern black hills, South dakota.

    PubMed

    Kirchner, J G

    1977-05-27

    Rhyolitic volcanic rock in the northern Black Hills has a potassium-argon isotopic age of 10.5 +/- 1.5 million years. This is considerably younger than any previously reported igneous activity in this or adjacent areas and indicates that the renewed uplift of the Black Hills, which occurred after the Oligocene epoch, was also accompanied by some volcanism. PMID:17778711

  18. Io's Diverse Styles of Volcanic Activity: Results from Galileo NIMS

    NASA Technical Reports Server (NTRS)

    Lopes, R. M. C.; Smythe, W. D.; Kamp, L. W.; Doute, S.; Carlson, R.; McEwen, A.; Geissler, P.

    2001-01-01

    Observations by Galileo's Near-Infrared Mapping Spectrometer were used to map the thermal structure of several of Io's hot spots, revealing different styles of volcanism Additional information is contained in the original extended abstract..

  19. Characterization and interpretation of volcanic activity at Redoubt, Bezymianny and Karymsky volcanoes through direct and remote measurements of volcanic emissions

    NASA Astrophysics Data System (ADS)

    Lopez, Taryn M.

    Surface measurements of volcanic emissions can provide critical insight into subsurface processes at active volcanoes such as the influx or ascent of magma, changes in conduit permeability, and relative eruption size. In this dissertation I employ direct and remote measurements of volcanic emissions to characterize activity and elucidate subsurface processes at three active volcanoes around the North Pacific. The 2009 eruption of Redoubt Volcano, Alaska, produced elevated SO2 emissions that were detected by the Ozone Monitoring Instrument (OMI) satellite sensor for over three months. This provided a rare opportunity to characterize Redoubt's daily SO2 emissions and to validate the OMI measurements. Order of magnitude variations in daily SO2 mass were observed, with over half of the cumulative SO2 emissions released during the explosive phase of the eruption. Correlations among OMI daily SO2 mass, tephra mass and acoustic energies during the explosive phase suggest that OMI data may be used to infer eruption size and explosivity. From 2007 through 2010 direct and remote measurements of volcanic gas composition and flux were measured at Bezymianny Volcano, Kamchatka, Russia. During this period Bezymianny underwent five explosive eruptions. Estimates of passive and eruptive SO2 emissions suggest that the majority of SO2 is released passively. Order of magnitude variations in total volatile flux observed throughout the study period were attributed to changes in the depth of gas exsolution and separation from the melt at the time of sample collection. These findings suggest that exsolved gas composition may be used to detect magma ascent prior to eruption at Bezymianny Volcano. Karymsky Volcano, Kamchatka, Russia, is a dynamic volcano which exhibited four end-member activity types during field campaigns in 2011 and 2012, including: discrete ash explosions, pulsatory degassing, gas jetting, and explosive eruption. These activity types were characterized quantitatively

  20. Complex explosive volcanic activity on the Moon within Oppenheimer crater

    NASA Astrophysics Data System (ADS)

    Bennett, Kristen A.; Horgan, Briony H. N.; Gaddis, Lisa R.; Greenhagen, Benjamin T.; Allen, Carlton C.; Hayne, Paul O.; Bell, James F.; Paige, David A.

    2016-07-01

    Oppenheimer crater is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining inferred to form larger regional deposits. We use Lunar Reconnaissance Orbiter Camera images and Diviner Radiometer mid-infrared data, Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra, and Clementine orbiter Ultraviolet/visible camera images to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. Mineralogically, we find that the deposits are variable mixtures of orthopyroxene and minor clinopyroxene sourced from the crater floor, juvenile clinopyroxene, and juvenile iron-rich glass, and that the mineralogy of the pyroclastics varies both across the Oppenheimer deposits as a whole and within individual deposits. We observe similar variability in the inferred iron content of pyroclastic glasses, and note in particular that the northwest deposit, associated with Oppenheimer U crater, contains the most iron-rich volcanic glass thus far identified on the Moon, which could be a useful future resource. We propose that this variability in mineralogy indicates variability in eruption style, and that it cannot be explained by a simple Vulcanian eruption. A Vulcanian eruption should cause significant country rock to be incorporated into the pyroclastic deposit; however, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases and very little floor material. Thus, we propose that at least the most recent portion of these deposits must have erupted via a Strombolian or more continuous fire

  1. 1996 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.

    1997-01-01

    During 1996, the Alaska Volcano Observatory (AVO) responded to eruptive activity, anomalous seismicity, or suspected volcanic activity at 10 of the approximately 40 active volcanic centers in the state of Alaska. As part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also disseminated information about eruptions and other volcanic unrest at six volcanic centers on the Kamchatka Peninsula and in the Kurile Islands, Russia.

  2. SO2 on Venus: IUE, HST and ground-based measurements, and the active volcanism connection

    NASA Technical Reports Server (NTRS)

    Na, C. Y.; Barker, E. S.; Stern, S. A.; Esposito, L. W.

    1993-01-01

    Magellan images have shown that the volcanic features are widespread over the surface of Venus. The question of whether there is active volcanism is important for understanding both the atmospheric and the geological processes on Venus. The thick cloud cover of Venus precludes any direct observation of active volcanoes even if they exist. The only means of monitoring the active volcanism on Venus at present seems to be remote sensing from Earth. Continuous monitoring of SO2 is important to establish the long term trend of SO2 abundance and to understand the physical mechanism responsible for the change.

  3. Catastrophic volcanism

    NASA Technical Reports Server (NTRS)

    Lipman, Peter W.

    1988-01-01

    Since primitive times, catastrophes due to volcanic activity have been vivid in the mind of man, who knew that his activities in many parts of the world were threatened by lava flows, mudflows, and ash falls. Within the present century, increasingly complex interactions between volcanism and the environment, on scales not previously experienced historically, have been detected or suspected from geologic observations. These include enormous hot pyroclastic flows associated with collapse at source calderas and fed by eruption columns that reached the stratosphere, relations between huge flood basalt eruptions at hotspots and the rifting of continents, devastating laterally-directed volcanic blasts and pyroclastic surges, great volcanic-generated tsunamis, climate modification from volcanic release of ash and sulfur aerosols into the upper atmosphere, modification of ocean circulation by volcanic constructs and attendent climatic implications, global pulsations in intensity of volcanic activity, and perhaps triggering of some intense terrestrial volcanism by planetary impacts. Complex feedback between volcanic activity and additional seemingly unrelated terrestrial processes likely remains unrecognized. Only recently has it become possible to begin to evaluate the degree to which such large-scale volcanic processes may have been important in triggering or modulating the tempo of faunal extinctions and other evolutionary events. In this overview, such processes are examined from the viewpoint of a field volcanologist, rather than as a previous participant in controversies concerning the interrelations between extinctions, impacts, and volcanism.

  4. Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the Southern Mariana Trough.

    PubMed

    Kato, Shingo; Takano, Yoshinori; Kakegawa, Takeshi; Oba, Hironori; Inoue, Kazuhiko; Kobayashi, Chiyori; Utsumi, Motoo; Marumo, Katsumi; Kobayashi, Kensei; Ito, Yuki; Ishibashi, Jun-ichiro; Yamagishi, Akihiko

    2010-05-01

    The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and

  5. Biogeography and Biodiversity in Sulfide Structures of Active and Inactive Vents at Deep-Sea Hydrothermal Fields of the Southern Mariana Trough▿ †

    PubMed Central

    Kato, Shingo; Takano, Yoshinori; Kakegawa, Takeshi; Oba, Hironori; Inoue, Kazuhiko; Kobayashi, Chiyori; Utsumi, Motoo; Marumo, Katsumi; Kobayashi, Kensei; Ito, Yuki; Ishibashi, Jun-ichiro; Yamagishi, Akihiko

    2010-01-01

    The abundance, diversity, activity, and composition of microbial communities in sulfide structures both of active and inactive vents were investigated by culture-independent methods. These sulfide structures were collected at four hydrothermal fields, both on- and off-axis of the back-arc spreading center of the Southern Mariana Trough. The microbial abundance and activity in the samples were determined by analyzing total organic content, enzymatic activity, and copy number of the 16S rRNA gene. To assess the diversity and composition of the microbial communities, 16S rRNA gene clone libraries including bacterial and archaeal phylotypes were constructed from the sulfide structures. Despite the differences in the geological settings among the sampling points, phylotypes related to the Epsilonproteobacteria and cultured hyperthermophilic archaea were abundant in the libraries from the samples of active vents. In contrast, the relative abundance of these phylotypes was extremely low in the libraries from the samples of inactive vents. These results suggest that the composition of microbial communities within sulfide structures dramatically changes depending on the degree of hydrothermal activity, which was supported by statistical analyses. Comparative analyses suggest that the abundance, activity and diversity of microbial communities within sulfide structures of inactive vents are likely to be comparable to or higher than those in active vent structures, even though the microbial community composition is different between these two types of vents. The microbial community compositions in the sulfide structures of inactive vents were similar to those in seafloor basaltic rocks rather than those in marine sediments or the sulfide structures of active vents, suggesting that the microbial community compositions on the seafloor may be constrained by the available energy sources. Our findings provide helpful information for understanding the biogeography, biodiversity and

  6. Chemical evolution at the coasts of active volcanic islands in a primordial salty ocean

    NASA Astrophysics Data System (ADS)

    Strasdeit, H.; Fox, S.

    2008-09-01

    The Prebiotic Hot-Volcanic-Coast Scenario It has been suggested that in the Hadean eon (4.5-3.8 Ga before present) no permanent continents but volcanic islands and short-lived protocontinents protruded from the first ocean [1, 2]. As the geothermal heat production was considerably higher than today, it is reasonable to assume that hot volcanic coasts were much more abundant. The salinity of the ocean was probably up to two times higher than the modern value [3]. Under these conditions, the evaporation of seawater at active volcanic coasts must have produced sea salt crusts - a process that can still be observed today [4]. On the hot lava rock, the salt crusts can subsequently experience temperatures up to some hundred degrees Celsius. The seawater probably contained abiotically formed organic molecules such as amino acids, which were inevitably embedded into the sea salt crusts. Different prebiotic sources of amino acids have been discussed: (i) comets and meteorites [5], electrical discharges in the atmosphere [6, 7], and deep-sea hydrothermal vents [8]. We undertook a systematic study of solid salt-amino acid mixtures, especially of their formation and thermal behavior under simulated conditions of the hotvolcanic- coast scenario. Laboratory Experiments Amino acids@salts Artificial Hadean seawater was prepared by dissolving NaCl (705 mmol), MgCl2 (80 mmol), KCl (15 mmol), CaCl2 (15 mmol), and an α-amino acid (5-10 mmol) or a mixture of α-amino acids. In order to model the first step of the hot-volcanic-coast scenario, the solutions were evaporated to dryness. Vibrational spectroscopy (IR, Raman) and X-ray powder diffraction showed that the resulting solid residues were not heterogeneous mixtures of salt and amino acid crystals. Instead the amino acid molecules were coordinated in calcium or magnesium complexes. We have studied the rac-alanine ( + H3NCH(CH3)COO -, Hala) system in more detail and found that the complex that is present in the mixture has the

  7. Observed multivariable signals of late 20th and early 21st century volcanic activity

    NASA Astrophysics Data System (ADS)

    Santer, Benjamin D.; Solomon, Susan; Bonfils, Céline; Zelinka, Mark D.; Painter, Jeffrey F.; Beltran, Francisco; Fyfe, John C.; Johannesson, Gardar; Mears, Carl; Ridley, David A.; Vernier, Jean-Paul; Wentz, Frank J.

    2015-01-01

    The relatively muted warming of the surface and lower troposphere since 1998 has attracted considerable attention. One contributory factor to this "warming hiatus" is an increase in volcanically induced cooling over the early 21st century. Here we identify the signals of late 20th and early 21st century volcanic activity in multiple observed climate variables. Volcanic signals are statistically discernible in spatial averages of tropical and near-global SST, tropospheric temperature, net clear-sky short-wave radiation, and atmospheric water vapor. Signals of late 20th and early 21st century volcanic eruptions are also detectable in near-global averages of rainfall. In tropical average rainfall, however, only a Pinatubo-caused drying signal is identifiable. Successful volcanic signal detection is critically dependent on removal of variability induced by the El Niño-Southern Oscillation.

  8. 2010 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; Herrick, Julie; Girina, O.A.; Chibisova, Marina; Rybin, Alexander; McGimsey, Robert G.; Dixon, Jim

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest at 12 volcanic centers in Alaska during 2010. The most notable volcanic activity consisted of intermittent ash emissions from long-active Cleveland volcano in the Aleutian Islands. AVO staff also participated in hazard communication regarding eruptions or unrest at seven volcanoes in Russia as part of an ongoing collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  9. Volcanism in Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Eichelberger, L. G.

    2008-12-01

    -Russians than they should be. Among the best natural laboratories for understanding subduction volcanism are: (1) The spectacular edifice collapse/explosive eruption/continuing dome-effusion sequences of Bezymianny (1956) and Shiveluch (1964), which together with Mount St Helens (1980) provide a valuable time series in system evolution; (2) The two-magma, multiple vent eruptions of Tolbachik (1975), Karymsky (1996), and Gorely (1737) interpretable as large dikes interacting with shallow magma pods; (3) Ksudach with 3 caldera-forming eruptions within just the Holocene; (4) Hydrothermally diverse Mutnovsky with strong passive SO2 degassing, fumaroles to 600°C, and flanking 50 MWe geothermal production; and (5) The ever-active Kliuchevskoi Volcano, which may demonstrate the requirement of gas-lift to push basalt to the top of its towering, hastily built cone without rupturing it.

  10. G-EVER Activities and the Next-generation Volcanic Hazard Assessment System

    NASA Astrophysics Data System (ADS)

    Takarada, S.

    2013-12-01

    The Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) is a consortium of Asia-Pacific geohazard research institutes that was established in 2012. G-EVER aims to formulate strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis and volcanic eruptions. G-EVER is working on enhancing collaboration, sharing of resources, and making information on the risks of earthquakes and volcanic eruptions freely available and understandable. The 1st G-EVER International Symposium was held in Tsukuba, Japan in March 11, 2013. The 2nd Symposium is scheduled in Sendai, Tohoku Japan, in Oct. 19-20, 2013. Currently, 4 working groups were proposed in the G-EVER Consortium. The next-generation volcano hazard assessment WG is developing a useful system for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is based on volcanic eruption history datasets, volcanic eruption database, and numerical simulations. Volcanic eruption histories including precursor phenomena leading to major eruptions of active volcanoes are very important for future prediction of volcanic eruptions. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and types, is important for the next-generation volcano hazard assessment system. Proposing international standards on how to estimate the volume of volcanic products is important to make a high quality volcanic eruption database. Spatial distribution database of volcanic products (e.g. tephra and pyroclastic flow distributions), encoded into a GIS based database is necessary for more precise area and volume estimation and risk assessments. The volcanic eruption database is developed based on past eruption results, which only represents a subset of possible future scenarios. Therefore, numerical simulations with controlled parameters are needed for more precise volcanic eruption

  11. Regimes of Volcanic Activity at Mt. Etna in 2007-2009 inferred from Unsupervised Pattern Recognition on Volcanic Tremor Data

    NASA Astrophysics Data System (ADS)

    Falsaperla, S. M.; Behncke, B.; Langer, H. K.; Messina, A.; Spampinato, S.

    2009-12-01

    Mt Etna is a well monitored basaltic volcano for which high-quality, multidisciplinary data set are continuously available for around-the-clock surveillance. Particularly, volcano-seismic data sets cover decades long local recordings, temporally encompassing different styles of eruptive activity, from Strombolian eruptions to lava fountains and lava flows. Intense earthquakes swarms have often heralded effusive activity. However, from the seismic point of view, volcanic tremor has proved to be one of the most reliable indicators of impending eruptive activity. Indeed, changes in the volcano feeder show up in the signature of tremor, its spectral characteristics and source location. Some of us (Langer and Messina) have recently developed a new software for the classification of volcanic tremor data, combining Self Organizing Maps (also known as Kohonen Maps) along with Cluster and Fuzzy Analysis. This software allows us to analyse the background seismic radiation at permanent broadband stations located at various distance from the summit craters to identify transitions from pre-eruptive to eruptive activity. Throughout the analysis of the data flow, the software provides an unsupervised classification of the spectral characteristics (i.e., amplitude and frequency content) of the signal. The information embedded in the spectrum is interpreted to assign a specific state of the volcano. An application of this new software is proposed here on the eruptive events at Etna of 2007-2009, which consisted of 7 episodes of lava fountaining, periodic Strombolian activity at the summit craters, followed by lava emissions on the upper east flank of the volcano, with start on 13 May 2008 and end on 6 July 2009. In the study period the source of volcanic tremor was always shallow (less than 3 km) and within the volcano edifice. The upraise of magma to the surface was fast and associated with changes of volcanic tremor features, which covered time windows of variable duration from

  12. Fissural volcanism, polygenetic volcanic fields, and crustal thickness in the Payen Volcanic Complex on the central Andes foreland (Mendoza, Argentina)

    NASA Astrophysics Data System (ADS)

    Mazzarini, F.; Fornaciai, A.; Bistacchi, A.; Pasquarè, F. A.

    2008-09-01

    Shield volcanoes, caldera-bearing stratovolcanoes, and monogenetic cones compose the large fissural Payen Volcanic Complex, located in the Andes foreland between latitude 35°S and 38°S. The late Pliocene-Pleistocene and recent volcanic activity along E-W trending eruptive fissures produced basaltic lavas showing a within-plate geochemical signature. The spatial distribution of fractures and monogenetic vents is characterized by self-similar clustering with well defined power law distributions. Vents have average spacing of 1.27 km and fractal exponent D = 1.33 defined in the range 0.7-49.3 km. The fractal exponent of fractures is 1.62 in the range 1.5-48.1 km. The upper cutoffs of fractures and vent fractal distributions (about 48-49 km) scale to the crustal thickness in the area, as derived from geophysical data. This analysis determines fractured media (crust) thickness associated with basaltic retroarc eruptions. We propose that the Payen Volcanic Complex was and is still active under an E-W crustal shortening regime.

  13. Exploring a long-lasting volcanic eruption by means of in-soil radon measurements and seismic activity

    NASA Astrophysics Data System (ADS)

    Falsaperla, Susanna; Neri, Marco; Di Grazia, Giuseppe; Langer, Horst; Spampinato, Salvatore

    2016-04-01

    We analyze in-soil radon (Rn) emission and ambient parameters (barometric pressure and air temperature measurements) along with seismic activity during the longest flank eruption of this century at Mt. Etna, Italy. This eruption occurred between 14 May 2008 and 6 July 2009, from a N120-140°E eruptive fissure extending between 3050 and 2620 m above sea level. It was heralded by a short-lived (~5 hours) episode of lava fountaining three days before a dike-forming intrusion fed a lava emission, which affected the summit area of the volcano over ~15 months. The peculiar position of the station for the Rn measurement, which was at an altitude of 2950 m above sea level and near (~1 km) the summit active craters, offered us the uncommon chance: i) to explore the temporal development of the gas emission close (<2 km) to the 2008-2009 eruptive vents in the long term, and ii) to analyze the relationship between in-soil Rn fluxes and seismic signals (in particular, local earthquakes and volcanic tremor) during the uninterrupted lava emission. This approach reveals important details about the recharging phases characterizing the 2008-2009 eruption, which are not visible with other methods of investigation. Our study benefitted from the application of methods of pattern classification developed in the framework of the European MEDiterrranean Supersite Volcanoes (MED­SUV) project.

  14. Vented Capacitor

    DOEpatents

    Brubaker, Michael Allen; Hosking, Terry Alan

    2006-04-11

    A technique of increasing the corona inception voltage (CIV), and thereby increasing the operating voltage, of film/foil capacitors is described. Intentional venting of the capacitor encapsulation improves the corona inception voltage by allowing internal voids to equilibrate with the ambient environment.

  15. A submarine perspective of the Honolulu Volcanics, Oahu

    NASA Astrophysics Data System (ADS)

    Clague, David A.; Paduan, Jennifer B.; McIntosh, William C.; Cousens, Brian L.; Davis, Alicé S.; Reynolds, Jennifer R.

    2006-03-01

    Lavas and volcaniclastic deposits were observed and collected from 4 submarine cones that are part of the Honolulu Volcanics on Oahu, Hawaii. The locations of these and a few additional, but unsampled, vents demonstrate that nearly all the vents are located on or very close to the shoreline of Oahu, with the most distal vent just 12 km offshore. The clastic samples and outcrops range from coarse breccias to cross-bedded ash deposits and show that explosive volcanism at depths between about 350 and 590 m depth played a part in forming these volcanic cones. The eruptive styles appear to be dominantly effusive to strombolian at greater depths, but apparently include violent phreatomagmatic explosive activity at the shallower sites along the submarine southwest extension of the Koko Rift. The compositions of the recovered samples are broadly similar to the strongly alkalic subaerial Honolulu Volcanics lavas, but the submarine lavas, erupted further from the Koolau caldera, have slightly more radiogenic Sr isotopic ratios, and trace element patterns that are distinct from either the subaerial Honolulu Volcanics or the submarine North Arch lavas. These patterns are characterized by moderate to strong positive Sr and P anomalies, and moderate to strong negative Cs, Rb, U, Th, Zr, and Hf anomalies. Most samples have strong negative K and moderate negative Ti anomalies, as do all subaerial Honolulu Volcanics and North Arch samples, but one group of samples from the Koko Rift lack this chemical signature. The data are consistent with more garnet in the source region for the off-shore samples than for either the on-shore Honolulu Volcanics lavas. New Ar-Ar ages show that eruptions at the submarine vents and Diamond Head occurred between about 0.5 Ma and 0.1 Ma, with the youngest ages from the Koko Rift. These ages are in general agreement with most published ages for the formation and suggest that some much younger ages reported previously from the Koko Rift are probably

  16. High-Temperature Hydrothermal Vent Field of Kolumbo Submarine Volcano, Aegean Sea: Site of Active Kuroko-Type Mineralization

    NASA Astrophysics Data System (ADS)

    Sigurdsson, H.; Carey, S.; Alexandri, M.; Vougioukalakis, G.; Croff, K.; Roman, C.; Sakellariou, D.; Anagnostou, C.; Rousakis, G.; Ioakim, C.; Gogou, A.; Ballas, D.; Misaridis, T.; Nomikou, P.

    2006-12-01

    Kolumbo submarine volcano is located 7 km north-east of the island of Santorini in the Hellenic arc (Greece), and comprises one of about twenty submarine cones in a NE-trending rift zone. Kolumbo erupted explosively in 1649-50AD, causing 70 fatalities on Santorini. Kolumbo's crater is 1700 m in diameter, with a crater rim at 10 m below sea level and crater floor at depth of 505 m. Recent marine geological investigations, using ROVs, reveal a very active high-temperature hydrothermal vent field in the northeastern part of the Kolumbo crater floor, about 25,000 m2. Vent chimneys up to 4 m high are vigorously emitting colorless gas plumes up to 10 m high in the water column. Temperatures up to 220oC are recorded in vent fluids. Some vents are in crater- like depressions, containing debris from collapsed extinct chimneys. The entire crater floor of Kolumbo is mantled by a reddish-orange bacterial mat, and bacterial filaments of a variety of colors cling to chimneys in dense clusters. Glassy tunicates and anemones are common in lower-temperature environments on the crater floor. Most chimneys show a high porosity, with a central conduit surrounded by an open and very permeable framework of sulfides and sulfates, aiding fluid flow through the chimney walls. In the sulfate-rich samples, blades of euhedral barite and anhydrite crystals coat the outside of the chimney wall, and layers of barite alternate with sulfide in the interior. The dominant sulfides are pyrite, sphalerite, wurtzite, marcasite and galena. Crusts on extinct and lower-temperature chimneys are composed of amorphous silica, goethite and halite. Sulfur isotope composition of sulfates is virtually at sea water values, whereas the sulfides are more depleted. Elevated levels of copper, gold and silver are observed in bulk composition of chimney samples. Both the structural setting, character of the vent field and sulfide/sulfate mineralogy and geochemistry indicate on-going Kuroko-type mineralization in the

  17. Mapping Planetary Volcanic Deposits: Identifying Vents and Distingushing between Effects of Eruption Conditions and Local Lava Storage and Release on Flow Field Morphology

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts [1-3]. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  18. Mapping Planetary Volcanic Deposits: Identifying Vents and Distinguishing between Effects of Eruption Conditions and Local Storage and Release on Flow Field Morphology

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  19. Violent Gas Venting on the Heng-Chun Mud Volcano, South China Sea Active Continental Margin offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, S.; Cheng, W. Y.; Tseng, Y. T.; Chen, N. C.; Hsieh, I. C.; Yang, T. F.

    2014-12-01

    Accumulation of methane as gas hydrate under the sea floor has been considered a major trap for both thermal and biogenic gas in marine environment. Aided by rapid AOM process near the sea floor, fraction of methane escaping the sea floor has been considered at minuscule. However, most studies focused mainly on deepwater gas hydrate systems where gas hydrate remain relatively stable. We have studied methane seeps on the active margin offshore Taiwan, where rapid tectonic activities occur. Our intention is to evaluate the scale and condition of gas seeps in the tectonic active region. Towcam, coring, heat probe, chirp, multibeam bathymetric mapping and echo sounding were conducted at the study areas. Our results showed that gas is violently venting at the active margin, not only through sediments, but also through overlying sea water, directly into the atmosphere. Similar ventings, but, not in this scale, have also been identified previously in the nearby region. High concentrations of methane as well as traces of propane were found in sediments and in waters with flares. In conjunction, abundant chemosynthetic community, life mussel, clams, tube worms, bacterial mats together with high concentrations of dissolve sulfide, large authigenic carbonate buildups were also found. Our results indicate that methane could be another major green house gas in the shallow water active margin region.

  20. Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc seamounts.

    PubMed

    Huber, Julie A; Cantin, Holly V; Huse, Susan M; Welch, David B Mark; Sogin, Mitchell L; Butterfield, David A

    2010-09-01

    Low-temperature hydrothermal vent fluids represent access points to diverse microbial communities living in oceanic crust. This study examined the distribution, relative abundance, and diversity of Epsilonproteobacteria in 14 low-temperature vent fluids from five volcanically active seamounts of the Mariana Arc using a 454 tag sequencing approach. Most vent fluids were enriched in cell concentrations compared with background seawater, and quantitative PCR results indicated that all fluids were dominated by bacteria. Operational taxonomic unit-based statistical tools applied to 454 data show that all vents from the northern end of the Mariana Arc grouped together, to the exclusion of southern arc seamounts, which were as distinct from one another as they were from northern seamounts. Statistical analysis also showed a significant relationship between seamount and individual vent groupings, suggesting that community membership may be linked to geographical isolation and not geochemical parameters. However, while there may be large-scale geographic differences, distance is not the distinguishing factor in the microbial community composition. At the local scale, most vents host a distinct population of Epsilonproteobacteria, regardless of seamount location. This suggests that there may be barriers to exchange and dispersal for these vent endemic microorganisms at hydrothermal seamounts of the Mariana Arc. PMID:20533947

  1. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    SciTech Connect

    Hackett, W.R.; Smith, R.P.

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 {times} 10{sup {minus}5} per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 {times} 10{sup {minus}5} per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis.

  2. Molecular Diversity and Activity of Methanogens in the Subseafloor at Deep-Sea Hydrothermal Vents of the Pacific Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Huber, J. A.; Merkel, A.; Holden, J. F.; Lilley, M. D.; Butterfield, D. A.

    2009-12-01

    Methanogenesis is thought to represent one of the most ancient metabolic pathways on Earth, and methanogens may serve as important primary producers in warm crustal habitats at deep-sea hydrothermal vents. Many of these obligate chemolithoautotrophs depend solely on geochemically-derived energy and carbon sources and grow at high temperatures under strictly anaerobic conditions. A combined geochemical and microbiological approach was used to determine the distribution and molecular diversity of methanogens in low temperature diffuse vent fluids from the Endeavour Segment R2K ISS site, as well as Axial Seamount and volcanoes of the Mariana Arc. Geochemical data from hot and adjacent warm diffuse vent fluids provided chemical indicators to guide sample selection for detailed polymerase chain reaction (PCR)-based analysis of the key enzyme for methane formation, methyl-coenzyme M reductase (mcrA), as well as archaeal 16S rRNA genes. At most Endeavour vent sites, hydrogen concentrations were too low to support hydrogenotrophic methanogensis directly and only one diffuse site, Easter Island, had a positive signal for the mcrA gene. These sequences were most closely related to members of the order Methanococcales, as well as anaerobic methane oxidizers (ANME-1). The presence of ANME, which are rarely found in non-sedimented marine environments, is another line of evidence supporting the occurrence of buried sediments at Endeavour. At Axial, a number of diffuse vents have strong chemical indicators of methanogenesis. Methanogenic communities were detected at 3 sites on the southeast side of the caldera: the northern end of the 1998 lava flow, the International District, and on the pre-1987 lava flow. Time series work at Marker 113 showed that in 4 different years over the last 6 years methanogenic communities are active and abundant, suggesting a stable anaerobic, warm subseafloor habitat. Results show that members of the order Methanococcales dominate at this site

  3. Volcanic eruption source parameters from active and passive microwave sensors

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Marzano, Frank S.; Cimini, Domenico; Mereu, Luigi

    2016-04-01

    It is well known, in the volcanology community, that precise information of the source parameters characterising an eruption are of predominant interest for the initialization of the Volcanic Transport and Dispersion Models (VTDM). Source parameters of main interest would be the top altitude of the volcanic plume, the flux of the mass ejected at the emission source, which is strictly related to the cloud top altitude, the distribution of volcanic mass concentration along the vertical column as well as the duration of the eruption and the erupted volume. Usually, the combination of a-posteriori field and numerical studies allow constraining the eruption source parameters for a given volcanic event thus making possible the forecast of ash dispersion and deposition from future volcanic eruptions. So far, remote sensors working at visible and infrared channels (cameras and radiometers) have been mainly used to detect, track and provide estimates of the concentration content and the prevailing size of the particles propagating within the ash clouds up to several thousand of kilometres far from the source as well as track back, a-posteriori, the accuracy of the VATDM outputs thus testing the initial choice made for the source parameters. Acoustic wave (infrasound) and microwave fixed scan radar (voldorad) were also used to infer source parameters. In this work we want to put our attention on the role of sensors operating at microwave wavelengths as complementary tools for the real time estimations of source parameters. Microwaves can benefit of the operability during night and day and a relatively negligible sensitivity to the presence of clouds (non precipitating weather clouds) at the cost of a limited coverage and larger spatial resolution when compared with infrared sensors. Thanks to the aforementioned advantages, the products from microwaves sensors are expected to be sensible mostly to the whole path traversed along the tephra cloud making microwaves particularly

  4. Volcanic features of Io

    USGS Publications Warehouse

    Carr, M.H.; Masursky, H.; Strom, R.G.; Terrile, R.J.

    1979-01-01

    Volcanic activity is apparently higher on Io than on any other body in the Solar System. Its volcanic landforms can be compared with features on Earth to indicate the type of volcanism present on Io. ?? 1979 Nature Publishing Group.

  5. Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission

    USGS Publications Warehouse

    Keszthelyi, L.; McEwen, A.S.; Phillips, C.B.; Milazzo, M.; Geissler, P.; Turtle, E.P.; Radebaugh, J.; Williams, D.A.; Simonelli, D.P.; Breneman, H.H.; Klaasen, K.P.; Levanas, G.; Denk, T.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez, Del; Castillo, E.M.; Belton, M.J.S.; Beyer, R.; Branston, D.; Fishburn, M.B.; Mueller, B.; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Moore, J.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Bender, K.; Chuang, F.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, K.; Bierhaus, E.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Schenk, P.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W., III; Pappalardo, R.; Pratt, S.; Procter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Schuster, P.; Wagner, R.; Dieter, N.; Durda, D.; Greenberg, R.J.; Hoppa, G.; Jaeger, W.; Plassman, J.; Tufts, R.; Fanale, F.P.; Gran

    2001-01-01

    The Solid-State Imaging (SSI) instrument provided the first high- and medium-resolution views of Io as the Galileo spacecraft closed in on the volcanic body in late 1999 and early 2000. While each volcanic center has many unique features, the majority can be placed into one of two broad categories. The "Promethean" eruptions, typified by the volcanic center Prometheus, are characterized by long-lived steady eruptions producing a compound flow field emplaced in an insulating manner over a period of years to decades. In contrast, "Pillanian" eruptions are characterized by large pyroclastic deposits and short-lived but high effusion rate eruptions from fissures feeding open-channel or open-sheet flows. Both types of eruptions commonly have ???100-km-tall, bright, SO2-rich plumes forming near the flow fronts and smaller deposits of red material that mark the vent for the silicate lavas. Copyright 2001 by the American Geophysical Union.

  6. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    NASA Astrophysics Data System (ADS)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved

  7. Late Pleistocene ages for the most recent volcanism and glacial-pluvial deposits at Big Pine volcanic field, California, USA, from cosmogenic 36Cl dating

    NASA Astrophysics Data System (ADS)

    Vazquez, J. A.; Woolford, J. M.

    2015-09-01

    The Big Pine volcanic field is one of several Quaternary volcanic fields that poses a potential volcanic hazard along the tectonically active Owens Valley of east-central California, and whose lavas are interbedded with deposits from Pleistocene glaciations in the Sierra Nevada Range. Previous geochronology indicates an ˜1.2 Ma history of volcanism, but the eruption ages and distribution of volcanic products associated with the most-recent eruptions have been poorly resolved. To delimit the timing and products of the youngest volcanism, we combine field mapping and cosmogenic 36Cl dating of basaltic lava flows in the area where lavas with youthful morphology and well-preserved flow structures are concentrated. Field mapping and petrology reveal approximately 15 vents and 6 principal flow units with variable geochemical composition and mineralogy. Cosmogenic 36Cl exposure ages for lava flow units from the top, middle, and bottom of the volcanic stratigraphy indicate eruptions at ˜17, 27, and 40 ka, revealing several different and previously unrecognized episodes of late Pleistocene volcanism. Olivine to plagioclase-pyroxene phyric basalt erupted from several vents during the most recent episode of volcanism at ˜17 ka, and produced a lava flow field covering ˜35 km2. The late Pleistocene 36Cl exposure ages indicate that moraine and pluvial shoreline deposits that overlie or modify the youngest Big Pine lavas reflect Tioga stage glaciation in the Sierra Nevada and the shore of paleo-Owens Lake during the last glacial cycle.

  8. Late Pleistocene ages for the most recent volcanism and glacial-pluvial deposits at Big Pine volcanic field, California, USA, from cosmogenic 36Cl dating

    USGS Publications Warehouse

    Vazquez, Jorge A.; Woolford, Jeff M

    2015-01-01

    The Big Pine volcanic field is one of several Quaternary volcanic fields that poses a potential volcanic hazard along the tectonically active Owens Valley of east-central California, and whose lavas are interbedded with deposits from Pleistocene glaciations in the Sierra Nevada Range. Previous geochronology indicates an ∼1.2 Ma history of volcanism, but the eruption ages and distribution of volcanic products associated with the most-recent eruptions have been poorly resolved. To delimit the timing and products of the youngest volcanism, we combine field mapping and cosmogenic 36Cl dating of basaltic lava flows in the area where lavas with youthful morphology and well-preserved flow structures are concentrated. Field mapping and petrology reveal approximately 15 vents and 6 principal flow units with variable geochemical composition and mineralogy. Cosmogenic 36Cl exposure ages for lava flow units from the top, middle, and bottom of the volcanic stratigraphy indicate eruptions at ∼17, 27, and 40 ka, revealing several different and previously unrecognized episodes of late Pleistocene volcanism. Olivine to plagioclase-pyroxene phyric basalt erupted from several vents during the most recent episode of volcanism at ∼17 ka, and produced a lava flow field covering ∼35 km2. The late Pleistocene 36Cl exposure ages indicate that moraine and pluvial shoreline deposits that overlie or modify the youngest Big Pine lavas reflect Tioga stage glaciation in the Sierra Nevada and the shore of paleo-Owens Lake during the last glacial cycle.

  9. Geologic evolution of the Jemez Mountains and their potential for future volcanic activity

    SciTech Connect

    Burton, B.W.

    1982-01-01

    Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10/sup -9//km/sup 2//y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10/sup -7//y.

  10. Rates of volcanic activity along the southwest rift zone of Mauna Loa volcano, Hawaii.

    USGS Publications Warehouse

    Lipman, P.W.

    1981-01-01

    Flow-by-flow mapping of the 65 km long subaerial part of the southwest rift zone and adjacent flanks of Mauna Loa Volcano, Hawaii, and about 50 new 14C dates on charcoal from beneath these flows permit estimates of rates of lava accumulation and volcanic growth over the past 10 000 years. The sequence of historic eruptions along the southwest rift zone, beginning in 1868, shows a general pattern of uprift migration and increasing eruptive volume, culminating in the great 1950 eruption. No event comparable to 1950, in terms of volume or vent length, is evident for at least the previous 1000 years. Rates of lava accumulation along the zone have been subequal to those of Kilauea Volcano during the historic period but they were much lower in late prehistoric time (unpubl. Kilauea data by R. T. Holcomb). Rates of surface covering and volcanic growth have been markedly asymmetric along Mauna Loa's southwest rift zone. Accumulation rates have been about half again as great on the northwest side of the rift zone in comparison with the southeast side. The difference apparently reflects a westward lateral shift of the rift zone of Mauna Loa away from Kilauea Volcano, which may have acted as a barrier to symmetrical growth of the rift zone. -Author

  11. Moytirra: Discovery of the first known deep-sea hydrothermal vent field on the slow-spreading Mid-Atlantic Ridge north of the Azores

    NASA Astrophysics Data System (ADS)

    Wheeler, A. J.; Murton, B.; Copley, J.; Lim, A.; Carlsson, J.; Collins, P.; Dorschel, B.; Green, D.; Judge, M.; Nye, V.; Benzie, J.; Antoniacomi, A.; Coughlan, M.; Morris, K.

    2013-10-01

    Geological, biological, morphological, and hydrochemical data are presented for the newly discovered Moytirra vent field at 45oN. This is the only high temperature hydrothermal vent known between the Azores and Iceland, in the North Atlantic and is located on a slow to ultraslow-spreading mid-ocean ridge uniquely situated on the 300 m high fault scarp of the eastern axial wall, 3.5 km from the axial volcanic ridge crest. Furthermore, the Moytirra vent field is, unusually for tectonically controlled hydrothermal vents systems, basalt hosted and perched midway up on the median valley wall and presumably heated by an off-axis magma chamber. The Moytirra vent field consists of an alignment of four sites of venting, three actively emitting "black smoke," producing a complex of chimneys and beehive diffusers. The largest chimney is 18 m tall and vigorously venting. The vent fauna described here are the only ones documented for the North Atlantic (Azores to Reykjanes Ridge) and significantly expands our knowledge of North Atlantic biodiversity. The surfaces of the vent chimneys are occupied by aggregations of gastropods (Peltospira sp.) and populations of alvinocaridid shrimp (Mirocaris sp. with Rimicaris sp. also present). Other fauna present include bythograeid crabs (Segonzacia sp.) and zoarcid fish (Pachycara sp.), but bathymodiolin mussels and actinostolid anemones were not observed in the vent field. The discovery of the Moytirra vent field therefore expands the known latitudinal distributions of several vent-endemic genera in the north Atlantic, and reveals faunal affinities with vents south of the Azores rather than north of Iceland.

  12. Sulfur dioxide - Episodic injection shows evidence for active Venus volcanism

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.

    1984-01-01

    Pioneer Venus ultraviolet spectra from the first 5 years of operation show a decline (by more than a factor of 10) in sulfur dioxide abundance at the cloud tops and in the amount of submicron haze above the clouds. At the time of the Pioneer Venus encounter, the values for both parameters greatly exceeded earlier upper limits. However, Venus had a similar appearance in the late 1950's, implying the episodic injection of sulfur dioxide possibly caused by episodic volcanism. The amount of haze in the Venus middle atmosphere is about ten times that found in earth's stratosphere after the most recent major volcanic eruptions, and the thermal energy required for this injection on Venus is greater by about an order of magnitude than the largest of these recent earth eruptions and about as large as the Krakatoa eruption of 1883. The episodic behavior of sulfur dioxide implies that steady-state models of the chemistry and dynamics of cloud-top regions may be of limited use.

  13. U.S. Geological Survey's Alert Notification System for Volcanic Activity

    USGS Publications Warehouse

    Gardner, Cynthia A.; Guffanti, Marianne C.

    2006-01-01

    The United States and its territories have about 170 volcanoes that have been active during the past 10,000 years, and most could erupt again in the future. In the past 500 years, 80 U.S. volcanoes have erupted one or more times. About 50 of these recently active volcanoes are monitored, although not all to the same degree. Through its five volcano observatories, the U.S. Geological Survey (USGS) issues information and warnings to the public about volcanic activity. For clarity of warnings during volcanic crises, the USGS has now standardized the alert-notification system used at its observatories.

  14. Tertiary volcanic activity at Sonora Pass, CA: arc and non-arc magmatism in the central Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Roelofs, A.; Glazner, A. F.; Farmer, G. L.

    2004-12-01

    The volume and composition of Tertiary volcanic rocks in the Sierra Nevada of California changes dramatically near Sonora Pass (latitude 38° N). North of Sonora Pass is a large volume of volcanic rocks petrographically and chemically linked to subduction in the Cascade arc. South of Sonora Pass these calc-alkaline rocks are lacking and the only preserved volcanic rocks are small-volume mafic to intermediate potassic lavas that may have been generated by Pliocene lithospheric delamination (e.g. Farmer et al 2002). We have undertaken geologic mapping and geochemical and isotopic analysis of rocks near Sonora Pass at the boundary between these two magmatic provinces. At Sonora Pass, the 16-10 m.y.-old Relief Peak Formation and its hypabyssal equivalents are dominated by hornblende-phyric andesite lava flows and mudflow breccias (a stratovolcano assemblage) with marked high field-strength element (HFSE) depletions relative to large-ion lithophile elements (LILE), high Sri ( ˜ 0.7056), and low ɛ Nd (-1.4 > ɛ Nd > -2.5). The overlying Stanislaus Group ( ˜10-8 my old) has elevated HFSE and LILE relative to the Relief Peak Formation, anhydrous mineralogy, and similar isotope ratios (Sri ˜ 0.7056, -1.9 > ɛ Nd > -3.4). The overlying Disaster Peak Formation is petrographically similar to the Relief Peak Formation. Lavas of the Relief Peak Formation may have been derived from the hydrated, LILE-rich and HFSE-poor mantle wedge above the subducting Juan de Fuca plate as part of the ancestral Cascade arc. The eruption of the dry, HFSE- and LILE-richer Stanislaus Group from vents near those of the Relief Peak Formation and to the east during an apparent pause in Relief Peak-type activity may represent a temporary shift to a dry, more fertile, isotopically enriched source in the mantle. The shift coincides with the arrival of the subducted Mendocino Fracture Zone (MFZ) beneath Sonora Pass, and the change in plate stress as the MFZ traversed the region may have influenced

  15. Eruption processes and deposit characteristics at the monogenetic Mt. Gambier Volcanic Complex, SE Australia: implications for alternating magmatic and phreatomagmatic activity

    NASA Astrophysics Data System (ADS)

    van Otterloo, Jozua; Cas, Raymond A. F.; Sheard, Malcolm J.

    2013-08-01

    The ˜5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin-medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water-magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a "magmatic horizon" of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW-SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.

  16. NASA/JPL hydrothermal vent bio-sampler

    NASA Astrophysics Data System (ADS)

    Jonsson, J.; Behar, A.; Bruckner, J.; Matthews, J.

    pagestyle empty begin document On the bottom of the oceans with volcanic activity present hydrothermal vents can be found which spew out mineral rich superheated water from the porous seafloor crust Some of these vents are situated several thousands of meters below the surface where the sunlight never reaches Yet life thrives here on the minerals and chemical compounds that the vent water brings up with it This chemosynthetic microbial community forms the basis of some of the most interesting ecosystems on our planet and could possibly also be found on other water rich planets and moons in the solar system Perhaps under the icy surface of the moon Europa there exist hydrothermal vents with such biota thriving independently of the solar energy The Hydrothermal Vent Bio-sampler HVB is a system which will be used to collect pristine samples of the water emanating from hydrothermal vents An array of temperature and flow sensors will monitor the sampling conditions This will allow for the samples to be collected from defined locations within the plume and the diversity and distribution of the chemosynthetic communities that might live there can be accurately described The samples will have to be taken without any contamination from the surrounding water thus the pristine requirement Monitoring the flow will assure that enough water has been sampled to account for the low biomass of these environments The system will be using a series of filters down to 0 2 mu m in pore size and the samples can be directly collected from the system for both culture-

  17. Active methane venting observed at giant pockmarks along the U.S. mid-Atlantic shelf break

    NASA Astrophysics Data System (ADS)

    Newman, Kori R.; Cormier, Marie-Helene; Weissel, Jeffrey K.; Driscoll, Neal W.; Kastner, Miriam; Solomon, Evan A.; Robertson, Gretchen; Hill, Jenna C.; Singh, Hanumant; Camilli, Richard; Eustice, Ryan

    2008-03-01

    Detailed near-bottom investigation of a series of giant, kilometer scale, elongate pockmarks along the edge of the mid-Atlantic continental shelf confirms that methane is actively venting at the site. Dissolved methane concentrations, which were measured with a commercially available methane sensor (METS) designed by Franatech GmbH mounted on an Autonomous Underwater Vehicle (AUV), are as high as 100 nM. These values are well above expected background levels (1-4 nM) for the open ocean. Sediment pore water geochemistry gives further evidence of methane advection through the seafloor. Isotopically light carbon in the dissolved methane samples indicates a primarily biogenic source. The spatial distribution of the near-bottom methane anomalies (concentrations above open ocean background), combined with water column salinity and temperature vertical profiles, indicate that methane-rich water is not present across the entire width of the pockmarks, but is laterally restricted to their edges. We suggest that venting is primarily along the top of the pockmark walls with some advection and dispersion due to local currents. The highest methane concentrations observed with the METS sensor occur at a small, circular pockmark at the southern end of the study area. This observation is compatible with a scenario where the larger, elongate pockmarks evolve through coalescing smaller pockmarks.

  18. Reduction of Carbon Dioxide in Filtering Facepiece Respirators with an Active-Venting System: A Computational Study

    PubMed Central

    Birgersson, Erik; Tang, Ee Ho; Lee, Wei Liang Jerome; Sak, Kwok Jiang

    2015-01-01

    During expiration, the carbon dioxide (CO2) levels inside the dead space of a filtering facepiece respirator (FFR) increase significantly above the ambient concentration. To reduce the CO2 concentration inside the dead space, we attach an active lightweight venting system (AVS) comprising a one-way valve, a blower and a battery in a housing to a FFR. The achieved reduction is quantified with a computational-fluid-dynamics model that considers conservation of mass, momentum and the dilute species, CO2, inside the FFR with and without the AVS. The results suggest that the AVS can reduce the CO2 levels inside the dead space at the end of expiration to around 0.4% as compared to a standard FFR, for which the CO2 levels during expiration reach the same concentration as that of the expired alveolar air at around 5%. In particular, during inspiration, the average CO2 volume fraction drops to near-to ambient levels of around 0.08% with the AVS. Overall, the time-averaged CO2 volume fractions inside the dead space for the standard FFR and the one with AVS are around 3% and 0.3% respectively. Further, the ability of the AVS to vent the dead-space air in the form of a jet into the ambient – similar to the jets arising from natural expiration without a FFR – ensures that the expired air is removed and diluted more efficiently than a standard FFR. PMID:26115090

  19. Effects of Vent Asymmetry on Steady and Unsteady Eruption Dynamics

    NASA Astrophysics Data System (ADS)

    Sim, S.; Ogden, D.

    2013-12-01

    Models of volcanic eruptions are typically based on symmetric vent and conduit geometries. However, in natural settings, these features are rarely perfectly symmetric. For example, the May 18, 1980 eruption of Mount St Helens (MSH) took place through a highly asymmetrical crater due to the preceding landslide and subsequent vent erosion. In supersonic, high-pressure eruptions, such as what may have occurred at MSH, vent and crater asymmetry can strongly affect the directionality of the eruption. Here we explore flow dynamics resulting from a supersonic, high-pressure eruption though an asymmetric volcanic vent and a symmetric vent using a both unsteady numerical simulations and semi-analytical steady-state models. Preliminary results from both methods suggest that asymmetric vent shape may provide a first-order effect on dynamics of the initial phases of explosive eruptions.

  20. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  1. Okataina Volcanic Centre, Taupo Volcanic Zone, New Zealand: A review of volcanism and synchronous pluton development in an active, dominantly silicic caldera system

    NASA Astrophysics Data System (ADS)

    Cole, J. W.; Deering, C. D.; Burt, R. M.; Sewell, S.; Shane, P. A. R.; Matthews, N. E.

    2014-01-01

    The Okataina Volcanic Centre (OVC) is one of eight caldera systems, which form the central part of the Taupo Volcanic Zone, New Zealand. During its ~ 625 kyr volcanic history, which perhaps equates to ~ 750 kyr of magmatic history, the OVC has experienced two definite periods of caldera collapse (Matahina, ~ 322 ka, and Rotoiti, for which dates of 61 and 45 ka have recently been published), one probable collapse (Utu, ~ 557 ka) and one possible collapse (Kawerau, ~ 33 ka). Each collapse accompanied voluminous ignimbrite eruptions. Rhyolite dome extrusion and explosive tephra eruptions have occurred throughout the history of OVC.

  2. Off rift and on rift volcanism along the southern most extremity of the Reykjanes Ridge.

    NASA Astrophysics Data System (ADS)

    Hoskuldsson, Armann; Martinez, Fernando; Hey, Richard

    2014-05-01

    In August-September 2013 R/V Marcus G Langseth conducted a geophysical survey of the southern Reykjanes Ridge and flanks to the Bight transform fault including the first orthogonally spreading segment to the south. The objectives were to better understand how the Reykjanes Ridge replaced the earlier transform fault-dominated structure. The survey acquired full-coverage multibeam bathymetry of some 90,000 km2 and acoustic backscatter imagery and coincident gravity and magnetic profiles. The Rift axis of the RR is defined by a rift valley, striking 36° NE, and deepens from N to S towards the Bight transform fault. Volcanism along the rift axis is characterized by en-echelon volcanic ridges striking 14°NE and rising some 400-1000 m above the valley floor, single circular volcanic sea mounts 400-600 m high, lava flow sheets and craters. Fissures and faults are not very prominent with in the rift valley. However, at both sides bounding the rift valley, fissure, faults and uplifting of the crust is a dominant feature. Surprisingly numerous volcanic edifices are observed on the faulted crust drifting away from the plate boundary. Further these volcanic edifices do not all show any faulting and have cone shape forms, indicating more explosive activity than within the rift. The volcanic edifices range in size from 2-3 km at the base to some hundreds of meters. Backscatter analysis shows that in general the volcanic edifices have higher values than the surrounding basement. These vents are observed as far as 100 km from the rifting center. High backscatter along with little or no faulting indicates that these off rift volcanic vents are younger than the basement they are resting on, thus manifesting that volcanism is not solely confined to the active rift boundary in the area. The segment south of Bight transform fault is highly dotted by these off rift volcanic vents

  3. The influence of volcanic activity on suspended sediment yield of rivers (Kamchatka, Russia)

    NASA Astrophysics Data System (ADS)

    Kuksina, Ludmila

    2014-05-01

    Kamchatka is specific region of suspended sediment yield formation. This fact is particularly connected with active volcanism in the territory. The influence of volcanism on suspended sediment yield characteristics was studied in various time scales - into-diurnal, seasonal and long-term ones. The study of spatial variability of these characteristics reveals the maximum values characterize river basins in zones of strong impact of volcanic eruptions, especially, rivers draining slopes and flanks of active volcanoes. Into-diurnal fluctuations were studied for rivers in volcanic areas. They are characterized by synchronous changes of water flow and turbidity. It's determined by weak erosion-preventive capacity of friable volcanic deposits and big slopes of channels (2.5 - 6.0 %). The maximum of water flow and turbidity is observed at the period between 12 and 6 pm. The air temperature reaches its maximum by that time, and consequently, the intensity of snow melting is also maximum one. The maximum of turbidity advances diurnal maximum of water flow a little, and it's connected with the features of flood wave moving and consecutive maximums of slopes, turbidity, velocity, water flow, and capacity of stream during flush. Into-diurnal fluctuations are determined by complicated and little-studied processes of mass transfer between stream and channel deposits. These processes are connected with into-diurnal changes of stream capacity and water transfer between channel and underflow. As the result water regime is pulsating. Rivers under the influence of volcanic eruptions transport the main amount of sediments during floods which usually occur in summer-autumn period (in the absence of extreme floods in winter-spring period during volcanic eruptions). Combination of maximum snow supply, significant precipitation in warm part of the year and weak erosion-preventive capacity of friable volcanic deposits on volcanoes slopes is the reason of the most intense erosion in this

  4. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    NASA Astrophysics Data System (ADS)

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-04-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes.

  5. Soil radon measurements as a potential tracer of tectonic and volcanic activity.

    PubMed

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009-2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  6. Soil radon measurements as a potential tracer of tectonic and volcanic activity

    PubMed Central

    Neri, Marco; Ferrera, Elisabetta; Giammanco, Salvatore; Currenti, Gilda; Cirrincione, Rosolino; Patanè, Giuseppe; Zanon, Vittorio

    2016-01-01

    In Earth Sciences there is a growing interest in studies concerning soil-radon activity, due to its potential as a tracer of numerous natural phenomena. Our work marks an advance in the comprehension of the interplay between tectonic activity, volcanic eruptions and gas release through faults. Soil-radon measurements, acquired on Mt. Etna volcano in 2009–2011, were analyzed. Our radon probe is sensitive to changes in both volcanic and seismic activity. Radon data were reviewed in light of the meteorological parameters. Soil samples were analyzed to characterize their uranium content. All data have been summarized in a physical model which identifies the radon sources, highlights the mechanism of radon transport and envisages how such a mechanism may change as a consequence of seismicity and volcanic events. In the NE of Etna, radon is released mainly from a depth of <1400 m, with an ascent speed of >50 m/day. Three periods of anomalous gas release were found (February 2010, January and February 2011). The trigger of the first anomaly was tectonic, while the second and third had a volcanic origin. These results mark a significant step towards a better understanding of the endogenous mechanisms that cause changes in soil-radon emission at active volcanoes. PMID:27079264

  7. Significance of an Active Volcanic Front in the Far Western Aleutian Arc

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Kelemen, P. B.; Hoernle, K.

    2015-12-01

    Discovery of a volcanic front west of Buldir Volcano, the western-most emergent Aleutian volcano, demonstrates that the surface expression of Aleutian volcanism falls below sea level just west of 175.9° E longitude, but is otherwise continuous from mainland Alaska to Kamchatka. The newly discovered sites of western Aleutian seafloor volcanism are the Ingenstrem Depression, a 60 km-long structural depression just west of Buldir, and an unnamed area 300 km further west, referred to as the Western Cones. These locations fall along a volcanic front that stretches from Buldir to Piip Seamount near the Komandorsky Islands. Western Aleutian seafloor volcanic rocks include large quantities of high-silica andesite and dacite, which define a highly calc-alkaline igneous series and carry trace element signatures that are unmistakably subduction-related. This indicates that subducting oceanic lithosphere is present beneath the westernmost Aleutian arc. The rarity of earthquakes below depths of 200 km indicates that the subducting plate is unusually hot. Some seafloor volcanoes are 6-8 km wide at the base, and so are as large as many emergent Aleutian volcanoes. The seafloor volcanoes are submerged in water depths >3000 m because they sit on oceanic lithosphere of the Bering Sea. The volcanic front is thus displaced to the north of the ridge of arc crust that underlies the western Aleutian Islands. This displacement, which developed since approximately 6 Ma when volcanism was last active on the islands, must be a consequence of oblique convergence in a system where the subducting plate and large blocks of arc crust are both moving primarily in an arc-parallel sense. The result is a hot-slab system where low subduction rates probably limit advection of hot mantle to the subarc, and produce a relatively cool and perhaps stagnant mantle wedge. The oceanic setting and highly oblique subduction geometry also severely limit rates of sediment subduction, so the volcanic rocks, which

  8. Regional orientation of tectonic stress and the stress expressed by post-subduction high-magnesium volcanism in northern Baja California, Mexico: Tectonics and volcanism of San Borja volcanic field

    NASA Astrophysics Data System (ADS)

    Negrete-Aranda, Raquel; Cañón-Tapia, Edgardo; Brandle, Jose Luis; Ortega-Rivera, M. Amabel; Lee, James K. W.; Spelz, Ronald M.; Hinojosa-Corona, Alejandro

    2010-04-01

    Because of its long-lived (Late Miocene to Pleistocene) post-subduction volcanic activity and location, the San Borja volcanic field (SBVF) is a key area for understanding the physical mechanisms controlling the spatial distribution of post-subduction volcanism on the Peninsula of Baja California. In this paper, we study the distribution and general characteristics of individual eruptive centers in the SBVF, aiming to provide insight into the changing physical nature of post-subduction magmatism and the control on vent location in a very unique tectonic setting. Volcanic activity has built more than 227 high-magnesium andesites (HMA) monogenetic scoria cones and thick lava flows capping large mesas during the last 12.5 Ma. The average (mean) eruptive center in the SBVF has a height of 85 m, a basal diameter of 452 m and a slope angle of 30°. Our volcanic alignment analysis of this field is based on field data, satellite images, and a quantitative method for detecting volcanic center alignments. The morphologic data, together with new 40Ar/ 39Ar geochronology data have been used to refine our alignment analysis and to better delineate the temporal evolution of post-subduction volcanic activity in this field. The available ages vary from 3.53 ± 0.18 to 10 ± 0.23 Ma suggesting that the long-lived HMA volcanism occurred almost continuously (with some concentration of pulses) throughout Late Miocene and extending to the Pleistocene and even into the Quaternary, replacing the arc-related activity of the Comondú arc which vanished in this area around 12.5 Ma. Alignment analysis confirms a NW-SE direction as the preferred orientation of volcanic alignments and shows that vent elongations do not display a strong parallelism in any particular direction, marking the absence of matches between lineaments defined by multiple vents and orientations of vent elongation. The results of the volcanic alignment analysis allowed us to infer the direction of the maximum

  9. Chemistry of ash-leachates: a reliable monitoring tool for volcanic activity

    NASA Astrophysics Data System (ADS)

    Armienta, M. A.; De la Cruz-Reyna, S.; Soler, A.; Ceniceros, N.; Cruz, O.; Aguayo, A.

    2012-04-01

    Real-time volcanic hazard assessment requires the integrated interpretation of data obtained with different monitoring methods, particularly when people may be at risk. One of the methods rendering earliest precursory variations reflecting the internal state of a volcano is the geochemical analysis of gases, ground or lake waters related to volcanic systems, and volcanic ash. At Popocatépetl volcano, Central México, chemical fluctuations of the soluble cover of volcanic ash particles has proved to reflect diverse characteristics of the eruption types. Chloride, sulfate and fluoride concentrations of ash leachates have been consistently measured within the current eruptive episode beginning in December 1994. Particularly, main anions presented diverse relative concentrations in periods of dome extrusions, contrasting with hydrothermal activity or quiescence. Multivariate statistical analysis revealed that higher proportions of fluoride in the leachates corresponded to new dome emplacements and relatively higher sulfate concentrations to hydrothermal ashes, although these results may be ambiguous at times. However, different sulfur isotopic ratios were measured in sulfate from ashes erupted during periods dominated by hydrothermal activity to those emitted during dome emplacement. Additionally, ascent of fresh magma was reflected on high fluoride concentrations jointly with low 34S-SO4 isotopic values. It is thus recommended to maintain persistent analyses of ash-leachates from on-going eruptions as a monitoring tool at active volcanoes.

  10. Exploratory Data Analysis Using a Dedicated Visualization App: Looking for Patterns in Volcanic Activity

    NASA Astrophysics Data System (ADS)

    van Manen, S. M.; Chen, S.

    2015-12-01

    Here we present an App designed to visualize and identify patterns in volcanic activity during the last ten years. It visualizes VEI (volcanic explosivity index) levels, population size, frequency of activity, and geographic region, and is designed to address the issue of oversampling of data. Often times, it is difficult to access a large set of data that can be scattered at first glance and hard to digest without visual aid. This App serves as a model that solves this issue and can be applied to other data. To enable users to quickly assess the large data set it breaks down the apparently chaotic abundance of information into categories and graphic indicators: color is used to indicate the VEI level, size for population size within 5 km of a volcano, line thickness for frequency of activity, and a grid to pinpoint a volcano's latitude. The categories and layers within them can be turned on and off by the user, enabling them to scroll through and compare different layers of data. By visualising the data this way, patterns began to emerge. For example, certain geographic regions had more explosive eruptions than others. Another good example was that low frequency larger impact volcanic eruptions occurred more irregularly than smaller impact volcanic eruptions, which had a more stable frequencies. Although these findings are not unexpected, the easy to navigate App does showcase the potential of data visualization for the rapid appraisal of complex and abundant multi-dimensional geoscience data.

  11. The Volcanic Ash Strategic Initiative Team (VAST) - operational testing activities and exercises

    NASA Astrophysics Data System (ADS)

    Wotawa, Gerhard; Arnold, Delia; Eckhardt, Sabine; Kristiansen, Nina; Maurer, Christian; Prata, Fred; Stohl, Andreas; Zehner, Claus

    2013-04-01

    The project VAST performs its activities within an ESA (European Space Agency) initiative to enhance the use of Earth Observation (EO) data in volcanic ash monitoring and forecasting. The VAST project aims at further exploring the suitability of EO data for such activities and to improve volcanic ash atmospheric transport forecasting services through exercises and demonstration activities in operational environments. Previous to the in-house deployment of the demonstration service, several exercises on operations and communication exchange are needed and first results are presented here. These exercises include technical in-house settings and conceptual planning of the operations with procedure development, volcanic eruptions drills that trigger the acquiring of data and dispersion/forecasting calculations with preliminary estimates of source terms and finally, an international exercise that provides a test case volcanic event to evaluate response times and the usefulness of the different products obtained. Products also include ensemble dispersion forecasts, on one hand multi-input ensembles utilizing the ECMWF EPS system, and on the other hand multi-model ensembles based on different dispersion models driven with different input data. As part of the work, socio-economic aspects need to be taken into account as well. This includes also the identification of best practices on how results can be presented to the stakeholders, including national authorities and policy makers, and the general public.

  12. The STRATegy COLUMN for Precollege Science Teachers: Volcanic Activity.

    ERIC Educational Resources Information Center

    Metzger, Ellen Pletcher

    1995-01-01

    Describes resources for information and activities involving volcanoes. Includes an activity that helps students become familiar with the principal types of volcanoes and explores how the viscosity of magma affects the way a volcano erupts. (MKR)

  13. Temporal and Spatial Analysis of Monogenetic Volcanic Fields

    NASA Astrophysics Data System (ADS)

    Kiyosugi, Koji

    Achieving an understanding of the nature of monogenetic volcanic fields depends on identification of the spatial and temporal patterns of volcanism in these fields, and their relationships to structures mapped in the shallow crust and inferred in the deep crust and mantle through interpretation of geochemical, radiometric and geophysical data. We investigate the spatial and temporal distributions of volcanism in the Abu Monogenetic Volcano Group, Southwest Japan. E-W elongated volcano distribution, which is identified by a nonparametric kernel method, is found to be consistent with the spatial extent of P-wave velocity anomalies in the lower crust and upper mantle, supporting the idea that the spatial density map of volcanic vents reflects the geometry of a mantle diapir. Estimated basalt supply to the lower crust is constant. This observation and the spatial distribution of volcanic vents suggest stability of magma productivity and essentially constant two-dimensional size of the source mantle diapir. We mapped conduits, dike segments, and sills in the San Rafael sub-volcanic field, Utah, where the shallowest part of a Pliocene magmatic system is exceptionally well exposed. The distribution of conduits matches the major features of dike distribution, including development of clusters and distribution of outliers. The comparison of San Rafael conduit distribution and the distributions of volcanoes in several recently active volcanic fields supports the use of statistical models, such as nonparametric kernel methods, in probabilistic hazard assessment for distributed volcanism. We developed a new recurrence rate calculation method that uses a Monte Carlo procedure to better reflect and understand the impact of uncertainties of radiometric age determinations on uncertainty of recurrence rate estimates for volcanic activity in the Abu, Yucca Mountain Region, and Izu-Tobu volcanic fields. Results suggest that the recurrence rates of volcanic fields can change by more

  14. Volcanism on Mars

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Spudis, P. D.

    1981-02-01

    In situ chemical analyses of Martian soil by the Viking lander indicate mafic to ultramafic source rocks, consistent with both remote sensing data indicating the presence of pyroxene and olivine and with petrologic modeling which suggests that Martian lavas are iron-rich and ultramafic. Photogeological analysis of the Martian surface reveals two types of volcanic morphology: (1) central volcanoes, developed by continued and prolonged eruption from a point source vent; and (2) volcanic plains, recognized by mare ridges and flow lobes. When these volcanic morphologies are combined with relative age data, a volcanic history may be derived that is consistent with a moonlike thermal history involving a lithosphere of increasing thickness with time which gradually suppresses the volcanism.

  15. The past 5,000 years of volcanic activity at Mt. Pelee martinique (F.W.I.): Implications for assessment of volcanic hazards

    NASA Astrophysics Data System (ADS)

    Westercamp, D.; Traineau, H.

    1983-09-01

    The history of Mt. Pelée, Martinique, was subdivided into three stages based on field geology and 14C data. The two first stages constructed an ancient Mt. Pelée and an intermediate cone between 0.4 m.y and 19,500 y.b.p. The third (or present) stage started 13,500 years ago, after a repose of 6,000 years. This paper focuses on the activity of Mt. Pelée during the past 5,000 years as a means to assess and zone volcanic hazards of the 23 magmatic eruptions during the past 5,000 years. The ages of 21 eruptions of this period are based on 75 new 14C dates. The types of phenomena and distribution of pyroclasts relate to four main types of activity: — The first type consists of pumice-and-ash flows that are not preceded by a Plinian fall. Two eruptions (named P6 and P4) illustrate this type, for which the mixture of gas, ash, and pumice simply overflow the vent and flood several valleys. — The second type differs from the first by the occurrence of a preliminary moderate Plinian-fall stage. Four eruptions (P5, P31, P2 and P1) illustrate this type. Two eruptions (P3 2 and P3 3) experienced cataclysmic Plinian explosions and pumiceous surges. — The third type is related to dome growth with the rise of viscous spines and the production of related block-and-ash flows. Five eruptions (1929, Sept. 1902-1904, NPM, NAB 2 and NMP) illustrate this type. — The fourth type is characterized by violent ejection of more-or-less heterogeneous nuées ardentes. The direction of the blast, dictated by the morphology of the crater, has been towards the south several times at Mt. Pelee. Four eruptions (May 1902, NAB1, NRP2 and NRP3) belong to this type. Future magmatic eruptions at Mt. Pelée will very likely belong to one of these four types. Assessment of hazards at Mt. Pelée is based upon the behavior of the volcano during the past 5,000 years because: (1) recognition of past magmatic eruptions is quite complete and well-dated, and (2) no structural change has occurred in the

  16. High resolution DEM from Tandem-X interferometry: an accurate tool to characterize volcanic activity

    NASA Astrophysics Data System (ADS)

    Albino, Fabien; Kervyn, Francois

    2013-04-01

    Tandem-X mission was launched by the German agency (DLR) in June 2010. It is a new generation high resolution SAR sensor mainly dedicated to topographic applications. For the purpose of our researches focused on the study of the volcano-tectonic activity in the Kivu Rift area, a set of Tandem-X bistatic radar images were used to produce a high resolution InSAR DEM of the Virunga Volcanic Province (VVP). The VVP is part of the Western branch of the African rift, situated at the boundary between D.R. Congo, Rwanda and Uganda. It has two highly active volcanoes, Nyiragongo and Nyamulagira. A first task concerns the quantitative assessment of the vertical accuracy that can be achieved with these new data. The new DEMs are compared to other space borne datasets (SRTM, ASTER) but also to field measurements given by differential GPS. Multi-temporal radar acquisitions allow us to produce several DEM of the same area. This appeared to be very useful in the context of an active volcanic context where new geomorphological features (faults, fissures, volcanic cones and lava flows) appear continuously through time. For example, since the year 2000, time of the SRTM acquisition, we had one eruption at Nyiragongo (2002) and six eruptions at Nyamulagira (2001, 2002, 2004, 2006, 2010 and 2011) which all induce large changes in the landscape with the emplacement of new lava fields and scoria cones. From our repetitive Tandem-X DEM production, we have a tool to identify and also quantify in term of size and volume all the topographic changes relative to this past volcanic activity. These parameters are high value information to improve the understanding of the Virunga volcanoes; the accurate estimation of erupted volume and knowledge of structural features associated to past eruptions are key parameters to understand the volcanic system, to ameliorate the hazard assessment, and finally contribute to risk mitigation in a densely populated area.

  17. Unspiked K Ar dating of the Honolulu rejuvenated and Ko‘olau shield volcanism on O‘ahu, Hawai‘i

    NASA Astrophysics Data System (ADS)

    Ozawa, Ayako; Tagami, Takahiro; Garcia, Michael O.

    2005-03-01

    Many mantle plume volcanoes undergo rejuvenated volcanism after a period of construction and erosion of their shield. The cause of this renewed volcanism has been enigmatic and various models have been proposed. However, the lack of geochronological data has hindered evaluation of these models. Unspiked K-Ar ages on groundmass in 41 samples from 32 vents of Honolulu Volcanics and eight samples of underlying Ko'olau Volcanics were determined in order to reveal the temporal distribution of rejuvenated vents and the length of the hiatus between the end of shield and start of rejuvenated volcanism. The new geochronological results show that Ko'olau shield volcanism ended at 2.1 Ma and that rejuvenated volcanism started at 0.8 Ma, resulting in a 1.3 million year hiatus in volcanic activity. Two distinct pulses were found for Honolulu volcanism at 0.80-0.35 and ˜0.1 Ma. During the first pulse, the eruption frequency increased with time and there was no spatial pattern in vent distribution, although three vents along a NNE-SSW trend produced similar compositions and may have been coeval. Volcanism apparently waned from 0.35-0.12 Ma, with only one eruption. The second pulse occurred along two rifts that trend N-S and NE-SW. Although the ages for the 10 dated flows are indistinguishable at around 0.1 Ma, lavas from the two rifts have distinct compositions: weakly alkalic vs. melilite nephelinite. The first, more widely distributed pulse of volcanism is probably related to secondary melting downstream from the Hawaiian plume stem, which may be related to lithospheric thinning. The second pulse, focused along two rifts, may be related to decompressional melting as the shield passed over the flexural arch.

  18. Planetary Volcanism

    NASA Technical Reports Server (NTRS)

    Antonenko, I.; Head, J. W.; Pieters, C. W.

    1998-01-01

    The final report consists of 10 journal articles concerning Planetary Volcanism. The articles discuss the following topics: (1) lunar stratigraphy; (2) cryptomare thickness measurements; (3) spherical harmonic spectra; (4) late stage activity of volcanoes on Venus; (5) stresses and calderas on Mars; (6) magma reservoir failure; (7) lunar mare basalt volcanism; (8) impact and volcanic glasses in the 79001/2 Core; (9) geology of the lunar regional dark mantle deposits; and (10) factors controlling the depths and sizes of magma reservoirs in Martian volcanoes.

  19. Barberton greenstone belt volcanism: Succession, style and petrogenesis

    NASA Technical Reports Server (NTRS)

    Byerly, G. R.; Lowe, D. R.

    1986-01-01

    The Barberton Mountain Land is an early Archean greenstone belt along the eastern margin of the Kaapvaal Craton of southern Africa. Detailed mapping in the southern portion of the belt leads to the conclusion that a substantial thickness is due to original deposition of volcanics and sediments. In the area mapped, a minimum thickness of 12km of predominantly mafic and ultramafic volcanics comprise the Komati, Hooggenoeg, and Kromberg Formations of the Onverwacht Group, and at least one km of predominantly pyroclastic and epiclastic sediments derived from dacitic volcanics comprise the Fig Tree Group. The Barberton greenstone belt formed primarily by ultramafic to mafic volcanism on a shallow marine platform which underwent little or no concurrent extension. Vents for this igneous activity were probably of the non-constructional fissure type. Dacitic volcanism occurred throughout the sequence in minor amounts. Large, constructional vent complexes were formed, and explosive eruptions widely dispersed pyroclastic debris. Only in the final stages of evolution of the belt did significant thrust-faulting occur, generally after, though perhaps overlapping with, the final stage of dacitic igneous activity. A discussion follows.

  20. Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes

    NASA Astrophysics Data System (ADS)

    Londono, John Makario

    2016-09-01

    In the last nine years (2007-2015), the Cerro Bravo-Cerro Machín volcanic complex (CBCMVC), located in central Colombia, has experienced many changes in volcanic activity. In particular at Nevado del Ruiz volcano (NRV), Cerro Machin volcano (CMV) and Cerro Bravo (CBV) volcano. The recent activity of NRV, as well as increasing seismic activity at other volcanic centers of the CBCMVC, were preceded by notable changes in various geophysical and geochemical parameters, that suggests renewed magmatic activity is occurring at the volcanic complex. The onset of this activity started with seismicity located west of the volcanic complex, followed by seismicity at CBV and CMV. Later in 2010, strong seismicity was observed at NRV, with two small eruptions in 2012. After that, seismicity has been observed intermittently at other volcanic centers such as Santa Isabel, Cerro España, Paramillo de Santa Rosa, Quindío and Tolima volcanoes, which persists until today. Local deformation was observed from 2007 at NRV, followed by possible regional deformation at various volcanic centers between 2011 and 2013. In 2008, an increase in CO2 and Radon in soil was observed at CBV, followed by a change in helium isotopes at CMV between 2009 and 2011. Moreover, SO2 showed an increase from 2010 at NRV, with values remaining high until the present. These observations suggest that renewed magmatic activity is currently occurring at CBCMVC. NRV shows changes in its activity that may be related to this new magmatic activity. NRV is currently exhibiting the most activity of any volcano in the CBCMVC, which may be due to it being the only open volcanic system at this time. This suggests that over the coming years, there is a high probability of new unrest or an increase in volcanic activity of other volcanoes of the CBCMVC.

  1. Volcanic tremor at Volcán de Colima, México recorded during May 2002 and its interactions with the seismic signals produced by low-energy explosive activity and rockfalls

    NASA Astrophysics Data System (ADS)

    Zobin, Vyacheslav M.; Reyes, Gabriel A.; Bretón, Mauricio

    2016-05-01

    The May 2002 eruption episode at Volcán de Colima, México represented the transition period between two stages of effusive activity which were characterized by the formation of lava flows. The short-period seismic signals, recorded during May 2002 at a distance of 1.6 km from the crater, were represented by volcanic tremor and the signals produced by low-energy explosions and rockfalls. Two types of volcanic tremor were recognized: harmonic with two fundamental spectral frequencies of 1.2-1.4 Hz and 1.6-1.7 Hz and non-harmonic. The existence of two fundamental frequencies of volcanic tremor may indicate a two-vent magmatic conduit. No clear relationship between the variations in the spectral content of tremor and occurrence of explosions was observed. The waveforms of the signals, produced by low-energy explosions and rockfalls and recorded on the background of volcanic tremor, were strongly modulated by the low-frequency harmonic tremor signals, forming, in this manner, pseudo-long period events. Fourier analysis of the seismic signals associated with low-energy explosions and rockfalls but recorded on the background of regular seismic noise indicated their high-frequency sources characterized by dominant frequencies within 2-3 Hz and 3-4.5 Hz, respectively.

  2. NAUDUR explorers discover recent volcanic activity along the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Auzende, Jean-Marie; Sinton, John

    Surveying an ultra-fast spreading ridge along the East Pacific Rise (EPR), explorers aboard the submersible Nautile examined features such as lava pillows and tubes, sulfide chimneys, black smokers, hot shimmering waters, and colonies of animals living in hydrothermal vents to learn more about the processes of accretion and tectonics on the ocean floor. Taken together, the observations of the EPR between 17°S and 19°S from the 1993 NAUDUR cruise (a French acronym for Nautile on Ultra-fast Ridge) indicate recent volcanic eruptions occurring as frequently as every few years.The NAUDUR cruise was designed to study the interaction between magmatic, tectonic, and hydrothermal processes at an ultra-fast spreading axis of the EPR. Researchers performing twenty three dives in five regions (Figure 1) along the axis of the Garrett fracture zone collected more than 150 rock samples and made 52 gravity measurements [Auzende et al., 1994]. The Garrett fracture zone (13°S) and the Easter Microplate limit a large segment of the East Pacific Rise where the accretion rate is near the upper limit for present-day spreading values (141 to 162mm/yr) [Perram et al., 1993]. The five dive regions with distinct morphological characteristics represent different stages in the accretion process.

  3. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent.

    PubMed

    Fortunato, Caroline S; Huber, Julie A

    2016-08-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched (13)C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent. PMID:26872039

  4. Factors limiting microbial activity in volcanic tuff at Yucca Mountain

    SciTech Connect

    Kieft, T.L.; Kovacik, W.P.; Taylor, J.

    1996-09-01

    Samples of tuff aseptically collected from 10 locations in the Exploratory Shaft Facility at the site of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada Test Site were analyzed for microbiological populations, activities, and factors limiting microbial activity. Radiotracer assays ({sup 14}C-labeled organic substrate mineralization), direct microscopic counts, and plate counts were used. Radiolabeled substrates were glucose, acetate, and glutamate. Radiotracer experiments were carried out with and without moisture and inorganic nutrient amendments to determine factors limiting to microbial activities. Nearly all samples showed the presence of microorganisms with the potential to mineralize organic substrates. Addition of inorganic nutrients stimulated activities in a small number of samples. The presence of viable microbial communities within the tuff has implications for transport of contaminants.

  5. On the global distribution of hydrothermal vent fields: One decade later

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Baker, E. T.; German, C. R.

    2012-12-01

    Since the last global compilation one decade ago, the known number of active submarine hydrothermal vent fields has almost doubled. At the end of 2009, a total of 518 active vent fields was catalogued, with about half (245) visually confirmed and others (273) inferred active at the seafloor. About half (52%) of these vent fields are at mid-ocean ridges (MORs), 25% at volcanic arcs, 21% at back-arc spreading centers (BASCs), and 2% at intra-plate volcanoes and other settings. One third are in high seas, and the nations with the most known active vent fields within EEZs are Tonga, USA, Japan, and New Zealand. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. Here, we have comprehensively documented the percentage of strike length at MORs and BASCs that has been systematically explored for hydrothermal activity. As of the end of 2009, almost 30% of the ~60,000 km of MORs had been surveyed at least with spaced vertical profiles to detect hydrothermal plumes. A majority of the vents discovered at MORs in the past decade occurred at segments with < 60 mm/yr full spreading rate. Discoveries at ultra-slow MORs in the past decade included the deepest known vent (Beebe at Mid-Cayman Rise) and high-temperature black smoker vents (e.g., Dragon at SWIR and Loki's Castle at Mohns Ridge), and the highest temperature vent was measured at the slow-spreading S MAR (Turtle Pits). Using a previously published equation for the linear relationship between the number of active vent fields per 100 km strike length (F_s) vs. weighted-average full spreading rate (u_s), we predicted 676 vent fields remaining to be discovered at MORs. Even accounting for the lower F_s at slower spreading rates, almost half of the vents that are predicted remaining to be discovered at MORs are at ultra-slow to slow spreading rates (< 40 mm/yr) and about 1/3 at intermediate rates (40-80 mm

  6. Classifying the Infrasonic Fingerprints of a Dynamic Volcanic System: A Quantitative Comparison of Optical and Infrasound Records at Villarrica Volcano, Chile.

    NASA Astrophysics Data System (ADS)

    Miller, A. J. C.; Palma, J.; Keller, W.; Johnson, J. B.

    2015-12-01

    On March 3, 2015 Villarrica Volcano underwent an abrupt change in volcanic behavior that culminated in a large fire fountaining event lasting 30 minutes that prompted the evacuation of residents within 9 km from the vent. This paroxysm was the first in 30 years and changed summit morphology by temporarily capping the previously stable lava lake with volcanic material. After March 3, Villarrica exhibited a period of quiescence before reactivating with various levels of ash venting associated with strombolian style activity. Ten infrasound arrays, each comprising three pressure transducers, were deployed in January and February that recorded until mid June and serendipitously chronicled the awakening, paroxysm, and recovery to a more open vent system typical to Villarrica. Coincidentally, several optical datasets were gathered. Time lapse photography, provided by Proyecto Observacion Villarrica Internet (POVI), recorded vent activity at an interval of ~15 seconds with a 240 mm zoom lens at 16 km from the vent, starting December 2014 until March 12, 2015. Additionally, video footage of the vent was recorded at 30 frames per second (fps) with a 50 mm lensed surveillance camera between March 4 and June of 2015 at a distance of 16 km from the vent. The combined infrasound and image processing approach offers novel insight into the various acoustic signatures of a dynamic and violent volcanic system. Video parameters, including plume color, ascent rate, and duration of venting are synthesized as time series. These video metrics of vent activity are then quantitatively compared to the corresponding infrasound waveform. The result is the classification of several different infrasound modes of activity during the diverse eruptive sequence of Villarrica between January and June of 2015.

  7. Compilation of Disruptions to Airports by Volcanic Activity (Version 1.0, 1944-2006)

    USGS Publications Warehouse

    Guffanti, Marianne; Mayberry, Gari C.; Casadevall, Thomas J.; Wunderman, Richard

    2008-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. To more fully characterize the nature and scope of volcanic hazards to airports, we collected data on incidents of airports throughout the world that have been affected by volcanic activity, beginning in 1944 with the first documented instance of damage to modern aircraft and facilities in Naples, Italy, and extending through 2006. Information was gleaned from various sources, including news outlets, volcanological reports (particularly the Smithsonian Institution's Bulletin of the Global Volcanism Network), and previous publications on the topic. This report presents the full compilation of the data collected. For each incident, information about the affected airport and the volcanic source has been compiled as a record in a Microsoft Access database. The database is incomplete in so far as incidents may not have not been reported or documented, but it does present a good sample from diverse parts of the world. Not included are en-route diversions to avoid airborne ash clouds at cruise altitudes. The database has been converted to a Microsoft Excel spreadsheet. To make the PDF version of table 1 in this open-file report resemble the spreadsheet, order the PDF pages as 12, 17, 22; 13, 18, 23; 14, 19, 24; 15, 20, 25; and 16, 21, 26. Analysis of the database reveals that, at a minimum, 101 airports in 28 countries were impacted on 171 occasions from 1944 through 2006 by eruptions at 46 volcanoes. The number of affected airports (101) probably is better constrained than the number of incidents (171) because recurring disruptions at a given airport may have been lumped together or not reported by news agencies, whereas the initial disruption likely is noticed and reported and thus the airport correctly counted.

  8. Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: a review.

    PubMed

    Van Dover, Cindy Lee

    2014-12-01

    Deep-sea hydrothermal-vent ecosystems have stimulated decades of scientific research and hold promise of mineral and genetic resources that also serve societal needs. Some endemic taxa thrive only in vent environments, and vent-associated organisms are adapted to a variety of natural disturbances, from tidal variations to earthquakes and volcanic eruptions. In this paper, physicochemical and biological impacts of a range of human activities at vents are considered. Mining is currently the only anthropogenic activity projected to have a major impact on vent ecosystems, albeit at a local scale, based on our current understanding of ecological responses to disturbance. Natural recovery from a single mining event depends on immigration and larval recruitment and colonization; understanding processes and dynamics influencing life-history stages may be a key to effective minimization and mitigation of mining impacts. Cumulative impacts on benthic communities of several mining projects in a single region, without proper management, include possible species extinctions and shifts in community structure and function. PMID:24725508

  9. Vents Pattern Analysis at Etna volcano (Sicily, Italy).

    NASA Astrophysics Data System (ADS)

    Brancato, Alfonso; Tusa, Giuseppina; Coltelli, Mauro; Proietti, Cristina; Branca, Stefano

    2014-05-01

    Mount Etna is a composite stratovolcano located along the Ionian coast of eastern Sicily. It is characterized by basaltic eruptions, both effusive and explosive, occurred during a complex eruptive history over the last 500 ka. Flank eruptions occur at an interval of decades, mostly concentrated along the NE, S and W rift zones. A vent clustering at various scales is a common feature in many volcanic settings. In order to identify the clusters within the studied area, a spatial point pattern analysis is undertaken using vent positions, both known and reconstructed. It reveals both clustering and spatial regularity in the Etna region at different distances. The visual inspection of the vent spatial distribution suggests a clustering on the rift zones of Etna volcano. To confirm this evidence, a coarse analysis is performed by the application of Ξ2- and t-test simple statistics. Then, a refined analysis is performed by using the Ripley K-function (Ripley, 1976), whose estimator K(d), knowing the area of the study region and the number of vents, allow us to calculate the distance among two different location of events. The above estimator can be easier transformed by using the Besag L-function (Besag, 1977); the peaks of positive L(d)=[K(d)/π]1/2 -d values indicate clustering while troughs of negative values stand for regularity for their corresponding distances d (L(d)=0 indicates complete spatial randomness). Spatial pattern of flank vents is investigated in order to model the spatial distribution of likely eruptive vents for the next event, basically in terms of relative probabilities. For this, a Gaussian kernel technique is used, and the L(d) function is adopted to generate an optimal smoothing bandwidth based on the clustering behaviour of the Etna volcano. A total of 154 vents (among which 36 are reconstructed), related to Etna flank activity of the last 4.0 ka, is used to model future vent opening. The investigated region covers an area of 850 km2, divided

  10. Potential hazards from future volcanic eruptions in California

    USGS Publications Warehouse

    Miller, C. Dan

    1989-01-01

    More than 500 volcanic vents have been identified in the State of California. At least 76 of these vents have erupted, some repeatedly, during the last 10,000 years. Past volcanic activity has ranged in scale and type from small rhyolitic and basaltic eruptions through large catastrophic rhyolitic eruptions. Sooner or later, volcanoes in California will erupt again, and they could have serious impacts on the health and safety of the State\\'s citizens as well as on its economy. This report describes the nature and probable distribution of potentially hazardous volcanic phenomena and their threat to people and property. It includes hazard-zonation maps that show areas relatively likely to be affected by future eruptions in California. The potentially more hazardous eruptions in the State are those that involve explosive eruption of large volumes of silicic magma. Such eruptions could occur at vents in as many as four areas in California. They could eject pumice high into the atmosphere above the volcano, produce destructive blasts, avalanches, or pyroclastic flows that reach distances of tens of kilometers from a vent, and produce mudflows and floods that reach to distances of hundreds of kilometers. Smaller eruptions produce similar, but less severe and less extensive, phenomena. Hazards are greatest close to a volcanic vent; the slopes on or near a volcano, and valleys leading away from it, are affected most often and most severely by such eruptions. In general, risk from volcanic phenomena decreases with increasing distance from a vent and, for most flowage processes, with increasing height above valley floors or fan surfaces. Tephra (ash) from explosive eruptions can affect wide areas downwind from a vent. In California, prevailing winds cause the 180-degree sector east of the volcano to be affected most often and most severely. Risk to life from ashfall decreases rapidly with increasing distance from a vent, but thin deposits of ash could disrupt communication

  11. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions

    USGS Publications Warehouse

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.

    2007-01-01

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.

  12. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions.

    PubMed

    Thomas, R J; Krehbiel, P R; Rison, W; Edens, H E; Aulich, G D; Winn, W P; McNutt, S R; Tytgat, G; Clark, E

    2007-02-23

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms. PMID:17322054

  13. Explosive activity associated with the growth of volcanic domes

    USGS Publications Warehouse

    Newhall, C.G.; Melson, W.G.

    1983-01-01

    Domes offer unique opportunities to measure or infer the characteristics of magmas that, at domes and elsewhere, control explosive activity. A review of explosive activity associated with historical dome growth shows that: 1. (1) explosive activity has occurred in close association with nearly all historical dome growth; 2. (2) whole-rock SiO2 content, a crude but widely reported indicator of magma viscosity, shows no systematic relationship to the timing and character of explosions; 3. (3) the average rate of dome growth, a crude indicator of the rate of supply of magma and volatiles to the near-surface enviornment, shows no systematic relationship to the timing or character of explosions; and 4. (4) new studies at Arenal and Mount St. Helens suggest that water content is the dominant control on explosions from water-rich magmas, whereas the crystal content and composition of the interstitial melt (and hence magma viscosity) are equally or more important controls on explosions from water-poor magmas. New efforts should be made to improve current, rather limited techniques for monitoring pre-eruption volatile content and magma viscosity, and thus the explosive potential of magmas. ?? 1983.

  14. High-Resolution Micro-Bathymetry Mapping in the Lau Basin: Examples From the Tui Malila and Mariner Vent Sites

    NASA Astrophysics Data System (ADS)

    Ferrini, V.; Sterling, A.; Martinez, F.; Tivey, M. K.; Mottl, M.; Kim, S.

    2005-12-01

    High-resolution SM2000 (200 kHz) multibeam sonar data were collected at six vent areas on the Lau Basin spreading center in April 2005. Data were acquired during near-bottom surveys conducted with the ROV Jason II at altitudes ranging from 5 to 20 m. High altitude (20 m) bathymetric surveys were complemented by near-bottom visual surveys, which provided ground-truth observations of the seafloor. Combined with Doppler and Long Baseline (LBL) Navigation, these bathymetry data provide sub-meter resolution of seafloor features, and reveal individual vent structures, faults and fissures. We present bathymetry data from two sites located 22 km apart, which are geologically and biologically distinct and exhibit contrasts in venting styles and biota. The Mariner vent field contains massive vent structures, many of which are taller than 25 m, with active venting from their bases and sides. Fluids exit as vigorous, high-temperature (< 363°C) black smoker fluids through chalcopyrite-lined conduits, and as less focused flow from porous beehive structures. Inactive structures are friable and are composed of iron- and copper-oxides. There was little evidence of faulting or fracture at the vent field, but we note the presence of collapsed volcanic dome structures. The vent fauna at Mariner is very limited; only Bythograeid and Galatheid crabs, and one Brisingid Seastar, were found. Tui Malila, by contrast, is characterized by shorter and wider branched vent structures with coalesced spires, the tops of which were actively venting. There is extensive faulting and fracture at this site, as well as a number of large flanges and areas of diffuse flow. At Tui Malila fluids exit tall structures through chalcopyrite- and zinc-lined conduits (at temperatures < 312°C), from beneath flanges, and directly from andesite. Hydrothermal breccias are also present. Tui Malila hosts a more typical vent community, with greater abundances of both Bythograeid and Galatheid crabs, mostly within 4 m

  15. Implications of historical eruptive-vent migration on the northeast rift zone of Mauna Loa Volcano, Hawaii

    SciTech Connect

    Lockwood, J.P. )

    1990-07-01

    Five times within the past 138 yr (1852, 1855-1856, 1880-1881, 1942, and 1984), lava flows from vents on the northeast rift zone of Mauna Loa Volcano have reached within a few kilometres of Hilo (the largest city on the Island of Hawaii). Most lavas erupted on this right zone in historical time have traveled northeastward (toward Hilo), because their eruptive vents have been concentrated north of the rift zone's broad topographic axis. However, with few exceptions each successive historical eruption on the northeast rift zone has occurred farther southeast than the preceding one. Had the 1984 eruptive vents (the most southeasterly yet) opened less than 200 m farther southeast, the bulk of the 1984 lavas would have flowed away from Hilo. If this historical vent-migration pattern continues, the next eruption on the northeast rift zone could send lavas to the southeast, toward less populated areas. The historical Mauna Loa vent-migration patterns mimic southeastern younging of the Hawaiian-Emperor volcanic chain and may be cryptically related to northwestward movement of the Pacific plate. Systematic temporal-spatial vent-migration patterns may characterize eruptive activity at other volcanoes with flank activity and should be considered as an aid to long-term prediction of eruption sites.

  16. Chemical composition of soils in the areas of volcanic ashfalls around active volcanoes in Kamchatka

    NASA Astrophysics Data System (ADS)

    Zakharikhina, L. V.; Litvinenko, Yu. S.

    2016-03-01

    The geochemical features of volcanic soils (Andosols) in the northern soil province of Kamchatka are identified. The background regional concentrations ( Cb r ) of most of chemical elements in the studied soils are lower than their average concentrations in soils of the world and in the European volcanic soils. Only Na, Ca, and Mg are present in elevated concentrations in all the studied soils in the north of Kamchatka. Regional background concentrations of elements are exceeded by 1.6 times in the area of active ashfalls of the Tolbachik volcano and by 1.3 times in the area of active ashfalls of the Shiveluch volcano. The concentrations of mobile forms of elements in these areas exceed their regional background concentrations by 2.1 and 2.6 times, respectively.

  17. Hawaiian oral tradition describes 400 years of volcanic activity at Kīlauea

    USGS Publications Warehouse

    Swanson, Donald A.

    2008-01-01

    Culturally significant oral tradition involving Pele, the Hawaiian volcano deity, and her youngest sister Hi'iaka may involve the two largest volcanic events to have taken place in Hawai'i since human settlement: the roughly 60-year-long ‘Ailā’au eruption during the 15th century and the following development of Kīlauea's caldera. In 1823, Rev. William Ellis and three others became the first Europeans to visit Kīlauea's summit and were told stories about Kīlauea's activity that are consistent with the Pele–Hi'iaka account and extend the oral tradition through the 18th century. Recent geologic studies confirm the essence of the oral traditions and illustrate the potential value of examining other Hawaiian chants and stories for more information about past volcanic activity in Hawai‘i.

  18. Quantifying unsteadiness and dynamics of pulsatory volcanic activity

    NASA Astrophysics Data System (ADS)

    Dominguez, L.; Pioli, L.; Bonadonna, C.; Connor, C. B.; Andronico, D.; Harris, A. J. L.; Ripepe, M.

    2016-06-01

    Pulsatory eruptions are marked by a sequence of explosions which can be separated by time intervals ranging from a few seconds to several hours. The quantification of the periodicities associated with these eruptions is essential not only for the comprehension of the mechanisms controlling explosivity, but also for classification purposes. We focus on the dynamics of pulsatory activity and quantify unsteadiness based on the distribution of the repose time intervals between single explosive events in relation to magma properties and eruptive styles. A broad range of pulsatory eruption styles are considered, including Strombolian, violent Strombolian and Vulcanian explosions. We find a general relationship between the median of the observed repose times in eruptive sequences and the viscosity of magma given by η ≈ 100 ṡtmedian. This relationship applies to the complete range of magma viscosities considered in our study (102 to 109 Pa s) regardless of the eruption length, eruptive style and associated plume heights, suggesting that viscosity is the main magma property controlling eruption periodicity. Furthermore, the analysis of the explosive sequences in terms of failure time through statistical survival analysis provides further information: dynamics of pulsatory activity can be successfully described in terms of frequency and regularity of the explosions, quantified based on the log-logistic distribution. A linear relationship is identified between the log-logistic parameters, μ and s. This relationship is useful for quantifying differences among eruptive styles from very frequent and regular mafic events (Strombolian activity) to more sporadic and irregular Vulcanian explosions in silicic systems. The time scale controlled by the parameter μ, as a function of the median of the distribution, can be therefore correlated with the viscosity of magmas; while the complexity of the erupting system, including magma rise rate, degassing and fragmentation efficiency

  19. Reconstruction of a multi-vent kimberlite eruption from deposit and host rock characteristics: Jericho kimberlite, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Hayman, P. C.; Cas, R. A. F.

    2011-03-01

    The Jericho kimberlite (173.1 ± 1.3 Ma) is a small (~ 130 × 70 m), multi-vent system that preserves products from deep (> 1 km?) portions of kimberlite vents. Pit mapping, drill core examination, petrographic study, image analysis of olivine crystals (grain size distributions and shape studies), and compositional and mineralogical studies, are used to reconstruct processes from near-surface magma ascent to kimberlite emplacement and alteration. The Jericho kimberlite formed by multiple eruptions through an Archean granodiorite batholith that was overlain by mid-Devonian limestones ~ 1 km in thickness. Kimberlite magma ascended through granodiorite basement by dyke propagation but ascended through limestone, at least in part, by locally brecciating the host rocks. After the first explosive breakthrough to surface, vent deepening and widening occurred by the erosive forces of the waxing phase of the eruption, by gravitationally induced failures as portions of the vent margins slid into the vent and, in the deeper portions of the vent (> 1 km), by scaling, as thin slabs burst from the walls into the vent. At currently exposed levels, coherent kimberlite (CK) dykes (< 40 cm thick) are found to the north and south of the vent complex and represent the earliest preserved in-situ products of Jericho magmatism. Timing of CK emplacement on the eastern side of the vent complex is unclear; some thick CK (15-20 m) may have been emplaced after the central vent was formed. Explosive eruptive products are preserved in four partially overlapping vents that are roughly aligned along strike with the coherent kimberlite dyke. The volcaniclastic kimberlite (VK) facies are massive and poorly sorted, with matrix- to clast-supported textures. The VK facies fragmented by dry, volatile-driven processes and were emplaced by eruption column collapse back into the volcanic vents. The first explosive products, poorly preserved because of partial destruction by later eruptions, are found in

  20. Middle Miocene hiatus in volcanic activity in the Great Basin area of the Western United States

    USGS Publications Warehouse

    McKee, E.H.; Noble, D.C.; Silberman, M.L.

    1970-01-01

    A summary of potassium-argon dates shows that a high level of igneous activity in the Great Basin and adjacent regions during middle Tertiary time (40 to 20 my ago) was followed by a period of relative quiescence in middle Miocene time that lasted for several million years (from 20 to 17 my ago). Volcanism resumed 16 my ago mainly at the margins of the region and has continued to the present. ?? 1970.

  1. Satellite measurements of recent volcanic activity at Oldoinyo Lengai, Tanzania

    NASA Astrophysics Data System (ADS)

    Vaughan, R. Greg; Kervyn, Matthieu; Realmuto, Vince; Abrams, Michael; Hook, Simon J.

    2008-06-01

    Oldoinyo Lengai (OL) is the only active volcano in the world that produces natrocarbonatite lava. These carbonate-rich lavas are unique in that they have relatively low temperatures (495-590 °C) and very low viscosity. OL has been erupting intermittently since 1983, mostly with small lava flows, pools and spatter cones (hornitos) confined to the summit crater. Explosive, ash-producing eruptions are rare, however, on September 4, 2007 the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) captured the first satellite image of an ash plume erupting from OL, which may be indicative of a new phase of more silica-rich products and explosive activity that has not occurred since 1966-1967. In the months prior to the eruption, thermal infrared (TIR) satellite monitoring detected an increasing number of thermal anomalies around OL. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor analyzed with the MODLEN algorithm detected more than 30 hot spots in the last week of August and first week of September 2007, some of which were from bush fires ignited by lava flows or spatter around the volcano. Higher-resolution ASTER data confirmed the location of these burn scars associated with lava flows. ASTER also detected the appearance of an anomalous hot spot at the summit of OL in mid-June with temperatures ~ 440 °C, the presence of several new lava flows in the crater in July and August, and on September 4 measured higher temperatures (~ 550 °C) possibly suggesting a more silicate-rich eruption. ASTER spectral emissivity data were interpreted to indicate a mixture of carbonate and silicate ash in the eruption plume from September 4. Based on the analysis of both ASTER and MODIS data combined with occasional field observations, there appear to have been 2 distinct eruptive events so far in 2007: a typical natrocarbonatite eruption confined to the summit crater in June-July, and a more intense eruption in August-September consisting of

  2. Gas venting system

    SciTech Connect

    Khan, Amjad; Dreier, Ken Wayne; Moulthrop, Lawrence Clinton; White, Erik James

    2010-06-29

    A system to vent a moist gas stream is disclosed. The system includes an enclosure and an electrochemical cell disposed within the enclosure, the electrochemical cell productive of the moist gas stream. A first vent is in fluid communication with the electrochemical cell for venting the moist gas stream to an exterior of the enclosure, and a second vent is in fluid communication with an interior of the enclosure and in thermal communication with the first vent for discharging heated air to the exterior of the enclosure. At least a portion of the discharging heated air is for preventing freezing of the moist gas stream within the first vent.

  3. Can vesicle size distributions predict eruption intensity during volcanic activity?

    NASA Astrophysics Data System (ADS)

    LaRue, A.; Baker, D. R.; Polacci, M.; Allard, P.; Sodini, N.

    2013-06-01

    We studied three-dimensional (3-D) vesicle size distributions by X-ray microtomography in scoria collected during the relatively quiescent Phase II of the 2010 eruption at Eyjafjallajökull volcano, Iceland. Our goal was to compare the vesicle size distributions (VSDs) measured in these samples with those found in Stromboli volcano, Italy. Stromboli was chosen because its VSDs are well-characterized and show a correlation with eruption intensity: typical Strombolian activity produces VSDs with power-law exponents near 1, whereas larger and more energetic Vulcanian-type explosions and Plinian eruptions produce VSDs with power-law exponents near 1.5. The hypothesis to be tested was whether or not the samples studied in this work would contain VSDs similar to normal Strombolian products, display higher power-law exponents, or be described by exponential functions. Before making this comparison we tested the hypothesis that the phreatomagmatic nature of the Eyjafjallajökull eruption might have a significant effect on the VSDs. We performed 1 atm bubble-growth experiments in which the samples were inundated with water and compared them to similar, control, experiments without water inundation. No significant differences between the VSDs of the two sets of experiments were found, and the hypothesis is not supported by the experimental evidence; therefore, VSDs of magmatic and phreatomagmatic eruptions can be directly compared. The Phase II Eyjafjallajökull VSDs are described by power law exponents of ~ 0.8, typical of normal Strombolian eruptions. The comparable VSDs and behavior of Phase II of the Eyjafjallajökull 2010 eruption to Stromboli are interpreted to be a reflection of similar conduit systems in both volcanoes that are being constantly fed by the ascent of deep magma that mixes with resident magma at shallow depths. Such behavior implies that continued activity during Phase II of the Eyjafjallajökull eruption could be expected and would have been predicted

  4. Can vesicle size distributions assess eruption intensity during volcanic activity?

    NASA Astrophysics Data System (ADS)

    LaRue, A.; Baker, D. R.; Polacci, M.; Allard, P.; Sodini, N.

    2013-10-01

    We studied three-dimensional (3-D) vesicle size distributions by X-ray microtomography in scoria collected during the relatively quiescent Phase II of the April-May 2010 eruption at Eyjafjallajökull volcano, Iceland. Our goal was to compare cumulative vesicle size distributions (VSDs) measured in these samples with those found in Stromboli volcano, Italy. Stromboli was chosen because its VSDs are well-characterized and show a correlation with eruption intensity: typical Strombolian activity produces VSDs with power-law exponents near 1, whereas larger and more energetic vulcanian-type explosions and Plinian eruptions produce VSDs with power-law exponents near 1.5. The first hypothesis to be tested was whether or not the samples studied in this work would contain VSDs similar to normal Strombolian products, display higher power-law exponents, or be described by exponential functions. Before making this comparison, we tested a second hypothesis, which was that the magma-water interactions in the Eyjafjallajökull eruption might have a significant effect on the VSDs. We performed 1 bar bubble-growth experiments in which the samples were inundated with water and compared them to similar control experiments without water inundation. No significant differences between the VSDs of the two sets of experiments were found, and the second hypothesis is not supported by the experimental evidence. The Phase II Eyjafjallajökull VSDs are described by power-law exponents of ~0.8, typical of normal Strombolian eruptions, and support the first hypothesis. The comparable VSDs and behavior of Phase II of the Eyjafjallajökull 2010 eruption to Stromboli are interpreted to be a reflection of similar conduit systems in both volcanoes that are being constantly fed by the ascent of mingled/mixed magma from depth. Such behavior implies that continued activity during Phase II of the Eyjafjallajökull eruption could be expected and would have been predicted, had our VSDs been measured in

  5. 2009 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Girina, Olga A.; Chibisova, Marina; Rybin, Alexander

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, and reports of unusual activity at or near eight separate volcanic centers in Alaska during 2009. The year was highlighted by the eruption of Redoubt Volcano, one of three active volcanoes on the western side of Cook Inlet and near south-central Alaska's population and commerce centers, which comprise about 62 percent of the State's population of 710,213 (2010 census). AVO staff also participated in hazard communication and monitoring of multiple eruptions at ten volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  6. 1995 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.

    1996-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity (SVA) at 6 volcanic centers in 1995: Mount Martin (Katmai Group), Mount Veniaminof, Shishaldin, Makushin, Kliuchef/Korovin, and Kanaga. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) on the 1995 eruptions of 2 Russian volcanoes: Bezymianny and Karymsky. This report summarizes volcanic activity in Alaska during 1995 and the AVO response, as well as information on the 2 Kamchatkan eruptions. Only those reports or inquiries that resulted in a "significant" investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of phone calls throughout the year reporting steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1995 response record.

  7. Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Davies, Ashley G.; Doubleday, Joshua R.; Tran, Daniel Q.

    2014-01-01

    The study of volcanoes is important for both purely scientific and human survival reasons. From a scientific standpoint, volcanic gas and ash emissions contribute significantly to the terrestrial atmosphere. Ash depositions and lava flows can also greatly affect local environments. From a human survival standpoint, many people live within the reach of active volcanoes, and therefore can be endangered by both atmospheric (ash, debris) toxicity and lava flow. There are many potential information sources that can be used to determine how to best monitor volcanic activity worldwide. These are of varying temporal frequency, spatial regard, method of access, and reliability. The problem is how to incorporate all of these inputs in a general framework to assign/task/reconfigure assets to monitor events in a timely fashion. In situ sensing can provide a valuable range of complementary information such as seismographic, discharge, acoustic, and other data. However, many volcanoes are not instrumented with in situ sensors, and those that have sensor networks are restricted to a relatively small numbers of point sensors. Consequently, ideal volcanic study synergistically combines space and in situ measurements. This work demonstrates an effort to integrate spaceborne sensing from MODIS (Terra and Aqua), ALI (EO-1), Worldview-2, and in situ sensing in an automated scheme to improve global volcano monitoring. Specifically, it is a "sensor web" concept in which a number of volcano monitoring systems are linked together to monitor volcanic activity more accurately, and this activity measurement automatically tasks space assets to acquire further satellite imagery of ongoing volcanic activity. A general framework was developed for evidence combination that accounts for multiple information sources in a scientist-directed fashion to weigh inputs and allocate observations based on the confidence of an events occurrence, rarity of the event at that location, and other scientists

  8. Submarine volcanic activity, ocean-acoustic waves and internal ocean tides

    NASA Astrophysics Data System (ADS)

    Sugioka, Hiroko; Fukao, Yoshio; Hibiya, Toshiyuki

    2005-12-01

    Submarine volcanic event often generates acoustic waves (T-waves) traveling over long distances through the low velocity channel (SOFAR) of the ocean. By a method of coherent stacking of T-waves from a submarine volcanic activity in northern Mariana, we found a significant semidiurnal variation of T-wave travel times. The amplitude of variation is an order of larger than those reported in the previous ocean sound transmission experiments. Ray-theoretical consideration for the numerically simulated ocean tides indicates that such large T-phase travel time variation is a consequence of large up-and-down movement of seawater around the axis of the SOFAR channel due to the M2 internal tide effectively converted from external tidal forcing. T-phases, a ubiquitous feature of the ocean acoustic noise field, can be used to infer internal tidal motion and the associated ocean mixing.

  9. Acoustic waves in the atmosphere and ground generated by volcanic activity

    SciTech Connect

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  10. Pliocene Volcanic Evolution of the Taos Plateau, New Mexico

    NASA Astrophysics Data System (ADS)

    Cosca, M. A.; Thompson, R. A.; Turner, K. J.; Lee, J. P.

    2012-12-01

    New geologic mapping (1:24k-1:50k scale) and high precision 40Ar/39Ar geochronology of volcanic rocks from the Taos Plateau in northern New Mexico reveals nearly 4 million years of predominantly mafic (basalt to andesite) volcanism associated with the Pliocene to Quaternary Rio Grande rift. A nearly continuous record of volcanism is recorded from ~5 to ~1 Ma with two major pulses of magmatism observed at ~4.5 Ma and ~3 Ma reflecting eruption from more than 50 mapped centers and an unresolved number of centers buried by intercalated rift volcanics and sedimentary basin fill. Volcanism, both outflow thickness and vent locations, is strongly controlled by the same north to northwest trending fault systems defining the Rio Grande rift graben. However, active loci of volcanism can be linked to sub-basins within the broader graben structure. Large composite volcanoes ranging in composition from basaltic andesite to andesite, such as Guadeloupe Mountain (~4.5-5 Ma), Ute Mountain (~3.9 Ma), and San Antonio Mountain (~3 Ma) formed over time intervals of about 300 ka during the most voluminous stages of activity. Similar time intervals are recorded in each of three Servilleta basalt flow packages (lower (~4.5 Ma), middle (~4 Ma), and upper (~3.5 Ma)) observed at the Rio Grande gorge just north of Taos that first began erupting at ~ 4.7 Ma. Distinctive reddish paleosols between each Servilleta flow package represent time intervals between eruptions of ~0.5 Ma. Late stage volcanic activity (< 3 Ma) is recorded as small volume Servilleta basalt volcanoes and numerous small basalt to basaltic andesite cinder cones and associated lavas flows. Mesita Cone, dated at ~ 1 Ma and offset by middle Pleistocene faulting, represents the youngest volcanic activity within the Taos plateau segment of the Rio Grande Rift. The Pliocene to Quaternary volcanic rocks of the Taos Plateau are locally underlain by 1) Precambrian crystalline granite basement, 2) Oligocene calc-alkaline volcanic and

  11. Recent and Hazardous Volcanic Activity Along the NW Rift Zone of Piton De La Fournaise Volcano, La Réunion Island

    NASA Astrophysics Data System (ADS)

    Walther, G.; Frese, I.; Di Muro, A.; Kueppers, U.; Michon, L.; Metrich, N.

    2014-12-01

    Shield volcanoes are a common feature of basaltic volcanism. Their volcanic activity is often confined to a summit crater area and rift systems, both characterized by constructive (scoria and cinder cones; lava flows) and destructive (pit craters; caldera collapse) phenomena. Piton de la Fournaise (PdF) shield volcano (La Réunion Island, Indian Ocean) is an ideal place to study these differences in eruptive behaviour. Besides the frequent eruptions in the central Enclos Fouqué caldera, hundreds of eruptive vents opened along three main rift zones cutting the edifice during the last 50 kyrs. Two short rift zones are characterized by weak seismicity and lateral magma transport at shallow depth (above sea level). Here we focus on the third and largest rift zone (15km wide, 20 km long), which extends in a north-westerly direction between PdF and nearby Piton des Neiges volcanic complex. It is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, testifying of high fluid pressures (up to 5 kbar) and large-volume eruptions. We present new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruption products) on one of the youngest (~6kyrs) and largest lava field (Trous Blancs eruption). It extends for 24km from a height of 1800 m asl, passing Le Tampon and Saint Pierre cities, until reaching the coast. The source area of this huge lava flow has been identified in an alignment of four previously unidentified pit craters. The eruption initiated with intense fountaining activity, producing a m-thick bed of loose black scoria, which becomes densely welded in its upper part; followed by an alternation of volume rich lava effusions and strombolian activity, resulting in the emplacement of meter-thick, massive units of olivine-basalt alternating with coarse scoria beds in the proximal area. Activity ended with the emplacement of a dm-thick bed of glassy, dense scoria and a stratified lithic

  12. Conceptual model of volcanism and volcanic hazards of the region of Ararat valley, Armenia

    NASA Astrophysics Data System (ADS)

    Meliksetian, Khachatur; Connor, Charles; Savov, Ivan; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Ghukasyan, Yura; Gevorgyan, Hripsime

    2015-04-01

    Armenia and the adjacent volcanically active regions in Iran, Turkey and Georgia are located in the collision zone between the Arabian and Eurasian lithospheric plates. The majority of studies of regional collision related volcanism use the model proposed by Keskin, (2003) where volcanism is driven by Neo-Tethyan slab break-off. In Armenia, >500 Quaternary-Holocene volcanoes from the Gegham, Vardenis and Syunik volcanic fields are hosted within pull-apart structures formed by active faults and their segments (Karakhanyan et al., 2002), while tectonic position of the large in volume basalt-dacite Aragats volcano and periphery volcanic plateaus is different and its position away from major fault lines necessitates more complex volcano-tectonic setup. Our detailed volcanological, petrological and geochemical studies provide insight into the nature of such volcanic activity in the region of Ararat Valley. Most magmas, such as those erupted in Armenia are volatile-poor and erupt fairly hot. Here we report newly discovered tephra sequences in Ararat valley, that were erupted from historically active Ararat stratovolcano and provide evidence for explosive eruption of young, mid K2O calc-alkaline and volatile-rich (>4.6 wt% H2O; amph-bearing) magmas. Such young eruptions, in addition to the ignimbrite and lava flow hazards from Gegham and Aragats, present a threat to the >1.4 million people (~ ½ of the population of Armenia). We will report numerical simulations of potential volcanic hazards for the region of Ararat valley near Yerevan that will include including tephra fallout, lava flows and opening of new vents. Connor et al. (2012) J. Applied Volcanology 1:3, 1-19; Karakhanian et al. (2002), JVGR, 113, 319-344; Keskin, M. (2003) Geophys. Res. Lett. 30, 24, 8046.

  13. Temporal and geochemical constraints on active volcanism in southeastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Catalano, J. P.; Baldwin, S.; Fitzgerald, P. G.; Webb, L. E.; Hollocher, K.

    2010-12-01

    Active volcanism in southeastern Papua New Guinea occurs on the Papuan Peninsula (Mt. Lamington and Mt. Victory), in the Woodlark Rift (Dobu Island, SE Goodenough Island, and Western Fergusson Island), and in the Woodlark Basin. In the Woodlark Basin seafloor spreading is active and decompression melting of the mantle produces basalts. However, the cause of volcanism on the Papuan Peninsula and immediately west of active seafloor spreading rift tip in the Woodlark Basin is controversial. Previous studies have suggested active volcanism there results from 1) southward subduction of Solomon Sea lithosphere at the Trobriand Trough or 2) decompression melting as the lithosphere is extended and eventually ruptures. To evaluate these possibilities 20 samples were collected from a bimodal basalt-rhyolite suite in the D’Entrecasteaux Islands approximately 80 km west of the sea floor spreading rift tip. Siliceous ash flow tuffs on Dobu Island, Sanaroa Island, and Eastern Fergusson Island consist of sanidine/anorthoclase + Fe/Ti oxides (illmenite/ magnetite) ± quartz ± nepheline ± clinopyroxene ± xenocrystic olivine. Sanidine and K-feldspar from these ash flow tuffs yielded flat age spectra with 40Ar/39Ar isochron ages of 0.008 ± 0.002 Ma and 0.553 ± 0.001 Ma. ICP-MS trace and REE geochemistry on felsic rocks from Dobu Island and Eastern Fergusson Island yielded multi-element diagrams with enriched incompatible elements, and corresponding negative Nb, Sr, Eu, and Ti anomalies. In contrast, mafic volcanics from SE Goodenough Island are comprised of plagioclase + olivine + Fe/Ti oxides ± orthopyroxene ± clinopyroxene ± hornblende ± biotite. Biotite yielded a 40Ar/39Ar isochron age of 0.376 ± 0.05 Ma. MORB-normalized multi-element diagrams of mafic rocks from SE Goodenough Island are LREE-enriched patterns with negative Nb and positive Sr anomalies. In comparison, multi-element diagrams from previous work on mafic rocks from the New Britain arc to the north also

  14. The ELSA tephra stack: Volcanic activity in the Eifel during the last 500,000 years

    NASA Astrophysics Data System (ADS)

    Förster, Michael W.; Sirocko, Frank

    2016-07-01

    Tephra layers of individual volcanic eruptions are traced in several cores from Eifel maar lakes, drilled between 1998 and 2014 by the Eifel Laminated Sediment Archive (ELSA). All sediment cores are dated by 14C and tuned to the Greenland interstadial succession. Tephra layers were characterized by the petrographic composition of basement rock fragments, glass shards and characteristic volcanic minerals. 10 marker tephra, including the well-established Laacher See Tephra and Dümpelmaar Tephra can be identified in the cores spanning the last glacial cycle. Older cores down to the beginning of the Elsterian, show numerous tephra sourced from Strombolian and phreatomagmatic eruptions, including the 40Ar/39Ar dated differentiated tephra from Glees and Hüttenberg. In total, at least 91 individual tephra can be identified since the onset of the Eifel volcanic activity at about 500,000 b2k, which marks the end of the ELSA tephra stack with 35 Strombolian, 48 phreatomagmatic and 8 tephra layers of evolved magma composition. Many eruptions cluster near timings of the global climate transitions at 140,000, 110,000 and 60,000 b2k. In total, the eruptions show a pattern, which resembles timing of phases of global sea level and continental ice sheet changes, indicating a relation between endogenic and exogenic processes.

  15. Infrasound Monitoring of the Volcanic Activities of Japanese Volcanoes in Korea

    NASA Astrophysics Data System (ADS)

    Lee, H. I.; Che, I. Y.; Shin, J. S.

    2015-12-01

    Since 1999 when our first infrasound array station(CHNAR) has been installed at Cheolwon, Korea Institute of Geoscience and Mineral Resources(KIGAM) is continuously observing infrasound signals with an infrasound array network, named KIN(Korean Infrasound Network). This network is comprised of eight seismo-acoustic array stations(BRDAR, YPDAR, KMPAR, CHNAR, YAGAR, KSGAR, ULDAR, TJIAR). The aperture size of the smallest array is 300m and the largest is about 1.4km. The number of infrasound sensors are between 4(TJIAR) and 18(YAGAR), and 1~5 seismometers are collocated with infrasound sensors. Many interesting infrasound signals associated with different type of sources, such as blasting, large earthquake, bolide, volcanic explosion are detected by KIN in the past 15 years. We have analyzed the infrasound signals possibly associated with the japanese volcanic explosions with reference to volcanic activity report published by Japanese Meteorological Agency. Analysis results of many events, for example, Asama volcano explosion in 2004 and Shinmoe volcano in 2011, are well matched with the official report. In some cases, however, corresponding infrasound signals are not identified. By comparison of the infrasound signals from different volcanoes, we also found that the characteristics of signals are distinguishing. It may imply that the specific volcano has its own unique fingerprint in terms of infrasound signal. It might be investigated by long-term infrasound monitoring for a specific volcano as a ground truth generating repetitive infrasound signal.

  16. Assessing microbial activities in metal contaminated agricultural volcanic soils - An integrative approach.

    PubMed

    Parelho, C; Rodrigues, A S; Barreto, M C; Ferreira, N G C; Garcia, P

    2016-07-01

    Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals. Trace metal contaminated soils have significant effects on soil microbial activities and hence on soil quality. The aim of this study is to determine the soil microbial responses to metal contamination in volcanic soils under different agricultural land use practices (conventional, traditional and organic), based on a three-tier approach: Tier 1 - assess soil microbial activities, Tier 2 - link the microbial activity to soil trace metal contamination and, Tier 3 - integrate the microbial activity in an effect-based soil index (Integrative Biological Response) to score soil health status in metal contaminated agricultural soils. Our results showed that microbial biomass C levels and soil enzymes activities were decreased in all agricultural soils. Dehydrogenase and β-glucosidase activities, soil basal respiration and microbial biomass C were the most sensitive responses to trace metal soil contamination. The Integrative Biological Response value indicated that soil health was ranked as: organic>traditional>conventional, highlighting the importance of integrative biomarker-based strategies for the development of the trace metal "footprint" in Andosols. PMID:27057992

  17. 2005 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, R.G.; Neal, C.A.; Dixon, J.P.; Ushakov, Sergey

    2008-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity at or near 16 volcanoes in Alaska during 2005, including the high profile precursory activity associated with the 2005?06 eruption of Augustine Volcano. AVO continues to participate in distributing information about eruptive activity on the Kamchatka Peninsula, Russia, and in the Kurile Islands of the Russian Far East, in conjunction with the Kamchatkan Volcanic Eruption Response Team (KVERT) and the Sakhalin Volcanic Eruption Response Team (SVERT), respectively. In 2005, AVO helped broadcast alerts about activity at 8 Russian volcanoes. The most serious hazard posed from volcanic eruptions in Alaska, Kamchatka, or the Kurile Islands is the placement of ash into the atmosphere at altitudes traversed by jet aircraft along the North Pacific and Russian Trans East air routes. AVO, KVERT, and SVERT work collaboratively with the National Weather Service, Federal Aviation Administration, and the Volcanic Ash Advisory Centers to provide timely warnings of volcanic eruptions and the production and movement of ash clouds.

  18. Modelling Gravimetric Fluctuations due to Hydrological Processes in Active Volcanic Settings

    NASA Astrophysics Data System (ADS)

    Hemmings, B.; Gottsmann, J.; Whitaker, F.

    2014-12-01

    Both static and dynamic gravimetric surveys are widely used to monitor magmatic processes in active volcanic settings. However, attributing residual gravimetric signals solely to magma movement can result in misdiagnosis of a volcano's pre-eruptive state and incorrect assessment of hazard. The relative contribution of magmatic and aqueous fluids to integrated gravimetric and geodetic data has become an important topic for debate, particularly in restless caldera systems. Groundwater migration driven by volcanically-induced pressure changes, and groundwater mass fluctuations associated with seasonal and inter-annual variations in recharge may also contribute to measured gravity changes. Here we use numerical models to explore potential gravimetric signals associated with fundamental hydrological processes, focusing on variations in recharge and hydrogeological properties. TOUGH2 simulations demonstrate the significance of groundwater storage within a thick unsaturated zone (up to 100 m). Changes are dominantly in response to inter-annual recharge variations and can produce measurable absolute gravity variations of several 10s of μgal. Vadose zone storage and the rate of response to recharge changes depend on the hydrological properties. Porosity, relative and absolute permeability and capillary pressure conditions all affect the amplitude and frequency of modelled gravity time series. Spatial variations in hydrologic properties and importantly, hydrological recharge, can significantly affect the phase and amplitude of recorded gravity signals. Our models demonstrate the potential for an appreciable hydrological component within gravimetric measurements on volcanic islands. Characterisation of hydrological processes within a survey area may be necessary to robustly interpret gravity signals in settings with significant recharge fluctuations, a thick vadose zone and spatially variable hydrological properties. Such modelling enables further exploration of feedbacks

  19. Volcanic Lightning in Eruptions of Sakurajima Volcano

    NASA Astrophysics Data System (ADS)

    Edens, Harald; Thomas, Ronald; Behnke, Sonja; McNutt, Stephen; Smith, Cassandra; Farrell, Alexandra; Van Eaton, Alexa; Cimarelli, Corrado; Cigala, Valeria; Eack, Ken; Aulich, Graydon; Michel, Christopher; Miki, Daisuke; Iguchi, Masato

    2016-04-01

    In May 2015 a field program was undertaken to study volcanic lightning at the Sakurajima volcano in southern Japan. One of the main goals of the study was to gain a better understanding of small electrical discharges in volcanic eruptions, expanding on our earlier studies of volcanic lightning at Augustine and Redoubt volcanoes in Alaska, USA, and Eyjafjallajökull in Iceland. In typical volcanic eruptions, electrical activity occurs at the onset of an eruption as a near-continual production of VHF emissions at or near to the volcanic vent. These emissions can occur at rates of up to tens of thousands of emissions per second, and are referred to as continuous RF. As the ash cloud expands, small-scale lightning flashes of several hundred meters length begin to occur while the continuous RF ceases. Later on during the eruption larger-scale lightning flashes may occur within the ash cloud that are reminiscent of regular atmospheric lightning. Whereas volcanic lightning flashes are readily observed and reasonably well understood, the nature and morphology of the events producing continuous RF are unknown. During the 2015 field program we deployed a comprehensive set of instrumentation, including a 10-station 3-D Lightning Mapping Array (LMA) that operated in 10 μs high time resolution mode, slow and fast ΔE antennas, a VHF flat-plate antenna operating in the 20-80 MHz band, log-RF waveforms within the 60-66 MHz band, an infra-red video camera, a high-sensitivity Watec video camera, two high-speed video cameras, and still cameras. We give an overview of the Sakurajima field program and present preliminary results using correlated LMA, waveforms, photographs and video recordings of volcanic lightning at Sakurajima volcano.

  20. 30,000 years of hydrothermal activity at the lost city vent field.

    PubMed

    Früh-Green, Gretchen L; Kelley, Deborah S; Bernasconi, Stefano M; Karson, Jeffrey A; Ludwig, Kristin A; Butterfield, David A; Boschi, Chiara; Proskurowski, Giora

    2003-07-25

    Strontium, carbon, and oxygen isotope data and radiocarbon ages document at least 30,000 years of hydrothermal activity driven by serpentinization reactions at Lost City. Serpentinization beneath this off-axis field is estimated to occur at a minimum rate of 1.2 x 10(-4) cubic kilometers per year. The access of seawater to relatively cool, fresh peridotite, coupled with faulting, volumetric expansion, and mass wasting processes, are crucial to sustain such systems. The amount of heat produced by serpentinization of peridotite massifs, typical of slow and ultraslow spreading environments, has the potential to drive Lost City-type systems for hundreds of thousands, possibly millions, of years. PMID:12881565

  1. A new model for the development of the active Afar volcanic margin

    NASA Astrophysics Data System (ADS)

    Pik, Raphaël; Stab, Martin; Bellahsen, Nicolas; Leroy, Sylvie

    2016-04-01

    Volcanic passive margins, that represent more than the three quarters of continental margins worldwide, are privileged witnesses of the lithospheric extension processes thatform new oceanic basins. They are characterized by voluminous amounts of underplated, intruded and extruded magmas, under the form of massive lavas prisms (seaward-dipping reflectors, or SDR) during the course of thinning and stretching of the lithosphere, that eventually form the ocean-continent transition. The origin and mechanisms of formation of these objects are still largely debated today. We have focussed our attention in the last few years on the Afar volcanic province which represents an active analogue of such volcanic margins. We explored the structural and temporal relationships that exist between the development of the major thinning and stretching structures and the magmatic production in Central Afar. Conjugate precise fieldwork analysis along with lavas geochronology allowed us to revisit the timing and style of the rift formation, since the early syn-rift period of time in the W-Afar marginal area to present days. Extension is primarily accommodated over a wide area at the surface since the very initial periods of extension (~ 25 Ma) following the emplacement of Oligocene CFBs. We propose in our reconstruction of central Afar margin history that extension has been associated with important volumes of underplated mafic material that compensate crustal thinning. This has been facilitated by major crustal-scale detachments that help localize the thinning and underplating at depth. In line with this 'magmatic wide-rift' mode of extension, we demonstrate that episodic extension steps alternate with more protracted magmatic phases. The production of syn-rift massive flood basalts (~ 4 Ma) occurs after early thinning of both the crust and the lithosphere, which suggests that SDR formation, is controlled by previous tectonic event. We determined how the melting regime evolved in

  2. Monitoring volcanic activities using correlation patterns between infrasound and ground motion

    NASA Astrophysics Data System (ADS)

    Ichihara, M.; Takeo, M.; Yokoo, A.

    2012-04-01

    This paper presents a simple method to distinguish infrasonic signals from wind noise using a cross-correlation function of signals from a microphone and a co-located seismometer. The method makes use of a particular feature of the cross-correlation function of vertical ground motion generated by infrasound, and the infrasound itself. Contribution of wind noise to the correlation function is effectively suppressed by separating the microphone and the seismometer by several meters because the correlation length of wind noise is much shorter than wavelengths of infrasound. The method is tested with data from volcanoes, and demonstrates that the method effectively detects not only the main eruptions, but also minor activity generating weak infrasound hardly visible in the wave traces. In addition, the correlation function gives more information about volcanic activity than infrasound alone. The correlation pattern changes when the spectral feature of the infrasound and/or the seismic wave changes and the relative strength of infrasound and seismic wave changes, both of which are expected to be accompanied by change in eruptive activity. Therefore, a graphical presentation of temporal variation in the cross-correlation function enables to see qualitative changes of eruptive activities at a glance. This method is particularly useful when available sensors are limited, and will extend the utility of a single microphone and seismometer in monitoring and understanding volcanic activity. The method is used to analyze sequences of two recent eruptions of Asama and Shinmoe-dake volcanoes, Japan.

  3. Extensive and Diverse Submarine Volcanism and Hydrothermal Activity in the NE Lau Basin

    NASA Astrophysics Data System (ADS)

    Embley, R. W.; Merle, S. G.; Lupton, J. E.; Resing, J.; Baker, E. T.; Lilley, M. D.; Arculus, R. J.; Crowhurst, P. V.

    2009-12-01

    The northeast Lau basin, the NE “corner” of the Tonga subduction zone, has an unusual concentration of young submarine volcanism and hydrothermal activity. The area is bounded on the west by overlapping spreading centers opening at rates up to 120 mm/yr, on the north by the E-W trending Tonga trench and on the east by the Tofua arc front. From the south, the Fonualei rift spreading center (FRSC) overlaps with the southern rift of The Mangatolo triple junction spreading center (MTJSC). The northern arm of the MTJSC overlaps with the northeast Lau spreading center (NELSC). Surveys of the area with an EM300 sonar system in November 2008 show high backscatter over the 10-20 km wide neovolcanic zones of the FRSC, MTJSC and NELSC. High backscatter is also associated with: (1) a 10-km diameter, hydrothermally active, volcanic caldera/cone (Volcano “O”) lying between the NELSC and the northern Tofua arc front; (2) a rift zone extending north from volcano “O” and intersecting the NELSC near the Tonga trench; and (3) a series of volcanoes constructed along SW-NE trending crustal tears in the northernmost backarc near the east-west portion of the Tonga Trench. Two eruptions were detected in November 2008 during hydrothermal plume surveys of the area. Subsequent dives with the remotely operated vehicle Jason 2 in May 2009 revealed that the southern NELSC eruption was a short-lived, primarily effusive eruption. The second eruption was detected on the summit of the largest SW-NE trending volcano (West Mata) and was ongoing when Jason 2 arrived on site more than 6 months later. It was producing both pillow lavas and abundant volcaniclastic debris streams that have a characteristic appearance on the sonar backscatter map. There is also an unusual series of lava flows emanating from ridges and scarps between Volcano “O” and West Mata. These flows contain drained-out lava ponds up to 2 km in diameter. The apparent high level of volcanic activity in the NE Lau basin

  4. Emitted short wavelength infrared radiation for detection and monitoring of volcanic activity

    NASA Technical Reports Server (NTRS)

    Rothery, D. A.; Francis, P. W.; Wood, C. A.

    1988-01-01

    Thematic Mapper images from LANDSAT were used to monitor volcanoes. Achievements include: (1) the discovery of a magmatic precursor to the 16 Sept. 1986 eruption of Lascar, northern Chile, on images from Mar. and July 1985 and of continuing fumarolic activity after the eruption; (2) the detection of unreported major changes in the distribution of lava lakes on Erta'Ale, Ethiopia; and (3) the mapping of a halo of still-hot spatter surrounding a vent on Mount Erebus, Antarctica, on an image acquired 5 min after a minor eruption otherwise known only from seismic records. A spaceborne short wavelength infrared sensor for observing hot phenomena of volcanoes is proposed. A polar orbit is suggested.

  5. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    NASA Astrophysics Data System (ADS)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  6. ASI-Volcanic Risk System (SRV): a pilot project to develop EO data processing modules and products for volcanic activity monitoring, first results.

    NASA Astrophysics Data System (ADS)

    Silvestri, M.; Musacchio, M.; Buongiorno, M. F.; Dini, L.

    2009-04-01

    The Project called Sistema Rischio Vulcanico (SRV) is funded by the Italian Space Agency (ASI) in the frame of the National Space Plan 2003-2005 under the Earth Observations section for natural risks management. The SRV Project is coordinated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) which is responsible at national level for the volcanic monitoring. The project philosophy is to implement, by incremental versions, specific modules which allow to process, store and visualize through Web GIS tools geophysical parameters suitable for volcanic risk management. The ASI-SRV is devoted to the development of an integrated system based on Earth Observation (EO) data to respond to specific needs of the Italian Civil Protection Department (DPC) and improve the monitoring of Italian active volcanoes during all the risk phases (Pre Crisis, Crisis and Post Crisis). The ASI-SRV system provides support to risk managers during the different volcanic activity phases and its results are addressed to the Italian Civil Protection Department (DPC). SRV provides the capability to manage the import many different EO data into the system, it maintains a repository where the acquired data have to be stored and generates selected volcanic products. The processing modules for EO Optical sensors data are based on procedures jointly developed by INGV and University of Modena. This procedures allow to estimate a number of parameters such as: surface thermal proprieties, gas, aerosol and ash emissions and to characterize the volcanic products in terms of composition and geometry. For the analysis of the surface thermal characteristics, the available algorithms allow to extract information during the prevention phase and during the Warning and Crisis phase. In the prevention phase the thermal analysis is directed to the identification of temperature variation on volcanic structure which may indicate a change in the volcanic activity state. At the moment the only sensor that

  7. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    NASA Astrophysics Data System (ADS)

    Connor, Charles

    2014-05-01

    tremendous challenge in quantitative volcanic hazard assessments to encompass alternative conceptual models, and to create models that are robust to evolving understanding of specific volcanic systems by the scientific community. A central question in volcanic hazards forecasts is quantifying rates of volcanic activity. Especially for long-dormant volcanic systems, data from the geologic record may be sparse, individual events may be missing or unrecognized in the geologic record, patterns of activity may be episodic or otherwise nonstationary. This leads to uncertainty in forecasting long-term rates of activity. Hazard assessments strive to quantify such uncertainty, for example by comparing observed rates of activity with alternative parametric and nonparametric models. Numerical models are presented that characterize the spatial distribution of potential volcanic events. These spatial density models serve as the basis for application of numerical models of specific phenomena such as development of lava flow, tephra fallout, and a host of other volcanic phenomena. Monte Carlo techniques (random sampling, stratified sampling, importance sampling) are methods used to sample vent location and other key eruption parameters, such as eruption volume, magma rheology, and eruption column height for probabilistic models. The development of coupled scenarios (e.g., the probability of tephra accumulation on a slope resulting in subsequent debris flows) is also assessed through these methods, usually with the aid of event trees. The primary products of long-term forecasts are a statistical model of the conditional probability of the potential effects of volcanism, should an eruption occur, and the probability of such activity occurring. It is emphasized that hazard forecasting is an iterative process, and board consideration must be given to alternative conceptual models of volcanism, weighting of volcanological data in the analyses, and alternative statistical and numerical models

  8. A newly discovered Pliocene volcanic field on the western Sardinia continental margin (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Conforti, Alessandro; Budillon, Francesca; Tonielli, Renato; De Falco, Giovanni

    2016-02-01

    A previously unknown submerged volcanic field offshore western Sardinia (western Mediterranean Sea), has been identified based on swath bathymetric data collected in 2009, 2010 and 2013, and high-resolution seismic profiles collected in 2011 and 2013. About 40 conical-shaped volcanic edifices (maximum width of about 1600 m and maximum height of about 180 m) and several lava outcrops (up to 1,200 m wide) were recognized at 20 to 150 m water depth over an area of 800 km2. The volcanic edifices are mainly eruptive monogenic vents, mostly isolated with a rather distinct shape, or grouped to form a coalescent volcanic body in which single elements are often still recognizable. High-resolution seismics enabled identifying relationships between the volcanic bodies and continental margin successions. The edifices overlie a major erosional surface related to the margin exposure following the Messinian salinity crisis, and are overlain by or interbedded with an early Pliocene marine unit. This seismo-stratigraphic pattern dates the volcanic activity to the early Pliocene, in agreement with the radiometric age of the Catalano island lavas (4.7 Ma) reported in earlier studies. The morphometry of the volcanic bodies suggests that cone erosion was higher at shallow water depths. Indeed, most of the shallow edifices are strongly eroded and flattened at 125 to 130 m water depth, plausibly explained by recurrent sub-aerial exposure during Pleistocene sea-level lowstands, whereas cones in deeper water are much better preserved. Volcanic vents and lava deposits, hereafter named the Catalano volcanic field (CVF), are emplaced along lineaments corresponding to the main directions of the normal fault system, which lowered the Sinis Basin and the western Sardinia continental margin. The CVF represents a volumetrically relevant phase of the late Miocene - Quaternary anorogenic volcanic cycle of Sardinia, which is related to the first stage of the extensional tectonics affecting the island

  9. A probabilistic approach to determine volcanic eruption centres of degraded volcanic edifices

    NASA Astrophysics Data System (ADS)

    Székely, B.; Karátson, D.

    2009-04-01

    It is often a difficult problem to determine the position of original eruption centres of degraded volcanic edifices. Beside of the destructive processes acting during the volcanic activity, subsequent erosion, mass movements and tectonic motions modify the spatial distribution of the volcanic features. The observations including dipping strata, clast orientations, lava flows, etc. made on the present surface are therefore biased by the post-eruptive processes making the reconstruction of the original volcanic pattern problematic. The different types of observations and their various error levels complicate the problem further. We propose a probabilistic approach to evaluate the different types of observations. Each observation type or even each observation may have their own error bars which can be taken into account in this scheme. The only assumption is that it is possible to determine the relative direction of the original volcanic centre based on the specific observation within a given angular accuracy. In our scheme a spatial probability density function (PDF) is assigned to each observation and the weighted sum of these PDFs results in a map. This integrated PDF map then can be evaluated to determine one or multiple eruption centres. In case of multiple centres further decision can be made on whether the various centres are only virtual, caused by subsequent tectonism or, on the contrary, the original setting had several eruption vents. This decision can be made on targeted grouping of PDFs of different types of observations or spatial selection. The resulting compound PDF maps may outline individual centres.

  10. Monitoring volcanic activity using correlation patterns between infrasound and ground motion

    NASA Astrophysics Data System (ADS)

    Ichihara, M.; Takeo, M.; Yokoo, A.; Oikawa, J.; Ohminato, T.

    2012-02-01

    This paper presents a simple method to distinguish infrasonic signals from wind noise using a cross-correlation function of signals from a microphone and a collocated seismometer. The method makes use of a particular feature of the cross-correlation function of vertical ground motion generated by infrasound, and the infrasound itself. Contribution of wind noise to the correlation function is effectively suppressed by separating the microphone and the seismometer by several meters because the correlation length of wind noise is much shorter than wavelengths of infrasound. The method is applied to data from two recent eruptions of Asama and Shinmoe-dake volcanoes, Japan, and demonstrates that the method effectively detects not only the main eruptions, but also minor activity generating weak infrasound hardly visible in the wave traces. In addition, the correlation function gives more information about volcanic activity than infrasound alone, because it reflects both features of incident infrasonic and seismic waves. Therefore, a graphical presentation of temporal variation in the cross-correlation function enables one to see qualitative changes of eruptive activity at a glance. This method is particularly useful when available sensors are limited, and will extend the utility of a single microphone and seismometer in monitoring volcanic activity.

  11. Aeromagnetic data provide new insights on the volcanism and tectonics of Vulcano Island and offshore areas (southern Tyrrhenian Sea, Italy)

    NASA Astrophysics Data System (ADS)

    De Ritis, Riccardo; Blanco-Montenegro, Isabel; Ventura, Guido; Chiappini, Massimo

    2005-08-01

    The active Vulcano Island (Southern Tyrrhenian Sea) represents the southernmost portion of a NW-SE elongated volcanic ridge that includes also Lipari and Salina islands. The ridge is affected by a regional, NW-SE to N-S striking fault system. The elaboration and analysis of data from three high-resolution aeromagnetic surveys carried out between 1999 and 2004 on Vulcano and offshore allow us to recognize high intensity magnetic anomalies related to volcanic centers/conduits or shallow intrusions. Previously unreported offshore submarine vents have been also recognized. Some of them may correspond with source areas of outcropping exotic pyroclastics on Vulcano. The spatial analysis of the recognized magnetic anomalies and volcanic structures shows that they are preferably aligned along the strikes of the main regional faults that affect the volcanic ridge. Submarine volcanic conduits revealed by the aeromagnetic survey might represent potential sources for future submarine, effusive or explosive activity.

  12. The Cenozoic volcanism in the Kivu rift: Assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions

    NASA Astrophysics Data System (ADS)

    Pouclet, A.; Bellon, H.; Bram, K.

    2016-09-01

    The Kivu rift is part of the western branch of the East African Rift system. From Lake Tanganyika to Lake Albert, the Kivu rift is set in a succession of Precambrian zones of weakness trending NW-SE, NNE-SSW and NE-SW. At the NW to NNE turn of the rift direction in the Lake Kivu area, the inherited faults are crosscut by newly born N-S fractures which developed during the late Cenozoic rifting and controlled the volcanic activity. From Lake Kivu to Lake Edward, the N-S faults show a right-lateral en echelon pattern. Development of tension gashes in the Virunga area indicates a clockwise rotation of the constraint linked to dextral oblique motion of crustal blocks. The extensional direction was W-E in the Mio-Pliocene and ENE-WSW in the Pleistocene to present time. The volcanic rocks are assigned to three groups: (1) tholeiites and sodic alkali basalts in the South-Kivu, (2) sodic basalts and nephelinites in the northern Lake Kivu and western Virunga, and (3) potassic basanites and potassic nephelinites in the Virunga area. South-Kivu magmas were generated by melting of spinel + garnet lherzolite from two sources: an enriched lithospheric source and a less enriched mixed lithospheric and asthenospheric source. The latter source was implied in the genesis of the tholeiitic lavas at the beginning of the South-Kivu tectono-volcanic activity, in relationships with asthenosphere upwelling. The ensuing outpouring of alkaline basaltic lavas from the lithospheric source attests for the abortion of the asthenospheric contribution and a change of the rifting process. The sodic nephelinites of the northern Lake Kivu originated from low partial melting of garnet peridotite of the sub-continental mantle due to pressure release during swell initiation. The Virunga potassic magmas resulted from the melting of garnet peridotite with an increasing degree of melting from nephelinite to basanite. They originated from a lithospheric source enriched in both K and Rb, suggesting the

  13. Active Volcanism Late in Martian History - Evidence from Crater Counts in the Tharsis Region

    NASA Astrophysics Data System (ADS)

    Grier, J. A.; Berman, D. C.; Hartmann, W. K.; Bottke, W. F.; Kesthelyi, L. P.

    2001-11-01

    The current hypothesis of young Martian volcanism is based on several lines of evidence including analyses of Martian meteorites, photogeologic examination of the planet's surface and detailed crater count studies of high resolution images from MGS/MOC. In addition, some possible signs of recent liquid water on Mars may be evidence of active volcanism as a heat source. Early crater count studies were questioned on the basis of two major uncertainties: very small sampling of counts on young flows, and poor absolute surface age estimates on Mars. Our attack on these uncertainties includes both improving the detailed crater count statistics on the large Martian shield volcanoes and their surrounding lava plains, and refining the absolute ages of counted units using new estimates of the crater production rate on Mars. We have obtained counts on Olympus Mons, Pavonis Mons and Arsia Mons. We have targeted areas both on the slopes and inter-volcanic plains, and have begun examining the caldera regions. Our initial examination of the counts of caldera floors indicates terrains with statistically significant age differences, suggesting for some volcanoes sustained episodes of caldera collapse or resurfacing. Our slope and inter-volcanic plains data when plotted with the latest calibrated isochrons yield some very young ages, 10 My or younger for some small flows. The estimated uncertainty in the age data is about a factor of two. Our preliminary conclusions therefore appear to support the hypothesis of very recent volcanism on Mars. However, it is clear that a critical issue regarding crater counting on high resolution MOC images is the necessity of avoiding the ubiquitous dust on the Martian surface. TES data have shown that dust mantles exist over much of the Tharsis region, and it is critical that the ages of the terrains counted do not appear artificially young due to dust cover of some of the craters. We have begun a systematic review of counted MOC images and

  14. Hydrological Modeling of Groundwater Disturbance to Gravity Signal for High-accuracy Monitoring of Volcanic Activity

    NASA Astrophysics Data System (ADS)

    Kazama, T.; Okubo, S.

    2007-12-01

    Gravity observation is one of the effective methods to detect magma movements in volcanic eruptions [e.g., Furuya et al., J. Geoph. Res., 2003]. Groundwater-derived disturbances have to be corrected from gravity variations for highly accurate monitoring of volcanic activities. They have been corrected with empirical methods, such as tank models and regression curves [e.g., Imanishi et al., J. Geodyn., 2006]. These methods, however, are not based on hydrological background, and are very likely to eliminate volcanic signals excessively. The correction method of groundwater disturbance has to be developed with hydrological and quantitative approach. We thus estimate the gravity disturbance arising from groundwater as follows. (1) Groundwater distributions are simulated on a hydrological model, utilizing groundwater flow equations. (2) Groundwater-derived gravity value is estimated for each instant of time, by integrating groundwater distributions spatially. (3) The groundwater-derived gravity, as the correction value, is subtracted from observed gravity data. In this study, we simulated groundwater flow and groundwater-derived gravity value on the east part of the Asama volcano, central Japan. A simple hydrological model was supposed, consisting of homogeneous soil, lying on a flat impermeable basement. Hydraulic conductivity, which defines groundwater velocity, was set as 2.0×10-6[m/s], which is consistent with typical volcanic soils. We also observed time variations of watertable height, soil moisture and gravity simultaneously during the summer of 2006 at Asama volcano, and compared the observations with the theoretical values. Both simulated groundwater distributions and gravity changes agree fairly well with observed values. On variations of water level and moisture content, rapid increase at the time of rainfalls and exponential decrease after rainfalls were illustrated. Theoretical gravity changes explained 90% of the observed gravity increase (+20μgals) for

  15. Temporal monitoring of Bardarbunga volcanic activity with TanDEM-X

    NASA Astrophysics Data System (ADS)

    Rossi, C.; Minet, C.; Fritz, T.; Eineder, M.; Erten, E.

    2015-12-01

    On August 29, 2014, a volcanic activity started in the lava field of Holuhraun, at the north east of the Bardarbunga caldera in Iceland. The activity was declared finished on February 27, 2015, thus lasting for about 6 months. During these months the magma chamber below the caldera slowly emptied, causing the rare event of caldera collapse. In this scenario, TanDEM-X remote sensing data is of particular interest. By producing high-resolution and accurate elevation models of the caldera, it is possible to evaluate volume losses and topographical changes useful to increase the knowledge about the volcanic activity dynamics. 5 TanDEM-X InSAR acquisitions have been commanded between August 01, 2014 and November 08, 2014. 2 acquisitions have been commanded before the eruption and 3 acquisitions afterwards. To fully cover the volcanic activity, also the lava flow area at the north-west of the caldera has been monitored and a couple of acquisitions have been employed to reveal the subglacial graben structure and the lava path. In this context, the expected elevation accuracy is studied on two levels. Absolute height accuracy is analyzed by inspecting the signal propagation at X-band in the imaged medium. Relative height accuracy is analyzed by investigating the InSAR system parameters and the local geomorphology. It is shown how the system is very well accurate with mean height errors below the meter. Moreover, neither InSAR processing issues, e.g. phase unwrapping errors, nor complex DEM calibration aspects are problems to tackle. Caldera is imaged in its entirety and new cauldron formations and, in general, the complete restructuring of the glacial volcanic system is well represented. An impressive caldera volume loss of about 1 billion cubic meters is measured in about two months. The dyke propagation from the Bardarbunga cauldron to the Holuhraun lava field is also revealed and a graben structure with a width of up to 1 km and a sinking of a few meters is derived

  16. Correlation of volcanic activity with sulfur oxyanion speciation in a crater lake

    SciTech Connect

    Takano, B.

    1987-03-27

    The Yugama crater lake at Kusatsu-Shirane volcano, Japan, contains nearly 2200 tons (2800 parts per million) of polythionate ions (S/sub n/O/sub 6//sup 2 -/, where n = 4 to 9). Analytical data on lake water sampled before and during eruptions in 1982 showed that the concentrations of polythionates decreased and sulfate increased in response to the preeruption activities of the subaqueous fumaroles. These changes were observed 2 months before the first phreatic explosion on 26 October 1982. The monitoring of polythionates and sulfate in crater lake water is a promising means of anticipating potential volcanic eruption hazards.

  17. Database for potential hazards from future volcanic eruptions in California

    USGS Publications Warehouse

    White, Melissa N.; Ramsey, David W.; Miller, C. Dan

    2011-01-01

    More than 500 volcanic vents have been identified in the State of California. At least 76 of these vents have erupted, some repeatedly, during the past 10,000 yr. Past volcanic activity has ranged in scale and type from small rhyolitic and basaltic eruptions through large catastrophic rhyolitic eruptions. Sooner or later, volcanoes in California will erupt again, and they could have serious impacts on the health and safety of the State's citizens as well as on its economy. This report describes the nature and probable distribution of potentially hazardous volcanic phenomena and their threat to people and property. It includes hazard-zonation maps that show areas relatively likely to be affected by future eruptions in California. This digital release contains information from maps of potential hazards from future volcanic eruptions in the state of California, published as Plate 1 in U.S. Geological Survey Bulletin 1847. The main component of this digital release is a spatial database prepared using geographic information systems (GIS) applications. This release also contains links to files to view or print the map plate, main report text, and accompanying hazard tables from Bulletin 1847. It should be noted that much has been learned about the ages of eruptive events in the State of California since the publication of Bulletin 1847 in 1989. For the most up to date information on the status of California volcanoes, please refer to the U.S. Geological Survey Volcano Hazards Program website.

  18. Eruption probabilities for the Lassen Volcanic Center and regional volcanism, northern California, and probabilities for large explosive eruptions in the Cascade Range

    USGS Publications Warehouse

    Nathenson, Manuel; Clynne, Michael A.; Muffler, L.J. Patrick

    2012-01-01

    Chronologies for eruptive activity of the Lassen Volcanic Center and for eruptions from the regional mafic vents in the surrounding area of the Lassen segment of the Cascade Range are here used to estimate probabilities of future eruptions. For the regional mafic volcanism, the ages of many vents are known only within broad ranges, and two models are developed that should bracket the actual eruptive ages. These chronologies are used with exponential, Weibull, and mixed-exponential probability distributions to match the data for time intervals between eruptions. For the Lassen Volcanic Center, the probability of an eruption in the next year is 1.4x10-4 for the exponential distribution and 2.3x10-4 for the mixed exponential distribution. For the regional mafic vents, the exponential distribution gives a probability of an eruption in the next year of 6.5x10-4, but the mixed exponential distribution indicates that the current probability, 12,000 years after the last event, could be significantly lower. For the exponential distribution, the highest probability is for an eruption from a regional mafic vent. Data on areas and volumes of lava flows and domes of the Lassen Volcanic Center and of eruptions from the regional mafic vents provide constraints on the probable sizes of future eruptions. Probabilities of lava-flow coverage are similar for the Lassen Volcanic Center and for regional mafic vents, whereas the probable eruptive volumes for the mafic vents are generally smaller. Data have been compiled for large explosive eruptions (>≈ 5 km3 in deposit volume) in the Cascade Range during the past 1.2 m.y. in order to estimate probabilities of eruption. For erupted volumes >≈5 km3, the rate of occurrence since 13.6 ka is much higher than for the entire period, and we use these data to calculate the annual probability of a large eruption at 4.6x10-4. For erupted volumes ≥10 km3, the rate of occurrence has been reasonably constant from 630 ka to the present, giving

  19. Constraints on Martian Surface Material from a Study of Volcanic Alteration in Iceland and Hawaii

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Schiffman, P.; Southard, R. J.; Drief, A.; Verosub, K. L.

    2003-01-01

    Subaerial volcanic activity on Hawaii and subglacial volcanic activity on Iceland has led to the formation of a variety of silicate and iron oxiderich alteration products that may serve as models for chemical alteration on Mars. Multiple samples have been collected from palagonitic tuffs, altered pillow lavas, altered tephra, and S-rich vents for study in the lab. Variations in the kinds of alteration products have been observed depending on the alteration environment of the sample. We are working on building associations between the alteration products and formation conditions that can be used to provide information about environmental conditions on Mars.

  20. Probabilistic constraints from existing and future radar imaging on volcanic activity on Venus

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2015-11-01

    We explore the quantitative limits that may be placed on Venus' present-day volcanic activity by radar imaging of surface landforms. The apparent nondetection of new lava flows in the areas observed twice by Magellan suggests that there is a ~60% chance that the eruption rate is ~1 km3/yr or less, using the eruption history and area/volume flow geometry of terrestrial volcanoes (Etna, Mauna Loa and Merapi) as a guide. However, if the detection probability of an individual flow is low (e.g. ~10%) due to poor resolution or quality and unmodeled viewing geometry effects, the constraint (<10 km3/yr) is not useful. Imaging at Magellan resolution or better of only ~10% of the surface area of Venus on a new mission (30 years after Magellan) would yield better than 99% chance of detecting a new lava flow, even if the volcanic activity is at the low end of predictions (~0.01 km3/yr) and is expressed through a single volcano with a stochastic eruption history. Closer re-examination of Magellan data may be worthwhile, both to search for new features, and to establish formal (location-dependent) limits on activity against which data from future missions can be tested. While Magellan-future and future-future comparisons should offer much lower detection thresholds for erupted volumes, a probabilistic approach will be required to properly understand the implications.

  1. Results From NICLAKES Survey of Active Faulting Beneath Lake Nicaragua, Central American Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Funk, J.; Mann, P.; McIntosh, K.; Wulf, S.; Dull, R.; Perez, P.; Strauch, W.

    2006-12-01

    In May of 2006 we used a chartered ferry boat to collect 520 km of seismic data, 886 km of 3.5 kHz subbottom profiler data, and 35 cores from Lake Nicaragua. The lake covers an area of 7700 km2 within the active Central American volcanic arc, forms the largest lake in Central America, ranks as the twentieth largest freshwater lake in the world, and has never been previously surveyed or cored in a systematic manner. Two large stratovolcanoes occupy the central part of the lake: Concepcion is presently active, Maderas was last active less than 2000 years ago. Four zones of active faulting and doming of the lake floor were mapped with seismic and 3.5 kHz subbottom profiling. Two of the zones consist of 3-5-km-wide, 20-30-km-long asymmetric rift structures that trend towards the inactive cone of Maderas Volcano in a radial manner. The northeastern rift forms a 20-27-m deep depression on the lake bottom that is controlled by a north-dipping normal fault. The southwestern rift forms a 25-35-m deep depression controlled by a northeast-dipping normal fault. Both depressions contain mound-like features inferred to be hydrothermal deposits. Two zones of active faulting are associated with the active Concepcion stratovolcano. A 600-m-wide and 6-km-long fault bounded horst block extends westward beneath the lake from a promontory on the west side of the volcano. Like the two radial rift features of Maderas, the horst points roughly towards the active caldera of Concepcion. A second north-south zone of active faulting, which also forms a high, extends off the north coast of Concepcion and corresponds to a localized zone of folding and faulting mapped by previous workers and inferred by them to have formed by gravitational spreading of the flank of the volcano. The close spatial relation of these faults to the two volcanic cones in the lake suggests that the mechanism for faulting is a result of either crustal movements related to magma intrusion or gravitational sliding and is

  2. The Effect of Recent Volcanic Activity on the Seismic Structure of Madagascar

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Aleqabi, G. I.; Pratt, M. J.; Shore, P.; Wiens, D. A.; Nyblade, A.; Rambolamanana, G.; Andriampenomanana Ny Ony, F. S. T.; Tsiriandrimanana, R.

    2014-12-01

    The seismic structure of Madagascar is determined using ambient-noise and two-plane-wave earthquake surface waves analyses. A deep low-velocity anomaly is seen in regions of recent volcanic activity in the central and northern regions of the island. The primary data used are from the 2011-2013 MACOMO (Madagascar, the Comoros, and Mozambique) broadband seismic array from the PASSCAL program of IRIS (Incorporated Research Institutions for Seismology), funded by the NSF. Additional data came from the RHUM-RUM project (led by G. Barruol and K. Sigloch), the Madagascar Seismic Profile (led by F. Tilmann), and the GSN. For the ambient-noise study, Rayleigh wave green's functions for all interstation paths are extracted from the broadband seismic data recorded from August 2011 until October 2013. Rayleigh wave group and phase velocity dispersion curves are extracted in the 8 - 50 s period range, identifying shallow crustal structure. For deeper structure, the two-plane-wave method is used on teleseismic earthquake data to obtain surface wave phase velocities in the 20 - 182 s period range. In the inversion, a finite-frequency kernel is used for each period, and a 1-D shear velocity structure is determined at each location. A three-dimensional S-wave velocity model of the crust and upper mantle is obtained from assembling the 1-D models. Preliminary results show a good correlation between the Rayleigh wave velocities and the geology of Madagascar, which includes areas of ancient Archaean craton. The slowest seismic velocities are associated with known volcanic regions in both the central and northern regions, which have experienced volcanic activity within the past million years.

  3. Monitoring Io's Volcanic Activity in the Visible and Infrared from JUICE - It's All About (Eruption) Style

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Matson, D.; McEwen, A. S.; Keszthelyi, L. P.

    2012-12-01

    The European Space Agency's Jupiter Icy Moons Explorer (JUICE) will provide many opportunities for long-range monitoring of Io's extraordinary silicate, high-temperature volcanic activity [1, 2]. A considerable amount of valuable work can be performed even with relatively low-spatial-resolution observations [2]. Techniques developed from the examination and analysis of Galileo Near Infrared Mapping Spectrometer (NIMS) data, as well as observations of terrestrial silicate volcanic activity, allows the identification of likely eruption style [2] at many locations where the entire eruption is sub-pixel. Good temporal coverage, especially for episodic eruptions (including high-energy "outburst" eruptions), is important for modelling purposes. With opportunities to observe Io on a regular basis (hours-days) during cruise/orbital reduction phases, a visible-to-near-infrared mapping spectrometer (covering ~0.4-5.5 μm) is the best instrument to chart the magnitude and variability of Io's volcanic activity, allowing comparison with an existing and constantly expanding set of Io observations [e.g. 1, 3]. The eruption temperature of Io's dominant silicate lava, a constraint on interior composition and conditions, is a major unanswered question in the wake of the Galileo mission [1]. A careful approach to instrument design is needed to ensure that observations by both imager and IR spectrometer on JUICE are capable of determining lava eruption temperature [e.g., 4] in low spatial resolution data. With an ideal thermal target (e.g., an outburst eruption, or the proposed lava lake at Pele) the imager should obtain multi-spectral data in a rapid sequence to allow stability of the thermal source to be quantified. Observations by imager and spectrometer have to be contemporaneous and unsaturated. References: [1] Davies, A. (2007) "Volcanism on Io", Cam. Univ. Press. [2] Davies, A. et al. (2010) JVGR, 194, 75-99. [3] Veeder, G. et al. (2012) Icarus, 219, 701-722. [4] Davies, A. et

  4. 2008 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Dixon, James P.; Cameron, Cheryl E.; Nuzhdaev, Anton A.; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest or suspected unrest at seven separate volcanic centers in Alaska during 2008. Significant explosive eruptions at Okmok and Kasatochi Volcanoes in July and August dominated Observatory operations in the summer and autumn. AVO maintained 24-hour staffing at the Anchorage facility from July 12 through August 28. Minor eruptive activity continued at Veniaminof and Cleveland Volcanoes. Observed volcanic unrest at Cook Inlet's Redoubt Volcano presaged a significant eruption in the spring of 2009. AVO staff also participated in hazard communication regarding eruptions or unrest at nine volcanoes in Russia as part of a collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  5. 2007 Volcanic activity in Alaska, Kamchatka, and the Kurile Islands: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.; Dixon, James P.; Malik, Nataliya; Chibisova, Marina

    2011-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, and volcanic unrest at or near nine separate volcanic centers in Alaska during 2007. The year was highlighted by the eruption of Pavlof, one of Alaska's most frequently active volcanoes. Glaciated Fourpeaked Mountain, a volcano thought to have been inactive in the Holocene, produced a phreatic eruption in the autumn of 2006 and continued to emit copious amounts of steam and volcanic gas into 2007. Redoubt Volcano showed the first signs of the unrest that would unfold in 2008-09. AVO staff also participated in hazard communication and monitoring of multiple eruptions at seven volcanoes in Russia as part of its collaborative role in the Kamchatka and Sakhalin Volcanic Eruption Response Teams.

  6. Detection of active hydrothermal vent fields in the Pescadero Basin and on the Alarcon Rise using AUV multibeam and CTD data

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Troni, G.; Clague, D. A.; Paduan, J. B.; Martin, J. F.; Thomas, H. J.; Thompson, D.; Conlin, D.; Martin, E. J.; meneses-Quiroz, E.; Nieves-Cardoso, C.; Angel Santa Rosa del Rio, M.

    2015-12-01

    The MBARI AUV D. Allan B. collected high resolution bathymetry, sidescan, and subbottom profiles along the neovolcanic zone of the Alarcon Rise and across the southern Pescadero Basin during 2012 and 2015 MBARI expeditions to the Gulf of California (GOC). The combination of high resolution multibeam bathymetry and seawater temperature data has proven effective in identifying active high temperature vent fields, as validated by inspection and sampling during ROV dives. The AUV carries a 200 kHz multibeam sonar, 110 kHz chirp sidescan sonar, a 1-6 kHz chirp subbottom profiler, and a conductivity, temperature and depth (CTD) sensor for ~17-hour duration missions. Flying at 5.4 km/hr at 50 m altitude, the processed AUV bathymetry has a 0.1 m vertical precision and a 1 m lateral resolution. Chimneys taller than 1.5 m are sufficiently distinctive to allow provisional identification. The CTD temperature data have a nominal 0.002°C accuracy. Following calculation of potential temperature and correcting for average local variation of potential temperature with depth, anomalies greater than 0.05 °C can be reliably identified using a spike detection filter. MBARI AUV mapping surveys are typically planned using a 150 m survey line spacing, so the CTD data may be collected as much as 75 m away from any vent plume source. Five active high temperature vent fields were discovered in the southern GOC, with the Auka Field in the southern Pescadero Basin, and the Ja Sít, Pericú, Meyibó, and Tzab-ek Fields along the Alarcon Rise. In all five cases, hydrothermal vent chimneys are readily identifiable in the multibeam bathymetry, and temperature anomalies are observed above background variability. Other apparent hydrothermal chimneys were observed in the bathmetry that did not exhibit water temperature anomalies; most of these were visited during ROV dives and confirmed to be inactive sites. The maximum water column anomalies are 0.13°C observed above the Meyibó field and 0.25

  7. Mercury accumulation in hydrothermal vent mollusks from the southern Tonga Arc, southwestern Pacific Ocean.

    PubMed

    Lee, Seyong; Kim, Se-Joo; Ju, Se-Jong; Pak, Sang-Joon; Son, Seung-Kyu; Yang, Jisook; Han, Seunghee

    2015-05-01

    We provide the mercury (Hg) and monomethylmercury (MMHg) levels of the plume water, sulfide ore, sediment, and mollusks located at the hydrothermal vent fields of the southern Tonga Arc, where active volcanism and intense seismic activity occur frequently. Our objectives were: (1) to address the potential release of Hg from hydrothermal fluids and (2) to examine the distribution of Hg and MMHg levels in hydrothermal mollusks (mussels and snails) harboring chemotrophic bacteria. While high concentrations of Hg in the sediment and Hg, As, and Sb in the sulfide ore indicates that their source is likely hydrothermal fluids, the MMHg concentration in the sediment was orders of magnitude lower than the Hg (<0.001%). It suggests that Hg methylation may have not been favorable in the vent field sediment. In addition, Hg concentrations in the mollusks were much higher (10-100 times) than in other hydrothermal vent environments, indicating that organisms located at the Tonga Arc are exposed to exceedingly high Hg levels. While Hg concentration was higher in the gills and digestive glands than in the mantles and residues of snails and mussels, the MMHg concentrations in the gills and digestive glands were orders of magnitude lower (0.004-0.04%) than Hg concentrations. In summary, our results suggest that the release of Hg from the hydrothermal vent fields of the Tonga Arc and subsequent bioaccumulation are substantial, but not for MMHg. PMID:25748345

  8. Volcanic activity and its link to glaciation cycles: Single-grain age and geochemistry of Early to Middle Miocene volcanic glass from ANDRILL AND-2A core, Antarctica

    NASA Astrophysics Data System (ADS)

    Nyland, R. E.; Panter, K. S.; Rocchi, S.; Di Vincenzo, G.; Del Carlo, P.; Tiepolo, M.; Field, B.; Gorsevski, P.

    2013-01-01

    In the frame of the ANtarctic DRILLing Program, volcanic glass fragments were collected from the AND-2A core between ~ 354 and 765 m below sea floor (mbsf) as accumulations (5-70 vol.%) within sediments. Here, we present the physical characteristics, age and geochemistry of the glass, which enable us to reconstruct Early to Middle Miocene volcanic activity in southern McMurdo Sound and, for the first time, document the response of volcanism to climate change in Antarctica. Glass-rich sediments include muddy-to-fine sandstone and stratified diamictite. Glass varies in color, size, vesicularity, crystal content, angularity, and degree of alteration. The mostly fresh glass exhibits delicate cuspate forms indicating deposition as primary ash fall. 40Ar-39Ar age determinations on individual glass grains are in good agreement with the depositional age model of the sediments (ca. 15.6 to 18.6 Ma), supporting for most of them a primary origin, however, some samples do contain older fragments that indicate glass recycling during times of enhanced glacial erosion. Most glasses are mafic (MgO = 3 to 9 wt.%) and vary from hypersthene to nepheline normative with a restricted range in SiO2 (45.2 ± 0.8 wt.%, 1σ) and trace element concentrations typical of the rift-related alkaline rocks in the Erebus Volcanic Province. The glass extends known composition of early phase Mount Morning activity (ca. 11-19 Ma), the only known Early to Middle Miocene source, to a more mafic end, revealing a previously unknown explosive, strongly alkaline, basaltic phase and the most primitive forms of both strongly alkaline (basanite to phonolite) and moderately alkaline (alkali basalt to trachyte) magma associations. The glass-rich sediments occur in glacimarine sequences that record 56 cycles of glacial advance and retreat. Volcanic response to glacial cyclicity is observed both physically and geochemically in AND-2A glass. Higher glass volumes in sediments correlate with ice minimum conditions

  9. 1997 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Wallace, Kristi L.

    1999-01-01

    The Alaska Volcano Observatory (AVO) monitors over 40 historically active volcanoes along the Aleutian Arc. Twenty are seismically monitored and for the rest, the AVO monitoring program relies mainly on pilot reports, observations of local residents and ship crews, and daily analysis of satellite images. In 1997, AVO responded to eruptive activity or suspect volcanic activity at 11 volcanic centers: Wrangell, Sanford, Shrub mud volcano, Iliamna, the Katmai group (Martin, Mageik, Snowy, and Kukak volcanoes), Chiginagak, Pavlof, Shishaldin, Okmok, Cleveland, and Amukta. Of these, AVO has real-time, continuously recording seismic networks at Iliamna, the Katmai group, and Pavlof. The phrase “suspect volcanic activity” (SVA), used to characterize several responses, is an eruption report or report of unusual activity that is subsequently determined to be normal or enhanced fumarolic activity, weather-related phenomena, or a non-volcanic event. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) about the 1997 activity of 5 Russian volcanoes--Sheveluch, Klyuchevskoy, Bezymianny, Karymsky, and Alaid (SVA). This report summarizes volcanic activity and SVA in Alaska during 1997 and the AVO response, as well as information on the reported activity at the Russian volcanoes. Only those reports or inquiries that resulted in a “significant” investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of reports throughout the year of steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1997 response record.

  10. Ultra-long-range hydroacoustic observations of submarine volcanic activity at Monowai, Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Metz, D.; Watts, A. B.; Grevemeyer, I.; Rodgers, M.; Paulatto, M.

    2016-02-01

    Monowai is an active submarine volcanic center in the Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of 5 days, with explosive activity directly linked to the generation of seismoacoustic T phases. We show, using cross-correlation and time-difference-of-arrival techniques, that the eruption is detected as far as Ascension Island, equatorial South Atlantic Ocean, where a bottom moored hydrophone array is operated as part of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization. Hydroacoustic phases from the volcanic center must therefore have propagated through the Sound Fixing and Ranging channel in the South Pacific and South Atlantic Oceans, a source-receiver distance of ~15,800 km. We believe this to be the furthest documented range of a naturally occurring underwater signal above 1 Hz. Our findings, which are consistent with observations at regional broadband stations and long-range, acoustic parabolic equation modeling, have implications for submarine volcano monitoring.

  11. Hydrothermal Vents at 5000m on the Mid-Cayman Rise: The Deepest and Hottest Hydrothermal Systems Yet Discovered!

    NASA Astrophysics Data System (ADS)

    Murton, B. J.; Connelly, D. P.; Copley, J. T.; Stansfield, K. L.; Tyler, P. A.; Cruise Jc044 Sceintific Party

    2010-12-01

    This contribution describes the geological setting of hydrothermal activity within the Mid- Cayman Rise (MCR) using data acquired during cruise JC044 (MAR-APR 2010) from the deep-towed sidescan sonar TOBI, AUV Autosub6000 and the ROTV HyBIS. The 110 km-long Mid- Cayman Rise (MCR), located within Caribbean Sea, is the deepest spreading centre known, reaching over 6000m. Hence it poses an end-member of extreme depth for hydrothermal circulation. Accretion of new volcanic crust is focused within two ridge segments, to the north and south of a centrally located massif of peridotite and gabbro. Following earlier indications of hydrothermal plumes (German et al., in 2009), we discovered two high-temperature hydrothermal system: one at a depth of 5000m in the neovolcanic zone of the northern segment, and another at 2300m on the flanks of the MCR. These sites show contrasting styles of fluid venting, mineralisation, geological setting and host rock interaction. At 5000m-depth, the ultra-deep vent site forms the deepest hydrothermal system known. Venting is focused at the western side of a 100m diameter, 30m high mound, while inactive sulphides extend eastwards for at least 800m. Fluids discharge from clusters of chimneys whose location is related to basement faults. Changes in salinity in the venting fluids indicate discharge of a low salinity phase and a brine phase. At 500bar, this is definitive evidence for supercritical fluid emission. We also found the sulphide mineralization to be copper-rich, giving a characteristic green hue to many of the deposits, probably a result of the super-critical state of the vent fluids. A prominent axial volcanic ridge nearby indicates a robust magma supply to the northern MCR segment. Thus it is likely the ultra-deep vent site derives its thermal energy from magmatic sources, similar to those thought to underlie other slow-spreading ridge volcanic-hosted vent sites (e.g. Broken Spur: MAR). The shallower (2300m) MCR hydrothermal vent

  12. Evidence for Subglacial Volcanic Activity Beneath the area of the Divide of the West Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2013-12-01

    There is an increasing body of aeromagnetic, radar ice-sounding, heat flow, subglacial volcanic earthquakes, several exposed active and subglacial volcanoes and other lines of evidence for volcanic activity associated with the West Antarctic Rift System (WR) since the origin (~25 Ma) of the West Antarctic Ice Sheet (WAIS), which flows through it. Exposed late Cenozoic, alkaline volcanic rocks, 34 Ma to present concentrated in Marie Byrd Land (LeMasurier and Thomson, 1990), but also exposed along the rift shoulder on the Transantarctic Mountains flank of the WR, and >1 million cubic kilometers, of mostly subglacially erupted 'volcanic centers' beneath the WAIS inferred from aeromagnetic data, have been interpreted as evidence of a magmatic plume. About 18 high relief, (~600-2000 m) 'volcanic centers' presently beneath the WAIS surface, probably were erupted subaerially when the WAIS was absent, based on the 5-km orthogonally line spaced Central West Antarctica aerogeophysical survey. All would be above sea level after ice removal and isostatic adjustment. Nine of these high relief peaks are in the general area beneath the divide of the WAIS. This high bed relief topography was first interpreted in the 1980s as the volcanic 'Sinuous Ridge ' based on a widely spaced aeromagnetic -radar ice sounding survey (Jankowski et al,. 1983). A 70-km wide, circular ring of interpreted subglacial volcanic rocks was cited as evidence of a volcanic caldera underlying the ice sheet divide based on the CWA survey (Behrendt et al., 1998). A broad magnetic 'low' surrounding the caldera area possibly is evidence of a shallow Curie isotherm. High heat flow reported from temperature logging (Clow et al., 2012) in the WAISCORE and a thick volcanic ash layer in the core (Dunbar et al., 2012) are consistent with this interpretation. A 2 km-high subaerially erupted volcano (subglacial Mt Thiel, ~78.5 degrees S, 111 degrees W) ~ 100 km north from the WAISCORE could be the source of the ash

  13. Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands - II: Deception Island images

    NASA Astrophysics Data System (ADS)

    Prudencio, Janire; Ibáñez, Jesús M.; García-Yeguas, Araceli; Del Pezzo, Edoardo; Posadas, Antonio M.

    2013-12-01

    In this work, we present regional maps of the inverse intrinsic quality factor (Qi-1), the inverse scattering quality factor (Qs-1) and total inverse quality factor (Qt-1) for the volcanic environment of Deception Island (Antarctica). Our attenuation study is based on diffusion approximation, which permits us to obtain the attenuation coefficients for every single couple source-receiver separately. The data set used in this research is derived from an active seismic experiment using more than 5200 offshore shots (air guns) recorded at 32 onshore seismic stations and four ocean bottom seismometers. To arrive at a regional distribution of these values, we used a new mapping technique based on a Gaussian space probability function. This approach led us to create `2-D probabilistic maps' of values of intrinsic and scattering seismic attenuation. The 2-D tomographic images confirm the existence of a high attenuation body below an inner bay of Deception Island. This structure, previously observed in 2-D and 3-D velocity tomography of the region, is associated with a massive magma reservoir. Magnetotelluric studies reach a similar interpretation of this strong anomaly. Additionally, we observed areas with lower attenuation effects that bear correlation with consolidated structures described in other studies and associated with the crystalline basement of the area. Our calculations of the transport mean-free path and absorption length for intrinsic attenuation gave respective values of ≈ 950 m and 5 km, which are lower than the values obtained in tectonic regions or volcanic areas such as Tenerife Island. However, as observed in other volcanic regions, our results indicate that scattering effects dominate strongly over the intrinsic attenuation.

  14. The search for active volcanism on Venus with Venus Express/VIRTIS data

    NASA Astrophysics Data System (ADS)

    Tsang, C. C. C.; Virtis Team

    The composition of the lower atmosphere of Venus is of primary importance in understanding the past and indeed current evolution of climatology on this most enigmatic of planets In discovering the near infrared windows centered at 2 3 1 7 and 1 18 microns Allen and Crawford 1 in 1983 paved the way for the lower 40km of the atmosphere to be probed remotely from space This has led Venus Express to carry imaging spectrometers such as VIRTIS to make full use of this phenomenon Some fundamental questions concerning the exact makeup of the atmosphere will be answered by analyzing VIRTIS data Data collected from past observations indicate the possibility of current volcanic activity on the surface of Venus The monitoring of SO 2 at the cloud tops indicate a steady drop in concentration suggesting a possible source of SO 2 is due to volcanism 2 whilst deep atmospheric values below the clouds suggest a uniform mixing ratio 3 The analysis VIRTIS data at 2 48 micron window will no doubt shed light on this matter Analysis of the micro-window complex at 1 18 microns shows that we can image the surface of the planet in the infrared whilst negating most of the effects of the atmosphere 4 We can monitor the surface brightness temperatures to look for hot spots indicative of volcanic plumes another key goal of Venus Express and VIRTIS We have developed a radiative transfer model to analyse Venus Express VIRTIS data in the near infrared windows The retrieval model uses the correlated-k distribution method which incorporates the use

  15. Time series analysis of thermal variation on Italian volcanic active areas by using IR satellite data

    NASA Astrophysics Data System (ADS)

    Silvestri, M.; Buongiorno, M. F.; Pieri, D. C.

    2014-12-01

    To monitoring of active volcanoes the systematic acquisition of medium/high resolution thermal data and the subsequent analysis of time series may improve the capability to detect small surface temperature variation related to changes in volcanic activity level and contribute to the early warning systems. Examples on the processing of long time series based EO data of Mt Etna activity and Phlegraean Fields observation by using remote sensing techniques and at different spatial resolution data (ASTER - 90mt, AVHRR -1km, MODIS-1km, MSG SEVIRI-3km) are showed. The use of TIR sensors with high spatial resolution offers the possibility to obtain detailed information on the areas where there are significant changes, detecting variation in fumaroles fields and summit craters before eruptions. Thanks to ASTER thermal infrared (TIR, 5 bands) regions of the electromagnetic spectrum we have obtained the surface temperature map on the volcano area. For this study we have considered the ASTER's night observations that show well defined episodes of increasing thermal emission of crater thanks to a more uniform background temperature. Two different procedures are shown, both using the TIR high spatial resolution data: for Phlegraean Fields (active but quiescent volcano) the analysis of time series of surface temperature which may improve the capability to detect small surface temperature variation related to changes in volcanic activity level; for Mt. Etna (active volcano) a semi-automatic procedure which extract the summit area radiance values with the goal of detecting variation related to eruptive events. The advantage of direct download of EO data by means INGV antennas even though low spatial resolution offers the possibility of a systematic data processing having a daily updating of information for prompt response and hazard mitigation. At the same time the comparison of surface temperature retrievals at different scale is an important issue for future satellite sensors.

  16. Connecting Io's volcanic activity to the Io plasma torus: comparison of Galileo/NIMS volcanic and ground-based torus observations

    NASA Astrophysics Data System (ADS)

    Magalhaes, F. P.; Lopes, R. M. C.; Rathbun, J. A.; Gonzalez, W. D.; Morgenthaler, J. P.; Echer, E.; Echer, M. P. D. S.

    2015-12-01

    Io, the innermost of the Jupiter's four Galilean moons, is a remarkable object in the Solar System, due to its intense and energetic volcanic activity. The volcanic sulfur and oxygen in Io's tenuous atmosphere escapes forming an extended neutral cloud around Io and Jupiter. Subsequently, by ionization and pickup ions, a ring of charged particles encircling Jupiter is created, forming the Io plasma torus. Considering this scenario, it is reasonable to expect that the Io plasma torus should be affected by changes in Io's volcanism. Interactions between Io and the Jovian environment is unique and yet not very well understood. Here we present two sets of observations. One from the Galileo Near-Infrared Imaging Spectrograph (NIMS) instrument, which obtained spectral image cubes between 0.7 and 5.2 microns. The other dataset is from ground-based observations of the [SII] 6731 Å emission lines from the Io plasma torus, obtained at McMath-Pierce Solar Telescope, at Kitt Peak. Our dataset from the [SII] 6731 Å emission lines cover more years than the one from the NIMS data. The years presented in this work for a comparative study are from 1998 through 2001. Using the NIMS instrument we were able to identify which volcanoes were active and measure their level of activity. From the [SII] 6731 Å emission lines we were able to trace the densest part of the torus and also the brightness of both ansa. By comparing the results from the Galileo instrument and the ground-based observations, we are exploring how the Io plasma torus responds to large eruptions from Io. We aim with this study to help improve our understanding of this complex coupled system, Jupiter-Io.

  17. 3D structure and formation of hydrothermal vent complexes in the Møre Basin

    NASA Astrophysics Data System (ADS)

    Kjoberg, Sigurd; Schmiedel, Tobias; Planke, Sverre; Svensen, Henrik H.; Galland, Oliver; Jerram, Dougal A.

    2016-04-01

    The mid-Norwegian Møre margin is regarded as a type example of a volcanic rifted margin, with its formation usually related to the influence of the Icelandic plume activity. The area is characterized by the presence of voluminous basaltic complexes such as extrusive lava sequences, intrusive sills and dikes, and hydrothermal vent complexes within the Møre Basin. Emplacement of hydrothermal vent complexes is accommodated by deformation of the host rock. The edges of igneous intrusions mobilize fluids by heat transfer into the sedimentary host rock (aureoles). Fluid expansion may lead to formation of piercing structures due to upward fluid migration. Hydrothermal vent complexes induce bending of overlying strata, leading to the formation of dome structures at the paleo-surface. These dome structures are important as they indicate the accommodation created for the intrusions by deformation of the upper layers of the stratigraphy, and may form important structures in many volcanic margins. Both the morphological characteristics of the upper part and the underlying feeder-structure (conduit-zone) can be imaged and studied on 3D seismic data. Seismic data from the Tulipan prospect located in the western part of the Møre Basin have been used in this study. The investigation focusses on (1) the vent complex geometries, (2) the induced surface deformation patterns, (3) the relation to the intrusions (heat source), as well as (4) the emplacement depth of the hydrothermal vent complexes. We approach this by doing a detailed 3D seismic interpretation of the Tulipan seismic data cube. The complexes formed during the initial Eocene, and are believed to be a key factor behind the rapid warming event called the Paleocene-Eocene thermal maximum (PETM). The newly derived understanding of age, eruptive deposits, and formation of hydrothermal vent complexes in the Møre Basin enables us to contribute to the general understanding of the igneous plumbing system in volcanic basins and

  18. Dynamics of an open basaltic magma system: The 2008 activity of the Halema'uma'u Overlook vent, Kīlauea Caldera

    NASA Astrophysics Data System (ADS)

    Eychenne, Julia; Houghton, Bruce F.; Swanson, Donald A.; Carey, Rebecca J.; Swavely, Lauren

    2015-01-01

    On March 19, 2008 a small explosive event accompanied the opening of a 35-m-wide vent (Overlook vent) on the southeast wall of Halema'uma'u Crater in Kīlauea Caldera, initiating an eruptive period that extends to the time of writing. The peak of activity, in 2008, consisted of alternating background open-system outgassing and spattering punctuated by sudden, short-lived weak explosions, triggered by collapses of the walls of the vent and conduit. Near-daily sampling of the tephra from this open system, along with exceptionally detailed observations, allow us to study the dynamics of the activity during two eruptive sequences in late 2008. Each sequence includes background activity preceding and following one or more explosions in September and October 2008 respectively. Componentry analyses were performed for daily samples to characterise the diversity of the ejecta. Nine categories of pyroclasts were identified in all the samples, including wall-rock fragments. The six categories of juvenile clasts can be grouped in three classes based on vesicularity: (1) poorly, (2) uniformly highly to extremely, and (3) heterogeneously highly vesicular. The wall-rock and juvenile clasts show dissimilar grainsize distributions, reflecting different fragmentation mechanisms. The wall-rock particles formed by failure of the vent and conduit walls above the magma free surface and were then passively entrained in the eruptive plume. The juvenile componentry reveals consistent contrasts in degassing and fragmentation processes before, during and after the explosive events. We infer a crude 'layering' developed in the shallow melt, in terms of both rheology and bubble and volatile contents, beneath a convecting free surface during background activity. A tens-of-centimetres thick viscoelastic surface layer was effectively outgassed and relatively cool, while at depths of less than 100 m, the melt remained slightly supersaturated in volatiles and actively vesiculating. Decoupled metre

  19. Dynamics of an open basaltic magma system: The 2008 activity of the Halema‘uma‘u Overlook vent, Kīlauea Caldera

    USGS Publications Warehouse

    Eychenne, Julia; Houghton, Bruce; Swanson, Don; Carey, Rebecca; Swavely, Lauren

    2015-01-01

    On March 19, 2008 a small explosive event accompanied the opening of a 35-m-wide vent (Overlook vent) on the southeast wall of Halema‘uma‘u Crater in Kīlauea Caldera, initiating an eruptive period that extends to the time of writing. The peak of activity, in 2008, consisted of alternating background open-system outgassing and spattering punctuated by sudden, short-lived weak explosions, triggered by collapses of the walls of the vent and conduit. Near-daily sampling of the tephra from this open system, along with exceptionally detailed observations, allow us to study the dynamics of the activity during two eruptive sequences in late 2008. Each sequence includes background activity preceding and following one or more explosions in September and October 2008 respectively. Componentry analyses were performed for daily samples to characterise the diversity of the ejecta. Nine categories of pyroclasts were identified in all the samples, including wall-rock fragments. The six categories of juvenile clasts can be grouped in three classes based on vesicularity: (1) poorly, (2) uniformly highly to extremely, and (3) heterogeneously highly vesicular. The wall-rock and juvenile clasts show dissimilar grainsize distributions, reflecting different fragmentation mechanisms. The wall-rock particles formed by failure of the vent and conduit walls above the magma free surface and were then passively entrained in the eruptive plume. The juvenile componentry reveals consistent contrasts in degassing and fragmentation processes before, during and after the explosive events. We infer a crude ‘layering’ developed in the shallow melt, in terms of both rheology and bubble and volatile contents, beneath a convecting free surface during background activity. A tens-of-centimetres thick viscoelastic surface layer was effectively outgassed and relatively cool, while at depths of less than 100 m, the melt remained slightly supersaturated in volatiles and actively vesiculating

  20. Postcaldera volcanism and hydrothermal activity revealed by autonomous underwater vehicle surveys in Myojin Knoll caldera, Izu-Ogasawara arc

    NASA Astrophysics Data System (ADS)

    Honsho, Chie; Ura, Tamaki; Kim, Kangsoo; Asada, Akira

    2016-06-01

    Myojin Knoll caldera, one of the submarine silicic calderas lying on the volcanic front of the northern Izu-Ogasawara arc, has attracted increasing attention since the discovery of a large hydrothermal field called the Sunrise deposit. Although numerous submersible surveys have been conducted in Myojin Knoll caldera, they have not sufficiently explored areas to produce a complete picture of the caldera and understand the origin of the Sunrise deposit. We conducted comprehensive deep-sea surveys using an autonomous underwater vehicle and obtained high-resolution bathymetric and magnetic data and sonar images from ~70% of the caldera. The detailed bathymetric map revealed that faulting and magma eruptions, possibly associated with an inflation-deflation cycle of the magma reservoir during postcaldera volcanism, had generally occurred in the caldera wall. The main dome of the central cone was covered with lava flows and exhibits exogenous growth, which is unusual for rhyolitic domes. The magnetization distribution in the central cone indicates preferential magma intrusion along a NW-SE direction. It is presumed that magma migrated along this direction and formed a rhyolite dome at the foot of the southeastern caldera wall, where the Sunrise deposit occurs. The Sunrise deposit is composed mainly of three ridges extending in slope directions and covers ~400 × ~400 m. Magnetization reduction in the deposit area is small, indicating that the alteration zone beneath the Sunrise deposit is slanting rather than vertical. It is presumed that several slanting and near-vertical volcanic vents serve as pathways of hydrothermal fluid in Myojin Knoll caldera.

  1. Isotopic signatures associated with growth and metabolic activities of chemosynthetic nitrate-reducing microbes from deep-sea hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Perez-Rodriguez, I. M.; Foustoukos, D.; Fogel, M. L.; Sievert, S. M.

    2013-12-01

    Epsilonproteobacteria and Aquificaceae have been identified as dominant members of microbial communities at deep-sea hydrothermal vents. Cultured representatives from these two groups appear to be mostly genetically wired to perform chemosynthesis at moderate-to-high temperatures (45 - 80oC) under anaerobic and sulfidic conditions. In this study we used Caminibacter mediatlanticus and Thermovibrio ammonificans as model organisms to constrain physiological parameters associated with dissimilatory nitrate reduction to ammonium (DNRA) in deep-sea vent Epsilonproteobacteria and Aquificaceae. We postulate that nitrate-based metabolic processes are of relevance for understanding primary production as well as nitrate mobilization in deep-sea vents. By constraining growth and respiration rates during DNRA, we observed that C. mediatlanticus achieved higher cell densities than T. ammonificans while exhibiting similar growth rates. DNRA kinetic rate constants and cell-specific nitrate reduction rates (csNRR) obtained from our data showed that within similar time frames T. ammonificans used 2.5 to 3 times as much nitrate than C. mediatlanticus and it did so ~3 times faster. However, the increased consumption of nitrate in T. ammonificans did not translate into higher growth yield. This is suggestive of either differential efficiencies in energy generating pathways or differential organic matter production (cell biomass versus extracellular organic material) associated with DNRA in these microorganisms. Nitrogen isotope fractionation for nitrate was similar for both organisms, with discrimination factors of ~ -5 to -6‰ for C. mediatlanticus and ~ -7 to -8‰ for T. ammonificans. Similar experiments performed under high hydrostatic pressure conditions (50 and 200 bar) showed that changes in pressure greatly affected both growth rates and DNRA kinetic rate constants in both microorganisms, however, δ15N discrimination factors for nitrate were not affected. This study provides

  2. Electrification of volcanic plumes

    NASA Astrophysics Data System (ADS)

    Mather, T. A.; Harrison, R. G.

    planets. The direct hazard of volcanic lightning to communities on Earth is generally low compared to other aspects of volcanic activity.

  3. Electrification of volcanic plumes

    NASA Astrophysics Data System (ADS)

    Mather, T. A.; Harrison, R. G.

    2006-07-01

    Volcanic lightning, perhaps the most spectacular consequence of the electrification of volcanic plumes, has been implicated in the origin of life on Earth, and may also exist in other planetary atmospheres. Recent years have seen volcanic lightning detection used as part of a portfolio of developing techniques to monitor volcanic eruptions. Remote sensing measurement techniques have been used to monitor volcanic lightning, but surface observations of the atmospheric electric Potential Gradient (PG) and the charge carried on volcanic ash also show that many volcanic plumes, whilst not sufficiently electrified to produce lightning, have detectable electrification exceeding that of their surrounding environment. Electrification has only been observed associated with ash-rich explosive plumes, but there is little evidence that the composition of the ash is critical to its occurrence. Different conceptual theories for charge generation and separation in volcanic plumes have been developed to explain the disparate observations obtained, but the ash fragmentation mechanism appears to be a key parameter. It is unclear which mechanisms or combinations of electrification mechanisms dominate in different circumstances. Electrostatic forces play an important role in modulating the dry fall-out of ash from a volcanic plume. Beyond the local electrification of plumes, the higher stratospheric particle concentrations following a large explosive eruption may affect the global atmospheric electrical circuit. It is possible that this might present another, if minor, way by which large volcanic eruptions affect global climate. The direct hazard of volcanic lightning to communities is generally low compared to other aspects of volcanic activity.

  4. Possible Detection of Volcanic Activity on Europa: Analysis of An Optical Transient Event

    NASA Astrophysics Data System (ADS)

    de La Fuente Marcos, R.; Nissar, A.

    2002-06-01

    Europa's low crater density suggests that geological activity has continued to the present epoch, leading to the possibility that current resurfacing events might be detectable. CCD observations were carried out with a ST-6 camera at the 0.5 m Mons Cassegrain telescope (Izaña Observatory, Tenerife,Canary Islands, Spain) during the night between 2 3 October 1999. Our images show a transient bright feature on the Galilean satellite. These images are analyzed here with the purpose of understanding the nature of the transient phenomena as it could be the result of explosive venting on the surface of the Jovian satellite. By comparison, we use NASA Infrared Telescope Facility images of two Io hot spots taken on12 October 1990. Although we mainly restrict our discussion on apossible eruptive nature of the observed spots, we also consider other alternative mechanisms able to produce bright events. In particular, an interaction between charged material being ejected from Europa and the Jovian magnetosphere cannot be entirely ruled out. If confirmed, this result would lend support for the existence of active resurfacing in Europa.

  5. A New Way to estimate volcanic hazards and present multi-hazard maps

    NASA Astrophysics Data System (ADS)

    Germa, A.; Connor, C.; Connor, L.; Malservisi, R.

    2013-12-01

    To understand long term hazards in distributed volcanic systems, we are developing a research framework to relate statistical models of spatial intensity (vents per unit area), volume intensity (erupted volume per unit area) and volume-flux intensity (erupted volume per unit time and area) to conceptual models of the subsurface processes of magma storage and transport. The distribution of mapped vents and volumes erupted from these vents are used to develop nonparametric (kernel density) statistical models for distributed volcanic systems. Using radiometric age determinations of vents and erupted units, we then estimate the recurrence rate of volcanism and associated uncertainty using a Monte Carlo approach. The outputs of Monte Carlo simulation of recurrence rates allow us to produce dynamic statistical maps that reveal the spatio-temporal evolution of volcanic activity within the field studied. To further improve our research framework, we have implemented solutions to differential equations governing magma production and transport to model subsurface processes of magma ascent. This behavior can be statistically approximated by modeling the flow of a viscous fluid within a homogeneous porous medium using Darcy's law with variable conductivity dependent on flow rate and lithospheric stresses (Bonafede and Boschi, 1992; Bonafede and Cenni, 1998). Using this continuous formulation, additional complexities that influence magma migration such as complex sources, magma generation, magma rheology, tectonic stresses, and/or anisotropic/heterogeneous behavior of the porous medium, can be simply implemented by varying the choice of source and conductivity parameters. In this way we can explore physical processes that may give rise to heterogeneous flux in numerical models and relate these outputs to observed vent distributions and volume flux at the surface. Overall, data extracted from our research framework should link statistical models of volcano distribution with the

  6. Analysis of radar images of the active volcanic zone at Krafla, Iceland: The effects of look azimuth biasing

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Williams, R. S., Jr.

    1989-01-01

    The geomorphic expression of Mid-Ocean-Ridge (MOR) volcanism in a subaerial setting occurs uniquely on Earth in Iceland, and the most recent MOR eruptive activity has been concentrated in the Northeastern Volcanic Zone in an area known as Krafla. Within the Krafla region are many of the key morphologic elements of MOR-related basaltic volcanism, as well as volcanic explosion craters, subglacial lava shields, tectonic fissure swarms known as gjar, and basaltic-andesite flows with well developed ogives (pressure-ridges). The objective was to quantify the degree to which the basic volcanic and structural features can be mapped from directional SAR imagery as a function of the look azimuth. To accomplish this, the current expression of volcanic and tectonic constructs was independently mapped within the Krafla region on the E, W, and N-looking SAR images, as well as from SPOT Panchromatic imagery acquired in 1987. The initial observations of the E, W, and N images indicates that fresh a'a lava surfaces are extremely radar bright (rough at 3 cm to meter scales) independent of look direction; this suggests that these flows do not have strong flow direction related structures at meter and cm scales, which is consistent with typical Icelandic a'a lava surfaces in general. The basic impression from a preliminary analysis of the effects of look azimuth biasing on interpretation of the geology of an active MOR volcanic zone is that up to 30 percent of the diagnostic features can be missed at any given look direction, but that having two orthogonal look direction images is probably sufficient to prevent gross misinterpretation.

  7. 1891 Submarine eruption of Foerstner volcano (Pantelleria, Sicily) : insights into the vent structure of basaltic balloon eruptions

    NASA Astrophysics Data System (ADS)

    Kelly, J. T.; Carey, S.; Bell, K. L.; Rosi, M.; Marani, M.; Roman, C.; Pistolesi, M.; Baker, E. T.

    2012-12-01

    Numerous shallow water basaltic eruptions have produced abundant floating scoria up to several meters in diameter, yet little is known about the conditions that give rise to this unusual style of volcanism. On October 17, 1891, a submarine eruption began 4 kilometers northwest of the island of Pantelleria, Sicily. The eruptive vent was located at a depth of 250 meters along the NW-SE trending Sicily Channel Rift Zone. Evidence for the eruption was provided by the occurrence of hot, scoriaceous lava "balloons" floating on the sea surface along a narrow line about 850-1000 meters long trending along the rift. These extremely vesicular fragments were spherical to ellipsoidal in shape and ranged from <50 to 250 cm in diameter. Remotely Operated Vehicles (ROVs) and existing bathymetric maps have been used to conduct the first detailed investigation of a vent site associated with this unique style of volcanism. In 2011 the ROV Hercules, deployed from the E/V Nautilus, explored the 1891 Foerstner vent using high definition video cameras and produced a high resolution bathymetric map of the area using a BlueView multibeam imaging sonar. Light backscattering and oxidation-reduction potential sensors (MAPRs) were added to Hercules to detect discharge from active venting. ROV video footage has been used in conjunction with the high resolution bathymetric data to construct a geologic map of the vent area based on a variety of facies descriptors, such as abundance of scoria bombs, occurrence of pillow or scoria flow lobes, extent of sediment cover, and presence of spatter-like deposits. Initial results of the mapping have shown that there are two main vents that erupted within the observed area of floating scoria and most likely erupted at the same time as evidenced by similar bulk chemical compositions of recovered samples. Scoria bomb beds and some scoria flow lobes largely cover the suspected main vent, located at a depth of 250 meters. Distinct pillow flow lobes cover the

  8. High resolution seismic reflection profiles of Holocene volcanic and tectonic features, Mono Lake, California

    NASA Astrophysics Data System (ADS)

    Jayko, A. S.; Hart, P. E.; Bursik, M. I.; McClain, J. S.; Moore, J. C.; Boyle, M.; Childs, J. R.; Novick, M.; Hill, D. P.; Mangan, M.; Roeske, S.

    2009-12-01

    The Inyo-Mono Craters of Long Valley and Mono Basin, California are the youngest eruptive vents of the Great Basin, USA and the second youngest in California. They are one of two seismically active volcanic centers with geothermal power production in the Walker Lane, western Great Basin, the other being the Coso Volcanic Field to the south. High resolution seismic reflection data collected from the northern tip of the Mono Craters eruptive centers in Mono Lake delinates two structural zones proximal to the active volcanic centers in Mono Lake. A growth structure drapped by ~30 m or more of bedded sediment shows increasing deformation and offset of clastic deposits on the northwest margin of the basin. Coherent thin-bedded stratigraphic sections with strong reflectors to 30-100m depth are preserved on the western and northern margins of the basin. The southern and southeastern areas of the lake are generally seismically opaque, due to extensive ash and tephra deposits as well as widespread methane. Thin pockets of well-bedded, poorly consolidated sediment of probable Holocene and last glacial age are present within intrabasin depressions providing some local age constraints on surfaces adjacent to volcanic vents and volcanically modified features.

  9. Explosion craters associated with shallow submarine gas venting off Panarea island, Italy

    NASA Astrophysics Data System (ADS)

    Monecke, Thomas; Petersen, Sven; Hannington, Mark D.; Anzidei, Marco; Esposito, Alessandra; Giordano, Guido; Garbe-Schönberg, Dieter; Augustin, Nico; Melchert, Bernd; Hocking, Mike

    2012-11-01

    Explosions of hot water, steam, and gas are common periodic events of subaerial geothermal systems. These highly destructive events may cause loss of life and substantial damage to infrastructure, especially in densely populated areas and where geothermal systems are actively exploited for energy. We report on the occurrence of a large number of explosion craters associated with the offshore venting of gas and thermal waters at the volcanic island of Panarea, Italy, demonstrating that violent explosions similar to those observed on land also are common in the shallow submarine environment. With diameters ranging from 5 to over 100 m, the observed circular seafloor depressions record a history of major gas explosions caused by frequent perturbation of the submarine geothermal system over the past 10,000 years. Estimates of the total gas flux indicate that the Panarea geothermal system released over 70 Mt of CO2 over this period of time, suggesting that CO2 venting at submerged arc volcanoes contributes significantly to the global atmospheric budget of this greenhouse gas. The findings at Panarea highlight that shallow submarine gas explosions represent a previously unrecognized volcanic hazard around populated volcanic islands that needs to be taken into account in the development of risk management strategies.

  10. Chemical signatures from hydrothermal venting on slow spreading ridges

    NASA Astrophysics Data System (ADS)

    Edmonds, Henrietta N.

    At least 24 sites of active venting have been confirmed on slow and ultraslow spreading ridges, with dozens more indicated on the basis of hydrothermal plume distributions and/or dredge recovery of massive sulfides. Fluid chemistry data have been published for 13 sites: 8 on the northern Mid-Atlantic Ridge, 3 on the southern Mid-Atlantic Ridge, and 2 on the Central Indian Ridge. Three of these 13 sites (Rainbow, Logatchev, and Lost City) are known to be hosted in ultramafic terrain, and their fluid chemistries reflect the influence of serpentinization reactions, including elevated hydrogen and methane, and low silica concentrations. This brief review presents the published fluid chemistry for all 13 sites, including time series where available, and demonstrates the diversity of chemical compositions engendered by the myriad settings (near and off axis, young volcanic to ultramafic terrain, and depths up to 4100 m) of hydrothermal systems on slow and ultraslow spreading ridges.

  11. Volcanic Gas

    MedlinePlus

    ... Hazards Tephra/Ash Lava Flows Lahars Volcanic Gas Climate Change Pyroclastic Flows Volcanic Landslides Preparedness Volcano Hazard Zones ... Please see our discussion of volcanic gases and climate change for additional information. Hydrogen sulfide (H 2 S) is ...

  12. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-11-01

    Little is known about fixed nitrogen (N) transformation and elimination at diffuse hydrothermal vents where anoxic fluids are mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N loss pathways (denitrification, anammox) and dissimilatory nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e., temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithoautotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always < 5 nmol N l-1 day-1 and below the detection limit at most of the sites. DNRA rates were up to ~150 nmol N l-1 day-1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that γ-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlations were found between fixed N loss (i.e., denitrification, anammox) rates and in situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence times, we estimated

  13. Activity and abundance of denitrifying bacteria in the subsurface biosphere of diffuse hydrothermal vents of the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Bourbonnais, A.; Juniper, S. K.; Butterfield, D. A.; Devol, A. H.; Kuypers, M. M. M.; Lavik, G.; Hallam, S. J.; Wenk, C. B.; Chang, B. X.; Murdock, S. A.; Lehmann, M. F.

    2012-04-01

    Little is known about nitrogen (N) transformations in general, and the elimination of N in particular, at diffuse vents where anoxic hydrothermal fluids have mixed with oxygenated crustal seawater prior to discharge. Oceanic N sinks that remove bio-available N ultimately affect chemosynthetic primary productivity in these ecosystems. Using 15N paired isotope techniques, we determined potential rates of fixed N-loss pathways (denitrification, anammox) and dissimilative nitrate reduction to ammonium (DNRA) in sulfidic hydrothermal vent fluids discharging from the subsurface at several sites at Axial Volcano and the Endeavour Segment on the Juan de Fuca Ridge. We also measured physico-chemical parameters (i.e. temperature, pH, nutrients, H2S and N2O concentrations) as well as the biodiversity and abundance of chemolithotrophic nitrate-reducing, sulfur-oxidizing γ-proteobacteria (SUP05 cluster) using sequence analysis of amplified small subunit ribosomal RNA (16S rRNA) genes in combination with taxon-specific quantitative polymerase chain reaction (qPCR) assays. Denitrification was the dominant N-loss pathway in the subsurface biosphere of the Juan de Fuca Ridge, with rates of up to ~1000 nmol N l-1 day-1. In comparison, anammox rates were always <5 nmol N l-1 day-1 and below the detection limit at most of the sites. DNRA rates were up to 152 nmol N l-1 day-1. These results suggest that bacterial denitrification out-competes anammox in sulfidic hydrothermal vent waters. Taxon-specific qPCR revealed that γ-proteobacteria of the SUP05 cluster sometimes dominated the microbial community (SUP05/total bacteria up to 38%). Significant correlation existed between fixed N-loss (i.e., denitrification, anammox) rates and in-situ nitrate and dissolved inorganic nitrogen (DIN) deficits in the fluids, indicating that DIN availability may ultimately regulate N-loss in the subsurface. Based on our rate measurements, and on published data on hydrothermal fluid fluxes and residence

  14. Volcanism-sedimentation interaction in the Campo de Calatrava Volcanic Field (Spain): a magnetostratigraphic and geochronological study

    NASA Astrophysics Data System (ADS)

    Herrero-Hernández, Antonio; López-Moro, Francisco Javier; Gallardo-Millán, José Luis; Martín-Serrano, Ángel; Gómez-Fernández, Fernando

    2015-01-01

    This work focuses on the influence of Cenozoic volcanism of the Campo de Calatrava volcanic field on the sedimentation of two small continental basins in Spain (Argamasilla and Calzada-Moral basins). The volcanism in this area was mainly monogenetic, according to the small-volume volcanic edifices of scoria cones that were generated and the occurrence of tuff rings and maars. A sedimentological analysis of the volcaniclastic deposits led to the identification of facies close to the vents, low-density (dilute) pyroclastic surges, secondary volcanic deposits and typical maar deposits. Whole-rock K/Ar dating, together with palaeomagnetic constraints, yielded an age of 3.11-3.22 Ma for the onset of maar formation, the deposition finished in the Late Gauss-Early Matuyana. Using both techniques and previous paleontological data allowed it to be inferred that the maar formation and the re-sedimentation stage that occurred in Argamasilla and Calzada-Moral basins were roughly coeval. The occurrence of syn-eruption volcaniclastic deposits with small thicknesses that were separated by longer inter-eruption periods, where fluvial and lacustrine sedimentation was prevalent, together with the presence of small-volume volcanic edifices indicated that there were short periods of volcanic activity in this area. The volcanic activity was strongly controlled by previous basement faults that favoured magma feeding, and the faults also controlled the location of volcanoes themselves. The occurrence of the volcanoes in the continental basins led to the creation of shallow lakes that were related to the maar formation and the modification of sedimentological intra-basinal features, specifically, valley slope and sediment load.

  15. GEOFIM: A WebGIS application for integrated geophysical modeling in active volcanic regions

    NASA Astrophysics Data System (ADS)

    Currenti, Gilda; Napoli, Rosalba; Sicali, Antonino; Greco, Filippo; Negro, Ciro Del

    2014-09-01

    We present GEOFIM (GEOphysical Forward/Inverse Modeling), a WebGIS application for integrated interpretation of multiparametric geophysical observations. It has been developed to jointly interpret scalar and vector magnetic data, gravity data, as well as geodetic data, from GPS, tiltmeter, strainmeter and InSAR observations, recorded in active volcanic areas. GEOFIM gathers a library of analytical solutions, which provides an estimate of the geophysical signals due to perturbations in the thermal and stress state of the volcano. The integrated geophysical modeling can be performed by a simple trial and errors forward modeling or by an inversion procedure based on NSGA-II algorithm. The software capability was tested on the multiparametric data set recorded during the 2008-2009 Etna flank eruption onset. The results encourage to exploit this approach to develop a near-real-time warning system for a quantitative model-based assessment of geophysical observations in areas where different parameters are routinely monitored.

  16. California's potential volcanic hazards

    SciTech Connect

    Jorgenson, P. )

    1989-01-01

    Although volcanic eruptions have occurred infrequently in California during the last few thousand years, the potential danger to life and property from volcanoes in the state is great enough to be of concern, according to a recent U.S. Geological Survey (USGS) publication. The 17-page bulletin, Potential Hazards from Future Volcanic Eruptions in California, gives a brief history of volcanic activity in California during the past 100,000 years, descriptions of the types of volcanoes in the state, the types of potentially hazardous volcanic events that could occur, and hazard-zonation maps and tables depicting six areas of the state where volcanic eruptions might occur. The six areas and brief descriptions of their past volcanic history and potential for future volcanic hazards are briefly summarized here.

  17. Battery venting system and method

    DOEpatents

    Casale, Thomas J.; Ching, Larry K. W.; Baer, Jose T.; Swan, David H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  18. Battery venting system and method

    DOEpatents

    Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

    1999-01-05

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

  19. Battery Vent Mechanism And Method

    DOEpatents

    Ching, Larry K. W.

    2000-02-15

    Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

  20. Impact of atmospheric water vapor on the thermal infrared remote sensing of volcanic sufur dioxide emmisions: A case study from Pu'u 'O'o vent of Kilauea volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Realmuto, V. J.; Worden, H. M.

    2000-01-01

    The December 18, 1999, launch of NASA's Terra satellite put two multispectral thermal infrared imaging instruments into Earth orbit. Experiments with airborne instruments have demonstrated that the data from such instruments can be used to detect volcanic SO2 plumes and clouds.

  1. Effects of Hemagglutination Activity in the Serum of a Deep-Sea Vent Endemic Crab, Shinkaia Crosnieri, on Non-Symbiotic and Symbiotic Bacteria.

    PubMed

    Fujiyoshi, So; Tateno, Hiroaki; Watsuji, Tomoo; Yamaguchi, Hideyuki; Fukushima, Daisuke; Mino, Sayaka; Sugimura, Makoto; Sawabe, Tomoo; Takai, Ken; Sawayama, Shigeki; Nakagawa, Satoshi

    2015-01-01

    In deep-sea hydrothermal environments, most invertebrates associate with dense populations of symbiotic microorganisms in order to obtain nutrition. The molecular interactions between deep-sea animals and environmental microbes, including their symbionts, have not yet been elucidated in detail. Hemagglutinins/lectins, which are carbohydrate-binding proteins, have recently been reported to play important roles in a wide array of biological processes, including the recognition and control of non-self materials. We herein assessed hemagglutination activity in the serum of a deep-sea vent endemic crab, Shinkaia crosnieri, which harbors chemosynthetic epibionts on its plumose setae. Horse and rabbit erythrocytes were agglutinated using this serum (opt. pH 7.5 and opt. temperature 15°C). Agglutinating activity was inhibited by eight kinds of sugars and several divalent cations, did not require any divalent metal ions, and remained detectable even after heating the serum at 100°C for 30 min. By using fluorescently labeled serum, we demonstrated that deep-sea crab serum components bound to the epibionts even in the presence of sugars. This study represents the first immunological assessment of a deep-sea vent endemic crab and demonstrated the possibility of a non-lectin-mediated symbiont-host interaction. PMID:26212518

  2. Effects of Hemagglutination Activity in the Serum of a Deep-Sea Vent Endemic Crab, Shinkaia Crosnieri, on Non-Symbiotic and Symbiotic Bacteria

    PubMed Central

    Fujiyoshi, So; Tateno, Hiroaki; Watsuji, Tomoo; Yamaguchi, Hideyuki; Fukushima, Daisuke; Mino, Sayaka; Sugimura, Makoto; Sawabe, Tomoo; Takai, Ken; Sawayama, Shigeki; Nakagawa, Satoshi

    2015-01-01

    In deep-sea hydrothermal environments, most invertebrates associate with dense populations of symbiotic microorganisms in order to obtain nutrition. The molecular interactions between deep-sea animals and environmental microbes, including their symbionts, have not yet been elucidated in detail. Hemagglutinins/lectins, which are carbohydrate-binding proteins, have recently been reported to play important roles in a wide array of biological processes, including the recognition and control of non-self materials. We herein assessed hemagglutination activity in the serum of a deep-sea vent endemic crab, Shinkaia crosnieri, which harbors chemosynthetic epibionts on its plumose setae. Horse and rabbit erythrocytes were agglutinated using this serum (opt. pH 7.5 and opt. temperature 15°C). Agglutinating activity was inhibited by eight kinds of sugars and several divalent cations, did not require any divalent metal ions, and remained detectable even after heating the serum at 100°C for 30 min. By using fluorescently labeled serum, we demonstrated that deep-sea crab serum components bound to the epibionts even in the presence of sugars. This study represents the first immunological assessment of a deep-sea vent endemic crab and demonstrated the possibility of a non-lectin-mediated symbiont-host interaction. PMID:26212518

  3. Using Spatial Density to Characterize Volcanic Fields on Mars

    NASA Astrophysics Data System (ADS)

    Richardson, J. A.; Bleacher, J. E.; Connor, C. B.; Connor, L. J.

    2012-03-01

    Kernel density estimation is presented as a new, non-parametric method for quantifying the spatial arrangement of volcanic fields. It is applied to two vent fields in Tharsis Province, Mars, to produce insightful spatial density functions.

  4. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.

    PubMed

    Perner, M; Hansen, M; Seifert, R; Strauss, H; Koschinsky, A; Petersen, S

    2013-07-01

    Hydrothermal fluids passing through basaltic rocks along mid-ocean ridges are known to be enriched in sulfide, while those circulating through ultramafic mantle rocks are typically elevated in hydrogen. Therefore, it has been estimated that the maximum energy in basalt-hosted systems is available through sulfide oxidation and in ultramafic-hosted systems through hydrogen oxidation. Furthermore, thermodynamic models suggest that the greatest biomass potential arises from sulfide oxidation in basalt-hosted and from hydrogen oxidation in ultramafic-hosted systems. We tested these predictions by measuring biological sulfide and hydrogen removal and subsequent autotrophic CO2 fixation in chemically distinct hydrothermal fluids from basalt-hosted and ultramafic-hosted vents. We found a large potential of microbial hydrogen oxidation in naturally hydrogen-rich (ultramafic-hosted) but also in naturally hydrogen-poor (basalt-hosted) hydrothermal fluids. Moreover, hydrogen oxidation-based primary production proved to be highly attractive under our incubation conditions regardless whether hydrothermal fluids from ultramafic-hosted or basalt-hosted sites were used. Site-specific hydrogen and sulfide availability alone did not appear to determine whether hydrogen or sulfide oxidation provides the energy for primary production by the free-living microbes in the tested hydrothermal fluids. This suggests that more complex features (e.g., a combination of oxygen, temperature, biological interactions) may play a role for determining which energy source is preferably used in chemically distinct hydrothermal vent biotopes. PMID:23647923

  5. Possible Recent Volcanic Activity on the East Pacific Rise at 9° 32'N

    NASA Astrophysics Data System (ADS)

    Kurokawa, T.; Edwards, M. H.; Johnson, P.; Fornari, D. J.; Perfit, M.; Schouten, H.; Tivey, M. A.

    2002-12-01

    In 2001, the DSL-120A near-bottom mapping system was used to survey a 31.4 km by 6.8 km corridor of the East Pacific Rise crest between 9° 25'N and 9° 57'N. The mapping system included a 120 kHz sidescan and interferometric bathymetry sonar that was used to produce 2 meter-resolution sidescan images of the corridor. The sidescan data depict three scarps located approximately 3 km west of the ridge axis that are interpreted to have been volcanically overprinted between 9° 31'N and 9° 32'N on the basis of sharply lineated features that are interrupted along-strike. In transcripts, video, and 35 mm film footage of the same region collected during Alvin Dive 2490 in 1992, these same scarps are documented as two inward-facing and one outward-facing vertical walls that are 17-18 m high. Co-registration of the DSL-120A and Alvin 2490 datasets shows a strong correlation between other features that are depicted in both the acoustic and photographic data, but the appearance of the scarps changes markedly between 1992 and 2001. In the DSL-120A sidescan data, amorphous-shaped regions of relatively high backscatter characterize the area where the scarps are thought to be volcanically overprinted. In some cases, these reflective patches appear to pond at the base of faults or to spill over the faults. To verify whether the morphology changes between 1992 and 2001 reflect recent volcanic activity on the flank of the ridge axis, we have located SeaMARC-II data for the same region collected in 1987. A cursory examination of the much lower-resolution SeaMARC-II sidescan images vaguely shows the presence of similarly-shaped reflective scarps in the approximate location of the new flow. We are presently reprocessing the SeaMARC-II data to improve the data resolution, making a map from the DSL-120A bathymetry data, and searching for additional datasets that may confirm the existence of a new off-axis flow. The results of our efforts will be reported in December.

  6. Characterising volcanic activity of Piton de la Fournaise volcano by the spatial distribution of seismic velocity changes

    NASA Astrophysics Data System (ADS)

    Sens-Schoenfelder, C.; Pomponi, E.

    2013-12-01

    We apply Passive Image Interferometry to investigate the seismic noise recorded from October 2009 until December 2011 by 21 stations of the IPGP/OVPF seismic network installed on Piton de la Fournaise volcano within the UnderVolc project. The analyzed period contains three eruptions in 2009 and January 2010, two eruptions plus one dyke intrusion in late 2010, and a seismic crises in 2011. Seismic noise of vertical and horizontal components is cross-correlated to measure velocity changes as apparent stretching of the coda. For some station pairs the apparent velocity changes exceed 1% and a decorrelation of waveforms is observed at the time of volcanic activity. This distorts monitoring results if changes are measured with respect to a global reference. To overcome this we present a method to estimate changes using multiple references that stabilizes the quality of estimated velocity changes. We observe abrupt changes that occur coincident with volcanic events as well as long term transient signals. Using a simple assumption about the spatial sensitivity of our measurements we can map the spatial distribution of velocity changes for selected periods. Comparing these signals with volcanic activity and GPS derived surface deformation we can identify patterns of the velocity changes that appear characteristic for the type of volcanic activity. We can differentiate intrusive processes associated with inflation and increased seismic activity, periods of relaxation without seismicity and eruptions solely based on the velocity signal. This information can help to assess the processes acting in the volcano.

  7. Tectonic Controls on Pyroclastic Volcanism on Mercury

    NASA Astrophysics Data System (ADS)

    Habermann, M.; Klimczak, C.

    2015-12-01

    Over much of Mercury's geologic history the planet has contracted as a response to cooling of its interior. Such contraction is evident as landforms formed by thrust faults, which have accommodated a radius decrease of ~5 km. Stresses from global contraction imposed on the lithosphere are not favorable for and prevent volcanism. Yet, there are examples on Mercury where pyroclastic deposits superpose thrust faults, indicating that explosive volcanism has occurred after the onset of global contraction. To better understand the spatial relationships of thrust faults with the pyroclastic vents, we used MESSENGER image data to categorize 343 vents by their occurrence either (1) within 30 km, (2) within 100 km, or (3) farther than 100 km from a thrust fault, using ArcGIS. Vents were also classified by their association with impact craters. Results show that 75% of all vents are located within impact structures, with 36% of vents within 30 km of thrust faults, 41% located farther than 30 but within 100 km of thrust faults, and 23% of vents are farther than 100 km from a thrust fault. To investigate whether this geospatial relationship is tectonically controlled, three areas —representing the three categories of vents— were mapped, and the locations and orientations of vents and faults were recorded. Stress changes around these faults were then numerically modeled with the COULOMB 3.4 software, using elastic rock properties, a background stress field, and fault size- and dislocation parameters applicable to conditions of Mercury's global contractional tectonic environment. Preliminary results indicate that stress changes can locally produce conditions beneficial for volcanism. Further modeling will determine if such beneficial conditions are geospatially correlated with the pyroclastic vents and thus enable a better understanding of pyroclastic volcanism on Mercury after the onset of global contraction.

  8. Unraveling the lipolytic activity of thermophilic bacteria isolated from a volcanic environment.

    PubMed

    Stathopoulou, Panagiota M; Savvides, Alexander L; Karagouni, Amalia D; Hatzinikolaou, Dimitris G

    2013-01-01

    In a bioprospecting effort towards novel thermostable lipases, we assessed the lipolytic profile of 101 bacterial strains isolated from the volcanic area of Santorini, Aegean Sea, Greece. Screening of lipase activity was performed both in agar plates and liquid cultures using olive oil as carbon source. Significant differences were observed between the two screening methods with no clear correlation between them. While the percentage of lipase producing strains identified in agar plates was only 17%, lipolytic activity in liquid culture supernatants was detected for 74% of them. Nine strains exhibiting elevated extracellular lipase activities were selected for lipase production and biochemical characterization. The majority of lipase producers revealed high phylogenetic similarity with Geobacillus species and related genera, whilst one of them was identified as Aneurinibacillus sp. Lipase biosynthesis strongly depended on the carbon source that supplemented the culture medium. Olive oil induced lipase production in all strains, but maximum enzyme yields for some of the strains were also obtained with Tween-80, mineral oil, and glycerol. Partially purified lipases revealed optimal activity at 70-80°C and pH 8-9. Extensive thermal stability studies revealed marked thermostability for the majority of the lipases as well as a two-step thermal deactivation pattern. PMID:23738330

  9. Autonomous Sensorweb Operations for Integrated Space, In-Situ Monitoring of Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Doubleday, Joshua; Kedar, Sharon; Davies, Ashley G.; Lahusen, Richard; Song, Wenzhan; Shirazi, Behrooz; Mandl, Daniel; Frye, Stuart

    2010-01-01

    We have deployed and demonstrated operations of an integrated space in-situ sensorweb for monitoring volcanic activity. This sensorweb includes a network of ground sensors deployed to the Mount Saint Helens volcano as well as the Earth Observing One spacecraft. The ground operations and space operations are interlinked in that ground-based intelligent event detections can cause the space segment to acquire additional data via observation requests and space-based data acquisitions (thermal imagery) can trigger reconfigurations of the ground network to allocate increased bandwidth to areas of the network best situated to observe the activity. The space-based operations are enabled by an automated mission planning and tasking capability which utilizes several Opengeospatial Consortium (OGC) Sensorweb Enablement (SWE) standards which enable acquiring data, alerts, and tasking using web services. The ground-based segment also supports similar protocols to enable seamless tasking and data delivery. The space-based segment also supports onboard development of data products (thermal summary images indicating areas of activity, quicklook context images, and thermal activity alerts). These onboard developed products have reduced data volume (compared to the complete images) which enables them to be transmitted to the ground more rapidly in engineering channels.

  10. Two Vent Fields Discovered at the Ultraslow Spreading Arctic Ridge System

    NASA Astrophysics Data System (ADS)

    Pedersen, R. B.; Thorseth, I. H.; Hellevang, B.; Schultz, A.; Taylor, P.; Knudsen, H. P.; Steinsbu, B. O.

    2005-12-01

    Two high-temperature vent fields were discovered at the Mohns Ridge during an expedition with the Norwegian research vessel "G.O. Sars" in July 2005. Both vent fields are located within the southernmost segment of the Mohns Ridge approximately 50 km north of the West Jan Mayen Fracture Zone. Water depths along this segment range from 3800 meters close to the fracture zone to ~500 meters at the segment centre where the vent fields are located. The largest field - named "Gallionella Garden" - is situated within a rift graben where high- and low-temperature venting occurs along ridge-parallel normal faults and fissures. Presently we have documented high- and low-temperature venting along more then 2 km of the fault and fissure system in the area. The high-temperature venting takes place at around 550 mbsl at the base of a 100 meter high fault wall and was traced ~500 meters along strike. The field consists of at least 10 major vent sites, each composed of multiple chimneys that are up to 5-10 meters tall. There are also large areas of diffuse flow. The temperature of the vent fluids was measured to be above 260°C at a chimney orifice. This is at the boiling point of seawater at these water depths, and gas bubbling was observed at several of the vent sites. A sample of the top of a chimney consists of anhydrite, barite, sphalerite and pyrite. Outside the high-temperature vent area mounds of ferric iron are abundant. Such deposits have presently been traced along ~2 km of the faults and fissure system in the area. The deposits are predominantly made up of branching and twisted stalks comparable to those formed by the iron oxidizing bacteria Gallionella ferruginea showing that the precipitation is mediated by microbial activity. The temperatures below the upper crust of a mound were measured to be one degree above the ambient water temperature. The Fe-oxyhydroxides show Nd-isotope compositions similar to the basaltic crust and Sr-isotope compositions close to that of

  11. Sacks-Evertson Borehole Strainmeters: New Designs, Volcanic Activity and Slow Earthquakes

    NASA Astrophysics Data System (ADS)

    Linde, A. T.; Sacks, S.

    2008-12-01

    The quality of borehole strain data depends on a variety of factors, perhaps the most important being the character of rock in the immediate vicinity of the instrument. In tectonically active areas it is often difficult to find sites that provide suitable geometry for studying the activity and also have strong competent rock with few or no fractures. We have tested new designs, for both dilatometers and 3 component Sacks-Evertson hydraulic strainmeters, and have found that, in sites we would previously have rejected because of rock quality, we now obtain reliable data. The approach depends on two factors: the sensing components of the instruments have always been ~3m in length so that they integrate over that vertical interval of rock and additionally we can now have a weak inclusion so that we minimize the mechanical impedance contrast between rock and cement plus instrument. Our current three component design is radically different from the modified Sakata-type used previously. Numerical modeling of the design shows that the response to strain change is essentially perfect; compared with earlier designs this gives better shear response and avoids strain concentrations in the rock wall. This design also provides good data from a site with very low rock quality. Data recorded in Taiwan from the 'weak' single component system have been critically important in allowing us to identify and model slow earthquakes triggered by typhoons. During a 5 year interval we have observed 20 slow earthquakes (durations of hours to days), 11 of which are coincident with typhoons (30 during that time span). This part of Taiwan (south east) experiences extremely high deformation rates but has a paucity of large earthquakes. Our data and modeling indicate that the stressed region is segmented by slow relief of stress, reducing the likelihood of seismic failure over extended fault lengths. Borehole strain recordings of volcanic activity in Montserrat and in Iceland have been critical in

  12. Microbial colonization of post eruptive vents on the EPR at 9N

    NASA Astrophysics Data System (ADS)

    Vetriani, C.

    2008-12-01

    The overarching goal of this project is to understand the role of microbial colonists at newly formed vents as "mediators" in the transfer of energy from the geothermal source to the higher trophic levels, and their role in altering fluid chemistry and in "conditioning" the vent environment for metazoans to settle. Following the 2005-06 volcanic eruption along the East Pacific Rise (EPR) ridge crest between 9°N and 9°N, we had several opportunities to investigate the microbial colonization of the post-eruptive vents: in 2006 (about six months after the eruption), in January 2007 (one year after the eruption), and in December 2007/January 2008 (two years after the eruption). In order to investigate microbial colonization, we designed and deployed several experimental microbial colonizers on active diffuse flow vents characterized by different temperatures (approximate range 20-60°C) chemical (different redox conditions), and biological (e.g., presence or absence of metazoan colonists) regimes. Analyses of the 16S rRNA and fuctional gene transcripts from the colonizing communities indicated that Epsilonproteobacteria represented the dominant and active fraction of the chemosynthetic early microbial colonists, and that they expressed in-situ the genes involved in carbon dioxide fixation and nitrate respiration. However, data from our semi quantitative culture experiments indicated that Epsilonproteobacteria were not the only microorganisms that attached to basalts or to the experimental colonizers during the early phases of colonization. Sulfur dependent, chemosynthetic members of the Gamma- and Alphaproteobacteria were isolated from up to 10-5 dilutions of original samples along with heterotrophic Gammaproteobacteria capable of growth on n-alkanes as their sole carbon source. We propose a model that links the chemistry of hydrothermal fluids to the colonization of newly formed vents and suggests a role for chemosynthetic and heterotrophic bacteria in the

  13. 24 CFR 3280.611 - Vents and venting.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... vent pipe or equivalent directly connected to the toilet drain within the distance allowed in § 3280... any other vent pipe. Vents for horizontal drains shall connect above the centerline of the drain... this section and as otherwise required by this standard. (b) Materials—(1) Pipe. Vent piping shall...

  14. 24 CFR 3280.611 - Vents and venting.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... for all changes in direction or size and where pipes are joined. The material and design of vent...) Size of vent piping—(1) Main vent. The drain piping for each toilet shall be vented by a 11/2 inch... toilet drain within the distance allowed in § 3280.611(c)(5), for 3-inch trap arms undiminished in...

  15. Ecology of deep-sea hydrothermal vent communities: A review

    SciTech Connect

    Lutz, R.A.; Kennish, M.J. )

    1993-08-01

    The present article reviews studies of the past 15 years of active and inactive hydrothermal vents. The focus of the discussion is on the ecology of the biological communities inhabiting hydrothermal vents. These communities exhibit high densities and biomass, low species diversity, rapid growth rates, and high metabolic rates. The authors attempt to relate the biology of hydrothermal vent systems to geology. Future directions for hydrothermal vent research are suggested. Since many vent populations are dependent on hydrothermal fluids and are consequently unstable, both short- and long-term aspects of the ecology of the vent organisms and the influence of chemical and geological factors on the biology of vent systems need to be established. 200 refs., 28 figs.

  16. Unspiked K-Ar Dating Of Hawaiian Rejuvenated Volcanism

    NASA Astrophysics Data System (ADS)

    Tagami, T.; Ozawa, A.; Sano, H.; Sherrod, D. R.

    2005-12-01

    Many mantle plume volcanoes undergo rejuvenated volcanism after a period of construction and erosion of their shield. The cause of this renewed volcanism has been enigmatic, and various models have been proposed. However, the lack of chronological data has hindered evaluating these models. Here we summarize below our recent results of unspiked K-Ar dating on rejuvenated lavas from five Hawaiian volcanoes. These ages, coupled with other geological and geophysical constraints, will be used to test the models. (1) Haleakala (East Maui) (Sherrod et al., 2003): The postshield and previously inferred rejuvenated-stage history was reevaluated using 52 new ages. Periods of low extrusion rates or volcanic quiescence occurred at ~0.76 - 0.65 Ma and ~0.45 - 0.29 Ma, both within the postshield Kula unit. The volcanic quiescence between postshield and supposed rejuvenated-stage units is about 0.03 m.y., much shorter than the previously estimated period of 0.25 - 0.30 m.y. (2) West Maui (Tagami et al., 2003; Sherrod et al., in prep.): Rejuvenated-stage Lahaina Volcanics were erupted from only four sites and their new ages indicate two volcanic pulses at about 0.6 and 0.4 Ma. Nine ages for the underlying postshield and 28 for shield stage units range from 1.8 - 1.3 Ma and 1.3 - 1.2 Ma, respectively. Therefore, the duration of volcanic quiescence prior to rejuvenation is about 0.6 m.y. at West Maui, much longer than estimated previously. (3) Koolau, Oahu (Ozawa et al., 2005): New ages on 41 samples from 32 vents of rejuvenated-stage Honolulu Volcanics and on eight samples of underlying shield-stage Koolau Volcanics show that shield volcanism ended at 2.1 Ma and that rejuvenated volcanism started at 0.8 Ma, resulting in a 1.3 m.y. hiatus in volcanic activity. Two distinct pulses were found for Honolulu volcanism at 0.8 - 0.35 and ~0.1 Ma. During the first pulse, the eruption frequency increased with time and there was no obvious spatial pattern in vent distribution. Volcanism

  17. When do Volcanic Eruptions make Lightning? Observations from Sakurajima, Japan

    NASA Astrophysics Data System (ADS)

    Behnke, S. A.; McNutt, S. R.; Thomas, R. J.; Smith, C. M.; Edens, H. E.; Van Eaton, A. R.; Cimarelli, C.; Cigala, V.; Michel, C. W.; Miki, D.; Iguchi, M.

    2015-12-01

    Previous radio frequency (RF) observations of volcanic lightning have revealed that electrical activity frequently occurs concurrent with the onset of an explosive volcanic event. Typically, a myriad of electrical impulses originating from directly above the vent are observed first and the ensemble has durations of several seconds. The impulses are distinct from those produced by typical types of thunderstorm lightning, and have earned the moniker "continuous RF" due to their high rate and long-lasting nature . Several seconds after the onset of these impulses, small (100s of meters to several kilometers) lightning discharges occur in the plume and near the vent, and have electrical signatures similar to typical thunderstorm lightning. In eruptions with plume heights reaching 8-10 km or more, large scale (10s of kilometers) lightning discharges are observed throughout the plume several minutes after the onset of an explosive event.In May 2015, a campaign began to study the various types of small-scale electrical activity, including continuous RF, during explosive eruptions of Sakurajima volcano in Kyushu, Japan. The volcano was instrumented with two seismometers, two infrasound arrays, a high sensitivity video camera, an infrared camera, two high speed video cameras, still cameras, a 10-station Lightning Mapping Array, slow and fast electric field change sensors, and a broadband very high frequency (VHF) antenna. With these instruments, a robust data set of both the volcanic activity and electrical activity was collected. The preliminary data have revealed brief (1-2 seconds) bursts of continuous RF simultaneous with the onset of the more energetic explosions. Occurrence of continuous RF may be linked to mass eruption rate, explosivity, or grain size. Due to its unique nature, detection of continuous RF is an unambiguous indicator of explosive volcanic activity and is therefore useful for real-time volcano monitoring.

  18. Prolonged eruptive history of a compound volcano on Mercury: Volcanic and tectonic implications

    NASA Astrophysics Data System (ADS)

    Rothery, David A.; Thomas, Rebecca J.; Kerber, Laura

    2014-01-01

    A 27×13 km ‘rimless depression’ 100 km inside the southwest rim of the Caloris basin is revealed by high resolution orbital imaging under a variety of illuminations to consist of at least nine overlapping volcanic vents, each individually up to 8 km in diameter. It is thus a ‘compound’ volcano, indicative of localised migration of the site of the active vent. The vent floors are at a least 1 km below their brinks, but lack the flat shape characteristically produced by piston-like subsidence of a caldera floor or by flooding of a crater bottom by a lava lake. They bear a closer resemblance to volcanic craters sculpted by explosive eruptions and/or modified by collapse into void spaces created by magma withdrawal back down into a conduit. This complex of overlapping vents is at the summit of a subtle edifice at least 100 km across, with flank slopes of about only 0.2 degrees, after correction for the regional slope. This is consistent with previous interpretation as a locus of pyroclastic eruptions. Construction of the edifice could have been contributed to by effusion of very low viscosity lava, but high resolution images show that the vent-facing rim of a nearby impact crater is not heavily embayed as previously supposed on the basis of lower resolution flyby imaging. Contrasts in morphology (sharpness versus blurredness of the texture) and different densities of superposed sub-km impact craters inside each vent are consistent with (but do not prove) substantial differences in the age of the most recent activity at each vent. This suggests a long duration of episodic magmagenesis at a restricted locus. The age range cannot be quantified, but could be of the order of a billion years. If each vent was fed from the same point source, geometric considerations suggest a source depth of at least 50 km. However, the migration of the active vent may be partly controlled by a deep-seated fault that is radial to the Caloris basin. Other rimless depressions in this

  19. Prolonged eruptive history of a compound volcano on Mercury: volcanic and tectonic implications

    NASA Astrophysics Data System (ADS)

    Rothery, D. A.; . T. Thomas, R.; Kerber, L.

    2013-09-01

    High resolution orbital imaging by MESSENGER under a variety of illuminations reveals that a 27 × 13 km rimless depression 100 km inside the southwest rim of the Caloris basin consists of at least nine overlapping volcanic vents, each individually up to 8 km in diameter. This is thus a 'compound' volcano, indicative of localised migration of the site of the active vent. The vent floors are at a least 1 km below their brinks, but lack the flat shape that is characteristically produced by piston-like subsidence of a caldera floor or by flooding of a crater bottom by a lava lake. They bear a closer resemblance to volcanic craters sculpted by explosive eruptions and/or modified by collapse into void spaces created by magma withdrawal back down into a conduit. This complex of overlapping vents is at the summit of a subtle edifice at least 100 km across, with flank slopes of about 0.2 degrees, after correction for the regional slope. This is consistent with previous interpretation as a locus of pyroclastic eruptions. Construction of the edifice could have been contributed to by effusion of very low viscosity lava, but high resolution images show that the vent-facing rim of a nearby impact crater is not heavily embayed as previously supposed. Contrasts in morphology (sharpness versus blurredness of the texture) and different densities of superposed sub-km impact craters inside each vent suggest significant differences in the age of the most recent activity at each vent. This implies a long duration of episodic magmagenesis at a restricted locus. The age range is hard to quantify, but could be of the order of a billion years. If each vent was fed from the same source, geometric considerations suggest a source depth of at least 50 km. The migration of the active vent may be partly controlled by a deep-seated fault that is radial to the Caloris basin. Other rimless depressions in this part of the Caloris basin fall on or close to radial lines, suggesting that elements of

  20. The NeMO Explorer Web Site: Interactive Exploration of a Recent Submarine Eruption and Hydrothermal Vents, Axial Volcano, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Chadwick, W. W.; Embley, R. W.

    2001-12-01

    To help visualize the submarine volcanic landscape at NOAA's New Millennium Observatory (NeMO), we have created the NeMO Explorer web site: http://www.pmel.noaa.gov/vents/nemo/explorer.html. This web site takes visitors a mile down beneath the ocean surface to explore Axial Seamount, an active submarine volcano 300 miles off the Oregon coast. We use virtual reality to put visitors in a photorealistic 3-D model of the seafloor that lets them view hydrothermal vents and fresh lava flows as if they were really on the seafloor. At each of six virtual sites there is an animated tour and a 360o panorama in which users can view the volcanic landscape and see biological communities within a spatially accurate context. From the six sites there are hyperlinks to 50 video clips taken by a remotely operated vehicle. Each virtual site concentrates on a different topic, including the dynamics of the 1998 eruption at Axial volcano (Rumbleometer), high-temperature hydrothermal vents (CASM and ASHES), diffuse hydrothermal venting (Marker33), subsurface microbial blooms (The Pit), and the boundary between old and new lavas (Castle vent). In addition to exploring the region geographically, visitors can also explore the web site via geological concepts. The concepts gallery lets you quickly find information about mid-ocean ridges, hydrothermal vents, vent fauna, lava morphology, and more. Of particular interest is an animation of the January 1998 eruption, which shows the rapid inflation (by over 3 m) and draining of the sheet flow. For more info see Fox et al., Nature, v.412, p.727, 2001. This project was funded by NOAA's High Performance Computing and Communication (HPCC) and Vents Programs. Our goal is to present a representative portion of the vast collection of NOAA's multimedia imagery to the public in a way that is easy to use and understand. These data are particularly challenging to present because of their high data rates and low contextual information. The 3-D models create

  1. Vigorous venting and biology at Pito Seamount, Easter microplate

    NASA Astrophysics Data System (ADS)

    Naar, D. F.; Hekinian, R.; Segonzac, M.; Francheteau, J.; Armijo, R.; Cogne, J.-P.; Constantin, M.; Girardeau, J.; Hey, R. N.; Searle, R. C.

    A Nautile submersible investigation of Pito Seamount documents vigorous hydrothermal venting at 23°19.65'S, 111°38.41'W and at a depth of 2270 m. The data indicate the volcano is young and recently active, as predicted from analyses of SeaMARC II side-scan and swath bathymetry, and geophysical data. Pito Seamount lies near Pito Deep (5980 m), which marks the tip of the northwestward propagating East rift of the Easter microplate. Bathymetry surrounding Pito Seamount consists of a series of ridges and valleys with relief up to ˜4 km. The 4-km submersible-transect to the summit of Pito Seamount crossed areas of very glassy basalt with little or no sediment cover, suggesting the lava flows are very young. Most of the lava samples from Pito Seamount are depleted normal MORB (mid-ocean ridge basalt). Lava samples associated with active and dead hydrothermal vents consist of phyric and aphyric transitional and enriched MORB. Sulfides consist primarily of sphalerite and pyrite, with traces of chalcopyrite. The active hydrothermal chimney on Pito Seamount has a small, undiversified biological community similar to northern East Pacific Rise vent sites (alvinellid worms, bythograeid crabs and bythitid fishes) and western Pacific back-arc basin sites (alvinocaridid shrimps). No vestimentiferan worms were observed. Previous geophysical data, and new geochemical data and visual observations, suggest that the vigorous black smoker is a result of deep, extensive crosscutting faults formed by extensive tectonic thinning of Pito Deep, and a very robust magmatic supply being supplied from upwelling asthenosphere. Although no biological or vent fluid samples were obtained, geological and biological observations, such as the large number of inactive chimneys, old hydrothermal deposits, and starfish, as well as the occurrence of dead mollusks (gastropod and mussels), suggest a recent waning of hydrothermal activity near the summit. The speculative interpretation that Pito Seamount

  2. The Implications of Flank Vents on Olympus Mons

    NASA Astrophysics Data System (ADS)

    Peters, S.; Christensen, P. R.

    2014-12-01

    Flank vents are a common feature on polygenetic volcanoes. They indicate that magma has propagated away from the main conduit and/or magma chamber. Flank vents and flank eruptions have been documented and studied on a number of terrestrial volcanoes and to a lesser degree on Mars. The distribution of volcanic vents about a central caldera can provide information on radial dikes and tectonic stresses acting on the volcano, and can constrain models involving the emplacement and flexure of the edifice (e.g. Nakamura, 1976; McGovern and Solomon, 1993). In the absence of spectral data (due to optically thick dust cover) and in situ observations, morphology is a powerful tool for ascertaining the eruptive and tectonic history of Olympus Mons. Approximately 190 high-resolution CTX (Context Camera) images covering Olympus Mons have been mosaicked together. The analysis of a CTX mosaic reveals Mars's largest shield volcano in stunning detail and allows for a thorough analysis of the targeted features. Preliminary results show numerous flank vents some of which produce leveed channels on the slopes of Olympus Mons. Some vents display varying morphologies, suggesting that the style of volcanism has evolved over time. Flank vents are observed to occur over a range of elevations, although a paucity of vents is observed on the lower flank. Analyses are ongoing and include mapping the spatial and elevation distribution of flank vents on the shield. Once mapped, the distribution of flank vents will define the orientation of tectonic stresses acting on Olympus Mons and help determine whether they are influenced by underlying topography, regional scale processes or a combination of both. In addition, these vents act as a window into the subsurface which can help characterize dike emplacement within the shield. Furthermore, the morphology of flank vents will provide information on the evolution of their eruptive styles. All of this information is crucial to help understand the

  3. Examination of frit vent from Sixty-Watt Heat Source simulant fueled clad vent set

    SciTech Connect

    Ulrich, G.B.

    1995-11-01

    The flow rate and the metallurgical condition of a frit vent from a simulant-fueled clad vent set (CVS) that had been hot isostatically pressed (HIP) for the Sixty-Watt Heat Source program were evaluated. The flow rate form the defueled vent cup subassembly was reduced approximately 25% from the original flow rate. No obstructions were found to account for the reduced flow rate. Measurements indicate that the frit vent powder thickness was reduced about 30%. Most likely, the powder was compressed during the HIP operation, which increased the density of the powder layer and thus reduced the flow rate of the assembly. All other observed manufacturing attributes appeared to be normal, but the vent hole activation technique needs further refinement before it is used in applications requiring maximum CVS integrity.

  4. Recent Fluvial, Volcanic, and Tectonic Activity on the Cerberus Plains of Mars

    NASA Astrophysics Data System (ADS)

    Berman, Daniel C.; Hartmann, William K.

    2002-09-01

    Athabasca and Marte Valles lie on the Cerberus plains, between the young, lava-covered plains of Elysium Planitia and Amazonis Planitia. To test pre- MGS ( Mars Global Surveyor) suggestions of extremely young volcanic and fluvial activity, we present the first crater counts from MGS imagery, at resolutions (˜2-20 m/pixel) much higher than previously available. The most striking result, based on morphologic relations as well as crater counts from different stratigraphic units, is to confirm quantitatively that these channel systems are much younger than most other major outflow channels. The general region has an average model age for lava and fluvial surfaces of ≤200 Myr, and has possibly seen localized water releases, interspersed with lava flows, within the past 20 Myr. The youngest lavas may be no more than a few megayears old. Access of lava and liquid brines to the surface may be favored by openings of the Cerberus Fossae fracture system, but, as shown in the new images, the fractures appear to have continued developing more recently than the most recent lavas or fluvial activity. The Cerberus Fossae system may be an analog to an early stage of Valles Marineris, and its youthful activity raises questions about regional tectonic history. Large-volume water delivery to the surface of young lava flows in recent martian history puts significant boundary conditions on the storage and history of water on Mars.

  5. Results from NICLAKES Survey of Active Faulting Beneath Lake Managua,Central American Volcanic arc

    NASA Astrophysics Data System (ADS)

    McIntosh, K.; Funk, J.; Mann, P.; Perez, P.; Strauch, W.

    2006-12-01

    Lake Managua covers an area of 1,035 km2 of the Central American volcanic arc and is enclosed by three major stratovolcanoes: Momotombo to the northwest was last active in AD 1905, Apoyeque in the center on the Chiltepe Peninsula was last active ca. 4600 years BP, and Masaya to the southeast was last active in AD 2003. A much smaller volcano in the lake (Momotombito) is thought to have been active <4500 yrs B.P. In May of 2006, we used a chartered barge to collect 330 km of 3.5 kHz profiler data along with coincident 274 km of sidescan sonar and 27 km of seismic reflection data. These data identify three zones of faulting on the lake floor: 1) A zone of north-northeast-striking faults in the shallow (2.5-7.5 m deep) eastern part of the lake that extends from the capital city of Managua, which was severely damaged by shallow, left-lateral strike-slip displacements on two of these faults in 1931 (M 5.6) and 1972 (M 6.2): these faults exhibit a horst and graben character and include possible offsets on drowned river valleys 2) a semicircular rift zone that is 1 km wide and can be traced over a distance of 30 km in the central part of the lake; the rift structure defines the deepest parts of the lake ranging from 12 to 18 m deep and is concentric about the Apoyeque stratocone/Chiltepe Peninsula; and 3) a zone of fault scarps defining the northwestern lake shore that may correlate to the northwestern extension of the Mateare fault zone, a major scarp-forming fault that separates the Managua lowlands from the highlands south and west of the city. Following previous workers, we interpret the northeast- trending group of faults in the eastern part of the lake as part of a 15-km-long discontinuity where the trend of the volcanic arc is offset in a right-lateral sense. The semi-circular pattern of the rift zone that is centered on Chiltepe Peninsula appears to have formed as a distal effect of either magma intrusion or withdrawal from beneath this volcanic complex. The

  6. Terrestrial volcanism in space and time

    NASA Technical Reports Server (NTRS)

    Simkin, Tom

    1993-01-01

    A survey is presented of current volcanic activity around the world and of dated volcanism over the past 10,000 yrs. The patterns in the data are described. The hazard presented by volcanism is briefly examined.

  7. Methanotrophic activity and diversity of methanotrophs in volcanic geothermal soils at Pantelleria (Italy)

    NASA Astrophysics Data System (ADS)

    Gagliano, A. L.; D'Alessandro, W.; Tagliavia, M.; Parello, F.; Quatrini, P.

    2014-10-01

    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic or geothermal soils are not only a source of methane, but are also sites of methanotrophic activity. Methanotrophs are able to consume 10-40 Tg of CH4 a-1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria (Italy), Favara Grande, whose total methane emission was previously estimated at about 2.5 Mg a-1 (t a-1). Laboratory incubation experiments with three top-soil samples from Favara Grande indicated methane consumption values of up to 59.2 nmol g-1 soil d.w. h-1. One of the three sites, FAV2, where the highest oxidation rate was detected, was further analysed on a vertical soil profile, the maximum methane consumption was measured in the top-soil layer, and values greater than 6.23 nmol g-1 h-1 were still detected up to a depth of 13 cm. The highest consumption rate was measured at 37 °C, but a still detectable consumption at 80 °C (> 1.25 nmol g-1 h-1) was recorded. The soil total DNA extracted from the three samples was probed by Polymerase Chain Reaction (PCR) using standard proteobacterial primers and newly designed verrucomicrobial primers, targeting the unique methane monooxygenase gene pmoA; the presence of methanotrophs was detected at sites FAV2 and FAV3, but not at FAV1, where harsher chemical-physical conditions and negligible methane oxidation were detected. The pmoA gene libraries from the most active site (FAV2) pointed to a high diversity of gammaproteobacterial methanotrophs, distantly related to Methylocaldum-Metylococcus genera, and the presence of the newly discovered acido-thermophilic Verrucomicrobia methanotrophs. Alphaproteobacteria of the genus Methylocystis were isolated from enrichment cultures under a methane

  8. Methanotrophic activity and bacterial diversity in volcanic-geothermal soils at Pantelleria island (Italy)

    NASA Astrophysics Data System (ADS)

    Gagliano, A. L.; D'Alessandro, W.; Tagliavia, M.; Parello, F.; Quatrini, P.

    2014-04-01

    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic/geothermal soils are source of methane, but also sites of methanotrophic activity. Methanotrophs are able to consume 10-40 Tg of CH4 a-1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria island (Italy), Favara Grande, whose total methane emission was previously estimated in about 2.5 t a-1. Laboratory incubation experiments with three top-soil samples from Favara Grande indicated methane consumption values up to 950 ng g-1 dry soil h-1. One of the three sites, FAV2, where the highest oxidation rate was detected, was further analysed on a vertical soil profile and the maximum methane consumption was measured in the top-soil layer but values > 100 ng g-1 h-1 were maintained up to a depth of 15 cm. The highest consumption rate was measured at 37 °C, but a still recognizable consumption at 80 °C (> 20 ng g-1 h-1) was recorded. In order to estimate the bacterial diversity, total soil DNA was extracted from Favara Grande and analysed using a Temporal Temperature Gradient gel Electrophoresis (TTGE) analysis of the amplified bacterial 16S rRNA gene. The three soil samples were probed by PCR using standard proteobacterial primers and newly designed verrucomicrobial primers targeting the unique methane monooxygenase gene pmoA; the presence of methanotrophs was detected in sites FAV2 and FAV3, but not in FAV1, where harsher chemical-physical conditions and negligible methane oxidation were detected. The pmoA gene libraries from the most active site FAV2 pointed out a high diversity of gammaproteobacterial methanotrophs distantly related to Methylococcus/Methylothermus genera and the presence of the newly discovered acido-thermophilic methanotrophs

  9. Volcanic Hazards Survey in the Trans Mexican Volcanic Belt

    NASA Technical Reports Server (NTRS)

    Abrams, Michael; Siebe, Claus; Macias, Jose Luis

    1996-01-01

    We have assembled a digital mosaic of 11 Landsat Thematic images to serve as a mapping base for reconnaissance activities within the Trans Mexican Volcanic Belt. This will aid us in interpretation and in the evaluation of potential activity of all the volcanic centers there. One result is a volcanic hazards map of the area.

  10. Soil gas radon and volcanic activity at El Hierro (Canary Islands) before and after the 2011-2012 submarine eruption

    NASA Astrophysics Data System (ADS)

    Barrancos, J.; Padilla, G.; Hernandez Perez, P. A.; Padron, E.; Perez, N.; Melian Rodriguez, G.; Nolasco, D.; Dionis, S.; Rodriguez, F.; Calvo, D.; Hernandez, I.

    2012-12-01

    El Hierro is the youngest and southernmost island of the Canarian archipelago and represents the summit of a volcanic shield elevating from the surrounding seafloor at depth of 4000 m to up to 1501 m above sea level. The island is believed to be near the present hotspot location in the Canaries with the oldest subaerial rocks dated at 1.12 Ma. The subaerial parts of the El Hierro rift zones (NE, NW and S Ridges) are characterized by tightly aligned dyke complexes with clusters of cinder cones as their surface expressions. Since July 16, 2011, an anomalous seismicity at El Hierro Island was recorded by IGN seismic network. Volcanic tremor started at 05:15 hours on October 10, followed on the afternoon of October 12 by a green discolouration of seawater, strong bubbling and degassing indicating the initial stage of submarine volcanic eruption at approximately 2 km off the coast of La Restinga, El Hierro. Soil gas 222Rn and 220Rn activities were continuously measured during the period of the recent volcanic unrest occurred at El Hierro, at two different geochemical stations, HIE02 and HIE03. Significant increases in soil 222Rn activity and 222Rn/220Rn ratio from the soil were observed at both stations prior the submarine eruption off the coast of El Hierro, showing the highest increases before the eruption onset and the occurrence of the strongest seismic event (M=4.6). A statistical analysis showed that the long-term trend of the filtered data corresponded closely to the seismic energy released during the volcanic unrest. The observed increases of 222Rn are related to the rock fracturing processes (seismic activity) and the magmatic CO2 outflow increase, as observed in HIE03 station. Under these results, we find that continuous soil radon studies are important for evaluating the volcanic activity of El Hierro and they demonstrate the potential of applying continuous monitoring of soil radon to improve and optimize the detection of early warning signals of future

  11. Acute health effects associated with exposure to volcanic air pollution (vog) from increased activity at Kilauea Volcano in 2008.

    PubMed

    Longo, Bernadette M; Yang, Wei; Green, Joshua B; Crosby, Frederick L; Crosby, Vickie L

    2010-01-01

    In 2008, the Kilauea Volcano on the island of Hawai'i increased eruption activity and emissions of sulfurous volcanic air pollution called vog. The purpose of this study was to promptly assess for a relative increase in cases of medically diagnosed acute illnesses in an exposed Hawaiian community. Using a within-clinic retrospective cohort design, comparisons were made for visits of acute illnesses during the 14 wk prior to the increased volcanic emissions (low exposure) to 14 wk of high vog exposure when ambient sulfur dioxide was threefold higher and averaged 75 parts per billion volume per day. Logistic regression analysis estimated effect measures between the low- and high-exposure cohorts for age, gender, race, and smoking status. There were statistically significant positive associations between high vog exposure and visits for medically diagnosed cough, headache, acute pharyngitis, and acute airway problems. More than a sixfold increase in odds was estimated for visits with acute airway problems, primarily experienced by young Pacific Islanders. These findings suggest that the elevated volcanic emissions in 2008 were associated with increased morbidity of acute illnesses in age and racial subgroups of the general Hawaiian population. Continued investigation is crucial to fully assess the health impact of this natural source of sulfurous air pollution. Culturally appropriate primary- and secondary-level health prevention initiatives are recommended for populations in Hawai'i and volcanically active areas worldwide. PMID:20818536

  12. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  13. Development of an automatic volcanic ash sampling apparatus for active volcanoes

    NASA Astrophysics Data System (ADS)

    Shimano, Taketo; Nishimura, Takeshi; Chiga, Nobuyuki; Shibasaki, Yoshinobu; Iguchi, Masato; Miki, Daisuke; Yokoo, Akihiko

    2013-12-01

    We develop an automatic system for the sampling of ash fall particles, to be used for continuous monitoring of magma ascent and eruptive dynamics at active volcanoes. The system consists of a sampling apparatus and cameras to monitor surface phenomena during eruptions. The Sampling Apparatus for Time Series Unmanned Monitoring of Ash (SATSUMA-I and SATSUMA-II) is less than 10 kg in weight and works automatically for more than a month with a 10-kg lead battery to obtain a total of 30 to 36 samples in one cycle of operation. The time range covered in one cycle varies from less than an hour to several months, depending on the aims of observation, allowing researchers to target minute-scale fluctuations in a single eruptive event, as well as daily to weekly trends in persistent volcanic activity. The latest version, SATSUMA-II, also enables control of sampling parameters remotely by e-mail commands. Durability of the apparatus is high: our prototypes worked for several months, in rainy and typhoon seasons, at windy and humid locations, and under strong sunlight. We have been successful in collecting ash samples emitted from Showa crater almost everyday for more than 4 years (2008-2012) at Sakurajima volcano in southwest Japan.

  14. Stress fields of the overriding plate at convergent margins and beneath active volcanic arcs.

    PubMed

    Apperson, K D

    1991-11-01

    Tectonic stress fields in the overriding plate at convergent plate margins are complex and vary on local to regional scales. Volcanic arcs are a common element of overriding plates. Stress fields in the volcanic arc region are related to deformation generated by subduction and to magma generation and ascent processes. Analysis of moment tensors of shallow and intermediate depth earthquakes in volcanic arcs indicates that the seismic strain field in the arc region of many convergent margins is subhorizontal extension oriented nearly perpendicular to the arc. A process capable of generating such a globally consistent strain field is induced asthenospheric corner flow below the arc region. PMID:17774792

  15. Active Extensional Structures Discovered by the Airborne LiDAR Mapping in the Tatun Volcanic Region, Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Y.; Chang, K.; Chen, R.; Lee, J.; Hsieh, Y.

    2006-12-01

    Complex tectonic deformation is present in northern Taiwan where the Philippine Sea plate is subducting under the Eurasian plate and the Okinawa trough is opening to the east. The Tatun volcanic region and the Taipei metropolitan basin are considered the products resulted from such complex tectonic environment. Furthermore, contractional deformation was prevailed in the earlier stage, as evidenced by several major thrust faults truncating the Tertiary strata. However, the expected nowadays extensional deformation is not fully characterized, for example, the Shanchiao fault bounding the western Taipei basin and its northern extension into the Tatun volcanic region. Based on industrial seismic profiles, it appeared that several well developed normal faults reactivated pre-existing thrust faults offshore northern Taiwan. These normal faults likely extend into the land where the Tatun volcanics erupted through and covered on the Tertiary strata. It is our intentions to better inspect the deformational pattern existing within the Tatun volcanic region where forests dominate on the surface making field investigation difficult. In this study we apply high-resolution airborne LiDAR-derived digital terrain model to characterize possible joints, fractures, and faults in the Tatun volcanic region. The LiDAR-derived DTM was processed so that bare ground is revealed using virtual removal of forests. The derived 2-m DTM was then examined to map out topographic features possibly resulted from the linear geologic structures. We discovered clear distribution and pattern of the joints and fractures in the Tatun volcanic region for the first time. The mapped structural patterns reveal strong evidence for regional extensional deformation in northern Taiwan, especially within the Tatun volcanic region. We also uncovered branches of normal faults extending possibly from the Shanchiao fault into the Tatun volcanic region. The discovered normal fault, perhaps active, cut across flat

  16. Visual Observations and Geologic Settings of the Newly-Discovered Black Smoker Vent Sites Across the Galapagos Ridge-Hotspot Intersection

    NASA Astrophysics Data System (ADS)

    Anderson, P.; Haymon, R.; MacDonald, K.; White, S.

    2006-12-01

    Nearly one-fifth of the global mid-ocean ridge is hotspot-affected, yet very little is known about how hotspots affect quantity and distribution of high-temperature hydrothermal vents along the ridge. During the 2005-06 GalAPAGoS expedition, acoustic and plume sensor surveys were conducted across the Galapagos ridge- hotspot intersection, lon. 94.5ºW- lon. 89.5ºW, to map fine scale geologic features and locate hydrothermal plumes emanating from the ridge crest. Where significant plumes were detected, the Medea fiber-optic camera sled was used successfully to find and image high-temperature vents on the seafloor. With Medea we discovered and imaged the first active and recently extinct black smokers known along the entire Galapagos Spreading Center (GSC), and documented the geologic setting of these vents. The Medea survey imaged numerous inactive vents as well as 3 active high-temperature vent fields along the ridge at 94º 04.5'W (Navidad Site), 91º56.2'W (Iguanas Site) and 91º54.3'W (Pinguinos Site). Two recently extinct vent fields also were identified at 91º23.4'-23.7'W and 91º13.8'W. All of the high-temperature vent sites that we identified along the GSC are found above relatively shallow AMC reflectors and are located in the middle 20% of ridge segments. Without exception the vent sites are located along fissures atop constructional axial volcanic ridges (AVR's) composed of relatively young pillow basalts. In some cases, the vents were associated with collapses adjacent to the fissures. The fissures appear to be eruptive sources of the pillow lavas comprising the AVR's. Video images of the chimneys show mature, cylindrical structures, up to 14m high; little diffuse flow; few animals; and some worm casts and dead clam shells, suggesting prior habitation. We conclude that distribution of the vents is controlled by magmatic processes, (i.e., by locations of shallow AMC magma reservoirs and eruptive fissures above dike intrusions), and that there is

  17. 2012 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Herrick, Julie A.; Neal, Christina A.; Cameron, Cheryl E.; Dixon, James P.; McGimsey, Robert G.

    2014-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest, or suspected unrest at 11 volcanic centers in Alaska during 2012. Of the two verified eruptions, one (Cleveland) was clearly magmatic and the other (Kanaga) was most likely a single phreatic explosion. Two other volcanoes had notable seismic swarms that probably were caused by magmatic intrusions (Iliamna and Little Sitkin). For each period of clear volcanic unrest, AVO staff increased monitoring vigilance as needed, reviewed eruptive histories of the volcanoes in question to help evaluate likely outcomes, and shared observations and interpretations with the public. 2012 also was the 100th anniversary of Alaska’s Katmai-Novarupta eruption of 1912, the largest eruption on Earth in the 20th century and one of the most important volcanic eruptions in modern times. AVO marked this occasion with several public events.

  18. Mapping the Piccard Hydrothermal Field - The World's Deepest Known Vent Area

    NASA Astrophysics Data System (ADS)

    Kinsey, J. C.; German, C. R.

    2012-12-01

    We report the recent mapping and exploration of the Piccard Hydrothermal Field on the Mid-Cayman Rise. Two previous expeditions in 2009 and 2010 led to the discovery of the site, which at 5000m hosts the world's deepest known vents. The site was mapped and explored in January 2012 and the Piccard Field was found to be larger than previously appreciated. The site includes 3 separate currently active hydrothermal mounts together with 4 additional extinct depo-centers. The 3 active centers are the Beebe Vents, Beebe Woods, and Beebe Sea sites. Beebe Vents is an active black smoker system with maximum temperatures of 400-403 degrees Celsius. Beebe Woods contains a set of tall beehive smokers with temperatures of approximately 353 degrees Celsius. Beebe Sea, the largest sulfide mound in the field, contains diffuse venting together with numerous extinct chimneys that indicate significant past active focused flow. Observations of the 4 extinct mounds indicate differences in their apparent ages based on the texture and morphology of the extinct sulfides at the summit of each mound. The entire field is located on top of an axial volcanic ridge with extrusive pillow mounds prominent. A major fault traverses the mound along its long axis, from Southwest to Northeast. Beebe Woods, Beebe Sea, and extinct Beebe mound D abut this fault directly with an apparent monotonic age progression from youngest (Beebe Woods) in the SW to relict mound 'D' in the NE. Similarly, the Beebe Vents site and mound is located at the SW limit of a parallel set of mounds, offset from the fault by approximately 100m, which also ages progressively through extinct Beebe Mounds 'E', 'F' and 'G'. The major fault that bisects the axial volcanic ridge at Piccard evidently serves as a controlling mechanism for the mounds abutting that fault however the mechanism for the second line of mounds remains to be determined. Bathymetry suggests the presence of a second, smaller fault which may serve as the control

  19. Microbial Communities at Non-Volcanic and Volcanic Sites of the Gakkel Ridge

    NASA Astrophysics Data System (ADS)

    Helmke, E.; Juergens, J.; Tausendfreund, M.; Wollenburg, J.; Shank, T.; Edmonds, H.; Humphris, S.; Nakamura, K.; Liljebladh, B.; Winsor, P.; Singh, H.; Reves-Sohn, R. A.

    2007-12-01

    The Gakkel Ridge in the eastern Arctic Ocean is the slowest spreading, deepest, and most isolated portion of the global mid-ocean ridge system and therefore predestined for comparative investigations on deep-sea vent communities. However, the perennial cover of thick sea ice has made this area largely inaccessible to science. The Arctic Gakkel Vents Expedition (AGAVE) utilized the icebreaker ODEN and newly developed vehicles for exploration and sampling in connection with a CTD/rosette equipped with different sensors and a high-resolution multi-beam bathymetry system. We focused our studies on the peridotite-hosted region at 85°N, 7°E and on the basaltic volcanism area at 85°N, 85°E. Water, sediment, and rock samples were taken to describe the microbial communities in different zones of these two sites. Sampling was guided by anomalies of backscattering, temperature, Eh, as well as by high-resolution seafloor imagery. Samples were preserved or processed on board immediately after sampling. Molecular analyses, cultural methods, total bacterial counts, and activity measurements were employed to describe the structure of the microbial communities, their phylogeny, potential adaptations, and possible role in biogeochemical cycles. The first molecular biological results of the bacterial communities of the 85°E site indicated atypical of deep- sea venting communities. These preliminary results were supported by the images of the under-ice vehicle "Camper" which showed thick yellow "fluffy" mats (often > 5cm thick) and orange "pebbly" material without any smell of H2S markedly different than the white, consolidated Beggiatoa mats often observable at deep venting sites. Foraminifera occurred regularly on top of basalt rocks as well as within the bacterial mats.

  20. Identification of activity regimes by unsupervised pattern classification of volcanic tremor data. Case studies from Mt. Etna.

    NASA Astrophysics Data System (ADS)

    Langer, H.; Behncke, B.; Falsaperla, S.; Messina, A.; Spampinato, S.

    2009-04-01

    The monitoring of the seismic background signal - commonly referred to as volcanic tremor - has become a key tool for volcanic surveillance, particularly when field surveys are unsafe and/or visual observations are hampered by bad weather conditions. Indeed, it could be demonstrated that changes in the state of activity of the volcano show up in the volcanic tremor signature, such as amplitude and frequency content. Hence, the analysis of the characteristics of volcanic tremor leads us to pass from a mere monoparametric vision of the data to a multivariate one, which can be tackled with modern concepts of multivariate statistics. For this aim we present a recently developed software package which combines various concepts of unsupervised classification, in particular cluster analysis and Kohonen maps. Unsupervised classification is based on a suitable definition of similarity between patterns rather than on a-priori knowledge of their class membership. It aims at the identification of heterogeneities within a multivariate data set, thus permitting to focalize critical periods where significant changes in signal characteristics are encountered. The application of the software is demonstrated on sample sets derived from Mt. Etna during eruptions in 2001, 2006 and 2007-8.

  1. The interplay between deformation and volcanic activity: new data from the central sector of the Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Isaia, Roberto; Sabatino, Ciarcia; Enrico, Iannuzzi; Ernesto, Prinzi; D'Assisi, Tramparulo Francesco; Stefano, Vitale

    2016-04-01

    The new excavation of a tunnel in the central sector of the Campi Flegrei caldera allowed us to collect new stratigraphic and structural data shedding light on the volcano-tectonic evolution of the last 10 ka. The analyzed sequences are composed by an alternation of volcanic, lacustrine, fluvial and marine sediments hosting several deformation structures such as faults, sedimentary dykes and fractures. A review of available well log togheter with the new data were used to perform a 3D reconstruction of paleo-surfaces resulted after the main volcanic and deformation episodes. Results show as the paleo-morphology was strictly controlled by faults and fractures that formed meso-scale channels and depressions subsequently filled by tephra and volcanoclastic sediments. The measured structures indicate an extensional deformation accompanying the ground uplift occurred in various stages of the caldera evolution. Stratigraphic relationships between structures and volcanic deposits further constrain the timing of the deformation phases. Presently an unrest phase of the Campi Flegrei caldera is marked by variations of different parameters such as ground deformation activities well recorded by GPS data, topographic leveling and satellite surveys. The results of this study provide further insight into the long term deformation pattern of the caldera and provide a key to interpret the ground deformation scenarios accompanying a possible resumption of volcanism.

  2. Anomalous geomagnetic variations associated with the volcanic activity of the Mayon volcano, Philippines during 2009-2010

    NASA Astrophysics Data System (ADS)

    Takla, E. M.; Yoshikawa, A.; Kawano, H.; Uozumi, T.; Abe, S.

    2014-12-01

    Local anomalous geomagnetic variations preceding and accompanying the volcanic eruptions had been reported by several researchers. This paper uses continuous high-resolution geomagnetic data to examine the occurrence of any anomalous geomagnetic field variations that possibly linked with the volcanic eruption of the Mayon volcano, Philippines during 2009-2010. The nearest geomagnetic observing point from the Mayon volcano is the Legazpi (LGZ) station, Philippines; which is located about 13 km South of the Mayon volcano. The amplitude range of daily variations and the amplitude of Ultra Low Frequency emissions in the Pc3 range (Pc3; 10-45 s) were examined at the LGZ station and also were compared with those from the Davao (DAV) station, Philippines as a remote reference station. Both the LGZ and DAV stations belong to the MAGDAS Network. The result of data analysis reveals significant anomalous changes in the amplitude range of daily variations and the Pc3 amplitude at the LGZ station before and during the volcanic eruption of the Mayon volcano. From the obtained results, it appears that the observed anomalous variations are dependent on the change in the underground conductivity connected with variation in the physical properties of the Earth's crust due to the activity of the Mayon volcano. Therefore, these anomalous geomagnetic variations are considered to be of a local volcanic origin.

  3. Complex explosive volcanic activity on the Moon within Oppenheimer crater, Icarus

    USGS Publications Warehouse

    Bennett, Kristen A; Horgan, Briony H N; Gaddis, Lisa R.; Greenhagen, Benjamin T; Allen, Carlton C.; Hayne, Paul O; Bell, James F III; Paige, David A.

    2016-01-01

    Oppenheimer Crater is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining inferred to form larger regional deposits. We use Lunar Reconnaissance Orbiter Camera images and Diviner Radiometer mid-infrared data, Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra, and Clementine orbiter Ultraviolet/Visible camera images to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. Mineralogically, we find that the deposits are variable mixtures of orthopyroxene and minor clinopyroxene sourced from the crater floor, juvenile clinopyroxene, and juvenile iron-rich glass, and that the mineralogy of the pyroclastics varies both across the Oppenheimer deposits as a whole and within individual deposits. We observe similar variability in the inferred iron content of pyroclastic glasses, and note in particular that the northwest deposit, associated with Oppenheimer U crater, contains the most iron-rich volcanic glass thus far identified on the Moon, which could be a useful future resource. We propose that this variability in mineralogy indicates variability in eruption style, and that it cannot be explained by a simple Vulcanian eruption. A Vulcanian eruption should cause significant country rock to be incorporated into the pyroclastic deposit; however, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases and very little floor material. Thus, we propose that at least the most recent portion of these deposits must have erupted via a Strombolian or more continuous fire

  4. Volcanic activity observed from continuous seismic records in the region of the Klyuchevskoy group of volcanoes

    NASA Astrophysics Data System (ADS)

    Shapiro, N.; Droznin, D.; Droznina, S.; Senyukov, S.; Chebrov, V.; Gordeev, E.; Frank, W.

    2015-12-01

    We analyze continuous seismic records from 18 permanent stations operated in vicinity of the Klyuchevskoy group of volcanos (Kamchatka, Russia) during the period between 2009 and 2014. We explore the stability of the inter-station cross-correlation to detect different periods of sustained emission from seismic energy. The main idea of this approach is that cross-correlation waveforms computed from a wavefield emitted by a seismic source from a fixed position remain stable during the period when this source is acting. The detected periods of seismic emission correspond to different episodes of activity of volcanoes: Klyuchevskoy, Tolbachik, Shiveluch, and Kizimen. For Klyuchevskoy and Tolbachik whose recent eruptions are mostly effusive, the detected seismic signals correspond to typical volcanic tremor, likely caused by degassing processes. For Shiveluch and Kizimen producing more silicic lavas, the observed seismic emission often consists of many repetitive long period (LP) seismic events that might be related to the extrusion of viscous magmas. We develop an approach for automatic detection of these individual LP events in order to characterize variations of their size and recurrence in time.

  5. Monitoring active volcanoes and mitigating volcanic hazards: the case for including simple approaches

    NASA Astrophysics Data System (ADS)

    Stoiber, Richard E.; Williams, Stanley N.

    1990-07-01

    Simple approaches to problems brought about eruptions and their ensuing hazardous effects should be advocated and used by volcanologists while awaiting more sophisticated remedies. The expedients we advocate have all or many of the following attributes: only locally available materials are required; no extensive training of operators or installation is necessary; they are affordable and do not require foreign aid or exports; they are often labor intensive and are sustainable without outside assistance. Where appropriate, the involvement of local residents is advocated. Examples of simple expedients which can be used in forecasting or mitigating the effects of crises emphasize the relative ease and the less elaborate requirements with which simple approaches can be activated. Emphasis is on visual observations often by untrained observers, simple meteorogical measurements, observations of water level in lakes, temperature and chemistry of springs and fumaroles, new springs and collapse areas and observations of volcanic plumes. Simple methods are suggested which can be applied to mitigating damage from mudflows, nuées ardentes, tephra falls and gas discharge. A review in hindsight at Ruiz includes the use of both chemical indicators and simple mudflow alarms. Simple expedients are sufficiently effective that any expert volcanologist called to aid in a crisis must include them in the package of advice offered. Simple approaches are a critical and logical complement to highly technical solutions to hazardous situations.

  6. Paterae on Io: Volcanic Activity Observed by Galileo's NIMS and SSI

    NASA Technical Reports Server (NTRS)

    Lopes, Rosaly; Kamp, Lucas; Smythe, W. D.; Carlson, R.; Radebaugh, Jani; Gregg, Tracy K.

    2003-01-01

    Paterae are the most ubiquitous volcanic construct on Io s surface. Paterae are irregular craters, or complex craters with scalloped edges, interpreted as calderas or pit craters. Data from Galileo has shown that the activity of Ionian paterae is often confined to its interior and that generally lava flows are not seen spilling out over the edges. We use observations from Galileo s Near-Infrared Mapping Spectrometer (NIMS) to study the thermal emission from several Ionian paterae and compare them with images in visible wavelengths obtained by Galileo s Solid State Imaging System (SSI). Galileo s close fly-bys of Io from 1999 to 2001 have allowed NIMS to image the paterae at high spatial resolution (1-30 km pixel). At these scales, several of these features reveal greater thermal emission around the edges, which can be explained as the crust of a lava lake breaking up against the paterae walls. Comparisons with imaging data show that lower albedo areas (which are indicative of young lavas) coincide with higher thermal emission areas on NIMS data. Other paterae, however, show thermal emission and features in the visible that are more consistent with lava flows over a solid patera floor. Identifying eruption styles on Io is important for constraining eruption and interior models on Io.

  7. Intumescence and pore structure of alkali-activated volcanic glasses upon exposure to high temperatures

    NASA Astrophysics Data System (ADS)

    Erdogan, S. T.

    2015-12-01

    Structures formed with ground perlite, a natural volcanic glass, activated with NaOH solutions, are shown to possess the ability to expand up to ~225 % of their original volumes upon exposure to temperatures in the 200-600 °C range. Porous solid with 3-7 MPa compressive strength and ˜450 kg/m3 or higher density are obtained. The observed expansion is believed to occur due to a loss of silanol condensation water, as vapor and is accompanied by an up to ~20 % loss in mass. A drop in pH to near-neutral values supports this idea. The size and total amount of pores in the final solid are controlled by concentration of the NaOH solution and thermal processing conditions. The pores formed are observed to be ~1-10 μm to mm-sized. The ability of perlite-based solids to intumesce over specific temperature ranges could be beneficial in applications where absorption of thermal energy is necessary, such as passive fire protection.

  8. Volcanic and seismic activity at Stromboli preceding the 2002-2003 flank eruption

    NASA Astrophysics Data System (ADS)

    Burton, M.; Calvari, S.; Spampinato, L.; Lodato, L.; Pino, N. A.; Marchetti, E.; Murè, F.

    Regular surveys with a thermal camera from both ground- and helicopter-based surveys have been carried out on Stromboli since October 2001. This data set allowed us to detect morphological changes in Stromboli's summit craters produced by major explosions and to track an increase in volcanic activity associated with a heightened magma level within the main conduit that preceded the 2002-2003 effusive eruption. Together with thermal measurements, geophysical surveys performed in May and September/October 2002 highlighted clear increases in the amplitude of very long period (VLP) events, consistent with the ascent of the magma column above the VLP source region. The increased magma level was probably induced by elevated pressure in the deep feeding system, controlled by regional tectonic stress. This, in turn, pressurized the uppermost part of the crater terrace, producing greater soil permeability and soil degassing. Eventually, the magma loading caused the NW flank of the summit craters to fracture, allowing lava to flood out at high effusion rates on 28 December 2002, starting an approximately 6-month-long effusive eruption.

  9. Lung clearance of neutron-activated Mount St. Helens volcanic ash in the rat.

    PubMed

    Wehner, A P; Wilerson, C L; Stevens, D L

    1984-10-01

    To determine pulmonary deposition and clearance of inhaled volcanic ash, rats received a single 60-min, nose-only exposure to neutron-activated ash. Over a period of 128 days after exposure, the rats were sacrificed in groups of five animals. Lungs were analyzed for the radionuclide tracers 46Sc, 59Fe, and 60Co by gamma-ray spectrometry. The alveolar ash burdens, determined by the radionuclides 46Sc and 59Fe, are in good agreement for the majority of samples analyzed, indicating ash particulate levels in the lungs, rather than leached radionuclides. The ash deposition estimates based on 60Co were appreciably lower for the lungs, indicating that 60Co leached from the ash. Approximately 110 micrograms ash, or 6% of the inhaled ash, was initially retained in the deep lung. The biological half-time of the alveolar ash burden was 39 days. After 90 days, the mean lung burden had decreased to about 20% of its initial value; 128 days after exposure, about 10% remained. PMID:6489290

  10. Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea hydrothermal systems.

    PubMed

    Winkel, Matthias; Pjevac, Petra; Kleiner, Manuel; Littmann, Sten; Meyerdierks, Anke; Amann, Rudolf; Mußmann, Marc

    2014-12-01

    Diffuse hydrothermal fluids often contain organic compounds such as hydrocarbons, lipids, and organic acids. Microorganisms consuming these compounds at hydrothermal sites are so far only known from cultivation-dependent studies. To identify potential heterotrophs without prior cultivation, we combined microbial community analysis with short-term incubations using (13)C-labeled acetate at two distinct hydrothermal systems. We followed cell growth and assimilation of (13)C into single cells by nanoSIMS combined with fluorescence in situ hybridization (FISH). In 55 °C-fluids from the Menez Gwen hydrothermal system/Mid-Atlantic Ridge, a novel epsilonproteobacterial group accounted for nearly all assimilation of acetate, representing the first aerobic acetate-consuming member of the Nautiliales. In contrast, Gammaproteobacteria dominated the (13) C-acetate assimilation in incubations of 37 °C-fluids from the back-arc hydrothermal system in the Manus Basin/Papua New Guinea. Here, 16S rRNA gene sequences were mostly related to mesophilic Marinobacter, reflecting the high content of seawater in these fluids. The rapid growth of microorganisms upon acetate addition suggests that acetate consumers in diffuse fluids are copiotrophic opportunists, which quickly exploit their energy sources, whenever available under the spatially and temporally highly fluctuating conditions. Our data provide first insights into the heterotrophic microbial community, catalyzing an under-investigated part of microbial carbon cycling at hydrothermal vents. PMID:25244359

  11. The nature of the volcanic activity at Loki: Insights from Galileo NIMS and PPR data

    NASA Astrophysics Data System (ADS)

    Howell, Robert R.; Lopes, Rosaly M. C.

    2007-02-01

    Loki is the largest patera and the most energetic hotspot on Jupiter's moon Io, in turn the most volcanically active body in the Solar System, but the nature of the activity remains enigmatic. We present detailed analysis of Galileo Near-Infrared Mapping Spectrometer (NIMS) and PhotoPolarimeter/Radiometer (PPR) observations covering the 1.5-100 μm wavelength range during the I24, I27, and I32 flybys. The general pattern of activity during these flybys is consistent with previously proposed models of a resurfacing wave periodically crossing a silicate lava lake. In particular our analysis of the I32 NIMS observations shows, over much of the observed patera, surface temperatures and implied ages closely matching those expected for a wave advancing counterclockwise at 0.94-1.38 km/day. The age pattern is different than other published analyses which do not show as clearly this azimuthal pattern. Our analysis also shows two additional distinctly different patera surfaces. The first is located along the inner and outer margins where components with a 3.00-4.70-μm color temperature of 425 K exist. The second is located at the southwestern margin where components with a 550-K color temperature exist. Although the high temperatures could be caused by disruption of a lava lake crust, some additional mechanism is required to explain why the southwest margin is different from the inner or outer ones. Finally, analysis of the temperature profiles across the patera reveal a smoothness that is difficult to explain by simple lava cooling models. Paradoxically, at a subpixel level, wide temperature distributions exist which may be difficult to explain by just the presence of hot cracks in the lava crust. The resurfacing wave and lava cooling models explain well the overall characteristics of the observations. However, additional physical processes, perhaps involving heat transport by volatiles, are needed to explain the more subtle features.

  12. The vent microbiome: patterns and drivers

    NASA Astrophysics Data System (ADS)

    Pachiadaki, M.

    2015-12-01

    Microbial processes within deep-sea hydrothermal vents affect the global biogeochemical cycles. Still, there are significant gaps in our understanding of the microbiology and the biogeochemistry of deep-sea hydrothermal systems. Vents differ in temperature, host rock composition and fluid chemistry; factors that are hypothesized to shape the distribution of the microbial communities, their metabolic capabilities and their activities. Using large-scale single cell genomics, we obtained insights into the genomic content of several linkages of a diffuse flow vent. The genomes show high metabolic versatility. Sulfur oxidation appears to be predominant but there is the potential of using a variety of e- donors and acceptors to obtain energy. To further assess the ecological importance of the vent auto- and heterotrophs, the global biogeography of the analyzed lineages will be investigated by fragment recruitment of metagenomes produced from the same site as well as other hydrothermal systems. Metatranscriptomic and metaproteomic data will be integrated to examine the expression of the predominant metabolic pathways and thus the main energy sources driving chemoautotrophic production. The comparative analysis of the key players and associated pathways among various vent sites that differ in physicochemical characteristics is anticipated to decipher the patterns and drivers of the global dispersion and the local diversification of the vent microbiome.

  13. Volcanic Plumes on Io: Old Friends and Recent Surprises

    NASA Astrophysics Data System (ADS)

    McEwen, A. S.

    2002-05-01

    One of the most spectacular phenomena on Io are the active volcanic plumes. Nine plumes were observed during the Voyager 1 encounter in 1979: Pele (300 km high), Loki (150 km; 2 plumes), and 6 smaller "Prometheus-type" plumes. When Voyager 2 imaged Io 4 months later, all of the these plumes were detected except Pele, and there were two new large red plume deposits (Surt and Aten) similar to the deposits of Pele. These 2 new plume vents were at relatively high latitudes (45N and 48S) whereas the others were more equatorial. Galileo observed a total of 10 plumes prior to 2000, 4 of which were erupting from the same volcanic complexes as in 1979, so there was a total of 15 volcanic centers with observed plumes, all equatorial except Masubi at 44S. We found that Prometheus-type plumes wander, apparently erupting from rootless vents where silicate lava flows over volatile-rich ground. Red deposits, on the other hand, seem to mark the deep vents for silicate lava. Galileo and HST also showed that Pele is normally detectable only at UV wavelengths or at very high phase angles, and was in an anomalous state during the Voyager 1 encounter. The only good candidate for a "stealth" SO2 gas plume visible only in eclipse was seen over Acala, although some Prometheus-type plumes appeared much larger in eclipse. The existence of many much smaller plumes was predicted from Voyager observations of bright streaks radial to Pele, but Galileo has not confirmed this hypothesis. From the joint Galileo-Cassini observations within a few days of Jan 1, 2001 we were surprised to see a giant new plume (400 km high) over Tvashtar Catena (63 N) with UV color properties and a 1200-km diameter red plume deposit, both very similar to Pele. In the I31 flyby (August 2001) Galileo flew through the region occupied by the Tvashtar plume 7 months earlier. The images did not detect a plume, but SO2 may have been detected by the plasma science experiment. However, the images did reveal a giant (500 km

  14. Volcanic thermal features observed by AVIRIS

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Clive; Pieri, David; Carrere, Veronique; Abrams, Michael; Rothery, David; Francis, Peter

    1992-01-01

    In July 1991, Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) was flown over Mount Etna and Stromboli, Italy. Lava-filled vents were then present within summit craters of both volcanoes. Since surfaces at magmatic temperatures radiate strongly over the wavelength ranges of the AVIRIS C- and D-spectrometers, it was hoped that the data collected would reveal clear thermal signatures, even of sub-pixel sized features, as have been observed in the 1.65 and 2.22 microns bands of Landsat Thematic Mapper images. This would provide an opportunity to explore the potential of imaging spectrometers for deriving temperature distributions of hot volcanic surfaces. Such research has implications for volcano monitoring in the EOS era, and also for any future AVIRIS deployments above active lava flows, lakes, and domes, where understanding of their behavior may be advanced by detailed thermal observations.

  15. Discovery of New Hydrothermal Venting Sites in the Lau Basin, Tonga Back Arc

    NASA Astrophysics Data System (ADS)

    Crowhurst, P. V.; Arculus, R. J.; Massoth, G. J.; Baptista, L.; Stevenson, I.; Angus, R.; Baker, E. T.; Walker, S. L.; Nakamura, K.

    2009-12-01

    Between 22 April and 25 June 2009, a systematic search for hydrothermal venting along 1340 km of back-arc features was conducted throughout the Lau Basin aboard the CSIRO owned RV Southern Surveyor. The selection of survey areas was based on bathymetry, sidescan and water column anomaly datasets collected during previous marine science research and commercial exploration voyages. During 54 operational days, 76 CTD tows were completed using real-time plume mapping protocols, augmented with mini autonomous plume recorders, to discern anomalies in light scattering, and oxidation-reduction potential with water samples collected within the peak anomalies. Coincident with CTD towing at an average speed of 1.1 knots high resolution EM300 bathymetry and backscatter data was collected which significantly enhanced geological interpretation of possible source sites for follow up cross tows. 32 venting sites were detected, 24 of which are believed to be new discoveries. 13 dredge operations were conducted on 7 of these sites. Sulfides were recovered from 2 sites, one being a new discovery on the NE Lau spreading centre, ~14 km north of the commercial discovery by Teck and ~7km north of the eruption site discovery during a RV Thompson NOAA survey, both during 2008. The new venting field discoveries at North Mata, northern extent of the CLSC and far southern Valu Fa ridge are beyond any previously known areas of hydrothermal activity and further enhances the reputation of the Lau Basin as one of the most productive back arc regions for hydrothermally active spreading centers. A significant number of filter residue samples collected from the vent sites yielded greater than background values for metals including Cu and Zn, which is interpreted to imply they were sourced from active seafloor massive sulfide systems rather than volcanic activity.

  16. Can we detect, monitor, and characterize volcanic activity using 'off the shelf' webcams and low-light cameras?

    NASA Astrophysics Data System (ADS)

    Harrild, M.; Webley, P. W.; Dehn, J.

    2015-12-01

    The ability to detect and monitor precursory events, thermal signatures, and ongoing volcanic activity in near-realtime is an invaluable tool. Volcanic hazards often range from low level lava effusion to large explosive eruptions, easily capable of ejecting ash to aircraft cruise altitudes. Using ground based remote sensing to detect and monitor this activity is essential, but the required equipment is often expensive and difficult to maintain, which increases the risk to public safety and the likelihood of financial impact. Our investigation explores the use of 'off the shelf' cameras, ranging from computer webcams to low-light security cameras, to monitor volcanic incandescent activity in near-realtime. These cameras are ideal as they operate in the visible and near-infrared (NIR) portions of the electromagnetic spectrum, are relatively cheap to purchase, consume little power, are easily replaced, and can provide telemetered, near-realtime data. We focus on the early detection of volcanic activity, using automated scripts that capture streaming online webcam imagery and evaluate each image according to pixel brightness, in order to automatically detect and identify increases in potentially hazardous activity. The cameras used here range in price from 0 to 1,000 and the script is written in Python, an open source programming language, to reduce the overall cost to potential users and increase the accessibility of these tools, particularly in developing nations. In addition, by performing laboratory tests to determine the spectral response of these cameras, a direct comparison of collocated low-light and thermal infrared cameras has allowed approximate eruption temperatures to be correlated to pixel brightness. Data collected from several volcanoes; (1) Stromboli, Italy (2) Shiveluch, Russia (3) Fuego, Guatemala (4) Popcatépetl, México, along with campaign data from Stromboli (June, 2013), and laboratory tests are presented here.

  17. Detection of aeromagnetic anomaly change associated with volcanic activity: An application of the generalized mis-tie control method

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Tadashi; Utsugi, Mitsuru; Okuma, Shigeo; Tanaka, Yoshikazu; Hashimoto, Takeshi

    2009-12-01

    Repeat aeromagnetic surveys may assist in mapping and monitoring long-term changes associated with volcanic activity. However, when dealing with repeat aeromagnetic survey data, the problem of how to extract the real change of magnetic anomalies from a limited set of observations arises, i.e. the problem of spatial aliasing. Recent development of the generalized mis-tie control method for aeromagnetic surveys flown at variable elevations enables us to statistically extract the errors from ambiguous noise sources. This technique can be applied to overcome the spatial alias effect when detecting magnetic anomaly changes between aeromagnetic surveys flown at different times. We successfully apply this technique to Asama Volcano, one of the active volcanoes in Japan, which erupted in 2004. Following the volcanic activity in 2005, we conducted a helicopter-borne aeromagnetic survey, which we compare here to the result from a previous survey flown in 1992. To discuss small changes in magnetic anomalies induced by volcanic activity, it is essential to estimate the accuracy of the reference and the repeat aeromagnetic measurements and the probable errors induced by data processing. In our case, the positioning inaccuracy of the 1992 reference survey was the most serious factor affecting the estimation of the magnetic anomaly change because GPS was still in an early stage at that time. However, our analysis revealed that the magnetic anomaly change over the Asama Volcano area from 1992 to 2005 exceeded the estimated error at three locations, one of which is interpreted as a loss of magnetization induced by volcanic activity. In this study, we suffered from the problem of positioning inaccuracy in the 1992 survey data, and it was important to evaluate its effect when deriving the magnetic anomaly change.

  18. Why does a mature volcano need new vents? The case of the New Southeast Crater at Etna

    NASA Astrophysics Data System (ADS)

    Acocella, Valerio; Neri, Marco; Behncke, Boris; Bonforte, Alessandro; Del Negro, Ciro; Ganci, Gaetana

    2016-06-01

    Mature volcanoes usually erupt from a persistent summit crater. Permanent shifts in vent location are expected to occur after significant structural variations and are seldom documented. Here we provide such an example that recently occurred at Etna. Eruptive activity at Mount Etna during 2007 focused at the Southeast Crater (SEC), the youngest (formed in 1971) and most active of the four summit craters, and consisted of six paroxysmal episodes. The related erupted volumes, determined by field-based measurements and radiant heat flux curves measured by satellite, totalled 8.67 x 106 m3. The first four episodes occurred, between late-March and early-May, from the summit of the SEC and short fissures on its flanks. The last two episodes occurred, in September and November, from a new vent ("pit crater" or "proto-NSEC") at the SE base of the SEC cone; this marked the definitive demise of the old SEC and the shift to the new vent. The latter, fed by NW-SE striking dikes propagating from the SEC conduit, formed since early 2011 an independent cone (the New Southeast Crater, or "NSEC") at the base of the SEC. Detailed geodetic reconstruction and structural field observations allow defining the surface deformation pattern of Mount Etna in the last decade. These suggest that the NSEC developed under the NE-SW trending tensile stresses on the volcano summit promoted by accelerated instability of the NE flank of the volcano during inflation periods. The development of the NSEC is not only important from a structural point of view, as its formation may also lead to an increase in volcanic hazard. The case of the NSEC at Etna here reported shows how flank instability may control the distribution and impact of volcanism, including the prolonged shift of the summit vent activity in a mature volcano.

  19. Parachute having improved vent line stacking

    NASA Technical Reports Server (NTRS)

    Hengel, John E.

    1994-01-01

    A parachute having an improved vent line stacking wherein the parachute is provided with a canopy having a central vent opening and a vent band secured to the canopy around the periphery of the vent opening, with a plurality of vent lines each lying on a diameter of the vent opening and having its ends secured to the vent band on opposite sides of the vent opening is described. The vent lines are sewed to the vent band in an order such that the end of a first vent line is sewed to the vent band at a starting point with the end of a second vent band then being sewed to the vent band adjacent to and counterclockwise from the first band. A third vent band is sewed to the vent band adjacent to and clockwise from the first band, with a fourth vent band being sewed to the vent band adjacent to and counterclockwise from the second vent band. It can be seen that, if the vent lines are numbered in the order of being sewed to the vent band, the odd numbered vent lines will run consecutively in a clockwise direction and the even numbered lines will run consecutively in a counterclockwise direction from the starting point. With this order of assembly, each and every vent line will be separated from adjacent vent lines by no more than one vent line in the center of the vent opening where the vent lines cross.

  20. Fractal dimension analysis of the magnetic time series associated with the volcanic activity of Popocatépetl

    NASA Astrophysics Data System (ADS)

    Flores-Marquez, E. L.; Galvez-Coyt, G.; Cifuentes-Nava, G.

    2012-12-01

    Fractal analysis of the total magnetic field (TMF) time series from 1997 to 2003 at Popocatépetl Volcano is performed and compared with the TMF-series of the Teoloyucan Magnetic Observatory, 100 km away. Using Higuchi's fractal dimension method (D). The D changes over time for both series were computed. It was observed, when the time windows used to compute D increase in length, both series show nearly the same behavior. Some criteria of comparison were employed to discriminate the local effects inherent to volcano-magnetism. The simultaneous maximum in D (1.8) of the TMF series at Popocatépetl Volcano and the recovered volcanic activity indicates a scaling relation of the TMF at Popocatépetl Volcano and demonstrates a link between the magnetic field and volcanic activity.

  1. Active submarine volcanism on the Society hotspot swell (west Pacific): A geochemical study

    SciTech Connect

    Devey, C.W.; Albarede, F.; Michard, A. ); Cheminee, J.L. ); Muehe, R.; Stoffers, P. )

    1990-04-10

    The present work deals with the petrography and geochemistry of lavas dredged from five active submarine volcanoes (named Mehetia, Moua Pihaa, Rocard, Teahitia, and Cyana) from the southeast end of the Society Islands hotspot trace. Most samples are basic and alkaline. Fractionation modelling based on major and minor compatible element variations suggests that olivine and minor clinopyroxene were the major fractionating phases. Rocard and Cyana have yielded more evolved, trachy-phonolitic, glassy samples. Both basaltic and phonolitic samples are incompatible-element enriched. The trachy-phonolite patterns show middle (REE) depletion and negative Eu anomalies. The Moua Pihaa basalts have flatter patterns than the other basalts. All smaples, with the exception of a sample from Moua Pihaa which has elevated {sup 206}Pb/{sup 204}Pb, fall on linear Sr-Nd-Pb isotopic arrays, suggesting two end-member mixing. The Sr isotopic variations in the samples excluding Moua Pihaa correlate positively with Rb/Nb, Pb/Ce, and SiO{sub 2} variations, idicating a component of mantle enriched by injection of material from a subducted oceanic slab. Correlation of {sup 207}Pb/{sup 204}Pb with {sup 87}Sr/{sup 86}Sr suggests that the subducted material is geochemically old. The absence of a MORB component in the Society magmatism, the small volumes of the Polynesian hotspot volcanoes, and the lack of more intense volcanic activity near the center of the Pacific Superswell, all lead to the conclusion that the latter is unlikely to be caused by a large convective plume.

  2. Intracaldera volcanic activity, Toledo caldera and embayment, Jemez Mountains, New Mexico

    SciTech Connect

    Heiken, G.; Goff, F.; Stix, J.; Shafiqullah, M.; Garcia, S.; Hagan, R.

    1986-02-10

    The Toledo caldera was formed at 1.47 +- 0.06 Ma during the catastrophic eruption of the lower member, Bandelier Tuff. The caldera was obscured at 1.12 +- 0.03 Ma during eruption of the equally voluminous upper member of the Bandelier Tuff that led to formation of the Valles caldera. Earlier workers interpreted a 9-km-diameter embayment, located NE of the Valles caldera (Toledo embayment), to be a remnant of the Toledo caldera. Drill hole data and new K-Ar dates of Toledo intracaldera domes redefine the position of Toledo caldera, nearly coincident with and of the same dimensions as the younger Valles caldera. the Toledo embayment may be of tectonic origin or a small Tschicoma volcanic center caldera. This interpretation is consistent with distribution of the lower member of the Bandelier Tuff and with several other field and drilling-related observations. Explosive activity associated with Cerro Toledo Rhyolite domes is recorded in tuff deposits located between the lower and upper members of the Bandelier Tuff on the northeast flank of the Jemez Mountains. Recorded in the tuff deposits are seven cycles of explosive activity. Most cycles consists of phreatomagmatic tuffs that grade upward into Plinian pumice beds. A separate deposit, of the same age and consisting of pyroclastic surges and flows, is associated with Rabbit Mountain, located on the southeast rim of the Valles-Toledo caldera complex. These are the surface expression of what may be a thicker, more voluminous intracaldera tuff sequence. The combined deposits of the lower and upper members of the Bandelier Tuff, Toledo and Valles intracaldera sediments, tuffs, and dome lavas form what we interpret to be a wedge-shaped caldera fill. This sequence is confirmed by deep drill holes and gravity surveys.

  3. Volcanism on Io

    NASA Astrophysics Data System (ADS)

    Davies, Ashley Gerard

    2014-03-01

    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-95; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  4. Activity of antioxidant enzymes in response to atmospheric pressure induced physiological stress in deep-sea hydrothermal vent mussel Bathymodiolus azoricus.

    PubMed

    Martins, Inês; Romão, Célia V; Goulart, Joana; Cerqueira, Teresa; Santos, Ricardo S; Bettencourt, Raul

    2016-03-01

    Deep sea hydrothermal Bathymodiolus azoricus mussels from Portuguese EEZ Menez Gwen hydrothermal field possess the remarkable ability to overcome decompression and survive successfully at atmospheric pressure conditions. We investigated the potential use of antioxidant defense enzymes in mussel B. azoricus as biomarkers of oxidative stress induced by long term acclimatization to atmospheric pressure conditions. Mussels collected at Menez Gwen hydrothermal field were acclimatized for two weeks in three distinct conditions suitable of promoting physiological stress, (i) in plain seawater for concomitant endosymbiont bacteria loss, (ii) in plain seawater under metal iron exposure, (iii) constant bubbling methane and pumped sulfide for endosymbiont bacteria survival. The enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and iron storage proteins in addition to electrophoretic profiles were examined in vent mussel gills and digestive gland. Gills showed approximately 3 times more SOD specific activity than digestive glands. On the other hand, digestive glands showed approximately 6 times more CAT specific activity than gills. Iron storage proteins were identified in gill extracts from all experimental conditions mussels. However, in digestive gland extracts only fresh collected mussels and after 2 weeks in FeSO4 showed the presence of iron storage proteins. The differences between SOD, CAT specific activities and the presence of iron storage proteins in the examined tissues reflect dissimilar metabolic and antioxidant activities, as a result of tissue specificities and acclimatization conditions influences on the organism. PMID:26790096

  5. The Evaluation of Antibacterial, Antifungal and Antioxidant Activity of Methanolic Extract of Mindium Laevigatum (Vent.) Rech. F., From Central Part of Iran

    PubMed Central

    Modaressi, Masoud; Shahsavari, Roia; Ahmadi, Farhad; Rahimi-Nasrabadi, Mehdi; Abiri, Ramin; Mikaeli, Ali; Batoli, Hossein

    2013-01-01

    Background Mindium laevigatum (Vent.) Rech. F. plant grows in central part of Iran. And used by local people as medical plant. Objectives The purpose of this study was to investigate the in vitro antibacterial, antifungal and antioxidant activities of the methanolic extracts of aerial and flower parts of plant. Materials and Methods The leaves and stem and flower of bark from M. laevigatum were separately collected, air-dried and powdered. Then the plant species extracts were prepared with methanol, water 80:20 and two polar and non-polar subfractions were realized. The antioxidant activity was evaluated by scavenging the radicals 1, 1-diphenyl-2-picrylhydrazyl radical (DPPH), β-Carotene linoleic acid assay and reducing power methods. The antifungal and antibacterial evaluation was performed by disc diffusion and minimum inhibitory concentration methods. Results The total phenolic analysis of subfractions found 182 ± 4.2 µg.gr-1 for polar and 158 ± 3.9 µg.gr-1 for non-polar extracts. The antifungal activity of the extracts against the various fungal varied from 14.0 to 34 mm. MIC values from 50 to 400 µg.mL-1 were satisfactory when compared with other plant products. The antibacterial results revealed that the subfraction extracts are mostly effective against Staphylococcus aureus. The antioxidant results showed polar subfraction has more activity against non-polar subfraction. Conclusion These findings demonstrated that the extract of Mindium laevigatum has remarkable in vitro antifungal and antioxidant activity. PMID:24624184

  6. Evolution of Popocatépetl volcano's glaciers in Mexico with and without volcanic activity: diagnosis from a minimal mass balance model

    NASA Astrophysics Data System (ADS)

    Ontiveros-Gonzalez, G.; Cortes Ramos, J.; Delgado Granados, H.

    2013-05-01

    This work describes the influence of eruptive activity on the evolution of the glacial cover on Popocatepetl volcano. Here, we try to answer a simple question: what had happened if this glacier had not been affected by the volcanic activity? In order to answer this question we modeled the mass balance evolution of this glacier using meteorological data and a minimal mass balance model developed for glaciers elsewhere. For this model we assumed no volcanic activity. These results were compared with measurements available for the actual situation at Popocatépetl Volcano. It was possible to separate the influence of the volcanic activity on the evolution of this glacier system considering two scenarios: one was modeled with a simulation of the mass balance where volcanic activity does not affect, and a second scenario is based on the documented studies developed around the glacial disappearance of the glaciers.

  7. Monitoring and analyses of volcanic activity using remote sensing data at the Alaska Volcano Observatory: Case study for Kamchatka, Russia, December 1997

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Dean, K., G.; Dehn, J.; Miller, T., P.; Kirianov, V. Yu.

    There are about 100 potentially active volcanoes in the North Pacific Ocean region that includes Alaska, the Kamchatka Peninsula, and the Kurile Islands, but fewer than 25% are monitored seismically. The region averages about five volcanic eruptions per year, and more than 20,000 passengers and millions of dollars of cargo fly the air routes in this region each day. One of the primary public safety objectives of the Alaska Volcano Observatory (AVO) is to mitigate the hazard posed by volcanic ash clouds drifting into these busy air traffic routes. The AVO uses real-time remote sensing data (AVHRR, GOES, and GMS) in conjunction with other methods (primarily seismic) to monitor and analyze volcanic activity in the region. Remote sensing data can be used to detect volcanic thermal anomalies and to provide unique information on the location, movement, and composition of volcanic eruption clouds. Satellite images are routinely analyzed twice each day at AVO and many times per day during crisis situations. As part of its formal working relationship with the Kamchatka Volcanic Eruption Response Team (KVERT), the AVO provides satellite observations of volcanic activity in Kamchatka and distributes notices of volcanic eruptions from KVERT to non-Russian users in the international aviation community. This paper outlines the current remote sensing capabilities and operations of the AVO and describes the responsibilities and procedures of federal agencies and international aviation organizations for volcanic eruptions in the North Pacific region. A case study of the December 4, 1997, eruption of Bezymianny volcano, Russia, is used to illustrate how real-time remote sensing and hazard communication are used to mitigate the threat of volcanic ash to aircraft.

  8. Application of linear multivariate calibration techniques to identify the peaks responsible for the antioxidant activity of Satureja hortensis L. and Oliveria decumbens Vent. essential oils by gas chromatography-mass spectrometry.

    PubMed

    Samadi, Naser; Masoum, Saeed; Mehrara, Bahare; Hosseini, Hossein

    2015-09-15

    Satureja hortensis L. and Oliveria decumbens Vent. are known for their diverse effects in drug therapy and traditional medicine. One of the most interesting properties of their essential oils is good antioxidant activity. In this paper, essential oils of aerial parts of S. hortensis L. and O. decumbens Vent. from different regions were obtained by hydrodistillation and were analyzed by gas chromatography-mass spectrometry (GC-MS). Essential oils were tested for their free radical scavenging activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay to identify the peaks potentially responsible for the antioxidant activity from chromatographic fingerprints by numerous linear multivariate calibration techniques. Because of its simplicity and high repeatability, orthogonal projection to latent structures (OPLS) model had the best performance in indicating the potential antioxidant compounds in S. hortensis L. and O. decumbens Vent. essential oils. In this study, P-cymene, carvacrol and β-bisabolene for S. hortensis L. and P-cymene, Ç-terpinen, thymol, carvacrol, and 1,3-benzodioxole, 4-methoxy-6-(2-propenyl) for O. decumbens Vent. are suggested as the potentially antioxidant compounds. PMID:26262598

  9. New inferences from spectral seismic energy measurement of a link between regional seismicity and volcanic activity at Mt. Etna, Italy

    NASA Astrophysics Data System (ADS)

    Ortiz, R.; Falsaperla, S.; Marrero, J. M.; Messina, A.

    2009-04-01

    The existence of a relationship between regional seismicity and changes in volcanic activity has been the subject of several studies in the last years. Generally, activity in basaltic volcanoes such as Villarica (Chile) and Tungurahua (Ecuador) shows very little changes after the occurrence of regional earthquakes. In a few cases volcanic activity has changed before the occurrence of regional earthquakes, such as observed at Teide, Tenerife, in 2004 and 2005 (Tárraga et al., 2006). In this paper we explore the possible link between regional seismicity and changes in volcanic activity at Mt. Etna in 2006 and 2007. On 24 November, 2006 at 4:37:40 GMT an earthquake of magnitude 4.7 stroke the eastern coast of Sicily. The epicenter was localized 50 km SE of the south coast of the island, and at about 160 km from the summit craters of Mt. Etna. The SSEM (Spectral Seismic Energy Measurement) of the seismic signal at stations at 1 km and 6 km from the craters highlights that four hours before this earthquake the energy associated with volcanic tremor increased, reached a maximum, and finally became steady when the earthquake occurred. Conversely, neither before nor after the earthquake, the SSEM of stations located between 80 km and 120 km from the epicentre and outside the volcano edifice showed changes. On 5 September, 2007 at 21:24:13 GMT an earthquake of magnitude 3.2 and 7.9 km depth stroke the Lipari Island, at the north of Sicily. About 38 hours before the earthquake occurrence, there was an episode of lava fountain lasting 20 hours at Etna volcano. The SSEM of the seismic signal recorded during the lava fountain at a station located at 6 km from the craters highlights changes heralding this earthquake ten hours before its occurrence using the FFM method (e.g., Voight, 1988; Ortiz et al., 2003). A change in volcanic activity - with the onset of ash emission and Strombolian explosions - was observed a couple of hours before the occurrence of the regional

  10. Volcanic Lightning: in nature and in the lab.

    NASA Astrophysics Data System (ADS)

    Cimarelli, Corrado; Alatorre-Ibargüengoitia, Miguel A.; Aizawa, Koki; Díaz Marina, Ana I.; Yokoo, Akihiko; Kueppers, Ulrich; Mueller, Sebastian; Scheu, Bettina; Dingwell, Donald B.

    2015-04-01

    Ash-rich volcanic plumes that are responsible for injecting large quantities of aerosols into the atmosphere are often associated with intense electrical activity and the generation of volcanic lightning. Although the hazard of volcanic lightning is mostly confined to the area proximal to the vent, monitoring electrical discharges associated with explosive eruptions can provide crucial information on the dynamics and structure of the plume as well as on the mass eruption rate and cargo of erupted fine ash. Nevertheless, our understanding of volcanic lightning is still limited due to lacking of both i) systematic instrumental observation of electric activity in volcanic plumes and ii) the limited number of experimental investigations on the electrical properties of volcanic materials and the opportunity of replicating volcanic plume conditions in the lab. We recently contributed to the understanding of both these aspects by performing multi-parametric observation of volcanic lightning at Sakurajima volcano in Japan and by achieving volcanic lightning in particle-laden jets generated in the lab. At Sakurajima volcano we combined high-speed imaging with magnetotelluric and acoustic measurements of ash-rich plumes generating electrical discharges and compare our observation with maximum plume height measurement and atmospheric soundings. Our observations at Sakurajima allow the measurement of flash properties with respect to the plume evolution as well as magnetic and electric field variation and associated transferred current. In addition, weather-balloon soundings rule out the contribution of hydrometeors in the electrification of the plume. We complement the field observation by performing rapid decompression experiments of well-constrained (composition and granulometry) ash samples and analogue materials (micrometric glass beads). The experiments have a similar character to the cannon-like vulcanian explosions observed at Sakurajima and show many similarities with

  11. Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

    USGS Publications Warehouse

    Coykendall, D.K.; Johnson, S.B.; Karl, S.A.; Lutz, R.A.; Vrijenhoek, R.C.

    2011-01-01

    Background: Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galpagos Rift. Results: Genetic differentiation (FST) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions: Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events. ?? 2011 Coykendall et al; licensee BioMed Central Ltd.

  12. Volcanic ash: What it is and how it forms

    SciTech Connect

    Heiken, G.

    1991-09-13

    There are four basic eruption processes that produce volcanic ash: (1) decompression of rising magma, gas bubble growth, and fragmentation of the foamy magma in the volcanic vent (magmatic), (2) explosive mixing of magma with ground or surface water (hydrovolcanic), (3) fragmentation of country rock during rapid expansion of steam and/or hot water (phreatic), and (4) breakup of lava fragments during rapid transport from the vent. Variations in eruption style and the characteristics of volcanic ashes produced during explosive eruptions depend on many factors, including magmatic temperature, gas content, viscosity and crystal content of the magma before eruption, the ratio of magma to ground or surface water, and physical properties of the rock enclosing the vent. Volcanic ash is composed of rock and mineral fragments, and glass shards, which is less than 2 mm in diameter. Glass shard shapes and sizes depend upon size and shape of gas bubbles present within the magma immediately before eruption and the processes responsible for fragmentation of the magma. Shards range from slightly curved, thin glass plates, which were broken from large, thin-walled spherical bubble walls, to hollow needles broken from pumiceous melts containing gas bubbles stretched by magma flow within the volcanic vent. Pumice fragments make up the coarser-grained portions of the glass fraction. Particle sizes range from meters for large blocks expelled near the volcanic vent to nanometers for fine ash and aerosol droplets within well-dispersed eruption plumes. 18 refs., 6 figs., 1 tab.

  13. Migration of volcanism in the San Francisco volcanic field, Arizona.

    USGS Publications Warehouse

    Tanaka, K.L.; Shoemaker, E.M.; Ulrich, G.E.; Wolfe, E.W.

    1986-01-01

    The remanent magnetization of volcanic rocks has been determined at 650 sites in this volcanic field in the S part of the Colorado plateau. The polarity of remanent magnetization, combined with K/Ar age determinations, spatial and petrographic association, stratigraphic relations and state of preservation of the cinder cones, provides a basis of assignment to a known magnetic polarity epoch of 610 mafic vents and >100 intermediate to silicic flows, flow sequences and vents. Basaltic volcanism migrated NE before Matoyama time (2.48-5.0 m.y.) at a rate of approx 1.2 cm/yr and eastward over the past 2.5 m.y. at a rate of 2.9 cm/yr. Total magma production and frequency of basaltic eruption accelerated between 5 and 0.25 m.y. and have decreased thereafter; this evolutionary sequence, coupled with the Sr-isotopic composition of the rocks, can be explained by magmatism caused by shear heating at the base of the lithosphere. The eastward drift of volcanism represents the absolute westward motion of the North America plate.-L.C.H.

  14. Temporal changes in thermal waters related to volcanic activity of Tokachidake Volcano, Japan: implications for forecasting future eruptions

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryo; Shibata, Tomo; Murayama, Yasuji; Ogino, Tagiru; Okazaki, Noritoshi

    2015-01-01

    In order to detect changes in volcanic activity of Tokachidake Volcano, Japan, we have continuously monitored thermal waters discharging at the western to southwestern flank of the volcano since 1986. The steam-heated waters in the Nukkakushi crater discharged with boiling temperature until 2002. Thermal waters at the Tokachidake spa area have similar compositions to fumarolic gas emitted from the summit craters, indicating that the waters formed by absorption of volcanic gas into shallow aquifers. Thermal waters at the Fukiage spa area were derived from the same aquifer as the Tokachidake spa area until early 1986. However, after that time, NaCl-type thermal water entered the Fukiage spa area during the increase in volcanic activity associated with the 1988-1989 eruption, thus leading to a clear increase in Cl concentrations and temperature. After the eruption, the supply of the NaCl-type thermal water was halted, and the Cl concentrations of the thermal waters decreased. In contrast, SO4 concentrations gradually increased in the Fukiage spa area after 1989, and the temperature has been maintained. These observations indicate that SO4-rich thermal water with a relatively high temperature entered the system instead of the NaCl-type thermal water. As was the case for the 1988-1989 eruption, the Cl concentrations at the Fukiage spa area increased in 2012 during an increase in volcanic activity, implying that the supply of the NaCl-type thermal water had resumed. However, the chemical changes in the thermal waters since 2012 are small compared with those before the 1988-1989 eruption, with oxygen and hydrogen isotopic compositions remaining nearly the same as those of meteoric waters.

  15. Coil spring venting arrangement

    DOEpatents

    McCugh, R.M.

    1975-10-21

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed.

  16. Discovery of an active shallow submarine silicic volcano in the northern Izu-Bonin Arc: volcanic structure and potential hazards of Oomurodashi Volcano (Invited)

    NASA Astrophysics Data System (ADS)

    Tani, K.; Ishizuka, O.; Nichols, A. R.; Hirahara, Y.; Carey, R.; McIntosh, I. M.; Masaki, Y.; Kondo, R.; Miyairi, Y.

    2013-12-01

    Oomurodashi is a bathymetric high located ~20 km south of Izu-Oshima, an active volcanic island of the northern Izu-Bonin Arc. Using the 200 m bathymetric contour to define its summit dimensions, the diameter of Oomurodashi is ~20 km. Oomurodashi has been regarded as inactive, largely because it has a vast flat-topped summit at 100 - 150 meters below sea level (mbsl). During cruise NT07-15 of R/V Natsushima in 2007, we conducted a dive survey in a small crater, Oomuro Hole, located in the center of the flat-topped summit, using the remotely-operated vehicle (ROV) Hyper-Dolphin. The only heat flow measurement conducted on the floor of Oomuro Hole during the dive recorded an extremely high value of 4,200 mW/m2. Furthermore, ROV observations revealed that the southwestern wall of Oomuro Hole consists of fresh rhyolitic lavas. These findings suggest that Oomurodashi is in fact an active silicic submarine volcano. To confirm this hypothesis, we conducted detailed geological and geophysical ROV Hyper-Dolphin (cruise NT12-19). In addition to further ROV surveys, we carried out single-channel seismic (SCS) surveys across Oomurodashi in order to examine the shallow structures beneath the current edifice. The ROV surveys revealed numerous active hydrothermal vents on the floor of Oomuro Hole, at ~200 mbsl, with maximum water temperature measured at the hydrothermal vents reaching 194°C. We also conducted a much more detailed set of heat flow measurements across the floor of Oomuro Hole, detecting very high heat flows of up to 29,000 mW/m2. ROV observations revealed that the area surrounding Oomuro Hole on the flat-topped summit of Oomurodashi is covered by extensive fresh rhyolitic lava and pumice clasts with minimum biogenetic or manganese cover, suggesting recent eruption(s). These findings strongly indicate that Oomurodashi is an active silicic submarine volcano, with recent eruption(s) occurring from Oomuro Hole. Since the summit of Oomurodashi is in shallow water, it

  17. Using IMS hydrophone data for detecting submarine volcanic activity: Insights from Monowai, 26°S Kermadec Arc

    NASA Astrophysics Data System (ADS)

    Metz, Dirk; Watts, Anthony B.; Grevemeyer, Ingo; Rodgers, Mel; Paulatto, Michele

    2016-04-01

    Only little is known on active volcanism in the ocean. As eruptions are attenuated by seawater and fallout does not regularly reach the sea surface, eruption rates and mechanisms are poorly understood. Estimations on the number of active volcanoes across the modern seas range from hundreds to thousands, but only very few active sites are known. Monowai is a submarine volcanic centre in the northern Kermadec Arc, Southwest Pacific Ocean. During May 2011, it erupted over a period of five days, with explosive activity directly linked to the generation of seismoacoustic tertiary waves ('T-phases'), recorded at three broadband seismic stations in the region. We show, using windowed cross-correlation and time-difference-of-arrival techniques, that T-phases associated with this eruption are detected as far as Ascension Island, South Atlantic Ocean, where two bottom-moored hydrophone arrays are operated as part of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). We observe a high incidence of T-phase arrivals during the time of the eruption, with the angle of arrival stabilizing at the geodesic azimuth between the IMS arrays and Monowai. T-phases from the volcanic centre must therefore have propagated through the Sound Fixing And Ranging (SOFAR) channel in the South Pacific and South Atlantic Oceans and over a total geodesic range of approximately 15,800 km, one of the longest source-receiver distances of any naturally occurring underwater signal ever observed. Our findings, which are consistent with observations at regional broadband stations and two dimensional, long-range, parabolic equation modelling, highlight the exceptional capabilities of the hydroacoustic waveform component of the IMS for remotely detecting episodes of submarine volcanic activity. Using Monowai and the hydrophone arrays at Ascension Island as a natural laboratory, we investigate the long-term eruptive record of a submarine volcano from

  18. Time variability of Io's volcanic activity from near-IR adaptive optics observations on 100 nights in 2013-2015

    NASA Astrophysics Data System (ADS)

    de Kleer, Katherine; de Pater, Imke

    2016-12-01

    Jupiter's moon Io is a dynamic target, exhibiting extreme and time-variable volcanic activity powered by tidal forcing from Jupiter. We have conducted a campaign of high-cadence observations of Io with the goal of characterizing its volcanic activity. Between Aug 2013 and the end of 2015, we imaged Io on 100 nights in the near-infrared with adaptive optics on the Keck and Gemini N telescopes, which resolve emission from individual volcanic hot spots. During our program, we made over 400 detections of 48 distinct hot spots, some of which were detected 30+ times. We use these observations to derive a timeline of global volcanic activity on Io, which exhibits wide variability from month to month. The timelines of thermal activity at individual volcanic centers have geophysical implications, and will permit future characterization by others. We evaluate hot spot detection limits and give a simple parameterization of the minimum detectable intensity as a function of emission angle, which can be applied to other analyses. We detected three outburst eruptions in August 2013, but no other outburst-scale events were observed in the subsequent ∼90 observations. Either the cluster of events in August 2013 was a rare occurrence, or there is a mechanism causing large events to occur closely-spaced in time. We also detected large eruptions (though not of outburst scale) within days of one another at Kurdalagon Patera and Sethlaus/Gabija Paterae in 2015. As was also seen in the Galileo dataset, the hot spots we detected can be separated into two categories based on their thermal emission: those that are persistently active for 1 year or more at moderate intensity, and those that are only briefly active, are time-variable, and often reach large intensities. A small number of hot spots in the latter category appear and subside in a matter of days, reaching particularly high intensities; although these are not bright enough to qualify as outbursts, their thermal signatures follow

  19. Morpho-structural evolution of a volcanic island developed inside an active oceanic rift: S. Miguel Island (Terceira Rift, Azores)

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Hildenbrand, A.; Marques, F. O.; Weiss, B.; Boulesteix, T.; Hübscher, C.; Lüdmann, T.; Costa, A. C. G.; Catalão, J. C.

    2015-08-01

    The evolution of volcanic islands is generally marked by fast construction phases alternating with destruction by a variety of mass-wasting processes. More specifically, volcanic islands located in areas of intense regional deformation can be particularly prone to gravitational destabilisation. The island of S. Miguel (Azores) has developed during the last 1 Myr inside the active Terceira Rift, a major tectonic structure materializing the present boundary between the Eurasian and Nubian lithospheric plates. In this work, we depict the evolution of the island, based on high-resolution DEM data, stratigraphic and structural analyses, high-precision K-Ar dating on separated mineral phases, and offshore data (bathymetry and seismic profiles). The new results indicate that: (1) the oldest volcanic complex (Nordeste), composing the easternmost part of the island, was dominantly active between ca. 850 and 750 ka, and was subsequently affected by a major south-directed flank collapse. (2) Between at least 500 ka and 250 ka, the landslide depression was massively filled by a thick lava succession erupted from volcanic cones and domes distributed along the main E-W collapse scar. (3) Since 250 kyr, the western part of this succession (Furnas area) was affected by multiple vertical collapses; associated plinian eruptions produced large pyroclastic deposits, here dated at ca. 60 ka and less than 25 ka. (4) During the same period, the eastern part of the landslide scar was enlarged by retrogressive erosion, producing the large Povoação valley, which was gradually filled by sediments and young volcanic products. (5) The Fogo volcano, in the middle of S. Miguel, is here dated between ca. 270 and 17 ka, and was affected by, at least, one southwards flank collapse. (6) The Sete Cidades volcano, in the western end of the island, is here dated between ca. 91 and 13 ka, and experienced mutliple caldera collapses; a landslide to the North is also suspected from the presence of a

  20. Origins of Small Volcanic Cones on Mars

    NASA Technical Reports Server (NTRS)

    Fagents, S. A.; Pace, K.; Greeley, R.

    2002-01-01

    Studies of volcanic cones identified in the MGS data indicate a range of possible origins, from primary vent constructs (cinder cones, tuff cones) to rootless cones formed by lava-ice interaction. Additional information is contained in the original extended abstract.

  1. Structural lineaments and neogene volcanism in southwestern Luzon

    NASA Astrophysics Data System (ADS)

    Wolfe, John A.; Self, Stephen

    The Philippine Islands have at least 15 active composite volcanoes and as many more that are fumarolic or dormant. About 20 calderas of Pleistocene age are known so far. Southwestern Luzon, one of the major volcanic districts of the country, contains three young composite volcanoes, four in a fumarolic stage, and over 200 vents of Pliocene-Pleistocene age within 150 km of Manila. There are three large calderas in this zone with a fourth a short distance south on Mindoro Island, plus four summit calderas. One of the most striking features is the Bataan Lineament, a chain of 27 volcanic vents, only one at present active, which marks the western side of the district. The main segment extends from Naujan caldera in the south (on Mindoro Island) on a strike of N31°W through Batangas Bay caldera, Mataas Na Gulod (a summit caldera), Corregidor Island (a small caldera), to Mount Mariveles and Mount Natib on the Bataan peninsula. With a bend of 30° at Mount Natib, the lineament continues northward for another 100 km, giving a total length of 320 km. Here it includes Mount Pinatubo, which is active, and several other vents. The Bataan Lineament is a volcanic arc, with perhaps some extensional element, above the subduction zone of the Manila Trench, dipping eastward under Luzon. Another major volcanic element is the Verde Island transform, which forms a zone across southwest Luzon, including 10 or more volcanoes. Activity extended from the lower Miocene with periodic eruptions until the late Pleistocene. Two volcanoes may be in a waning (fumarolic) stage and have thermal areas. Near the western end of this lineament, recent rifting may have occurred, and presently it is a zone of intense seismic activity. In the zone between the Bataan and Verde Island lineaments, several major volcanoes have developed including Laguna de Bay and Taal volcano-tectonic depressions. Large volume ignimbrite-forming eruptions may have taken place from Laguna de Bay caldera approximately 1.0 m

  2. Review of magnetic field monitoring near active faults and volcanic calderas in California: 1974-1995

    USGS Publications Warehouse

    Mueller, R.J.; Johnston, M.J.S.

    1998-01-01

    Differential magnetic fields have been monitored along the San Andreas fault and the Long Valley caldera since 1974. At each monitoring location, proton precession magnetometers sample total magnetic field intensity at a resolution of 0.1 nT or 0.25 nT. Every 10 min, data samples are transmitted via satellite telemetry to Menlo Park, CA for processing and analysis. The number of active magnetometer sites has varied during the past 21 years from 6 to 25, with 12 sites currently operational. We use this network to identify magnetic field changes generated by earthquake and volcanic processes. During the two decades of monitoring, five moderate earthquakes (M5.9 to M7.3) have occurred within 20 km of magnetometer sites located along the San Andreas fault and only one preseismic signal of 1.5 nT has been observed. During moderate earthquakes, coseismic magnetic signals, with amplitudes from 0.7 nT to 1.3 nT, have been identified for 3 of the 5 events. These observations are generally consistent with those calculated from simple seismomagnetic models of these earthquakes and near-fault coseismic magnetic field disturbances rarely exceed one nanotesla. These data are consistent with the concept of low shear stress and relatively uniform displacement of the San Andreas fault system as expected due to high pore fluid pressure on the fault. A systematic decrease of 0.8-1 nT/year in magnetic field has occurred in the Long Valley caldera since 1989. These magnetic field data are similar in form to observed geodetically measured displacements from inflation of the resurgent dome. A simple volcanomagnetic model involving pressure increase of 50 MPa/a at a depth of 7 km under the resurgent dome can replicate these magnetic field observations. This model is derived from the intrusion model that best fits the surface deformation data. ?? 1998 Elsevier Science B.V.

  3. Mesozooplankton distribution near an active volcanic island in the Andaman Sea (Barren Island).

    PubMed

    Pillai, Honey U K; Jayaraj, K A; Rafeeq, M; Jayalakshmi, K J; Revichandran, C

    2011-05-01

    The study addresses the distribution and diversity of mesozooplankton near the active volcano-Barren Island (Andaman Sea) in the context of persistent volcanic signature and warm air pool existing for the last few months. Sampling was done from the stations along the west and east side of the volcano up to a depth of 1,000 m during the inter monsoon (April) of 2006. Existence of feeble warm air pool was noticed around the Island (Atm. Temp. 29°C). Sea surface temperature recorded as 29.9°C on the west and 29.6°C on the east side stations. High mesozooplankton biomass was observed in the study area than the earlier reports. High density and biomass observed in the surface layer decreased significantly to the deeper depths. Lack of correlation was observed between mesozooplankton biomass and density with chl. a. Twenty-three mesozooplankton taxa were observed with copepoda as the dominant taxa followed by chaetognatha. The relative abundance of chaetognatha considerably affected the copepod population density in the surface layer. A noticeable feature was the presence of cumaceans, a hyperbenthic fauna in the surface, mixed layer and thermocline layer on the western side station where the volcano discharges in to the sea. The dominant order of copepoda, the calanoida was represented by 52 species belonging to 17 families. The order poecilostomatoida also had a significant contribution. Copepods exhibited a clear difference in their distribution pattern in different depth layers. The families Calanidae and Pontellidae showed a clear dominance in the surface whereas small-sized copepods belonging to the families Clausocalanidae and Paracalanidae were observed as the predominant community in the mixed layer and thermocline layer depth. Families Metridinidae, Augaptilidae and Aetideidae were observed as dominant in deeper layers. PMID:20717718

  4. Maximizing Mission Science Return Through use of Spacecraft Autonomy: Active Volcanism and the Autonomous Sciencecraft Experiment

    NASA Astrophysics Data System (ADS)

    Chien, S.; Davies, A. G.; Sherwood, R.; ASE Science Team

    2005-08-01

    Deep-space missions have been unable to react to dynamic events as encounter observation sequences are planned well in advance. In the case of planet, asteroid and comet fly-bys, the limited resources available are allocated to individual instruments long beforehand. However, for monitoring or mapping mission phases, alternative strategies and technologies are now available. Now, onboard data processing allows greater spacecraft and instrument flexibility, affording the ability to react rapidly to dynamic events, and increasing the science content of returned data. Such new technology has already been successfully demonstrated in the form of the New Millennium Program Autonomous Sciencecraft Experiment (ASE). In 2004 ASE successfully demonstrated advanced autonomous science data acquisition, processing, and product downlink prioritization, as well as autonomous fault detection and spacecraft command and control. ASE is software onboard the EO-1 spacecraft, in Earth-orbit. ASE controlled the Hyperion instrument, a hyperspectral imager with 220 wavelengths from 0.4 to 2.5 μm and 30 m/pixel spatial resolution. ASE demonstrated that spacecraft autonomy will be advantageous to future missions by making the best use of limited downlink, e.g., by increasing science content per byte of returned data, and by avoiding the return of null (no-change/no feature) datasets. and by overcoming communication delays through decision-making onboard enabling fast reaction to dynamic events. We envision this flight-proven science-driven spacecraft command-and-control technology being used on a wide range of missions to search for and monitor dynamic events, such as active, high-temperature volcanism on Earth and Io, and cryovolcanism on Triton and possibly other icy satellites. Acknowledgements: Part of this work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. We thank the EO-1 Flight Management Team and Chris Stevens and Art

  5. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    NASA Astrophysics Data System (ADS)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    other active volcanic systems on Earth.

  6. Volcanic Catastrophes

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.

    2003-12-01

    volcanism on humankind in the North Pacific, where Holocene time saw many caldera-forming eruptions in an area of comparatively intense human activity.

  7. Monitoring Io volcanic activity using the Keck AO system: 2-5μm sunlit and eclipse observations

    NASA Astrophysics Data System (ADS)

    Marchis, F.; de Pater, I.; Le Mignant, D.; Roe, H. G.; Fusco, T.; Graham, J. R.; Prange, R.; Macintosh, B.

    2002-12-01

    Galileo provided us with spectacular images of the volcanically active Io moon over the last 7 years, but we understand little about the physical processes occurring on this moon. Groundbased monitoring programs help characterize the long time evolution of Io's volcanic activity, such as the frequency, spatial distribution and temperature of hot spots and outbursts. Our group started a monitoring program of Io's volcanic activity using the Keck II Adaptive Optics (AO) system and its recently installed near-infrared camera NIRC2. Here we report groundbased observations of Io conducted in December 2001 (UT), at 0.05" resolution (120-140 km on Io) in K', i.e., ~4 times better than HST and than global Galileo NIMS images. Our 1-5 micron data enable us to determine the temperature of individual hot spots, a key parameter for geophysical/volcanic flow models. We will present: i) Io in reflected sunlight in K', L', and M bands. We used Io itself as reference source for the wavefront sensor of the AO system. Our L and M-band images show both reflected sunlight and thermal emission from volcanic hot spots. The contrast of images is enhanced using the MISTRAL deconvolution algorithme. The 12 images taken on 10 days provides a complete survey of Io surface during one full rotation. 26 active hot spots were detected on the entire surface in L band (3.8μm), approximatively three times more in M band (4.7μm). One active hot spot is seen in K band (2.2μm) in the Pele area. A study of individual hot spot (temperature, emission area, nature) will be presented. ii) Io in eclipse. While Io is in Jupiter's shadow, it is invisible to the wavefront sensor, but its hot spots are easily visible in the near-infrared. We imaged Io during the 18 Dec. 2001 eclipse using Ganymede (30" from Io, moving relative to Io at ~0.5"/min) as a reference source. A dozen of faint hot spots are detected at both K' and L', allowing temperature estimates for each of them. Keck Science team is composed of

  8. Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western Pacific.

    PubMed

    Tarasov, V G

    2006-01-01

    This review is based on integrated studies of the composition, structure and function of shallow-water ecosystems in the western Pacific that are influenced by underwater gas-hydrothermal activity. Most of the data were collected from 1985 to 1997 by the Institute of Marine Biology of the Far East Branch of the Russian Academy of Science during expeditions to zones of modern volcanism. Gas-hydrothermal activity of volcanoes has a great influence on the physicochemical characteristics of the water column and plankton, and of bottom sediment and benthic communities. The abundance of nutrients (SiO(3)(2-), PO(4)(3-), NO(3)(-)), gases (CO(2), CH(4), H(2), H(2)S) and other reduced compounds (C(n)H(n), S(0), S(2)O(3)(2-), NH(4)(+)) in zones of shallow-water hydrothermal vents provides conditions for the use of two energy sources for primary production: sunlight (photosynthesis) and the oxidation of reduced compounds (bacterial chemosynthesis). In areas of shallow-water volcanic activity, chemosynthesis occurs not only in the immediate vicinity of venting fluid release but also in the surface layer of the water column, where it occurs together with intense photosynthesis. This surface photosynthesis is found below the layer of chemosynthesis, which is related to the distribution of hydrothermal fluids at the water surface. The contribution of each of these processes to total primary production depends on the physical and chemical conditions created by the vents and on the range and adaptation potential of the organisms. On the seabed in zones of shallow-water venting, microorganisms form mats that consist of bacteria of various physiological groups, microalgae, the products of their metabolism and sedimentary particles. Oxygenic photosynthesis of benthic diatoms, bacterial photosynthesis (anoxygenic photosynthesis) and autotrophic chemosynthesis in algobacterial and bacterial mats generate organic matter additional to that produced in the water column. The high rates of

  9. On the statistics of El Nino occurrences and the relationship of El Nino to volcanic and solar/geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1989-01-01

    El Nino is conventionally defined as an anomalous and persistent warming of the waters off the coasts of Ecuador and Peru in the eastern equatorial Pacific, having onset usually in Southern Hemispheric summer/fall. Some of the statistical aspects of El Nino occurrences are examined, especially as they relate to the normal distribution and to possible associations with volcanic, solar, and geomagnetic activity. With regard to the very strong El Nino of 1982 to 1983, it is noted that, although it may very well be related to the 1982 eruptions of El Chichon, the event occurred essentially on time (with respect to the past behavior of elapsed times between successive El Nino events; a moderate-to-stronger El Nino was expected during the interval 1978 to 1982, assuming that El Nino occurrences are normally distributed, having a mean elapsed time between successive onsets of 4 years and a standard deviation of 2 years and a last known occurrence in 1976). Also, although not widely recognized, the whole of 1982 was a record year for geomagnetic activity (based on the aa geomagnetic index, with the aa index registering an all time high in February 1982), perhaps, important for determining a possible trigger for this and other El Nino events. A major feature is an extensive bibliography (325 entries) on El Nino and volcanic-solar-geomagnetic effects on climate. Also, included is a tabular listing of the 94 major volcanic eruptions of 1835 to 1986.

  10. Metal Concentrations in Two Commercial Tuna Species from an Active Volcanic Region in the Mid-Atlantic Ocean.

    PubMed

    Torres, Paulo; Rodrigues, Armindo; Soares, Lília; Garcia, Patrícia

    2016-02-01

    Concentrations of cadmium (Cd), mercury (Hg), and lead [Pb (µg g(-1) wet weight)] were determined in liver and muscle samples of 15 bigeye (Thunnus obesus) and 15 skipjack tunas (Katsuwonus pelamis) caught over an active volcanic region in the Mid-Atlantic Ocean (Azores, Portugal) and evaluated regarding consumption safety. None of the muscle samples (edible part) exceeded the European Union (EU) maximum limits (MLs) for Hg and Pb. Cd concentrations in muscle were much greater than EU MLs with 53 and 26 % of the bigeye tuna and skipjack tuna, respectively, in exceedance of the limits. Results obtained in this work, together with other studies in the same region, support the existence of an important volcanic source of Cd in waters of the Mid-Atlantic region, which should be carefully monitored given the importance of many commercial marine species for human consumption, mainly in Europe. PMID:26681184

  11. The Geologic Setting of Hydrothermal Vents at Mariana Arc Submarine Volcanoes: High-Resolution Bathymetry and ROV Observations

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Embley, R. W.; de Ronde, C. E.; Stern, R. J.; Hein, J.; Merle, S.; Ristau, S.

    2004-12-01

    below the summit, and is characterized by focused flow of CO2-rich fluids, whereas the summit has extensive areas of diffuse venting and is covered with thick bacterial mats. (3) Some of the most remarkable vent sites are deep, narrow volcanic craters at NW Rota-1 and Daikoku volcanoes. The crater at NW Rota-1 volcano (named "Brimstone Pit") is 15-m wide, 20-m deep, funnel shaped, and was actively erupting ash, lapilli, and molten sulfur. The rim of Brimstone Pit is composed of welded spatter and is located at 550 m depth, about 30 m below the summit. Other diffuse hydrothermal sites at NW Rota-1 are located along the rocky summit ridge. At Daikoku volcano, an extraordinary crater emitting cloudy hydrothermal fluid was found at 375 m depth on the north shoulder of the volcano, about 75 m below the summit. This crater was at least 135 m deep and had a remarkably cylindrical cross-section with a diameter of ~50 m. ROPOS descended 75 m into the crater and was still at least 60 m above the bottom, according to the altimeter, when we were forced to cease operations due to weather. In addition, diffuse hydrothermal fluids seep from large areas of the summit and upper slopes of Daikoku.

  12. The Middle-Pleistocene (~300 ka) Rodderberg maar-scoria cone volcanic complex (Bonn, Germany): eruptive history, geochemistry, and thermoluminescence dating

    NASA Astrophysics Data System (ADS)

    Paulick, H.; Ewen, C.; Blanchard, H.; Zöller, L.

    2009-12-01

    The Rodderberg volcanic complex (RVC) is located within the city limits of Bonn (Germany) approximately 20 km to the north of the Quaternary East Eifel Volcanic Field (EEVF). It is the product of intense phreatomagmatic volcanism forming a 90 m deep maar crater and strombolian eruptions. Deposit features indicate that the location of the vent(s) shifted from N to S during the strombolian phase. The erupted leucite-nephelinite magma (on the order of ca. 1 × 10-2 km3) was largely homogenous with minor, stratigraphically controlled, variation in olivine and clinopyroxene microphenocryst content. Stratigraphic evidence and thermoluminescence dating indicate that the RVC erupted during the glacial MIS 8 at around 300 ka. During this time, the EEVF experienced a transitional stage between two major phases of volcanic activity involving a change in magma sources. This is consistent with the RVC geochemical data which show affinities to both the older EEVF leucite-nephelinite association (430-380 ka) and the younger basanite association (<215 ka). In the Eifel, magma ascent through the upper crust is apparently linked to tectonic fractures. It may be speculated that a tectonically controlled diking event channeled magma to the north of the main EEVF and that the RVC represents an exceptional surficial expression of a significantly larger subsurface intrusion. This scenario would be consistent with recent observations of diking-related volcanism in the East African Rift zone and previously inferred models for magma ascent in similar intraplate volcanic fields.

  13. Semi-automatic delimitation of volcanic edifice boundaries: Validation and application to the cinder cones of the Tancitaro-Nueva Italia region (Michoacán-Guanajuato Volcanic Field, Mexico)

    NASA Astrophysics Data System (ADS)

    Di Traglia, Federico; Morelli, Stefano; Casagli, Nicola; Garduño Monroy, Victor Hugo

    2014-08-01

    The shape and size of monogenetic volcanoes are the result of complex evolutions involving the interaction of eruptive activity, structural setting and degradational processes. Morphological studies of cinder cones aim to evaluate volcanic hazard on the Earth and to decipher the origins of various structures on extraterrestrial planets. Efforts have been dedicated so far to the characterization of the cinder cone morphology in a systematic and comparable manner. However, manual delimitation is time-consuming and influenced by the user subjectivity but, on the other hand, automatic boundary delimitation of volcanic terrains can be affected by irregular topography. In this work, the semi-automatic delimitation of volcanic edifice boundaries proposed by Grosse et al. (2009) for stratovolcanoes was tested for the first time over monogenetic cinder cones. The method, based on the integration of the DEM-derived slope and curvature maps, is applied here to the Tancitaro-Nueva Italia region of the Michoacán-Guanajuato Volcanic Field (Mexico), where 309 Plio-Quaternary cinder cones are located. The semiautomatic extraction allowed identification of 137 of the 309 cinder cones of the Tancitaro-Nueva Italia region, recognized by means of the manual extraction. This value corresponds to the 44.3% of the total number of cinder cones. Analysis on vent alignments allowed us to identify NE-SW vent alignments and cone elongations, consistent with a NE-SW σmax and a NW-SE σmin. Constructing a vent intensity map, based on computing the number of vents within a radius r centred on each vent of the data set and choosing r = 5 km, four vent intensity maxima were derived: one is positioned in the NW with respect to the Volcano Tancitaro, one in the NE, one to the S and another vent cluster located at the SE boundary of the studied area. The spacing of centroid of each cluster (24 km) can be related to the thickness of the crust (9-10 km) overlying the magma reservoir.

  14. Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements

    USGS Publications Warehouse

    Vita, Fabio; Kern, Christoph; Inguaggiato, Salvatore

    2014-01-01

    Active long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and power-inefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, portable, low-power LP-DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. The LP-DOAS was used to measure sulfur dioxide (SO2) emissions from La Fossa crater, Vulcano, Italy, where column densities of up to 1.2 × 1018 molec cm−2 (~ 500 ppmm) were detected along open paths of up to 400 m in total length. The instrument's SO2 detection limit was determined to be 2 × 1016 molec cm−2 (~ 8 ppmm), thereby making quantitative detection of even trace amounts of SO2 possible. The instrument is capable of measuring other volcanic volatile species as well. Though the spectral evaluation of the recorded data showed that chlorine monoxide (ClO) and carbon disulfide (CS2) were both below the instrument's detection limits during the experiment, the upper limits for the X / SO2 ratio (X = ClO, CS2) could be derived, and yielded 2 × 10−3 and 0.1, respectively. The robust design and versatility of the instrument make it a promising tool for monitoring of volcanic degassing and understanding processes in a range of volcanic systems.

  15. Quantifying diffuse and discrete venting at the Tour Eiffel vent site, Lucky Strike hydrothermal field

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; EscartíN, Javier; Gracias, Nuno; Olive, Jean-Arthur; Barreyre, Thibaut; Davaille, Anne; Cannat, Mathilde; Garcia, Rafael

    2012-04-01

    The relative heat carried by diffuse versus discrete venting of hydrothermal fluids at mid-ocean ridges is poorly constrained and likely varies among vent sites. Estimates of the proportion of heat carried by diffuse flow range from 0% to 100% of the total axial heat flux. Here, we present an approach that integrates imagery, video, and temperature measurements to accurately estimate this partitioning at a single vent site, Tour Eiffel in the Lucky Strike hydrothermal field along the Mid-Atlantic Ridge. Fluid temperatures, photographic mosaics of the vent site, and video sequences of fluid flow were acquired during the Bathyluck'09 cruise (Fall, 2009) and the Momarsat'10 cruise (Summer, 2010) to the Lucky Strike hydrothermal field by the ROV Victor6000 aboard the French research vessel the "Pourquoi Pas"? (IFREMER, France). We use two optical methods to calculate the velocities of imaged hydrothermal fluids: (1) for diffuse venting, Diffuse Flow Velocimetry tracks the displacement of refractive index anomalies through time, and (2) for discrete jets, Particle Image Velocimetry tracks eddies by cross-correlation of pixel intensities between subsequent images. To circumvent video blurring associated with rapid velocities at vent orifices, exit velocities at discrete vents are calculated from the best fit of the observed velocity field to a model of a steady state turbulent plume where we vary the model vent radius and fluid exit velocity. Our results yield vertical velocities of diffuse effluent between 0.9 cm s-1 and 11.1 cm s-1 for fluid temperatures between 3°C and 33.5°C above that of ambient seawater, and exit velocities of discrete jets between 22 cm s-1 and 119 cm s-1 for fluid temperatures between 200°C and 301°C above ambient seawater. Using the calculated fluid velocities, temperature measurements, and photo mosaics of the actively venting areas, we calculate a heat flux due to diffuse venting from thin fractures of 3.15 ± 2.22 MW, discrete venting of

  16. Vent Relief Valve Test

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Shown is the disassembly, examination, refurbishment and testing of the LH2 ( liquid hydrogen) and LOX (liquid oxygen) vent and relief valves for the S-IVB-211 engine stage in support of the Constellation/Ares project. This image is extracted from high definition video and is the highest resolution available.

  17. VEPP Exercise: Volcanic Activity and Monitoring of Pu`u `O`o, Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. A.

    2010-12-01

    A 10-week project will be tested during the Fall semester 2010, for a Volcanic Hazards elective course, for undergraduate Geology students of the University of Puerto Rico at Mayaguez. This exercise was developed during the Volcanoes Exploration Project: Pu`u `O`o (VEPP) Workshop, held on the Big Island of Hawaii in July 2010. For the exercise the students will form groups (of 2-4 students), and each group will be assigned a monitoring technique or method, among the following: seismic (RSAM data), deformation (GPS and tilt data), observations (webcam and lava flow maps), gas and thermal monitoring. The project is designed for Geology undergraduates who have a background in introductory geology, types of volcanoes and eruptions, magmatic processes, characteristics of lava flows, and other related topics. It is divided in seven tasks, starting with an introduction and demonstration of the VEPP website and the VALVE3 software, which is used to access monitoring data from the current eruption of Pu`u `O`o, Kilauea volcano, Hawaii. The students will also familiarize themselves with the history of Kilauea volcano and its current eruption. At least weekly the groups will acquire data (mostly near-real-time) from the different monitoring techniques, in the form of time series, maps, videos, and images, in order to identify trends in the data. The groups will meet biweekly in the computer laboratory to work together in the analysis and interpretation of the data, with the support of the instructor. They will give reports on the progress of the exercise, and will get feedback from the instructor and from the other expert groups. All groups of experts will relate their findings to the recent and current activity of Kilauea volcano, and the importance of their specific type of monitoring. The activity will culminate with a written report and an oral presentation. The last task of the project consists of a wrap-up volcano monitoring exercise, in which the students will

  18. Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade?

    NASA Astrophysics Data System (ADS)

    Ramsey, Michael S.; Harris, Andrew J. L.

    2013-01-01

    Volcanological remote sensing spans numerous techniques, wavelength regions, data collection strategies, targets, and applications. Attempting to foresee and predict the growth vectors in this broad and rapidly developing field is therefore exceedingly difficult. However, we attempted to make such predictions at both the American Geophysical Union (AGU) meeting session entitled Volcanology 2010: How will the science and practice of volcanology change in the coming decade? held in December 2000 and the follow-up session 10 years later, Looking backward and forward: Volcanology in 2010 and 2020. In this summary paper, we assess how well we did with our predictions for specific facets of volcano remote sensing in 2000 the advances made over the most recent decade, and attempt a new look ahead to the next decade. In completing this review, we only consider the subset of the field focused on thermal infrared remote sensing of surface activity using ground-based and space-based technology and the subsequent research results. This review keeps to the original scope of both AGU presentations, and therefore does not address the entire field of volcanological remote sensing, which uses technologies in other wavelength regions (e.g., ultraviolet, radar, etc.) or the study of volcanic processes other than the those associated with surface (mostly effusive) activity. Therefore we do not consider remote sensing of ash/gas plumes, for example. In 2000, we had looked forward to a "golden age" in volcanological remote sensing, with a variety of new orbital missions both planned and recently launched. In addition, exciting field-based sensors such as hand-held thermal cameras were also becoming available and being quickly adopted by volcanologists for both monitoring and research applications. All of our predictions in 2000 came true, but at a pace far quicker than we predicted. Relative to the 2000-2010 timeframe, the coming decade will see far fewer new orbital instruments with

  19. Transtension controlling volcanic morphology: Insights from oblique-to-the-arc tectonic domains

    NASA Astrophysics Data System (ADS)

    Sielfeld, G.; Cembrano, J. M.; Lara, L. E.

    2014-12-01

    Long and short-term tectonic activity plays an essential role in the segregation, transport and emplacement of fluids and magmas within the continental crust. Magma ascent and emplacement mechanisms within volcanic arcs are largely controlled by the interplay between pre-existing structural anisotropies, regional stress field, magmatic driving pressure, and the viscous resistance to magma flow. For the upper crust, many authors have stated that the orientation of principal tectonic stresses may determine the spatial distribution and geometry of eruptive vents and related feeder dykes Thus, regional and/or local tectonics (differential stresses) may exert a fundamental control in volcanic morphology and produce linear eruptive arrays of Andean-type strato-volcanoes, as a result of stability on long-lived structural system of sub-parallel dyke swarms and aligned minor eruptive centers along volcano flanks. In South-central Chile, the Callaqui Volcano consists of tens of aligned Pleisto-Holocene eruptive vents and hundreds of sub-parallel dykes, preserved along the ENE-WSW Callaqui volcano ridge. Morpho-structural field mapping and remote sensing analysis yields that Pleistocene eruptive vents are aligned into a N60°E-trending en echelon array, whereas its elliptical craters maximum diameter trend N66°E. Post-glacial eruptive vents also are organized into a N60°E trend, observed in both, isolated talweg scoria cone and flank fissural eruption. In addition, sub-parallel, underlying dyke swarms strike N60°E in it central portion of the volcanic system, becoming nearly E-W on distal zones. Examination of morphometrical and structural data yields that emplacement of magma occurs within a dextral transtensional regime, along a major regional discontinuity recognized previously by other authors. The strain field obtained within this study is consistent with the regional ENE shortening derived by the oblique convergence between Nazca and South-American plates.

  20. Aerosol disturbances of the stratosphere over Tomsk according to data of lidar observations in volcanic activity period 2006-2011

    NASA Astrophysics Data System (ADS)

    Makeev, Andrey P.; Burlakov, Vladimir D.; Dolgii, Sergey I.; Nevzorov, Aleksey V.; Trifonov, Dimitar A.

    2012-11-01

    We summarize and analyze the lidar measurements (Tomsk: 56.5°N; 85.0°E) of the optical characteristics of the stratospheric aerosol layer (SAL) in the volcanic activity period 2006-2011. The background SAL state with minimal aerosol content, which was observed since 1997 under the conditions of long-term volcanically quiescent period, was interrupted in October 2006 by a series of explosive eruptions of volcanoes of the Pacific Ring of Fire: Rabaul (October 2006, New Guinea); Okmok and Kasatochi (July-August 2008, Aleutian Islands); Redoubt (March-April 2009, Alaska); Sarychev Peak (June 2009, Kuril Islands), and Grimsvötn (May 2011, Iceland). A short-term and minor disturbance of the lower stratosphere was also observed in April 2010 after eruption of the Icelandic volcano Eyjafjallajokull. The developed regional empirical model of the vertical distribution of background SAL optical characteristics was used to identify the periods of elevated stratospheric aerosol content after each of the volcanic eruptions.

  1. Long-term risk in a recently active volcanic system: Evaluation of doses and indoor radiological risk in the quaternary Vulsini Volcanic District (Central Italy)

    NASA Astrophysics Data System (ADS)

    Capaccioni, B.; Cinelli, G.; Mostacci, D.; Tositti, L.

    2012-12-01

    Volcanic rocks in the Vulsini Volcanic District (Central Italy) contain high concentrations of 238U, 232Th and 40K due to subduction-related metasomatic enrichment of incompatible elements in the mantle source coupled with magma differentiation within the upper crust. Due to their favorable mechanical properties they have been extensively used for construction since the Etruscan age. In the old buildings of the Bolsena village, one o